Component Data

one of us has the time or space to collect all the literature available on the many different commercially available manufactured components. Even if we did, the task of keeping track of new and obsolete devices would surely be formidable. Fortunately, amateurs tend to use a limited number of component types. This chapter, by Douglas Heacock, AA0MS, provides information on the components most often used by the Amateur Radio experimenter.

COMPONENT VALUES

Throughout this *Handbook*, composition resistors and smallvalue capacitors are specified in terms of a system of "preferred values." This system allows manufacturers to supply these components in a standard set of values, which, when considered along with component tolerances, satisfy the vast majority of circuit requirements.

The preferred values are based on a roughly logarithmic scale of numbers between 1 and 10. One decade of these values for three common tolerance ratings is shown in **Table 24.1**.

The Table represents the two significant digits in a resistor or capacitor value. Multiply these numbers by multiples of ten to get other standard values. For example, 22 pF, 2.2 μ F, 220 μ F, and 2200 μ F are all standard capacitance values, available in all three tolerances. Standard resistor values include 3.9 Ω , 390 Ω , 39000 Ω and 3.9 M Ω in ±5% and ±10% tolerances. All standard resistance values, from less than 1 Ω to about 5 M Ω are based on this table.

Each value is greater than the next smaller value by a multiplier factor that depends on the tolerance. For $\pm 5\%$ devices, each value is approximately 1.1 times the next lower one. For $\pm 10\%$ devices, the multiplier is 1.21, and for $\pm 20\%$ devices, the multiplier is 1.47. The resultant values are rounded to make up the series.

Table 24.1Standard Values for Resistorsand Capacitors

±5%	±10%	±20%	
1.0	1.0	1.0	
1.1			
1.2	1.2		
1.3	4 5	4 5	
1.5 1.6	1.5	1.5	
1.8	1.8		
2.0	1.0		
2.2	2.2	2.2	
2.4			
2.7	2.7		
3.0			
3.3	3.3	3.3	
3.6 3.9	3.9		
3.9 4.3	3.9		
4.7	4.7	4.7	
5.1			
5.6	5.6		
6.2			
6.8	6.8	6.8	
7.5	0.0		
8.2 9.1	8.2		
9.1 10.0	10.0	10.0	

Tolerance refers to a range of acceptable values above and below the specified component value. For example, a 4700- Ω resistor rated for $\pm 20\%$ tolerance can have an actual value anywhere between 3760 Ω and 5640 Ω . You may always substitute a closer-tolerance device for one with a wider tolerance. For projects in this *Handbook*, assume a 10% tolerance if none is specified.

COMPONENT MARKINGS

The values, tolerances or types of most small components are typically marked with a color code or an alphanumeric code according to standards agreed upon by component manufacturers. The Electronic Industries Association (EIA) is a US agency that sets standards for electronic components, testing procedures, performance and device markings. The EIA cooperates with other standards agencies such as the International Electrotechnical Commission (IEC), a world-wide standards agency. You can often find published EIA standards in the engineering library of a college or university.

The standard EIA color code is used to identify a variety of electronic components. Most resistors are marked with color bands according to the code, shown in **Table 24.2**. Some types of capacitors and inductors are also marked using this color code.

Resistor Markings

Carbon-composition, carbon-film, and metal-film resistors are typically manufactured in roughly cylindrical cases with axial leads. They are marked with color bands as shown in **Fig 24.1A**. The first two bands represent the two significant digits of the component value, the third band represents the multiplier, and the fourth band (if there is one) represents the tolerance. Some units are marked with a fifth band that represents the percentage of resistance change per 1000 hours of operation: brown = 1%; red = 0.1%; orange = 0.01%; and yellow = 0.001%. Precision resistors (EIA Std RS-279, Fig 24.1B) and some mil-spec (MIL STD-1285A) resistors also use five color bands. On precision resistors,

Table 24.2Resistor-Capacitor Color Codes

Color	Significant Figure	Decimal Multiplier	Tolerance (%)	Voltage Rating*
Black	0	1	-	-
Brown	1	10	1*	100
Red	2	100	2*	200
Orange	3	1,000	3*	300
Yellow	4	10,000	4*	400
Green	5	100,000	5*	500
Blue	6	1,000,000	6*	600
Violet	7	10,000,000	7*	700
Gray	8	100,000,000	8*	800
White	9	1,000,000,000	9*	900
Gold	-	0.1	5	1000
Silver	-	0.01	10	2000
No color	-	-	20	500
		_		

