Digital Signal Processing

18

electronics. Thisdescription of DSP for hams was written by Jon Bloom, KE3Z. The basic idea

behind DSP is to represent a signal waveform by a sequence of numbers, then process those
numbers digitally—usually with a computer—to effect changes to the signal or to extract information
from the signal. Similarly, signals can be created by calculating a sequence of numbers that represent
the desired waveform.

The advantages of processing signals digitally are: the “ circuit” never needs tuning, as the computer
program doesn’ t age or change with temperaturevariations; flexibility, sincetheway in whichthesignal
is processed is controlled by software, allowing easy changes to the processing; and some unique
capabilities the software approach to signal processing makes available, such as processing that adapts
itself to the nature of the incoming signal.

DSP has become of great interest to amateursin the past few years because the devices needed to do
it—fast, dedicated DSP chips—have become easily available and inexpensive. Projects that make use
of DSP are showing up more and more often in the amateur magazines and books, and tools that allow
the average amateur to work with DSP have become readily obtainable.

In this chapter, we will look at the mechanisms by which DSP is performed, starting with the way
waveforms can be turned into sequences of numbers and then, after processing, back into waveforms.
We will also look at some of the ways signals can be generated and how they are processed to filter,
demodulate and analyze them.

D igital signal processing (DSP) is one of the great technological innovations of recent timesin

Digital Signal Processing 18.1

DSP Fundamentals

Any introduction to DSP necessarily begins by covering some fundamental concepts. Among these
are the effects of digitizing a waveform to create a sequence of computer words and the effect this
operation has on the design of a DSP hardware system.

SAMPLING

The process of generating a sequence of numbers from an analog, or continuous, waveform is known
as sampling. In sampling a signal, we measure the amplitude, or voltage, of the signal periodically, at
aregular interval. Thisresultsin asequence of numbersthat state the amplitude of the signal at discrete
times. For that reason, DSP is often called discrete-time signal processing.

The result of this sampling process might be as shown in Fig 18.1. The sequence of numberstellsus
the amplitude of the signal at the sampling instant, but we do not know the values of the waveform
between the sampling points. Y ou might suspect that we could miss important information about the
signal by neglecting the values between the sampling points and, in fact, that can happen if the samples
aren’t taken close enough together in time. But what is “close enough”? If we sample the sine wave
shownin Fig 18.1 one million times per cycle, we are going to end up with a pretty close approximation
of the sinewave! But if we sampleit once aweek, we won’t have much useful information. Somewhere
between these two extremes lies the minimum sampling rate we
can use and still represent the sine wave.

To discover the minimum acceptable sampling rate, it is useful v

to look at the sampling processitself. What we put into the sam- V\
Input t

pling circuit isacontinuous waveform; what we get out is a set of
discrete sample values. One way to look at this process is as a Signal v
S ATl LT

multiplication of two signals, as shown in Fig 18.2. One of the
L

signalsistheinput waveform, whilethe other isaseries of pulses,
each with an amplitude of 1 and separated in time by the sampling
interval, T. By multiplying thesetwo signalstogether, we get zero
at all times between the sampling pulses and asample equal to the
amplitude of the input waveform at the sampling times.

Now that we can treat sampling as multiplication, we are on
more familiar ground. We are used to multiplying signals, since
that is precisely what happensin an ideal double-balanced mixer

Sampled | ‘ ‘ I |]
Signal

Fig 18.1—Sampling a sine wave.

The upper graph shows the input
waveform, while the lower graph

shows the result of sampling the
signal at discrete times.

Sampled ‘ | |
Signal

(see the Mixers chapter). So we can analyze the result of the
which has asingle positive frequency component, f;, and a nega-
out that thefrequency spectrum

at the sampling frequency, F = Signd!

monics of the sampling fre-

Sample Pulses

multiplication by looking at the frequencies of the two signals,
tive component, —f;. But what

of the sampling pulses com- /\

1/T, and components at all of

quency: —-4F, —3F, —2F, —F, 2F,

shown in Fig 18.3. The input signal is a sine wave in this case,
of the sampling pulses? It turns

prisesacomponent at 0 Hz, one Input

the positive and negative har-

3F,4Fandsoon. Multiplying—

18.2 Chapter 18

Fig 18.2—Sampling is a multiplication, or mixing, process.

mixing—this signal with the

! input sine wave thus gives us

| L sumand differencefrequencies

P around each of the components

T R =i 25 of the sampling signal. That is,

Sampled Stgnet we have signal components

J—v | | | | | *l around the sampling fre-

TP o0 B quency, for example, at F—;

Semeiing Signe! and F+f;. And we have compo-

nents at 2F+f;, at 3F+f;, and so

on. We also have components

around 0 Hz, at f; and —fj, as

well as around the negative-
frequency components of the sampling signal, at —Fxf;, —2F+f; and so on.

Now, if our input signal was at afrequency of F—f;, instead of f;, the input would mix with the 0-Hz
component of the sampling signal to give us outputs at F—f; and —F+f;, with the component at F to give
f; and 2F—f;, with the component at —F to give —f; and —2F+f;, and so on. The result would be indistin-
guishable from sampling a signal at f;! Such an input signal is called an alias, since it “looks like” a
frequency that it is, in fact, not. Any signal at a frequency above F/2 is indistinguishable from a signal
below F/2. That is, asignal at F/2 + fj isan alias of asignal at F/2 —f;; you can’t tell them apart. This
fact leadsto one of the most fundamental laws of DSP, the sampling theorem, which statesthat you must
sampleasignal at asampling rate greater than twice the highest frequency component of theinput signal
to avoid aliasing.

1 I

-fi 0 f;

|
.
ofF——-

Input Signal

Fig 18.3—The sampled spectrum can be found by mixing the
spectrum of the input signal with that of the sample pulses.

Normalized Frequencies

The sample values we get from a waveform depend on both the waveform and the sampling rate. If
wewereto sampleal-kHz sinewavesignal at a10-kHz rate, wewould get the same set of samplevalues
asif we had sampled a2-kHz signal at a20-kHz rate. To the computer that processes the numbers, both
cases are exactly the same. For that reason, we often find it convenient to normalize frequenciesin our
design and analysis of DSP systems. A normalized frequency is the actual frequency divided by the
sampling frequency. Since we should restrict our input signals to actual frequencies of 0 to F/2, this
results in normalized frequencies of 0 to 0.5, since (F/2)/F=0.5.

QUANTIZATION

Usually, we perform sampling with an analog-to-digital (A/D) converter. Every so often—at the
sampling rate—the processing computer asks the A/D converter for the amplitude of the waveform.
Sincethe A/D converter must giveitsresult asabinary number, it can only respond with one of alimited
number of amplitude values. For example, an 8-bit A/D converter can give one of 256 values. When the
signal the A/D ismeasuring falls between two of the valuesit can represent, the A/D reports the nearest
valuethat it can. Thismeansthat, most often, the value reported by the A/D is not exactly the amplitude
of the input signal; thereisasmall error, called the quantization error. How large the error is depends
on how close the amplitude of the input signal is to one of the binary values the converter can report.

The amplitude relayed by the A/D converter to the computer can, therefore, be thought of asthe sum
of two signals: the actual input signal and an error “signal.” The peak amplitude of the error signal is
egual to one-half the amplitude of the least-significant bit (L SB) of the A/D converter, asthe difference
between the input signal and a reportable binary value cannot exceed this amount. (Of course, this
assumesaperfect A/D converter; deficienciesinthe A/D canincreasethiserror value.) If theinput signal
is varying, the error signal will vary as well, as the difference between the actual amplitude and the

Digital Signal Processing 18.3

reported amplitude changes with each sample. Normally, with asignal composed of numerous frequen-
cies, changing all the time, all possible error values of +1/, LSB are about equally likely. The result in
thiscaseisthat theerror signal looksrandom; it isnoise—quantization noise. Fromthis, we can calcul ate
an effective A/D signal-to-noise (S/N) ratio, whichistheratio of thedesired full-scalesignal to the noise
term. The result, taking into account the random nature of the error signal, is:

SIN = 6.02N + 1.76 dB (1)

where N is the number of bits of the converter. For example, an 8-bit A/D converter would give an
S/N ratio of:

6.02(8) + 1.76 = 49.9 dB.

The amplitude of thisnoiseisdistributed across the frequency range of the sampling system. That is,
the 49.9 dB S/N ratio of the example converter includes noise from dc to F/2. If digital filtering is used
in the processing to reduce the bandwidth, the amount of noise is reduced proportionally. This can be
used to advantage, aswe will see. But it isimportant to remember that we assumed the error signal was
random. If there is a harmonic relationship between the sampling rate and the input signal, the error
signal will not berandom, and the error may show up at discretefrequencies, rather than asrandom noise.

DSP SYSTEM HARDWARE

The sampling theorem suggests that we had better not allow any signals at frequencies above one-half
thesampling rateto getinto our A/D converter. If wedo, wewon’t beabletotell whether thesignal we're
processing is above or below F/2. To eliminate this risk, we usually place a low-pass filter, called an
antialiasing filter ahead of the A/D. Thejob of thisfilter isto attenuate any signal at afrequency above
F/2 to the point where its amplitude is negligible. Fig 18.4 shows the block diagram of a DSP system
with an antialiasing filter included.

After we've processed the signal in the computer, we may want to output the processed signal as a
waveform. We do this by feeding the samples into a digital-to-analog (D/A) converter. Thisresultsin
a “staircase” waveform, where the output amplitude is held constant during the sample period.This
staircasewaveform hasaspectrum similar to that of the sampled signal of Fig 18.3, but having the sample
amplitudes*” connected” by the D/A modifiesthe spectrum somewhat. I nstead of having equal-amplitude
components around all harmonics of the sampling frequency, the amplitudes of the components |essen
as the frequency is increased. Specifically, the amplitude of any frequency component is:

A=A sintif/F
o = As T TF (2)

where: A, isthe amplitude of frequency f at the output of the D/A converter, Asisits amplitude at the
input of the D/A converter, and F isthe sampling frequency. This applies not only to the signals around
the sampling frequency and its harmonics, but also to the signalsfrom 0 Hz to F/2. At F/2, theresultis:

Ao = As (0.637)

which represents a —3.9-dB pommmmmm—————— e 1
amplitudeerror, withlesserror N p—— o] o] |

at lower frequencies, down to MR e 1 Frocesser comerer [P [T
no error at 0 Hz. If such an am- L imput subsystom L ouput subsystem |
plitude error isunacceptablein

a par,tICUIar application, you Fig 18.4—Block diagram of a DSP system. The low-pass filter in the
can either choose afaster sam- jnput subsystem is the antialiasing filter, while the output low-pass
pling rate, so that the highest filter is the reconstruction filter.

18.4 Chapter 18

signal frequency fallswell below F/2 (called over sampling), or correct theamplitudeerror withfiltering.
Some D/A converters designed for DSP work include internal error correction for this effect.

Most likely, we will want to remove the signal components above F/2 from the output of the D/A
converter. Wedo thisby following the D/A converter with alow-passfilter, to remove these components
of the signal, as shown in Fig 18.4. Such an output filter is called a reconstruction filter.

For both the antialiasing and reconstruction filters, which are analog filters, the necessary filter
complexity isdetermined by how closeto F/2 the highest desired signal frequency will be. For example,
requiring the filter to pass asignal just below F/2 while rejecting its alias just above F/2 will require a
filter with a very steep roll-off. Such filters are both complex and difficult to construct reliably. Also,
they typically exhibit alarge degree of phase distortion. For that reason, we usually oversample by two
to three times. This allows us to relax the requirements for the antialiasing and reconstruction filters,
making them simple and benign.

A/D and D/A Converters for DSP

Getting theright kind of A/D converter isimportant for DSP. A basic A/D converter simply digitizes
the voltage that appears at its input. Depending on the type of circuit used in the converter, this digiti-
zation may take a relatively short period of time or a long time. How long it takes to perform the
conversion affectsthe highest sampling ratethe A/D converter can support. If theconverter isn’t finished
performing its calculationsfor agiven sample, it can’t begin cal culating the next one. So, one of the key
parameters to consider in choosing an A/D converter is its maximum sampling rate.

But there’s another issue to consider as well. What happens if the input voltage changes while the
A/D converter is doing its processing? The answer is that the A/D will probably report some value
between theinitial voltage, at the start of the conversion, and the final voltage. Thiswill seriously affect
the accuracy of our sample values. Remember, we assumed that each sampl e val ue was asnapshot of the
input voltage at one instant of time.

The solution to this problem isto add a sample-and-hold (S/H) amplifier ahead of the A/D converter.
This circuit is clocked, or strobed, at the same time the A/D converter is commanded to begin its
conversion. The S/H amplifier “freezes’ its output level, holding a steady voltage on the input of the
A/D converter regardless of any succeeding changesin thevoltage coming into the S/H amplifier. Often,
an S/H amplifier and an A/D converter are packaged into a single integrated circuit part. Such devices
are knows as sampling A/D converters.

