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calculation as part of their hobby. Thisis true whether they are calculating an antenna length or
designing a new piece of station equipment. When they do, they will be using mathematics. The
math skills required for most el ectronics cal cul ations can be devel oped and used by just about anyone.
This chapter, written by Larry Wolfgang, WR1B, provides abrief review of the most important math
concepts needed for electronics and Amateur-Radio-related use. It will serve as a refresher for those
hamswho may have been familiar with the topics, but who have long since forgotten how to apply them.
The examples will also help those who have no prior math background to work through many of the
calculations associated with this Handbook. Those readers who would like amore detail ed explanation
should turn to the Math Unit of ARRL’s Understanding Basic Electronics.
Software to perform calculationsisdiscussed in ARRL’ s Personal Computersin the Ham Shack, and
new packages are reviewed from time to time in QST.

Sooner or later, most hams will find they need to make some sort of measurement or perform a

Mathematical Terms and Symbols

M athematicsuses|etters, symbolsand odd-looking charactersto represent various quantitiesin akind
of short-hand notation we call equations. To those unfamiliar with the language of mathematics, these
strange names and symbols can be very confusing. Once you have |earned some basic terms and under-
stand what the symbol s represent, the elegance of an equation can begin to come through. In this section
we will introduce some of the most common mathematical terms and symbols.

DEFINITIONS OF MATHEMATICAL TERMS

Algebra—The branch of mathematicsthat uses|etter symbolsto represent various quantities, and which
establishes rules for manipulating these expressions. Much of the discussion in this chapter involves
the rules of algebra.

Binary number system—A number system that uses only two symbols, 0 and 1. The binary system is
very useful in digital electronics, because most digital electronics circuits only have to measure two
voltage or current conditions: on or off. Most of these circuits represent the on condition asa 1 and
the off condition asa 0. (See also Decimal number system, Hexadecimal number system and Octal
number system.)
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Cross multiplication—The most common equation-solving technique used with proportions. Thisin-
volves moving terms diagonally across the equal sign. We can usethelettersa, b, c and d to represent
four terms of a proportion:

Cube—Multiplying a number or quantity by itself three times. Cubing a quantity meansit israised to
the third power, or has an exponent of 3. (23=2x 2 x 2 = 8)

Cuberoot—T hat valuewhich, when multiplied by itself threetimes, givestheval uewhose cuberoot youwant
to find. (¥8 =8Y3=2and ¥-8 =—-8Y3 =_2) Odd powered roots have only one possible value.

Decimal number system—A number system that uses ten symbols, 0 through 9, to count, measure and
calculate. Themost common number system. (Seealso Binary number system, Hexadecimal number
system and Octal number system.)

Equation—A statement of mathematical balance. All that appears on one side of the equal sign (=) is
equivalent to any expression on the other side. The two sides usually don’t appear identical (2 = 2),
but the expression on one side representsthe expression on the other side (x = 2). The x hererepresents
avariable, or unknown quantity.

Exponent—A valuefollowing anumber, raised abovetheline of the number, or written asasuperscript,
to show the number isto be multiplied by itself. (103 indicatesthat 10 isto be multiplied by itself three
times — 10 x 10 x 10.) The rules of working with exponents are covered later in this chapter.

Formula—Another name for an equation, especially when it represents a procedure used to calculate
some quantity. (E = Risaformulathat tells usto multiply current timesresistance to find voltage.)

Hexadecimal number system—A number system that has 16 characters; labeled O through 9, A, B, C,
D, E and F. The hexadecimal system (often abbreviated hex) is convenient for use with digital
computers because hexadecimal digits can be coded as groups of four binary digits. Inthiscase, 0001
represents hex 1, 1000 represents hex 8, 1010 represents hex A and 1111 represents hex F. (See also
Binary number system, Decimal number system and Octal number system.)

Infinity—The term used to describe the mathematical concept of having no boundaries. There is no
“largest number” or “smallest number,” because you can always add 1 to obtain alarger number, or
further divide to obtain a smaller one.

I ntegers—The “counting numbers,” such as 1, 2, 3, 4, 5. Integers also include negative values. The
number line of Fig 4.1 is helpful to picture positive and negative integers. (See also Real numbers.)

Number Line

L

()lllllllllllll-llllllllllllllll

-8 -7 6 -5-4-3-2-10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
e A A
R EEEEEEEEEEEEEEEE R EEEE RN
¥ 8 e 8 dd RIS SISIIeREE SR

Fig 4.1 — The number line gives us a way to represent all numbers, both positive and negative, and
is useful for remembering arithmetic operations.
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Octal number system—A number system that uses eight characters, 0 through 7. This system is often
used with digital computers, because groups of three binary digits can be coded to represent an octal
digit. For example, 001 representsoctal 1, 010 isthe same as octal 2 and 111 represents octal 7. (See
also Binary number system, Decimal number system and Hexadecimal number system.)

Power of 10—The exponent used with 10 when anumber iswritten in exponential or scientific notation.
The exponent tells how many places and in what direction the decimal point is moved.

Proportion—Two ratios that are equal to each other (or both equal to the same quantity). Proportions
are apowerful mathematical tool because you can often write an equation to cal culate some unknown
quantity based on your knowledge of another ratio. Proportions are useful because when you know
three of the four quantities, it isasimple matter to find the fourth. Later in this chapter we show you
how to use proportions to convert between US Customary and metric system measurements.

Radical sign—\/_ . A symbol written with a number or mathematical expression under the line, to
represent a square root, such as +/4 = 2. If there is a superscript number in front of the radical sign,
then it represents the root indicated.

Yg=2

Ratio—A fraction, with one quantity divided by another. Thevalue of tistheratio of the circumference
of acircle (C) to the diameter of the circle (d), for example.

h=C
O dO
Voltage standing-wave ratio (VSWR or SWR) is the ratio of maximum voltage on afeed line to the
minimum voltage on the feed line. Written as a fraction, we use this ratio to form an equation that
shows one way to calculate SWR:
V,
SWR= &
Vmin

Real numbers—AIll possible numbers, including all the fractions between integers. (Fractions can be
written as a ratio of two numbers, or as a decimal value that is the result of the division. 4.5 and
41/, represent the samereal number. Thedecimal valueisoften only an approximation, however, such
as 6.333 and 61/3.)

Reciprocal—A quantity divided into 1 (often written as 1/x). Reciprocals are so important that the
guantity is often given aname of its own. For example, in electronics, the reciprocal of resistanceis
called conductance. Using letter symbolsto represent the quantities (R isresistance and G is conduc-
tance).

H - Gand L =rH
R G

Root (of a number)—A value which, when multiplied by itself the specified number of times, givesthe
value whose root you want to find. Most common in electronics is the square root of a number, and
occasionally the cuberoot. Roots may bewrittenwitharadical sign (\/_) or asafractional exponent.
(V4 =4Y,=2)

Square—Multiplying anumber or quantity by itself. Squaring aquantity meansit israised to the second
power, or has an exponent of 2. (22 =2 x 2 = 4)

Squar e root—T hat value which, when multiplied by itself, gives the value whose square root you want
tofind. Actually, therearetwo valuesfor asquareroot. ( Ja = 41/, = +2 and —2) Even-powered roots
have both the positive and negative values possible.
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Subscript—A number or expression following a variable, written slightly lower than the line of the
variable; Ry, Ry, E3 and E4 are examples of quantities with subscripts to distinguish similar, but
different quantities.

Superscript—A number or expression written following a number or variable, written slightly higher
than the line of the number or expression; 52, x3, (25 + 1)2 and E2 are examples of expressions with
superscripts.

Variable—An expression that can take on different values. Variables are sometimes given subscripts.

GREEK ALPHABET

Upper- and lower-case characters of the Greek alphabet are often used to represent various measure-
ments and constant values. Few English-speaking people are familiar with Greek, so some of these char-
acters can look pretty strange. Table 4.1 shows the upper and lower case Greek alphabet, the character
pronunciations, and the electrical and electronics quantities some of these characters often represent.

Table 4.1
The Greek Alphabet and Common Electronics Quantities
Greek letter Pronunciation Upper Common Use Lower Common Use
Case Case
Alpha ‘al-fa A Angle of a triangle a Transistor common-base current
gain
Beta 'bat- o B Angle of a triangle B Transistor common-emitter current
ain
Gamma ‘gam-a r Transmission Y IgDhase
line voltage reflection
coefficient
Delta ‘del-ta A Change in quantity o
Epsilon '‘ep-sa-lan E € Dielectric constant,
permittivity
Zeta 'zat-9 z C
Eta ‘at-9 H n
Theta 'that -9 S} Angles ¢} Angles
lota i-'ot-a I l
Kappa 'kap-9o K K
Lambda 'lam-da A A Wavelength
Mu my M i Metric prefix for 10-6, permeability
Nu nu N v
Xi ksi = 13
Omicron ‘am-a-kran o 0
Pi pi n T 3.14159 (ratio of circumference to
diameter of a circle)
Rho ro P p Transmission line
reflection coefficient, resistivity
Sigma 'sig-ma )2 Summation of a series o
Tau tau T T Time constant, LC circuits
Upsilon 'yup-sa-lan Y U
Phi fi O] Angles 0] Angles
Chi Ki X X
Psi Si y 1]
Omega 0-'meg-a Q Ohm, resistance, w Frequency in radians per
normalized frequency second (2rtf), angular velocity
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TABLE OF MATHEMATICAL SYMBOLS

In addition to Greek characters and other letter symbols,
there are many special math symbols used when we write
equations. Table 4.2 shows many of these common math
symbols.

