
Digital Signal Theory and Components 7.1

Digital Fundamentals
igital signal theory is an important aspect of Amateur Radio. With a knowledge of digital theory,
there are many new worlds for the radio amateur to explore. Applications of digital signal theory
include digital communications, code conversion, signal processing, station control, frequency

synthesis, amateur satellite telemetry, message handling, word processing and other information han-
dling operations.

This chapter, written by Christine Montgomery, KG0GN, presents digital-theory fundamentals and
some applications of that theory in Amateur Radio. The fundamentals introduce digital mathematics,
including number systems, logic devices and simple digital circuits. Next, the implementation of these
simple circuits is explored in integrated circuits, their families and interfacing. Integrated circuits
continue with memory chips and microprocessors, culminating in a synthesis of these components in the
modern digital computer. Where possible, this chapter mentions Amateur Radio applications associated
with the technologies being discussed, as well as pointers to other chapters that discuss such applications
in greater depth.

DIGITAL VS ANALOG

An essential first step in understanding digital theory is to understand the difference between a digital
and an analog signal. An analog value, a real number, has no end; for example, the number 1/3 is 0.333...
where the 3 can be repeated forever, or 3/4 equals 0.7500... with infinite repeated 0s. A digital approxi-
mation of an analog number breaks the real number line into discrete steps, for example the integers. This
process of approximating a value with discrete steps either truncates or rounds an analog value to some
number of decimal places. For example, rounding 1/3 to an integer gives 0 and rounding 3/4 gives 1.

For a simple physical example, look at your wristwatch. A watch with a face — with the hands of the
watch rotating in a continuous, smooth motion — is an analog display. Here, the displayed time has a
continuous range of values, such as from 12:00 exactly to 12:00 and 1/3 second or any values in between.
In contrast, a watch with a digital display is limited to discrete states. Here the displayed time jumps from
12:00 and 0 seconds to 12:00 and 1 second, without showing the time in between. (A watch with a second
hand that jerks from one second to another could also fit the digital analogy.)

In the digital watch example, time is represented by ten distinct states (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9).
Digital electronic signals, however, will usually be much more limited in the number of states allowed.

7

Digital Signal Theory
and Components

D

7.2 Chapter 7

Binary, the most common system, has only two states: 0 and 1.
Ternary (3 states), quaternary (4 states) and other digital systems
also exist. Fig 7.1 illustrates the contrast of an analog signal (in
this case a sine wave) and its digital approximation.

While the focus in this chapter will be on digital theory, many
circuits and systems involve both digital and analog components.
Often, a designer may choose between using digital technology,
analog technology or a combination.

Fig 7.1 — An analog signal and
its digital approximation. Note
that the analog waveform has
continuously varying voltage
while the digital waveform is
composed of discrete steps.

Digital Signal Theory and Components 7.3

Number Systems
In order to understand digital electronics, you must first understand the digital numbering system. Any

number system has two distinct characteristics: a set of symbols (digits or numerals) and a base or radix.
A number is a collection of these digits, where the left-most digit is the most significant digit (MSD) and
the right-most digit is the least significant digit (LSD). The value of this number is a weighted sum of its
digits. The weights are determined by the system’s base and the digit’s position relative to the decimal point.

While these definitions may seem strange with all the technical terms, they will be more familiar when
seen in a decimal system example. This is the “traditional” number system we are all familiar with.

DECIMAL

The decimal system is a base-10 system, with ten symbols: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. In the decimal
number, 548.21, the digits are 5, 4, 8, 2 and 1, where 5 is the most significant digit since it is positioned
to the far left and 1 is the least significant digit since it is positioned to the far right. The value of this
number is a weighted sum of its digits, as shown in Table 7.1.

The weight of a position is the system’s base raised to a power, 10P with the power determined by the
position relative to the decimal. For example, digit 8, immediately to the left of the decimal, is at position
0; therefore, its weight factor is 100 = 1. Similarly, digit 5 is 2 positions to the left of the decimal and
has a weight factor 102 =100. The value of the number is the sum of each digit times its weight.

BINARY

Binary is a base-2 number system that is limited to two symbols: {0, 1}. The weight factors are now
powers of 2, like 20, 21 and 22. For example, the decimal number, 163 and its equivalent binary number,
10100011, are shown in Table 7.2.

The digits of a binary number are now bits (short for binary digit). The MSD is the most significant
bit (MSB) and the LSD is the least significant bit (LSB). Four bits make a nibble and two nibbles, or eight
bits, make a byte. A word can
consist of two or four bytes,
and two words (a most signifi-
cant word, MSW, and a least
significant word, LSW) is
sometimes called a longword.
These groupings are useful
when converting to hexadeci-
mal notation, which is ex-
plained later.

Table 7.1
Decimal Numbers
Example: 5(102)

Digit = 5; Weight = 10; Position = 2

548.21 = 5(102) + 4(101) + 8(100) + 2(10-1) + 1(10-2)
= 5(100) + 4(10) + 8(1) + 2(0.1) + 1(0.01)
= 500 + 40 + 8 + 0.2 + 0.01
= 5 4 8 . 2 1

MSD decimal LSD

Table 7.2
Decimal and Binary Number Equivalents
163 = 128 + 0 + 32 + 0 + 0 + 0 + 2 + 1 decimal

= 1(128) + 0(64) + 1(32) + 0(16) + 0(8) + 0(4) + 1(2) + 1(1)
= 1(27) + 0(26) + 1(25) + 0(24) + 0(23) + 0(22) + 1(21) + 1(20)

10100011 = 1 0 1 0 0 0 1 1 binary
MSB LSB

|_______________________________| |______________________________|
Nibble Nibble

|___|
Byte

7.4 Chapter 7

OCTAL

Octal is a base-8 number system, using the symbols {0,1,2,3,4,5,6,7}. The weight factors are now
powers of 8, such as 80, 81 and 82. For example, the decimal number 163 is equivalent to octal 243.

Since 23 = 8, it is easy to switch between binary and octal just by viewing the binary number in groups
of 3. (Add a leading 0 on the left most group, if the number of digits doesn’t divide evenly into groups
of three.)

HEXADECIMAL

The hexadecimal, or hex, base-16 number system uses both numbers and characters in its set of sixteen
symbols: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. Here, the letters A to F have the decimal equivalents of 10
to 15 respectively: A=10, B=11, C=12, D=13, E=14 and F=15. Again, the weights are powers of the base,
such as 160, 161 and 162. The decimal number 163 is equivalent to hex A3.

CONVERSION TECHNIQUES

An easy way to convert a number from decimal to another number system is to do repeated division,
recording the remainders in a tower just to the right. The converted number, then, is the remainders,
reading up the tower. This technique is illustrated in Table 7.3 for hexadecimal, octal and binary
conversions of the decimal number 163.

For example, to convert decimal 163 to hex, repeated divisions by 16 are performed. The first division
gives 163 / 16 = 10 remainder 3. The remainder 3 is written in a column to the right. The second division
gives 10 / 16 = 0 remainder 10. Since 10 decimal = A hex, A is written in the remainder column to the
right. This division gave a divisor of 0 so the process is complete. Reading up the remainders column,
the result is A3. The most common mistake in this technique is to forget that the Most Significant Digit
ends up at the bottom.

Using the repeated division for binary is rather cumbersome, since the tower quickly grows large.
Combining this technique with the grouping technique discussed earlier should make conversions fairly
easy. Simply perform the tower division on one of the larger numbers, such as hexadecimal 16, then use
grouping to put the result into binary form.

Another technique that should be briefly mentioned can be even easier: get a calculator with a binary and/
or hex mode option. One warning for this technique: this chapter doesn’t discuss negative binary numbers.
If your calculator does not give you the answer you expected, it may have interpreted the number as
negative. This would happen when the number’s binary form has a 1 in its MSB, such as the highest
(leftmost) bit for the binary mode’s default size. To avoid learning about negative binary numbers, always
use a leading 0 when you enter
a number in binary or hex into
your calculator.

BINARY CODED
DECIMAL (BCD)

Scientists have experi-
mented with many devices out
of a desire for fast computa-
tions. The first generation com-
puters were born when J.
Vincent Atanasoff decided to
use binary numbers instead of
decimal to do his computa-

Table 7.3
Number System Conversions

Hex Remainder Octal Remainder Binary Remainder
16 |163 8 |163 2 |163

|10 3 |20 3 |81 1 LSB
|0 A |2 4 |40 1

|0 2 |20 0
|10 0

|5 0
|2 1
|1 0
|0 1 MSB

A3 hex 243 octal 1010 0011 binary

Digital Signal Theory and Components 7.5

tions. A binary number system representation is the most appropriate form for internal computations
since there is a direct mathematical relationship for every bit in the number. To interface with a user —
who usually wants to see I/O in terms of decimal numbers — other codes are more useful. The Binary
Coded Decimal (BCD) system is the simplest and most widely used form for inputs and outputs of user-
oriented digital systems.

In the Binary Coded Decimal (BCD) system, each decimal digit is expressed as a corresponding 4-bit
binary number. In other words, the decimal digits 0 to 9 are encoded as the bit strings 0000 to 1001. To
make the number easier to read, a space is left between each 4-bit group. For example, the decimal
number 163 is equivalent to the BCD number 0001 0110 0011, as shown in Table 7.4.

A generic code could use any n-bit string to represent a piece of information. BCD uses 4 bits because
that is the minimum needed to represent a 9. All four bits are always written; even a decimal 0 is written
as 0000 in BCD.

The important difference between BCD and the previous number systems is that, starting with decimal 10,
BCD loses the standard mathematical relationship of a weighted sum. Instead of using the 4-bit code strings
1010 to 1111 for decimal 10 to 15, BCD uses 0001 0000 to 0001 0101. There are other n-bit decimal codes
in use and, even for specifically 4 bits, there are millions of combinations to represent the decimal digits 0-
9. BCD is the simplest way to
convert between decimal and a
binary code; thus it is the ideal
form for I/O interfacing. The
binary number system, since it
maintains the mathematical re-
lationship between bits, is the
ideal form for the computer’s
internal computations.

Table 7.4
Binary Coded Decimal Number Conversion

0 0 0 1 0 1 1 0 0 0 1 1 BCD
|_________| |_________| |_________|

= 1(20) 1(22) + 1(21) 1(21)+ 1(20)
= (1) (4 + 2) (2 + 1)

163 = 1 6 3 decimal

7.6 Chapter 7

Physical Representation Of Binary States

STATE LEVELS

Most digital systems use the binary number system because many simple physical systems are most
easily described by two state levels (0 and 1). For example, the two states may represent “on” and “off,”
a punched hole or the absence of a hole in paper tape or a card, or a “mark” and “space” in a commu-
nications transmission. In electronic systems, state levels are physically represented by voltages. A
typical choice is

state 0 = 0 V
state 1 = 5 V

Since it is unrealistic to obtain these exact voltage values, a more practical choice is a range of values,
such as

state 0 = 0.0 to 0.4 V
state 1 = 2.4 to 5.0 V

Fig 7.2 illustrates this representation of states by voltage levels.
The undefined region between the two binary states is also known
as the transition region or noise margin.

Transition Time

The gap in Fig 7.2, between binary 0 and binary 1, shows that
a change in state does not occur instantly. There is a transition
time between states. This transition time is a result of the time it
takes to charge or discharge the stray capacitance in wires and
other components because voltage cannot change instanta-
neously across a capacitor. (Stray inductance in the wires also
has an effect because the current through an inductor can’t
change instantaneously.) The transition from a 0 to a 1 state is
called the rise time. Similarly, the transition from a 1 to a 0 state
is called the fall time. Note that these times need not be the same.
Fig 7.3A shows an ideal signal, or pulse, with zero-time switch-
ing. Fig 7.3B shows a typical pulse, as it changes between states
in a smooth curve.

Rise and fall times vary with the logic family used and the
location in a circuit. Typical values of transition time are in the
microsecond to nanosecond range. In a circuit, distributed induc-
tances and capacitances in wires or PC-board traces may cause
rise and fall times to increase as the pulse moves away from the
source.

Propagation Delay

Rise and fall times only describe a relationship within a pulse.
For a circuit, a pulse input into the circuit must propagate through
the circuit; in other words it must pass through each component in
the circuit until eventually it arrives at the circuit output. The time
delay between providing an input to a circuit and to seeing a

Fig 7.2 — Representation of
binary states 1 and 0 by a se-
lected range of voltage levels.

Fig 7.3 — (A) An ideal digital
pulse and (B) a typical actual
pulse, showing the gradual
transition between states.

Digital Signal Theory and Components 7.7

response at the output is the propagation delay, and is illustrated
by Fig 7.4.

For modern switching logic, typical propagation delay values
are in the 1 to 15 nanosecond range. (It is useful to remember that
the propagation delay along a wire or printed-circuit-board trace
is about 1.0 to 1.5 ns per inch.) Propagation delay is the result of
cumulative transition times as well as transistor switching delays,
reactive element charging times and the time for signals to travel
through wires. In complex circuits, different propagation delays
through different paths can cause problems when pulses must
arrive somewhere at exactly the same time. Solutions to this tim-
ing problem include adding a buffer amplifier to the circuit and
synchronization of circuits. These are discussed in later sections.

Fig 7.4 — Propagation delay in a
digital circuit.

7.8 Chapter 7

Combinational Logic
Having defined a way to use voltage levels to physically represent digital numbers, we can apply

digital signal theory to design useful circuits. Digital circuits combine binary inputs to produce a desired
binary output or combination of outputs. This simple combination of 0s and 1s can become very pow-
erful, implementing everything from simple switches to powerful computers.

A digital circuit falls into one of two types: combinational logic or sequential logic. In a combinational
logic circuit, the output depends only on the present inputs. (If we ignore propagation delay.) In contrast,
in a sequential logic circuit, the output depends on the present inputs, the previous sequence of inputs
and often a clock signal. John F. Wakerly, on page 147 of Digital Design Principles and Practices,
described this difference as follows: “The rotary channel selector knob on an inexpensive TV is like a
combinational circuit — its ‘output’ selects a channel based only on the current position of the knob
(‘input’). In contrast, the channel selector controlled by the up [+] and down [-] pushbuttons on a fancy
TV or VCR is a sequential circuit — the channel selection depends on the past sequence of up/down
pushes... as far back as when you first powered-up the device.”

The next section discusses combinational logic circuits. Later, we will build sequential logic circuits
from the basics established here.

BOOLEAN ALGEBRA AND THE BASIC LOGICAL OPERATORS

Combinational circuits are composed of logic gates, which perform binary operations. Logic gates
manipulate binary numbers, so you need an understanding of the algebra of binary numbers to under-
stand how logic gates operate. Boolean algebra is the mathematical system to describe and design binary
digital circuits. It is named after George Boole, the mathematician who developed the system. Standard
algebra has a set of basic operations: addition, subtraction, multiplication and division. Similarly,
Boolean algebra has a set of basic operations, called logical operations: NOT, AND and OR.

The function of these operators can be described by either (A) a Boolean equation or (B) a truth table.
A Boolean equation describes an operator’s function by representing the inputs and the operations
performed on them. An equation is of the form “B = A,” while an expression is of the form “A.” In an
assignment equation, the inputs and operations appear on the right and the result, or output, is assigned
to the variable on the left.

A truth table describes an operator’s function by listing all possible inputs and the corresponding
outputs. Truth tables are sometimes written with Ts and Fs (for true and false) or with their respective
equivalents, 1s and 0s. In company databooks (catalogs of logic devices a company manufactures), truth
tables are usually written with Hs and Ls (for high and low). In the figures, 1 will mean high and 0 will
mean low. This representation is called positive logic. The meaning of different logic types and why they
are useful is discussed in a later section.

Each Boolean operator also has two circuit symbols associated
with it. The traditional symbol — used by ARRL and other US
publications — appears on top in each of the figures; for example,
the triangle and bubble for the NOT function in Fig 7.5. In the
traditional symbols, a small circle, or bubble, always represents
“NOT.” (This bubble is called a state indicator.) Appearing just
below the traditional symbol is the newer ANSI/IEEE Standard
symbol. This symbol is always a square box with notations inside
it. In these newer symbols, a small flag represents “NOT.” The
new notation is an attempt to replace the detailed logic drawing of
a complex function with a simpler block symbol.

Figs 7.5, 7.6 and 7.7 show the truth tables, Boolean algebra Fig 7.5 — Inverter.

Digital Signal Theory and Components 7.9

equations and circuit symbols
for the three basic Boolean op-
erations: NOT, AND and OR.
All combinational logic func-
tions, no matter how complex,
can be described in terms of
these three operators.

The NOT operation is also
called inversion, negation or
complement. The circuit that
implements this function is
called an inverter or inverting
buffer. The most common no-

tation for NOT is a bar over a variable or expression. For example, NOT A is denoted A. This is read
as either “Not A” or as “A bar.” A less common notation is to denote Not A by Á , which is read as
“A prime.”

While the inverting buffer and the noninverting buffer covered later have only one input and output,
many combinational logic elements can have multiple inputs. When a combinational logic element has
two or more inputs and one output, it is called a gate. (The term “gate” has many different but specific
technical uses. For a clarification of the many definitions of gate, see the section on Synchronicity and
Control Signals, later in this chapter.) For simplicity, the figures and truth tables for multiple-input
elements will show the operations for only two inputs, the minimum number.

The output of an AND function is 1 only if all of the inputs are 1. Therefore, if any of the inputs are
0, then the output is 0. The notation for an AND is either a dot (•) between the inputs, as in C = A•B,
or nothing between the inputs, as in C = AB. Read these equations as “C equals A AND B.”

The OR gate detects if one or more inputs are 1. In other words, if any of the inputs are 1, then the
output of the OR gate is 1. Since this includes the case where more than one input may be 1, the OR
operation is also known as an INCLUSIVE OR. The OR operation detects if at least one input is 1. Only
if all the inputs are 0, then the output is 0. The notation for an OR is a plus sign (+) between the inputs,
as in C = A + B. Read this equation as “C equals A OR B.”

Other Common Gates

More complex logical functions are derived from combinations of the basic logical operators. These
operations — NAND, NOR, XOR, XNOR and the noninverter — are illustrated in Figs 7.8 through 7.12
respectively. As before, each is described by a truth table, Boolean algebra equation and circuit symbols.
Also as before, except for the noninverter, each could have more inputs than the two illustrated.

