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igital signal processing (DSP) is one of the great technological innovations of recent times in
electronics. This description of DSP for hams was written by Jon Bloom, KE3Z. The basic idea
behind DSP is to represent a signal waveform by a sequence of numbers, then process those

numbers digitally—usually with a computer—to effect changes to the signal or to extract information
from the signal. Similarly, signals can be created by calculating a sequence of numbers that represent
the desired waveform.

The advantages of processing signals digitally are: the “circuit” never needs tuning, as the computer
program doesn’t age or change with temperature variations; flexibility, since the way in which the signal
is processed is controlled by software, allowing easy changes to the processing; and some unique
capabilities the software approach to signal processing makes available, such as processing that adapts
itself to the nature of the incoming signal.

DSP has become of great interest to amateurs in the past few years because the devices needed to do
it—fast, dedicated DSP chips—have become easily available and inexpensive. Projects that make use
of DSP are showing up more and more often in the amateur magazines and books, and tools that allow
the average amateur to work with DSP have become readily obtainable.

 In this chapter, we will look at the mechanisms by which DSP is performed, starting with the way
waveforms can be turned into sequences of numbers and then, after processing, back into waveforms.
We will also look at some of the ways signals can be generated and how they are processed to filter,
demodulate and analyze them.
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DSP Fundamentals
Any introduction to DSP necessarily begins by covering some fundamental concepts. Among these

are the effects of digitizing a waveform to create a sequence of computer words and the effect this
operation has on the design of a DSP hardware system.

SAMPLING

The process of generating a sequence of numbers from an analog, or continuous, waveform is known
as sampling. In sampling a signal, we measure the amplitude, or voltage, of the signal periodically, at
a regular interval. This results in a sequence of numbers that state the amplitude of the signal at discrete
times. For that reason, DSP is often called discrete-time signal processing.

The result of this sampling process might be as shown in Fig 18.1. The sequence of numbers tells us
the amplitude of the signal at the sampling instant, but we do not know the values of the waveform
between the sampling points. You might suspect that we could miss important information about the
signal by neglecting the values between the sampling points and, in fact, that can happen if the samples
aren’t taken close enough together in time. But what is “close enough”? If we sample the sine wave
shown in Fig 18.1 one million times per cycle, we are going to end up with a pretty close approximation
of the sine wave! But if we sample it once a week, we won’t have much useful information. Somewhere
between these two extremes lies the minimum sampling rate we
can use and still represent the sine wave.

To discover the minimum acceptable sampling rate, it is useful
to look at the sampling process itself. What we put into the sam-
pling circuit is a continuous waveform; what we get out is a set of
discrete sample values. One way to look at this process is as a
multiplication of two signals, as shown in Fig 18.2. One of the
signals is the input waveform, while the other is a series of pulses,
each with an amplitude of 1 and separated in time by the sampling
interval, T. By multiplying these two signals together, we get zero
at all times between the sampling pulses and a sample equal to the
amplitude of the input waveform at the sampling times.

Now that we can treat sampling as multiplication, we are on
more familiar ground. We are used to multiplying signals, since
that is precisely what happens in an ideal double-balanced mixer
(see the Mixers chapter). So we can analyze the result of the
multiplication by looking at the frequencies of the two signals,
shown in Fig 18.3. The input signal is a sine wave in this case,
which has a single positive frequency component, fi, and a nega-
tive component, –fi. But what
of the sampling pulses? It turns
out that the frequency spectrum
of the sampling pulses com-
prises a component at 0 Hz, one
at the sampling frequency, F =
1/T, and components at all of
the positive and negative har-
monics of the sampling fre-
quency: –4F, –3F, –2F, –F, 2F,
3F, 4F and so on. Multiplying—

Fig 18.1—Sampling a sine wave.
The upper graph shows the input
waveform, while the lower graph
shows the result of sampling the
signal at discrete times.

Fig 18.2—Sampling is a multiplication, or mixing, process.
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mixing—this signal with the
input sine wave thus gives us
sum and difference frequencies
around each of the components
of the sampling signal. That is,
we have signal components
around the sampling fre-
quency, for example, at F–fi

and F+fi. And we have compo-
nents at 2F±fi, at 3F±fi, and so
on. We also have components
around 0 Hz, at fi and –fi, as
well as around the negative-

frequency components of the sampling signal, at –F±fi, –2F±fi and so on.
Now, if our input signal was at a frequency of F–fi, instead of fi, the input would mix with the 0-Hz

component of the sampling signal to give us outputs at F–fi and –F+fi, with the component at F to give
fi and 2F–fi, with the component at –F to give –fi and –2F+fi, and so on. The result would be indistin-
guishable from sampling a signal at fi! Such an input signal is called an alias, since it “looks like” a
frequency that it is, in fact, not. Any signal at a frequency above F/2 is indistinguishable from a signal
below F/2. That is, a signal at F/2 + fi is an alias of a signal at F/2 – fi; you can’t tell them apart. This
fact leads to one of the most fundamental laws of DSP, the sampling theorem, which states that you must
sample a signal at a sampling rate greater than twice the highest frequency component of the input signal
to avoid aliasing.

Normalized Frequencies

The sample values we get from a waveform depend on both the waveform and the sampling rate. If
we were to sample a 1-kHz sine wave signal at a 10-kHz rate, we would get the same set of sample values
as if we had sampled a 2-kHz signal at a 20-kHz rate. To the computer that processes the numbers, both
cases are exactly the same. For that reason, we often find it convenient to normalize frequencies in our
design and analysis of DSP systems. A normalized frequency is the actual frequency divided by the
sampling frequency. Since we should restrict our input signals to actual frequencies of 0 to F/2, this
results in normalized frequencies of 0 to 0.5, since (F/2)/F=0.5.

QUANTIZATION

Usually, we perform sampling with an analog-to-digital (A/D) converter. Every so often—at the
sampling rate—the processing computer asks the A/D converter for the amplitude of the waveform.
Since the A/D converter must give its result as a binary number, it can only respond with one of a limited
number of amplitude values. For example, an 8-bit A/D converter can give one of 256 values. When the
signal the A/D is measuring falls between two of the values it can represent, the A/D reports the nearest
value that it can. This means that, most often, the value reported by the A/D is not exactly the amplitude
of the input signal; there is a small error, called the quantization error. How large the error is depends
on how close the amplitude of the input signal is to one of the binary values the converter can report.

The amplitude relayed by the A/D converter to the computer can, therefore, be thought of as the sum
of two signals: the actual input signal and an error “signal.” The peak amplitude of the error signal is
equal to one-half the amplitude of the least-significant bit (LSB) of the A/D converter, as the difference
between the input signal and a reportable binary value cannot exceed this amount. (Of course, this
assumes a perfect A/D converter; deficiencies in the A/D can increase this error value.) If the input signal
is varying, the error signal will vary as well, as the difference between the actual amplitude and the

Fig 18.3—The sampled spectrum can be found by mixing the
spectrum of the input signal with that of the sample pulses.
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reported amplitude changes with each sample. Normally, with a signal composed of numerous frequen-
cies, changing all the time, all possible error values of ±1/2 LSB are about equally likely. The result in
this case is that the error signal looks random; it is noise—quantization noise. From this, we can calculate
an effective A/D signal-to-noise (S/N) ratio, which is the ratio of the desired full-scale signal to the noise
term. The result, taking into account the random nature of the error signal, is:

S/N = 6.02N + 1.76 dB (1)

where N is the number of bits of the converter. For example, an 8-bit A/D converter would give an
S/N ratio of:

6.02(8) + 1.76 = 49.9 dB.

The amplitude of this noise is distributed across the frequency range of the sampling system. That is,
the 49.9 dB S/N ratio of the example converter includes noise from dc to F/2. If digital filtering is used
in the processing to reduce the bandwidth, the amount of noise is reduced proportionally. This can be
used to advantage, as we will see. But it is important to remember that we assumed the error signal was
random. If there is a harmonic relationship between the sampling rate and the input signal, the error
signal will not be random, and the error may show up at discrete frequencies, rather than as random noise.

DSP SYSTEM HARDWARE

The sampling theorem suggests that we had better not allow any signals at frequencies above one-half
the sampling rate to get into our A/D converter. If we do, we won’t be able to tell whether the signal we’re
processing is above or below F/2. To eliminate this risk, we usually place a low-pass filter, called an
antialiasing filter ahead of the A/D. The job of this filter is to attenuate any signal at a frequency above
F/2 to the point where its amplitude is negligible. Fig 18.4 shows the block diagram of a DSP system
with an antialiasing filter included.