Table 4.2

Some Common Mathematical
Symbols

Symbol Meaning

X+ 1+

<8 N=g[ O °O0 "NV VIAALTLLNIN

M

~ o

*

Addition, plus
Subtraction, minus

Plus or minus
Multiplication, multiply by
Division, divide by

Equal to

Not equal to
Approximately equal to
Similar, equivalent

Less than

Less than or equal to
Greater than

Greater than or equal to
Ratio of, is to
Proportional, varies directly as
Therefore

Degree

Angle

Right angle

Perpendicular to

Parallel to

Identical to

Infinity

Radical, square root (Also
written with a superscript
before the symbol to express
other roots, such as ¥ to
represent a cube root.)
Integration

Summation
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Significant Figures and Decimal Places

Any measurement is only as good as the measuring instrument used, and as reliable as the person
making the measurement. The accuracy of ameasurement refersto how closethe valueisto an accepted
value or standard. Y ou might use a dip oscillator to measure the resonant frequency of aradio circuit.
The measured value will probably not be very accurate, since dip oscillators are usually designed only
to measure a general range. If you want to ensure that your transmitter is operating inside the amateur
band edge, you might try a frequency counter or crystal calibrator, for example. So the measuring
instrument plays the greatest role in determining the accuracy of a measurement. (This assumes the
person taking the measurement understands how to use the instrument to take full advantage of it. An
operator who does not know how to use or read the instrument properly will not obtain accurate mea-
surements!)

Precision refersto the repeatability of ameasurement. Y ou might take five frequency readings using
the dip meter mentioned above, with all fivereadingsbeing 7.14 MHz. This set of measurements would
have good precision, but because the instrument is not designed for high accuracy, you can’t be sure of
the actual frequency. Other factors might affect the precision of a measurement, such as the operator’s
skill at adjusting the measuring instrument, errorsin reading the scal e and the operation of theinstrument
itself.

Thevalue you can read from the scale of ameasuring instrument hel ps determineits precision. If you
are using aruler marked off only to the nearest quarter inch, you may be able to estimate measurements
to an eighth inch, but you certainly can’t read that scale to the nearest thirty-second of an inch! It will
be difficult to measuretwo objectsthat differ inlength by asixteenth of aninch withthisruler. Precision
also indicates the resolution of a measurement, or how small a change can really be detected.

The significant figures of ameasurement represent all the digitsthat you can read directly from the
scale, plus one digit that is estimated. Fig 4.2 shows a voltmeter scale marked from 0 to 10 V, with
linesindicating every 0.2 V. Y ou can see that the needle indicates a value between 4.6 and 4.8V, and
perhaps you can even tell if the needle is more or less than half way between the marks. Y ou know
the reading is a little less than 4.7 V, but you really can’'t be sure how much less. Y ou can estimate
that the reading is 4.68 perhaps, but the 8 can’t be read directly
from the scale. Someone else might ook at the same reading on
the same meter and estimate the value at 4.67 V or even 4.69 V.
None of these readings is more correct than any other, because
each represents an estimate of the value of the last digit. This
reading has three significant figures.

Any cal culations made involving this measurement are limited
by the accuracy of the reading. It would be completely unreason-
ableto say that 4.68 V produces a current of 17.01818 mA when
connected to a275-Q resistor, even though your calculator shows
all these digits.

Therulesof significant figurestell ushow many digitstoinclude

Fig 4.2 — This voltmeter scale
reads from 0 to 10 V, with marks
every 0.2 V. The meter is reading
a value greater than 4.6 but less
than 4.7 V. With care you may be
able to estimate the reading as
4.68 V, but the digit 8 really only
represents a guess. That digit is
uncertain because you cannot
read it directly from the scale.
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in any calculation based on ameasured quantity. They also help us
predict the accuracy of a calculation based on real component tol-
erances. These rules allow usto specify the accuracy of the calcu-
lated value, asit relates to the measurements on which the calcula-
tionisbased. There are six rulesto tell you how to count and write
significant figures in a measured or calculated quantity.

1. All nonzero digits are significant: 275.4 mA has four sig-
nificant digits.



11=1200 mA 15=256 mA 13=105.4 mA I4=780 mA 7 —Left most uncertain value
» » in measurements
1200 mA

+ 256 mA
E 240V 1 054 mA
I + 780 mA

Right most significant
2341.4 figure in answer

2300 «Total current value rounded
off to show the hundreds column
as the last significant figure

Fig 4.3 — This parallel circuit has four branches
connected to the battery. Ammeters measure the
current through the branches, with the readings

indicated. This circuit illustrates measurements Fig 4.4 — This calculation shows the proper use
with two, three and four significant figures (I3 of the rule for addition and subtraction using
and lg, I2, I3 respectively). significant figures. The current measurements

from Fig 4.3 are added to calculate the total
circuit current. The resulting value is then
rounded off to make the hundreds column the
last significant figure.

2. All zeros between nonzero digits are significant: 25.004 m has five significant digits.

3. Zerosto the right of anonzero digit, but to the left of an understood decimal point are not significant
unless they are specifically indicated to be significant. Y ou can indicate such zeros to be significant
by drawing a bar over the rightmost significant zero: 21100000 hertz has three significant figures,
21100000 hertz has five significant figures.

4. Zeros to the right of a nonzero digit, but to the left of an expressed decimal point are significant:
21100. kHz has five significant figures.

5. Zerosto the right of adecimal point but to the left of all nonzero digits are not significant: 0.001702 A
has four significant figures. (Thereisazero before the decimal point to indicate that no digitsto the | eft
of the decimal point were dropped. Also notice that the zero between the 7 and the 2 is significant —
remember rule 2.)

6. All zerosto theright of adecimal point and following anonzero digit aresignificant: 2.00 V hasthree
significant figures.

There are a few rules for determining the number of significant figures that result when you use
measured values in a calculation. These rules are important to ensure that you don’t imply aresult to a
greater precision than the measurements would allow.

Noticewe said measured valueshere. Never usethe number of digitsinthevalueof aphysical constant
to limit the number of significant figuresin a calculation. For example, the constant 2 or the value of
mtwon’t limit the number of significant figuresin a calculation of reactance. (X =2 1tf L) Likewise,
values of trigonometric functions and logarithm values aren’t usually limited by the number of signifi-
cant figures in the number used to find the function value.

When adding or subtracting measurements, remember that the rightmost significant figure represents
an uncertain value. The rightmost significant figure in a sum or difference calculation occurs in the
leftmost place that an uncertain value occursin any of the measured quantities. The following example
illustrates this rule.

Fig 4.3 shows a parallel circuit with four branches. Ammeters measure the current through each
branch. The four current measurementsare 1200 mA, 256 mA, 105.4 mA and 780 mA. What isthe total
current suppliedto thiscircuit? Thefirst measurement hasonly two significant figures, and the hundreds
column represents an uncertain value. The second measurement has three significant figures and the
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units column is uncertain. The third current has four significant figures, with the tenths column being
uncertain. The last current value has two significant figures, and the tens column is uncertain. Fig 4.4
shows how to determine the last significant place in the answer. Round off the result of thisaddition to
the hundreds place, so this circuit has atotal current of 2300 mA. (Therulesfor rounding numbers are

covered later in this section.)

When you multiply or divide measured quantities, the answer cannot have more significant figures
than the least precise factor. As an example, use Ohm'’s Law to calculate the resistor valuesin Fig 4.3.
Fig 4.5 shows how to determine the significant figures for these calculations.

ROUNDING VALUES

After you determine which digit is the last significant figure in a calculation, you will have to round
off the arithmetic answer. Four rules govern how to round off values properly.
1. If thefirst digit to be dropped is4 or less, the preceding digit is not changed: 456351 rounded to three

Three Significant Figures

n _ E_ 240V _240v _
1 - —-= = = \—v_:
| 1200mA  12A

Two Significant Two Significant

Figures Figures

Three Significant Figures

Ry= & - 240V _ 240V o375 _ 938 0
l, 256 mA _ 0.256 A ==

Three Significant Three Significant

Figures Figures

Three Significant Figures
E 24.0V 24.0V

Ry=—-= = =227.70398 Q = 228 Q
ls 1054 mA  0.1054 A Three Significant
Four Significant Figures
Figures

Three Significant Figures
E 240V 240V

R,=== =30.76923 Q = 31 Q
l; 780mA 0.78 A .
= Two Significant
Two Significant Figures
Figures

Fig 4.5 — These calculations show the proper use of the rule for
multiplication and division using significant figures. The battery
voltage and current measurements from Fig 4.3 are used to

calculate the four resistor values. The resulting values are rounded

off to show the proper number of significant figures.
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significant figures becomes
456000 (with no decimal point
at the end).

2. If the first digit to be
dropped is 6 or more, the pre-
ceding digit is increased by
1: 456351 rounded to two sig-
nificant figures becomes
460000 (with no decimal point
at the end).

3. If the digits to be dropped
are 5 followed by digits other
than zeros, the preceding digit
is increased by 1. 456351
rounded to four significant fig-
ures becomes 456400 (with no
decimal point at the end).

4. If the digits to be dropped
are 5 followed by zeros (the
digit to be dropped is exactly
5) the preceding digit is not
changedifitiseven;itisraised
by 1 if it is odd: 456350
rounded to four significant
figures becomes 456400 but
456450 rounded to four sig-
nificant figures also becomes
456400 (with no decimal point
at the end). (Another way to
think of this rounding rule is
that when the digit to be
dropped isexactly 5, we round
to the even value.)