Fig 7.6 — Two-input AND gate. Fig 7.7 — Two-input OR gate.

Fig 7.8 — Two-input NAND gate. Fig 7.9 — Two-input NOR gate. Fig 7.10 — Two-input XOR gate.

7.10 Chapter 7

The NAND gate (short for
NOT AND) is equivalent to an
AND gate followed by a NOT
gate. Thus, its output is the
complement of the AND out-
put: The output is a 0 only if all
the inputs are 1. If any of the
inputs is 0, then the output
is a 1.

The NOR gate (short for
NOT OR) is equivalent to an
OR gate followed by a NOT
gate. Thus, its output is the

complement of the OR output: If any of the inputs are 1, then the output is a 0. Only if all the inputs are
0, then the output is a 1.

The operations so far enable a designer to determine two general cases: (1) if all inputs have a desired
state or (2) if at least one input has a desired state. The XOR and XNOR gates enable a designer to
determine if one and only one input of a desired state is present.

The XOR gate (read as EXCLUSIVE OR) has an output of 1 if one and only one of the inputs is a 1
state. The output is 0 otherwise. The symbol for XOR is ⊕ . This is easy to remember if you think of the
“+” OR symbol enclosed in an “O” for only one.

The XOR gate is also known as a “half adder,” because in binary arithmetic it does everything but the
“carry” operation. The following examples show the possible binary additions for a two-input XOR.

0 0 1 1
0 1 0 1
0 1 1 0
The XNOR gate (read as EXCLUSIVE NOR) is the complement of the XOR gate. The output is 0 if one

and only one of the inputs is a 1. The output is 1 either if all inputs are 0 or more than one input is 1.

Noninverter

A noninverter, also known as a buffer, amplifier or driver, at first glance does not seem to do anything.
It simply receives an input and produces the same output. In reality, it is changing other properties of
the signal in a useful fashion, such as amplifying the current level. The practical uses of a noninverter
include (A) providing sufficient current to drive a number of gates, (B) interfacing between two logic
families, (C) obtaining a desired pulse rise time and (D) providing a slight delay to make pulses arrive
at the proper time.

BOOLEAN THEOREMS

The analysis of a circuit starts with a logic diagram and then derives a circuit description. In digital
circuits, this description is in the form of a truth table or logical equation. The synthesis, or design, of
a circuit goes in the reverse: starting with an informal description, determining an equation or truth table
and then expanding the truth table to components that will implement the desired response. In both of
these processes, we need to either simplify or expand a complex logical equation.

To manipulate an equation, we use mathematical theorems. Theorems are statements that have been
proven to be true. The theorems of Boolean algebra are very similar to those of standard algebra, such
as commutativity and associativity. Proofs of the Boolean algebra theorems can be found in an introduc-
tory digital design textbook.

Fig 7.11 — Two-input XNOR
gate.

Fig 7.12 — Noninverting buffer.

Digital Signal Theory and Components 7.11

BASIC THEOREMS

Table 7.5 lists the theorems for a single variable and Table 7.6 lists the theorems for two or more
variables. These tables illustrate the principle of duality exhibited by the Boolean theorems: Each
theorem has a dual in which, after swapping all ANDs with ORs and all 1s with 0s, the statement is still
true.

The tables also illustrate the
precedence of the Boolean op-
erations: the order in which
operations are performed when
not specified by parenthesis.
From highest to lowest, the pre-
cedence is NOT, AND then
OR. For example, the distribu-
tive law includes the expres-
sion “A + B•C.” This is equiva-
lent to “A + (B•C).” The
parenthesis around (B•C) can
be left out since an AND opera-
tion has higher priority than an
OR operation. Precedence for
Boolean algebra is similar to
the convention of standard al-
gebra: raising to a power, then
multiplication, then addition.

DeMorgan’s Theorem

One of the most useful theo-
rems in Boolean algebra is
DeMorgan’s Theorem:
A B A B• = + and its dual
A B A B+ = • . The truth table in
Table 7.7 proves these state-
ments. DeMorgan’s Theorem
provides a way to simplify the
complement of a large expres-
sion. It also enables a designer
to interchange a number of
equivalent gates, as shown by
Fig 7.13.

The equivalent gates show
that the duality principle works
with symbols the same as it
does for Boolean equations:
just swap ANDs with ORs and
switch the bubbles. For ex-
ample, the NAND gate — an
AND gate followed by an in-

Table 7.5
Boolean Algebra Single Variable Theorems
Identities: A · 1 = A A + 0 = A

Null elements: A · 0 = 0 A + 1 = 1

Idempotence: A · A = A A + A = A

Complements: A · A = 0 A + A = 1

Involution: ()A = A

Table 7.6
Boolean Algebra Multivariable Theorems
Commutativity: A · B = B · A

A + B = B + A

Associativity: (A · B) · C = A · (B · C)
(A + B) + C = A + (B + C)

Distributivity: (A + B) · (A + C) = A + B · C
A · B + A · C = A · (B + C)

Covering: A · (A + B) = A
A + A · B = A

Combining: (A + B) · (A + B) = A
A · B + A · B = A

Consensus: A · B + A · C + B · C = A · B + A · C
(A + B) · (A + C) · (B + C) = (A + B) · (A + C)

Table 7.7
DeMorgan’s Theorem
(A) A B• = A B+
(B) A B+ = A B•
(C)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
A B A B A • B A B• A + B A B+ A B• A B+
0 0 1 1 0 1 0 1 1 1
0 1 1 0 0 1 1 0 0 1
1 0 0 1 0 1 1 0 0 1
1 1 0 0 1 0 1 0 0 0

(A) and (B) are statements of DeMorgan’s Theorem. The truth table at
(C) is proof of these statements: (A) is proven by the equivalence of
columns 6 and 10 and (B) by columns 8 and 9.

7.12 Chapter 7

verter bubble — becomes an OR gate preceded by two inverter
bubbles. DeMorgan’s Theorem is important because it means any
logical function can be implemented using either inverters and
AND gates or inverters and OR gates. Also, the ability to change
placement of the bubbles using DeMorgan’s theorem is useful in
dealing with mixed logic, to be discussed next.

POSITIVE AND NEGATIVE LOGIC

The truth tables shown in the figures in this chapter are drawn
for positive logic. In positive logic, or high true, a higher voltage
means true (logic 1) while a lower voltage means false (logic 0).
This is also referred to as active high: a signal performs a named
action or denotes a condition when it is “high” or 1. In negative
logic, or low true, a lower voltage means true (1) and a higher
voltage means false (0). An active low signal performs an action
or denotes a condition when it is “low” or 0.

In both logic types, true = 1 and false = 0; but whether true
means high or low differs. Company databooks are drawn for
general truth tables: an “H” for high and an “L” for low. (Some
tables also have an “X” for a “don’t care” state.) The function of
the table can differ depending on whether it is interpreted for
positive logic or negative logic. Fig 7.14 shows how a general
truth table differs when interpreted for different logic types. The
same truth table gives two equivalent gates: positive logic gives
the function of a NAND gate while negative logic gives the func-
tion of a NOR gate.

Note that these gates correspond to the equivalent gates from
DeMorgan’s theorem. A bubble on an input or output terminal
indicates an active low device. The absence of bubbles indicates
an active high device.

Like the bubbles, signal names can be used to indicate logic
states. These names can aid the understanding of a circuit by in-
dicating control of an action (GO, /ENABLE) or detection of a
condition (READY, /ERROR). The action or condition occurs
when the signal is in its active state. When a signal is in its active
state, it is called asserted; a signal not in its active state is called
negated or deasserted. A prefix can easily indicate a signal’s ac-
tive state: active low signals are preceded by a “/,” like /READY,

while active high signals have no prefix. Standard practice is that the signal name and input pin match
(have the same active level). For example, an input with a bubble (active low) may be called /READY
while an input with no bubble (active high) is called READY. Output signal names should always match
the device output pin.

In this chapter, positive logic is used unless indicated otherwise. Although using mixed logic can be
confusing, it does have some advantages. Mixed logic combined with DeMorgan’s Theorem can pro-
mote more effective use of available gates. Also, well-chosen signal names and placement of bubbles
can promote more understandable logic diagrams.

Fig 7.13 — Equivalent gates from
DeMorgan’s Theorom: Each gate
in column A is equivalent to the
opposite gate in column B. The
Boolean equations in column C
formally state the equivalences.

Fig 7.14 — (A) A general truth
table, (B) a truth table and NAND
symbol for positive logic and (C)
a truth table and NOR symbol for
negative logic.

Digital Signal Theory and Components 7.13

Sequential Logic
The previous section discussed combinational logic, whose outputs depend only on the present inputs.

In contrast, in sequential logic circuits, the new output depends not only on the present inputs but also
on the present outputs. The present outputs depended on the previous inputs and outputs and those earlier
outputs depended on even earlier inputs and outputs and so on. Thus, the present outputs depend on the
previous sequence of inputs and the system has memory. Having the outputs become part of the new
inputs is known as feedback.

This section first introduces a number of terms necessary to understand sequential logic: types of
synchronicity, types of control signals and ways to illustrate circuit function. Numerous sequential logic
circuits are then introduced. These circuits provide an overview of the basic sequential circuits that are
commercially available. Depending on your approach to learning, you may choose to either (1) read the
material in the order presented, definitions then examples, or (2) start with the example circuits, which
begin with the flip-flop, referring back to the definitions as needed.

SYNCHRONICITY AND CONTROL SIGNALS

When a combinational circuit is given a set of inputs, the outputs take on the expected values after a
propagation delay during which the inputs travel through the circuit to the output. In a sequential circuit,
however, the travel through the circuit is more complicated. After application of the first inputs and one
propagation delay, the outputs take on the resulting state; but then the outputs start trickling back through
and, after a second propagation delay, new outputs appear. The same happens after a third propagation
delay. With propagation delays in the nanosecond range, this cycle around the circuit is rapidly and
continually generating new outputs. A user needs to know when the outputs are valid.

There are two types of sequential circuits: synchronous circuits and asynchronous circuits, which are
analyzed differently for valid outputs. In asynchronous operation, the outputs respond to the inputs
immediately after the propagation delay. To work properly, this type of circuit must eventually reach
a stable state: the inputs and the fed back outputs result in the new outputs staying the same. When the
nonfeedback inputs are changed, the feedback cycle needs to eventually reach a new stable state.

In synchronous operation, the outputs change state only at specific times. These times are determined
by the presence of a particular input signal: a clock, toggle, latch or enable. Synchronicity is important
because it ensures proper timing: all the inputs are present where needed when the control signal causes
a change of state.

Some authors vary the meanings slightly for the different control signals. The following is a brief
illustration of common uses, as well as showing uses for noun, verb and adjective. Enabling a circuit
generally means the control signal goes to its asserted level, allowing the circuit to change state. Latch
implies memory: (noun) a circuit that stores a bit of information
or (verb) to hold at the same output state. Gate has many mean-
ings, some unrelated to synchronous control: (A) a signal used to
trigger the passage of other signals through a circuit (for example,
“A gate circuit passes a signal only when a gating pulse is
present.”), (B) any logic circuit with two or more inputs and one
output (used earlier in this chapter) or (C) one of the electrodes of
an FET (as described in the Analog Signals and Components
chapter). To toggle means a signal changes state, from 1 to 0 or
vice versa. A clock signal is one that toggles at a regular rate.

Clock control is the most common method, so it has some ad-
ditional terms, illustrated by Fig 7.15. The clock period is the time
between successive transitions in the same direction; the clock

Fig 7.15 — Clock signal terms.
The duty cycle would be tH /
tPERIOD for an active high signal
and tL / tPERIOD for an active low
signal.

7.14 Chapter 7

frequency is the reciprocal of the period. A pulse or clock tick is the first edge in a clock period, or
sometimes the period itself or the first half of the period. The duty cycle is the percentage of time that
the clock signal is at its asserted level.

The reaction of a synchronous circuit to its control signal is static or dynamic. Static, gated or level-
triggered control allows the circuit to change state whenever the control signal is at its active or asserted
level. Dynamic, or edge-triggered, control allows the circuit to change state only when the control signal
changes from unasserted to asserted. By convention, a control signal is active high if state changes occur
when the signal is high or at the rising edge and active low in the opposite case. Thus, for positive logic,
the convention is enable = 1 or enable goes from 0 to 1. This transition from 0 to 1 is called positive edge-
triggered and is indicated by a small triangle inside the circuit box. A circuit responding to the opposite
transition, from 1 to 0, is called negative edge-triggered, indicated by a bubble with the triangle. Whether
a circuit is level-triggered or edge-triggered can affect its output, as shown by Fig 7.16. Input D includes
a very brief pulse, called a glitch, which may be caused by noise. The differing results at the output
illustrate how noise can cause errors.

ILLUSTRATING CIRCUIT FUNCTION

Since the action of sequential circuits is more complex, many ways have been developed to examine
circuit function. Fig 7.17 shows an example for each type of table or diagram. Each type has advantages
and disadvantages.

State Transition Tables

Describing a sequential circuit with the conventional truth table would require an infinite number of

Fig 7.16 — Level-triggered vs
edge-triggered for a D flip-flop:
(A) input D, (B) clock input, (C)
output Q for level-triggered:
circuit responds whenever clock
is 1. (D) output Q for edge-
triggered: circuit responds only
at rising edge of clock. Notice
that the short negative pulse on
the input D is not reproduced by
the edge-triggered flip-flop.

Fig 7.17 — Sequential circuit function for a clocked S-R flip-flop:
(A) state transition table or truth table, (B) characteristic equation,
including its derivation from the state table, (C) excitation table,
(D) partial timing diagram, (E) state diagram.

Digital Signal Theory and Components 7.15

previous events as the possible inputs. Instead, the sequential logic form of the truth table is called a state
transition table. A state transition (or excitation) table lists all combinations of present inputs and
feedback outputs — the current state, represented by small q, and the resulting outputs, both feedback
and nonfeedback and the next state, represented by capital Q. The state transition table is the most
common way to describe sequential circuit function, since it lists all possibilities.

Characteristic Equation

An equivalent equation for a state transition table or excitation table can be written in terms of the state
variables, a symbol for each input and output. Although the number of state variables can be very large
for a complex system, there is always a limited number of inputs and outputs; thus, the combinations of
inputs and outputs is also limited. A circuit with n binary state variables has 2n possible states. Since the
possible states, 2n, are always finite, sequential circuits are also known as finite-state machines. Each
of the sequential logic circuits in this section includes a state table to illustrate the circuit functions. As
before, these tables are for positive logic, so 1s and 0s are already substituted for Highs and Lows.

Excitation Table

An excitation table is derived from the truth table. Its usefulness is to show, for each possible output
Qn what inputs are needed to obtain a desired output Qn+1. For some outputs, one or more of the input
variables may not have an effect. In this case, the input variable corresponds to a don’t care state,
represented by an “X” or dash.

Timing Diagram

When a clock is the controlling signal, a timing diagram can describe the circuit operation. A timing
diagram draws a circuit’s signals as a function of time. This form emphasizes the cause-and-effect delays
between critical signals. It is especially useful in detecting errors, as will be shown in the flip-flop
implementations to be presented. There are software packages available to simulate a circuit. The
simulation produces the timing diagram for a given set of inputs, allowing the designer to examine the
timing diagram for expected results.

State Diagram

A state diagram depicts output changes in terms of a flow chart. Each possible state is listed inside
a circle with arrows between the circles to indicate possible next states. State diagrams are especially
useful for studying a sequence of inputs and the corresponding result.

FLIP-FLOPS

Flip-flops are the basic building blocks of sequential circuits. A flip-flop is a device with two stable
states: the set state (1) or the reset state (0). (The reset state is also called the cleared state.) The flip-
flop can be placed in one or the other of the two states by applying the appropriate input. (Since a common
use of flip-flops is to store one bit of information, some use the term latch interchangeably with flip-flop.
A set of latches, or flip-flops holding an n-bit number is called a register.) While gates have special
symbols, the schematic symbol for most components is a rectangular box with the circuit name or
abbreviation, the signal names and assertion bubbles. For flip-flops, the circuit name is usually omitted
since the signal names are enough to indicate a flip-flop and its type. The four basic types of flip-flops
are the S-R, D, T and J-K. The first section examines the S-R flip-flop for each of the various control
methods. The next section introduces each of the other basic flip-flops and their uses.

S-R Flip-Flop

The S-R flip-flop is one of the simplest circuits for storing a bit of information. It has two inputs,

7.16 Chapter 7

represented by S (set) and R (reset). These inputs, naturally, cause the two possible output states: if
S = 1 and R = 0, then output Q is set to 1; if S = 0 and R = 1, then output Q is reset to 0; if both inputs
are 0, then the output remains unchanged; and if both inputs are 1, then the output cannot be determined.
The S-R flip-flop can illustrate each of the types of control signals: unclocked (asynchronous, no control
signal), clocked or gated, master-slave and edge-triggered.

Unclocked/Sequential

The unclocked S-R flip-flop, shown in Fig 7.18, is an asynchronous device; its outputs change
immediately to reflect changes on its inputs. The circuit consists of two NOR gates. The sequential nature
of the circuit is a result of the output of each NOR gate being fed back as an input to the opposite gate.
The state transition table shows the expected set/reset pattern of inputs to outputs. The table shows an
unpredictable result for inputs S = 1 and R = 1. In actual circuits, the results vary and are usually either
Q = Q = 1 or Q = Q = 0. While Q = Q is a logical impossibility, real flip-flops may present this output.
The designer should avoid the R = S = 1 input and make no assumptions about the resulting output. The
flip-flop is not predictable if both inputs go to 0 at exactly the same time.

Fig 7.18C shows an alternate implementation of the S-R flip-flop, with two NAND gates and two
inverters. Since a NAND gate can become an inverter by having its two inputs receive the same signal,
the S-R flip-flop can be implemented with four NAND gates. This alternate version is important because
a 4-NAND gate chip is one of the most readily available commercial integrated circuits; thus, the
4-NAND gate S-R flip-flop can be implemented on a single IC.