*Applies to capacitors only

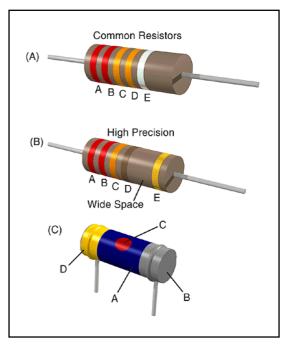


Fig 24.1—Color coding and body size for fixed resistors. The color code is given in Table 24.2. The colored areas have the following significance. A—First significant figure of resistance

- A—First significant figure of resistance in ohms.
- B—Second significant figure.
- C—Decimal multiplier.
- D—Resistance tolerance in percent. If no color is shown the tolerance is $\pm 20\%$.
- E—Relative percent change in value per 1000 hours of operation; Brown, 1%; Red 0.1%; Orange 0.01%; Yellow 0.001%.

the first *three* bands are used for significant figures and the space between the fourth and fifth bands is wider than the others, to identify the tolerance band. On the military resistors, the fifth band indicates reliability information such as failure rate.

For example, if a resistor of the type shown in Fig 24.1A is marked with A = red; B = red; C = orange; D = no color, the significant figures are 2 and 2, the multiplier is 1000, and the tolerance is $\pm 20\%$. The device is a 22,000- Ω , $\pm 20\%$ unit.

Some resistors are made with radial leads (Fig 24.1C) and are marked with a color code in a slightly different scheme. For example, a resistor as shown in Fig 24.1C is marked as follows: A (body) = blue; B (end) = gray; C (dot) = red; D (end) = gold. The significant figures are 6 and 8, the multiplier is 100, and the tolerance is $\pm 5\%$; 6800 Ω with $\pm 5\%$ tolerance.

Resistor Power Ratings

Carbon-composition and metal-film resistors are available in standard power ratings of 1/10, 1/8, 1/4, 1/2, 1 and 2 W. The $1/10^-$ and $1/8^-W$ sizes are relatively expensive and difficult to purchase in small quantities. They are used only where miniaturization is essential. The 1/4, 1/2, 1, and 2-W composition resistor packages are drawn to scale in **Fig 24.2.** Metal-film resistors are typically slightly smaller than carbon-composition units of the same power rating. Film resistors can usually be identified by a glossy enamel coating and an hourglass profile. Carbon-film and metal-film are the most commonly available resistors today, having largely replaced the less-stable carbon-composition resistors.

Capacitor Markings

A variety of systems for capacitor markings are in use. Some use color bands, some use combinations of numbers and letters. Capacitors may be marked with their value, tolerance, temperature characteristics, voltage ratings or some subset of these specifications. Fig 24.3 shows several popular capacitor marking systems.

In addition to the value, ceramic disk capacitors may be marked with an alphanumeric code signifying temperature characteristics. **Table 24.3** explains the EIA code for ceramic-disk capacitor temperature characteristics. The code is made up of one character from each column in the table. For example, a capacitor marked Z5U is suitable for use between +10 and +85°C, with a maximum change in capacitance of -56% or +22%.

Capacitors with highly predictable temperature coefficients of capacitance are sometimes used in

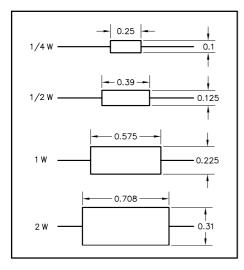


Fig 24.2—Typical carbon-composition resistor sizes.

Table 24.3EIA Temperature Characteristic Codes for Ceramic DiscCapacitors

Minimum temperature	Maximum temperature	<i>Maximum capacitance change over temperature range</i>
X -55°C Y -30°C Z +10°C	2 +45°C 4 +65°C 5 +85°C 6 +105°C 7 +125°C	A $\pm 1.0\%$ B $\pm 1.5\%$ C $\pm 2.2\%$ D $\pm 3.3\%$ E $\pm 4.7\%$ F $\pm 7.5\%$ P $\pm 10\%$ R $\pm 15\%$ S $\pm 22\%$ T $-33\%, \pm 22\%$ U $-56\%, \pm 22\%$ V $-82\%, \pm 22\%$