Laws of Exponents

Exponents tell how many times a number or quantity is to be multiplied by itself. Equations often
involve terms that include exponents. Two special cases with exponents are worth mention before we
cover the rules for mathematical operations with exponents:

al=aanda®=1

Any value raised to a power of 1 givesthe value itself, and any value raised to the zero power is 1.
We can also use numbers to give a few examples:

101=10,5'=5and 31 =3

100=1,50=1and30=1

When you know the basic rules of algebra involving exponents, you will be able to manipulate the
terms in an equation. There are only a few rules to remember, and they involve multiplication and
division of numbers with exponents.

1. If you are adding, subtracting, multiplying or dividing two numbers involving exponents, calculate
the values indicated by the exponents first, then perform the indicated operation on the numbers:
aX x bY can’t be simplified unless you know the values of the variables.
23x42=8x16=128

2. If the multiplication involves a variable raised to different exponents, you can add the exponents:
aXeay=aXty
23¢24=23%4=2/=8+16=128
Notice the “multiplication dot” used in this example. It is also common practice to omit any symbol
when multiplication of variablesisintended, and thereisno chance of confusion, such aswould occur
if you were writing two numbers:

We can write this as & @& = a* * ¥ but we would not write 8 16 to indicate 8 « 16.

3. For division of avariable with exponents, subtract the denominator (bottom of the fraction) exponent
from the numerator exponent.

X

a_ =gy

a’

(Thisisonly trueif a # 0)
2_4 =042 _92_4y

22

As another example, the denominator exponent can be larger than the numerator exponent, resulting
in a calculation with a negative exponent:

2
2 —p2 42922025
24
A negative exponent indicates you are to find areciprocal of the quantity. We could also write the
example above as:

1 1 1
a2 = ey ==-=0.25
2 2° 4
From the examples shown here, you should notice a related rule of exponents. Any factor with an
exponent can be moved between the numerator and denominator of afraction simply by changing the
sign of the exponent. Y ou will probably want to use a cal culator to raise numbers to various powers.
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Thiswill be much easier than doing the repeated multiplications by hand.
4. To raise a number with an exponent to some power, multiply the exponents.

(%)Y = aXy

(23)2=23X2:26=64

5. The product of two variables raised to a power is the same as raising each variable to the power and
then finding the product.

(ab)ym=ampm

(2x4)3=23x43=8x 64 =512
6. Theratio of two variablesrai sed to apower isthe sameastheratio of each variableraised to the power.

am
bo b
(Thisisonly trueif b # 0)
046
@O0 2° 8

A guantity or expression can also have an exponent, indicating the entire quantity isto be multiplied
by itself: (3x + 12)2 means the quantity inside the parenthesesis to be multiplied by itself. Calculating
squares and cubes, square roots and cube roots, are common mathematical operations.

EXPONENTIAL AND SCIENTIFIC NOTATION

Electronics measurements and cal culations often involve numbers that are very large or very small.
We can represent the metric prefixes as multiples of 10. It is also convenient to use multiples of 10 to
represent very large and very small numbers. Any number expressed as some multiple of 10 iswritten
in exponential notation (sometimes called engineering notation) because the 10 is written with an
exponent. Thisexponent, often called apower of 10, represents how many timesthe number ismultiplied
by 10 to write it in expanded notation, or the “normal” format.

We can write 250000 in exponential notation as 25 x 10%. All we had to do here was replace the four
zeroswith “x 104" Asanother example, we can write 0.000025 as 25 x 1075, In this case we would have
to divide 25 by 10 six times. A negative exponent means divide. If you move the decimal point to the
right when you write the number in exponential notation, then use a negative exponent.

A number expressed with asingle digit to the left of the decimal point and a power of 10 is written
in scientific notation. Thisisjust a particular form of engineering notation.

We could write the speed of light as 300000000 meters per second, for example, but it is more
convenient to write this number as 3 x 108 meters per second. Notice that this number indicates one
significant figure. If you wanted to indicate three significant figures, for example, you would write it
as 3.00 x 108 meters per second.

Y ou may see several other forms of exponential notation. Sometimes an E is written in place of the
10. (3.56E6 = 3.56 x 106) Other timesaPisused to represent apositive power of 10whilean N represents
a negative power of 10. (3.56P6 = 3.56 x 10° and 2.44N3 = 2.44 x 1079)

To write any number in scientific notation, first move the decimal point so there is one nonzero digit
to the left of the decimal point. Then count how many places|eft or right you moved the decimal point.
Y ou will use this number as the exponent in the “x 10” factor. If you moved the decimal to the | eft, use
a positive exponent and if you moved the decimal to the right, use a negative exponent.
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Arithmetic Operations with Scientific Notation

One advantage of writing very large and very small numbersin exponential notation isthat you don’t
haveto keep track of so many zeros during arithmetic operations. When you work with numberswritten
in exponential or scientific notation you must remember a few rules, however.

To add or subtract, be certain to express all the numbers with the same power of 10. Write the
numbers in a column so the decimal points align. Then add or subtract the “plain number” part as you
normally would. The power of 10 for your answer is the same power in which all the numbers are
expressed. Fig 4.6 shows a sample addition and a sample subtraction using exponential notation.

Tomultiply numbersusing exponential notation, first multiply the“plain number” part. Next, add the
exponents for the powers of 10. Your answer is the plain-number answer times a power of 10 equal to
the sum of the exponents. Fig 4.7 shows a sample multiplication using exponential notation.

The rule for division using exponential notation is similar to the multiplication rule. To divide
numberswrittenin exponential notation, first dividethe* plain number” parts. Then subtract the denomi-
nator power from the numerator power. (The denominator is the bottom part of a fraction and the
numerator isthetop part.) Fig 4.8 showsasampledivision. Notice that we moved the denominator power
of 10 into the numerator and changed the sign of the exponent.

25.40 x 103 25.40 x 103 _
6.15x 103  25.40 x 103 x 6.15 x 103 25.40x10° _ 25.40x10°x107
+0.05%x 103  —6.15 x 103 12700 6.15x10° 6.15
31.60 x 103 19.25 x 10-3 2540
(A) (B) 15240 Fig 4.8 — This example shows
156.2100 x 106 how to divide two numbers
. . x 106 using exponential notation.
Fig 4.6 — Examples of addition 156X 10 Firstgdivize the number parts,

and subtraction with numbers
written in exponential notation.
Be sure all the numbers have
the same power of 10, and then
write the numbers so the
decimal points align. Add or
subtract the number part, and
use the common power of 10
with the answer.

Fig 4.7 — This example shows
how to multiply two numbers
using exponential notation.
First multiply the number
parts, then add the exponents
for the powers of 10.
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then subtract the denominator
(the bottom part of the fraction)
exponent from the numerator
(the top part of the fraction)
exponent. Notice in this
example we moved the
denominator power of 10 into
the numerator and changed the
sign of the exponent.
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Equations

Much of algebrainvolves manipulating equations. We know the quantities on each side of the equal
sign are equivalent. Usually the goal is to find the value of some unknown quantity. We do this by
isolating that unknown quantity on one side of the equal sign, and then eval uating the expression on the
other side.

Here is the most important rule to remember when you try to solve an equation for the unknown
guantity: Be neat! Write each step clearly. In ajumbled mess of numbers and symbols, you will soon
be hopelessly lost.

The second-most-important ruleisjust assignificant: Anything you do to one side of the equation you
must also do to the other side. A few examples will illustrate some of the most common procedures.

2Xx+4=8
We can simplify this equation by subtracting 4 from both sides of the equation:

(2x+4)-4=8-4
2x=4

Now we can complete the solution by dividing both sides of the equation by 2. (Thisis the same as
multiplying both sides by the reciprocal of the term associated with the unknown, x.)

1-2x=£-4
2 2
X=2

Other techniques that can be used to manipul ate equations were described earlier in this chapter. See
cross multiplication, reciprocal and the discussion of the Laws of exponents for some important
equation-solving principles.

In electronics, we often find problems in which there is more than one unknown quantity. In such
cases, try towriteaseriesof equationswith theunknowns. If there are two unknown quantities, then find
two equationsinvolving those quantities. If there are three unknown quantities, find three equations, and
so on. Such systems of simultaneous equations can help solve some challenging problems.

Fig 4.9 showsthe schematic diagram of asimpleelectronicscircuit. Wewould like to know the power
dissipated in the resistor. (Power is equal to current times voltage.) In this example, we only know
voltage, however. So we have two unknown quantities: current and power. Since we also know resis-
tance, we can write a second equation from Ohm’s Law, to calculate current by dividing the voltage by
the resistance:

P=IE
_E
50 Q R
MWV From these two equations, we can substitute the expression for
oy 2 current from the second equation for current in the first equation:
il E
=—E
R
Fig 4.9 — This circuit includes a Yqu pr_obabl_y recog_nlzethat E times E can be written as E<, so
20-V battery and a 50-Q resistor. we simplify this equation as:
The text explains how we can 2
calculate the power dissipated in P_E_
the resistor. - R

4.12 Chapter 4



Now it isasimple matter to fill in the known quantities of voltage and resistance to calcul ate power:

(20v)* _ 400v?
50Q 500

This example illustrates several important techniques. First, we used substitution to solve this prob-
lem. We substituted one expression for an equal quantity. We also used literal equations to solve the
problem. Thismeanswe used | etter symbolsto represent the quantitiesuntil thelast step. We could have
put numbers in the equations right at the beginning, but it is often easier (and there are fewer opportu-
nities to copy a number incorrectly) to use letter symbols. Finally, we used dimensional analysiswith
the calculation. That means weincluded the units associated with each measurement, and performed all
theal gebraoperationsontheunitsaswell asthe numbers. Y ou can seethisbecausewe havevoltssquared
in the numerator. Y ou should check Table 4.5 to see that volts squared divided by ohms is equivalent
to watts.