While D/A convertersdon’t haveto worry about their inputs changing between samples, they do have
to beableto quickly changetheir output voltages from sampleto sample. Be sureto useaD/A converter
rated for the output sampling rate you intend to use.

Digital Signal Processing 18.5

Processing Signal Sequences

While we have to expend a certain amount of effort to turn waveforms into sampled sequences and
back into waveformsagain, the heart of DSPliesin the processing of those signals. Processing of signals
isperformed largely by threefundamental operationsof DSP: addition, multiplication and delay. Adding
two numbers together or multiplying two numbers together are common computer operations, and we
won't dwell on them too much. Delay, on the other hand, takes some explaining.

Delaying asignal, in DSP, means processing previous samples of the signal. For example, you might
takethecurrent input sampleand add itsvalueto that of the previousinput sample, or tothe samplebefore
that. It’ s difficult to explain without tiresome mathematics exactly how and why delays enter into our
processing so importantly. We can draw an analogy, however, to analog R-L-C circuits, in which the
delays(phase shifts) of theinductorsand capacitorswork together to create frequency-sel ectivecircuits.
Processing discrete-time signals on the basis of a series of samples performs much the same function as
the phase shifts of reactive analog components. Just as the inductor or capacitor stores energy, whichis
combined with later parts of the applied signal, stored sample values are combined in DSP with later
sample values to create similar effects.

We will represent DSP algorithms in two ways: by flow diagrams and by equations. Flow diagrams
are made up of the elements of Fig 18.5. These provide a convenient way to diagram a DSP algorithm.
Oneitem of noteis the delay block, labeled z-1. For any given sample time, the output of this block is
what was at the input of the block at the previous sample time. Thus the block provides a one-sample
delay. It is important to recognize that the signals “step” through the flow diagram. That is, at each
sampletime, theinput sample appearsand, at the sametime, all of
the delay blocks shift their previous inputs to their outputs. Any
addition or multiplication takes place (we assume) instanta-

K
neously, producing the output. The output then remains stable -
until thenext samplearrives. Whilereal cal culationsdo, of course, -
require time to complete, the algorithms don’t take that into ac- »

count—and don'’t need to. Everything happens on the basis of the
incoming sequence of sample values.

Fig 18.6 shows an example flow diagram. In this simple case,
the previous input sample is multiplied by 2 and added to the ©
current input sample. That sum isthen added to the previous out-
put sample, which ismultiplied by —3, to form the current output Fig 18.5—Flow diagram symbols.
sample. We have added notation to this diagram to show how the At A, the symbol for adding two
various signals in the diagram are represented mathematically. olh Lelt}ﬁbjire]z 5’ S';r;hp? eszg:sg'by
Thekey toreading thisnotationistounderstand atermof theform 5 constant, K. Delaying the
x(n). Thiscan beread as“x asafunction of n.” Thevariablenis sample value by one sample
the sampleindex, aninteger value, and samplenumber nis, inthis ~ Period is shown at C.
case, the current input sample. x(n) issimply the amplitude value
of the current sample, sample number n. The output of the delay
block in the lower left isthe previous input sample value. (Recall

that the delay block shiftsitsinput to its output each time a new () ——)
samplearrives.) Thusit isthe value of x when n was onelessthan L
its present value, or x(n—1). Similarly, y(n) is the current output z- z-

value, and y(n—1) isthe output value at the previous sample time. x<>-1> y(n{o
Putting these signal notations together with the multipliers, or
coefficients, shown on the diagram lets us construct an equation Fig 18.6—An example flow dia-
that describes this algorithm: gram.

18.6 Chapter 18

y(n) =x(n) + 2x(n - 1) —3y(n-1) (3

This equation exactly describes the algorithm diagrammed in Fig 18.6, giving the output sample
value for any value of n, based on the current and previous input values and the previous output
value. We can use the diagram and the equation interchangeably. Such an equation is called a
difference equation.

GENERATING SINE WAVES

Up until now, we have been talking about processing a sequence of numbers that came from a
sampled waveform. But we also can let the computer calculate a sequence of numbers to generate
a signal. One of the easiest—and most useful—signals we can generate in this manner is a sine
wave.

One commonly used technique for generating a sine wave is the phase accumulator method. We
generate our samplesat aconstant rate—the sampling frequency. For any frequency wewish to generate,
we can easily cal culatethe changein phase of asignal at that frequency between two successive samples.
For example, say we are generating samples at a 10-kHz rate—every 0.1 ms. If we want to generate a
1-kHz signal, with aperiod of 1 ms, we note that the signal changes 36° in 0.1 ms. Therefore, the phase
angle of the signal at each sample proceeds:

0°, 36°, 72°, 108°, 144°, 180°, ...

All we need doisfind the sine (or cosine, if we prefer) of the current phase angle; that will be the value
of our output sample:

sin(0°), sin(36°), sin(72°), sin(108°)....

Once the phase passes 360°, it rolls over; it always has a value
between 0 and 360°. Finding the sine or cosine can be donein the

Phose computer inoneof several ways, although most oftenitisdonewith
increment ; > alook-up table, as that is the quickest way.

This kind of generator can be implemented directly in digital
Adder hardware, as shown in Fig 18.7, and is an example of direct digital

! synthesis (DDS).
Phase Another generator is shown in Fig 18.8. This flow diagram
e shows a DSP sine-wave oscillator. Like any oscillator, it hasno
n signal input, just an output. By choosing proper coefficients
Xtal Osc |— fin ~ and placing the correct starting valuesin the delay elements, we
can generate a particular fre-
e quency. While this algorithm
" o workswell, it suffersfrom two
SO "~ =asn2mnt/F) | defects compared to the phase
‘' Bits = i vae accumulator technique. First,
fout =Asin(2m{/F) itisdifficult to changethefre-
Corpon E}'t 2 cos(2mf/F) quency while the system is
iter running. You have to change
- N not only the coefficients, but

Z <— Initial value=0

Fig 18.7—Direct digital synthesis the contents of the- storage el-
(DDS) can be performed using . . ements.aswelll. Thlgleadsto a
digital hardware, without a DSP ~ Fig 18.8—A DSP sine-wave phase discontinuity in the out-
chip. oscillator algorithm. put when the change is made,

Digital Signal Processing 18.7

which often is undesirable. The second problem has to do with finite-length binary words. Since
the coefficient isanumber stored in acomputer, it must be represented as a set of binary bits. You
can’t usejust any value you want; you have to use values that can be represented by the available
number of bits. In this oscillator, the frequency change caused by a one-L SB difference in coef-
ficients is different at low frequencies than at higher frequencies. That’s not true of the phase
accumulator. So this oscillator is most suitable for applications where a fixed, unchanging fre-
quency is called for.

TIME AND FREQUENCY

Often we are interested in the frequency content of asignal. Using DSP, we have tools that allow us
to calculate the frequency content—with somerestrictions. The restrictions arise because the frequency
content of asignal is not always easy to define. We've all learned that a sine wave consists of asignal
at asinglefrequency, wherethefrequency isthereciprocal of the period of thesinewave. Actually, that’ s
asimplification.

Consider the signals of Fig 18.9. The sine wave at A has afrequency of 1/t, wheret is the period of
the sine wave. But what about the signal at B? Thereis a sine wave there, but only one cycle, preceded
and followed by a steady zero-volt signal. Since the signal at B is not the same asthe signal at A, they
cannot have the same frequency content! (If they did, they’d be the same signal.) The signal at B is
similar to asignal fromaCW transmitter keyed on and off, although typically the transmitter would send
more than one cycle of the signal at atime. When we abruptly turn a CW transmitter on and off, we get
key clicks: signals at frequencies near the frequency of the sine wave. So the turning on and off of the
signal changes the frequency content.

What this example demonstrates is that when you analyze the frequency content of an aperiodic
signal (onethat does not repeat endlessly) over ashort period of
time, you may get adifferent result than if you had used alonger

period of time. In fact, to be absolutely precise about the
frequency content of areal signal, you would have to analyze it /\ /\ /\

over all time! That’sabit impractical, of course. Fortunately, if
you look at the signal over arelatively long period of time, the
difference between what you get as aresult and what you would
get if you looked at the signal for all of time is pretty small.
What’s “arelatively long period of time”? That depends on the
nature of the signal. In the example of the on-off keyed CW ®)
transmitter, you would want to include many of the on-off tran-
sitions. The more you include, the more closely your result will
come to “reality.”

FOURIER TRANSFORMS

Since we can’'t look at a signal for all of time, we have to
come up with away of getting close enough. The way we do
thisis by using a Fourier transform. The Fourier (pronounced
foor-ee-ay) transform is a mathematical technique for deter- ®)
mining the content of asignal. Applied to asignal over a par-
ticular period of time, it determines the frequency content of

; i ; i Fig 18.9—These two sine-wave
_thatllcs[gr:jalfpy aslsumlng that the signal being analyzed repeats signals have different frequency
Itselt indetinitely. _ contents, even though the sine
Of course, when we analyze a real-world signal, such asa wave in each has the same

couple of seconds of speech, we know that those few secondsof period.

18.8 Chapter 18

signal do not, in fact, repeat endlessly. So at best, the Fourier transform can give us only an approxi-
mation of the frequency content. But if we look at a large enough period of the signal, that approxi-
mation will be pretty good. We also have a mathematical trick up our sleeve that will help us control
the error, as we'll see.

The Discrete Fourier Transform (DFT)

In DSP, wemake use of avariant of the Fourier transform called thediscrete Fourier transform(DFT).
Thisisan algorithm that cal cul ates the Fourier transform of a sampled signal. Mathematically, the DFT
of asignal is computed thus:

N-1
X(k)="Y x(n)e1zmN
n=
where x(n) is the nth sampled signal input
That e32mk/N part may look pretty daunting, but thereis asimplification, called Euler’ srule, that we
can use to state the DFT in more familiar terms:
N-1

X(k):z x(n)[cos(ZT[nk/ N)— js n(2T[nk/ N)] (5)

(4)

Inthisequation, N isthe number of sampleswe' re processing, nisthe sampleindex, starting at 0, and
x(n) isthe value of sample number n. For any value of k, the frequency index, we get X(k), whichisthe
content of the signal at the frequency kF/N, with F being the sampling frequency. We can do this for
values of k from 0 to N-1. For example, say we were sampling at 10 kHz and we took 50 samples. Each
value of k would represent a frequency of:

ﬁpzkmzk.zoo (6)

N 50

so, for k=1, X(k)=X(1) is the content of the signal at 200 Hz. For k=2, X (k)=X(2) is the content of the

signal at 400 Hz, and so on. Thedc value of thesignal isat 0 Hz, soitisgiven when k=0 and X (k)=X(0).
To calculate X(K) for aparticular value of k, we plug k into equation 5, then compute the sum for all

of the input sample values. There is a niggling detail left: the value we calculate has both real and

imaginary components: it’s a complex number. The imaginary component arises because of the j in

equation 5. What this meansisthat the signal has both an amplitude and a phase. We can calcul ate the

amplitude and phase from the complex value of X(k) like so:

X(k):a+jb

X (k)| = Va2 +b? (7)

8(k)= tan 2

Here, the values of a and b are what we calculated with cosines and sines in equation 5. |[X(k)| is the
amplitude, and (k) is the phase angle.

Notefrom equation 6 that if we usevalues of k greater than N/2, the corresponding frequency for X (k)
is greater than F/2. Since the sampling theorem says frequencies above F/2 are aliases, what are these
values? It turns out that in the DFT, half of the actual amplitude of a frequency component appears at
the expected value of k, and half appears at the alias frequency. If the input samples, x(n), are all real

Digital Signal Processing 18.9

numbers, the value of X(k) at the alias frequency is the complex conjugate of the value at the actual
frequency, meaning the complex number has the same real part and an imaginary part that is equal in
value but opposite in sign. Mathematically, we write this as:

X(N —K) = X*(K) (8)

What this meansin practice is that once we have calculated the value of X(k), we know the value of
X(N—k): just reverse the sign of the imaginary part. But even easier, just calculate values of X (k) for k
from 0 to (N—1)/2 and then doubl e the cal culated amplitude to account for the alias-frequency part. The
result is the spectrum of the sampled signal.

There are times, though, when the samples we are processing with the DFT are not real numbers. In
that case, the valuesin the bins where k > N/2 will not be complex conjugates of the binsk < N/2; there
will be no simple relationship between a frequency bin and its alias.