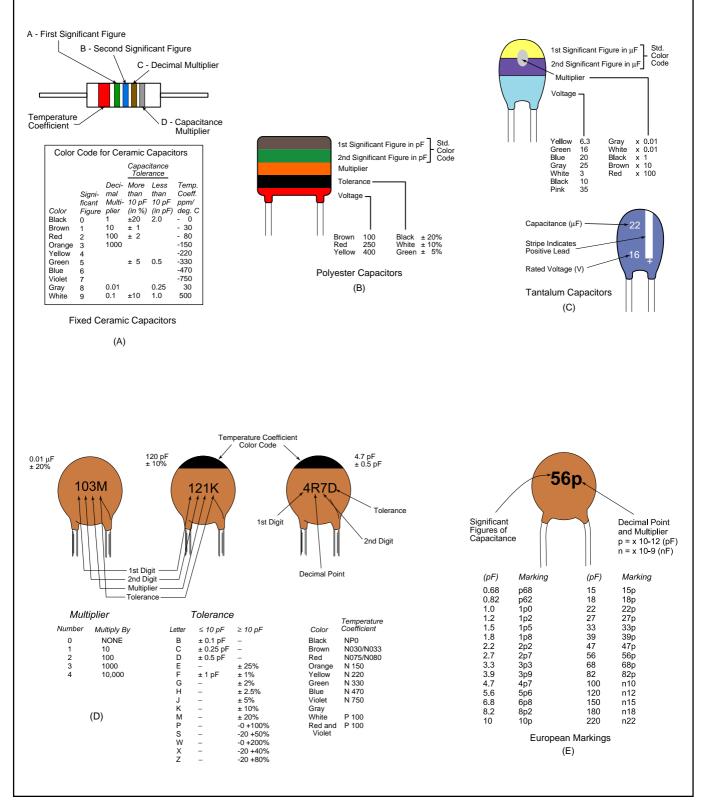


Fig 24.3—Capacitors can be identified by color codes and markings. Shown here are identifying markings found on many common capacitor types.

oscillators that must be frequency stable with temperature. If an application called for a temperature coefficient of -750 ppm/°C (N750), a capacitor marked U2J would be suitable. The older industry code for these ratings is being replaced with the EIA code shown in **Table 24.4**. NP0 (that is, N-P-zero) means "negative, positive, zero;" it is a characteristic often specified for RF circuits requiring temperature stability, such as VFOs. A capacitor of the proper value marked COG is a suitable replacement for an NP0 unit.

Some capacitors, such as dipped silver-mica units, have a letter designating the capacitance tolerance. These letters are deciphered in **Table 24.5**.

Surface-Mount Resistor and Capacitor Markings

Many different types of electronic components, both active and passive, are now available in surface-mount packages. These are commonly-known as chip resistors and capacitors. The very small size of these components leaves little space for marking with conventional codes, so brief alphanumeric codes are used to convey the most information in the smallest possible space.

Surface-mount resistors are typically marked with a three- or four-digit value code and a character indicating tolerance. The nominal resistance, expressed in ohms, is identified by three digits for 2% (and greater) tolerance devices. The first two digits represent the significant figures; the last digit specifies the multiplier as the exponent of ten. (It may be easier to remember the multiplier as the number of zeros you must add to the significant figures.) For values less than 100Ω , the letter R is substituted for one of the significant digits and represents a decimal point. Here are some examples:

1	
Resistor Code	Value
101	10 and 1 zero = 100 Ω
224	22 and 4 zeros = 220,000 Ω
1R0	1.0 and no zeros = 1 Ω
22R	22.0 and no zeros = 22 Ω
R10	0.1 and no zeros = 0.1 Ω
TC (1 (1	C (1 · · · · · · · · · · · · · · · · · ·

If the tolerance of the unit is narrower than $\pm 2\%$, the code used is a four-digit code where the first three digits are the significant figures and the last is the multiplier. The letter R is used in the

Table 24.4EIA Capacitor Temperature-
Coefficient Codes

EIA	Industry	EIA
C0G	N330	S2H
S1G	N470	U2J
U1G	N1500	P3K
P2G	N2200	R3L
R2G		
	C0G S1G U1G P2G	C0G N330 S1G N470 U1G N1500 P2G N2200

Table 24.5 EIA Capacitor Tolerance Codes

Code	Tolerance
С	±1/ ₄ pF
D	$\pm 1/2^{-1}$ pF
F	$\pm 1 \text{ pF or } \pm 1\%$
G	±2 pF or ±2%
J	±5%
К	±10%
L	±15%
M	±20%
N	±30%
P or GMV*	-0%, +100%
W	-20%, +40%
Y	-20%, +50%
Z	-20%, +80%

*GMV = guaranteed minimum value.