After we’ve processed the signal in the computer, we may want to output the processed signal as a
waveform. We do this by feeding the samples into a digital-to-analog (D/A) converter. This results in
a “staircase” waveform, where the output amplitude is held constant during the sample period.This
staircase waveform has a spectrum similar to that of the sampled signal of Fig 18.3, but having the sample
amplitudes “connected” by the D/A modifies the spectrum somewhat. Instead of having equal-amplitude
components around all harmonics of the sampling frequency, the amplitudes of the components lessen
as the frequency is increased. Specifically, the amplitude of any frequency component is:

Ff
Ffsin

AA so π
π= (2)

where: Ao is the amplitude of frequency f at the output of the D/A converter, As is its amplitude at the
input of the D/A converter, and F is the sampling frequency. This applies not only to the signals around
the sampling frequency and its harmonics, but also to the signals from 0 Hz to F/2. At F/2, the result is:

Ao = As (0.637)

which represents a –3.9-dB
amplitude error, with less error
at lower frequencies, down to
no error at 0 Hz. If such an am-
plitude error is unacceptable in
a particular application, you
can either choose a faster sam-
pling rate, so that the highest

Fig 18.4—Block diagram of a DSP system. The low-pass filter in the
input subsystem is the antialiasing filter, while the output low-pass
filter is the reconstruction filter.
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signal frequency falls well below F/2 (called oversampling), or correct the amplitude error with filtering.
Some D/A converters designed for DSP work include internal error correction for this effect.

 Most likely, we will want to remove the signal components above F/2 from the output of the D/A
converter. We do this by following the D/A converter with a low-pass filter, to remove these components
of the signal, as shown in Fig 18.4. Such an output filter is called a reconstruction filter.

For both the antialiasing and reconstruction filters, which are analog filters, the necessary filter
complexity is determined by how close to F/2 the highest desired signal frequency will be. For example,
requiring the filter to pass a signal just below F/2 while rejecting its alias just above F/2 will require a
filter with a very steep roll-off. Such filters are both complex and difficult to construct reliably. Also,
they typically exhibit a large degree of phase distortion. For that reason, we usually oversample by two
to three times. This allows us to relax the requirements for the antialiasing and reconstruction filters,
making them simple and benign.

A/D and D/A Converters for DSP

Getting the right kind of A/D converter is important for DSP. A basic A/D converter simply digitizes
the voltage that appears at its input. Depending on the type of circuit used in the converter, this digiti-
zation may take a relatively short period of time or a long time. How long it takes to perform the
conversion affects the highest sampling rate the A/D converter can support. If the converter isn’t finished
performing its calculations for a given sample, it can’t begin calculating the next one. So, one of the key
parameters to consider in choosing an A/D converter is its maximum sampling rate.

But there’s another issue to consider as well. What happens if the input voltage changes while the
A/D converter is doing its processing? The answer is that the A/D will probably report some value
between the initial voltage, at the start of the conversion, and the final voltage. This will seriously affect
the accuracy of our sample values. Remember, we assumed that each sample value was a snapshot of the
input voltage at one instant of time.

The solution to this problem is to add a sample-and-hold (S/H) amplifier ahead of the A/D converter.
This circuit is clocked, or strobed, at the same time the A/D converter is commanded to begin its
conversion. The S/H amplifier “freezes” its output level, holding a steady voltage on the input of the
A/D converter regardless of any succeeding changes in the voltage coming into the S/H amplifier. Often,
an S/H amplifier and an A/D converter are packaged into a single integrated circuit part. Such devices
are knows as sampling A/D converters.

While D/A converters don’t have to worry about their inputs changing between samples, they do have
to be able to quickly change their output voltages from sample to sample. Be sure to use a D/A converter
rated for the output sampling rate you intend to use.
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Processing Signal Sequences
While we have to expend a certain amount of effort to turn waveforms into sampled sequences and

back into waveforms again, the heart of DSP lies in the processing of those signals. Processing of signals
is performed largely by three fundamental operations of DSP: addition, multiplication and delay. Adding
two numbers together or multiplying two numbers together are common computer operations, and we
won’t dwell on them too much. Delay, on the other hand, takes some explaining.

Delaying a signal, in DSP, means processing previous samples of the signal. For example, you might
take the current input sample and add its value to that of the previous input sample, or to the sample before
that. It’s difficult to explain without tiresome mathematics exactly how and why delays enter into our
processing so importantly. We can draw an analogy, however, to analog R-L-C circuits, in which the
delays (phase shifts) of the inductors and capacitors work together to create frequency-selective circuits.
Processing discrete-time signals on the basis of a series of samples performs much the same function as
the phase shifts of reactive analog components. Just as the inductor or capacitor stores energy, which is
combined with later parts of the applied signal, stored sample values are combined in DSP with later
sample values to create similar effects.

We will represent DSP algorithms in two ways: by flow diagrams and by equations. Flow diagrams
are made up of the elements of Fig 18.5. These provide a convenient way to diagram a DSP algorithm.
One item of note is the delay block, labeled z–1. For any given sample time, the output of this block is
what was at the input of the block at the previous sample time. Thus the block provides a one-sample
delay. It is important to recognize that the signals “step” through the flow diagram. That is, at each
sample time, the input sample appears and, at the same time, all of
the delay blocks shift their previous inputs to their outputs. Any
addition or multiplication takes place (we assume) instanta-
neously, producing the output. The output then remains stable
until the next sample arrives. While real calculations do, of course,
require time to complete, the algorithms don’t take that into ac-
count—and don’t need to. Everything happens on the basis of the
incoming sequence of sample values.

Fig 18.6 shows an example flow diagram. In this simple case,
the previous input sample is multiplied by 2 and added to the
current input sample. That sum is then added to the previous out-
put sample, which is multiplied by –3, to form the current output
sample. We have added notation to this diagram to show how the
various signals in the diagram are represented mathematically.
The key to reading this notation is to understand a term of the form
x(n). This can be read as “x as a function of n.” The variable n is
the sample index, an integer value, and sample number n is, in this
case, the current input sample. x(n) is simply the amplitude value
of the current sample, sample number n. The output of the delay
block in the lower left is the previous input sample value. (Recall
that the delay block shifts its input to its output each time a new
sample arrives.) Thus it is the value of x when n was one less than
its present value, or x(n–1). Similarly, y(n) is the current output
value, and y(n–1) is the output value at the previous sample time.
Putting these signal notations together with the multipliers, or
coefficients, shown on the diagram lets us construct an equation
that describes this algorithm:

Fig 18.5—Flow diagram symbols.
At A, the symbol for adding two
sample values. B is the symbol
for multiplying a sample value by
a constant, K. Delaying the
sample value by one sample
period is shown at C.

Fig 18.6—An example flow dia-
gram.
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y(n) = x(n) + 2x(n – 1) – 3y(n – 1) (3)

This equation exactly describes the algorithm diagrammed in Fig 18.6, giving the output sample
value for any value of n, based on the current and previous input values and the previous output
value. We can use the diagram and the equation interchangeably. Such an equation is called a
difference equation.

GENERATING SINE WAVES

Up until now, we have been talking about processing a sequence of numbers that came from a
sampled waveform. But we also can let the computer calculate a sequence of numbers to generate
a signal. One of the easiest—and most useful—signals we can generate in this manner is a sine
wave.

One commonly used technique for generating a sine wave is the phase accumulator method. We
generate our samples at a constant rate—the sampling frequency. For any frequency we wish to generate,
we can easily calculate the change in phase of a signal at that frequency between two successive samples.
For example, say we are generating samples at a 10-kHz rate—every 0.1 ms. If we want to generate a
1-kHz signal, with a period of 1 ms, we note that the signal changes 36° in 0.1 ms. Therefore, the phase
angle of the signal at each sample proceeds:

0°, 36°, 72°, 108°, 144°, 180°, ...

All we need do is find the sine (or cosine, if we prefer) of the current phase angle; that will be the value
of our output sample:

sin(0°), sin(36°), sin(72°), sin(108°),...

Once the phase passes 360°, it rolls over; it always has a value
between 0 and 360°. Finding the sine or cosine can be done in the
computer in one of several ways, although most often it is done with
a look-up table, as that is the quickest way.

This kind of generator can be implemented directly in digital
hardware, as shown in Fig 18.7, and is an example of direct digital
synthesis (DDS).

Another generator is shown in Fig 18.8. This flow diagram
shows a DSP sine-wave oscillator. Like any oscillator, it has no
signal input, just an output. By choosing proper coefficients
and placing the correct starting values in the delay elements, we

can generate a particular fre-
quency. While this algorithm
works well, it suffers from two
defects compared to the phase
accumulator technique. First,
it is difficult to change the fre-
quency while the system is
running. You have to change
not only the coefficients, but
the contents of the storage el-
ements as well. This leads to a
phase discontinuity in the out-
put when the change is made,

Fig 18.7—Direct digital synthesis
(DDS) can be performed using
digital hardware, without a DSP
chip.

Fig 18.8—A DSP sine-wave
oscillator algorithm.
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which often is undesirable. The second problem has to do with finite-length binary words. Since
the coefficient is a number stored in a computer, it must be represented as a set of binary bits. You
can’t use just any value you want; you have to use values that can be represented by the available
number of bits. In this oscillator, the frequency change caused by a one-LSB difference in coef-
ficients is different at low frequencies than at higher frequencies. That’s not true of the phase
accumulator. So this oscillator is most suitable for applications where a fixed, unchanging fre-
quency is called for.

TIME AND FREQUENCY

Often we are interested in the frequency content of a signal. Using DSP, we have tools that allow us
to calculate the frequency content—with some restrictions. The restrictions arise because the frequency
content of a signal is not always easy to define. We’ve all learned that a sine wave consists of a signal
at a single frequency, where the frequency is the reciprocal of the period of the sine wave. Actually, that’s
a simplification.