Spectral Leakage

Inequation 5wearelimited tointeger valuesof k. That meanswe can cal cul ate, in our example, values
of X(k) at 1200 Hz (k = 6) and 1400 Hz (k = 7), but not at 1300 Hz. But what if there is a frequency
component of 1300 Hzinthesignal weareanalyzing? Simply, part of that signal showsupinthe1200-Hz
“bin,” part shows up in the 1400-Hz bin, and smaller parts show up in other nearby bins. Thisistheerror
wediscussed earlier. It occursbecausein our example, a1300-Hz signal doesn’t occur aninteger number
of timesin our 50 samples. That is, if a 1300-Hz sine wave began at the first of the samples, the last of
the samples would not occur just as a cycle of the sine wave was completing. Since the DFT assumes
the same 50 samples occur over and over, we get a discontinuity at the end of the set of samples. This
abrupt discontinuity causes unexpected frequency components, just as does fast on-off keying of aCW
transmitter.

Thisphenomenon isknown as spectral |leakage, sinceasignal component at afrequency between bins
appears to “leak” into adjacent bins. Fig 18.10 shows an example DFT with input signals of 1000 and
1300 Hz each at the same amplitude. The 1000-Hz signal falls directly on abin and therefore produces
asingleline. But for the 1300-Hz signal, it is clear that not only has the signal |eaked into nearby bins,
but the actual amplitude of the signal isn’t obvious, since the signal is divided up among several bins.

We can improve the situation somewhat by taking more samples. Equation 6 showsthat increasing N
moves the bins closer together. Analyzing a signal that falls be-

tween two binswill still cause leakage into nearby bins, but since
the bins are closer together the spread in frequency will be less. "
But this doesn’t solve the problem of the amplitude variation. 251
To minimize that problem, we use a technique known as 201
windowing. (Thisisthemathematical trick wementioned earlier.) :Z
We multiply each sample of the set we're analyzing by a value Ll il
determined by the position of that sample in the set. Fig 18.11 Y S
shows a set of samples before and after windowing. The samples

near the beginning and end of the sampl e set have been reduced in _ _
amplitude. The effect of thisis to reduce the amount of disconti- Fi9 1?-1QIThe 50-|00In(; DFT of a
nuity that occurs at the end of the sample set and the beginning of i'ogrggo‘r’]‘”etn \ SlOé);)r-anzlea | atljg%":az
the (assumed) identical following set of samples. Reducing this yate, shows the effect of spectral
discontinuity reduces the spectral leakage problem. leakage. The 1000-Hz signal falls
Y ou don’'t get something for nothing, however. Obviously, we ﬁféﬁcé')ya?,ﬁ t::efsn;tf: If;za Uain;ﬁ/ t%lhne
hav_edlstorted theagnal we' reanalygl ng._Theeffect of thisshows ;4497}; signal falls between bins
up in the resulting spectrum, shown in Fig 18.12. Now each fre- 6 and 7, causing it to spread over

guency component is leaked across several frequency bins, even a number of bins.

18.10 Chapter 18

1.2
1.0 12
0.8 1 104
0.6 8-
021 | I I I .
I | I I 2
[l i
—0.4 0 t v T T
_064 0 10 20 30 40 50
-0.81
—1.04
-1.2 T T T T .
0 10 20 30 40 50 Fig 18.12—The DFT of a 1000-Hz
(A sighal, sampled at 20 kHz and
windowed. Note that, even
1.2 though 1000 Hz falls directly on a
1.0 frequency bin, the signal is
gg: spread over several adjacent
04 ” M bins.
oot I I i,
~02] I| |I || I
—0.4 1
—0.6 1
—0.81
—1.01
-1.2 T T T T
0 10 20 30 40 50

(8)

Fig 18.11—Windowing minimizes the effects of discontinuity at
the ends of the sample set for the DFT. Here, the samples at A
have a window function applied, resulting in the samples at B.

if it normally would fall right on a bin. But the leakage is more consistent; you don’t get zero leakage
at some frequencies and lots of |eakage at others. Rather, you get about the same amount at all frequen-
cies. This means that the relative amplitudes of signal components, viewed across several bins of
frequency, are nearly the same no matter what the actual frequency of the component. We have traded
some resolution for consistent results.

Y ou can’t multiply the samples by just any old values to create the windowed set of samples. But a
number of window types have been mathematically defined that give the consistent results we are
looking for. Among these are the Hamming, Hanning, Blackman and Kaiser windows. Which to use
depends in part of how much resolution you are willing to trade for consistency. The more consistent
you want the amplitude to be, the less resolution you will get.

The Inverse DFT (IDFT)

Since we now have away to determine the frequency content of a set of samples, it would be handy
to also have away to relate the frequency content back to the original set of samples. Thisis done with
the inverse DFT (IDFT):

N-1

_1 j2mkiN
x(n)= N Z X(k)e')

Except for thefact that now theinputsarethe frequency bins, X (k), and theresult isasamplevalue, x(n),
this looks very much like equation 4. A 1/N factor has appeared, and the sign of the exponent has
changed. Simplifying via Euler’ s rule gives us:

Digital Signal Processing 18.11

N-1

1 ..
x(n) =— Z X (k)[cos(Zka/ N)+ js n(2T[nk/ N)] (10)
n=

which looks much like equation 5. So alike are these equations that often the same software routineis
used to implement both the DFT and the inverse DFT.

THE FAST FOURIER TRANSFORM (FFT)

Calculating the entire spectrum of a sampled signal, for all values of k from 0 to N-1, requires a lot
of calculation. For each value of k, each of the input samples must be processed by taking a sine and
cosine, multiplying by the sample value, and adding that to the resulting sum. In our example, where N
was 50, we have to do this N(N-1)/2 = 50(50-1)/2 = 1225 times! Even on afast computer, that’s alot
of calculation. And the number of calculations increases by the square of N.

There is help on the way. If we choose a convenient number of samples to analyze, some of the
sin(2rmk/N) and cos(2mnk/N) values are the same because the sine and cosine functions are periodic.
This allows us to factor out the common sine and cosine values from the DFT sum and combine those
repeated multiply-and-add operationsinto one operation. If we'rereally clever about selecting theright
number of samples, we can do this at a number of places, dramatically reducing the number of calcu-
lations we have to do. The result is afast Fourier transform (FFT) algorithm.

Thedetailsof FFT algorithmsare beyond the scope of thisbook, but theresult isnot: the FFT produces
exactly the same results as the DFT, only faster—thus its name. Because it is just afast DFT, the FFT
hasthe same propertiesasthe DFT, including spectral leakage, so windowing isoften used with the FFT
as well.

There have been a number of FFT algorithms developed over the years. By far, the most commonly
used FFT algorithmsarethose devel oped by Blackman and Tukey. Thesearetheradix-2 algorithms. The
convenient number of samples used by these algorithms is a power of two. You can use a radix-2
algorithm on 4 samples, 8 samples, 16 samples, or any number 2™ samples, where m is an integer 2 or
greater. The speed improvement of using aradix-2 FFT increases as the number of samples increases,
asshownin Table 18.1.

THE Z-TRANSFORM

We used equation 3 to mathematically describe the algorithm of Fig 18.6. Thisequationisuseful, but
it’shard to manipulate algebraically because it has no common variables. x(n) isadifferent value from
x(n-1). Manipulating the equationsthat represent DSP systemswith algebraisuseful because, if we can
do it, we can find different
waysof implementingthesame Tgpje 18.1
system, and some algorithms
wefind will be easier to imple-

Speed Improvement of the Radix-2 FFT

ment than others. To get the Number of complex Number of complex
diff L f Number of multiplications multiplications in Improvement
' erencee_quat'on mtog orm points (N) in DFT = N2 radix-2 FFT = (N/2)log,N factor
we can manipulate, wewill use 4 16 4 4.0
the z-transform. The math- 8 64 12 5.3
ematics that underlie the z- 16 256 32 8.0
o tsidethe scope 32 1024 80 12.8
transformareoutside P 64 4096 192 21.3
of this book. We will concen- 128 16384 448 36.6
trate on the mechanics of using 256 65536 1024 64.0
transforms 512 262144 2304 113.8
Z-lran - 1024 1048576 5120 204.8

Earlier, welabeled our delay

18.12 Chapter 18

block in the flow diagram with z1. Thisis because z1 represents a one-sample delay in a z-transform
expression. To convert the difference-equation term x(n—1) to its z-transform, we take the z-transform
of x(n), which is X(z), and multiply it by the one-sample delay, z 1. The result is X(z)z L. If the term
isx(n-2), we multiply X(z) by two delays: X(2)z1z1 = X(2)z2. If we perform this operation on all of
the terms of equation 3, we get:

Y(2) = X(2) + 2X(2)z1 -3Y(2)z! (112)
Now we can factor out the X(z) and Y (z) terms and solve the equation for Y (z)/X(z), which we denote
asH(2):
Y(z) _1+2771
H(Z) = = —
X(z) 1+3z
Thisequationisknown asthetransfer function of thesystem. It can beexpressedinaslightly different,
but equivalent, form:

(12)

W Z_
1+3z1 z z+3 (13)

In working with DSP systems, you will often encounter transfer functions like the ones above. To
implement the system described by the transfer function, you may have to convert the function back to
adifference equation. Y ou do thisfrom atransfer function like that of equation 12 by cross multiplying
the two sides, then bring the Y (z) term to one side and all other termsto the other sideto get aresult like
equation 11. Finally, take the inverse z-transform of each term, turning, for example, X(2)z1 into
x(n—=1). Fromtheresulting difference equation, you can either construct aflow diagram or just writeyour
program directly.

IMPULSE RESPONSE

One of theimportant measures of how aDSP algorithm actsisitsimpulseresponse. Thisisthe output
sequence of a system when the input is a sequence of values equal to 0, followed by asingle value equal
to 1, followed again by values of zero. Thisinput sequenceis called the unit-impul se sequence, denoted
by d(n):

3(n) ={...,0,0,0,1,0,0,0,...} (14)

Normally, n is zero when the sequence value is 1. The preceding zero values in the sequence are at
n=-1, n=-2 and so on, while the following zero values are at n = 1, n = 2 and so on. The output of a
systemwhen thissequenceisinput—itsimpul seresponse—isdenoted ash(n). For the system of equation
3, the impulse response is:

h(n) = 0 for n<0

h(0) =1+2(0)-3(0)=1
h(1)=0+2(1) -3(1) =-1
h(2) =0+ 2(0) -3(-1) =3
h(4) =0+ 2(0) -3(3) =9
h(5) =0+ 2(0) — 3(-9) =27

Here, we assume the output was 0 when we started. Note that the output continues to be nonzero
indefinitely for n > 0, even though all future inputs are 0. This is an example of an infinite impulse
response (11R). If the output had returned to zero and stayed there, it would be afinite impul se response
(FIR). Theinfinite nature of theimpul se response of thisexample comesfrom the feedback of the output

Digital Signal Processing 18.13

signal into the system. If no feedback exists in the system, the impulse response will be finite.

The usefulness of theimpulseresponseistwofold. First, you can determine exactly how an algorithm
will respond to a given input sequence by knowing the algorithm’simpul se response. Thelogic isthis:
any particular input sample will cause an output that is equal to the impulse response times the input
value. If theinput valuewere 1, the output generated by that input would be exactly theimpul seresponse.
If theinput value were 2, the output values would be doubled. But in areal signal, theinput samplesare
not preceded and followed by an infinite number of zero values; they are preceded and followed by other
input sample values. So the output of a system is the sum of the current input sample value times the
impul se response, plus the value of the preceding input sample times the impul se response, with that
output shifted by one sample time. And the earlier samples contribute shifted, weighted copies of the
impul se response as well. The output sequence for a particular input sample, x(n), is:

y(n) = x(n)h(0)+x(n-1)h(1)+x(n-2)h(2)+...
We can write this in compact form as follows:

(o)

10)=3 o

K==00

(15)

Equation 16 is called the convolution sum, and the process of taking this sumis called convolution.
The value of k must be an integer. While k runsfrom —oo to +oo, it is only necessary to compute the sum
for values of k for which x(n—k)h(k) is not 0. In our example system of equation 3, h(k) is zero for all
values of k lessthan 0. But, since our example impulse response isinfinite, we would have to compute
the sum for values of k up to the point where h(k) becomes zero, if that ever happens. (It doesn’t, in this
example.) Some mathematics can be used to show that equation 15 is equivalent to:

00

y(n) = Z x(K)h(n - k) (16)

k=—c0

We can use these equations interchangeably.

The second useful characteristic of the impulse response is that the frequency response of the algo-
rithm can be obtained by taking the DFT of the impulse response. Thisis apowerful tool for analyzing
aDSP system. Of course, if the impulse responseisinfinite, you would theoretically need an infinitely
long DFT—and an infinite amount of time to calculate it! But in practice, useful IR systems have
impul se responses that approach 0 as k gets large, although they never quite get there. So a very good
approximation of the frequency response can be gotten by taking enough of the impulse response
sequence that the remaining values are all very close to zero and performing the DFT on that truncated
sequence. For an FIR system, on the other hand, an exact frequency response can be obtained by taking
the DFT of its impulse response sequence.