Dimensional analysisis avery helpful mathematical tool if you take advantage of it. Y ou can often
usethismethod to hel p you remember the proper equation for acal culation. For examplewhen you know
that the unit of awatt can be expressed as an amp times avolt (see Table 4.5) you can write an equation
that gives power as current times voltage. You can also use dimensional analysis to write a power
equation involving current and resistance or voltage and resistance. Try writing these equationswith the
help of Table 4.5.

Linear equations involve only unknown terms with exponents no larger than 1. For any value of one
variable (X) thereisacorresponding value for the second variable (y). A graph of such an equation will
often help you visualize the relationship between variables. For example, if x represents the current
through acircuit, y might represent thevoltageacrossaresistor. A general expression of alinear equation
is:

=8W

y=mx+bhb

where m represents the slope of the line (the change in y divided by the corresponding change in the x
variable) often written as

By
AX

and b represents the y intercept, or the point where the line crosses the vertical axis when x = 0.
An equation that involves avariable term with an exponent of 2 (asquared term) iscalled aquadratic
equation. The general form of a quadratic equation is:

ax?+bx+c=0

where a, b and c are constant terms, or values for a particular equation, and x is the variable quantity.
Quadratic equations always have two solutions, which means there are two values for x that satisfy

the equation. Perhaps the most straightforward way to solve a quadratic equation for the unknown

quantity is to use the quadratic formula. This formula can be used to solve any quadratic equation.

= —bi\/b2—4ac

2a
Notice the plus or minus symbol in front of the radical sign. This tells us that one solution requires
that we add the resulting term to —b and the other solution requires that we subtract the resulting term
from —b. This comes about because when you square a negative number, you get apositive result. There
are always two solutions to a square root. A simple example will illustrate the use of the quadratic
formula
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2x2+4x—-6=0

_ —bxVb?-4ac

B 2a

_—4+/4% - (4x2x(-6))

B 2%2

X_—4iq/16—<—485

- 4

(o464 _-4:8

= =—=1
4 4
X:ﬂ:__lz_—?,
4 4
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Measurement Units and Constants

Nearly every time we use a number, it represents some measured physical quantity. We might use a
measuring tape to find the correct length of wire for an antenna, or an ohmmeter to measure the value

of aresistor.

Each measurement includesanumber representingitssizeand aunit that allowsit to becompared with

other measurements of a similar type. One dipole
may be 126 ft, 6 inches long and another dipole
may be 65 ft, 11 inches long, for example. The
units used with any measurement represent stan-
dards that are generally accepted, so meaningful
comparisons can be made. These comparisons are
only meaningful if the measurementsusethe same
units. It is difficult to compare a dipole that is
65 ft 11 inches long with one specified as a
40-m dipole, because the units are not the same.

US CUSTOMARY SYSTEM

Most US residents are familiar with units like
the inch, foot, quart, gallon, ounce and pound.
These units represent standard measurement val-
ues used in the US Customary measuring system.
Table4.3listssomecommon US Customary units,
and some not-so-common ones. This table shows
therelationshipsbetweenvariouslinear, area, lig-
uid volume, dry volume and wei ght measurements.

The primary disadvantage of the US Customary
measuring system is that there is no logical rela-
tionship between various-sized units of a similar
type. Most electronics measurements are made in
theinternationally accepted metric system, for this
reason.

METRIC SYSTEM

In the metric system, measuring units are al-
ways amultiple of 10 timeslarger or smaller than
other units of the same type. Metric-system mea-
surementsare alwaysbased on ameasurement unit
and a set of prefixes to describe the larger and
smaller variations of that unit. For example, a
millimeter is ten times smaller than a centimeter,
ameter isahundred timeslarger than a centimeter
and a kilometer is a thousand times larger than a
meter. (In nearly every country of the world ex-
cept the US, this unit of distance measurement is
spelled metre, which hel psdistinguishthedistance
unit from an el ectrical measuring instrument, also
called a meter.) Table 4.4 shows the common

Table 4.3
US Customary Units

Linear Units
12 inches (in) = 1 foot (ft)
36 inches = 3 feet = 1 yard (yd)
1 rod = 5% yards = 16/ feet
1 statute mile = 1760 yards = 5280 feet
1 nautical mile = 6076.11549 feet

Area
1 ft2 = 144 in2
1yd2 =9 ft2 = 1296 in2
1 rod2 = 30%/4 yd?
1 acre = 4840 yd2 = 43,560 ft2
1 acre = 160 rod?
1 mile2 = 640 acres

Volume
1ft3=1728in3
1yd3 =27 ft3

Liquid Volume Measure
1 fluid ounce (fl oz) = 8 fluidrams = 1.804 in3
1 pint (pt) = 16 fl oz
1 quart (qt) = 2 pt = 32 fl 0z = 57%/1 in3
1 gallon (gal) = 4 qt = 231 in3
1 barrel = 312 gal

Dry Volume Measure
1 quart (gt) = 2 pints (pt) = 67.2 in3
1 peck =8 qt
1 bushel = 4 pecks = 2150.42 in3

Avoirdupois Weight
1 dram (dr) = 27.343 grains (gr) or (gr a)
1 ounce (0z) = 437.5 gr
1 pound (Ib) = 16 oz = 7000 gr
1 short ton = 2000 Ib, 1 long ton = 2240 Ib

Troy Weight
1 grain troy (gr t) = 1 grain avoirdupois
1 pennyweight (dwt) or (pwt) = 24 gr t
1 ounce troy (oz t) = 480 grains
1lbt=12 0zt=5760 grains

Apothecaries’ Weight
1 grain apothecaries’ (grap) =1grt=1gra
1 dram ap (dr ap) = 60 gr
lozap=1lo0zt=8drap=480gr
llbap=1Ilbt=12 0z ap =5760 gr
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metric prefixes, their abbreviations and the multi-

plication factor associated with each one. Table 4.4

Metric Prefixes
S|

Prefix  Symbol Multiplication Factor

Themetricunitsmakeupaninternationallyrec-  exa E 1018 =1,000,000,000,000,000,000
ognized measuring system used by most scientists  Peta P 10%* = 1,000,000,000,000,000
throughout the world. We call this the Interna- E;eig; g igg _ 1'0021888:888:888
tional System of Units, abbreviated Sl (for the mega M 106 = 1,000,000
French, Systéme International d Unités). kilo k 102 = 1,000
By the late 1700s, scientists were developing ggggo ga 181 _ 128
this measuring system based on multiples of ten. (unit) 100 = 1
The original intent was to develop a measuring deci  d 101 = 0.1
system based on measuring units that could be fnelm' o }8:2 N oodgi
reproduced asneeded. Themeter wasfirstdefined  micro 106 = 0.000001
as one ten millionth of the distance between the nano n 18:2; 0 000688(8888881
equator and the north pole, as measured along the Pei(r:ﬁto ]'? 10152 0.0060000000000001
longitude line running through Paris, France. A atto a 10-18=  0.000000000000000001

kilogram was originally defined as the mass of 1
liter (spelledlitrethroughout therest of theworld)
of water at 4°C. As measuring instruments improve, the definitions are revised to reflect the greater
measuring accuracy. For example, in 1960 the definition of a meter was revised to be a multiple of the
wavelength of a particular orange-red light wave.

The metric system is based on the definitions of certain fundamental units, with all other units being
based on those units. These fundamental, or defined units represent length (meter), mass — you might
think of this as somewhat equivalent to weight — (gram), time (second), thermodynamic temperature
(kelvin or degree celsius), luminous intensity of light (candela), the amount of substance — a measure
of the number of atoms or molecules — (mole) and electric current (ampere).

All other units represent combinations of these fundamental units. For example, the unit of power
(watt) isameasure of the energy required to move aonekilogram object avertical distance of one meter
in one second. Table 4.5 lists some common units and their expression in terms of the base Sl units.

Suppose you measure the frequency of aradio wave as 3825000 hertz. If we move the decimal point
six placesto the left, we would write this frequency as 3.825 x 10° hertz. Looking at Table 4.4, you can
replace the “x 10%” part with the prefix mega. So we can write this frequency as 3.825 MHz (using the
abbreviations M for mega and Hz for hertz). Similarly, you can use other metric-system prefixes to
replace powers of 10 in large and small numbers.

As another example, suppose you find a capacitor marked with a value of 25 microfarads or 25 pF.
From Table 4.4, you can find the multiplication factor of 10~ for the prefix micro. That means you can
write this capacitor value as 25 x 1078 farads, or 0.000025 F.

CONVERTING BETWEEN US CUSTOMARY AND METRIC SYSTEMS

Sometimesit isconvenient to convert between these two common measuring systems. Y ou may know
an antenna length in meters, but want to use your tape measure marked in feet and inches to cut the
antenna, for example. Table 4.6 lists most of the conversion factors you will ever need.