Consider the signals of Fig 18.9. The sine wave at A has a frequency of 1/t, where t is the period of
the sine wave. But what about the signal at B? There is a sine wave there, but only one cycle, preceded
and followed by a steady zero-volt signal. Since the signal at B is not the same as the signal at A, they
cannot have the same frequency content! (If they did, they’d be the same signal.) The signal at B is
similar to a signal from a CW transmitter keyed on and off, although typically the transmitter would send
more than one cycle of the signal at a time. When we abruptly turn a CW transmitter on and off, we get
key clicks: signals at frequencies near the frequency of the sine wave. So the turning on and off of the
signal changes the frequency content.

What this example demonstrates is that when you analyze the frequency content of an aperiodic
signal (one that does not repeat endlessly) over a short period of
time, you may get a different result than if you had used a longer
period of time. In fact, to be absolutely precise about the
frequency content of a real signal, you would have to analyze it
over all time! That’s a bit impractical, of course. Fortunately, if
you look at the signal over a relatively long period of time, the
difference between what you get as a result and what you would
get if you looked at the signal for all of time is pretty small.
What’s “a relatively long period of time”? That depends on the
nature of the signal. In the example of the on-off keyed CW
transmitter, you would want to include many of the on-off tran-
sitions. The more you include, the more closely your result will
come to “reality.”

FOURIER TRANSFORMS

Since we can’t look at a signal for all of time, we have to
come up with a way of getting close enough. The way we do
this is by using a Fourier transform. The Fourier (pronounced
foor-ee-ay) transform is a mathematical technique for deter-
mining the content of a signal. Applied to a signal over a par-
ticular period of time, it determines the frequency content of
that signal by assuming that the signal being analyzed repeats
itself indefinitely.

Of course, when we analyze a real-world signal, such as a
couple of seconds of speech, we know that those few seconds of

Fig 18.9—These two sine-wave
signals have different frequency
contents, even though the sine
wave in each has the same
period.
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signal do not, in fact, repeat endlessly. So at best, the Fourier transform can give us only an approxi-
mation of the frequency content. But if we look at a large enough period of the signal, that approxi-
mation will be pretty good. We also have a mathematical trick up our sleeve that will help us control
the error, as we’ll see.

The Discrete Fourier Transform (DFT)

In DSP, we make use of a variant of the Fourier transform called the discrete Fourier transform (DFT).
This is an algorithm that calculates the Fourier transform of a sampled signal. Mathematically, the DFT
of a signal is computed thus:

∑
−

=

π
1N

0n

nk/N2–x(n)e = )k(X j

(4)

where x(n) is the nth sampled signal input
That e–j2πnk/N part may look pretty daunting, but there is a simplification, called Euler’s rule, that we

can use to state the DFT in more familiar terms:
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In this equation, N is the number of samples we’re processing, n is the sample index, starting at 0, and
x(n) is the value of sample number n. For any value of k, the frequency index, we get X(k), which is the
content of the signal at the frequency kF/N, with F being the sampling frequency. We can do this for
values of k from 0 to N–1. For example, say we were sampling at 10 kHz and we took 50 samples. Each
value of k would represent a frequency of:

200k
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10000
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N
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so, for k=1, X(k)=X(1) is the content of the signal at 200 Hz. For k=2, X(k)=X(2) is the content of the
signal at 400 Hz, and so on. The dc value of the signal is at 0 Hz, so it is given when k=0 and X(k)=X(0).

To calculate X(k) for a particular value of k, we plug k into equation 5, then compute the sum for all
of the input sample values. There is a niggling detail left: the value we calculate has both real and
imaginary components: it’s a complex number. The imaginary component arises because of the j in
equation 5. What this means is that the signal has both an amplitude and a phase. We can calculate the
amplitude and phase from the complex value of X(k) like so:
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(7)

Here, the values of a and b are what we calculated with cosines and sines in equation 5. |X(k)| is the
amplitude, and θ(k) is the phase angle.

Note from equation 6 that if we use values of k greater than N/2, the corresponding frequency for X(k)
is greater than F/2. Since the sampling theorem says frequencies above F/2 are aliases, what are these
values? It turns out that in the DFT, half of the actual amplitude of a frequency component appears at
the expected value of k, and half appears at the alias frequency. If the input samples, x(n), are all real
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numbers, the value of X(k) at the alias frequency is the complex conjugate of the value at the actual
frequency, meaning the complex number has the same real part and an imaginary part that is equal in
value but opposite in sign. Mathematically, we write this as:

X(N – k) = X*(k) (8)

What this means in practice is that once we have calculated the value of X(k), we know the value of
X(N–k): just reverse the sign of the imaginary part. But even easier, just calculate values of X(k) for k
from 0 to (N–1)/2 and then double the calculated amplitude to account for the alias-frequency part. The
result is the spectrum of the sampled signal.

There are times, though, when the samples we are processing with the DFT are not real numbers. In
that case, the values in the bins where k > N/2 will not be complex conjugates of the bins k < N/2; there
will be no simple relationship between a frequency bin and its alias.

Spectral Leakage

In equation 5 we are limited to integer values of k. That means we can calculate, in our example, values
of X(k) at 1200 Hz (k = 6) and 1400 Hz (k = 7), but not at 1300 Hz. But what if there is a frequency
component of 1300 Hz in the signal we are analyzing? Simply, part of that signal shows up in the 1200-Hz
“bin,” part shows up in the 1400-Hz bin, and smaller parts show up in other nearby bins. This is the error
we discussed earlier. It occurs because in our example, a 1300-Hz signal doesn’t occur an integer number
of times in our 50 samples. That is, if a 1300-Hz sine wave began at the first of the samples, the last of
the samples would not occur just as a cycle of the sine wave was completing. Since the DFT assumes
the same 50 samples occur over and over, we get a discontinuity at the end of the set of samples. This
abrupt discontinuity causes unexpected frequency components, just as does fast on-off keying of a CW
transmitter.

This phenomenon is known as spectral leakage, since a signal component at a frequency between bins
appears to “leak” into adjacent bins. Fig 18.10 shows an example DFT with input signals of 1000 and
1300 Hz each at the same amplitude. The 1000-Hz signal falls directly on a bin and therefore produces
a single line. But for the 1300-Hz signal, it is clear that not only has the signal leaked into nearby bins,
but the actual amplitude of the signal isn’t obvious, since the signal is divided up among several bins.

We can improve the situation somewhat by taking more samples. Equation 6 shows that increasing N
moves the bins closer together. Analyzing a signal that falls be-
tween two bins will still cause leakage into nearby bins, but since
the bins are closer together the spread in frequency will be less.
But this doesn’t solve the problem of the amplitude variation.

To minimize that problem, we use a technique known as
windowing. (This is the mathematical trick we mentioned earlier.)
We multiply each sample of the set we’re analyzing by a value
determined by the position of that sample in the set. Fig 18.11
shows a set of samples before and after windowing. The samples
near the beginning and end of the sample set have been reduced in
amplitude. The effect of this is to reduce the amount of disconti-
nuity that occurs at the end of the sample set and the beginning of
the (assumed) identical following set of samples. Reducing this
discontinuity reduces the spectral leakage problem.

You don’t get something for nothing, however. Obviously, we
have distorted the signal we’re analyzing. The effect of this shows
up in the resulting spectrum, shown in Fig 18.12. Now each fre-
quency component is leaked across several frequency bins, even

Fig 18.10—The 50-point DFT of a
signal with 1000-Hz and 1300-Hz
components, sampled at a 20 kHz
rate, shows the effect of spectral
leakage. The 1000-Hz signal falls
exactly on the fifth frequency bin
(k = 5) and doesn’t leak at all. The
1300-Hz signal falls between bins
6 and 7, causing it to spread over
a number of bins.
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if it normally would fall right on a bin. But the leakage is more consistent; you don’t get zero leakage
at some frequencies and lots of leakage at others. Rather, you get about the same amount at all frequen-
cies. This means that the relative amplitudes of signal components, viewed across several bins of
frequency, are nearly the same no matter what the actual frequency of the component. We have traded
some resolution for consistent results.

You can’t multiply the samples by just any old values to create the windowed set of samples. But a
number of window types have been mathematically defined that give the consistent results we are
looking for. Among these are the Hamming, Hanning, Blackman and Kaiser windows. Which to use
depends in part of how much resolution you are willing to trade for consistency. The more consistent
you want the amplitude to be, the less resolution you will get.

The Inverse DFT (IDFT)

Since we now have a way to determine the frequency content of a set of samples, it would be handy
to also have a way to relate the frequency content back to the original set of samples. This is done with
the inverse DFT (IDFT):
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=
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Except for the fact that now the inputs are the frequency bins, X(k), and the result is a sample value, x(n),
this looks very much like equation 4. A 1/N factor has appeared, and the sign of the exponent has
changed. Simplifying via Euler’s rule gives us:

Fig 18.11—Windowing minimizes the effects of discontinuity at
the ends of the sample set for the DFT. Here, the samples at A
have a window function applied, resulting in the samples at B.

