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RF Exposure Guidelines

By The ARRL Bio Effects Committee
(From The ARRL Handbook)

lthough Amateur Radio is basically a safe activity,

in recent years there has been considerable discussion and
concern about the possible hazards of electromagnetic radiation
(EMR), including both RF energy and power frequency (50-
60 Hz) electromagnetic fields. Extensive research on this topic is
underway in many countries. This section was prepared by mem-
bers of the ARRL Committee of the Biological Effects on RF
Energy (“Bio Effects” Committee) and coordinated by Wayne
Overbeck, N6NB. It summarizes what is now known and offers
safety precautions based on the research to date.

All life on Earth has adapted to survive in an environment of
weak, natural low-frequency electromagnetic fields (in additionto
the Earth’s static geomagnetic field). Natural low-frequency EM
fields come from two main sources: the Sun, and thunderstorm
activity. Butinthe last 100 years, man-made fields at much higher
intensities and with a very different spectral distribution have al-
tered this natural EM background in ways that are not yet fully
understood. Much more research is needed to assess the biological
effects of EMR.

Both RF and 60-Hz fields are classified as nonionizing radia-
tion because the frequency is too low for there to be enough photon
energy to ionize atoms. Still, at sufficiently high power densities,
EMR poses certain health hazards. It has been known since the
early days of radio that RF energy can cause injuries by heating
body tissue. [nextreme cases, RF-induced heating can cause blind-
ness, sterility and other serious health problems. These heat-re-
lated health hazards are called thermal effects. But now there is
mounting evidence that even at energy levels too low to cause
body heating, EMR has observable biological effects, some of
which may be harmful. These are athermal effects.

In addition to the ongoing research, much else has been done
to address this issue. For example, the American National Stan-
dards Institute, among others, has recommended voluntary guide-
lines to limit human exposure to RF energy. And the ARRL has
established the Bio Effects Committee, a committee of concerned
medical doctors and scientists, serving voluntarily to monitor sci-
entific research in the fields and to recommend safe practices for
radio amateurs.

THERMAL EFFECTS OF RF ENERGY

Body tissues that are subjected to very high levels of RF
energy may suffer serious heat damage. These effects depend
upon the frequency of the energy, the power density of the RF field

that strikes the body, and even on factors such as the polarization
of the wave.

At frequencies near the body’s natural resonant frequency,
RF energy is absorbed more efficiently, and maximum heating
occurs. In adults, this frequency usually is about 35 MHz if the
person is grounded, and about 70 MHz if the person’s body is
insulated from the ground. Also, body parts may be resonant; the
adult head, for example is resonant around 400 MHz, while a
baby’s smaller head resonates near 700 MHz. Body size thus
determines the frequency at which most RF energy is absorbed.
As the frequency is increased above resonance, less RF heating
generally occurs. However, additional longitudinal resonances
occur at about | GHz near the body surface.

Nevertheless, thermal effects of RF energy should not be a
major concern for most radio amateurs because of the relatively
low RF power we normally use and intermittent nature of most
amateur transmissions. Amateurs spend more time listening than
transmitting, and many amateur transmissions such as CW and
SSB use low-duty-cycle modes. (With FM or RTTY, though, the
RF is present continuously at its maximum level during each
transmission.) In any event, it is rarc for radio amatcurs to be
subjected to RF fields strong enough to produce thermal effects
unless they are fairly close to an energized antenna or unshielded
power amplifier. Specific suggestions for avoiding excessive
exposure are offered later.

ATHERMAL EFFECTS OF EMR

Nonthermal effects of EMR, on the other hand, may be of
greater concern to most amateurs because they involve lower-
level energy fields. In recent years, there have been many studies
of the health effects of EMR, including a number that suggest
there may be healthhazards of EMR evenat levels too low tocause
significant heating of body tissue. The research has been of two
basic types: cpidemiological research, and laboratory research
into biological mechanisms by which EMR may affect animals or
humans.