The impul se response sequence of an FIR system may be too short for auseful DFT. If, for example,
the sequence has only 20 nonzero terms, a 20-point DFT would result in only 10 frequency binsbetween
Oand F/2. Inthiscase, we simply append zero val uesto the end of theimpul seresponse sequenceto create
the desired number of samples, then take the DFT. This approach also allows us to create a sequence
length that is usable with an FFT algorithm, speeding our analysis.

18.14 Chapter 18

Digital Filters

Filters make up one class of system that is of special interest in DSP. Aswe have seen, an algorithm
that has a particular impul se response also has a particular frequency response, determined by the DFT
of the impulse response. So, by creating a system with the proper impulse response we can achieve a
particular frequency response—afilter. Thereare several reasonswhy DSPfiltering might be preferable
to using analog filters. The principal reasons are based on the precise, unchanging nature of digital
systems. In general, more stringent filter requirements—steeper roll-off in the frequency response, or
less distortion in the phase response—call for more complex filters. As afilter gets more complex—
adding inductors and capacitorsin the case of analog filters, or adding additional delay elementsin the
digital case—the sensitivity of thefilter’ sresponseto small errorsin the element val ues becomes more
severe. Thusfor analog filters, precise values of resistance, inductance and capacitance must be main-
tained if thefilter isto operate as designed. Establishing those precise component valuesisdifficult, and
mai ntaining them during temperature variations and aging of the components is more so. DSP filters,
on the other hand, are unchanging. The “component” values consist of numbers stored in a computer,
which are not susceptible to temperature changes or aging. For that reason, highly complex filters that
would not be viable in the analog realm are easily formed by DSP algorithms.

DSP filters can be broadly divided into two classes, depending on whether the impulse response of
thefilter isfinite or infinite. Each class hasits advantages and disadvantages; which to use will depend
on the requirements of the filter and the system being used.

Designing a filter begins with specification of the desired filter response. The specification must
describethe cut-off frequency (or frequencies) of thefilter, the allowableamplitude variationinthe pass
band and the amount of attenuationin the stop band. Refer to the Filter s chapter for background onfilter
response specification. In specifying DSP filters, we often use normalized frequencies, since the filter
design depends on the ratio of the filter cut-off frequency to the sampling frequency, rather than the
actual signal frequency.

Just asthe sampled signal includesalias components around the harmonics of the sampling frequency,
so too does the frequency response of aDSPfilter. It isnot possibleto use aDSPfilter to filter out these
alias components. (Unless the sampling rate is changed, as described below.) They exist because of the
nature of adiscrete-timesignal, and adigital filter can’t changethat. So, afilter that passes a particular
frequency also passes all aliases of that frequency.

@ The Sounds 0f> SSB reception with a DSP filter set for a narrow bandwidth.
Amateur Radio

(The Sounds 0f> SSB reception with a DSP filter wide open.
Amateur Radio

FIR FILTERS

Thebasic structureof anFIR
(finite-impul seresponse) filter x(n)
is shown in Fig 18.13. This
kind of filter is sometimes re-
ferredto asatransversal filter.
The difference equation of this

T”ter Can be determmed by Fig 18.13—Structure of an FIR filter. N is the number of delay
inspecting the flow diagram: elements, or taps.

Z—1

h(N-2) h(N=1)

y(n)

Digital Signal Processing 18.15

y(n)=x(nN)h () +x(n-1) h (1) +...+x(n—[N-=1]) h(N-1)
Or, writing it in more compact form:
N-1

y(n)= Zx(n— k)n(k)

Note that this equation is the convolution sum, just like equation 15, except that since h(k) isafinite-
length sequence, k runs from 0 to N — 1. Thus the FIR filter directly implements convolution.

The impulse response of the filter of Fig 18.13 is easy to find by feeding the unit-impul se sequence
(equation 14) into the filter. The single nonzero input sample first appears at the input, where it is
multiplied by the coefficient h(0). Since this sample was preceded by an infinite number of 0 values, all
of the delay elements have 0 at their outputs. Only the multiplied input sample contributesto the output;
h(0) isthe result. When the next sample arrives, the 1 is shifted to the output of the first delay element,
to be multiplied by h(1). All other sample values being 0, h(1) is the resulting output. On succeeding
samples, as0valuesarrive at theinput, the 1 valueis shifted successively to each delay-element output,
to be multiplied by h(2), h(3), and so on, up to h(N —1). Thusthe impulse response of thefilter issimply
equal to the coefficients h(0) to h(N — 1).

Thetrick, of course, istofindthe particular impul seresponsethat givesthedesired frequency response
for thefilter. There are two questions. how many filter elements, or taps, are needed? And what are the
proper coefficient values to useto give the desired response? In general alonger filter—ahigher value
of N—can provide steeper roll-off in the frequency response. In practice, most FIR filter design ap-
proaches start by estimating the number of taps needed, then redesigning the filter if the number of taps
selected is found to be too few or too many. Calculating the required coefficients, on the other hand, is
more exact, but requires a lot of calculation.

Finding proper coefficient values is complicated by one other issue. We would like the impulse
response to be symmetrical about its center. That is, we want h(0) = h(N-1), h(1) = h(N-2), h(2) =
h(N-3) and so on. Wewant thisbecause an FIR filter with asymmetrical impul se response hasaconstant
delay at all frequencies. This constant delay, which can also be stated as alinear phase response, means
that the filter will not introduce phase distortion to the signal. For many uses, especially in digital data
communication, thisis a crucial filter requirement. Not only is the delay of a symmetrical FIR filter
constant, it is easily calculated:

N-1
d=="T (17)
wheredisthefilter delay in seconds, N isthe number of taps, and T isthe sampling interval in seconds.

One feasible approach to designing an FIR filter relies on the facts that the DFT of the impulse
response equal s the frequency response and that the IDFT can transform a frequency-domain sequence
to the time domain. Thus if we take the IDFT of the desired frequency response, we get the needed
impulse response. That works, but it suffers from the same discontinuity problem asthe DFT itself. In
performing the DFT of a signal, this problem shows up as spectral leakage. In the case of finding an
impulse response for our FIR filter, it shows up as aripplein the frequency response. Only at the exact
frequencies of the bins of the specified frequency response do we get the correct result; between those
binswe get variationsin the response. We can attack that problem in the same way we attacked spectral
|leakage—with windowing. But in doing so, we modify the frequency response, just as we spread out the
signal componentsover several binsinthe DFT. That makesit more difficult to get the exact frequency
response we want without trial and error.

A better design resultsfrom using acomplicated design algorithm devel oped by Parksand McClellan.

18.16 Chapter 18

Thisapproachresultsinanequirippledesign, whereall of the passband ripplesare of the sameamplitude,
as are all of the stopband ripples.

Sincefinding the needed coefficientsfor agivenfilter design requiresso much calculation, itisagood
task for a computer. And DSP filter-design programs are easily available at low cost. For that reason,
we will not dwell on the design mathematics; use of afilter-design program to cal cul ate the coefficients
isby far the most desirable approach. The Bibliography at the end of this chapter lists somefilter-design
software tools.

IR FILTERS

While FIR filters have some exceptionally useful qualities, particularly linear phase response, they
requirealarge number of taps—and alot of computing power—to implement sharpfilters. AnlIR filter,
on the other hand, can give an equivalent frequency response using fewer calculations. What it will not
provideis linear phase response. In circumstances where the computational requirements are of more
concern than linear phase response, IR filters may be desirable.

UnliketheFIRfilter, thel IR filter includesfeedback—that’ swhat makesitsimpulseresponseinfinite.
Its difference equation shows this:

y(n): on(n)+ Alx(n —1)+ ot ij(n - j)— Bly(n —1)— Bzy(n - 2)— o Bky(n - k) (18)

IR filterscan beimplemented using several different algorithms, or structures, asshowninFig 18.14. The
structureat A ismost easily understood, asit can bedrawn directly from inspection of thedifference equation.

It may not be obvious, but the structure of Fig 18.14B actsjust likethestructurein A. It containsfewer
delay elements, though, which reduces the amount of storage needed to keep the delayed sample val ues.

Often, afilter-design program used to design IR filters will give its result in the form of atransfer
function. Asexplained above, thetransfer function can betranslated to adifference equation, fromwhich
the filter can be drawn or implemented. There is a catch, though. As|IR filters get larger, with larger
values of j and k in equation 18, finite-word-length effects become a problem. The coefficientsused in
the filter cannot be represented exactly in the computer; they can only be approximated by the number
of bits used to represent numbers in the machine. While thisisn’'t a big problem for FIR filters, the
feedback inherent in IR filters makesit aconcern. Small errorsin the coefficients may, after being fed
back through anumber of delay stagesto add to the output many times, produce undesirable effects. To
combat this problem, the structure shown in Fig 18.14C may be used. Here, the largefilter is broken up
into a series of second-order (two delays) filters. Cascading these smaller filters results in the overall
response desired. To calculate the coefficients of these smaller filters requires applying some algebra
to the transfer function of the larger filter. The desired result is a transfer function of the form:

H(Z) _Apt Allz_l + Alzz_z N Ay + Azlz_l + Azzz_2 9
1+ Bz 1+ B,z 2 1+B,z 1 +Byz 2 (19)

Good filter-design programs will calculate the coefficients of the cascaded sections for you.

The most common design technique used for IIR filtersis to design an equivalent anal og filter, then
transform it to adigital filter. Because of this, many IR filter-design programs require you to specify
the filter shape from among the types of analog filters: Butterworth, Chebyshev or elliptical. See the
Filters chapter for a description of these filter types.

We assume when analyzing the operation of an IIR system that the delay elements initially store 0
values, until aninput signal arrives. Because theimpulseresponseisinfinite, initial nonzero values may
have long-lasting effects on the output signal. For this reason, any implementation of an IR filter or
system should start by zeroing the storage elements before processing begins.

Digital Signal Processing 18.17

(A) ®

x (n) y (n)

Fig 18.14—IIR filter structures. At A is the direct-form (I) structure; B is the direct-form (Il) structure;
and C is the cascade structure.

18.18 Chapter 18

Nonlinear Processes

In analog electronics, we amplify signals, sum them and pass them through frequency-selective
circuits. Each of these linear operations has its DSP equivalent, as we’ ve seen. But anal og electronics
also includes nonlinear processing of signals. Examples of nonlinear processes are rectification, clip-
ping, limiting and mixing. One thing that distinguishes nonlinear from linear processing isthat in linear
systems, the same frequencies that are input to the system appear at the output, possibly with changes
in amplitude and/or phase, but without the appearance of frequency components different from those at
the input.

Asdiscussed in the Mixer s chapter, nonlinear processes result in the multiplication of one signal by
another (or several others), either explicitly, as in a mixer circuit, or implicitly, as in a nonlinear
amplifier or adiode. The same multiplication processisused in DSP, but herewe haveto be very careful
when performing nonlinear operations. A sampled signal comprises not only the frequency of the
original signal, but also components around the sampling frequency and its harmonics, as shownin Fig
18.3. Performing a nonlinear operation on sampled signals, therefore, requires that we consider the
resulting frequency components and how they will appear in the sampled spectrum.

We begin by taking a closer ook at the spectrum of a sampled signal, shown in Fig 18.15. Here, the
input signal has one frequency component (it’sasinewave), f1, which showsup in the sampled spectrum
at f1, —f1, F = f1, —F £ f1 and so on. Notice that the spectrum between —F/2 and 0 is exactly like the
spectrum from F/2 to F. Thisisinherent in the sampling process and will always be the case. Because
of this, we can concentrate on the spectrum from —F/2 to F/2, knowing that all of the harmonic spectra
are simply copies of this spectrum. When we generate new frequency components, by nonlinear opera-
tions, that fall above F/2, we can treat them as though they “wrap around” to the negative side, between
—F/2 and 0. Generated frequency components more negative than —F/2 wrap around to the positive

spectrum.
; 7
‘ | ‘ /
i
0

7

wave signals together. Thisis
done by taking each sample of
onesignal and multiplyingit by
the corresponding sample of
the other signal, as shown in
Fig 18.16. In analog electron-
ics, we learned through trigo-
nometry that multiplying two
sine waves produces sum and
difference frequencies. That’'s
true here, too, but we'll look at
it in adifferent, equally valid,
way, shown in Fig 18.17. We
will consider that the positive
frequency component of one
signal, fo, shifts the other sig-
nal, f;—both its positive and
negative frequency compo-
nents—up in frequency by the

Now consider what happens
when we multiply two sine-

(
2F

2F—fy

Fig 18.15—The spectrum of a sampled signal can be analyzed by
referring to only the part from —F/2 to F/2 (F is the sampling fre-
guency), the unshaded part of this diagram. The spectrum around
each harmonic of the sampling frequency is a copy of the un-
shaded spectrum.