Gated or Level-Triggered

The gated S-R flip-flop, or gated latch, has a controlling input in addition to its S and R inputs. The inputs
S and R produce the same results as those on an unclocked S-R flip-flop, but a change in output will only occur
when the control input is high. A gated S-R flip-flop is illustrated in Fig 7.19 along with a timing diagram
for a clock input. This flip-flop is also called the R-S-T flip-flop, where “T,” for toggle, is the clock input.
Although not often used, the R-S-T flip-flop is important because it illustrates a step between the R-S
flip-flop and the J-K flip-flop.

A problem with the level-
triggered flip-flop is that the Q
output can change more than
once while the clock is as-
serted. We would prefer the
output to change only once per
clock period for easier timing
design. A second problem can
occur when flip-flops are con-
nected in series and triggered
by the same clock pulse or,
similarly, when a flip-flop is
in series with itself, using its
own output as an input. Since
the series-connected flip-flop
feeds back to itself, its output
will be changing at about the
same time as it receives new
input. This can result in an er-
roneous output.

Fig 7.18 — Unclocked S-R Flip-Flop. (A) schematic symbol.
(B) circuit diagram. (C) alternate circuit. (D) state table.

Digital Signal Theory and Components 7.17

Master/Slave Flip-Flop

A solution to the problems
of the level-triggered method
is a circuit that samples and
stores its inputs before chang-
ing its outputs. Such a circuit is
built by placing two flip-flops
in series; both flip-flops are
triggered by a common clock
but an inverter on the second
flip-flop’s clock causes it to be
asserted only when the first
flip-flop is not asserted. The
action for a given clock pulse is
as follows: The first, or master,
flip-flop is active when the
clock is high, sampling and
storing the inputs. The second,
or slave, flip-flop gets its input
from the master and acts when
the clock is low. Hence, when
the clock is 1, the input is
sampled; then when the clock
becomes 0, the output is gener-
ated. A master/slave flip-flop
is built with either two S-R flip-
flops, as shown by Fig 7.20, or
with two J-K flip-flops. Note
that a bubble appears on the
schematic symbol’s clock in-
put, reminding us that the out-
put appears when the clock is
asserted low. This is conven-
tional for TTL-style J-K flip-
flops, but it can be different for CMOS devices.

The master/slave method isolates output changes from input
changes, eliminating the problem of series-fed circuits. It also en-
sures only one new output per clock period, since the slave flip-flop
responds to only the single sampled input. A problem can still occur,
however, because the master flip-flop can change more than once
while it is asserted; thus, there is the potential for the master to
sample at the wrong time. There is also the potential that either flip-
flop can be affected by noise.

Edge-Triggered Flip-Flop

The edge-triggered flip-flop solves the problem of noise. An example of noise is the glitch shown
earlier in Fig 7.16. The different outputs for the level and edge-triggered methods in this figure show

Fig 7.19 — Clocked S-R Flip-
Flop. (A) schematic symbol. (B)
circuit. (C) truth table. (D) timing
diagram.

Fig 7.20 — Master/Slave S-R
Flip-Flop. (A) schematic symbol.
(B) circuit. (C) truth table. (D)
timing diagram.

7.18 Chapter 7

how a glitch can cause an output error. Edge-triggering avoids the problem of noise by minimizing the
time during which a circuit responds to its inputs: the chance of a glitch occurring during the nanosecond
transition of a clock pulse is remote. A side benefit of edge-triggering is that only one new output is
produced per clock period. Edge-triggering is denoted by a small rising-edge or falling-edge symbol
such as or ; sometimes an arrow is included such as _↑ or

_
↓ . This symbol appears in the circuit’s

truth table and can also appear, instead of the clock triangle, inside the schematic symbol.

Other Flip-flops

Table 7.8 provides a summary of the four basic flip-flops: the S-R (Set-Reset), D (Data or Delay), T
(Toggle) and J-K. Each is briefly explained below, including its particular applications. The internal
circuitry of each of these flip-flops is similar to the components and complexity of the S-R flip-flop.
Readers may be interested in trying to design their own circuit implementation for a flip-flop type and
control method; however, in practical use, a commercially available integrated circuit chip would
probably be used. Company databooks include the individual circuit implementation for each IC. Digital
design textbooks will also show sample circuit implementations for each of the flip-flops.

D Flip-Flop

In a D (data) flip-flop, the
data input is transferred to the
outputs when the flip-flop is
enabled: The logic level at in-
put D is transferred to Q when
the clock is positive; the Q out-
put retains this logic level until
the next positive clock pulse
(see Fig 7.21). The flip-flop is
also called a delay flip-flop
because, once enabled, it
passes D after a propagation
delay. A D flip-flop is useful to
store one bit of information. A
collection of D flip-flops forms
a register.

Toggle Flip-Flop

In a T flip-flop, the output
toggles (changes state) with
each positive clock pulse. The
T flip-flop is also called a
complementing flip-flop. Fig
7.22 shows how a T flip-flop
can be created from either an
S-R or D flip-flop. The timing
diagram in Fig 7.22 shows an
important result of the T-flip-
flop: the output frequency is
one half of the input fre-
quency. Thus, a T flip-flop is a

Table 7.8

Digital Signal Theory and Components 7.19

2:1 (also called modulo-2 or
radix-2) frequency divider.
Two T flip-flops connected in
series form a 4:1 divider and
so on.

J-K Flip-Flop

It’s somewhat ironic that the
most readily available flip-
flop, the J-K flip-flop, is dis-
cussed last and so briefly. The
discussion is short because the
J-K flip-flop acts the same as
the S-R flip-flop (where J = S
and K = R) with only one dif-
ference: The S-R flip-flop had
the disadvantage of invalid re-
sults for the inputs 1,1. For the
J-K flip-flop, simultaneous 1,1
inputs cause Q to change state
after the clock transition.

Summary

Only the D and J-K flip-flops
are generally available as com-
mercial integrated circuit
chips. Since memory and tem-
porary storage are so often de-
sirable, the D flip-flop is manu-
factured as the simplest way to
provide memory. When more
functionality is needed, the J-K
flip-flop is available. The J-K
flip-flop can substitute for an
S-R flip-flop and a T flip-flop
can be created from either the
D or J-K flip-flop.

COUNTERS

Groups of flip-flops can be combined to make counters. Toggle flip-flops are the most common for
implementing a counter. Intuitively, a counter is a circuit that starts at state 0 and sequences up through
states 1, 2, 3, to m, where m is the maximum number of states available. From state m, the next state will
return the counter to 0. This describes the most common counter: the n-bit binary counter, with n outputs
corresponding to 2n = m states. Such a counter can be made from n flip-flops, as shown in Fig 7.23. This
figure shows implementations for each of the types of synchronicity. Both circuits pass the data count
from stage to stage. In the asynchronous counter, Fig 7.23A, the clock is also passed from stage to stage
and the circuit is called ripple or ripple-carry. In the synchronous counter, Fig 7.23B, each stage is
controlled by a common clock signal.

Fig 7.21 — (A) The D flip-flop. When T = 0, Q and Q states don’t
change. When T = 1, the output states change to reflect the D input.
(C) A truth table for the D flip-flop.

Fig 7.22 — (A) A clocked S-R-T flip-flop wired as a T flip-flop. (B) A
D flip-flop wired as a T flip-flop. (C) Timing diagram. Notice that the
output frequency is half the input frequency.

7.20 Chapter 7

There are numerous varia-
tions on this first example of a
counter. Most counters have
the ability to clear the count to
0. Some counters can also pre-
set to a desired count. The clear
and preset control inputs are
often asynchronous — they
change the output state without
being clocked. Counters may
either count up (increment) or
down (decrement). Up/down
counters can be controlled to
count in either direction.
Counters can have sequences
other than the standard num-
bers, for example a BCD
counter.

Counters are also not re-
stricted to changing state on
every clock cycle. An n-bit
counter that changes state only
after m clock pulses is called a
divider or divide-by-m counter.
There are still 2n = m states;

however, the output after p clock pulses is now p / m. Combining different divide-by-m counters can
result in almost any desired count. For example, a base 12 counter can be made from a divide-by-2 and
a divide-by-6 counter; a base 10 (decade) counter consists of a divide-by-2 and a BCD divide-by-5
counter.

The outputs of these counters are binary. To produce output in decimal form, the output of a counter
would be provided to a binary-to-decimal decoder chip and/or an LED display.

REGISTERS

Groups of flip-flops can be combined to make registers, usually implemented with D flip-flops. A
register stores n bits of information, delivering that information in response to a clock pulse. Registers
usually have asynchronous set to 1 and clear to 0 capabilities.

Storage Register

A storage register simply stores temporary information, for example incoming information or inter-
mediate results. The size is related to the basic size of information handled by a computer: 8 flip-flops
for an 8-bit or byte register or 16 bits for a word register. Fig 7.24 shows a typical circuit and schematic
symbols for an 8-bit storage register. In (C), although the bits are passed on 8 separate lines (from 8 flip-
flops), a slash and number, “/8,” is used to simplify the symbol. Storage registers are important to
computer architecture; this topic is discussed in depth later in the chapter.

Shift Register

Shift registers also store information and provide it in response to a clock signal, but they handle their
information differently: When a clock pulse occurs, instead of each flip-flop passing its result to the

Fig 7.23 — Three-bit binary counter: (A) asynchronous or ripple
counter, (B) synchronous counter.

Digital Signal Theory and Components 7.21

output, the flip-flops pass their
data to each other, up and down
the row. For example, in up
mode, each flip-flop receives
the output of the preceding flip-
flop. A data bit starting in flip-
flop D0 in a left shifter would
move to D1, then D2 and so on
until it is shifted out of the reg-
ister. If a 0 was input to the least
significant bit, D0, on each
clock pulse then, when the last
data bit has been shifted out,
the register contains all 0s.

Shift registers can be left
shifters, right shifters or con-
trolled to shift in either direction.
The most general form, a univer-
sal shift register, has two control

inputs for four states: Hold, Shift right, Shift left and Load. Most also have asynchronous inputs for preset,
clear and parallel load. The primary use of shift registers is to convert parallel information to serial or vice
versa. This is useful in interfacing between devices, and is discussed in detail in the Digital Interfacing section.

Additional uses for a shift register are to (1) delay or synchronize data, (2) multiply or divide a number
by a factor 2n or (3) provide random data. Data can be delayed simply by taking advantage of the Hold
feature of the register control inputs. Multiplication and division with shift registers is best explained
by example: Suppose a 4-bit shift register currently has the value 1000 = 8. A right shift results in the
new parallel output 0100 = 4 = 8 / 2. A second right shift results in 0010 = 2 = (8 / 2) / 2. Together the
2 right shifts performed a division by 22. In general, shifting right n times is equivalent to dividing by
2n. Similarly, shifting left multiplies by 2n. This can be useful to compiler writers to make a computer
program run faster. Random data is provided via a ring counter. A ring counter is a shift register with
its output fed back to its input. At each clock pulse, the register is shifted up or down and some of the
flip-flops feedback to other flip-flops, generating a random binary number. Shift registers with several
feedback paths can be used as a pseudorandom number generator, where the sequence of bits output by
the generator meets one or more mathematical criteria for randomness.

MULTIVIBRATORS

A multivibrator is widely used as a switch and comes in three basic forms: bistable, monostable and
astable. It is broadly defined as a closed-loop, regenerative circuit that alternates between two stable or
quasi-stable states. The flip-flop is a bistable multivibrator: both of its two states are stable; it can be
triggered from one stable state to the other by an external signal. To create quasi-stable or unstable states,
energy-storing devices (capacitors) are added in the feedback loops of the multivibrator; the instability
is a result of the exponential decay of the stored energy. A monostable multivibrator is the result of
adding one energy-storing element into a feedback loop. An astable multivibrator is the result of adding
two energy-storing elements, one in each feedback loop.

Monostable Multivibrator

A monostable or one-shot multivibrator has one energy-storing element in its feedback paths, result-
ing in one stable and one quasi-stable state. It can be switched, or triggered, to its quasi-stable state; then

Fig 7.24 — An eight-bit storage register: (A) circuit, (B) and (C)
schematic symbols.

7.22 Chapter 7

returns to the stable state after a time delay. Thus, the one-shot multivibrator puts out a pulse of some
duration, T. (Note that T is not the period, but the duration of the quasi-stable state.) Triggering during
the stable state results in the pulse, as expected. Triggering during the unstable state has two possibilities:
A nonretriggerable multivibrator is not affected. A retriggerable multivibrator will start counting its
pulse duration from the most recent trigger pulse. Both types of one-shots are common.

Fig 7.25 shows a 555 timer IC connected as a one-shot multivibrator. The one-shot is activated by a
negative-going pulse between the trigger input and ground. The trigger pulse causes the output (Q) to
go positive and capacitor C to charge through resistor R. When the voltage across C reaches two-thirds
of VCC, the capacitor is quickly discharged to ground and the output returns to 0. The output remains
at logic 1 for a time determined by T = 1.1 RC, where R is the resistance in ohms and C is the capacitance
in farads.

Astable Multivibrator

An astable or free-running multivibrator has two energy-storing elements in its feedback paths,
resulting in two quasi-stable states. It continuously switches between these two states without external
excitation. Thus, the astable multivibrator puts out a sequence of pulses. By properly selecting circuit
components, these pulses can be of a desired frequency and width.

Fig 7.26 shows a 555 timer IC connected as an astable multivibrator. The capacitor C charges to two-
thirds VCC through R1 and R2 and discharges to one-third VCC through R2. The ratio R1 : R2 sets the
asserted high duty cycle of the pulse: tHIGH / tPERIOD. The output frequency is determined by:

f = 1.46 / (R1 + 2 R2) C

where:
R1 and R2 are in ohms,
C in farads and
f in hertz.

Fig 7.25 — (A) A 555 timer connected as a
monostable multivibrator. (B) The equation to
calculate values for R (in ohms) and C (in farads),
where T is the pulse duration (in seconds).

Fig 7.26 — (A) A 555 timer connected as an
astable multivibrator. (B) The equations to calcu-
late values for R1, R2 (in ohms) and C (in farads),
where f is the clock frequency (in Hertz).

Digital Signal Theory and Components 7.23

It may be difficult to produce a 50% duty cycle, due to manufacturing tolerance for the resistors R1
and R2. One way to ensure a 50% duty cycle is to run the astable multivibrator at 2f and then divide by
2 with a toggle flip-flop.

Applications

An astable multivibrator is useful in generating clock pulses. When triggered by a clock pulse, the one-
shot multivibrator acts to lengthen or “stretch” the pulse, which is useful to delay digital events. Either
of these pulse signals, when input to the bistable multivibrator (flip-flop), can be the control of a
sequential circuit. The three types of multivibrators can ensure synchronicity, so that a sequential circuit
will execute correctly.

SUMMARY

Digital logic plays an increasingly important role in Amateur Radio. Most of this logic is binary and
can be described and designed using Boolean algebra. Using the NOT, AND and OR gates of combina-
tional logic, designers can build sequential logic circuits that have memory and feedback. The simplest
sequential logic circuit is called a flip-flop. By using control inputs, a flip-flop can latch a data value,
retaining one bit of information and acting as memory. Combinations of flip-flops can form useful
circuits such as counters, storage registers and shift registers. The primary method of controlling sequen-
tial circuits is via a clock pulse, which can be created with a multivibrator.

7.24 Chapter 7

Digital Integrated Circuits
Integrated circuits (ICs) are the cornerstone of digital logic devices. Modern technology has enabled

electronics to become miniature in size and less expensive. Today’s complex digital equipment would
be impossible with vacuum tubes or even with discrete transistors.

An IC is a miniature electronic module of components and conductors manufactured as a single unit.
All you see is a ceramic or black plastic package and the silver-colored pins sticking out. Inside the
package is a piece of material, usually silicon, created (fabricated) in such a way that it conducts an
electric current to perform logic functions, such as a gate, flip-flop or decoder.

As each generation of ICs surpassed the previous one, they became classified according to the number
of gates on a single chip. These classifications are roughly defined as:

Small-scale integration (SSI): 10 or fewer gates on a chip.
Medium-scale integration (MSI): 10-100 gates.
Large-scale integration (LSI): 100-1000 gates.
Very-large-scale integration (VLSI): 1000 or more gates.
This chapter will primarily deal with SSI ICs, the basic digital building blocks. Microprocessors,

memory chips and programmable logic devices are discussed later in the Computer Hardware section.
The previous section discussed the design of a digital circuit. To build that circuit, the designer must

choose between IC chips available in various logic families. Each family and subfamily has its own
desirable characteristics. This section reviews the primary IC logic families of interest to radio amateurs.
The designer may also be challenged to interface between different logic families or between a logic
device and peripheral device. The former is discussed at the end of this section; the latter with Computer
Hardware, later in the chapter.

COMPARING LOGIC FAMILIES

When selecting devices for a circuit, a designer is faced with choosing between many families and
subfamilies of logic ICs. Which subfamily is right for the application at hand is among several desirable
characteristics: logic speed, power consumption, fan-out, noise immunity and cost.

Speed

Logic device families operate at widely varying clock speeds. Standard transistor-transistor logic
(TTL) devices can only operate up to a few MHz while some emitter-coupled logic (ECL) ICs can
operate at several GHz. Gate propagation delay determines the maximum clock speed at which an IC can
operate; the clock period must be long enough for all signals within the IC to propagate to their desti-
nations. ICs with capacitively coupled inputs have minimum, as well as maximum, clock rates. While
the initial reaction may be to use the fastest available ICs, the designer must usually choose between a
trade-off of high speed and low power consumption.

Power Consumption

In some applications, power consumption by logic gates is a critical design consideration. This power
consumption can be divided into two parts: Dynamic power is the power consumed when a gate changes
state. Static power is the power consumed when a gate is holding a state, either high or low. Each of these
has different power requirements. Calculating the total required power can be a complex task when
several gates and diverse functions are involved. Nominal power requirements, however, can be used
to compare logic subfamilies.

Fan-out

Gate impedance is another parameter to consider. To deliver high current without dropping consid-

Digital Signal Theory and Components 7.25

erable voltage, an ideal gate would have low output impedance.
To draw minimal current, an ideal gate would have infinite input
impedance. Such a gate does not exist. The designer must compro-
mise on input and output impedances.