Epidemiologists look at the health patterns of large groups of
people using statistical methods. A series of epidemiological stud-
ies has shown that persons likely to have been exposed to higher
levels of EMR than the general population (such as persons living
near power lines or employed in electrical and related occupa-
tions) have higher than normal rates of certain types of cancers.
For example, several studies have found a higher incidence of
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Fig 1—IEEE RF protection guidelines for body exposure of humans.

leukemia and lymphatic cancer in children living near certain
types of power transmission and distribution lines and near trans-
former substations than in children not living in such areas. These
studies have found a risk ratio of about 2, meaning the chance of
contracting the disease is doubled. (The bibliography at the end of
this chapter lists some of these studies. See Wertheimer and
Leeper, 1979, 1982; Savitz et al, 1988.)

Parental exposures may also increase the cancer risk of their
offspring. Fathers in electronic occupations who are also exposed
to electronic solvents have children with an increased risk of brain
cancer, and children of mothers who slept under electric blankets
while pregnant have a 2.5 risk ratio for brain cancer.

Adults whose occupations expose them to strong 60-Hz fields
(for example, telephone line splicers and electricians) have been
found to have about four times the normal rate of brain cancer and
male breast cancer. Another study found that microwave workers
with 20 years of exposure had about 10 times the normal rate of
brain cancer if they were also exposed to soldering fumes or elec-
tronic solvents (Thomas et al, 1987). Typically, these chemical
factors alone have risk ratios around 2.

Dr. Samuel Milham, a Washington state epidemiologist,
conducted a large study of the mortality rates of radio amateurs,
and found that they had statistically significant excess mortality
from one type of leukemia and lymphatic cancer. Milham sug-
gested that this could result from the tendency of hams to work in
electrical occupations or from their hobby,

However, epidemiological research by itself is rarely con-
clusive. Epidemiology only identifies health patterns in groups —
it does not ordinarily determine their cause. And there are often
confounding factors: Most of us are exposed to many different
environmental hazards that may affect our health in various ways.
Moreover, not all studies of persons likely to be exposed to high
levels of EMR have yielded the same results.

There has also been considerable laboratory research about
the biological effects of EMR in recent years. For example, it has
been shown thateven fairly low levels of EMR can alter the human
body’s circadian rhythms, affect the manner in which cancer-
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Table 1

Typical 60-Hz Magnetic Fields Near Amateur
Radio Equipment and AC-Powered Household

Appliances
Values are in milligauss.

Item Field Distance
Electric blanket 30-90 Surface
Microwave oven 10-100 Surface
1-10 12"
IBM personal computer 5-10 Atop monitor
0-1 15" from screen
Electric drill 500-2000 At handle
Hair dryer 200-2000 At handle
HF transceiver 10-100 Atop cabinet
1-5 15” from front
1-kW RF ampilifier 80-1000 Atop cabinet
1-25 15" from front

(Source: measurements made by members of the ARRL Bio
Effects Committee)

fighting T lymphocytes function in the immune system, and alter
the nature of the electrical and chemical signals communicated
through the cell membrane and between cells, among other things.
(For a summary of some of this research, see Adey, 1990.)

Much of this research has focused on low-frequency mag-
netic fields, or on RF fields that are keyed, pulsed or modulated at
alow audio frequency (often below 100 Hz). Several studies sug-
gested that humans and animals can adapt to the presence of a
steady RF carrier more readily than to an intermittent, keyed or
modulated energy source. There is some evidence that while EMR
may not directly cause cancer, it may sometimes combine with
chemical agents to promote its growth or inhibit the work of the
body’s immune system.

None of the research to date conclusively proves that low-



Table 2

Typical RF Field Strengths Near Amateur Radio Antennas
A sampling of values as measured by the Federal Communications Commission and

Environmental Protection Agency, 1990.

Freq, Power, E Field,

Antenna Type MHz  Watts Vim Location
Dipole in attic 14.15 100 7-100 In home
Discone in attic 146.5 250 10-27 In home
Half sloper 21.15 1000 50 1 m from base
Dipole at 7-13 ft 7.14 120 8-150 1-2 m from earth
Vertical 38 800 180 0.5 m from base
5-element Yagi at 60 ft  21.2 1000 10-20 In shack

14 12 m from base
3-element Yagi at 25 ft 285 425 8-12 12 m from base
Inverted V at 22-46 ft 7.23 1400 5-27 Below antenna
Vertical on roof 1411 140 6-9 In house

35-100 At antenna tuner
Whip on auto roof 146.5 100 22-75 2 m from antenna

15-30 In vehicle

90 Rear seat
5-element Yagi at 20 ft  50.1 500 37-50 10 m from antenna

level EMR causes adverse health effects. Although there has been
much debate about the meaning and significance of this research,
many medical authorities now urge “‘prudent avoidance” of un-
necessary exposure to moderate or high-level electromagnetic
energy until more is known about this subject.