COS (2mnf, /F) 4—@—7 COS (2mn(f,+f,) /F) + COS (27n(f)—F,) /F)

COS (27nf, /F)

Fig 18.16—Mixing two sine waves is the same as multiplying them.

frequency value of fp. Simi-
larly, the negative frequency

For real-number signals, this results in two signals, the sum and
difference of the input signals.

Digital Signal Processing 18.19

component of 5 shiftsthe com-

- — Wi d d Wi d d
frand ~f fr and ~f Py ey ponentsof f1 down py thesame
by —fz by +f2 / \ amount. Theresult is four fre-
r—%

i ‘ guency components, two posi-
| | | . .

o ‘ | ‘ 1 i tiveandtwo negative, asshown
wnl-n | ol e wnllo | Lol | el in Fig 18.17. We could have
2 - h fpbfy —fpbfy | gy —fpf . .

—fo=f1 —f+fy fo=f1 fotfy 2T T 27 T chosen f, as our shifted signal
and f, asthe amount to shift by
Fig 18.18—If the frequency shift ~ and gotten the same resulting

Fig 18.17—The mixing process

o caused by mixing causes a spectrum.
g?g gfg;ha?,igggg;:ﬁcihg'nqgo_ component to exceed the F/2 pFig 18.18 shows the result if
by th o boundary, the signal will wrap . j g
|fqents up yftthe potiltlve_ | to the opposite end of the tr_us process ends up shlftl_ng_ a
arrfgbé%r\]/\(/:r{ lc))y thi%egea:tisvlgna spectrum, as shown here. signal beyond the F/2 limit,
frequency of the other signal. wrapping it around to the other

side of the spectrum. Notethat,

in this case, the wrapped com-
ponents appear at frequenciesdifferent from wherethey would beif we had done the mixing with anal og
electronics. Thisis because of aliasing, which occurs when a frequency component exceeds F/2.

An example showswhy analyzing the effect of anonlinear operation in thisway isimportant. We can
simulate a half-waverectifier by replacing all of the negative-amplitude samples of asignal with zeros.
Wemight betemptedto dothat to, for example, demodulatean AM signal . But al ook at the spectral result
will show this to be a poor technique. Mathematically, half-wave rectification of a sine wave is like
multiplying the input signal by a square wave that has the same frequency as the input signal and
amplitude values of +1 and 0. Spectrally, the square wave comprises a dc component and frequency
components at the fundamental and all of the odd harmonics of the fundamental. So, the result of
rectification is to create frequency-shifted copies of the input signal around 0 Hz and around the odd
harmonicsof the square wave. Some of these harmonicswill show up at frequenciesabove F/2, no matter
what F we choose, and these components will alias into the spectrum below F/2. The result will be
nothing like what we get with a physical half-wave rectifier, and most likely nothing like what we
wanted. The lesson is that we have to be very careful that our nonlinear operations do not generate
unwanted frequency components that show up as aliases. That doesn’t mean we can’t do nonlinear
operations, just that we need to exercise caution.

COMPLEX AND ANALYTIC SIGNALS

As we've seen, multiplying two signals shifts the positive and negative components of one of the
signalsin two directions, generating two sets of frequency components. In analog electronics, we deal
with thisreality by using filtersto eliminate the unwanted second component, leaving only the desirable
one. We can do that in DSP, too, but there is another way that is often better.

Inall of our preceding discussion, each positive frequency component was mirrored by a correspond-
ing negative frequency component. Thisis a characteristic of any signal that is composed of amplitude
valuesthat are only real numbers. But if we can create asignal that is composed of complex amplitude
values, thisneed not bethe case. Infact, acomplex signal can have only positive-frequency components
or only negative-frequency components. Such asignal is called an analytic signal.

Consider the usefulnessof such signals. If wemultiply together two single-frequency signalsthat have
only positive-frequency components, theresulting spectrumissimply afrequency component at the sum
of the frequencies of the two signals; there are no negative frequencies present to get shifted into the
positivefrequency range. Thisgivesusa pure frequency shift, rather than the sum-and-difference result
of multiplying two real-value signals.

18.20 Chapter 18

A sampled, single-frequency analytic signal has the form:

x(n)= A cos2rmf/F)+ jAsin(2mf /F) (20)

where A isthe peak amplitude of the sine wave, f is the frequency of the signal and F is the sampling
frequency. This signal has only positive frequencies. A signal of the form:

x(n)= A cos2mnf/F)- jAsin(2mf/F) (21)

has only negative frequencies. An analytic signal that comprises multiple positive-frequency compo-
nentsis made up of asum of components of the form of equation 20. That meansthat theimaginary part
of the signal is equal to the real part, but shifted 90° at all frequencies.

In a computer, such as a DSP system, we handle complex numbers by operating on the real and
imaginary parts separately. We call the real part of the analytic signal the | (in-phase) component and
the imaginary part the Q (quadrature) component. Complex arithmetic dictates that, when we add two
complex values, we add the real parts together then we add the imaginary parts together; we still keep

thereal result separate from theimaginary result. Complex multiplicationisabit moreinvolved. Wecan
multiply two complex numbers like so:

(a+jb)(c +jd) = (ac — bd) + (ad+hc) (22)

Itiseasy to generateasingle-frequency analytic signal likethat of equation 20. Referringtothe section
on Generating Sine Waves, we can use the phase-accumulator method to generate the | component of
the signal, then subtract 90° from the current phase angle and compute the output value for that angle
to get the Q component.

Therealsoisan oscillator structure, showninFig 18.19, wecan useto generatethel and Q components
for a single-frequency complex signal.

HILBERT TRANSFORMERS

But what if we want to create an analytic signal from a sampled, real signal? We need to shift all of
the frequency components of the sampled signal by 90°. Fortunately, in DSP we have a straightforward
way to do that: the Hilbert transformer. Recall that in the FIR Filters section we noted that an FIR filter
with a symmetrical impulse response exhibits a constant delay of (N—1)/2 sample periods. It turns out
that an FIR filter with an antisymmetrical impulse response—that is, h(0) = -h(N — 1), h(1) =
—h(N —2), and so on—produces adelay of (N —1)/2 and a shift of 90° at all frequencies. Thisisexactly
the kind of filter we need to create the Q component of our analytic signal!

A system using a Hilbert
transformer to create an ana-
lytic signal is shown in Fig

18.20. Since the Hilbert trans- T Yi(n) = COS(2mn /F)
former includes not only a 90° wosiorerm T2 1= mitil votse = cos zrt/ey
phase shift, but also a fixed @m0

delay of (N — 1)/2 sample SN2t /)
periods, we need an (N — 1)/2
delay in the I channel so that
the difference between the two
channels becomes solely the
90° phase shift. We also need
to have the amplitudes of the

two channelsthe same, so thel Fig 18.19—A quadrature sine-wave oscillator provides two sine
channel should have the sasme waves, with a 90° phase difference between them.

¢ » y,(n) = SIN(27nf/F)

COoS (2rf/F) Z =" | <—— mitial value=SIN (2nf/F)

Digital Signal Processing 18.21

x(n)

Delay

% yl(n)

Hilbert
Transformer

NS

Fig 18.20—Generating an analytic
signal from a sampled input
signal requires passing the input
through a Hilbert transformer
filter to generate the Q (quadra-
ture) channel. The | (in-phase)
channel is created by passing the
signal through a delay equal to
the fixed delay of the Q channel.

frequency response as the Hilbert transformer in the Q channel. A
Hilbert transformer filter can be designed by most FIR filter-design
programs.

When you use analytic signals to perform frequency shifting,
you may at some point end up with a signal you want to output to
the D/A converter. The D/A, of course, handlesonly real numbers.
Feeding just the real part of the analytic signal into the D/A pro-
ducesan output waveform that has both positive and negative com-
ponents, but that’s what we expect of areal signal. So, once the
processing of theanalytic signal iscomplete, we simply discard the
Q-channel signal and use the I-channel valuesfor our output. This
may allow us to skip computing the output Q-channel values alto-
gether, asshownin Fig 18.21. Note, though, that we do need the Q
channel to compute the real part of the frequency-shifted signal,
because the multiplied real values include terms from the imagi-
nary part, as shown in equation 22.

A complex signal can also have positive and negative frequen-

ciesthat arenot mirror imagesof one another. Oneway of generating such asignal isshowninFig18.22.
Here, areal input signal isformed into a complex signal and frequency shifted, both at the same time.
(Thisisan exampleof ahalf-complexmixer. It takesinareal signal and producesacomplex signal.) With
a complex signal such as this, we cannot simply output the real part and expect only the positive
frequenciesto generate mirror images; the negative frequencies will have mirror imagesin the positive
part of the spectrum, too. Still, such complex signalscan be useful at intermediate stepsin theprocessing,
before areal signal is output.

x(n)

Delay

COS (2mnf/F)

Hilbert
Transformer

—SIN (2mtnf/F)

y(n)

x (n>>—4-?—> ()
COS (2mnf,/F)

Yo (n)

SIN (27tnf, /F)

Fig 18.21—Frequency shifting a signal to produce a real-number
result doesn’t require calculation of the imaginary part of the
output, but the imaginary part of the analytic signal does play a

part in finding the real part of the output. |

18.22

Chapter 18

Fig 18.22—Generating a frequency-shifted
complex signhal from a real signal can be

accomplished

signal by a single-frequency analytic \ ‘
signal, as shown at A. Note that the result-

ing spectrum,

positive and negative frequency compo-
nents, but they are not mirror images of

one another.

GV

o ____

by multiplying the real

|

|

|

|

| ‘ |
0 f, F/2

fo+fy

shown at B, has both

Demodulating Signals

Oneimportant application of DSPto Amateur Radio isin the demodulation of signals. Although DSP
hardware isn’t quite yet up to the task of processing directly at amateur operating frequencies, it can
demodulate signals at audio and low-IF. An application of audio-frequency demodulationisinthefield
of modems for digital communication. These devices modulate an audio signal to send digital data and
demodulate the received signal to recover the digital data. We also are seeing DSP used more and more
as the principal demodulation means in communication receivers, where the DSP operates at alow IF
that is mixed from the operating frequency by analog electronics.

There are many algorithmsyou can use to demodul ate each type of modulated signal. We present here
a sample of some of the more commonly used techniques. We begin by generating quadrature signals
at baseband (centered on 0 Hz). From these, we will detect the modulating waveform. The incoming
signal consistsof acarrier frequency thatismodul ated in someway. To generate our quadrature baseband
signals, we multiply the incoming signal by two signals that are each at the carrier frequency but 90°
different in phase. This scheme, shown in Fig 18.23, is similar to the half-complex mixer described
above. It shifts the signal so that it is centered at 0 Hz in both the | and Q channels. A low-pass filter
removes the unwanted negative-frequency components, along with, possibly, filtering out signals that
lie outside the bandwidth of the desired signal. The | and Q channel sequences can then be used to
demodulate the signal.

AM DEMODULATION

One’sfirst inclination isto demodulate an AM signal by rectification of the signal. But, as explained
inthe Nonlinear Processes section, that’ s atechnique fraught with peril. A better way isto usethel and
Q channelsdeveloped in Fig 18.23. These two signal stogether describe (mathematically) the incoming
signal as arotating vector, with the | channel holding the x-axis (real) component of the vector and the
Q channel holding the y-axis (imaginary) part. (See Fig 18.24.) All we need to do is to find the length
of the vector for each sample of the signal; the vector length isthe amplitude of the signal, which iswhat
we want to detect.

x<n>>———§>~ R ‘
[N S E
COS (2mnfe/F) j_%ﬂ‘@x_r
-F/2 —fe 0 fe F/2 ‘
Lov’l_/"—tF'e?ss » Q(n) ‘
® a(n) y(n) \
—SIN (27 nf, /F) \
() Low—Pass ‘
Filter ‘
| | /Response

/ﬁ%\

T S \ «—— I(n)——
-F/2 -, © F/2 ~F/2 F/2

©) ()

Fig 18.23—Demodulation begins by generating baseband | and Q Fig 18.24—The | and Q channels
channels. The technique is shown at A, where an analytic signal together describe the signal as a

at the carrier frequency, —f., multiplies the input signal, whose rotating vector. From the | and Q
spectrum is shown at B. The result of this multiplication is the sample values we can compute
spectrum at C. This signal is low-pass filtered to remove the the instantaneous amplitude or
unwanted alias spectrum and, possibly, unwanted signals near phase of the signal.

the desired passband. After filtering, the spectrum at D results.

Digital Signal Processing 18.23

Finding the length of the vector can be done using the Pythagorean theorem:

()] =l () + [n) (23)

For each sample, then, we cal culate equation 23, using the current |- and Q-channel sample values. We
can filter y(n) to remove the dc component and feed the result to our output D/A converter to produce
the detected audio.