A gate output can supply only a limited amount of current.
Therefore, a single output can only drive a limited number of
inputs. The measure of driving ability is called fan-out, expressed
as the number of inputs (of the same subfamily) that can be driven
by a single output. If a logic family that is otherwise desirable does
not have sufficient fan-out, consider using noninverting buffers to
increase fan-out, as shown by Fig 7.27.

Noise Immunity

The noise margin was illustrated in Fig 7.2. The choice of volt-
age levels for the binary states determines the noise margin. If the
gap is too small, a spurious signal can too easily produce the
wrong state. Too large a gap, however, produces longer, slower transitions and thus decreased switching
speeds.

Circuit impedance also plays a part in noise immunity, particularly if the noise is from external sources
such as radio transmitters. At low impedances, more energy is needed to change a given voltage level
than at higher impedances.

Other Considerations

The parameters above are the basic considerations to influence the selection of a logic family for a
specific application. These considerations have complex interactions that come into play in demanding
low-current, high-speed or high-complexity circuits. Numerous other parameters can also be examined.
These are provided in the electrical specification of a device. These are given on a data sheet and usually
include four sections: (1) absolute maximum ratings specify worst-case conditions, including safe
storage temperatures, (2) recommended operating conditions specify power-supply, input voltage, dc
output loading and temperatures for normal operation, (3) electrical characteristics specify other dc
voltages and currents observed at the inputs and outputs and (4) switching characteristics specify propa-
gation delays for “typical” operation.

The list of parameters can seem overwhelming to the novice; but with experience, the important
information will be more easily spotted. If you are designing a circuit, always consult the data sheet for
specific information on the device you are considering, because these parameters vary not only between
the logic families but also vary between the manufacturers and with changing technologies. Each manu-
facturer has data books available listing their devices and the corresponding data sheets.

BIPOLAR LOGIC FAMILIES

Two broad categories of digital logic ICs are bipolar and metal-oxide semiconductor (MOS). Numer-
ous manufacturing techniques have been developed to fabricate each type. Each surviving, commer-
cially available family has its particular advantages and disadvantages and has found its own special
niche in the market.

Bipolar semiconductor ICs usually employ NPN junction transistors. (Bipolar ICs are possible using
PNP transistors, but NPN transistors make faster circuits.) While early bipolar logic was faster and had
higher power consumption than MOS logic, these distinctions have blurred as manufacturing technology
has developed. There are several families of bipolar logic devices and within some of these families there
are subfamilies. The most-used digital logic family is Transistor-Transistor Logic (TTL). Another

Fig 7.27 — Nonverting buffers
used to increase fan-out: Gate A
(fan-out = 2) is connected to two
buffers, B and C, each with a fan-
out of 2. Result is a total fan-out
of 4.

7.26 Chapter 7

bipolar logic family, Emitter Coupled Logic (ECL), has exceptionally high speed but high power
consumption.

Transistor-Transistor Logic (TTL)

The TTL family has seen widespread acceptance because it is fast and has good noise immunity. It
is by far the most commonly used logic family. TTL levels were shown earlier in Fig 7.2: An input
voltage between 0.0-0.4 V will represent LOW and an input voltage between 2.4-5.0 V will represent
HIGH.

TTL Subfamilies

The original standard TTL is infrequently used today. In the standard TTL circuit, the transistors
saturate, reducing the operating speed. TTL variations cure this by clamping the transistors with Schottky
diodes to prevent saturation, or by using a dopant in the chip fabrication to reduce transistor recovery
time. Schottky-clamped TTL is the faster of these two manufacturing processes.

TTL IC identification numbers begin with either 54 or 74. The 54 prefix denotes a military tempera-
ture range of –55 to 125°C, while 74 indicates a commercial temperature range of 0 to 70°C. The next
letters, in the middle of the TTL device number, indicate the TTL subfamily. Following the subfamily
designation is a 2, 3 or 4-digit device-identification number. For example, a 7400 is a standard-TTL
NAND gate and a 74LS00 is a low-power Schottky NAND gate. (The NAND gate is the workhorse TTL
chip. Recall, from Fig 7.18, the alternative implementation of the S-R flip-flop.) The following TTL
subfamilies are available:

74xx standard TTL
H 74Hxx High-speed
L 74Lxx Low-power
S 74Sxx Schottky
LS 74LSxx Low-power Schottky
AS 74ASxx Advanced Schottky
ALS 74ALSxx Advanced Low-power Schottky

Each subfamily is a compromise between speed and power consumption. Because the speed-power
product is approximately constant, less power consumption results in less speed and vice versa. For the
amateur, an additional consideration to the speed-versus-power trade-off is the cost trade-off. The
advanced Schottky devices offer both increased speed and reduced power consumption but at a higher
cost.

In addition to the above power/speed/cost trade-offs, each TTL subfamily has particular characteris-
tics that can make it suitable or unsuitable for a specific design. Table 7.9 shows some of these param-
eters. The actual parameter values may vary slightly from manufacturer to manufacturer so always
consult the manufacturers’ data books for complete information.

TTL Circuits

Fig 7.28A shows the schematic representation of a TTL hex inverter. A 7404 chip contains four of
these inverters. When the input is low, Q1 is ON, conducting current from base to emitter through the
input lead and into ground. Thus a low TTL input device must be prepared to sink current from the input.
Since Q1 is saturated, Q2 is OFF because there is not enough voltage at its base. Similarly, Q4 is also
OFF. With Q2 and Q4 OFF, Q3 will be ON and pull the output high, about one volt below VCC. When
the input is high, an unusual situation occurs: Q1 is operating in the inverse mode, with current flowing
from base to collector. This current causes Q2 to be ON, which causes Q4 to be ON. With Q2 and Q4
ON, there is not enough current left for Q3, so Q3 is OFF. Q4 is pulling the output low.

By replacing Q1 with a multiple-emitter transistor, as is done with the two-input Q5 in Fig 7.28B, the

Digital Signal Theory and Components 7.27

Fig 7.28 — Example TTL cir-
cuits and their equivalent logic
symbols: (A) an inverter and
(B) a NAND gate, both with
totem-pole outputs. (C) A
NAND gate with a Darlington
output. (D) A NAND gate with
an open-collector output.
(Indicated resistor values are
typical. Identification of tran-
sistors is for text reference
only; these are not discrete
components but parts of the
silicon die.)

7.28 Chapter 7

inverter circuit becomes a NAND gate. Commercially available TTL NAND gates have as many as 13
inputs, the limiting factor being the number of input pins on the standard 16-pin chip. The operation of
this multiple-input NAND circuit is the same as described for the inverter, the difference being that any
one of the emitter inputs being low will conduct current through the emitter, leading to the conditions
described above to produce a high at the output. Similarly, all inputs must be high to produce the low
output.

In the TTL circuit of Fig 7.28A, transistors Q3 and Q4 are arranged in a totem-pole configuration. This
configuration gives the output circuit a low source impedance, allowing the gate to source (supply) or
sink substantial output current. The 130-Ω resistor between the collector of Q3 and +VCC limits the
current through Q3.

When a TTL gate changes state, the amount of current that it draws changes rapidly. These changes
in current, called switching transients, appear on the power supply line and can cause false triggering
of other devices. For this reason, the power bus should be adequately decoupled. For proper decoupling,
connect a 0.01 to 0.1 µF capacitor from VCC to ground near each device to minimize the transient currents
caused by device switching and magnetic coupling. These capacitors must be low-inductance, high-
frequency RF capacitors (disk-ceramic capacitors are preferred). In addition, a large-value (50 to
100 µF) capacitor should be connected from VCC to ground somewhere on the board to accommodate
the continually changing ICC requirements of the total VCC bus line. These are generally low-inductance
tantalum capacitors rather than rolled-foil mylar or aluminum-electrolytic capacitors.

Darlington and Open-Collector Outputs

Fig 7.28C and D show variations from the totem-pole configuration. They are the Darlington transis-
tor pair and the open-collector configuration respectively.

The Darlington pair configuration replaces the single transistor Q4 with two transistors, Q4 and Q5.
The effect is to provide more current-sourcing capability in the high state. This has two benefits: (1) the
rise time is decreased and (2) the fanout is increased.

Transistor(s) on the output in both the totem-pole and Darlington configurations provide active pull-
up. Omitting the transistor(s) and providing an external resistor for passive pull-up gives the open-

Table 7.9
TTL and CMOS Subfamily Performance Characteristics

TTL Family Propagation Per Gate Power Speed Power Product
Delay (ns) Consumption (mW) (pico-joules)

Standard 9 10 90
L 33 1 33
H 6 22 132
S 3 20 60
LS 9 2 18
AS 1.6 20 32
ALS 5 1.3 6.5

CMOS Family
Operating with
4.5 <VCC <5.5 V f=100 kHz f=1 MHz f=10 MHz f=100 kHz f=1 MHz f=10 MHz
HC 18 0.0625 0.6025 6.0025 1.1 10.8 108
HCT 18 0.0625 0.6025 6.0025 1.1 10.8 108
AC 5.25 0.080 0.755 7.505 0.4 3.9 39
ACT 4.75 0.080 0.755 7.505 0.4 3.6 36

Digital Signal Theory and Components 7.29

collector configuration. This configuration, unfortunately, results in slower rise time, since a relatively
large external resistor must be used. The technique has some very useful applications, however: driving
other devices, performing wired logic, busing and interfacing between logic devices.

Devices that need other than a 5-V supply can be driven with the open-collector output by substituting
the device for the external resistor. Example devices include light-emitting diodes (LEDs), relays and
solenoids. Inductive devices like relay coils and solenoids need a “flyback” protection diode across the
coil. You must pay attention to the current ratings of open-collector outputs in such applications. You
may need a switching transistor to drive some relays or other high-current loads.

Open-collector outputs can perform wired logic, rather than gated IC logic, by wire-ANDing the
outputs. This can save the designer an AND gate, potentially simplifying the design. Wire-ANDed
outputs are several open-collector outputs connected to a single external pull-up resistor. The overall
output, then, will only be high when all pull-down transistors are OFF (all connected outputs are high),
effectively performing an AND of the connected outputs. If any of the connected outputs are low, the
output after the external resistor will be low. Fig 7.29 illustrates the wire-ANDing of open-collector
outputs.

The wire-ANDed concept can be applied to several devices sharing a common bus. At any time, all
but one device has a high-impedance (off) output. The remaining device, enabled with control circuitry,
drives the bus output.

Open-collector outputs are also useful for interfacing TTL gates to gates from other logic families.
TTL outputs have a minimum high level of 2.4 V and a maximum low level of 0.4 V. When driving
nonTTL circuits, a pull-up resistor (typically 2.2 kΩ) connected to the positive supply can raise the high
level to 5 V. If a higher output voltage is needed, a pull-up resistor on an open-collector output can be
connected to a positive supply greater than 5 V, so long as the chip output voltage and current maximums
are not exceeded.

Three-State Outputs

While open-collector outputs can perform bus sharing, a more popular method is three-state output,
or tristate, devices. The three states are low, high and high impedance, also called Hi-Z or floating. An
output in the high-impedance
state behaves as if it is discon-
nected from the circuit, except
for possibly a small leakage
current. Three-state devices
have an additional disable in-
put. When enable is low, the
device provides high and low
outputs just as it would nor-
mally; when enable is high the
device goes into its high-
impedance state.

A bus is a common set of
wires, usually used for data
transfer. A three-state bus has
several three-state outputs
wired together. With control
circuitry, all devices on the bus
but one have outputs in the
high-impedance state. The re-

Fig 7.29 — The outputs of two open-collector-output AND gates are
shorted together (wire ANDed) to produce an output the same as
would be obtained from a 4-input AND gate.

7.30 Chapter 7

maining device is enabled, driving the bus with high and low outputs. Care should be taken to ensure only
one of the output devices can be enabled at any time, since simultaneously connected high and low
outputs may result in an incorrect logic voltage. (The condition when more than one driver is enabled
at the same time is called bus contention.) Also, the large current drain from VCC to ground through the
high driver to the low driver can potentially damage the circuit or produce noise pulses that can affect
overall system behavior.

Unused TTL Inputs

A design may result in the need for an n-input gate when only an n + m input gate is available. In this
case, the recommended solution for extraneous inputs is to give the extra inputs a constant value that
won’t affect the output. A low input is easily provided by connecting the input to ground. A high input
can be provided with either an inverter whose input is ground or with a pull-up resistor. The pull-up
resistor is preferred rather than a direct connection to power because the resistor limits the current, thus
protecting the circuit from transient voltages. Usually, a 1-kΩ to 5-kΩ resistor is used; a single 1-kΩ
resistor can handle up to 10 inputs.

It’s important to properly handle all inputs. Design analysis would show that an unconnected, or
floating, TTL input is usually high but can easily be changed low by only a small amount of capacitively
coupled noise.

Emitter-Coupled Logic (ECL)

ECL, also called current-mode logic (CML), is the fastest commercially available logic family, with
some devices operating at frequencies higher than 1.2 GHz. The fast speed is a result of reducing the
propagation delay by keeping the transistors from saturating. ECL devices operate with their transistors
in the active region. The voltage swing is small, less than a volt; and the circuit internally switches
between two possible paths depending on the output state. The two-path arrangement provides a signifi-
cant feature of ECL: complementary output states are always available.

Naturally, high speed comes at some cost, in this case high power consumption. Heat sinking is
sometimes necessary because of the great deal of power being dissipated. Because of its poor speed-
power product and also because it is not directly compatible with TTL and CMOS, ECL is less popular
than TTL. ECL devices are most likely to be found where performance is more important than cost,
including UHF frequency counters, UHF frequency synthesizers and high-speed mainframe computers.

ECL Subfamilies

There are several ECL subfamilies, to balance the trade-off of high speed versus low power dissipa-
tion. The subfamilies differ mostly in resistance values and the presence or absence of input and output
pull-down resistors.

The most popular subfamily is the 10K series, with five-digit part numbers of the form “10xxx.” This
family’s design started one of ECL’s most familiar characteristics: operation with VCC = 0 V (ground)
and VEE at a negative voltage. This feature provides immunity to power supply noise, since noise on VEE

is rejected by the circuit’s differential amplifier. The design voltage, VEE = –5.2 V for the 10K subfamily,
provides the best noise immunity; but other voltages can be used. Typically, a high logic state corre-
sponds to -0.9 V and a low is -1.75 V.

ECL Circuits

ECL gets its name from the emitter-coupled pair of transistors in the circuit, connected as a differential
amplifier. For example, in Fig 7.30, either Q1 or Q2 together with Q3 form a differential amplifier. This
arrangement produces the complementary outputs available from each ECL circuit. The circuit in Fig
7.30 provides both an OR output and a NOR output. When an input is high, its transistor (Q1 or Q2) is

Digital Signal Theory and Components 7.31

ON but not in saturation; and
Q3 is OFF. Q6 is then OFF so
its emitter output is low, while
Q5 is ON and its output high.
Similarly, when both inputs are
low, Q1 and Q2 are OFF so the
NOR output from Q6 is high;
and Q3 is ON, so the OR output
from Q5 is low. Q4, D1, D2 and
associated circuitry form a bias
generator. The reference volt-
age at the base of Q3 deter-
mines the input switching
threshold.

METAL-OXIDE
SEMICONDUCTOR (MOS)
LOGIC FAMILIES

While bipolar devices use
junction transistors, MOS de-
vices use field effect transistors
(FETs). MOS is characterized

by simple device structure, small size (high density) and ease of fabrication. MOS circuits use the NOR
gate as the workhorse chip rather than the NAND. MOS families are used extensively in digital watches,
calculators and VLSI circuits such as microprocessors and memories.

P-Channel MOS (PMOS)

The first MOS devices to be fabricated were PMOS, conducting electrical current by the flow of
positive charges (holes). PMOS power consumption is much lower than that of bipolar logic, but its
operating speed is lower. The only extensive use of PMOS is in calculators and watches, where low speed
is acceptable and low power consumption and low cost are desirable.

N-Channel MOS (NMOS)

With improved fabrication technology, NMOS became feasible and provided improved performance
and TTL compatibility. The speed of NMOS is at least twice that of PMOS, since electrons rather than
holes carry the current. NMOS also has greater gain than PMOS and supports greater packaging density
through the use of smaller transistors.

Complementary MOS (CMOS)

CMOS combines both P-channel and N-channel devices on the same substrate to achieve high noise
immunity and low power consumption: less than 1 mW per gate and negligible power during standby.
This accounts for the widespread use of CMOS in battery-operated equipment. The high impedance of
CMOS gates makes them susceptible to electromagnetic interference, however, particularly if long
traces are involved. Consider a trace 1/4-wavelength long between input and output. The output is a low-
impedance point so the trace is effectively grounded at this point. You can get high RF potentials
1/4-wavelength away, which disturbs circuit operation.

A notable feature of CMOS devices is that the logic levels swing to within a few millivolts of the
supply voltages. The input switching threshold is approximately one half the supply voltage (VDD – VSS).

Fig 7.30 — (A) Circuit topology of the ECL family. (B) The modified
logic symbol to indicates the availability of the complementary
output.

7.32 Chapter 7

This characteristic contributes to high noise immunity on the input signal or power supply lines. CMOS
input-current drive requirements are minuscule, so the fan-out is great, at least in low-speed systems.
(For high-speed systems, the input capacitance increases the dynamic power dissipation and limits the
fan-out.)

CMOS Subfamilies

There are a number of CMOS subfamilies available. Like TTL, the original CMOS has largely been
replaced by later subfamilies using improved technologies. This original family, called the 4000-series,
has numbers beginning with 40 or 45 followed by two or three numbers to indicate the specific device.
4000B is second generation CMOS. When introduced, this family offered low power consumption but
was fairly slow and not easy to interface with TTL.

Later CMOS subfamilies provided improved performance and TTL compatibility. For simplicity, the
later subfamilies were given numbers similar to the TTL numbering system, with the same leading
numbers, 54 or 74, followed by 1 to 3 letters indicating the subfamily and as many as 5 numbers
indicating the specific device. The subfamily letters usually include a “C” to distinguish them as CMOS.