SAFE EXPOSURE LEVELS

How much EM energy is safe? Scientists have devoted a great
deal of effort to deciding upon safe RF-exposure limits. This is a
very complex problem, involving difficult public health and eco-
nomic considerations. The recommended safe levels have been
revised downward several times in recent years — and not all
scientific bodies agree on this question even today. A new Institute
of Electrical and Electronic Engineers (IEEE) guideline for recom-
mended EM exposure limits went into effect in 1991 (see Bibliog-
raphy). It replaced a 1982 American National Standards Institute
guideline that permitted somewhat higher exposure levels. ANSI-
recommended exposure limits before 1982 were higher still.

This new IEEE guideline recommends frequency-dependent
and time-dependent maximum permissible exposure levels. Un-
like earlier versions of the standard, the 1991 standard recommends
different RF exposure limits in controlled environments (that is,
where energy levels can be accurately determined and everyone on
the premises is aware of the presence of EM fields) and in uncon-
trolled environments (where energy levels are not known or where
some persons present may not be aware of the EM fields).

The graph in Fig 1 depicts the new IEEE standard. It is nec-
essarily a complex graph because the standards differ not only
for controlled and uncontrolled environments but also for electric
fields (E fields) and magnetic fields (H fields). Basically, the low-
est E-field exposure limits occur at frequencies between 30 and
300 MHz. The lowest H-field exposure levels occur at 100-
300 MHz. The ANSI standard sets the maximum E-field limits
between 30 and 300 MHz at a power density of | mW/cm® (61.4
volts per meter) in controlled environments — but at one-fifth that
level (0.2 mW/cm? or 27.5 volts per meter) in uncontrolled envi-
ronments. The H-field limit drops to 1 mW/cm? (0.163 ampere per
meter) at [00-300 MHz in controlled environments and 0.2 mW/
cm? (0.0728 ampere per meter) in uncontrolled environments.

Table 3
RF Awareness Guidelines

These guidelines were developed by the ARRL Bio Effects
Committee, based on the FCC/EPA measurements of
Table 2 and other data.

e Although antennas on towers (well away from people) pose
no exposure problem, make certain that the RF radiation is
confined to the antenna radiating elements themselves. Pro-
vide a single, good station ground (earth), and eliminate
radiation from transmission lines. Use good coaxial cable,
not open wire lines or end-fed antennas that come directly
into the transmitter area.

* No person should ever be near any transmitting antenna
while it is in use. This is especially true for mobile or
ground-mounted vertical antennas. Avoid transmitting with
more than 25 watts in a VHF mobile installation unless it is
possible to first measure the RF fields inside the vehicle. At
the 1-kilowatt level, both HF and VHF directional antennas
should be at least 35 feet above inhabited areas. Avoid
using indoor and attic-mounted antennas if at all possible.

« Don't operate RF power amplifiers with the covers removed,
especially at VHF/UHF.

* in the UHF/SHF region, never look into the open end of an
activated length of waveguide or point it toward anyone.
Never point a high-gain, narrow-beamwidth antenna (a
paraboloid, for instance) toward people. Use caution in
aiming an EME (moonbounce) array toward the horizon;
EME arrays may deliver an effective radiated power of
250,000 watts or more.

e With hand-held transceivers, keep the antenna away from
your head and use the lowest power possible to maintain
communications. Use a separate microphone and hold the
rig as far away from you as possible.

¢ Don’t work on antennas that have RF power applied.

* Don’t stand or sit close 1o a power supply or linear amplifier
when the ac power is turned on. Stay at least 24 inches
away from power transformers, electricat fans and other
sources of high-level 60-Hz magnetic fields.