Since DSP chips, and computersin general, don’t usually provide asquare-root function, the program
to implement AM detection will have to calculate the square root. This is most speedily done using a
look-up table, although a square-root algorithm can be used if desired.

FM DEMODULATION

FM detectionisabit trickier than AM detection. The method described here begins by detecting not the
frequency, but the phase of theincoming signal. Since the | and Q channels describe the incoming signal
as a vector, we can find the
phase of the signal by finding

theangleof thevector described 1) > —
. . . -1 Ifferentiator
by the | and Q signals. Thisis Q) > ton e = ()
done using trigonometry:
() EQ(n)D Fig 18.25—FM demodulation is performed by phase detecting the
—tan1 signal via the arc tangent function, then passing the result through
ypln)=tan " G750 (24) . ,
D'(n) 0 a differentiator.

Onceagain, wewill most likely
use a look-up table to find the

Band—Pass | (")
arc tangent. x(n)>—4>?—v GnFiIterass J(n) LSB
This scheme performs phase 008 (2mnt/F)

detection of the signal, not fre-

. Hilbert a(n)
guency detection. We can con- Transformer
vert the output to a demodu- P

lated FM signal by passing the (A

result of equation 24 through a Band—Pass Filter Response
differentiator filter. FIR filter | ‘
design programs can usually j_%_r@_r ‘ W2 ‘
generate a design for a differ- 20k F/2 —F/2 -t ° Fr2
entiator filter. The resulting ® ©

system is shown in Fig 18.25. !

SSB DEMODULATION

The technique we will use o)
for SSB demodulation haslong

beenknowninanalogelectron- Fig 18.26—The phasing method of SSB demodulation, as imple-
ics. Calledthephasingmethod, mented in DSP. The system is shown at A. The input signal (B) is
itisshowninFig18.26. TheQ- rr;]ixed Vﬁith anI analg/tic si%nfal gt the carlrtier frequefncy, —fch, ItheE

. . the Q channel is phase-shifted via a Hilbert transform, while the
channel S'_g”a' s passed I channel is band-pass filtered with a delay equal to that of the
through a Hilbert transformer -channel filter, producing the spectrum at C. Summing the two
FIR filter to further shift it by channels gives the spectrum at D, which represents the lower

90°. The | channel is delayed sideband of the original signal.

18.24 Chapter 18

by an amount equal to the fixed delay of the Q-channel filter, (N — 1)/2 samples. If an odd number of
taps is used in the Q-channel filter, the needed delay of the | channel will be an integral number of
samples. The delayed | channel and the transformed Q channel are then summed.

Weoriginally generated our | and Q channelsby mixingtheincoming signal with asignal at thecarrier
frequency. That placesthe lower sidebands below 0 Hz and the upper sidebands above 0 Hz. Summing
thetwo channel s causesthe positivefrequenciesin the signal to sumto zero, whilethe negative frequen-
cies add. Since the result of the summation isareal signal, these resulting frequencies are mirrored in
the positive part of the spectrum. What we have done is eliminate the part of the signal above 0 Hz—
the upper sideband part—while preserving the part of the signal below 0 Hz—the lower sideband part.
If instead of adding thetwo channel swe subtract them, we preservethe upper sideband part and eliminate
the lower sideband part.

Digital Signal Processing 18.25

Decimation and Interpolation

Itisoften useful to changethe effective sampling rate of an existing sampled signal. For example, say
you have asystem sampling at a21-kHz rate and you want to filter a600-Hz signal with a100-Hz-wide
band-passfilter. Y ou could design afilter to do that directly, but it would likely be avery complex filter
requiring alot of processor power to implement. The filter would be easier if the sampling rate were
lower, say 7 kHz, since the normalized filter width would be wider. (A 100-Hz-widefilter for a21-kHz
signal would have a normalized width of 100/21000=0.0048, while if the sampling rate were 7000 Hz
the normalized width would be 100/7000=0.014.) Y ou may not be able to change the actual sampling
rate—perhapsthe available antialiasing filter won't allow sampling at alower rate—but you can change
the effective sampling rate by processing.

DECIMATION

The reduction of the sampling rate by processing is known as decimation. The procedure is simple:
just throw away the unwanted samples. For example, to reduce the effective sampling rate from 21-kHz
to 7 kHz, throw away 2 out of 3 of the incoming samples. This procedure allows you to divide the
sampling rate by any integer value.

Of course, throwing away samples changes the signal being processed. Fig 18.27 shows the effect
of decimating asignal by afactor of 3 by keeping only every third sample. F1 isthe original sampling
rate, and F» is the new sampling rate, 1/3 the original. The resulting signal is indistinguishable from
asignal that was sampled at 1/3 the original sampling rate. Thismeansthat it contains alias components
around the harmonics of F,. More importantly, it means that any signals present in the original
sampled signal at frequencies above F»/2 may alias into the range 0 to F»/2, just as they would have
if the signal had actually been sampled at F». To eliminate this possibility, it is necessary to digitally
filter out any such signals be-
foreperforming thedecimation.
This can be done with a low-
pass filter, at the original
sampling rate, that cuts off at
Fo>/2. Thisfilter iscalled adeci-
mation filter.

It may seemlikethisisnoim-
provement to our example sys-
tem; now we have to have two
filters: a decimation filter and
our 600-Hz band-passfilter. But
the combined processing of
these two filtersisless than the
processing we would need for
the single filter at the original
sampling rate. Fig 18.28 shows ®)
why this is so. The decimation
filter needs only to attenuate

|

|

|

|

|

|

|
0 Fo/2

Fo 3Fp/2 2Fy 5Fp/2 3Fy

Fig 18.27—The signal at A is sampled at an F; rate. At B, the signal

those signals that would alias
into the 100-Hz passband of the
final 600-Hz filter. Signals that
alias into the frequency range
above that filter and below F»/2

18.26 Chapter 18

has been decimated by a factor of 3 by throwing away two out of
three samples. The result is that alias components have been
formed around harmonics of the new sampling rate, F,. Note that in
the original spectrum, sighal components existed at frequencies
above F,/2. These components alias into the range 0 to F,/2 after
decimation.

will be removed by the band-pass filter. That means that the deci-
mation filter need not have a particularly sharp cutoff, soit doesn’t
have to be a complex filter, costly in terms of processing require-
ments.

Decimation LPF Response

INTERPOLATION

Just as we sometimes want to decimate a signal to reduce its
! effective sampling rate, we also sometimes want to interpolate a

signal to increase itsrate. Referring to our example of decimation,
. _ we may want to output thefiltered 600-Hz signal, sampled at 7 kHz,
Fig 18.28—In this example, the through a system that has a reconstruction filter that cuts off well

decimation low-pass filter has to

pass the frequencies that wil gbove ?_,500 Hz (half_the sampl_ing frequency). We can do this by
exist after the final filter, shown increasing the effective sampling rate to one that accommodates
as a shaded area, while eliminat- our reconstruction filter.

ing frequencies that might alias Just as decimation was performed by removing samples, interpo-

into the final filter. S : : .
o the finat Titer lation isperformed by inserting them. If wewant to raise our 7-kHz

sampling rate by a factor of 3, to 21 kHz, we need to have three
timesas many samples. We can do that by adding two new sampl es between each of the existing sampl es.
Usually, we add samples whose value is zero. While this increases the number of samples, it does not
change the content of the signal. Specifically, the alias components that lie on either side of the old
7-kHz sampling frequency and its harmonics are still present. To make use of the new signal, we need
todigitally filter out all of these components except those around 600 Hz. So, we need alow-passfilter,
operating at the sampling frequency of 21 kHz, to eliminate these unwanted signal s so they won’t appear
in the output.

In this example, we know that, because of our 100-Hz-widefilter, all of the signal appearsin narrow
bands centered on 600 Hz, 7000—-600=6400 Hz, 7000+600=7600 Hz, and so on. The highest frequency
we need to pass through our interpolation low-pass filter is 650 Hz. The lowest frequency we need to
reject is6350 Hz. We can design our low-passfilter accordingly. With this much difference between our
passband and stopband frequencies, we'll find that the needed interpolation filter is simple and won'’t
take much processing.

OVERSAMPLING

One place where decimation and interpolation are often used is to implement oversampling—
sampling at arate much higher than the sampling theorem demands. Onereason to use oversampling
was shown above: to relax the requirements of the antialiasing and reconstruction low-passfilters.
Another advantage of oversampling isin noise reduction. As explained above, if the quantization
noise that arises from quantizing the input signal israndom in nature, it will be distributed evenly
throughout the spectrum. If we make use of oversampling, the noise of interest will be distributed
evenly from O Hz up to one half the sampling frequency. When we pass the digitized signal through
our decimation low-pass filter, much of thisnoise will befiltered out. Thisincreases the effective
signal-to-noise ratio, since the signal is unchanged but the total noise is reduced. This approach
can allow use of alow-resolution, but fast, A/D converter to act asif it had more resolution—more
bits.

We stress again that this technique assumes randomness on the part of the quantization noise.
That may not always be the case. In situations where that can’t be assumed by the characteristics
of theinput signal, ditheringissometimesused. Ditheringistheintroduction of noiseinto theinput
signal, before digitization. Usually, the amplitude of this noise is equal to several quantization
levels—several times the A/D LSB value. Adding noise may seem to defeat the purpose of

Digital Signal Processing 18.27

oversampling, but thetrick is

to add noise that is limited in g > A — " m sampled
frequency to arange that will Filter Converter Data
fall outside the passband of

the decimation filter. That .

way, the noise doesn’t con- Generator

tribute to the final signal-to-)

noise ratio but does force the ‘

quanti zation noise to become | pecimation LPF Response

~
~
~
~
~
Signal Added Noise
F/2

(8)

random. Such a scheme is
shown in Fig 18.29.

Fig 18.29—Dithering is accomplished by adding noise to an
oversampled signal. The noise should fall outside the passband of
the digital decimation filter.

18.28 Chapter 18

DSP Hardware and Development Tools

DSP relies on operations—addition, multiplication and shifting—that are common computer opera-
tions. But thelargenumber of such operationsneeded by any useful DSP algorithm, and the small amount
of timeavailableto do them—theinterval between two incoming samples—meansthat general-purpose
processors find it difficult to process signals even at audio frequencies. For that reason, most real-time
DSP is performed by specialized processors.

DSP CHIPS

Processors for DSP differ from general-purpose processorsin important ways. The most important
differences exist to optimize the repeated multiply-add-shift operation of DSP algorithms. One of
these optimizationsisthe use of the Harvard architecture. This scheme of computer organization has
separate program memory and data memory. The program instructions and constant values are stored
in one memory, while the datato be processed is stored in another. This allows the processor to fetch
avalue from program memory and one from data memory at the same time, in a single memory cycle.
Consider the effect of thison the FIR filter algorithm. To implement each tap of thefilter, the program
must multiply a constant value (the filter coefficient) by a data vale (the stored sample value). The
processor can fetch both values from memory simultaneously, saving one memory cycle. When large
filters are being implemented, the savings can quickly mount. And typically, the processor can per-
form the needed multiplication, subsequent addition of the product to an accumulator, and shifting of
thedatavalueinthestoragearray in asingle machinecycle. Contrast thiswith the many cycles needed
to perform the same operations in a general-purpose computer and you can see why specialized
processors are so much more capable of processing sampled signals. DSP chips also often include
other optimizations, such as pipelining of instructions and specialized addressing modes to support
FFT operations.

Fixed Point vs Floating Point

One of the things that makes general -purpose computers so useful istheir ability to perform floating-
point calculations. Floating-point representation of numbers treats the stored value as a fraction (the
mantissa) of magnitude lessthan 1 and an exponent (usually base 2). Thisapproach allowsthe computer
to handle a great range of numbers, from the very small to the very large. Some modern DSP chips
support floating-point calculations, too. But thisis not as great an advantage for signal processing as it
is for general-purpose computing because the range of values needed in DSP is fairly small. For this
reason, fixed-point processors are common for DSP.