Fig 18.12—The DFT of a 1000-Hz
signal, sampled at 20 kHz and
windowed. Note that, even
though 1000 Hz falls directly on a
frequency bin, the signal is
spread over several adjacent
bins.
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which looks much like equation 5. So alike are these equations that often the same software routine is
used to implement both the DFT and the inverse DFT.

THE FAST FOURIER TRANSFORM (FFT)

Calculating the entire spectrum of a sampled signal, for all values of k from 0 to N–1, requires a lot
of calculation. For each value of k, each of the input samples must be processed by taking a sine and
cosine, multiplying by the sample value, and adding that to the resulting sum. In our example, where N
was 50, we have to do this N(N–1)/2 = 50(50–1)/2 = 1225 times! Even on a fast computer, that’s a lot
of calculation. And the number of calculations increases by the square of N.

There is help on the way. If we choose a convenient number of samples to analyze, some of the
sin(2πnk/N) and cos(2πnk/N) values are the same because the sine and cosine functions are periodic.
This allows us to factor out the common sine and cosine values from the DFT sum and combine those
repeated multiply-and-add operations into one operation. If we’re really clever about selecting the right
number of samples, we can do this at a number of places, dramatically reducing the number of calcu-
lations we have to do. The result is a fast Fourier transform (FFT) algorithm.

The details of FFT algorithms are beyond the scope of this book, but the result is not: the FFT produces
exactly the same results as the DFT, only faster—thus its name. Because it is just a fast DFT, the FFT
has the same properties as the DFT, including spectral leakage, so windowing is often used with the FFT
as well.

There have been a number of FFT algorithms developed over the years. By far, the most commonly
used FFT algorithms are those developed by Blackman and Tukey. These are the radix-2 algorithms. The
convenient number of samples used by these algorithms is a power of two. You can use a radix-2
algorithm on 4 samples, 8 samples, 16 samples, or any number 2m samples, where m is an integer 2 or
greater. The speed improvement of using a radix-2 FFT increases as the number of samples increases,
as shown in Table 18.1.

THE Z-TRANSFORM

We used equation 3 to mathematically describe the algorithm of Fig 18.6. This equation is useful, but
it’s hard to manipulate algebraically because it has no common variables: x(n) is a different value from
x(n–1). Manipulating the equations that represent DSP systems with algebra is useful because, if we can
do it, we can find different
ways of implementing the same
system, and some algorithms
we find will be easier to imple-
ment than others. To get the
difference equation into a form
we can manipulate, we will use
the z-transform. The math-
ematics that underlie the z-
transform are outside the scope
of this book. We will concen-
trate on the mechanics of using
z-transforms.

Earlier, we labeled our delay

Table 18.1
Speed Improvement of the Radix-2 FFT

Number of complex Number of complex
Number of multiplications multiplications in Improvement
points (N) in DFT = N2 radix-2 FFT = (N/2)log2N factor

4 16 4 4.0
8 64 12 5.3

16 256 32 8.0
32 1024 80 12.8
64 4096 192 21.3

128 16384 448 36.6
256 65536 1024 64.0
512 262144 2304 113.8

1024 1048576 5120 204.8
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block in the flow diagram with z–1. This is because z–1 represents a one-sample delay in a z-transform
expression. To convert the difference-equation term x(n–1) to its z-transform, we take the z-transform
of x(n), which is X(z), and multiply it by the one-sample delay, z–1. The result is X(z)z–1. If the term
is x(n–2), we multiply X(z) by two delays: X(z)z–1z–1 = X(z)z–2. If we perform this operation on all of
the terms of equation 3, we get:

Y(z) = X(z) + 2X(z)z–1 –3Y(z)z–1 (11)

Now we can factor out the X(z) and Y(z) terms and solve the equation for Y(z)/X(z), which we denote
as H(z):
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This equation is known as the transfer function of the system. It can be expressed in a slightly different,
but equivalent, form:
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In working with DSP systems, you will often encounter transfer functions like the ones above. To
implement the system described by the transfer function, you may have to convert the function back to
a difference equation. You do this from a transfer function like that of equation 12 by cross multiplying
the two sides, then bring the Y(z) term to one side and all other terms to the other side to get a result like
equation 11. Finally, take the inverse z-transform of each term, turning, for example, X(z)z–1 into
x(n–1). From the resulting difference equation, you can either construct a flow diagram or just write your
program directly.

IMPULSE RESPONSE

One of the important measures of how a DSP algorithm acts is its impulse response. This is the output
sequence of a system when the input is a sequence of values equal to 0, followed by a single value equal
to 1, followed again by values of zero. This input sequence is called the unit-impulse sequence, denoted
by δ(n):

δ(n) = {...,0,0,0,1,0,0,0,...} (14)

Normally, n is zero when the sequence value is 1. The preceding zero values in the sequence are at
n = –1, n = –2 and so on, while the following zero values are at n = 1, n = 2 and so on. The output of a
system when this sequence is input—its impulse response—is denoted as h(n). For the system of equation
3, the impulse response is:

h(n) = 0 for n<0
h(0) = 1 + 2(0) – 3(0) = 1
h(1) = 0 + 2(1) – 3(1) = –1
h(2) = 0 + 2(0) – 3(–1) = 3
h(4) = 0 + 2(0) – 3(3) = –9
h(5) = 0 + 2(0) – 3(–9) = 27
...

Here, we assume the output was 0 when we started. Note that the output continues to be nonzero
indefinitely for n > 0, even though all future inputs are 0. This is an example of an infinite impulse
response (IIR). If the output had returned to zero and stayed there, it would be a finite impulse response
(FIR). The infinite nature of the impulse response of this example comes from the feedback of the output
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signal into the system. If no feedback exists in the system, the impulse response will be finite.
The usefulness of the impulse response is twofold. First, you can determine exactly how an algorithm

will respond to a given input sequence by knowing the algorithm’s impulse response. The logic is this:
any particular input sample will cause an output that is equal to the impulse response times the input
value. If the input value were 1, the output generated by that input would be exactly the impulse response.
If the input value were 2, the output values would be doubled. But in a real signal, the input samples are
not preceded and followed by an infinite number of zero values; they are preceded and followed by other
input sample values. So the output of a system is the sum of the current input sample value times the
impulse response, plus the value of the preceding input sample times the impulse response, with that
output shifted by one sample time. And the earlier samples contribute shifted, weighted copies of the
impulse response as well. The output sequence for a particular input sample, x(n), is:

y(n) = x(n)h(0)+x(n–1)h(1)+x(n–2)h(2)+...

We can write this in compact form as follows:

( ) ( ) ( )∑
∞

−∞=

−=
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khknxny
(15)

Equation 16 is called the convolution sum, and the process of taking this sum is called convolution.
The value of k must be an integer. While k runs from –∞ to +∞, it is only necessary to compute the sum
for values of k for which x(n–k)h(k) is not 0. In our example system of equation 3, h(k) is zero for all
values of k less than 0. But, since our example impulse response is infinite, we would have to compute
the sum for values of k up to the point where h(k) becomes zero, if that ever happens. (It doesn’t, in this
example.) Some mathematics can be used to show that equation 15 is equivalent to:

∑
∞

−∞=

−=
k

)kn(h)k(x)n(y (16)

We can use these equations interchangeably.
The second useful characteristic of the impulse response is that the frequency response of the algo-

rithm can be obtained by taking the DFT of the impulse response. This is a powerful tool for analyzing
a DSP system. Of course, if the impulse response is infinite, you would theoretically need an infinitely
long DFT—and an infinite amount of time to calculate it! But in practice, useful IIR systems have
impulse responses that approach 0 as k gets large, although they never quite get there. So a very good
approximation of the frequency response can be gotten by taking enough of the impulse response
sequence that the remaining values are all very close to zero and performing the DFT on that truncated
sequence. For an FIR system, on the other hand, an exact frequency response can be obtained by taking
the DFT of its impulse response sequence.

The impulse response sequence of an FIR system may be too short for a useful DFT. If, for example,
the sequence has only 20 nonzero terms, a 20-point DFT would result in only 10 frequency bins between
0 and F/2. In this case, we simply append zero values to the end of the impulse response sequence to create
the desired number of samples, then take the DFT. This approach also allows us to create a sequence
length that is usable with an FFT algorithm, speeding our analysis.
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Digital Filters
Filters make up one class of system that is of special interest in DSP. As we have seen, an algorithm

that has a particular impulse response also has a particular frequency response, determined by the DFT
of the impulse response. So, by creating a system with the proper impulse response we can achieve a
particular frequency response—a filter. There are several reasons why DSP filtering might be preferable
to using analog filters. The principal reasons are based on the precise, unchanging nature of digital
systems. In general, more stringent filter requirements—steeper roll-off in the frequency response, or
less distortion in the phase response—call for more complex filters. As a filter gets more complex—
adding inductors and capacitors in the case of analog filters, or adding additional delay elements in the
digital case—the sensitivity of the filter’s response to small errors in the element values becomes more
severe. Thus for analog filters, precise values of resistance, inductance and capacitance must be main-
tained if the filter is to operate as designed. Establishing those precise component values is difficult, and
maintaining them during temperature variations and aging of the components is more so. DSP filters,
on the other hand, are unchanging. The “component” values consist of numbers stored in a computer,
which are not susceptible to temperature changes or aging. For that reason, highly complex filters that
would not be viable in the analog realm are easily formed by DSP algorithms.