Higher power densities are permitted at frequencies below
30 MHz(below 100 MHz for Hfields) and above 300 MHz, based
on the concept that the body will not be resonant at those frequen-
cies and will therefore absorb less energy.
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In general, the IEEE guideline requires averaging the power
level over time periods ranging from 6 to 30 minutes for power-
density calculations, depending on the frequency and other vari-
ables. The ANSI exposure limits for uncontrolled environments
are lJower than those for controlled environments, but to compen-
sate for that the guideline allows exposure levels in those environ-
ments to be averaged over much longer time periods (generally
30 minutes). This long averaging time means that an intermit-
tently operating RF source (such as an Amateur Radio transmit-
ter) will show amuch lower power density than a continuous-duty
station for a given power level and antenna configuration.

Time averaging is based on the concept that the human body
can withstand a greater rate of body heating (and thus, a higher
level of RF energy) for a short time than for a longer period.
However, time averaging may not be appropriate in consider-
ations of nonthermal effects of RF energy.

The IEEE guideline excludes any transmitter with an output
below 7 watts because such low-power transmitters would not be
able to produce significant whole-body heating. (However, recent
studies show that handheld transceivers often produce power
densities in excess of the IEEE standard within the head).

There is disagreement within the scientific community about
these RFexposure guidelines. The IEEE guideline is still intended
primarily to deal with thermal effects, not exposure to energy at
lower levels. A growing number of researchers now believe
athermal effects should also be taken into consideration. Several
European countries and localities in the United States have adopted
stricter standards than the recently updated IEEE standard.

Another national body in the United States, the National
Council for Radiation Protection and Measurement (NCRP), has
also adopted recommended exposure guidelines. NCRP urges a
limit of 0.2 mW/cm? for nonoccupational exposure in the 30-
300 MHz range. The NCRP guideline differs from IEEE in two
notable ways: It takes into account the effects of modulation on an
RF carrier, and it does not exempt transmitters with outputs below
7 watts.

Low-Frequency Fields

Recently, much concern about EMR has focused on low-
frequency energy rather than RF. Amateur Radio equipment can
be asignificant source of low-frequency magnetic fields, although
there are many other sources of this kind of energy in the typical
home. Magnetic fields can be measured relatively accurately with
inexpensive 60-Hz dosimeters that are made by several manufac-
turers.

Table 1showstypical magnetic fields intensities of Amateur
Radio equipment and various household items. Because these
fields dissipate rapidly with distance, *‘prudent avoidance” would
mean staying perhaps 12 to 18 inches away from most Amateur
Radio equipment (and 24 inches from power supplies with 1-kW
RF amplifiers) whenever the ac power is turned on. The old cus-
tom of leaning over alinearamplifieron acold winternight tokeep
warm may not be the best idea!

There are currently no national standards for exposure to
low-frequency fields. However, epidemiological evidence sug-
gests that when the general level of 60-Hz fields exceeds
2 milligauss, there is an increased cancer risk in both domestic
environments (Savitz et al, 1988) and industrial environments
(Matanoski et al, 1989, David and Milham, 1990;
Garland et al, 1990). Typical home environments (not close
toappliances or power lines) are in the range of 0.1-0.5 milligauss.
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Determining RF Power Density

Unfortunately, determining the power density of the RF
fields generated by an amateur station is not as simple as measur-
ing low-frequency magnetic fields. Although sophisticated in-
struments can be used to measure RF power densities quite accu-
rately, they are costly and require frequency recalibration. Most
amateurs don’t have access to such equipment, and the inexpen-
sive field-strength meters that we do have are not suitable for
measuring RF power density. The best we can usually do is to
estimate our own RF power density based on measurements made
by others or, given sufficient computer programming skills, use
computer modeling techniques.

Table 2 shows a sampling of measurements made at Ama-
teur Radio stations by the Federal Communications Commission
and the Environmental Protection Agency in 1990. As this table
indicates, a good antenna well removed from inhabited areas poses
no hazard under any of the various exposure guidelines. However,
the FCC/EPA survey also indicates that amateurs must be careful
about using indoor or attic-mounted antennas, mobile antennas,
low directional arrays, or any other antenna that is close to inhab-
ited areas, especially when moderate to high power is used.

Ideally, before using any antenna that is in close proximity
to an inhabited area, you should measure the RF power density. If
that is not feasible, the next best option is make the installation as
safe as possible by observing the safety suggestions listed in
Table 3.