Using Proportions to Solve Conversion Problems

To solve US Customary and metric conversionswe will use proportions. This method also illustrates
some other very useful mathematical tools. The advantage of using proportionsto solve conversionsis
that you never have to figure out if you must multiply or divide. The proportion shows you what to do!
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Table 4.5

S| Fundamental Units

Quantity

Distance, length

Mass

Time

Thermodynamic
temperature

Luminous intensity
Amount of substance

Electric current

S| Derived Units

Quantity

Force, pressure

Energy, work

Frequency

Power

Electric charge,

quantity of electricity

Electromotive force,

voltage

Electric resistance

Electric conductance

Capacitance

Inductance

Unit Name

meter
kilogram
second
kelvin

candela
mole
ampere

Unit Name

newton

joule

hertz

waltt

coulomb

volt

ohm

siemens

farad

henry

Symbol
m

kg

S

K

cd
mol
A

Symbol

Hz

In Terms of
Other Units

In Terms of
Other Units

N m, QAZ?s

»[S <lo <> »I<
w

In terms of SI
Base Units

m

kg
S
K

cd
mol
A

In terms of SI
Base Units

Table 4.6

Metric US Customary
Conversion Conversion
Factor Factor
(Length)
25.4 mm 1inch
2.54 cm 1inch
30.48 cm 1 foot
0.3048 m 1 foot
0.9144 m 1 yard
1.609 km 1 mile
1.852 km 1 nautical mile
(Area)
645.16 mm2 1 inch?
6.4516 cm?2 1lin2
929.03 cm?2 1ft2
0.0929 mz2 1ft2
8361.3 cm?2 1 yd?
0.83613 m?2 1 yd?
4047 m?2 1 acre
2.59 km?2 1 mi2
(Mass) (Avoirdupois Weight)
0.0648 grams 1 grains
28.349 g loz
453.59 g 11b
0.45359 kg 1llb
0.907 tonne 1 short ton
1.016 tonne 1 long ton
(Volume)
16387.064 mm3 1in3
16.387 cm3 1in3
0.028316m3 1 ft3
0.764555m3 1yd3
16.387 ml 1in3
29.57 ml 1floz
473 ml 1 pint
946.333 ml 1 quart
28.32 I 1 ft3
0.9463 | 1 quart
3.785 I 1 gallon
1.101 I 1 dry quart
8.809 I 1 peck
35.238 I 1 bushel
(Mass) (Troy Weight)
31.103 g lozt
373.248 g libt
(Mass) (Apothecaries’ Weight)
3.387 g 1drap
31.103 g lozap
373.248 g 11bap

To set up aconversion between metric and US Customary units, just make aratio of the conversion
factors and another of the measurements. Set the two ratios equal to each other and solve the proportion

for the unknown measurement.

metricconversion _ metric measurement

USconversion

USmeasurement
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Suppose we know that a dipole antenna is 126 ft 6 inches long. (For simplicity, change that to
126.5ft.) How long isthis antennain meters? L ook down the Metric Unit column of Table 4.6 until you
find an “m” for “meters.” Then go across to the US Unit column to find “foot.” Notice there are two
conversion factors for meters; one for “foot” and another for “yard.” When you’ ve located the proper
conversion factor, you will seethereis0.3048 meter in 1 ft. (A meter isalittle morethan 3 ft.) We know
the US measurement in this case, and want to find the metric measurement.

0.3048m _ metricmeasurement

1ft 126.5ft

Inthisexamplewewill cross multiply the US measurement term to | eave the unknown measure-
ment by itself on one side of the equal sign. When you cross multiply, just take any part of the
proportion diagonally across the equal sign.

0.3048m x126.5ft .
= metricmeasurement
1ft
_38.56mft _ 3856m
1ft

Noticethat weinclude the appropriate unitswith the metric and US conversion factors. After we cross
multiply, the units of feet that go with the dipole length cancel with the units of feet that go withthe US
conversion factor, leaving only units of meters in our answer. Dimensional analysis ensures we have
solved the proportion properly.
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Trigonometry

Trigonometry refers to the mathematics of angles, especially as they relate to triangles. When two
lines meet or cross, they form angles. The point where the lines meet or crossis called the vertex of the
angle. We usually measure an angle as an arc of acircle across the smallest opening between the lines.
We can describe an angle as falling in one of three categories. Fig 4.10 shows aright angle, an acute

angle and an obtuse angle.

The figure shows the angles in terms of a degree measurement. A degree is 1/360t" of a circle, or
1/360th of a complete revolution. We can also measure anglesin radians. A radian is an angle measure
obtained by taking the length of the radius of acircle and laying that length along the circumference of
that circle. SeeFig4.11. Thereare2mtradiansin onecircle, or 360°. Two useful conversion relationships

are.

1° = 1.745 x 102 radians, and:

1 radian = 57.296°

When three lines cross in
such a manner that they form
three angles, theselinesforma
triangle. We normally identify
atriangle by the largest angle
that it includes. This means
there are three types of tri-
angles. Fig 4.12 shows
examples of the three types of
triangles. In electronics, we
will useright trianglesin ava-
riety of calculations.

If you add thethreeanglesin
atriangle, you will always get
atotal of 180°. For aright tri-
angle, then, thesum of theother
two angles must be 90°.

The triangles shown in Fig
4.12 have their angles labeled
with upper-case letters and
their sides labeled with corre-
sponding lower-case letters.
Notice that the side opposite
each angle usesthe lower-case
letter of its opposite angle.
With aright triangle, the side
opposite the right angle has a
specia name. Itiscalled thehy-
potenuse of the right triangle.
InFigure4-12B, sideaisoppo-
siteangle A, side b is opposite
angle B and the hypotenuse
(side c) is opposite the right

1 degree

4 1 radian

bow (®)

6= 90° 8> 90°
6< 90°

Right Angle Acute Angle Obtuse Angle

(A) (8) (©)

Fig 4.10 — Three types of
angles. A shows a right angle, B
shows an acute angle and C
shows an obtuse angle.

Fig 4.11 — Part A illustrates the
measure of 1° as part of a circle.
Part B shows the measure of 1
radian as part of a circle.

b

Obtuse Triangle
(©)
Sine A = _ Sidea Sine B __Sideb
Hypotenuse Hypotenuse
CosineA= _Sideb__ oogpop- _Sideb
Hypotenuse Hypotenuse
Right Triangle Side a Sid
= T A= _Sideb
(B) Tangent A Side b angent Side a

Fig 4.12 — Part A shows an acute triangle, Part B shows a right
triangle and Part C shows an obtuse triangle.
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angle (angle C). We can also say that sideaisadjacent to angle B and sidebisadjacent toangle A. (The
hypotenuse is also adjacent to both angles A and B, but since the hypotenuse is otherwise uniquely
identified we don’t use this name for the hypotenuse.) The Greek letters theta (0) and phi (¢) are often
used to represent angles. Sometimes you will also see the Greek letters alpha (a), beta () and gamma
(y) used to represent the angles in a triangle.

WORKING WITH RIGHT TRIANGLES

Trigonometry defines relationships between the lengths of the sides of aright triangle and its angles.
With these relationships and any combination of three sides or angles we can calculate any of the
guantitieswe don’t know. For example, if you know two sides and one angle, you can cal culate thethird
side and the other two angles. While there are six functions defined for any right triangle, you can
perform any required calculations if you know three of those functions.

The three functions we will use are the sine, cosine and tangent. Each function is defined in terms of
an angle and two sides of the triangle.

sineg =3 deopposite
hypotenuse
. _ Sideadjacent
cosinef=———
hypotenuse
tangent0 = S|. de op!oos te
sideadjacent

Fig 4.12B showsthe definitions of the three important trigonometry functions associated with angles A
and B.

These functions are usually abbreviated as sin, cos and tan. Each function represents a ratio of two
sides of the triangle, and this ratio is the same for any given angle, no matter how large or small the
triangle. For example, Fig 4.13 shows two right triangles that each include a 30° angle. The sine of the
30° angle is 0.5 no matter which triangle we are working with. Likewise, each of these triangles also
includes a60° angle, and the sine of the 60° angleisalways 0.866.

Most scientific calculators include keys to find these function
values. Itisimportant to know if the cal culator will understand the
angle you enter as measured in degrees or radians. Most calcula-
torswork with angles measured in degrees, but some use radians. B2
Some calculators will also use radians if you enter the proper Side
keystrokes before starting. Computers usually work with angles az
measured in radians. 1l e

Supposeyou know theratio of sides, and want to know what angle e O a1 -
isassociated with that value. Thisisaquestion of finding theinverse
function. Suppose you know that the side opposite an angle divided < Ske b
by the hypotenuse equals0.5. What isthe angle? Since opposite over
hypotenuseisthe definition of sine, wewant to find theinversesine,
or arcsine (often abbreviated arcsin). In this example, the answer is ~ Fig 4.13 — This drawing shows
30°. Likewise, wecan alsofindthearccosine (arccos) andarctangent WO right triangles that each

) ) X ) include a 30° angle and a 60
(arctan) of anangle. Youwill also seetheseinversefunctionswritten  angle. Notice that values of the
assin!, costandtan 1. Herethe—1 exponentissimply ashort-hand  trigonometry functions don’t
notationtoindicatetheinversefunction. Donottry tofollowtherules ~ depend on how long the sides of
of significant figures when you find the value of a trigonometry ~ the triangles are; the same values

; o . of sin, cos and tan apply to each
functionor itsinversefunction. Dofollow theruleswhenyou calcu-  of these triangles.

€« Side by——————
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latethesidesand anglesof atriangle,
however. For example, if you know
an angle measurement to three or
four significant figures, express the
other angles you calculate with the
same number of significant figures.
If you know the length of aside to
four significant figures, express the
calculated sides to four significant
figures.

The sine and cosine functions
are used in many waysin electron-
ics. You will often see graphs of
these functions used to represent
the waveform of an alternating
current signal. Fig 4.14 shows
graphs of the sine, cosine and tan-
gent functionsfor anglesfrom O to
360°. (The horizontal axis on the
graph is also marked in radians,
from O to 2m radians.)

In addition to the three trigonom-
etry functions described here, there
isoneother very important relation-
shipforworkingwithrighttriangles.
This principle was discovered by a
Greek mathematician, Pythagoras.
The Pythagorean Theorem states
that the square of the hypotenuseis
equal tothe sum of the squaresof the
other two sides. Written as an equa-
tion, thisis:

¢ =a?+h?

We can take the square root of
both sidesto solvethisequationfor
the hypotenuse.

c=va’ +b?

We can also solve the original
equation for either of the other
sidesand then take the squareroot.