Table	e 24.6		
SMT	Resistor	Tolerance	Codes

Letter	Tolerance	
D	±0.5%	
F	±1.0%	
G	±2.0%	
J	±5.0%	

same way to represent a decimal point. For example, 1001 indicates a 1000- Ω unit, and 22R0 indicates a 22- Ω unit.

The tolerance rating for a surface-mount resistor is expressed with a single character at the end of the numeric value code, according to **Table 24.6**.

Surface-mount capacitors are marked with a two-character code consisting of a letter indicating the significant digits (see **Table 24.7**) and a number indicating the multiplier (see **Table 24.8**). The code represents the capacitance in picofarads. For example, a chip capacitor marked "A4" would have a capacitance of 10,000 pF, or 0.01 μ F. A unit marked "N1" would be a 33-pF capacitor. If there is sufficient space on the device package, a tolerance code may be included (see Fig 24.3D for tolerance

Table 24.7SMT Capacitor Significant Figures Code

Character	Significant Figures	Character	Significant Figures
А	1.0	Т	5.1
В	1.1	U	5.6
С	1.2	V	6.2
D	1.3	W	6.8
E	1.5	Х	7.5
F	1.6	Y	8.2
G	1.8	Z	9.1
Н	2.0	а	2.5
J	2.2	b	3.5
К	2.4	d	4.0
L	2.7	е	4.5
Μ	3.0	f	5.0
Ν	3.3	m	6.0
Р	3.6	n	7.0
Q	3.9	t	8.0
R	4.3	у	9.0
S	4.7		

codes). Surface-mount capacitors can be very small; you may need a magnifying glass to read the markings.

INDUCTORS AND CORE MATERIALS

Inductors, both fixed and variable, are available in a wide variety of types and packages, and many offer few clues as to their values. Some coils and chokes are marked with the EIA color code shown in Table 24.2. See **Fig 24.4** for another marking system for tubular encapsulated RF chokes.

Most powdered-iron toroid cores that we amateurs use are manufactured by Micrometals, who uses paint to identify the material used in the core. The Micrometals color code is part of **Table 24.9**. **Table 24.10** gives the physical characteristics of powdered-iron toroids. Ferrite cores are not typically painted, so identification is more difficult. See **Table 24.11** for information about ferrite cores.

TRANSFORMERS

Many transformers, including power transformers, IF transformers and audio transformers, are made to be installed on PC boards, and have terminals designed for that purpose. Some transformers are manufactured with wire leads that are color-coded to identify each connection. When colored wire leads are present, the color codes in **Tables 24.12**, **24.13** and **24.14** usually apply.

In addition, many miniature IF transformers are tuned with slugs that are color-coded to signify their application. Table 24.15 lists application vs slug color.

SEMICONDUCTORS

Most semiconductor devices are clearly marked with the part number and in some cases, a manufacturer's date code as well. Identification of semiconductors can be difficult, however, when the parts are "house-marked" (marked with codes used by an equipment manufacturer instead of the stan-

Table 24.8 SMT Capacitor Multiplier Codes

<i>Numeric Character</i> 0 1 2 3 4 5 5 6 7 8 9	Decimal Multiplier 1 10 100 1,000 10,000 100,000 1,000,000
---	--

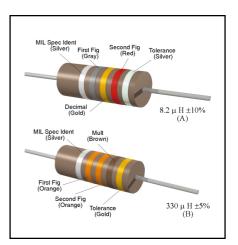


Fig 24.4—Color coding for tubular encapsulated RF chokes. At A, an example of the coding for an 8.2-µH choke is given. At B, the color bands for a 330-µH inductor are illustrated. The color code is given in Table 24.2.

Table 24.9Powdered-Iron Toroid Cores: Magnetic Properties

Inductance and Turns Formula

The turns required for a given inductance or inductance for a given number of turns can be calculated from:

$N = 100 \sqrt{\frac{L}{A_L}}$	$L = A_L \left(\frac{N^2}{10,000} \right)$
. =	

where N = number of turns; L = desired inductance (μ H); A_L = inductance index (μ H per 100 turns).*