Itis also possible, of course, to calculate the probable power
density near an antenna using simple equations. However, such
calculations have many pitfalls. For one, most of the situations in
which the power density would be high enough to be of concem
are in the near field — an area roughly bounded by several wave-
lengths of the antenna. In the near field, ground interactions and
other variables produce power densities that cannot be determined
by simple arithmetic.

Computer antenna-modeling programs such as MININEC or
other codesderived from NEC (Numerical Electromagnetics Code)
are suitable for estimating RF magnetic and electric fields around
amateur antenna systems. (See the Propagation chapter for more
information about MININEC.) And yet, these too have limitations.
Ground interactions must be considered in estimating near-field
power densities. Also, computer modeling is not sophisticated
enough to predict “hot spots” in the near field — places where the
field intensity may be far higher than would be expected.

Intensely elevated but localized fields often can be detected
by professional measuring instruments. These “hot spots™ are
often found near wiring in the shack and metal objects such as
antenna masts or equipment cabinets. But even with the best in-
strumentation, these measurements may also be misleading in the
near field.

One need not make precise measurements or model the exact
antenna system, however, to develop some idea of the relative
fields around an antenna. Computer modeling using close ap-
proximations of the geometry and power input of the antenna will
generally suffice. Those who are familiar with MININEC can
estimate their power densities by computer modeling, and those
who have access to professional power-densities meters can make
useful measurements.

While our primary concern is ordinarily the intensity of the
signal radiated by an antenna, we should also remember that there
are other potential energy sources to be considered. You can also
be exposed to RF radiation directly from a power amplifier if it is



operated without proper shielding. Transmission lines may also
radiate a significant amount of energy under some conditions.

SOME FURTHER RF EXPOSURE SUGGESTIONS

Potential exposure situations should be taken seriously.
Based on the ECC/EPA measurements and other data, the “RF
awareness” guidelines of Table 3 were developed by the ARRL
Bio Effects Committee. A longer version of these guidelines,
along with a complete list of references, appeared ina QST article
by Ivan Shulman, MD, WC2S (see bibliography).

QST carries information regarding the latest developments
for RF safety precautions and regulations at the local and federal
levels. You can find additional information about the biological
effects of RF radiation in the publications listed in the bibliography.
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Make Etching Patterns with a Hobby
Knife and Transparent Tape

By Dave Mascaro, WA3JUF

A nyone can reproduce a microstrip printed-circuit board
without using photosensitive boards and negatives. The
copper is etched off, so this method is neater than simply using
a hobby (X-Acto) knife to cut away the copper. Transparent
tape is used as the resist material. [ use 4-inch-wide tape, avail-
able at stationery stores. Here’s how I do it:

1. Cut the board to size and clean the foil so it’s shiny.
2. Draw the artwork on the board with a pencil.
3. Cover the board with tape, making sure there are no bubbles.

4. Using a hobby knife, cut the tape along the pencil lines, with
the aid of a straight edge if necessary.
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5. Remove the tape from the board where you want the copper
to be removed.

6. Press the remaining tape firmly against the board.

7. Etch the board in ferric-chloride solution. I put the board
and ferric chloride in a plastic bottle with a lid. Then |
agitate the bottle in a bucket of hot water.

8. Afterrinsing the board. remove the tape and clean the board
with steel wool.

9. Plate the board with solder and a flat-bladed soldering tip.
Use liquid flux so the solder flow is even and thin.



A Milled Brass Amplifier Case

By Dave Mascaro, WA3JUF

Refer to Figs 1, 2 and 3. The amplifier housing is milled
from brass stock 1.5" wide by 0.5" thick. Cut the piece
0.30" longer than the printed-circuit board to be installed.
Square off the stock on the milling machine. Then hog out
inside material to a depth of 0.30". Take out the corners to clear
the board. Then mill out the siot for the transistor flange. Drill
and tap necessary holes.

The SMA connectors can be secured with machine
screws, or sweat soldered in place after the board is installed.
Cut a hole in the PC board the size of the transistor flange.
Sweat solder the board (and connectors, if desired) by heating
the brass on a hot plate or stove burner. The feedthrough
capacitor is a Spectrum Control Inc. (SCI) 729-303 or equiva-
lent.