2 =c2—p2

a=+/c%2-b?

Thereisno single correct proce-
dure for calculating the parts of a

00
90° 180° 270° 3610°
!

Orad T rad nrad = rad 27 rad

Sine Function

(A)

0° 90° 180° 270° 360°
0 } }
Orad % nrad 3n 27 rad
rad rgd

Cosine Function

(B)

N
g4 - T

|
\
\
\
\
\
\
\
0 90° 180°
|
T

Orad % rad nrad 3n

Tangent Function

(©)

Fig 4.14 — Part A shows a graph of the sine function for angles
from O to 360°. Part B is a graph of the cosine function and Part
C is a graph of the tangent function for angles from 0 to 360°.

(Note that the horizontal axis also indicates angles in radians.)
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right triangle. Select a “trig” function or the Pythagorean Theo-
rem depending on what parts of the triangle you know. Fig 4.15
shows aright triangle. The drawing shows the two sides, and you 5
haveto calculatethe hypotenuse and thetwo angles. We could use a=25.0
the Pythagorean Theorem to calculate the hypotenuse, but let’s
use the tangent function to find angle A first.

Hypotenuse = ?

b=433

A= sideopposite

sideadjacent Fig 4.15 — Find the hypotenuse
25.0 and the two acute angles of this

tanA =——=0.577 right triangle. You can use any of
43. the “trig” functions and the

Next we must find the arctangent of this ratio: Pythagorean Theorem.

A =30.0°

Sincethetwo acute anglesof aright triangle must add up to 90°, we can seethat angle B must be 60.0°.
Then we can usethe sine, cosine or Pythagorean Theorem to cal culate the hypotenuse. Let’ susethesine
function for this example. (You can use the cosine to verify that it gives the same answer.)

_ sideopposite
hypotenuse

SnA
Cross multiply to solve this literal equation for the hypotenuse, and calculate the value.

hypotenuse= W
sinA

hypotenuse=——=——=50.0
sin30° 0.500

As an example of using the Pythagorean Theorem, we will use that to solve for hypotenuse of this
triangle also.

c=+a’+b?
c=1/25.0% +43.3%2 =/625+1870
¢ =+/2500 =50.0

Noticethat we havefollowed therulesfor significant figuresthrough these examples. Inthislast step,
we had to round off the 43.32 term. Then the addition term under the radical was limited to the hundreds
place, or three significant figures.

WORKING WITH ACUTE AND OBTUSE TRIANGLES

All the trigonometry functions and techniques described in the last section apply only to right tri-
angles. Y ou may occasionally need to work with an acute or obtusetriangle. Inthiscaseit will be handy
to remember the Law of Sines and the Law of Cosines. The Law of Sines tells us that the length of any
side is proportional to the sine of the opposite angle:

a b _ ¢
ssnA snB snC

If you know one of the angles, the side opposite that angle, and one other side or angle, you can use
thisrelationship to calculate the fourth side or angle. The Law of Sinesis asimple proportion, and can
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be solved for the unknown quan-
tity using cross multiplication.
See Fig 4.16.

The Law of Cosines equation
will remind you a bit of the
Pythagorean Theorem. You can
find any side of thetriangleif you
know the other two sides and the
angle opposite the unknown side.
(This is just the opposite of the
Law of Sines, where you must
know one angle and its opposite
side.)

a’ =b®+c*-2bccos(A)

We could write similar equa-
tionssolved for b2 and ¢, but that
isn’t necessary, since it really
doesn’t matter which side is la-

A=45°
B =60.0°
c=?
a=5.00
C = 180° - 45.0° - 60.0°
C=75.0°
a _ b a _ b
SinA ~ SinB SinA ~ SinB
500 b 500 _  a
Sin 45.0° _ Sin 60.0° Sin450°  Sin75.0°
5.00 x Sin 60.0° 5.00 x Sin 75.0° _
Sin 45.0° =b Sin450°  _©
5.00 x 0.866  _ _ 5.00 x 0.966 _
0.707 =6.12=b 0.707 =683=c

Fig 4.16 — The Law of Sines is used to calculate sides b and c of

this acute triangle.

beled a, b or c aslong as each angle and its side opposite use the same letter. We can take the square root
of both sides of this equation to solve for a

a= \/b2 +c? - 2bccos(A)
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Coordinate Systems

A coordinate system hel psusdraw graphsto rep-
resent quantities and equations. A coordinate
system provides a scale with a set of numbers to
represent the location of apoint on asurface. There
are several such coordinate systems used in elec-
tronics. Inthis section we will briefly discussthree
coordinate systems: the rectangular, or cartesian
coor dinate system, the polar coordinate systemand
the spherical coordinate system.

RECTANGULAR COORDINATES

Fig 4.17 shows a portion of a rectangular, or
cartesian coordinate system. It is simply a pair of
number linesthat crossat a90° angle. The scale on
the number lines is chosen to suit the particular
needs of any given situation. The graduations on
one scale can be larger than the other, one or both
lines can be far from O, with an arbitrary crossing
point to show theregion of interest. Thiscoordinate
systemrepresentsaplane, two-dimensional surface.
You have probably used graph paper drawn as a
rectangular coordinate system.

The horizontal line, or axis, is often labeled X.
This usually represents the independent, or con-
trolled variable when an equation is being graphed.

Thevertical lineis often labeled Y. Thisusually
represents the dependent variable (the value de-
pends on the conditions set for the controlled vari-
able).

Any point onarectangular coordinate system can
be specified by apair of numbers, such as (-2, 5) or
(5, 3). These numbers represent the distance along
the X axisand thedistancealongtheY axistoreach
the point.

POLAR COORDINATES

We specify the distance to a point with measure-
ments along the X and Y axes with a rectangular
coordinate system. Sometimesitismoreconvenient
to specify the shortest distance from the center or
origin to the point. In that case we can use a polar
coordinate system. Fig 4.18 shows an example of
this system. The lines help mark the center of the
system and provide a reference by dividing the

Fig 4.17 — A set of horizontal and vertical lines,
marked off with a number scale, forms a
rectangular coordinate system. We usually label
the horizontal line, or axis, the X axis, and the
vertical line the Y axis. Any point on the surface
can be identified with a pair of numbers,
representing the distance along the X axis and
the distance along the Y axis to reach the point.
When the point is identified with a pair of
numbers, the convention is to list the X value
first, then the Y value, as (X, Y).

210] &
B%y1234567360

180°

Fig 4.18 — This drawing shows a polar
coordinate system. Any point on this surface is
identified with a pair of numbers representing
the distance from the origin directly to the point,
and an angle or direction.

circleinto four equal parts, but they are not really necessary. Again we specify the location of any point
on the surface with a pair of numbers, but this time the numbers represent the direct distance from the
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origin to the point, and an angle. The angle is usually measured
counterclockwise from the line extending to theright side. The dis-
tance represents the magnitude or length of the value, measured as
a straight line (the shortest distance) from the center to the point.

The circles represent increasing distances from the origin. You
can choose any convenient scale for the radius of thesecircles. You
don’t alwaysneed thecompletecircles. Oftenyouwill only need one
quarter or one half of thecircle. Y ou can buy graph paper marked of f
with a polar coordinate system, although you seldom need such
graph paper. Y ou can even use rectangular coordinate graph paper
or plain paper, with adrawing compass, ruler and protractor if you
do want a scale drawing.

Many times you will have to convert between rectangular and
polar coordinate systems. Y ou will find the trigonometry functions
especially helpful at such times. Fig 4.19 shows a right triangle
drawn to illustrate such a conversion. The sides of the triangle rep-
resent the X (4) and Y (3) valuesof arectangular coordinate system.
The hypotenuse of theright triangle representsthe distance between

(4.3
(5,/36.9°)

A

Y

R

Fig 4.19 — The right triangle
on this graph shows how we
can specify the same point in
rectangular coordinates and in
polar coordinates. The
rectangular coordinates (4, 3)
and the polar coordinates

(5, 036.9°) both represent the
same point on this graph. You
can use the trigonometry

functions discussed earlier to
convert between these two
systems.

the origin and the end point on a polar coordinate system. Angle A
represents the polar-coordinate angle.

Y ou should be able to use the various “trig” functions and the
Pythagorean Theorem to calculate the hypotenuse (5) and angle A
(36.9°) for this problem. If you knew the hypotenuse and angle A you should also be able to calculate
the other two sides of the triangle, to convert from polar to rectangular coordinates.

SPHERICAL COORDINATES

Both of the coordinate systems described above represent atwo-dimensional surface. Thisisfinefor
most el ectronics problems, but occasionally it ishelpful to have athree-dimensional coordinate system.
It is possible to add a third axis to the rectangular coordinates, which forms a 90° angle with the other
two. (Look at the corner of aroom, with the two lines along the floor and walls representing the X and
Y axes. Then the corner between the two walls represents the Z axis.) A set of three numbers (X, Y, Z)
will represent any point in the three-dimensional space this system represents.

It isalso possibleto rotate the circles of the polar coordinate system to create a sphere. The resulting
spherical coordinate systemgivesusanother way to represent apoint inthree dimensions. Inthissystem
we use the radius, or distance from the center to the point, and two angles — one representing an angle
measured “horizontally” and the other representing an angle measured “vertically.” (Think about our
Earth, and the way we draw lines of longitude and latitude.)
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Complex Algebra

We most often use the rectangular and polar coordinate systems for electronics problems involving
resistance, reactance and impedance (and conductance, susceptance and admittance, their reciprocals).
When we work with these quantities we draw the resistance or conductance along the X axis and the
reactance or susceptance along the Y axis. The hypotenuse represents impedance or admittance.