DSP filters can be broadly divided into two classes, depending on whether the impulse response of
the filter is finite or infinite. Each class has its advantages and disadvantages; which to use will depend
on the requirements of the filter and the system being used.

Designing a filter begins with specification of the desired filter response. The specification must
describe the cut-off frequency (or frequencies) of the filter, the allowable amplitude variation in the pass
band and the amount of attenuation in the stop band. Refer to the Filters chapter for background on filter
response specification. In specifying DSP filters, we often use normalized frequencies, since the filter
design depends on the ratio of the filter cut-off frequency to the sampling frequency, rather than the
actual signal frequency.

Just as the sampled signal includes alias components around the harmonics of the sampling frequency,
so too does the frequency response of a DSP filter. It is not possible to use a DSP filter to filter out these
alias components. (Unless the sampling rate is changed, as described below.) They exist because of the
nature of a discrete-time signal, and a digital filter can’t change that. So, a filter that passes a particular
frequency also passes all aliases of that frequency.

FIR FILTERS

The basic structure of an FIR
(finite-impulse response) filter
is shown in Fig 18.13. This
kind of filter is sometimes re-
ferred to as a transversal filter.
The difference equation of this
filter can be determined by
inspecting the flow diagram:

Fig 18.13—Structure of an FIR filter. N is the number of delay
elements, or taps.

The Sounds of
Amateur Radio

SSB reception with a DSP filter set for a narrow bandwidth.

The Sounds of
Amateur Radio

SSB reception with a DSP filter wide open.
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y(n) = x(n) h (0) + x (n–1) h (1) + … + x(n – [N – 1]) h (N – 1)

Or, writing it in more compact form:
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−

=

−=
1N

0k
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Note that this equation is the convolution sum, just like equation 15, except that since h(k) is a finite-
length sequence, k runs from 0 to N – 1. Thus the FIR filter directly implements convolution.

The impulse response of the filter of Fig 18.13 is easy to find by feeding the unit-impulse sequence
(equation 14) into the filter. The single nonzero input sample first appears at the input, where it is
multiplied by the coefficient h(0). Since this sample was preceded by an infinite number of 0 values, all
of the delay elements have 0 at their outputs. Only the multiplied input sample contributes to the output;
h(0) is the result. When the next sample arrives, the 1 is shifted to the output of the first delay element,
to be multiplied by h(1). All other sample values being 0, h(1) is the resulting output. On succeeding
samples, as 0 values arrive at the input, the 1 value is shifted successively to each delay-element output,
to be multiplied by h(2), h(3), and so on, up to h(N – 1). Thus the impulse response of the filter is simply
equal to the coefficients h(0) to h(N – 1).

The trick, of course, is to find the particular impulse response that gives the desired frequency response
for the filter. There are two questions: how many filter elements, or taps, are needed? And what are the
proper coefficient values to use to give the desired response? In general a longer filter—a higher value
of N—can provide steeper roll-off in the frequency response. In practice, most FIR filter design ap-
proaches start by estimating the number of taps needed, then redesigning the filter if the number of taps
selected is found to be too few or too many. Calculating the required coefficients, on the other hand, is
more exact, but requires a lot of calculation.

Finding proper coefficient values is complicated by one other issue. We would like the impulse
response to be symmetrical about its center. That is, we want h(0) = h(N–1), h(1) = h(N–2), h(2) =
h(N–3) and so on. We want this because an FIR filter with a symmetrical impulse response has a constant
delay at all frequencies. This constant delay, which can also be stated as a linear phase response, means
that the filter will not introduce phase distortion to the signal. For many uses, especially in digital data
communication, this is a crucial filter requirement. Not only is the delay of a symmetrical FIR filter
constant, it is easily calculated:

T
2

1Nd −= (17)

where d is the filter delay in seconds, N is the number of taps, and T is the sampling interval in seconds.
One feasible approach to designing an FIR filter relies on the facts that the DFT of the impulse

response equals the frequency response and that the IDFT can transform a frequency-domain sequence
to the time domain. Thus if we take the IDFT of the desired frequency response, we get the needed
impulse response. That works, but it suffers from the same discontinuity problem as the DFT itself. In
performing the DFT of a signal, this problem shows up as spectral leakage. In the case of finding an
impulse response for our FIR filter, it shows up as a ripple in the frequency response. Only at the exact
frequencies of the bins of the specified frequency response do we get the correct result; between those
bins we get variations in the response. We can attack that problem in the same way we attacked spectral
leakage—with windowing. But in doing so, we modify the frequency response, just as we spread out the
signal components over several bins in the DFT. That makes it more difficult to get the exact frequency
response we want without trial and error.

A better design results from using a complicated design algorithm developed by Parks and McClellan.
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This approach results in an equiripple design, where all of the passband ripples are of the same amplitude,
as are all of the stopband ripples.

Since finding the needed coefficients for a given filter design requires so much calculation, it is a good
task for a computer. And DSP filter-design programs are easily available at low cost. For that reason,
we will not dwell on the design mathematics; use of a filter-design program to calculate the coefficients
is by far the most desirable approach. The Bibliography at the end of this chapter lists some filter-design
software tools.

IIR FILTERS

While FIR filters have some exceptionally useful qualities, particularly linear phase response, they
require a large number of taps—and a lot of computing power—to implement sharp filters. An IIR filter,
on the other hand, can give an equivalent frequency response using fewer calculations. What it will not
provide is linear phase response. In circumstances where the computational requirements are of more
concern than linear phase response, IIR filters may be desirable.

Unlike the FIR filter, the IIR filter includes feedback—that’s what makes its impulse response infinite.
Its difference equation shows this:

( ) ( ) ( ) ( ) ( ) ( ) ( )knyB...2nyB1nyBjnxA...1nxAnxAny k21j10 −−−−−−−−++−+= (18)

IIR filters can be implemented using several different algorithms, or structures, as shown in Fig 18.14. The
structure at A is most easily understood, as it can be drawn directly from inspection of the difference equation.

It may not be obvious, but the structure of Fig 18.14B acts just like the structure in A. It contains fewer
delay elements, though, which reduces the amount of storage needed to keep the delayed sample values.

Often, a filter-design program used to design IIR filters will give its result in the form of a transfer
function. As explained above, the transfer function can be translated to a difference equation, from which
the filter can be drawn or implemented. There is a catch, though. As IIR filters get larger, with larger
values of j and k in equation 18, finite-word-length effects become a problem. The coefficients used in
the filter cannot be represented exactly in the computer; they can only be approximated by the number
of bits used to represent numbers in the machine. While this isn’t a big problem for FIR filters, the
feedback inherent in IIR filters makes it a concern. Small errors in the coefficients may, after being fed
back through a number of delay stages to add to the output many times, produce undesirable effects. To
combat this problem, the structure shown in Fig 18.14C may be used. Here, the large filter is broken up
into a series of second-order (two delays) filters. Cascading these smaller filters results in the overall
response desired. To calculate the coefficients of these smaller filters requires applying some algebra
to the transfer function of the larger filter. The desired result is a transfer function of the form:
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Good filter-design programs will calculate the coefficients of the cascaded sections for you.
The most common design technique used for IIR filters is to design an equivalent analog filter, then

transform it to a digital filter. Because of this, many IIR filter-design programs require you to specify
the filter shape from among the types of analog filters: Butterworth, Chebyshev or elliptical. See the
Filters chapter for a description of these filter types.

We assume when analyzing the operation of an IIR system that the delay elements initially store 0
values, until an input signal arrives. Because the impulse response is infinite, initial nonzero values may
have long-lasting effects on the output signal. For this reason, any implementation of an IIR filter or
system should start by zeroing the storage elements before processing begins.
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Fig 18.14—IIR filter structures. At A is the direct-form (I) structure; B is the direct-form (II) structure;
and C is the cascade structure.
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Nonlinear Processes
In analog electronics, we amplify signals, sum them and pass them through frequency-selective

circuits. Each of these linear operations has its DSP equivalent, as we’ve seen. But analog electronics
also includes nonlinear processing of signals. Examples of nonlinear processes are rectification, clip-
ping, limiting and mixing. One thing that distinguishes nonlinear from linear processing is that in linear
systems, the same frequencies that are input to the system appear at the output, possibly with changes
in amplitude and/or phase, but without the appearance of frequency components different from those at
the input.

As discussed in the Mixers chapter, nonlinear processes result in the multiplication of one signal by
another (or several others), either explicitly, as in a mixer circuit, or implicitly, as in a nonlinear
amplifier or a diode. The same multiplication process is used in DSP, but here we have to be very careful
when performing nonlinear operations. A sampled signal comprises not only the frequency of the
original signal, but also components around the sampling frequency and its harmonics, as shown in Fig
18.3. Performing a nonlinear operation on sampled signals, therefore, requires that we consider the
resulting frequency components and how they will appear in the sampled spectrum.