Spread a thin coating of silicone grease on the housing
surface that mates with the heat sink.

~0.30"

Mill out for flange +
PC board > ®
oqr:
| AT
hiad
Attach heatsink

here

Drill and tap for 440 screw

SECTION AA

Fig 2—Side view of the brass case. The SMA
connectors can be secured with machine screws or
sweat soldered (see text). A heat sink is secured to the
bottom of the case.

DC input

Input

»0.15"

Drill oand tap 3—48 for brass or pc board cover

Fig 1—Top view of the brass amplifier case used by
WA3JUF, before the PC board is installed. The bottom
of the case is milled out to clear the device mounting
flange.

Flow soilder to brass box
\ Chip cop mounting pod

Orill and tap 3—48
for mounting
cover

Input

Flow solder to brass box \

Cut hole in pc board for flonge

Fig 3—Top view of the case with a board installed. Run
a continuous bead of solder around the perimeter of
the board to provide a good RF ground. A hole cut in
the center of the board provides clearance for the
device mounting flange. A piece of copper-clad board
or thin, sheet copper can be used as a cover.
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Microwave Layout Tips

By Dave Mascaro, WA3JUF

using the end-launcher method. The PC board is soldered
to the connectors on the groundplane side of the board, to
provide a continuous RF ground. Rivets are used at all RF and
dc grounds. A cover or box can be fabricated of scrap pieces
of PC board. A U-shaped piece of copper foil is soldered to the
bottom of the PC board beneath the device flange. When the
device is secured to the heat sink, the foil provides a good RF

ground.
Power-supply bypassing is important when several mi-

Here’ s an example of a typical microwave amplifier layout

Chip cap  po Iyt

Ferrite beads
bypass

Rivets thru to

groundplane \

===

+ OC block chip

0.3-3p
Johansaon
trimmers

crowave stages are powered from the same source. 1 recom-
mend series-resonant feedthrough capacitors, like the Spec-
trum Control Inc. 729-303.

Fig 4 shows a typical layout from the top. Ferrite beads,
lumped-constant RF chokes and chip bypass capacitors are
used liberally to decouple the power supply. Fig 5 shows the
same layout from the side. The heat sink is milled out to just
clear the device flanges. You can use a milling machine, or a
milling bit in a Dremel drill. (Caution: Wear safety glasses.)
The PC board should be secured to the heat sink in several
places. The heat sink can be drilled and tapped to receive
machine screws, or you can simply rivet the board to the heat
sink.

Device Trimmers

g . {07 Sy

e
'71 e f
Heatsink milled out - File off

Solder to for device corners of
ground plane heatsink to
of pc—board Finned type heatsink clear solder

joint

Fig 4—Typical microwave layout. Liberal use of ferrite
beads, RF chokes and chip capacitors is recommended
to prevent RF coupling through power leads.
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Fig 5—Side view, showing attention to RF grounding.
Good layout practice makes for more-reliable
operation—especially important for portable operation.



How to Safely Handle FETs

By Dick Jansson, WD4FAB

requires great preparation to avoid destroying the device
with stray static charges. When [ was a practicing engineer, |
had the use of an anti-static bench and floor mats (the operator
was also grounded to this system). I don’t have this type of
equipment at home, yet I’ve been successfully working with
GaAsFET devices using the simple grounding system de-
scribed here. Since these devices are important to the quality
and performance of low-noise UHF and VHF receivers, you
may want to practice some of these safety techniques.

My grounding system starts with the use of a grounded
(and transformer isolated) soldering iron (a Weller model
W-TCP, in my case). Since this iron has a three-prong plug, I
use the ground of an adjacent duplex outlet as an additional
common ground connection. A banana plug which has been

T he safe handling of very-high-impedance FET devices

“fattened” a bit to make contact in the ground socket is con-
nected to several limber wires of suitable length. Each wire
has an alligator clip on the free end.