We must use some special mathematical techniques when working with these quantities because we must
always distinguish between them. It is most convenient to use the algebra of what mathematicians call
imaginary numbers, although there is nothing imaginary about these el ectronics quantities. Mathematicians
usethese techniqueswhen they work with quantitiesthat involvethe squareroot of minus 1, written as J-1.
Itisimpossible to find a number that when multiplied by itself gives—1, so this quantity isimaginary, yet it
does show up in some mathematical procedures. Mathematicians represent this quantity with alower-case
italici. Quantities that include real and imaginary parts are called complex numbers.

In electronics, we use alower-caseitalic j to represent numbers on the reactance or susceptance line,
or Y axis of a graph. The algebra of complex numbers provides a way to add, subtract, multiply and
divide quantities that include both resistive and reactive components. Y ou can best think of thej asan
operator that produces a 90° rotation from the resistance line. An operator is just a mathematical
procedure applied to a quantity. An exponent is an operator that tells you how many times to multiply
a quantity times itself and the radical sign (\/_) is an operator that tells you to take the square root.

When you see areactance expressed asj250 Q, placethisquantity
along the Y axis on your graph. A reactance expressed as —300 Q
tellsyou to rotate 90° in the clockwise direction instead of the nor-
mal counterclockwise direction.

Inductive reactance is specified with a +j for series circuits, be-
cause the voltage across an inductor leads the current through it.
Sincevoltageand current arein phaseinaresistor, thevoltage across
theinductor leadsthevoltage acrosstheresistor by 90°. (For parallel
circuits, the voltage across the resistor and inductor is the same, so
they are in phase. In that case the current through the inductor lags
the current through the resistor, so the current associated with the A |
inductive reactance gets a— operator.) £ 50

Capacitive reactance is just the opposite. It is specified with a—
operator for series circuits because the voltage across a capacitor
lags the current, so the current across the capacitor lags the voltage
acrosstheresistor — or is90° behind. (For parallel circuits, thesame
voltageisapplied to the resistor and capacitor, so the capacitor cur-
rent leads the resistor current. The current associated with the ca-
pacitive reactance gets a +j operator for parallel circuits.)

A handy memory devicefor theserelationshipsisthesaying, “ELI
the ICE man.” The E represents voltage, | represents current, L is
inductance and C is capacitance. Fig 4.20 — The two triangles

Impedanceisacombination of resistance and reactance. Whenwe  shown on this graph represent
specify a series-circuit impedance as 50 + j200 Q, you know this ~ the impedances of two circuits.

S . . . . Triangle A represents a 50-Q
represents a circuit with a 50-Q resistance in series with a 200-Q _cictance in series with a
inductive reactance. Likewise, an impedance of 50 —j200 Q repre-  200-Q inductive reactance

sentsacircuit with a50-Q resistance in serieswith a200-Q capaci- (50 +j200 Q). Triangle B
tive reactance. represents a 50-Q resistance in

. . . series with a 200-Q capacitive
Both of these impedances can be expressed in polar-coordinate | gactance (50 - 200 Q).

200 4 p 50+ ;200 Q

—200 1+ b 50— 7200 0
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form. Plot the values on agraph and cal cul ate the hypotenuse of theright triangle and angle A as shown
on Fig 4.20. Then you can write these impedances as 206 Q [176° and 206 Q [1-76°.

RULES FOR WORKING WITH COMPLEX NUMBERS

Addition and subtraction of complex numbersare best done using rectangular-coordinate form. When
you add complex numbers written in rectangular notation you add the parts along the X axis, and you
add the partsalong the Y axis. Theresult givesanew set of X, Y coordinates, representing the addition
of the two complex values. To subtract complex numbers you subtract one X part from the other, and
subtract the corresponding Y parts. Theresultisanew set of X, Y coordinates, representing the subtrac-
tion of the two values.

For example, what is the total impedance of a circuit that has an impedance of 30 +j150 Q in series
with an impedance of 40 —j100 Q? We can write this addition as:

30+j150 Q
+40-j 100 Q
70+j 50Q

If you haveto add or subtract impedancesgiven in polar notation (amagnitude or length and an angle),
first convert these values to rectangular-coordinate form. Use the trigonometry functions and
Pythagorean Theorem described earlier in this chapter. If you need the answer specified in polar-
coordinate form you can convert back to that notation after performing the addition.

Multiplication and division of complex numbers is best done in polar-coordinate form. When you
multiply complex numbers in polar-coordinate form, you multiply the magnitudes and add the angles.
When you divide complex numbersin polar notation you divide the magnitudes and subtract the angles.

Suppose you want to find the impedance of a circuit that has aresistor in parallel with a capacitor.
When you apply 10.0 V to the circuit, you measure 0.250 A of current. Y ou measure the phase angle
between the current and the voltage, and find the current leads the voltage by 30.0°. We can calculate
the impedance of this circuit (represented by a capital Z) using Ohm’s Law.

z=%

_ l1oovgo.oe
0.250A 1J30.0°

The components arein parallel, so the same voltage is applied to both the resistor and capacitor. Use
the voltage as the phase reference for parallel-circuit calculations, so the voltage has a 0° phase angle.
To performthisdivision, first divide the voltage magnitude by the current magnitude. Then subtract the
denominator phase angle from the numerator phase angle.

10.0V
0.250A
and

=40.0Q

0.0°-(30.0°)= -30.0°

These two values specify theimpedance of the circuit in thisexample. We can put them together and
write the circuit impedance in polar-coordinate form as:

40.0Q 0 -30.0°
The negative phase angle tells us there is a capacitive reactance as part of the impedance.
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Logarithms

A logarithm is an exponent. Common logarithms use the number 10 as their base. Y ou have some
experience with “powers of 10" from writing numbers in exponential or scientific notation.

A common log, as it is usually called, is the exponent or power to which you must raise 10 to
get a certain number. In the examples above, we raised 10 to the third power to get 1000. The log
of 1000, then, is 3. The log of 1000000 is 6. In general, we define a common logarithm with two
equations. If:

N = 10%, then:
log (N) = x

Sometimes you will see thiswritten aslogio (N) = x. Thisis simply to ensure that you know the base
of the logarithm is 10.

Finding the log of a multiple of 10 is easy, as these examples show. Y ou may wonder to what
power you can raise 10 to get a number like 2. That is a good question, and the answer is 0.301.
Logs are usually decimal fractions rather than whole numbers. Logs for numbers smaller than 10
arelessthan 1; logs for numbers larger than 10 are greater than 1. From the definition of alog, we
can write the expression:

2 = 100-301

The easiest way to find any logarithm iswith your calculator. Simply enter the number whoselog you
want to find, and then push the button labeled “log.” It iseasy to find that log (5) = 0.699, for example.

It isinteresting to note that log (1) = 0, because anything (including 10) raised to the zero power is
1. The log of 0 is undefined, because there is no power to which you can raise 10 and get 0.

Theinverselogiscalled the antilog (often written log™). When we know the log and want to find the
original number, we want the antilog. To find an antilog, simply raise 10 to the given power. Y our
calculator probably has a button labeled “10*” or something similar. What is the antilog of 1.845?
101-845=70. Don’t try to follow therulesfor significant figureswhen finding logs or antilogs. Do follow
the rules with the values you calculate from logs and antilogs, however.

The second base that is frequently used for logarithmsis a number usually represented by e. (Some-
timesthe Greek letter epsilon (€) isused to represent e although thisisan incorrect representation.) This
number is approximately 2.71828. Thisis not an exact value, because the decimal fraction doesn’t end
with thislast 8. Thisvalue isrounded off, but there is no exact value for e because you can never find
thelast digit. Mathematicians call such numbers with no exact value, irrational numbers. The number
represented by e appearsin several electronics calculations, and is called the natural number, because
it appears as a constant of nature. Y ou will use e to calculate the voltage on a capacitor asit charges or
discharges, for example.

Logarithms that use e for their base are called natural logarithms, or Naperian logarithms. This can
be written as loge, but to more easily distinguish it from common logs, we usually abbreviateit In. We
define natural logs the same way we define common logs. If:

M =&Y, then
loge (M) =In (M) =y

Theeasiest way to find anatural logiswithascientific calculator. Enter the number whoselnyouwant
to know, then press the “In” button on the calculator. For example, In (2) = 0.693 and In (20) = 2.996.
As you might expect, In (e) = 1, In (1) = 0 and In (0) is undefined.
ezgg\éerse natural logs, or antilogs are also easy with a calculator. Just raise e to that power:

290 = 20,
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Computers often work only with natural logarithms. Converting between common logarithms and
natural logarithmsis easy, however. If you want to find acommon log, and know the natural log value,
divide that by the natural log of 10.

log(x) = In(x) / In(10) = In(x) / 2.3025851

log(x) = 0.4342945 In(x)

If you know the common log, and want to find the natural log, divide that value by the common log
of e.

In(x) = log(x) / log(e) = log(x) / 0.4342945
In(x) = 2.3025851 log(x)

DECIBELS

The bel (abbreviated B) is named after Alexander Graham Bell, who did much pioneering work with
sound and the way our ears respond to sound. Our ears respond to sounds ranging from an intensity less
than 1016 W/cm? to intensities larger than 104 W/cm?2 (where we begin to experience pain). Thisisa
range of more than 1012 times from the softest to the loudest sounds. L ogarithms provide a convenient
way to represent these values, because they compress this scale into arange of 12, rather than arange
of abillion.

A bel isdefined asthelogarithm of apower ratio. It givesusaway to compare power levelswith each
other and with some reference power.

bel ﬂog%%
0

where Pg is the reference power, or the power you want to use for comparison and P; is the power you
are comparing to the reference level.