We begin by taking a closer look at the spectrum of a sampled signal, shown in Fig 18.15. Here, the
input signal has one frequency component (it’s a sine wave), f1, which shows up in the sampled spectrum
at f1, –f1, F ± f1, –F ± f1 and so on. Notice that the spectrum between –F/2 and 0 is exactly like the
spectrum from F/2 to F. This is inherent in the sampling process and will always be the case. Because
of this, we can concentrate on the spectrum from –F/2 to F/2, knowing that all of the harmonic spectra
are simply copies of this spectrum. When we generate new frequency components, by nonlinear opera-
tions, that fall above F/2, we can treat them as though they “wrap around” to the negative side, between
–F/2 and 0. Generated frequency components more negative than –F/2 wrap around to the positive
spectrum.

Now consider what happens
when we multiply two sine-
wave signals together. This is
done by taking each sample of
one signal and multiplying it by
the corresponding sample of
the other signal, as shown in
Fig 18.16. In analog electron-
ics, we learned through trigo-
nometry that multiplying two
sine waves produces sum and
difference frequencies. That’s
true here, too, but we’ll look at
it in a different, equally valid,
way, shown in Fig 18.17. We
will consider that the positive
frequency component of one
signal, f2, shifts the other sig-
nal, f1—both its positive and
negative frequency compo-
nents—up in frequency by the
frequency value of f2. Simi-
larly, the negative frequency

Fig 18.15—The spectrum of a sampled signal can be analyzed by
referring to only the part from –F/2 to F/2 (F is the sampling fre-
quency), the unshaded part of this diagram. The spectrum around
each harmonic of the sampling frequency is a copy of the un-
shaded spectrum.

Fig 18.16—Mixing two sine waves is the same as multiplying them.
For real-number signals, this results in two signals, the sum and
difference of the input signals.
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component of f2 shifts the com-
ponents of f1 down by the same
amount. The result is four fre-
quency components, two posi-
tive and two negative, as shown
in Fig 18.17. We could have
chosen f2 as our shifted signal
and f1 as the amount to shift by
and gotten the same resulting
spectrum.

Fig 18.18 shows the result if
this process ends up shifting a
signal beyond the F/2 limit,
wrapping it around to the other
side of the spectrum. Note that,
in this case, the wrapped com-

ponents appear at frequencies different from where they would be if we had done the mixing with analog
electronics. This is because of aliasing, which occurs when a frequency component exceeds F/2.

An example shows why analyzing the effect of a nonlinear operation in this way is important. We can
simulate a half-wave rectifier by replacing all of the negative-amplitude samples of a signal with zeros.
We might be tempted to do that to, for example, demodulate an AM signal. But a look at the spectral result
will show this to be a poor technique. Mathematically, half-wave rectification of a sine wave is like
multiplying the input signal by a square wave that has the same frequency as the input signal and
amplitude values of +1 and 0. Spectrally, the square wave comprises a dc component and frequency
components at the fundamental and all of the odd harmonics of the fundamental. So, the result of
rectification is to create frequency-shifted copies of the input signal around 0 Hz and around the odd
harmonics of the square wave. Some of these harmonics will show up at frequencies above F/2, no matter
what F we choose, and these components will alias into the spectrum below F/2. The result will be
nothing like what we get with a physical half-wave rectifier, and most likely nothing like what we
wanted. The lesson is that we have to be very careful that our nonlinear operations do not generate
unwanted frequency components that show up as aliases. That doesn’t mean we can’t do nonlinear
operations, just that we need to exercise caution.

COMPLEX AND ANALYTIC SIGNALS

As we’ve seen, multiplying two signals shifts the positive and negative components of one of the
signals in two directions, generating two sets of frequency components. In analog electronics, we deal
with this reality by using filters to eliminate the unwanted second component, leaving only the desirable
one. We can do that in DSP, too, but there is another way that is often better.

In all of our preceding discussion, each positive frequency component was mirrored by a correspond-
ing negative frequency component. This is a characteristic of any signal that is composed of amplitude
values that are only real numbers. But if we can create a signal that is composed of complex amplitude
values, this need not be the case. In fact, a complex signal can have only positive-frequency components
or only negative-frequency components. Such a signal is called an analytic signal.

Consider the usefulness of such signals. If we multiply together two single-frequency signals that have
only positive-frequency components, the resulting spectrum is simply a frequency component at the sum
of the frequencies of the two signals; there are no negative frequencies present to get shifted into the
positive frequency range. This gives us a pure frequency shift, rather than the sum-and-difference result
of multiplying two real-value signals.

Fig 18.17—The mixing process
can be thought of as shifting
one signal’s frequency compo-
nents up by the positive
frequency of the other signal
and down by the negative
frequency of the other signal.

Fig 18.18—If the frequency shift
caused by mixing causes a
component to exceed the F/2
boundary, the signal will wrap
to the opposite end of the
spectrum, as shown here.
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A sampled, single-frequency analytic signal has the form:

( ) ( ) ( )Fnf2sinAFnf2cosAnx π+π= j (20)

where A is the peak amplitude of the sine wave, f is the frequency of the signal and F is the sampling
frequency. This signal has only positive frequencies. A signal of the form:

( ) ( ) ( )Fnf2sinA–Fnf2cosAnx ππ= j (21)

has only negative frequencies. An analytic signal that comprises multiple positive-frequency compo-
nents is made up of a sum of components of the form of equation 20. That means that the imaginary part
of the signal is equal to the real part, but shifted 90° at all frequencies.

In a computer, such as a DSP system, we handle complex numbers by operating on the real and
imaginary parts separately. We call the real part of the analytic signal the I (in-phase) component and
the imaginary part the Q (quadrature) component. Complex arithmetic dictates that, when we add two
complex values, we add the real parts together then we add the imaginary parts together; we still keep
the real result separate from the imaginary result. Complex multiplication is a bit more involved. We can
multiply two complex numbers like so:

(a + jb)(c + jd) = (ac – bd) + (ad+bc) (22)

It is easy to generate a single-frequency analytic signal like that of equation 20. Referring to the section
on Generating Sine Waves, we can use the phase-accumulator method to generate the I component of
the signal, then subtract 90° from the current phase angle and compute the output value for that angle
to get the Q component.

There also is an oscillator structure, shown in Fig 18.19, we can use to generate the I and Q components
for a single-frequency complex signal.

HILBERT TRANSFORMERS

But what if we want to create an analytic signal from a sampled, real signal? We need to shift all of
the frequency components of the sampled signal by 90°. Fortunately, in DSP we have a straightforward
way to do that: the Hilbert transformer. Recall that in the FIR Filters section we noted that an FIR filter
with a symmetrical impulse response exhibits a constant delay of (N–1)/2 sample periods. It turns out
that an FIR filter with an antisymmetrical impulse response—that is, h(0) = –h(N – 1), h(1) =
–h(N – 2), and so on—produces a delay of (N – 1)/2 and a shift of 90° at all frequencies. This is exactly
the kind of filter we need to create the Q component of our analytic signal!

A system using a Hilbert
transformer to create an ana-
lytic signal is shown in Fig
18.20. Since the Hilbert trans-
former includes not only a 90°
phase shift, but also a fixed
delay of (N – 1)/2 sample
periods, we need an (N – 1)/2
delay in the I channel so that
the difference between the two
channels becomes solely the
90° phase shift. We also need
to have the amplitudes of the
two channels the same, so the I
channel should have the same

Fig 18.19—A quadrature sine-wave oscillator provides two sine
waves, with a 90o phase difference between them.
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frequency response as the Hilbert transformer in the Q channel. A
Hilbert transformer filter can be designed by most FIR filter-design
programs.

When you use analytic signals to perform frequency shifting,
you may at some point end up with a signal you want to output to
the D/A converter. The D/A, of course, handles only real numbers.
Feeding just the real part of the analytic signal into the D/A pro-
duces an output waveform that has both positive and negative com-
ponents, but that’s what we expect of a real signal. So, once the
processing of the analytic signal is complete, we simply discard the
Q-channel signal and use the I-channel values for our output. This
may allow us to skip computing the output Q-channel values alto-
gether, as shown in Fig 18.21. Note, though, that we do need the Q
channel to compute the real part of the frequency-shifted signal,
because the multiplied real values include terms from the imagi-
nary part, as shown in equation 22.

A complex signal can also have positive and negative frequen-
cies that are not mirror images of one another. One way of generating such a signal is shown in Fig 18.22.
Here, a real input signal is formed into a complex signal and frequency shifted, both at the same time.
(This is an example of a half-complex mixer. It takes in a real signal and produces a complex signal.) With
a complex signal such as this, we cannot simply output the real part and expect only the positive
frequencies to generate mirror images; the negative frequencies will have mirror images in the positive
part of the spectrum, too. Still, such complex signals can be useful at intermediate steps in the processing,
before a real signal is output.

Fig 18.20—Generating an analytic
signal from a sampled input
signal requires passing the input
through a Hilbert transformer
filter to generate the Q (quadra-
ture) channel. The I (in-phase)
channel is created by passing the
signal through a delay equal to
the fixed delay of the Q channel.