The following CMOS device families are available:

4000 4071B standard CMOS
C 74Cxx CMOS versions of TTL

Devices in this subfamily are pin and functional equivalents of many of the most popular parts in the
7400 TTL family. It may be possible to replace all TTL ICs in a particular circuit with 74C-series CMOS,
but this family should not be mixed with TTL in a circuit without careful design considerations. Devices
in the C series are typically 50% faster than the 4000 series.

HC 74HCxx High-speed CMOS

Devices in this subfamily have speed and drive capabilities similar to Low-power Schottky (LS) TTL
but with better noise immunity and greatly reduced power consumption. High-speed refers to faster than
the previous CMOS family, the 4000-series.

HCT 74HCTxx High-Speed CMOS, TTL compatible

Devices in this subfamily were designed to interface TTL to CMOS systems. The HCT inputs recog-
nize TTL levels, while the outputs are CMOS compatible.

AC 74ACxxxxx Advanced CMOS

Devices in this family have reduced propagation delays, increased drive capabilities and can operate
at higher speeds than standard CMOS. They are comparable to Advanced Low-power Schottky (ALS)
TTL devices.

ACT 74ACTxxxxx Advanced CMOS, TTL compatible

This subfamily combines the improved performance of the AC series with TTL-compatible inputs.
As with TTL, each CMOS subfamily has characteristics that make it suitable or unsuitable for a

particular design. You should consult the manufacturer’s data books for complete information on each
subfamily you are considering.

Digital Signal Theory and Components 7.33

CMOS Circuits

A simplified diagram of a
CMOS logic inverter is shown in
Fig 7.31. When the input is low,
the resistance of Q2 is low so a
high current flows from VCC;
since Q1’s resistance is high, the
high current flows to the output.
When the input is high, the op-
posite occurs: Q2’s resistance is
low, Q1’s is high and the output
is low. The diodes are to protect
the circuit against static charges.

Special Considerations

Some of the diodes in the input- and output-protection circuits are an inherent part of the manufac-
turing process. Even with the protection circuits, however, CMOS ICs are susceptible to damage from
static charges. To protect against damage from static, the pins should not be inserted in styrofoam as is
sometimes done with other components. Instead, a spongy conductive material is available for this
purpose. Before removing a CMOS IC from its protective material, make certain that your body is
grounded. Touching nearly any large metal object before handling the ICs is probably adequate to drain
any static charge off your body. Some people prefer to touch a grounded metal object or to use a
conductive bracelet connected to the ground terminal of a three-wire ac outlet through a 10-MΩ resistor.
Since wall outlets aren’t always wired properly, you should measure the voltage between the ground
terminal and any metal objects you might touch. Connecting yourself to ground through a 1 MΩ to
10 MΩ resistor will limit any current that might flow through your body.

All CMOS inputs should be tied to an input signal; a positive supply voltage or ground if a constant
input is desired. Undetermined CMOS inputs, even on unused gates, may cause gate outputs to oscillate.
Oscillating gates draw high current, overheat and self destruct.

The low power consumption of CMOS ICs made them attractive for satellite applications, but standard
CMOS devices proved to be sensitive to low levels of radiation — cosmic rays, gamma rays and X rays. Later,
radiation-hardened CMOS ICs, able to tolerate 106 rads, made them suitable for space applications. (A rad
is a unit of measurement for absorbed doses of ionizing radiation, equivalent to 10-2 joules per kilogram.)

SUMMARY

There are many types of logic ICs, each with its own advantages and disadvantages. If you want low
power consumption, you should probably use CMOS. If you want ultra-high-speed logic, you will have
to use ECL. Whatever the application, consult up-to-date literature when designing logic circuits. IC
databooks and applications notes are usually available from IC manufacturers and distributors.

INTERFACING LOGIC FAMILIES

Each semiconductor logic family has its own advantages in particular applications. For example, the
highest frequency stages in a UHF counter or a frequency synthesizer would use ECL. After the fre-
quency has been divided down to less than 25 MHz, the speed of ECL is unnecessary; and its expense
and power dissipation are unjustified. TTL or CMOS are better choices at lower frequencies.

When a design mixes ICs from different logic families, the designer must account for the differing
voltage and current requirements each logic family recognizes. The designer must ensure the appropriate

Fig 7.31 — Internal structure of a CMOS inverter.

7.34 Chapter 7

interface between the point at
which one logic family ends
and another begins. A knowl-
edge of the specific input/out-
put (I/O) characteristics of each
device is necessary, and a
knowledge of the general inter-
nal structure is desirable, to
ensure reliable digital inter-
faces. Typical internal struc-
tures have been illustrated for
each common logic family. Fig
7.32 illustrates the logic level
changes for different TTL and
CMOS families; databooks
should be consulted for
manufacturer’s specifications.

Often more than one conver-
sion scheme is possible, de-
pending on whether the de-
signer wishes to optimize power
consumption or speed. Usually
one quality must be traded off
for the other. The following sec-
tion discusses some specific
logic conversions. Where an
electrical connection between
two logic systems isn’t possible,
an optoisolator can sometimes
be used.

TTL Driving CMOS

TTL and low-power TTL
can drive 74C series CMOS
directly over the commercial
temperature range without an
external pull-up resistor. How-
ever, they cannot drive 4000-
series CMOS directly; and for
HC-series devices, a pull-up
resistor is recommended. The
pull-up resistor, connected be-
tween the output of the TTL
gate and VCC as shown in Fig
7.33A, ensures proper opera-
tion and enough noise margin
by making the high output
equal to VDD. Since the low

Fig 7.32 — Differences in logic levels for some TTL and CMOS
families.

Fig 7.33 — TTL to CMOS interface circuits: (A) pull-up resistor, (B)
common-base level shifter and (C) op amp configured as a com-
parator.

Digital Signal Theory and Components 7.35

output voltage will also be affected, the resistor value must be chosen with both desired high and low
voltage ranges in mind. Resistors values in the range 1.5 kΩ to 4.7 kΩ should be suitable for all TTL
families under worst conditions. A larger resistance reduces the maximum possible speed of the CMOS
gate; a lower resistance generates a more favorable RC product but at the expense of increased power
dissipation.

HCT-series and ACT-series CMOS devices were specifically designed to interface nonCMOS devices
to a CMOS system. An HCT device acts as a simple buffer between the nonCMOS (usually TTL) and
CMOS device and may be combined with a logic function if a suitable HCT device is available.

When the CMOS device is operating from a power supply other than +5 V, the TTL interface is more
complex. One fairly simple technique uses a TTL open-collector output connected to the CMOS input,
with a pull-up resistor from the CMOS input to the CMOS power supply. Another method, shown in Fig
7.33B, is a common-base level shifter. The level shifter translates a TTL output signal to a +15 V CMOS
signal while preserving the full noise immunity of both gates. An excellent converter from TTL to CMOS
using dual power supplies is to configure an operational amplifier as a comparator, as shown in Fig
7.33C. An FET op amp is shown because its output voltage can usually swing closer to the rails (+ and
– supply voltages) than a bipolar unit.

CMOS Driving TTL

Certain CMOS devices can drive TTL loads directly. The output voltages of CMOS are compatible
with the input requirements of TTL, but the input-current requirement of TTL limits the number of TTL
loads that a CMOS device can drive from a single output (the fan-out).

Interfacing CMOS to TTL is a bit more complicated when the CMOS is operating at a voltage other than
+5 V. One technique is shown in
Fig 7.34A. The diode blocks the
high voltage from the CMOS
gate when it is in the high output
state. A germanium diode is used
because its lower forward-volt-
age drop provides higher noise
immunity for the TTL device in
the low state. The 68-kΩ resistor
pulls the input high when the
diode is back biased.

There are two CMOS de-
vices specifically designed to
interface CMOS to TTL when
TTL is using a lower supply
voltage. The CD4050 is a
noninverting buffer that allows
its input high voltage to exceed
the supply voltage. This capa-
bility allows the CD4050 to be
connected directly between the
CMOS and TTL devices, as
shown in Fig 7.34B. The
CD4049 is an inverting buffer
that has the same capabilities
as the CD4050.

Fig 7.34 — CMOS to TTL interface circuits: (A) blocking diode used
when different supply voltages are used. The diode is not neces-
sary if both devices operate with a +5 V supply. (B) CMOS
noninverting buffer IC.

7.36 Chapter 7

Computer Hardware
So far, this chapter has discussed digital logic, the implementation of that logic with integrated

circuits, interfacing IC logic families and the use of memory to store information used by the ICs. The
synthesis of all this technology is the microcomputer — combining a microprocessor IC, memory chips
and user interface into the modern digital computer. A computer has both physical components; hard-
ware and a collection of programs; software, to tell it what to do. This section will focus on the physical
components of the computer: its internal physical components, the chips and how they work and interact
and its external I/O devices for communication with a user.

COMPUTER ORGANIZATION

The architecture of a computer is the arrangement of its internal subsystems: the microprocessor(s),
memory, I/O and interfacing. Each subsystem may be concentrated on a single IC or spread between
many chips. The microprocessor, also known as the central processing unit (CPU) and usually a single
chip, consists of three parts: a control unit, an arithmetic logic unit (ALU) and temporary storage
registers. A bus — a set of wires to carry address, data and control information — interconnects all of
the subsystems. Most modern computers are some variation on the basic architecture shown in Fig 7.35.

The microprocessor, memory chips and other circuitry are all part of the system’s hardware, the
physical components of a system. The computer case, the nuts and bolts and physical parts are other parts
of the hardware. A computer also includes software, a collection of programs or sequence of instructions
to perform a specified task. Some microprocessors internally are complete circuitry. The design of
general purpose computers is so complex, however, that it is nearly impossible to design an original
architecture without any bugs. Thus many designers use microprocessors that include microcode or
microinstructions: instructions in the control unit of a microprocessor. This hybrid between hardware
and software is called firmware. Firmware also includes software stored in ROM or EPROM rather than
being stored on magnetic disk or tape.

Computer designers make decisions on hardware, software and firmware based on cost versus perfor-
mance. Thus, today’s computer market includes a wide range of systems, from high-performance super-
computers, which cost millions of dollars, to the
personal microcomputer, with costs in the thou-
sands new and in the hundreds for older used
models.

THE CENTRAL PROCESSING UNIT

The central processing unit is usually a single
microprocessor chip, although its subsystems
can be on more than one chip. The CPU at least
includes a control unit, timing circuitry, an arith-
metic logic unit (ALU) and also usually contains
registers for temporary storage.

Control Unit

The control unit directs the operation of the
computer, managing the interaction between
subunits. It takes instructions from the memory
and executes them, performing tasks such as
accessing data in memory, calling on the ALU or
performing I/O. Control is one of the most diffi-

Fig 7.35 — Example of a basic computer architec-
ture.

Digital Signal Theory and Components 7.37

cult parts to design; thus it is the most likely source of bugs in designing an original architecture.
Microprocessors consist of both hardwired control and microprogrammed control. In both cases, the

designer determines a sequence of states through which the computer cycles, each with inputs to examine
and outputs to activate other CPU subsystems (including activating itself, indicating which state to do
next). For example, the sequence usually starts with “Fetch the next instruction from memory,” with
control outputs to activate memory for a read, a program counter to send the address to be fetched and
an instruction register to receive the memory contents. Hardwired control is completely via circuitry,
usually with a programmed logic array. Microprogrammed control uses a microprocessor with a modi-
fiable control memory, containing microcode or microinstructions. An advantage of microprogrammed
control is flexibility: the code can be changed without changing the hardware, making it easier to correct
design errors. Fig 7.36 shows examples of both types of control.

Timing

Usually, an oscillator con-
trolled by a quartz crystal gen-
erates the microcomputer’s
clock signal. The output of this
clock goes to the microproces-
sor and to other ICs. The clock
synchronizes the microcom-
puter subunits. For example,
each of the microinstructions is
designed to take only one clock
cycle to execute, so any com-
ponents triggered by a micro-
instruction’s control outputs
should finish their actions by
the end of the clock cycle. The
exception to this is memory,
which may take multiple clock
cycles to finish, so the control
unit repeats in its same state
until memory says it’s done.
Since the clock rate effectively
controls the rate at which in-
structions are executed, the
clock frequency is one way to
measure the speed of a com-
puter. Clock frequency, how-
ever, cannot be the only crite-
ria considered because the
actions performed during a
clock cycle vary for different
designs.

Arithmetic Logic Unit

The arithmetic logic unit
(ALU) performs logical opera-

Fig 7.36 — Example arrangements of a control unit and related
components: (A) hardwired control and (B) microprogrammed
control.

7.38 Chapter 7

tions such as AND, OR and SHIFT and arithmetic operations such as addition, subtraction, multiplica-
tion and division. The ALU depends on the control unit to tell it which operation to perform and also
to trigger other devices (memory, registers and I/O) to supply its input data and to send out its results
to the appropriate place.

The ALU often only performs simple operations. Complex operations, such as multiplication, division
and operations involving decimal numbers, are performed by dedicated hardware, called floating-point
processors, or “coprocessors.” These may be included on the original motherboard or may be optional
upgrades.

Registers

Microprocessor chips have some internal memory locations that are used by the control unit and
ALU. Because they are inside the microprocessor IC, these registers can be accessed more quickly
than other memory locations. Special purpose registers or dedicated registers are purely internal, have
predefined uses and cannot be directly accessed by programs. General purpose registers hold data and
addresses in use by programs and can be directly accessed, although usually only by assembly level
programs.

The dedicated registers include the instruction register, program counter, effective address register
and status register. The first step to execute an instruction is to fetch it from memory and put it in the
instruction register (IR). The program counter (PC) is then incremented to contain the address of the
next instruction to be fetched. An instruction may change the program counter as a result of a conditional
branch (if-then), loop, subroutine call or other nonlinear execution. If data from memory is needed by
an instruction, the address of the data is calculated and fetched with the effective address register (EAR).
The status register (SR) keeps track of various conditions in the computer. For example, it tells the
control unit when the keyboard has been typed on so the control unit knows to get input. It also notices
if something goes wrong during an instruction execution, for example an attempted divide by 0, and tells
the control unit to halt the program or fix the error. Certain bits in the status register are known as the
condition codes, flags set by each instruction. These flags tell information about the result of the latest
instruction — such as if the result was negative or positive or zero and if an arithmetic overflow or a carry
error occurred. The flags can then be used by a conditional branch to decide if that branch should be taken
or not.

Some architectures also use a stack pointer (SP) and/or an accumulator. In a stack system, a memory
location is designated as the “bottom” of the stack. Data to be stored is always added to the next memory
location, the “top” of the stack; and data to be accessed must always be taken off the “top.” (This
technique is called “last in, first out,” or LIFO.) The stack pointer keeps track of the current “top”
address. Stack and accumulator architectures are distinguished from an ALU design by how they handle
operations. For an ALU to perform an addition, two inputs are provided from the general-purpose
registers. In the stack and accumulator systems, only one input is provided with the default second input
being the top of the stack or the contents of the accumulator respectively. These different approaches
significantly affect the CPU design. Stack and accumulator architectures are simpler to design but less
flexible, causing them to be slower. Stacks are still in use in some machines but only for temporary
storage rather than arithmetic operations. The ALU and general-purpose registers are the dominant
architecture today.

MEMORY

Computers and other digital circuits rely on stored information, either data to be acted upon or
instructions to direct circuit actions. This information is stored in memory devices, in binary form. This
section first discusses how to access an individual item in memory and then compares different memory
types, which can vary how quickly and easily an item is accessed.

Digital Signal Theory and Components 7.39

Accessing a Memory Item

Memory devices consist of a large number of memory cells each capable of remembering one bit
of binary information. The information in memory is stored in digital form with collections of bits,
called words, representing numbers and symbols. The most common symbol set is the American
National Standard Code for Information Interchange (ASCII). Words in memory, just like the letters
in this sentence, are stored one after the other. They are accessed by their location or address. The
number of bits in each word, equal to the number of memory cells per memory location, is constant
within a memory device but can vary for different devices. Common memory devices have word sizes
of 8, 16 and 32 bits.

Addresses and Chip Size

An address is the identifier, or name, given to a particular location in memory. Since this address
is expressed as a binary number, the number of unique addresses available in a particular memory chip
is determined by the number of bits to express the address. For example, a memory chip with 8 bit
addresses has 28 = 256 memory locations. These locations are accessed as the addresses 00000000
through 11111111, 0 through 255 decimal or 00 through FF hex. (For ease of notation, programmers
and circuit designers use hexadecimal, base 16, notation to avoid long strings of 1s and 0s.) The
memory chip size can be expressed as M × N, where M is the number of unique addresses, or memory
locations and N is the word size, or number of bits per memory location. Memory chips come in a
variety of sizes and can be arranged, together with control circuitry and decoders, to meet a designer’s
needs.

Basic Structure

Memory chips, no matter how large or small, have several things in common. Each chip has address,
data and control lines, as shown by the example chip in Fig 7.37. A memory chip must have enough
address lines to uniquely address each of its words and as many data lines as there are bits per word. For
example, the 256 × 1 memory in Fig 7.37 has 8 address lines and 1 data line.

The control lines for a memory chip can vary. Fig 7.37 shows a simple example: two control lines,
a W/R and CS. In this case, data lines transfer both inputs (when writing) and outputs (when reading)
so the W/R control line is needed to put the memory chip in read mode or write mode. The chip select,
CS, control line tells the chip whether it is in use. When the chip is selected, it is “on,” acting upon the
address, data and W/R information presented to it. When the chip is not selected, the data line enters a
high-impedance state so that it does not affect, and is not affected by, devices or circuits attached to it.

Reading and Writing

To write (store data in) or read (retrieve data from) a memory
device, it is necessary to gain access to specific memory cells. A
small 256 × 1 memory chip is used as an example. Later, this
example will be expanded to a larger computer memory system.

If we want to write a 1 to the 11th word of the 256 × 1 memory
(such as memory location 10 decimal or 00001010 binary), we
must execute the following steps:

(1) Place the correct address (00001010) on the address lines.
(2) Place the data to be written (1) on the data line.
(3) Set the W/R control line to write (low, 0).
(4) Set the CS control line to select (high, 1). (Many memory

devices use an active low chip select, CS.)
Fig 7.37 — Example of a 256 × 1
memory chip.

7.40 Chapter 7

This writes the data on the data line (1) to the address on the address lines (00001010).
The steps to read the contents of the 11th word are similar except that the W/R control line is set to

read (high, 1).