While the bel wasfirst defined in terms of sound power, to describe sound intensities, in electronics
we often use it to compare electrical power levels. The decibel is one-tenth of abel, and is abbreviated
dB.

It takes 10 decibels to make 1 bel, so we can write an equation to find dB directly:

dB=10Iog%%

How many decibels does the power increase if an amplifier takesa 1-W signal and boostsit to 50 W?
Let P, be the 1-W signal in this example, since that is the starting point for the comparison.

dB= 1OI09%E:10I09 50

dB= 101699 =16.99dB

The amplifier in this example has a gain of nearly 17 dB.

Sometimes when we are comparing signal levels in an electronic circuit, we know the voltage or
current of thesignal, but not the power. Of coursewe can always cal cul ate the power, aslong aswe know
theimpedance of the circuit. We can take ashortcut to comparing the signal levelsin decibels, however,
aslong as theimpedance is the same in both circuits, or aslong as the impedance of the circuit doesn’t
change when we changethe voltage or current. Remember from Ohm’ sLaw and the power equation that
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P=E2/RandP=12x R. Sowe can use E2 or |2 in place of power in the decibel equation, aslong as
the impedance is the same in both cases.

Er H
delOIogle
a=ls

aB= 20|OQEE—;E

and

daB :10IogE%E

dB = 20IogE:—Z%

Here we have also illustrated another important property of logarithms. If the quantity inside thelog
expression has an exponent, you can movethe exponent outsidethelog. Inthiscase, we movethe 2 from
the squared terms out front, and multiply it times the 10 already there.

Sometimes there is confusion about whether the decibel was calculated using power, voltage or
current. Since the current and voltage equations use 20 instead of 10 times the log term, some hams
believethe*voltage” or “current” decibel isdifferent than one calculated using power. Thisisnot true,
however. There is only one decibel definition, and that is ten times the log of a power ratio.

Thereareseveral power ratiosthat you should learn to recogni ze and remember the decibel valuesthat
go with them. These are the decibel values for adoubling of the power and for halving the power. Let’s
look at the effect of doubling the power first. It doesn’t matter if we are going from 1 W to 2, 50 to 100
or 500 to 1000 W. In each case the new power istwice the starting power. To find the decibel increase
multiply 10 times the log of 2:

dB =1010g (2)

dB =10 x 0.301 = 3.01

Anytime you double the power, it represents approximately a 3-dB increase in power.
What is the decibel change when you cut the power in half? Again, it doesn’t matter if you are going
from 1000 W to 500, 100 to 50 or 2 W to 1 W; the power ratio is still 0.5.

dB =1010g (0.5)

dB =10 x -0.301 = -3.01

A negative value indicates a decrease in power. Anytime you cut the power in half there is about a
3-dB decrease in power.

Table 4.7 shows the relationship between several common decibel values and the power change
associated with those values. The current and voltage changes are al so included, but theseare only valid
if the impedance is the same for both values.

Suppose you double the power, and then double it again? The final power is four times the starting
power, so you can cal cul atethe decibel increase using the equation given. Y ou can also cal cul atethe total
power change “by inspection” because you know each time you double the power there is a 3-dB
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increase. Inthisexampleyou havea3-dB increase,
plus a second 3-dB increase. If you add these two
decibel values, you have a 6-dB total increase. If
you doublethe power again, you have aQ-dB t.otal 4B P, /P, Vy IV o,/
increase. Dou_bllng the power a fourth time gives 20 10-2 0.1000
a 12-dB total increase. -10 0.1000 0.3162

The same relationship is true of power de- (-6.0206) (0.2500) (0.5000)

Table 4.7

Some Common Decibel Values and
Power-Ratio Equivalents

i i —6 0.2512 0.5012
creases. Each time you cut Fhe power in hglf you (C3.0103)  (0.5000) (0.7071)
have a 3-dB decrease. Cutting the power in half _3 0.5012 0.7079
andtheninhalf againisa6-dB decrease, and so on. -1 0.7943 0.8913
Theaddition and subtraction of decibel valuesis 0 1.000 1.000
. . . e 1 1.259 1.122
very important in electronics. Amplification fac- 3 1.995 1.413

tors, gains and losses of antennas, antenna feed (3.0103)  (2.0000) (1.4142)
linesand all kinds of circuits can simply be added 6 3.981 1.995

when they are expressed in decibels. 1(8'0206) 1(3:8800) (2:2220)

Itisoften convenient to compareacertain power 20 102 10.00

level with some standard reference. For example,
suppose you measured the signal coming into a
receiver from an antenna and found the power to be 2 x 10~13 mW. As this signal goes through the
receiver itincreasesand decreasesin strength until it finally produces some sound inthereceiver speaker
or headphones. It is convenient to describe these signal levelsin terms of decibels. A common reference
power is1 mW. The decibel value of asignal compared to 1 mW isspecified as*“dBm” to mean decibels

compared to 1 mW. In our example, the signal strength at the receiver input is:

dBm=10 IOQEMH

H 1mw H
dBm:lmog(2><10‘13)

=10x-12.7=-127dBm

There are many other reference powers used, depending upon the circuitsand power levels. If you use
1 W asthe reference power, then you would specify dBW. Antenna power gains are often specified in
relation to a dipole (dBd) or an isotropic radiator (dBi). Anytime you see another letter following the
dB, you will know some reference power is being specified.

Mathematics for Amateur Radio 4.31



Integration and Differentiation

Y ou don’t haveto befamiliar with cal culusto understand modern el ectronics. Sometimesit is hel pful
to be familiar with some cal culus terminology to understand how acircuit works or what itsfunctionis,

however.

INTEGRATION

When you read that a certain op-amp circuit is designed as an “integrator” it will be easier to under-
stand what the circuit does if you know a simple definition of integration. Integration is the process of
calculating the area under a curve plotted on a graph.

Area always implies certain boundaries, and you want to find how much space there is inside the
boundaries. A square may be the simplest surface for which to find the area. I1f you know the length of
asideyou simply squarethat length to find the area. If you know thelength and width of arectangle you

1
E (volts)
0

1 2 t (seconds)

Fig 4.21 — This graph represents
one cycle of a square wave. The
text explains how to integrate
this signal waveform, or find the
area under the pulse.

X1 X2

(A)

‘ O N L)
L 4 I I I I
+ + + + + +

(8)

multiply these values to calculate area.

Fig 4.21 shows a graph of a square-wave signal. If you want to
integratethissignal, you havetofindthearea of thepulse. Thescales
onthisgraphrepresent voltage (ontheY axis) andtime(ontheX axis)
so thisisn’t area in the most common sense, but we can perform a
similar calculation. As you can imagine, if the pulse has a larger
amplitude or alonger duration it will have alarger area.

Fig 4.22 illustrates a more difficult signal to integrate. Calculus
methods can cal cul ate this areafrom the equation that representsthe
curve, but we can make a reasonable approximation by drawing a
series of rectangles and adding their areas. Integration is normally
done over some range of values, such as x1 and x2 as shown on this
graph. Part B shows that we can draw a series of rectangles so the
midpoint of the side of each rectangle crosses the curve. Part of the
rectanglecorner liesabovethecurve, but thereisanearly equal space
below the curvethat isnot included. If wedraw morerectangles, with
smaller widths, the approximation becomes better. The concept of
integration isthat you can maketheinterval smaller and smaller until
it isno longer an approximation, but an exact value.

Fig 4.22 — This graph shows an
irregular curve. If we want to
know the area under the curve
between x; and x2, we can draw a
series of rectangles and add their
areas, as shown in Part B.
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wave input.



compares aseriesof square-wave pulsesfed into an op-amp integrator and the output waveform from
the integrator. In this example the integrator changes a square-wave signal into atriangle-wave signal.
The integrated signal increases while the input pulse is positive, then decreases while the signal is
negative.

DIFFERENTIATION

Differentiation is another calculus procedure that may be helpful. Integration and differentiation are
opposite procedures. If you integrate a function and then differentiate the result, you get the original
function back again. Likewise, if you differentiate a function and then integrate the result, you get the
original function back.

Whileintegration represents a summation of area values over some range, differentiation represents
the slope of aline or curve at some specific point. The slope of astraight lineis equal to the change in
value along the x axis divided by the corresponding change in value along the y axis.

Look at the triangle waveform of Fig 4.23 B. Whilethe voltage isincreasing, thisline has a constant
slope, m, such that it satisfies the equation y = mx + b. Since the differentiation process represents the
slope of theline, the derivativeis aconstant. When the waveform beginsto decrease the slope suddenly
changes to a new value, which is negative thistime. The derivative is again a constant value, thistime
withanegativesign. If thegraphinFig4.23B representsasignal waveformthat isfedinto adifferentiator
circuit, thewaveform at A representsthe output signal waveform!

We approximated the integration process for a curved-line
graph by adding the areas of many small rectangles drawn to
divideacurveinto small segments. Similarly, we can approximate
the differentiation process of a curved-line graph by finding the ,
slope of astraight line drawn tangent to the curve. A tangent line
touches the curve at a single point. The simplest way to show a
tangent lineiswithacircle, asshowninFig4.24. Thetangent line 8
is perpendicular to (forms a 90° angle with) a radius line.

Wecan approximatethederivativeof acurved-linegraph at any
point by drawing atangent line at that point and calculating the
slope of theline. We can even find the general trend of the deriva-
tive function by drawing a series of tangent lines at points along
theline. By calculating the slope of each of thoselinesyoucanget  Fig 4.24 — This diagram illus-
some idea of how it is changing. By selecting points closer and ~ [rates the concept of a tangent

N . . line. Line AB is tangent to the
closer together you will find a better and better approximationto  ¢jrcje at point P, and is perpen-
the derivative dicular to the radius line, r.

A
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