Fig 18.21—Frequency shifting a signal to produce a real-number
result doesn’t require calculation of the imaginary part of the
output, but the imaginary part of the analytic signal does play a
part in finding the real part of the output.

Fig 18.22—Generating a frequency-shifted
complex signal from a real signal can be
accomplished by multiplying the real
signal by a single-frequency analytic
signal, as shown at A. Note that the result-
ing spectrum, shown at B, has both
positive and negative frequency compo-
nents, but they are not mirror images of
one another.
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Demodulating Signals
One important application of DSP to Amateur Radio is in the demodulation of signals. Although DSP

hardware isn’t quite yet up to the task of processing directly at amateur operating frequencies, it can
demodulate signals at audio and low-IF. An application of audio-frequency demodulation is in the field
of modems for digital communication. These devices modulate an audio signal to send digital data and
demodulate the received signal to recover the digital data. We also are seeing DSP used more and more
as the principal demodulation means in communication receivers, where the DSP operates at a low IF
that is mixed from the operating frequency by analog electronics.

There are many algorithms you can use to demodulate each type of modulated signal. We present here
a sample of some of the more commonly used techniques. We begin by generating quadrature signals
at baseband (centered on 0 Hz). From these, we will detect the modulating waveform. The incoming
signal consists of a carrier frequency that is modulated in some way. To generate our quadrature baseband
signals, we multiply the incoming signal by two signals that are each at the carrier frequency but 90°
different in phase. This scheme, shown in Fig 18.23, is similar to the half-complex mixer described
above. It shifts the signal so that it is centered at 0 Hz in both the I and Q channels. A low-pass filter
removes the unwanted negative-frequency components, along with, possibly, filtering out signals that
lie outside the bandwidth of the desired signal. The I and Q channel sequences can then be used to
demodulate the signal.

AM DEMODULATION

One’s first inclination is to demodulate an AM signal by rectification of the signal. But, as explained
in the Nonlinear Processes section, that’s a technique fraught with peril. A better way is to use the I and
Q channels developed in Fig 18.23. These two signals together describe (mathematically) the incoming
signal as a rotating vector, with the I channel holding the x-axis (real) component of the vector and the
Q channel holding the y-axis (imaginary) part. (See Fig 18.24.) All we need to do is to find the length
of the vector for each sample of the signal; the vector length is the amplitude of the signal, which is what
we want to detect.

Fig 18.23—Demodulation begins by generating baseband I and Q
channels. The technique is shown at A, where an analytic signal
at the carrier frequency, –fc,  multiplies the input signal, whose
spectrum is shown at B. The result of this multiplication is the
spectrum at C. This signal is low-pass filtered to remove the
unwanted alias spectrum and, possibly, unwanted signals near
the desired passband. After filtering, the spectrum at D results.

Fig 18.24—The I and Q channels
together describe the signal as a
rotating vector. From the I and Q
sample values we can compute
the instantaneous amplitude or
phase of the signal.
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Finding the length of the vector can be done using the Pythagorean theorem:

( ) ( )[ ] ( )[ ] 22 nQnIny += (23)

For each sample, then, we calculate equation 23, using the current I- and Q-channel sample values. We
can filter y(n) to remove the dc component and feed the result to our output D/A converter to produce
the detected audio.

Since DSP chips, and computers in general, don’t usually provide a square-root function, the program
to implement AM detection will have to calculate the square root. This is most speedily done using a
look-up table, although a square-root algorithm can be used if desired.

FM DEMODULATION

FM detection is a bit trickier than AM detection. The method described here begins by detecting not the
frequency, but the phase of the incoming signal. Since the I and Q channels describe the incoming signal
as a vector, we can find the
phase of the signal by finding
the angle of the vector described
by the I and Q signals. This is
done using trigonometry:

( ) ( )
( ) 








= −

nI

nQ
tanny 1

p (24)

Once again, we will most likely
use a look-up table to find the
arc tangent.

This scheme performs phase
detection of the signal, not fre-
quency detection. We can con-
vert the output to a demodu-
lated FM signal by passing the
result of equation 24 through a
differentiator filter. FIR filter
design programs can usually
generate a design for a differ-
entiator filter. The resulting
system is shown in Fig 18.25.

SSB DEMODULATION

The technique we will use
for SSB demodulation has long
been known in analog electron-
ics. Called the phasing method,
it is shown in Fig 18.26. The Q-
channel signal is passed
through a Hilbert transformer
FIR filter to further shift it by
90°. The I channel is delayed

Fig 18.25—FM demodulation is performed by phase detecting the
signal via the arc tangent function, then passing the result through
a differentiator.

Fig 18.26—The phasing method of SSB demodulation, as imple-
mented in DSP. The system is shown at A. The input signal (B) is
mixed with an analytic signal at the carrier frequency, –fc, then
the Q channel is phase-shifted via a Hilbert transform, while the
I channel is band-pass filtered with a delay equal to that of the
Q-channel filter, producing the spectrum at C. Summing the two
channels gives the spectrum at D, which represents the lower
sideband of the original signal.
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by an amount equal to the fixed delay of the Q-channel filter, (N – 1)/2 samples. If an odd number of
taps is used in the Q-channel filter, the needed delay of the I channel will be an integral number of
samples. The delayed I channel and the transformed Q channel are then summed.

We originally generated our I and Q channels by mixing the incoming signal with a signal at the carrier
frequency. That places the lower sidebands below 0 Hz and the upper sidebands above 0 Hz. Summing
the two channels causes the positive frequencies in the signal to sum to zero, while the negative frequen-
cies add. Since the result of the summation is a real signal, these resulting frequencies are mirrored in
the positive part of the spectrum. What we have done is eliminate the part of the signal above 0 Hz—
the upper sideband part—while preserving the part of the signal below 0 Hz—the lower sideband part.
If instead of adding the two channels we subtract them, we preserve the upper sideband part and eliminate
the lower sideband part.
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Decimation and Interpolation
It is often useful to change the effective sampling rate of an existing sampled signal. For example, say

you have a system sampling at a 21-kHz rate and you want to filter a 600-Hz signal with a 100-Hz-wide
band-pass filter. You could design a filter to do that directly, but it would likely be a very complex filter
requiring a lot of processor power to implement. The filter would be easier if the sampling rate were
lower, say 7 kHz, since the normalized filter width would be wider. (A 100-Hz-wide filter for a 21-kHz
signal would have a normalized width of 100/21000=0.0048, while if the sampling rate were 7000 Hz
the normalized width would be 100/7000=0.014.) You may not be able to change the actual sampling
rate—perhaps the available antialiasing filter won’t allow sampling at a lower rate—but you can change
the effective sampling rate by processing.

DECIMATION

The reduction of the sampling rate by processing is known as decimation. The procedure is simple:
just throw away the unwanted samples. For example, to reduce the effective sampling rate from 21-kHz
to 7 kHz, throw away 2 out of 3 of the incoming samples. This procedure allows you to divide the
sampling rate by any integer value.

Of course, throwing away samples changes the signal being processed. Fig 18.27 shows the effect
of decimating a signal by a factor of 3 by keeping only every third sample. F1 is the original sampling
rate, and F2 is the new sampling rate, 1/3 the original. The resulting signal is indistinguishable from
a signal that was sampled at 1/3 the original sampling rate. This means that it contains alias components
around the harmonics of F2. More importantly, it means that any signals present in the original
sampled signal at frequencies above F2/2 may alias into the range 0 to F2/2, just as they would have
if the signal had actually been sampled at F2. To eliminate this possibility, it is necessary to digitally
filter out any such signals be-
fore performing the decimation.
This can be done with a low-
pass filter, at the original
sampling rate, that cuts off at
F2/2. This filter is called a deci-
mation filter.

It may seem like this is no im-
provement to our example sys-
tem; now we have to have two
filters: a decimation filter and
our 600-Hz band-pass filter. But
the combined processing of
these two filters is less than the
processing we would need for
the single filter at the original
sampling rate. Fig 18.28 shows
why this is so. The decimation
filter needs only to attenuate
those signals that would alias
into the 100-Hz passband of the
final 600-Hz filter. Signals that
alias into the frequency range
above that filter and below F2/2

Fig 18.27—The signal at A is sampled at an F1 rate. At B, the signal
has been decimated by a factor of 3 by throwing away two out of
three samples. The result is that alias components have been
formed around harmonics of the new sampling rate, F2. Note that in
the original spectrum, signal components existed at frequencies
above F2/2. These components alias into the range 0 to F2/2 after
decimation.
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will be removed by the band-pass filter. That means that the deci-
mation filter need not have a particularly sharp cutoff, so it doesn’t
have to be a complex filter, costly in terms of processing require-
ments.

INTERPOLATION

Just as we sometimes want to decimate a signal to reduce its
effective sampling rate, we also sometimes want to interpolate a
signal to increase its rate. Referring to our example of decimation,
we may want to output the filtered 600-Hz signal, sampled at 7 kHz,
through a system that has a reconstruction filter that cuts off well
above 3500 Hz (half the sampling frequency). We can do this by
increasing the effective sampling rate to one that accommodates
our reconstruction filter.