Timing

Subtle timing requirements must also be incorporated into the above steps. While writing, the address
and data information must be present for a minimum setup time before and hold time after, the CS and
signals have been activated. This is to avoid spurious signals spraying all over the memory array. While
reading, address line changes are not harmful, but the output data is only valid a minimum access time
after the last address input is stable. Manufacturers’ data sheets and application notes provide the timing
specifications for the particular IC you are using.

Larger Words

The one-bit-wide memory described above provides a good introduction, but usually we want a wider
memory. One way to get wider memory is to use several 1-bit-wide memory chips, as shown in Fig 7.38.
The address and control lines go to each chip, and data from each chip is used as a single bit in the large
word. It is easy to see that when reading from address 0A (hex), the data lines D0 through D3 contain
the data from address 0A of chips U0 through U3.

An address placed on the shared address lines (called an address bus) now specifies an entire word of
data. Notice that one line of the address bus connects to the CS pin of each memory chip. This line is
labeled ME, or memory enable, and sets all four ICs to read or write data at the same time.

If all four memory chips were put in a single package, they would make a 256 × 4 IC. This IC would
look like the chip in Fig 7.37, except that it would have 4 data lines.

More Address Space

For even larger memory systems, the same principles as shown in Fig 7.38 can be applied. Fig 7.39
shows a 1024 × 8 (1 kilobyte) memory built from four 256 × 8 memory chips. A kilobyte, or kbyte is
usually abbreviated as K. Notice this is not quite the same as the metric prefix kilo, because it represents
1024, rather than 1000.

Ten address lines are needed to address 1024 locations (210 = 1024). Eight of the 10 address lines, A0
to A7, are used as a normal address bus for chips 0 through 3. The remaining 2 address lines, A8 and A9,
are run through a 2-to-4 line
decoder to choose between the
4 memory chips. When em-
ployed in this manner, the 2-to-
4 line decoder is called an ad-
dress decoder.

To assert the CS input for
one of the memory chips, ME
must be 1 and the correct out-
put of the 2-to-4 line decoder
must also be 1. When an ad-
dress is placed on A0 through
A9, a single memory chip is
selected by ME, A8 and A9.
The other 8 address lines ad-
dress a single word from that
chip. The three chips that are Fig 7.38 — A 256 × 4 memory built with four 256 × 1 memory chips.

Digital Signal Theory and Components 7.41

not selected enter a high-im-
pedance state and do not affect
the data lines. This example
shows that, using the proper
memory chips and address de-
coding, any size memory with
any word length can be built.

Alternate Structures

Fig 7.40 shows how the same
chip can be accessed in different
ways by using two decoders, a
row decoder and a column de-
coder. The same 256 × 256
memory array can be treated as a
64 K × 1 array, a 256 × 256 array
or other possibilities. In fact,
most larger memory chips are
made as square arrays: 32 × 32
(1024 bytes or 1 K), 64 × 64
(4096 bytes or 4 K), 256 × 256
(65536 bytes or 64 K), 1024 ×
1024 (1 M), 2048 × 2048 (4 M),
4096 × 4096 (16 M) and so on.
(Here the M represents a mega-
byte, which is 1048576 bytes.)
The square array makes the chips
more cost effective to manufac-
ture (easier quality control and
less waste) and easier to incor-
porate into a printed-circuit-
board circuit layout. Notice that
each M × N is a power of 2. So
while we refer to the chips by
shorter names like 1 Mbyte, the
actual number of memory cells
is larger than 1000000. The
product, M × N, only refers to
the number of memory cells in
the chip; and designers are free
to choose the word size appro-
priate to their needs. In fact, they
may access one location as an 8-

bit word and another as a 16-bit word. For example, a computer with a Motorola MC68000 microprocessor
automatically accesses a character, such as “A,” as 8 bits (a byte), an integer as 16 bits (a word) and a real value
as 32 bits (a longword). (Apple Macintosh computers use the MC68000 microprocessor.) To further com-
plicate things, a different manufacturer may call 16 bits a halfword and 32 bits a word. In using memory, the
controller chips and circuitry to access the memory can be just as important as the memory itself.

Fig 7.39 — A 1024 × 8 memory built with four 256 × 8 memory chips
and appropriate control circuitry.

Fig 7.40 — Row and column decoders allow a memory array to be
accessed in a variety of formats.

7.42 Chapter 7

Memory Types

The concepts described above are applied to several types of random-access, semiconductor memory.
Semiconductor memories are categorized by the ease and speed with which they can be accessed and
their ability to “remember” in the absence of power.

SAM versus RAM

One way to categorize memory is by what memory cells can be accessed at a given instant. Sequential-
access memory (SAM) must be accessed by stepping past each memory location until the desired location
is reached. Magnetic tapes implement SAM; to reach information in the middle of the tape, the tape head
must pass over all of the information on the beginning of the tape. Two special types of SAM are the
queue and the push-down stack. In a queue, also called a first-in, first-out (FIFO) memory, locations
must be read in the order that they were written. The queue is a “first-come, first-served” device, like
a line at a ticket window. The push-down stack is also called last-in, first-out (LIFO) memory. In LIFO
memory, the location written most recently is the next location read. LIFO can be visualized as a stack,
always adding to and removing from the “top” of the stack. Random-access memory (RAM) allows any
memory cell to be accessed at any instant, with no time wasted stepping past the “beginning” parts of
the data. Random-access memory is like a bookcase; any book can be pulled out at any time.

It is usually faster to access a desired word in RAM than in SAM. Also, all words in RAM have the
same access time, while each word in a SAM has a different access time based on its position. Generally,
the semiconductor memory devices internal to computers are random-access memories. Magnetic de-
vices, such as tapes and disks, have at least some sequential access characteristics. We will leave tapes
and disks for a later section and concentrate here on random-access, solid-state memories.

Random Access Memory

Most RAM chips are volatile, meaning that stored information is lost if power is removed. RAM is
either static or dynamic. Dynamic RAM (DRAM) stores a bit of information as the presence or absence
of charge. This charge, since it is stored in a capacitor, slowly leaks away. It must be refreshed periodi-
cally. Memory refresh typically occurs every few milliseconds and is usually performed by a dynamic
RAM controller chip. Static RAM (SRAM) stores a bit of information in a flip-flop. Since the bit will
retain its value until either power is removed or another bit replaces it, refresh is not necessary.

Both types of RAM have their advantages and disadvantages. The advantage of DRAM is increased
density and ease of manufacture, making them significantly less expensive. SRAMs, however, have
much faster access times. Most general purpose computers use DRAMs, since large memory size and low
cost are the major objectives. Where the amount of memory required doesn’t justify the use of DRAM,
and the faster access time is important, SRAMs are common, for example, in embedded systems (tele-
phones, toasters) and for cache memories. Both types of RAM are available in MOS families; SRAMs
are also available in bipolar. Generally, MOS RAMs have lower power consumption than bipolar RAMs,
while access speeds vary widely. Cost, power consumption and access time, provided in manufacturers’
data sheets, are factors to consider in selecting the best RAM for a given application.

Read-Only Memory

Read-only memory (ROM) is nonvolatile; its contents are not lost when power is removed from the
memory. Despite its name, all ROMs can be written or programmed at least once. The earliest ROM
designs were “written” by clipping a diode between the memory bit and power supply wherever a 0 was
desired. Modern MOS ROMs use a transistor instead of a diode. Mask ROMs are programmed by having
ones and zeros etched into their semiconductors at manufacturing time, according to a pattern of con-
nections and nonconnections provided in a mask. Since the “programming” of a mask ROM must be done

Digital Signal Theory and Components 7.43

by the manufacturer, adding expense and time delays, this type of ROM is primarily used only in high
volume applications.

For low-volume applications, the programmable ROM (PROM) is the most effective choice since the
data can be written after manufacture. A PROM is manufactured with all its diodes or transistors
connected. A PROM programmer device then “burns away” undesired connections. This type of PROM
can be written only once.

Two types of PROMs that can be “erased” and reprogrammed are EPROMs and EEPROMs. The
transistors in UV erasable PROMs (EPROMs) have a floating gate surrounded by an insulating material.
When programming with a bit value, a high voltage creates a negative charge on the floating gate.
Exposure to ultraviolet light erases the negative charge. Similarly, electrically erasable PROMs
(EEPROMs) erase their floating-gate values by applying a voltage of the opposite polarity. Table 7.10
summarizes these ROM characteristics.

Besides being nonvolatile, PROMs are also distinguished from RAMs by their read and write times.
Naturally, since PROMs are only written to infrequently, they can have slow write times (in the milli-
second range). Their read times, however, are near those of RAM (in the nanoseconds). Read and write
times for RAMs are nearly equal, both in the nanosecond range. Two other factors make it hard to write
to PROMs: (1) PROMs must be erased before they can be reprogrammed and (2) PROMs often require
a programming voltage higher than their operating voltage.

ROMs are practical only for storing data or programs that do not change frequently and must survive
when power is removed from the memory. The programs that start up a computer when it is first switched
on or the memory that holds the call sign in a repeater IDer are prime candidates for ROM.

Nonvolatile RAM

For some situations, the ideal memory would be as nonvolatile as ROM but as easy to write to as RAM.
The primary example is data that must not be allowed to perish despite a power failure. Low-power
RAMs can be used in such applications if they are supplied with NiCd or lithium cells for backup power.
A more elegant and durable solution is nonvolatile RAM (NVRAM), which includes both RAM and
ROM. The standard volatile RAM, called shadow RAM, is backed up by nonvolatile EEPROM. When
the RECALL control is asserted, such as when power is first applied, the contents of the ROM are copied
into the RAM. During normal operation, the system reads and writes to the RAM. When the STORE
control is triggered, such as by a power failure or before turning off the system, the entire contents of
the RAM are copied into the ROM for nonvolatile storage. In the event of primary power failure, to
successfully save the RAM data, some power must be maintained until the memory store is complete
(+5 V for 20 ms).

Table 7.10
ROM Characteristics

Type Technology Read Time Write Time Comments
Mask ROM NMOS, CMOS 25 - 500 ns ≈ 4 weeks Write once; low power

Mask ROM Bipolar < 100 ns ≈ 4 weeks Write once; high power; low density

PROM Bipolar < 100 ns ≈ 5 minutes Write once; high power; no mask required

EPROM NMOS, CMOS 25 - 500 ns ≈ 5 minutes Reusable; low power; no mask required

EEPROM NMOS 50 - 500 ns 10 ms / byte 10000 write cycles per location limit

7.44 Chapter 7

Cache versus Main Memory

Memory is in high demand for many applications. To balance the trade-off of speed versus cost, most
computers use a larger, slower, but cheaper main memory in conjunction with a smaller, faster, but more
expensive cache memory. As you run a computer program, it accesses memory frequently. When it needs
an item, a piece of data or the next part of the program to execute, it first looks in the cache. If the item
is not found in the cache, it is copied to the cache from the main memory. As you run a computer program,
it often repeats certain parts of the program and repeatedly uses pieces of data. Since this information
has been copied to the high-speed cache, your computer game or other application can run faster.
Information used less often or not being used at all (programs not currently being run) can stay in the
slower main memory.

A “cache” is a place to store treasure; the treasure, the information you are using frequently, can be
accessed quickly because it is in the high-speed cache. The use of cache versus main memory is managed
by a computer’s CPU so it is transparent to the user. The improvement in program execution time is
similar to accessing a floppy disk versus the computer’s internal memory.

I/O TRANSFERS

Input and output allow the computer to react to and affect the outside world. The ability to interact
with their environment is a primary reason why computers are so useful and cost-effective. Usually,
I/O is provided by a user, and a great deal of effort goes towards making computers user-friendly.
Alongside the drive for user-friendly computers is the drive for automation. Data is acquired and
operations are performed automatically, such as the packet bulletin board automatically forwarding a
message. This section discusses the relationship of I/O to the internal operation of the computer: how
the computer knows when and what I/O has been provided. The next section, on peripherals, discusses
the range of devices that provide this information.

Program-Controlled I/O

Program-controlled I/O might be understood by thinking of a cook who returns to the oven every few
minutes to see if a meal is ready. Under program-controlled I/O, or polling, input and output events are
initiated by the program currently running on the microcomputer. The program polls the I/O device,
constantly checking if it is ready to accept or deliver data. When the I/O device indicates that it is ready,
then the instruction that actually sends or receives the data is executed.

An advantage of program-controlled I/O is its simplicity. Program-controlled I/O is easily written and
debugged. A disadvantage is wasted time. The program must spend its time checking the status of the
I/O device rather than doing other useful things. If the program must have the input data before continu-
ing, then no time is wasted; but if it could have been performing other tasks, then polling can be expensive
and wasteful. Packet radio provides a familiar example of polling: the TNC repeatedly sends a packet
until a confirmation message has been received from the BBS.

Interrupt-Driven I/O

Interrupt-driven I/O avoids wasting time in a polling loop. The cook, rather than constantly checking
the oven, goes off to other work until the timer rings. This efficiency is especially important on multiuser
systems, where one program may be waiting for I/O while another program is executing.

The ring of the timer is called an interrupt, a temporary break in the normal execution of a program.
The act of taking the food out of the oven is coded in an interrupt service routine. An interrupt service
routine (ISR) is any code that performs the appropriate actions in response to a certain interrupt. Each
interrupt has a number, and the location of each ISR is listed in a table next to its number. From the
machine’s perspective, the process is as follows: One of the bits in the microprocessor’s status register

Digital Signal Theory and Components 7.45

is called the interrupt request indicator. When this bit becomes a 1, an interrupt has occurred. Circuitry
indicates the number of the device requesting the interrupt. The machine temporarily suspends whatever
it was working on and looks at its table of service routines. From the table, the machine finds the location
of the appropriate ISR and automatically jumps to that code and begins executing it. When finished with
the ISR, the machine automatically returns to whatever it was doing before the interrupt.

The “getchar” subroutine below shows how an interrupt service routine for keyboard input might look
in assembly language.

getchar:
MOVE RCVDATA,R7; Move the data from the receiver to the temporary storage register
RTE ; Return to normal execution

There are two key differences from the previous example: (1) No polling loop is involved. The
READY bit, instead of being polled, triggers the interrupt request bit. (2) Leaving the main program and
returning to it are done automatically by the machine instead of with a subroutine call inside the code.

The advantage of interrupt-driven I/O is that no time is wasted in a polling loop. This is especially
advantageous in a multiuser environment where processing time must be juggled between the user
demands. The disadvantage of interrupts is that program flow can become very confusing; for example,
what happens if an interrupt service routine gets interrupted? This is usually handled by assigning
priorities to each possible interrupt and, when inside an ISR, ignoring other interrupts of lesser or equal
priority.

A familiar example of an interrupt is when you want to crash out of a program; for example, the CTRL
- ALT - DEL key combination on an IBM, the reset button on a Macintosh, or the CTRL C or CTRL Y
combination on a UNIX machine. Examples of a timer interrupt are the sending every ten minutes of a
repeater’s ID; the automatic save of some word processors; and, when doing packet, the BBS automati-
cally kicks you out for too many minutes of inactivity.

Memory-Mapped I/O

In memory-mapped I/O, addresses that are treated like RAM by the microprocessor are actually I/O
devices. Thus, a command that would usually be used to read or write to a memory location might
actually result in an I/O operation. Since memory mapping is an addressing technique, it can be used with
either interrupt-driven or polled I/O.

Direct Memory Access

Direct Memory Access (DMA) enables data to be transferred directly between memory and an I/O
device without involving the CPU. The advantages of DMA are to provide high-speed transfer of data,
such as from a peripheral disk drive or communications device, while the CPU is performing internal
tasks. The data transfer operation is managed by a DMA controller, either a separate chip or internal to
the microprocessors. The following illustrates some of the steps involved in the I/O transfer:

An I/O device requests DMA operation.
The DMA controller requests the bus from the CPU.
The CPU acknowledges the request and releases the bus.
The DMA controller tells the I/O device to send its information.
The DMA technique is used by I/O processors. In large computer systems, these auxiliary processors

perform most of the I/O functions, thus freeing the CPU for other tasks.

PERIPHERALS

Peripherals are any devices outside the CPU. They provide additional capabilities. One of the most

7.46 Chapter 7

common examples being communication with a user via input devices and output devices. Input devices
provide the computer both data to work on and programs to tell it what to do. Output devices present the
results of computer operations to the user or another system and may even control an external system.
Both input and output combine to provide user friendly interaction. This section discusses the most
common user interfaces.

Most of these devices have adapted to certain standards and use readily available connection cables.
Thus, they can be easily incorporated into a system, and a knowledge of the internal actions is not
necessary. A knowledge of how external memory devices work is more useful and will be discussed in
more detail.

Input Devices

The keyboard is probably the most familiar input device. A keyboard simply makes and breaks
electrical contacts. The open or closed contacts are usually sensed by a microprocessor built into the
circuit board under the keys. This microprocessor decodes the key closures and sends the appropriate
ASCII code to the main computer unit. Keyboards will generate the entire 128 character ASCII set and
often, with CONTROL and ALT (Alternate) keys, the 256 character extended ASCII set.

The mouse is becoming increasingly popular for use with graphical user interfaces. The mouse casing
holds a ball and circuitry to act as a multidirectional detection device. By moving the mouse, the ball
rolls, controlling the relative position of a cursor on the screen. Buttons on the mouse make and break
connections (clicking) to select and activate items (icons) on the screen. The trackball is a variation of
the mouse.

Other input devices include modems and magnetic disks and tapes. Magnetic disks and tapes, dis-
cussed at length later, provide additional external memory. Newer input devices include voice activated
devices, touch screens and scanners.

Output Devices

The most familiar output device is the computer screen, or monitor. For smaller character displays,
LED arrays can be used. The next most common output device is the printer, to produce paper hardcopy.
Modems and magnetic disks and tapes are output devices as well as input devices. Newer output devices
include speech synthesizers.

The output devices (except the sound device) share a common
display technique: images, such as characters and graphics, are
formed by tiny dots, called pixels (picture elements). On screens,
these are dots of light turned on and off. In printers, they are dots
of ink imposed onto the paper. For color displays, pixels in red,
green and blue (RGB) are spaced closely together and appear as
numerous colors to the human eye. Fig 7.41A and B show two
examples of how characters can be formed using an array of dots.
Part C shows how a series of 14 bars can be arranged to form a
character display.