A_L Values

						Mix					
Size	26**	3	15	1	2	7	6	10	12	17	0
T-12	na	60	50	48	20	18	17	12	7.5	7.5	3.0
T-16	145	61	55	44	22	na	19	13	8.0	8.0	3.0
T-20	180	76	65	52	27	24	22	16	10.0	10.0	3.5
T-25	235	100	85	70	34	29	27	19	12.0	12.0	4.5
T-30	325	140	93	85	43	37	36	25	16.0	16.0	6.0
T-37	275	120	90	80	40	32	30	25	15.0	15.0	4.9
T-44	360	180	160	105	52	46	42	33	18.5	18.5	6.5
T-50	320	175	135	100	49	43	40	31	18.0	18.0	6.4
T-68	420	195	180	115	57	52	47	32	21.0	21.0	7.5
T-80	450	180	170	115	55	50	45	32	22.0	22.0	8.5
T-94	590	248	200	160	84	na	70	58	32.0	na	10.6
T-106	900	450	345	325	135	133	116	na	na	na	19.0
T-130	785	350	250	200	110	103	96	na	na	na	15.0
T-157	870	420	360	320	140	na	115	na	na	na	na
T-184	1640	720	na	500	240	na	195	na	na	na	na
T-200	895	425	na	250	120	105	100	na	na	na	na

* The units of A_L (μH per 100 turns) are an industry standard; however, to get a correct result use A_L only in the formula above.

** Mix-26 is similar to the older Mix-41, but can provide an extended frequency range.

Magnetic Properties Iron Powder Cores

Mix	Color	Material	μ	Temp stability (ppm/°C)	f (MHz)	Notes
26	Yellow/white	Hydrogen reduced	75	825	dc - 1	Used for EMI filters and dc chokes
3	Gray	Carbonyl HP	35	370	0.05 - 0.50	Excellent stability, good Q for lower frequencies
15	Red/white	Carbonyl GS6	25	190	0.10 - 2	Excellent stability, good Q
1	Blue	Carbonyl C	20	280	0.50 - 5	Similar to Mix-3, but better stability
2	Red	Carbonyl E	10	95	2 - 30	High Q material
7	White	Carbonyl TH	9	30	3 - 35	Similar to Mix-2 and Mix-6, but
						better temperature stability
6	Yellow	Carbonyl SF	8	35	10 - 50	Very good Q and temp. stability for 20-50 MHz
10	Black	Powdered iron W	6	150	30 - 100	Good Q and stability for 40 - 100 MHz
12	Green/white	Synthetic oxide	4	170	50 - 200	Good Q, moderate temperature
17	Blue/yellow	Carbonyl	4	50	40 - 180	stability Similar to Mix-12, better temperature stability, Q drops about 10% above
0	Tan	phenolic	1	0	100 - 300	50 MHz, 20% above 100 MHz Inductance may vary greatly with winding technique

Courtesy of Amidon Assoc and Micrometals

Note: Color codes hold only for cores manufactured by Micrometals, which makes the cores sold by most Amateur Radio distributors.

Table 24.10Powdered-Iron Toroid Cores: Dimensions

Red E Cores—500 kHz to 30 MHz (μ = 10)

No.	OD (in)	ID (in)	H (in)
T-200-2	2.00	1.25	0.55
T-94-2	0.94	0.56	0.31
T-80-2	0.80	0.50	0.25
T-68-2	0.68	0.37	0.19
T-50-2	0.50	0.30	0.19
T-37-2	0.37	0.21	0.12
T-25-2	0.25	0.12	0.09
T-12-2	0.125	0.06	0.05

Black W Cores—30 MHz to 200 MHz (μ =7)

No.	OD (In)	ID (In)	H (In)
T-50-10	0.50	0.30	0.19
T-37-10	0.37	0.21	0.12
T-25-10	0.25	0.12	0.09
T-12-10	0.125	0.06	0.05

Yellow SF Cores—10 MHz to 90 MHz (μ =8)

No.	OD (In)	ID (In)	H (In)
T-94-6	0.94	0.56	0.31
T-80-6	0.80	0.50	0.25
T-68-6	0.68	0.37	0.19
T-50-6	0.50	0.30	0.19
T-26-6	0.25	0.12	0.09
T-12-6	0.125	0.06	0.05

Number of Turns vs Wire Size and Core Size

Approximate maximum number of turns—single layer wound—enameled wire.