Just as decimation was performed by removing samples, interpo-
lation is performed by inserting them. If we want to raise our 7-kHz
sampling rate by a factor of 3, to 21 kHz, we need to have three

times as many samples. We can do that by adding two new samples between each of the existing samples.
Usually, we add samples whose value is zero. While this increases the number of samples, it does not
change the content of the signal. Specifically, the alias components that lie on either side of the old
7-kHz sampling frequency and its harmonics are still present. To make use of the new signal, we need
to digitally filter out all of these components except those around 600 Hz. So, we need a low-pass filter,
operating at the sampling frequency of 21 kHz, to eliminate these unwanted signals so they won’t appear
in the output.

In this example, we know that, because of our 100-Hz-wide filter, all of the signal appears in narrow
bands centered on 600 Hz, 7000–600=6400 Hz, 7000+600=7600 Hz, and so on. The highest frequency
we need to pass through our interpolation low-pass filter is 650 Hz. The lowest frequency we need to
reject is 6350 Hz. We can design our low-pass filter accordingly. With this much difference between our
passband and stopband frequencies, we’ll find that the needed interpolation filter is simple and won’t
take much processing.

OVERSAMPLING

One place where decimation and interpolation are often used is to implement oversampling—
sampling at a rate much higher than the sampling theorem demands. One reason to use oversampling
was shown above: to relax the requirements of the antialiasing and reconstruction low-pass filters.
Another advantage of oversampling is in noise reduction. As explained above, if the quantization
noise that arises from quantizing the input signal is random in nature, it will be distributed evenly
throughout the spectrum. If we make use of oversampling, the noise of interest will be distributed
evenly from 0 Hz up to one half the sampling frequency. When we pass the digitized signal through
our decimation low-pass filter, much of this noise will be filtered out. This increases the effective
signal-to-noise ratio, since the signal is unchanged but the total noise is reduced. This approach
can allow use of a low-resolution, but fast, A/D converter to act as if it had more resolution—more
bits.

We stress again that this technique assumes randomness on the part of the quantization noise.
That may not always be the case. In situations where that can’t be assumed by the characteristics
of the input signal, dithering is sometimes used. Dithering is the introduction of noise into the input
signal, before digitization. Usually, the amplitude of this noise is equal to several quantization
levels—several times the A/D LSB value. Adding noise may seem to defeat the purpose of

Fig 18.28—In this example, the
decimation low-pass filter has to
pass the frequencies that will
exist after the final filter, shown
as a shaded area, while eliminat-
ing frequencies that might alias
into the final filter.
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oversampling, but the trick is
to add noise that is limited in
frequency to a range that will
fall outside the passband of
the decimation filter. That
way, the noise doesn’t con-
tribute to the final signal-to-
noise ratio but does force the
quantization noise to become
random. Such a scheme is
shown in Fig 18.29.

Fig 18.29—Dithering is accomplished by adding noise to an
oversampled signal. The noise should fall outside the passband of
the digital decimation filter.
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DSP Hardware and Development Tools
DSP relies on operations—addition, multiplication and shifting—that are common computer opera-

tions. But the large number of such operations needed by any useful DSP algorithm, and the small amount
of time available to do them—the interval between two incoming samples—means that general-purpose
processors find it difficult to process signals even at audio frequencies. For that reason, most real-time
DSP is performed by specialized processors.

DSP CHIPS

Processors for DSP differ from general-purpose processors in important ways. The most important
differences exist to optimize the repeated multiply-add-shift operation of DSP algorithms. One of
these optimizations is the use of the Harvard architecture. This scheme of computer organization has
separate program memory and data memory. The program instructions and constant values are stored
in one memory, while the data to be processed is stored in another. This allows the processor to fetch
a value from program memory and one from data memory at the same time, in a single memory cycle.
Consider the effect of this on the FIR filter algorithm. To implement each tap of the filter, the program
must multiply a constant value (the filter coefficient) by a data vale (the stored sample value). The
processor can fetch both values from memory simultaneously, saving one memory cycle. When large
filters are being implemented, the savings can quickly mount. And typically, the processor can per-
form the needed multiplication, subsequent addition of the product to an accumulator, and shifting of
the data value in the storage array in a single machine cycle. Contrast this with the many cycles needed
to perform the same operations in a general-purpose computer and you can see why specialized
processors are so much more capable of processing sampled signals. DSP chips also often include
other optimizations, such as pipelining of instructions and specialized addressing modes to support
FFT operations.

Fixed Point vs Floating Point

One of the things that makes general-purpose computers so useful is their ability to perform floating-
point calculations. Floating-point representation of numbers treats the stored value as a fraction (the
mantissa) of magnitude less than 1 and an exponent (usually base 2). This approach allows the computer
to handle a great range of numbers, from the very small to the very large. Some modern DSP chips
support floating-point calculations, too. But this is not as great an advantage for signal processing as it
is for general-purpose computing because the range of values needed in DSP is fairly small. For this
reason, fixed-point processors are common for DSP.

A fixed-point processor treats a stored value as just the mantissa part—there is no exponent. This does
not mean that only fractional numbers can be handled. The radix point—the separation between the
integer and fractional parts of a number—can be between any two bits of the stored number. Indeed, the
selection of a radix point is somewhat arbitrary. But having a fixed radix point does complicate things
somewhat for the programmer. When multiplying two numbers, let’s say they are 16-bit values, the
resulting number has twice as many bits—32, in this case. And where the radix point falls in those 32
bits depends on where it was in the original numbers. If the 16 bits were composed of three bits of integer
value, followed by 13 bits of fractional value, the 32-bit product would have 6 bits of integer value and
26 bits of fraction. That means that to store the upper part of the product as a 16-bit value, the product
has to be shifted left three bits. Because of this, fixed-point DSP chips often include special shift
hardware that allows shifting of the data during load and store instructions. The programmer must ensure
that the proper shift values are part of the instruction. It is also imperative that the product not overflow
the three least-significant bits of integer value. Keeping all of this straight becomes a headache when
programming a fixed-point processor. Still, because fixed-point processors are simpler—and thus less
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expensive—they are common
in low-cost DSP systems.
Table 18.2 shows some com-
mon DSP chip families.

DEVELOPMENT TOOLS

Developing DSP systems for
Amateur Radio requires the
right development tools. In-
cluded in these are the hard-
ware that includes a DSP chip,
A/D and D/A converters, input
and output low-pass filters, and
some means of communicating with a PC for loading and testing programs. An assembler and/or a high-
level language compiler are needed as well. Debugging software is desirable, too. While industrial-grade
DSP development platforms abound, their cost is prohibitive for the amateur. Low-cost development
tools are needed. Recently, such tools have become available.

The Texas Instruments DSP Starter Kits

Texas Instruments provides a DSP Starter Kit (DSK) for both its TMS320C25-series and
TMS320C50 series 16-bit, fixed-point processors. Each kit consists of a small PC board that contains
the processor, with embedded ROM bootstrap firmware, an audio-frequency codec (integrated A/D,
D/A and low-pass filters), and the needed power-supply circuitry, except for the transformer. Also
included are a simple assembler and a debugger. Kits are sold by all TI distributors. Call 800-336-5236
for one near you.

The DSK, which costs about $100, does not use low-grade processors; these are prime, state-of-the
art processors, capable of executing just about any audio-frequency algorithm amateurs are likely to
want. The kits also include connector holes (but not the connectors) for attaching external peripheral
devices to the processor bus. Although labeled a kit, this product requires no assembly.

THE TAPR DSP-93

Tucson Amateur Packet Radio, Inc, a not-for-profit organization devoted to the advancement of
packet radio, has the DSP-93 kit available. This kit, which requires assembly, is based on the TMS320C25
processor and consists of stackable boards that include 32 kwords of program and data memory, with
space for 64 kwords. The analog board includes a codec capable of sampling at 45 ksamples/s, an analog
multiplexer to select from up to 8 audio input sources and an interface for radio keying and frequency-
control lines, as well as an RS-232 interface for computer communication. The stackable feature permits
later addition of other accessory boards, for use with different analog subsystems, faster interfaces to a
PC, or specialized analog circuitry. A shareware assembler is available to facilitate development.

PC SOUND CARDS

Perhaps one of the most enticing ways of putting DSP development tools in the hands of amateurs is
the PC sound card. Recent additions to the market include sound cards with embedded DSP chips. For
amateurs, finding the development tools for such boards is the challenge. Sound card manufacturers
typically make development packages available, but not at low cost. One set of free tools, and a descrip-
tion of the Analog Devices Personal Sound Architecture chip set used on some of these boards, is
described in “Programming a DSP Sound Card for Amateur Radio,” by Johan Forrer, KC7WW, QEX,
August 1994.

Table 18.2
Some Common DSP Chips

Manufacturer DSP chip Word size (bits)

Fixed-point
Analog Devices ADSP-2100 family 16
Motorola DSP56000 family 32
Texas Instruments TMS320 family 16

Floating Point
Analog Devices ADSP-21020 32
Motorola DSP96002 32
Texas Instruments TMS320 family 32
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