Video Displays

Video monitors are usually specialized cathode-ray tube (CRT)
displays. In newer notebook computers, the monitors are being
fabricated with monochrome or color liquid-crystal displays
(LCDs), but color LCD displays are still quite expensive. A stan-
dard TV set can even be used as a computer monitor. Two tech-
niques are used to turn on the screen pixels. Raster scanning cov-

Fig 7.41 — Various character
display formats.

Digital Signal Theory and Components 7.47

Fig 7.42 — (A)The segments and their arrangement in a seven-segment display. (B) Shows how a
7447 decoder/driver IC converts BCD data into the appropriate driving signals for a common-anode
seven-segment LED display. A 7448 IC will drive a common-cathode LED display.

ers the screen by writing one row of pixels at a time, from left to right and top to bottom. Then, a vertical
retrace brings the beam back to the top of the screen to begin again. Raster scanning signals every pixel
on or off for each screen pass. An alternative, vector mode, only signals the pixels where something on
the screen has changed.

Light-emitting diodes (LEDs) are handy when a full screen display is not necessary. A single diode
easily indicates on/off states such as the power light on many devices. A popular single character display
is the seven segment version, shown in Fig 7.41D, which is good for displaying numbers.

Various seven-segment decoders are available to drive common-cathode and common-anode seven-
segment displays. These drivers receive a number, usually in BCD format, and decode the number into
signal levels to activate the proper a-g segments of the display. Fig 7.42 shows one example of a seven
segment decoder and display. Part B shows a TTL 7447 IC and a common-anode LED display. The TTL
7448 is designed to drive common-cathode displays. The dc illumination method shown is the easiest
to implement; but higher light output with lower energy consumption can be obtained by pulsing and
multiplexing the display voltage. A pulse rate of 100 Hz is imperceptible to the human eye.

As more digits are added, using a separate decoder/driver for each display becomes unfeasible from
economic and PC-board points-of-view. Fig 7.43 shows how a single decoder can be set up to drive
several displays using a multiplexing setup. The multiplexer logic sends input data for a digit into the
decoder and enables the common element of the correct display, ensuring that a display will be energized
only when both the segment and its common lead are selected. With this system, only one digit is
energized at any instant, a factor that greatly reduces power-supply requirements. To maintain the
brightness of each digit, the current to each display segment must be increased. When implementing a
mulitplexed display, be sure not to exceed the peak and average current specifications for the display.

Disk Drives

Magnetic media are essential input/output devices since they provide additional memory. The earliest
ways to store programs and data were on punched cards and tape. Some early home computers used audio
cassettes.

7.48 Chapter 7

Disk storage is prevalent when random access is needed. In some ways, disk storage is similar to that
of a record player. The data is stored in circles (tracks) on a round platter (disk or diskette) and accessed
by a device (a head) moving over the platter. Unlike the record player, the tracks are concentric rather
than spiral and the head can write as well as read.

Fig 7.44A shows an example of the disk recording surface. Usually the tracks are divided into equal-
sized storage units, called sectors. Also, since the disk has two sides, most disks can store information
on both sides. Therefore, locating a piece of information in disk memory means identifying three
coordinates: the side, track and sector.

Accessing a piece of information on the disk system involves a number of wait times until the data
access is complete. First, disks may be either movable-head or fixed-head, as shown in Fig 7.44B. In the
movable system, a single read/write head is attached to a movable arm, so there is a seek time for the
movable arm to position the read/write head on the appropriate track. In a fixed system, each track has
its own read/write head, so seek time is zero since the head is immediately in position. Second, the data
must rotate into position under the read/write head. This time is called latency. Finally, there is the
normal time for the read/write to occur.

A number of types of disk technology are available. In hard disk systems, the disk is rigid and the
read/write head does not contact the disk directly. The absence of friction between the head and disk
allows finer head positioning and higher disk speeds. Thus, hard disks hold more data and are accessed
more quickly than floppy disks. Floppy disks enclose the magnetic-media platter in a casing, as shown
in Fig 7.44C, so the disk can be carried around. The floppy disk can be inserted into a disk drive and
the read/write head automatically extended; when done, the read/write head is automatically retracted
before the disk is ejected from the drive. Variations in floppy disks include single-sided (SS) or
double-sided (DS); single, double or high density; and 31/2 or 51/4 inches. The density refers to the
disk format used by the disk controller. High data density allows more data to be written to the disk
but requires a higher quality diskette. Not all disks can be written as high density and not all disk drives
can read high density disks.

Dust and dirt on the disk and the imperfections in the disk surface gradually damage both the disk and

Fig 7.43 — Multiplexed character displays. The digits are wired in parallel, or with all of the “a”
segments connected together and so on. BCD data for a particular display is placed at the decoder
input and the desired display is selected by its address.

Digital Signal Theory and Components 7.49

Fig 7.44 — Disk storage: (A) a
disk recording surface, (B) a
column of disks illustrating
fixed versus movable head and
single versus double sided, (C)
a floppy disk.

7.50 Chapter 7

the head. This means that disks eventually wear out, and the data on the disk will probably be lost.
Therefore, it is prudent to make backup copies of your disks, stored in a clean, dry, cool place.

Tape

Tape is one of the more inexpensive options for auxiliary memory. Tape access time is slow, since the
data must be accessed sequentially, so tape is primarily used for backup copies of a system’s memory.
Tape is available in cassette form (common sizes are comparable to the cassettes for a portable tape
player and VCR tapes) and on reels (diameter is approximately one foot).

Digital audio tape (DAT) is replacing other forms of tape backup system in newer computer systems.
A single 4-mm-wide DAT cartridge, which fits in the palm of your hand, can hold over 2 gigabytes (GB)
of data (1 GB = 1000 MB).

INTERNAL AND EXTERNAL INTERFACING

Designing an interface, or simply using an existing interface, to connect two devices involves a
number of issues. For example, digital interfacing can be categorized as parallel or serial, internal or
external and asynchronous or synchronous. Additional issues are
the data rate, error detection methods and the signaling format or
standards. The format can be especially important since many
standards and conventions have developed that should be taken
into consideration. This chapter focuses on some basic concepts
of digital communications for interfacing between devices.

Parallel Versus Serial Signaling

To communicate a word to you across the room, you could hold
up flash cards displaying the letters of the word. If you hold up
four flash cards, each with a letter on it, all at once, then you are
transmitting in parallel. If instead, you hold up each of the flash-
cards only one at a time, then you are transmitting in serial. Par-
allel means all the bits in a group are handled exactly at the same
time. Serial means each of the bits is sent in turn over a single
channel or wire, according to an agreed sequence. Fig 7.45 gives
a graphic illustration of parallel and serial signaling.

Both parallel and serial signaling are appropriate for certain
circumstances. Parallel signaling is faster, since all bits are trans-
mitted simultaneously; but each bit needs its own conductor, which
can be expensive. Parallel signaling is more likely to be used on
internal communications. For longer distance communications,
such as to an external device, serial signaling is more appropriate.
Each bit is sent in turn, so communication is slower; but it is also
less expensive, since fewer channels are needed between the
devices.

Most amateur digital communications use serial transmission,
to minimize cost and complexity. The number of channels needed
for parallel or serial signaling also depends on the operational
mode: one channel per bit for simplex (one-way, from sender to
receiver only) and for half-duplex (two-way communication, but
only one person can talk at a time) but two channels per bit for full-
duplex (simultaneous communications in both directions).

Fig 7.45 —Parallel (A) and serial
(B) signaling. Parallel signaling
in this example uses 8 channels
and is capable of transferring 8
bits per bit period. Serial transfer
only uses 1 channel and can
send only 1 bit per bit period.

Digital Signal Theory and Components 7.51

Parallel I/O Interfacing

Fig 7.46 shows an example of a parallel input/output chip.
Typically, they have eight data lines and one or more handshaking
lines. Handshaking involves a number of functions to coordinate
the data transfer. For example, the READY line indicates that data
is available on all 8 data lines. If only the READY line is used,
however, the receiver may not be able to keep up with the data.
Thus, the STROBE line is added so the receiver can watch to
ensure the transmitter is ready for the next character.

Serial I/O Interfacing

Serial input/output interfacing is more complex than parallel,
since the data must be transmitted based on an agreed sequence. For example, transmitting the 8 bits (b7,
b6, ... b0) of a word includes specifying whether the least significant bit, b0, or the most significant bit,
b7, is sent first. Fortunately, a number of standards have developed to define the agreed sequence, or
encoding scheme.

Conversions

Within computers and other digital circuits, data is usually operated on, stored and transmitted in
parallel. For communicating with an external device, data must usually be converted from parallel to
serial format and vice versa. This conversion is usually handled by shift registers.

Shift registers can be left shifters, right shifters or controlled to shift in either direction. The most
general form, a universal shift register, has two control inputs for four states: Hold, Shift right, Shift left
and Load. Most also have asynchronous inputs for preset, clear and parallel load.

A register with parallel input and shift left serial output will be described, as was shown in Fig 7.24.
(A serial input/parallel output register would work in the opposite fashion.) Since the register receives
information in parallel, the n-bit register has n inputs, one to each flip-flop. A parallel load control input
is asserted to pass the initial value. The register sends out information in serial fashion so there is only
one output line. Since this example shifts left, the output comes from the left-most register, the most
significant bit. On each clock pulse, one bit is output and the other flip-flops cycle their value up to the
next flip-flop. A 0 is usually input to the least-significant bit so 0s will cycle up to fill the register. After
n clock pulses, all data bits have been shifted out and the register has a value of 0.

Asynchronous versus Synchronous Communication

To correctly receive data, the receiving interface must know when data bits will occur; it must be
synchronized with the sender. In asynchronous communication, the receiver synchronizes on each
incoming character. Each character includes start and stop bits to indicate the beginning and end of that
character. In synchronous communication, data is sent in long blocks, without start and stop bits or gaps
between characters.

Asynchronous Communication

In asynchronous communication, each transmitted character begins with a start bit and ends with a stop
bit, as shown in Fig 7.47A. The start bit (usually a zero) tells the receiver to begin receiving a character.
The stop bit (usually a one) signals the end of a character. Between characters, the transmitting circuit
sends the stop bit state (steady one or zero).

Since the receiver is always told when a character begins and ends, characters can be sent at irregular
intervals. This is especially advantageous for typed input, since the person typing is usually slower than

Fig 7.46 — Parallel interface with
READY and STROBE handshak-
ing lines.

7.52 Chapter 7

the data communications
equipment and will usually
work at an uneven pace. An-
other advantage of asynchro-
nous data is that it does not need
complex circuits to keep it syn-
chronized. Since the receiver is
newly synchronized at the be-
ginning of each character, the
characters need not be sent in a
steady stream and no stringent
demands are made on the per-
son or process generating the
characters.

A disadvantage of asynchro-
nous communications is the
inclusion of the start and stop
bits, which are not “useful”
data. If you are transmitting 8
data bits, 1 start bit and 1 stop
bit, then 20% (2 of 10 bits) is
overhead.

Synchronous Communication

In synchronous communica-
tions, data is sent in blocks,
usually longer than a single
character, as shown in Fig
7.47B. At the beginning of each
block, the sender transmits a
special sequence of bits that the
receiver uses for initial syn-
chronization. After becoming
synchronized at the beginning
of a block, the receiver must
stay synchronized throughout
the block. The sender and re-
ceiver may be using slightly
different clock frequencies, so

it is usually not adequate for them to merely be synchronized initially. There are several ways for the
receiver to stay synchronized. The transmitter may send the clock signal on a separate channel, but this
is wasteful. The modulation technique used on the communications channel may convey clock informa-
tion or the clock may be implicit within the data. See Fig 7.48.

One disadvantage of synchronous transmission is that the data must be sent as a continuous stream;
characters must be placed in a buffer until there are enough to make a block. Also, while errors in
asynchronous signaling usually only affect one character (the receiver can resynchronize at the begin-
ning of the next character), error recovery on synchronous channels may be a longer process involving
several lost characters or an entire lost block.

Fig 7.47 — Serial data transmission format. In asynchronous
signaling at A, a start pulse of one bit period is followed by the
data bits and a stop pulse of at least one bit period. In synchro-
nous signaling at B, the data bits are sent continuously without
start or stop pulses.

Fig 7.48 — Recovering the
clock (A) when the data (B) is
transmitted allows a receiver to
maintain synchronization
during synchronous communi-
cation. The modulation method
shown at C results in a transi-
tion of the received carrier at
the beginning and end of each
clock period. The encoding
method shown at D results in a
data transition in the middle of
each clock period. Either of
these methods provides
enough information for clock
recovery.

Digital Signal Theory and Components 7.53

The major advantage of synchronous signaling is that it does not impose overhead (the start and stop
bits) on each character. This is an important consideration during large data transfers.

Data Rate

There are a number of limitations on how fast data can be transferred: (1) The sending equipment has
an upper limit on how fast it can produce a continuous stream of data. (2) The receiving equipment has
an upper limit on how fast it can accept and process data. (3) The signaling channel itself has a speed
limit, often based on how fast data can be sent without errors. (4) Finally, standards and the need for
compatibility with other equipment may have a strong influence on the data rate.

Two ways to express data transmission rates are baud and bits per second (bps). These two terms are
not interchangeable: Baud describes the signaling, or symbol, rate — a measure of how fast individual
signal elements could be transmitted through a communications system. Specifically, the baud is defined
as the reciprocal of the shortest element (in seconds) in the data encoding scheme. For example, in a
system where the shortest element is 1 ms long, the maximum signaling rate would be 1000 elements
per second. (Note that, since baud is measured in elements per second, the term “baud rate” is incorrect
since baud is already a measure of speed, or rate.) Continuous transmission is not required, because
signaling speed is based only on the shortest signaling element.

Signaling rate in baud says nothing about actual information transfer rate. The maximum information
transfer rate is defined as the number of equivalent binary digits transferred per second; this is measured
in bits per second.

When binary data encoding is employed, each signaling element represents one bit. Complications
arise when more sophisticated data encoding schemes are used. In a quadriphase shift keying (QPSK)
system, a phase transition of 90° represents a level shift. There are four possible states in a QPSK system;
thus, two binary digits are required to represent the four possible states. If 1000 elements per second are
transmitted in a quadriphase system where each element is represented by two bits, then the actual
information rate is 2000 bps.

This scheme can be extended. It is possible to transmit three bits at a time using eight different phase
angles (bps = 3 × baud). In addition, each angle can have more than one amplitude. A standard 9600 bps
modem uses 12 phase angles, 4 of which have two amplitude values. This yields 16 distinct states, each
represented by four binary digits. Using this technique, the information transfer rate is four times the
signaling speed. This is what makes it possible to transfer data over a phone line at a rate that produces
an unacceptable bandwidth using simpler binary encoding. This also makes it possible to transfer data
at 2400 bps on 10 m, where FCC regulations allow only 1200 baud signals.

When are transmission speed in bauds and information rate in bps equal? Three conditions must be
met: (1) binary encoding must be used, (2) all elements used to encode characters must be equal in width
and (3) synchronous transmission at a constant rate must be employed. In all other cases, the two terms
are not equivalent.

Within a given piece of equipment, it is desirable to use the highest possible data rate. When external
devices are interfaced, it is normal practice to select the highest standard signaling rate at which both
the sending and receiving equipment can operate.

ERROR DETECTION

Since data transfers are subject to errors, data transmission should include some method of detecting
and correcting errors. Numerous techniques are available, each used depending on the specific circum-
stances, such as what types of errors are likely to be encountered. Some error detection techniques are
discussed in the Modulation Sources chapter. One of the simplest and most common techniques, parity
check, is discussed here.

7.54 Chapter 7

Parity Check

Parity check provides adequate error detection for some data transfers. This method transmits a parity
bit along with the data bits. In systems using odd parity, the parity bit is selected such that the number
of 1 bits in the transmitted character (data bits plus parity bit) is odd. In even parity systems, the parity
bit is chosen to give the character an even number of ones. For example, if the data 1101001 is to be
transmitted, there are 4 (an even number) ones in the data. Thus, the parity bit should be set to 1 for odd
parity (to give a total of 5 ones) or should be 0 for even parity (to maintain the even number, 4). When
a character is received, the receiver checks parity by counting the ones in the character. If the parity is
correct, the data is assumed to be correct. If the parity is wrong, an error has been detected.

Parity checking only detects a small fraction of possible errors. This can be intuitively understood by
noting that a randomly chosen word has a 50% chance of having even parity and a 50% chance of having
odd parity. Fortunately, on relatively error-free channels, single-bit errors are the most common and
parity checking will always detect a single bit in error. Parity checking is a simple error detection
strategy. Because it is easy to implement, it is frequently used.

Signaling Levels

Inside equipment and for short runs of wire between equipment, the normal practice is to use neutral
keying; that is, simply to key a voltage such as + 5 V on and off. In neutral keying, the off condition is
considered to be 0 V. Over longer runs of wire, the line is viewed as a transmission line, with distributed
inductance and capacitance. It takes longer to make the transistion from 0 to 1 or vice versa because of
the additional inductance and capacitance. This decreases the maximum speed at which data can be
transferred on the wire and may also cause the 1s and 0s to be different lengths, called bias distortion.
Also, longer lines are more likely to pick up noise, which can make it difficult for the receiver to decide
exactly when the transition takes place.

Because of these problems, polar keying (technically bipolar keying) is used on longer lines. Polar
keying uses one polarity (for example +) for a logical 1 and the other (– in this example) for a 0. This
means that the decision threshold at the receiver is 0 V. Any positive voltage is taken as a 1 and any
negative voltage as a 0.

Since neutral keying is usually used inside equipment and polar keying for lines leaving the equip-
ment, signals must be converted between polar and neutral. Op amp circuits, line drivers and line
receivers are ways to handle this conversion. There are a number of different types available, but the most
popular ones are the 1488 quad line driver and the 1489 quad line receiver. The 1488 is capable of
converting four data streams at standard TTL levels to output levels that meet EIA RS-232-C or CCITT
V.24 standards. The 1489 has four receivers that can convert RS-232-C or V.24 levels to TTL/DTL
levels.