A fixed-point processor treats astored val ue asjust the mantissa part—thereisno exponent. Thisdoes
not mean that only fractional numbers can be handled. The radix point—the separation between the
integer and fractional parts of anumber—can be between any two bits of the stored number. Indeed, the
selection of aradix point is somewhat arbitrary. But having afixed radix point does complicate things
somewhat for the programmer. When multiplying two numbers, let’s say they are 16-bit values, the
resulting number has twice as many bits—32, in this case. And where the radix point fallsin those 32
bitsdependsonwhereit wasintheoriginal numbers. If the 16 bitswere composed of threebits of integer
value, followed by 13 bits of fractional value, the 32-bit product would have 6 bits of integer value and
26 bits of fraction. That means that to store the upper part of the product as a 16-bit value, the product
has to be shifted left three bits. Because of this, fixed-point DSP chips often include special shift
hardwarethat allows shifting of the dataduring load and storeinstructions. The programmer must ensure
that the proper shift values are part of the instruction. It is also imperative that the product not overflow
the three least-significant bits of integer value. Keeping all of this straight becomes a headache when
programming a fixed-point processor. Still, because fixed-point processors are simpler—and thus less

Digital Signal Processing 18.29

expensive—they are common
in low-cost DSP systems.
Table 18.2 shows some com-
mon DSP chip families. Manufacturer DSP chip Word size (bits)

Table 18.2
Some Common DSP Chips

DEVELOPMENT TOOLS Fixed-point
Analog Devices ADSP-2100 family 16

Developing DSPsystemsfor ~ Motorola DSP56000 family 32
Amateur Radio requires the Texas Instruments TMS320 family 16
right development tools. In- Floating Point
cluded in these are the hard- Analog Devices ADSP-21020 32

i i Motorola DSP96002 32
ware that includesa DSP chip, Texas Instruments TMS320 family 32

A/D and D/A converters, input
and output |low-passfilters, and
some means of communicating with a PC for loading and testing programs. An assembler and/or ahigh-
level language compiler are needed aswell. Debugging softwareisdesirable, too. Whileindustrial-grade
DSP development platforms abound, their cost is prohibitive for the amateur. Low-cost development
tools are needed. Recently, such tools have become available.

The Texas Instruments DSP Starter Kits

Texas Instruments provides a DSP Starter Kit (DSK) for both its TM S320C25-series and
TM S320C50 series 16-bit, fixed-point processors. Each kit consists of asmall PC board that contains
the processor, with embedded ROM bootstrap firmware, an audio-frequency codec (integrated A/D,
D/A and low-pass filters), and the needed power-supply circuitry, except for the transformer. Also
included areasimpleassembler and adebugger. Kitsaresold by all Tl distributors. Call 800-336-5236
for one near you.

The DSK, which costs about $100, does not use low-grade processors; these are prime, state-of-the
art processors, capable of executing just about any audio-frequency algorithm amateurs are likely to
want. The kits also include connector holes (but not the connectors) for attaching external peripheral
devices to the processor bus. Although labeled a kit, this product requires no assembly.

THE TAPR DSP-93

Tucson Amateur Packet Radio, Inc, a not-for-profit organization devoted to the advancement of
packet radio, hasthe DSP-93 kit available. Thiskit, which requiresassembly, isbased onthe TM S320C25
processor and consists of stackable boards that include 32 kwords of program and data memory, with
spacefor 64 kwords. The analog board includes acodec capable of sampling at 45 ksamples/s, an anal og
multiplexer to select from up to 8 audio input sources and an interface for radio keying and frequency-
control lines, aswell asan RS-232 interface for computer communication. The stackabl e feature permits
later addition of other accessory boards, for use with different analog subsystems, faster interfacesto a
PC, or specialized analog circuitry. A shareware assembler is available to facilitate development.

PC SOUND CARDS

Perhaps one of the most enticing ways of putting DSP devel opment tools in the hands of amateursis
the PC sound card. Recent additions to the market include sound cards with embedded DSP chips. For
amateurs, finding the development tools for such boards is the challenge. Sound card manufacturers
typically make development packages available, but not at low cost. One set of freetools, and adescrip-
tion of the Analog Devices Personal Sound Architecture chip set used on some of these boards, is
described in “Programming a DSP Sound Card for Amateur Radio,” by Johan Forrer, KC7TWW, QEX,
August 1994,

18.30 Chapter 18

BIBLIOGRAPHY
(key: D = Disk included, A = Disk available, F = Filter design software)

Software Tools Books

O. Alkin, PC-DSP, Prentice Hall, Englewood Cliffs, NJ, 1990. (DF)
A. Kamas and E. Lee, Digital Sgnal Processing Experiments, Prentice Hall, 1989. (DF)
S.D. Stearnsand R. A. David, Sgnal Processing Algorithmsin FORTRAN and C, Prentice Hall, 1993. (DF)

DSP Textbooks

D. DeFattaet al, Digital Sgnal Processing: A System Design Approach, Wiley, New Y ork, 1988.

M. E. Frerking, Digital Sgnal Processing in Communication Systems, Van Nostrand Reinhold, New
York, 1994.

E. Ifeachor and B. Jervis, Digital Sgnal Processing: A Practical Approach, Addison-Wesley, 1993. (AF)

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice Hall, 1975.

T. Parsons, Voice and Speech Processing, McGraw-Hill, Hightstown, NJ, 1987.

J. Proakis and D. Manolakis, Digital Sgnal Processing, Macmillan, New Y ork, 1988.

L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, Prentice Hall, 1978.

Articles

J. Albert, “A New DSP for Packet,” QEX, Jan 1992, pp 3-5.

J. Albert and W. Torgrim, “Developing Software for DSP,” QEX, Oct 1992, pp 3-6.

P. T. Anderson, “A Simple SSB Receiver Using aDigital Down Converter,” QEX, Mar 1994, pp 17-23.

J. Ash, et a, “DSP Voice Frequency Compandor for use in RF Communications,” QEX, Jul 1994, pp 5-10.

B. Bergeron, “Digital Signal Processing Part 1. The Fundamentals,” Ham Radio, Apr 1990, pp 24-35;
Part 2, Communications Quarterly, Fall 1990, pp 45-54; Part 3, Communications Quarterly, Spring
1991, pp 23-36; Part 4, Communications Quarterly, Winter 1991, pp 77-87.

J. Bloom, “Measuring SINAD Using DSP,” QEX, Jun 1993, pp 9-18.

J. Bloom, “Negative Frequencies and Complex Signals,” QEX, Sep 1994.

H. Cahn,” Direct Digital Synthesis—An Intuitive Introduction,” QST, Aug 1994, pp 30-32.

B. de Carle, “A Receiver Spectral Display Using DSP,” QST, Jan 1992, pp 23-29.

B. de Carle, “A DSP Version of Coherent CW,” QEX, Feb 1994, pp 25-30.

A. Dell’lmmagine, “Digital Filter for EME Applications,” QEX, May 1992, pp 3-6.

D. Emerson, “Digital Processing of Weak Signals Buried in Noise,” QEX, Jan 1994, pp 17-25.

J. Forrer, “Programming a DSP Sound Card for Amateur Radio,” QEX, Aug 1994.

B. Hale, “An Introduction to Digital Signal Processing,” QST, Jul 1991, pp 35-37.

D. Hershberger, “Low-Cost Digital Signal Processing for the Radio Amateur,” QST, Sep 1992, pp 43-51.

D. Hershberger, “A Digital Signal Processor” in the Filters chapter.

F. Morrison, “The Magic of Digital Filters,” QEX, Feb 1993, pp 3-8.

C. Puig, “A Weaver Method SSB Modulator Using DSP,” QEX, Sep 1993, pp 8-13.

R. Olsen, “Digital Signal Processing for the Experimenter,” QST, Nov 1984, pp 22-27.

H. Price, “Digital Communications: Audio Spectrum Analyzers—Cheap,” QEX, Dec 1993, pp 13-15.

S. Reyer and D. Hershberger, “Using the LMS Algorithm for QRM and QRN Reduction,” QEX, Sep
1992, pp 3-8.

R. Ward, “Basic Digital Filters,” QEX, Aug 1993, pp 7-8.

Digital Signal Processing 18.31

	Introduction to the CD-ROM
	The ARRL Handbook
	Cover
	Contributors
	Copyright
	Contents
	Foreword
	The Amateur's Code
	Schematic Symbols Used in Circuit Diagrams
	Handbook Software
	The ARRL-At Your Service
	ARRL Handbook CD Companion Software

	Introduction
	1 - What is Amateur Radio?
	Hobby of Diversities
	Tech or Novice: It's Your Choice
	What's in a Call Sign?
	Ham Radio Action
	Getting Started
	Hams as World Citizens
	The Administrators: ITU and FCC
	The ARRL
	Welcome!
	Glossary
	Resources

	2 - Activities
	Awards
	Contests
	Nets
	Ragchewing
	Amateur Radio Education
	ARRL Field Organization
	Emergency Communications
	ARES and RACES
	Military Affiliate RADIO Service (MARS)
	Direction Finding (DF)
	Satellite Operation
	Repeaters
	Image Communications
	Digital Communications
	Microwave and VHF/UHF Weak-Signal Operating

	3 - Modes
	What is a Mode?
	CW
	AM
	Angle Modulation: FM and PM
	SSB
	Digital Modes
	PSK31
	Spread Spectrum
	Glossary

	Fundamental Theory
	4 - Mathematics for Amateur Radio
	Mathematical Terms and Symbols
	Significant Figures and Decimal Places
	Laws of Exponents
	Equations
	Measurement Units and Constants
	Trigonometry
	Coordinate Systems
	Complex Algebra
	Logarithms
	Integration and Differentiation

	5 - DC Theory and Resistive Components
	Glossary
	Introduction
	Series and Parallel Resistances
	Power and Energy
	Circuits and Components

	6 - AC Theory and Reactive Components
	Glossary
	Alternating Current, Frequency and Wavelength
	Capacitance and Capacitors
	Inductance and Inductors
	Quality Factor, or Q of Components
	Calculating Practical Inductors
	Ohm's Law for Reactance
	Impedance
	Resonant Circuits
	Transformers

	7 - Digital Signal Theory and Components
	Digital Fundamentals
	Number Systems
	Physical Representation Of Binary States
	Combinational Logic
	Sequential Logic
	Digital Integrated Circuits
	Computer Hardware

	8 - Analog Signals and Components
	Glossary
	Introduction
	Analog Signal Processing
	Analog Devices
	Practical Semiconductors

	Practical Design and Projects
	9 - Safety
	Antenna and Tower Safety
	Electrical Wiring Around the Shack
	Safe Homebrewing
	RF Radiation and Electromagnetic Field Safety
	Other Hazards in the Ham Shack

	10 - Real-World Component Characteristics
	Lumped vs Distributed Elements
	Low-Frequency Component Models
	Components at RF
	Thermal Considerations
	CAD Tools for Circuit Design
	Low-Frequency Transistor Models

	11 - Power Supplies and Projects
	Glossary
	Alternating-Current Power
	Rectifier Types
	Rectifier Circuits
	Filtration
	Regulation
	High-Voltage Techniques
	Batteries and Charging
	Emergency Operations
	Power-Supply Projects
	Project: A Series-Regulated 4.5- to 25-V, 2.5-A Power Supply
	Project: A 13.8-V, 40-A switching Power Supply
	Project: 28-V, High-Current Power Supply
	Project: A 3200-V Power Supply

	12 - Modulation Sources (What and How We Communicate)
	Voice Modes
	Amplitude Modulation (AM)
	Frequency Modulation (FM)

	Text (Digital) Modes
	Morse Telegraphy (CW)
	Baudot (ITA2) Radioteletype
	ASCII
	AMTOR
	Packet Radio
	PACTOR
	PACTOR II
	G-TOR
	CLOVER-II
	PSK31

	Image Modes
	Facsimile
	Slow-Scan Television (SSTV)
	Fast-Scan Television

	Radio Control
	Spread Spectrum

	13 - RF Power Amplifiers and Projects
	Types of Power Amplifiers
	Design Guidelines and Examples
	Project: The Sunnyvale/Saint Petersburg Kilowatt-Plus
	Project: A 6-Meter Kilowatt Amplifier Using the Svetlana 4CX1600B
	Project: A 144-MHz Amplifier using the 3CX1200Z7
	Project: A 2-m Brick Amp For Handhelds

	14 - AC/RF Sources (Oscillators and Synthesizers)
	How Oscillators Work
	Phase Noise
	Oscillator Circuits And Construction
	VHF And UHF Oscillators
	Frequency Synthesizers
	A Summing-Loop Synthesizer
	Direct Digital Synthesis
	Exploring The Synthesizer In A Commercial MF/HF Transceiver
	Synthesizers: The Future
	Bibliography and References

	15 - Mixers, Modulators and Demodulators
	The Mechanism of Mixers and Mixing
	Practical Building Blocks for Mixing, Modulation and Demodulation
	Testing and Calculating Intermodulation Distortion in Receivers
	Project: A High-Dynamic-Range MF/HF Front End
	Project: A Synchronous AM Detector for 455 kHz
	References