A length of ball chain is formed into a loop and slipped
over one of the operator’s wrists and clipped to one of the
ground wires. Another wire is clipped to the chassis ground of
the device being assembled. I usually ground the vice that the
chassis is clamped in. Finally, the package containing the FET
should be made of conductive material (black foam or foil-
lined envelopes). This material should be connected to ground
before you extract the device for installation. [ tear back one
corner of the envelope and connect the ground wire. Granted,
this system is not up to commercial standards, but it seems to
work well, and it certainly protects the FET's better than doing
nothing.
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Caveats For Choosing
Microwave Capacitors

By Bob Atkins, KA1GT
(From QST, August 1989)

hysically, chip capacitors are simply small, leadless
Pcapacitors. But all physically small, leadless capacitors
are not necessarily microwave-quality components. Very
small chip capacitors have become much more common as a
result of their use in miniaturized circuits. Circuits that operate
atonly afew megahertz (or tens of megahertz) can get by using
inexpensive chip capacitors; the problem is that the dielectric
materials used in inexpensive chip capacitors show very low
loss at VHF/ UHF, but are entirely unusable at 10 GHz.

One necessary characteristic of microwave-rated com-
ponents is low dielectric loss at microwave frequencies. A
second characteristic of all capacitors—including chip ver-
sions—that comes into play is the presence of undesired series
and parallel inductances that result from the device packaging.
These inductances not only have reactances; they alsoresultin
series and parallel device resonances. Where capacitors are
used as bypass or dc-blocking devices, series resonances aren’t
a problem because impedance is minimized. Parallel reso-
nances, however, can be highly detrimental to circuit perfor-
mance. A third consideration when chip capacitors are used in
microstripline circuits is that they create physical discontinu-
ity, and cause some reflection of incident power as a result.
This, too, can give rise to losses. Well-designed circuits use
capacitors that cause minimal impedance discontinuities.

When a circuit calls for a particular type and value of
capacitor, use of the specified component may be critical to
circuit performance. Thorough designers take into account the
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factors discussed above, and select capacitors with low loss
when designing equipment.

Loss data on a capacitor can be obtained by testing its
effect when used as a dc block in a microstripline circuit. To
do this, etch a board with a microstripline of the desired im-
pedance, and leave a small gap in the line. The gap can be
bridged by either the capacitor under test or a length of copper
foil. First measure the circuit loss when the gap is bridged by
the copper foil; then with the capacitor in place of the foil. The
difference in attenuation is the additional loss caused by the
capacitor.

Loss data for one line of commercial microwave chip
capacitors rated for use at frequencies up to 4.2 GHz shows
that one particular 120-pF capacitor has aloss of almost 0.4 dB
at 3 GHz. A 100-pF capacitor from the same series shows less
than 0.05 dB loss at that frequency. In this case, substitution
of the 120-pF capacitor for the 100-pF capacitor would result
in considerable performance degradation in a 3-GHz circuit—
not from the change in capacitance, but from associated pack-
aging effects. This also applies to nominally equivalent ca-
pacitors from different manufacturers. If you make
substitutions without knowledge of these factors, you may
find yourself in unexpected trouble.

Further references to microwave components and
microstrip circuitry can be found in the “New Frontier” col-
umns in January 1981, December 1981, April 1982 and June
1988 QST.



Surface-Mount Soldering

By Paul D. Husby, WOUC
(From QST, June 1991)

urface-mount devices and boards are a great invention
S and a joy to work with once you get comfortable handling
and soldering the tiny devices. My soldering routine is slightly
different from that suggested by Bryan Bergeron, NUIN!
Tinning both pads may lead to an installation in which the
device is not flat and close to the board. Or, worse, a fragile
chip device may be left physically stressed. I prefer this rou-
tine:

* Tin only one of the pads, and let it cool.

» Set the device in place. While pressing the device very
slightly with a toothpick, reheat the tinned pad until the device
sinks flatto the board. Allow the connection to cool. Solder the

second terminal, touching the iron only to the pad.

+ After the device has again cooled, touch up the first solder
joint as necessary.

* Use silver solder.

With this method, 1 get a 100% success rate of devices
that are flat, straight and well-soldered.

Finding silver solder can be a problem in some locations.
(Radio Shack carries 62/36/2 solder [RS 64-013].)

'B. Bergeron, “A Surface-Mount Technology Primer—Part 2,”
QST, Jan 1991, pp 27-30; see p 29, Fig 12.
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