Connectors

These digital interfacing issues are simply digital communications issues for the specific case of direct
wire connections between devices. Since direct wire connections are involved, the designer should
consider the type of connector between the devices and its pin assignments. Numerous connectors are
available or can be created.

	Introduction to the CD-ROM
	The ARRL Handbook
	Cover
	Contributors
	Copyright
	Contents
	Foreword
	The Amateur's Code
	Schematic Symbols Used in Circuit Diagrams
	Handbook Software
	The ARRL-At Your Service
	ARRL Handbook CD Companion Software

	Introduction
	1 - What is Amateur Radio?
	Hobby of Diversities
	Tech or Novice: It's Your Choice
	What's in a Call Sign?
	Ham Radio Action
	Getting Started
	Hams as World Citizens
	The Administrators: ITU and FCC
	The ARRL
	Welcome!
	Glossary
	Resources

	2 - Activities
	Awards
	Contests
	Nets
	Ragchewing
	Amateur Radio Education
	ARRL Field Organization
	Emergency Communications
	ARES and RACES
	Military Affiliate RADIO Service (MARS)
	Direction Finding (DF)
	Satellite Operation
	Repeaters
	Image Communications
	Digital Communications
	Microwave and VHF/UHF Weak-Signal Operating

	3 - Modes
	What is a Mode?
	CW
	AM
	Angle Modulation: FM and PM
	SSB
	Digital Modes
	PSK31
	Spread Spectrum
	Glossary

	Fundamental Theory
	4 - Mathematics for Amateur Radio
	Mathematical Terms and Symbols
	Significant Figures and Decimal Places
	Laws of Exponents
	Equations
	Measurement Units and Constants
	Trigonometry
	Coordinate Systems
	Complex Algebra
	Logarithms
	Integration and Differentiation

	5 - DC Theory and Resistive Components
	Glossary
	Introduction
	Series and Parallel Resistances
	Power and Energy
	Circuits and Components

	6 - AC Theory and Reactive Components
	Glossary
	Alternating Current, Frequency and Wavelength
	Capacitance and Capacitors
	Inductance and Inductors
	Quality Factor, or Q of Components
	Calculating Practical Inductors
	Ohm's Law for Reactance
	Impedance
	Resonant Circuits
	Transformers

	7 - Digital Signal Theory and Components
	Digital Fundamentals
	Number Systems
	Physical Representation Of Binary States
	Combinational Logic
	Sequential Logic
	Digital Integrated Circuits
	Computer Hardware

	8 - Analog Signals and Components
	Glossary
	Introduction
	Analog Signal Processing
	Analog Devices
	Practical Semiconductors

	Practical Design and Projects
	9 - Safety
	Antenna and Tower Safety
	Electrical Wiring Around the Shack
	Safe Homebrewing
	RF Radiation and Electromagnetic Field Safety
	Other Hazards in the Ham Shack

	10 - Real-World Component Characteristics
	Lumped vs Distributed Elements
	Low-Frequency Component Models
	Components at RF
	Thermal Considerations
	CAD Tools for Circuit Design
	Low-Frequency Transistor Models

	11 - Power Supplies and Projects
	Glossary
	Alternating-Current Power
	Rectifier Types
	Rectifier Circuits
	Filtration
	Regulation
	High-Voltage Techniques
	Batteries and Charging
	Emergency Operations
	Power-Supply Projects
	Project: A Series-Regulated 4.5- to 25-V, 2.5-A Power Supply
	Project: A 13.8-V, 40-A switching Power Supply
	Project: 28-V, High-Current Power Supply
	Project: A 3200-V Power Supply

	12 - Modulation Sources (What and How We Communicate)
	Voice Modes
	Amplitude Modulation (AM)
	Frequency Modulation (FM)

	Text (Digital) Modes
	Morse Telegraphy (CW)
	Baudot (ITA2) Radioteletype
	ASCII
	AMTOR
	Packet Radio
	PACTOR
	PACTOR II
	G-TOR
	CLOVER-II
	PSK31

	Image Modes
	Facsimile
	Slow-Scan Television (SSTV)
	Fast-Scan Television

	Radio Control
	Spread Spectrum

	13 - RF Power Amplifiers and Projects
	Types of Power Amplifiers
	Design Guidelines and Examples
	Project: The Sunnyvale/Saint Petersburg Kilowatt-Plus
	Project: A 6-Meter Kilowatt Amplifier Using the Svetlana 4CX1600B
	Project: A 144-MHz Amplifier using the 3CX1200Z7
	Project: A 2-m Brick Amp For Handhelds

	14 - AC/RF Sources (Oscillators and Synthesizers)
	How Oscillators Work
	Phase Noise
	Oscillator Circuits And Construction
	VHF And UHF Oscillators
	Frequency Synthesizers
	A Summing-Loop Synthesizer
	Direct Digital Synthesis
	Exploring The Synthesizer In A Commercial MF/HF Transceiver
	Synthesizers: The Future
	Bibliography and References

	15 - Mixers, Modulators and Demodulators
	The Mechanism of Mixers and Mixing
	Practical Building Blocks for Mixing, Modulation and Demodulation
	Testing and Calculating Intermodulation Distortion in Receivers
	Project: A High-Dynamic-Range MF/HF Front End
	Project: A Synchronous AM Detector for 455 kHz
	References

	16 - Filters and Projects
	Basic Concepts
	Filter Synthesis
	Filter Design Using Standard Capacitor Values
	Chebyshev Filter Design (Normalized Tables)
	Quartz Crystal Filters
	Monolithic Crystal Filters
	SAW Filters
	Transmission-Line Filters
	Helical Resonators
	Active Filters
	Project: Crystal-Filter Evaluation
	Project: Band-Pass Filters for 144 or 222 MHz
	Switched Capacitor Filters
	Project: A Continuously Variable Bandwidth Audio Filter
	Project: A BC-Band Energy-Rejection Filter
	Project: Second-Harmonic-Optimized (CWAZ) Low-Pass Filters
	Project: The Diplexer Filter
	Other Filter Projects
	References

	17 - Receivers, Transmitters, Transceivers and Projects
	A Single-Stage Building Block
	Multistage Systems
	Coupling Networks
	The Amateur Radio Communication Channel
	The UHF/Microwave Channel
	Receiver Design Techniques
	Modern Receiver Design Methods
	Project: D-C Receiver Design Example
	The Superheterodyne Receiver
	VHF and UHF Receivers
	Project: GaAs FET Preamp for 430 MHz
	Transmitter Design
	Transverters
	Transceivers
	Project: A Rock-Bending Receiver for 7 MHz
	Project: A Wideband MMIC Preamp
	Project: A Binaural I-Q Receiver
	Project: A Superregenerative VHF Receiver
	Project: A 30/40 W SSB/CW 20-m Transceiver
	Project: The NorCal Sierra: An 80-15 M CW Transceiver
	Project: A Broadband HF Amplifier Using Low-Cost Power MOSFETs
	Project: An Experimental 1/2-W CW Transmitter
	Project: A Drift-Free VFO

	18 - Digital Signal Processing
	DSP Fundamentals
	Processing Signal Sequences
	Digital Filters
	Nonlinear Processes
	Demodulating Signals
	Decimation and Interpolation
	DSP Hardware and Development Tools
	Bibliography

	19 - Transmission Lines
	Transmission Line Basics
	Reflections on the Smith Chart
	Waveguides
	Bibliography

	20 - Antennas and Projects
	Dipoles and the Half-Wave Antenna
	Project: A 135-ft Multiband Center-Fed Dipole
	Project: A Trap Dipole for 40, 80 and 160 m
	Project: 80-m Broadband Dipole with Coaxial Resonator Match
	Project: A 40-m and 15-m Dual-Band Dipole
	Project: A Resonant Feed-Line Dipole
	Project: A Simple Quad for 40 Meters
	Vertical Antennas
	Project: Dual-Band Verticals for 17/40 or 12/30 m
	Project: A Tree-Mounted HF Groundplane Antenna
	Inverted L and Sloper Antennas
	The Half-Sloper Antenna
	Project: 1.8-MHz Inverted L
	Project: The AE6C Dual-Band Inverted-L Antenna
	Project: Simple, Effective, Elevated Ground-Plane Antennas
	Yagi and Quad Directive Antennas
	Project: A Five-Band, Two-Element HF Quad
	Loops
	Project: The Loop Skywire
	Project A Small Loop for 160 m
	HF Mobile Antennas
	Base, Center or Distributed Loading
	Project: A Remoteley Tuned Analog Antenna Coupler
	VHF/UHF Antennas
	Project: 1/4-Wavelength Antennas For Home, Car And Portable Use
	Project: An All-Copper 2-M J-Pole
	VHF/UHF Yagis
	Project: 3 and 5-Element Yagis for 6 m
	Project: A Portable 3-Element 2-m Beam
	High-Performance VHF/UHF Yagis
	Project: A High-Performance 432-MHz Yagi
	Project: A High-Performance 144-MHz Yagi
	SWR Analyzer Tips, Tricks and Techniques
	SWR Analyzer Hints
	The MFJ-249
	MFJ-247 Hints
	Project: A QRP Accessory Pack For The MFJ-259
	An Ethernet Analyzer
	Determining Complex Impedance With an Autek Research RF-1
	Project: The "Gadget"

	21 - Propagation
	Fundamentals of Radio Waves
	Sky-Wave Propagation and the Sun
	MUF Prediction
	Propagation in the Troposphere
	Extraterrestrial Propagation
	Noise and Propagation
	Further Reading

	22 - Station Setup and Accessory Projects
	Fixed Stations
	Mobile and Portable Installations
	Project: The TiCK-2-a Tiny CMOS Keyer 2
	Project: Vintage Radio T/R Adapter
	Project: Quick and Easy CW With Your PC
	Project: A Simple Voice Keyer
	Project: A Vacuum Manipulator For Chip Compnents
	Project: An Expandable Headphone Mixer
	Project: Audio Break-Out Box
	Project: An SWR Detector Audio Adapter
	Project: PC Voltmeter And SWR Bridge
	Project: The Tandem Match- An Accurate Directional Wattmeter
	Project: A Remotely Controlled Antenna Switch
	Project: A Trio of Transceiver/Computer Interfaces
	Project: A Computer-Controlled Two-Radio Switchbox
	Project: TR Time-Delay Generator
	Project: A Simple 10-Minute ID Timer
	Project: High-Power ARRL Antenna Tuner for Balanced or Unbalanced Lines
	Project: Using PIC Microcontrollers in Amateur Radio Projects
	Bibliography

	23 - Repeaters, Satellites, EME and Direction Finding
	Repeaters
	Satellites
	Project: The 4 × 3 × 5 MHz Filter for Mode J
	Project: Parabolic Reflector and Helical Antennas for Mode S
	Project: Mode-S Receive Converter
	Project: A Simple Junkbox Satellite Receiver
	Project: An Integrated L-Band Satellite Antenna And Amplifier
	Selected Satellite References
	Earth-Moon-Earth (EME)
	Radio Direction Finding
	Project: The Simple Seeker
	Project: An Active Attenuator for VHF-FM
	RDF Bibliography

	Construction Techniques
	24 - Component Data
	Component Values
	Component Markings
	Resistor Markings
	Resistor Power Ratings
	Capacitor Markings
	Surface-Mount Resistor and Capacitor Markings
	Inductors And Core Materials
	Transformers
	Semiconductors
	Diodes
	Transistors
	Integrated Circuits

	Other Sources Of Component Data
	Copper Wire Specifications
	Color Code for Hookup Wire
	Aluminum Alloy Characteristics
	Crystal Holders
	Miniature Lamp Guide
	Metal-Oxide Varistor (MOV) Transient Suppressors
	Voltage-Variable Capacitance Diodes
	Zener Diodes
	Semiconductor Diode Specifications
	European Semiconductor Numbering System (PRO Electron Code)
	Japanese Semiconductor Nomenclature
	Suggested Small-Signal FETs
	Low-Noise Transistors
	VHF and UHF Class-A Transistors
	Monolithic Amplifiers (50 Ohm)
	General Purpose Transistors
	RF Power Amplifier Modules
	General Purpose Silicon Power Transistors
	RF Power Transistors
	Power FETs
	Logic IC Families
	Three-Terminal Voltage Regulators
	Op Amp ICs
	Triode Transmitting Tubes
	TV Deflection Tubes
	EIA Vacuum-Tube Base Diagrams
	Properties of Common Thermoplastics
	Coaxial Cable End Connectors

	25 - Circuit Construction
	Shop Safety
	Tools and Their Uses
	Project: A Deluxe Soldering Station
	Project: Soldering-Iron Temperature Control
	Electronic Circuits
	From Schematic to Working Circuit
	Mechanical Fabrication

	26 - Test Procedures and Projects
	DC Instruments and Circuits
	AC Instruments and Circuits
	Project: The Microwatter
	Frequency Measurement
	Project: A Marker Generator with Selectable Output
	Project: A Dip Meter with Digital Display
	Frequency Counters
	Other Instruments and Measurements
	Project: A Wide-Range Audio Oscillator
	Project: Measure Inductance and Capacitance With A DVM
	Project: A Six Digit Programmable Frequency Counter and Digital Dial
	Oscilloscopes
	The Modern Scope
	Project: An HF Adapter for Narrow-Bandwidth Oscilloscopes
	Project: A Calibrated Noise Source
	Project: A Noise Bridge for 1.8 Through 30 MHz
	Project: A Signal Generator for Receiver Testing
	Project: Hybrid Combiners for Signal Generators
	Receiver Performance Tests
	Transmitter Performance Tests
	Glossary

	27 - Troubleshooting and Repair
	Safety First
	Getting Help
	Theory
	Test Equipment
	Where To Begin
	Various Approaches
	Testing Within A Stage
	Typical Symptoms and Faults
	Troubleshooting Hints
	Components
	After The Repairs
	Professional Repairs

	Operating Practices
	28 - Electromagnetic Interference (EMI)
	The Scope Of The Problem
	Responsibility
	EMC Fundamentals
	Cures
	Specific Cures

	29 - Regulations
	Glossary
	Other FCC Rule "Parts"
	Classification of Emissions
	The FCC's Role
	Federal Restrictions on the Installation of Amateur Stations
	Local Zoning Ordinances, Covenants and Deed Restrictions

	30 - References
	General/Electronics
	US Customary to Metric Conversion Factors
	Abbreviations List
	ARRL Handbook Address List
	Technical Information Packages
	TIS Bibliography List
	Voltage-Power Conversion Table

	Components/Equipment
	Measured inductance for #12 Wire Windings
	Large Machine-Wound Coil Specifications
	Small Machine-Wound Coil Specifications
	How to Use the Standard Value Capacitor (SVC) Filter Tables
	5-Element Chebyshev Low-Pass Filter Designs- 50-Ohm Impedance, C-In/Out for Standard E24 Capacitor Values
	7-Element Chebyshev Low-Pass Filter Designs- 50-Ohm Impedance, C-In/Out for Standard E24 Capacitor Values
	5-Element Chebyshev Low-Pass Filter Designs- 50-Ohm Impedance, L-In/Out for Standard-Value L and C
	7-Element Chebyshev Low-Pass Filter Designs- 50-Ohm Impedance, L-In/Out for Standard-Value L and C
	5-Branch Elliptic Low-Pass Filter Designs- 50-Ohm Impedance, Standard E12 Capacitor Values for C1, C3 and C5
	5-Element Chebyshev High-Pass Filter Designs- 50-Ohm Impedance, C-In/Out for Standard E24 Capacitor Values
	7-Element Chebyshev High-Pass Filter Designs- 50-Ohm Impedance, C-In/Out for Standard E24 Capacitor Values
	5-Branch Elliptic High-Pass Filter Designs- 50-Ohm Impedance, Standard E12 Capacitor Values for C1, C3 and C5
	Relationship Between Noise Figure and Noise Temperature
	Pi-Network Resistive Attenuators (50 Ohm)
	T-Network Resistive Attenuators (50 Ohm)

	Antennas/Transmission Lines
	Tower Manufacturers
	Antenna Wire Strength
	Impedance of Various Two-Conductor Lines
	Standard vs American Wire Gauge
	Attenuation per Foot for Lines
	Equivalent Values of Reflection Coefficient, Attenuation, SWR and Return Loss
	Guy Wire Lengths to Avoid

	Modes
	Morse Code Character Set
	The ASCII Coded Character Set
	ITA2 (Baudot) and AMTOR Codes
	Baudot Signaling Rates and Speeds
	Code Conversion, ITA1 through 4 (Notes 1 and 2)
	Conversion from ASCII to Morse and Baudot
	Data Interface Connections
	EIA-449 37-Pin Connector Assignments
	EIA-449 9-Pin Connector Assignments
	ISO 2593 Pin Allocations for V.35 Interfaces
	RTTY Control Sequences (from CCITT Recommendation S.4)
	EME Software

	Operating and Interference
	Voluntary HF Band Plans for Considerate US Operators
	TVI Troubleshooting Flowchart
	TV Channels vs Harmonics
	US Amateur Bands/Power Limits
	VHF/UHF/EHF Calling Frequencies
	ITU Regions
	Allocation of International Call Signs
	FCC-Allocated Prefixes for Areas Outside the Continental US
	DX Operating Code
	W1AW Schedule
	ARRL Procedural Signals (Prosigns)
	The RST System
	Q Signals
	CW Abbreviations
	ITU Recommended Phonetics
	ARRL Log
	ARRL Operating Awards
	ARRL Membership QSL Card
	Mode Abbreviations for QSL Cards
	US/Canada Map
	ARRL Grid Locator Map for North America

	Emergency Communications
	Operating Aids for Public Service
	Principles of Emergency Communication
	ARES Personal Checklist
	ARES/RACES
	The Interaction Between the EOC/NCS and the Command Post(s) in a Local Emergency
	Organization and Interaction of ARES and NTS
	Typical Station Deployment for Local ARES Net Coverage in an Emergency
	Typical Structure of an HF Network for Emergency Communication

	Message Handling
	Amateur Message Form
	A Simple NTS Formal Message
	Handling Instructions
	ARL Numbered Radiograms
	How to be the Kind of Net Operator the Net Control Station (NCS) Loves
	Checking Your Message
	Tips on Handling NTS Traffic by Packet Radio

	Templates