	16 - Filters and Projects
	Basic Concepts
	Filter Synthesis
	Filter Design Using Standard Capacitor Values
	Chebyshev Filter Design (Normalized Tables)
	Quartz Crystal Filters
	Monolithic Crystal Filters
	SAW Filters
	Transmission-Line Filters
	Helical Resonators
	Active Filters
	Project: Crystal-Filter Evaluation
	Project: Band-Pass Filters for 144 or 222 MHz
	Switched Capacitor Filters
	Project: A Continuously Variable Bandwidth Audio Filter
	Project: A BC-Band Energy-Rejection Filter
	Project: Second-Harmonic-Optimized (CWAZ) Low-Pass Filters
	Project: The Diplexer Filter
	Other Filter Projects
	References

	17 - Receivers, Transmitters, Transceivers and Projects
	A Single-Stage Building Block
	Multistage Systems
	Coupling Networks
	The Amateur Radio Communication Channel
	The UHF/Microwave Channel
	Receiver Design Techniques
	Modern Receiver Design Methods
	Project: D-C Receiver Design Example
	The Superheterodyne Receiver
	VHF and UHF Receivers
	Project: GaAs FET Preamp for 430 MHz
	Transmitter Design
	Transverters
	Transceivers
	Project: A Rock-Bending Receiver for 7 MHz
	Project: A Wideband MMIC Preamp
	Project: A Binaural I-Q Receiver
	Project: A Superregenerative VHF Receiver
	Project: A 30/40 W SSB/CW 20-m Transceiver
	Project: The NorCal Sierra: An 80-15 M CW Transceiver
	Project: A Broadband HF Amplifier Using Low-Cost Power MOSFETs
	Project: An Experimental 1/2-W CW Transmitter
	Project: A Drift-Free VFO

	18 - Digital Signal Processing
	DSP Fundamentals
	Processing Signal Sequences
	Digital Filters
	Nonlinear Processes
	Demodulating Signals
	Decimation and Interpolation
	DSP Hardware and Development Tools
	Bibliography

	19 - Transmission Lines
	Transmission Line Basics
	Reflections on the Smith Chart
	Waveguides
	Bibliography

	20 - Antennas and Projects
	Dipoles and the Half-Wave Antenna
	Project: A 135-ft Multiband Center-Fed Dipole
	Project: A Trap Dipole for 40, 80 and 160 m
	Project: 80-m Broadband Dipole with Coaxial Resonator Match
	Project: A 40-m and 15-m Dual-Band Dipole
	Project: A Resonant Feed-Line Dipole
	Project: A Simple Quad for 40 Meters
	Vertical Antennas
	Project: Dual-Band Verticals for 17/40 or 12/30 m
	Project: A Tree-Mounted HF Groundplane Antenna
	Inverted L and Sloper Antennas
	The Half-Sloper Antenna
	Project: 1.8-MHz Inverted L
	Project: The AE6C Dual-Band Inverted-L Antenna
	Project: Simple, Effective, Elevated Ground-Plane Antennas
	Yagi and Quad Directive Antennas
	Project: A Five-Band, Two-Element HF Quad
	Loops
	Project: The Loop Skywire
	Project A Small Loop for 160 m
	HF Mobile Antennas
	Base, Center or Distributed Loading
	Project: A Remoteley Tuned Analog Antenna Coupler
	VHF/UHF Antennas
	Project: 1/4-Wavelength Antennas For Home, Car And Portable Use
	Project: An All-Copper 2-M J-Pole
	VHF/UHF Yagis
	Project: 3 and 5-Element Yagis for 6 m
	Project: A Portable 3-Element 2-m Beam
	High-Performance VHF/UHF Yagis
	Project: A High-Performance 432-MHz Yagi
	Project: A High-Performance 144-MHz Yagi
	SWR Analyzer Tips, Tricks and Techniques
	SWR Analyzer Hints
	The MFJ-249
	MFJ-247 Hints
	Project: A QRP Accessory Pack For The MFJ-259
	An Ethernet Analyzer
	Determining Complex Impedance With an Autek Research RF-1
	Project: The "Gadget"

	21 - Propagation
	Fundamentals of Radio Waves
	Sky-Wave Propagation and the Sun
	MUF Prediction
	Propagation in the Troposphere
	Extraterrestrial Propagation
	Noise and Propagation
	Further Reading

	22 - Station Setup and Accessory Projects
	Fixed Stations
	Mobile and Portable Installations
	Project: The TiCK-2-a Tiny CMOS Keyer 2
	Project: Vintage Radio T/R Adapter
	Project: Quick and Easy CW With Your PC
	Project: A Simple Voice Keyer
	Project: A Vacuum Manipulator For Chip Compnents
	Project: An Expandable Headphone Mixer
	Project: Audio Break-Out Box
	Project: An SWR Detector Audio Adapter
	Project: PC Voltmeter And SWR Bridge
	Project: The Tandem Match- An Accurate Directional Wattmeter
	Project: A Remotely Controlled Antenna Switch
	Project: A Trio of Transceiver/Computer Interfaces
	Project: A Computer-Controlled Two-Radio Switchbox
	Project: TR Time-Delay Generator
	Project: A Simple 10-Minute ID Timer
	Project: High-Power ARRL Antenna Tuner for Balanced or Unbalanced Lines
	Project: Using PIC Microcontrollers in Amateur Radio Projects
	Bibliography

	23 - Repeaters, Satellites, EME and Direction Finding
	Repeaters
	Satellites
	Project: The 4 × 3 × 5 MHz Filter for Mode J
	Project: Parabolic Reflector and Helical Antennas for Mode S
	Project: Mode-S Receive Converter
	Project: A Simple Junkbox Satellite Receiver
	Project: An Integrated L-Band Satellite Antenna And Amplifier
	Selected Satellite References
	Earth-Moon-Earth (EME)
	Radio Direction Finding
	Project: The Simple Seeker
	Project: An Active Attenuator for VHF-FM
	RDF Bibliography

	Construction Techniques
	24 - Component Data
	Component Values
	Component Markings
	Resistor Markings
	Resistor Power Ratings
	Capacitor Markings
	Surface-Mount Resistor and Capacitor Markings
	Inductors And Core Materials
	Transformers
	Semiconductors
	Diodes
	Transistors
	Integrated Circuits

	Other Sources Of Component Data
	Copper Wire Specifications
	Color Code for Hookup Wire
	Aluminum Alloy Characteristics
	Crystal Holders
	Miniature Lamp Guide
	Metal-Oxide Varistor (MOV) Transient Suppressors
	Voltage-Variable Capacitance Diodes
	Zener Diodes
	Semiconductor Diode Specifications
	European Semiconductor Numbering System (PRO Electron Code)
	Japanese Semiconductor Nomenclature
	Suggested Small-Signal FETs
	Low-Noise Transistors
	VHF and UHF Class-A Transistors
	Monolithic Amplifiers (50 Ohm)
	General Purpose Transistors
	RF Power Amplifier Modules
	General Purpose Silicon Power Transistors
	RF Power Transistors
	Power FETs
	Logic IC Families
	Three-Terminal Voltage Regulators
	Op Amp ICs
	Triode Transmitting Tubes
	TV Deflection Tubes
	EIA Vacuum-Tube Base Diagrams
	Properties of Common Thermoplastics
	Coaxial Cable End Connectors

	25 - Circuit Construction
	Shop Safety
	Tools and Their Uses
	Project: A Deluxe Soldering Station
	Project: Soldering-Iron Temperature Control
	Electronic Circuits
	From Schematic to Working Circuit
	Mechanical Fabrication

	26 - Test Procedures and Projects
	DC Instruments and Circuits
	AC Instruments and Circuits
	Project: The Microwatter
	Frequency Measurement
	Project: A Marker Generator with Selectable Output
	Project: A Dip Meter with Digital Display
	Frequency Counters
	Other Instruments and Measurements
	Project: A Wide-Range Audio Oscillator
	Project: Measure Inductance and Capacitance With A DVM
	Project: A Six Digit Programmable Frequency Counter and Digital Dial
	Oscilloscopes
	The Modern Scope
	Project: An HF Adapter for Narrow-Bandwidth Oscilloscopes
	Project: A Calibrated Noise Source
	Project: A Noise Bridge for 1.8 Through 30 MHz
	Project: A Signal Generator for Receiver Testing
	Project: Hybrid Combiners for Signal Generators
	Receiver Performance Tests
	Transmitter Performance Tests
	Glossary

	27 - Troubleshooting and Repair
	Safety First
	Getting Help
	Theory
	Test Equipment
	Where To Begin
	Various Approaches
	Testing Within A Stage
	Typical Symptoms and Faults
	Troubleshooting Hints
	Components
	After The Repairs
	Professional Repairs

	Operating Practices
	28 - Electromagnetic Interference (EMI)
	The Scope Of The Problem
	Responsibility
	EMC Fundamentals
	Cures
	Specific Cures

	29 - Regulations
	Glossary
	Other FCC Rule "Parts"
	Classification of Emissions
	The FCC's Role
	Federal Restrictions on the Installation of Amateur Stations
	Local Zoning Ordinances, Covenants and Deed Restrictions

	30 - References
	General/Electronics
	US Customary to Metric Conversion Factors
	Abbreviations List
	ARRL Handbook Address List
	Technical Information Packages
	TIS Bibliography List
	Voltage-Power Conversion Table

	Components/Equipment
	Measured inductance for #12 Wire Windings
	Large Machine-Wound Coil Specifications
	Small Machine-Wound Coil Specifications
	How to Use the Standard Value Capacitor (SVC) Filter Tables
	5-Element Chebyshev Low-Pass Filter Designs- 50-Ohm Impedance, C-In/Out for Standard E24 Capacitor Values
	7-Element Chebyshev Low-Pass Filter Designs- 50-Ohm Impedance, C-In/Out for Standard E24 Capacitor Values
	5-Element Chebyshev Low-Pass Filter Designs- 50-Ohm Impedance, L-In/Out for Standard-Value L and C
	7-Element Chebyshev Low-Pass Filter Designs- 50-Ohm Impedance, L-In/Out for Standard-Value L and C
	5-Branch Elliptic Low-Pass Filter Designs- 50-Ohm Impedance, Standard E12 Capacitor Values for C1, C3 and C5
	5-Element Chebyshev High-Pass Filter Designs- 50-Ohm Impedance, C-In/Out for Standard E24 Capacitor Values
	7-Element Chebyshev High-Pass Filter Designs- 50-Ohm Impedance, C-In/Out for Standard E24 Capacitor Values
	5-Branch Elliptic High-Pass Filter Designs- 50-Ohm Impedance, Standard E12 Capacitor Values for C1, C3 and C5
	Relationship Between Noise Figure and Noise Temperature
	Pi-Network Resistive Attenuators (50 Ohm)
	T-Network Resistive Attenuators (50 Ohm)

	Antennas/Transmission Lines
	Tower Manufacturers
	Antenna Wire Strength
	Impedance of Various Two-Conductor Lines
	Standard vs American Wire Gauge
	Attenuation per Foot for Lines
	Equivalent Values of Reflection Coefficient, Attenuation, SWR and Return Loss
	Guy Wire Lengths to Avoid

	Modes
	Morse Code Character Set
	The ASCII Coded Character Set
	ITA2 (Baudot) and AMTOR Codes
	Baudot Signaling Rates and Speeds
	Code Conversion, ITA1 through 4 (Notes 1 and 2)
	Conversion from ASCII to Morse and Baudot
	Data Interface Connections
	EIA-449 37-Pin Connector Assignments
	EIA-449 9-Pin Connector Assignments
	ISO 2593 Pin Allocations for V.35 Interfaces
	RTTY Control Sequences (from CCITT Recommendation S.4)
	EME Software

	Operating and Interference
	Voluntary HF Band Plans for Considerate US Operators
	TVI Troubleshooting Flowchart
	TV Channels vs Harmonics
	US Amateur Bands/Power Limits
	VHF/UHF/EHF Calling Frequencies
	ITU Regions
	Allocation of International Call Signs
	FCC-Allocated Prefixes for Areas Outside the Continental US
	DX Operating Code
	W1AW Schedule
	ARRL Procedural Signals (Prosigns)
	The RST System
	Q Signals
	CW Abbreviations
	ITU Recommended Phonetics
	ARRL Log
	ARRL Operating Awards
	ARRL Membership QSL Card
	Mode Abbreviations for QSL Cards
	US/Canada Map
	ARRL Grid Locator Map for North America

	Emergency Communications
	Operating Aids for Public Service
	Principles of Emergency Communication
	ARES Personal Checklist
	ARES/RACES
	The Interaction Between the EOC/NCS and the Command Post(s) in a Local Emergency
	Organization and Interaction of ARES and NTS
	Typical Station Deployment for Local ARES Net Coverage in an Emergency
	Typical Structure of an HF Network for Emergency Communication

	Message Handling
	Amateur Message Form
	A Simple NTS Formal Message
	Handling Instructions
	ARL Numbered Radiograms
	How to be the Kind of Net Operator the Net Control Station (NCS) Loves
	Checking Your Message
	Tips on Handling NTS Traffic by Packet Radio

	Templates