Wire Size	T-200	T-130	T-106	T-94	T-80	T-68	T-50	T-37	T-25	T-12
10	33	20	12	12	10	6	4	1		
12	43	25	16	16	14	9	6	3		
14	54	32	21	21	18	13	8	5	1	
16	69	41	28	28	24	17	13	7	2	
18	88	53	37	37	32	23	18	10	4	1
20	111	67	47	47	41	29	23	14	6	1
22	140	86	60	60	53	38	30	19	9	2
24	177	109	77	77	67	49	39	25	13	4
26	223	137	97	97	85	63	50	33	17	7
28	281	173	123	123	108	80	64	42	23	9
30	355	217	154	154	136	101	81	54	29	13
32	439	272	194	194	171	127	103	68	38	17
34	557	346	247	247	218	162	132	88	49	23
36	683	424	304	304	268	199	162	108	62	30
38	875	544	389	389	344	256	209	140	80	39
40	1103	687	492	492	434	324	264	178	102	51

Actual number of turns may differ from above figures according to winding techniques, especially when using the larger size wires. Chart prepared by Michel J. Gordon, Jr., WB9FHC

Courtesy of Amidon Assoc.

Table 24.11

Ferrite Toroids: A, Chart (mH per 1000, turns) Enameled Wire

Core	63/67-Mix	$61-Mix$ $\mu = 125$	43-Mix	77 (72) Mix	J (75) Mix
Size	$\mu = 40$		μ = 850	$\mu = 2000$	μ = 5000
FT-23	7.9	24.8	188.0	396	980
FT-37	19.7	55.3	420.0	884	2196
FT-50	22.0	68.0	523.0	1100	2715
FT-82	22.4	73.3	557.0	1170	NA
FT-114	25.4	79.3	603.0	1270	3170

Number turns = 1000 $\sqrt{\text{desired L}(\text{mH})} \div A_{\text{L}}$ value (above)

Ferrite Magnetic Properties

Property Initial perm (μ_i) Maximum perm. Saturation flux	Unit	63/67-Mix 40 125	61-Mix 125 450	43-Mix 850 3000	77 (72) Mix 2000 6000	J (75)-Mix 5000 8000
density @ 10 oer Residual flux	Gauss	1850	2350	2750	4600	3900
density	Gauss	750	1200	1200	1150	1250
Curie temp.	°C	450	350	130	200	140
Vol. resistivity Resonant circuit	ohm/cm	1 × 10 ⁸	1 × 10 ⁸	1 × 10 ⁵	1 × 10 ²	5 × 10 ²
frequency	MHz	15-25	0.2-10	0.01-1	0.001-1	0.001-1
Specific gravity		4.7	4.7	4.5	4.8	4.8
Loss	1	110 × 10 ⁻⁶	32 × 10 ⁻⁶	120 × 10 ⁻⁶	4.5×10^{-6}	15 x 10 ⁻⁶
factor	$\overline{\mu_i Q}$	@25 MHz	@2.5 MHz	@1 MHz	@0.1 MHz	@0.1 MHz
Coercive force Temp. Coef.	Öer %/°C	2.40	1.60	0.30	0.22	0.16
of initial perm.	(20-70°C)	0.10	0.15	1.0	0.60	0.90

Ferrite Toroids—Physical Properties

Core Size	OD	ID	Height	Ae	l _e	V _e	As	Aw	
FT-23	0.230	0.120	0.060	0.00330	0.529	0.00174	0.1264	0.01121	
FT-37	0.375	0.187	0.125	0.01175	0.846	0.00994	0.3860	0.02750	
FT-50	0.500	0.281	0.188	0.02060	1.190	0.02450	0.7300	0.06200	
FT-82	0.825	0.520	0.250	0.03810	2.070	0.07890	1.7000	0.21200	
FT-114	1.142	0.750	0.295	0.05810	2.920	0.16950	2.9200	0.43900	

OD—Outer diameter (inches) ID—Inner diameter (inches) Hgt—Height (inches) A_W—Total window area (in)² $\begin{array}{l} {\sf A}_e & - {\sf Effective\ magnetic\ cross-sectional\ area\ (in)^2} \\ {\sf I}_e & - {\sf Effective\ magnetic\ path\ length\ (inches)} \\ {\sf V}_e & - {\sf Effective\ magnetic\ volume\ (in)^3} \\ {\sf A}_S & - {\sf Surface\ area\ exposed\ for\ cooling\ (in)^2} \end{array}$

Courtesy of Amidon Assoc.

Table 24.12 Power-Transformer Wiring Color Codes				
Non-tapped primary leads:	Black			
Tapped primary leads:	Common: Black			
	Tap: Black/yellow striped			
	Finish: Black/red striped			
High-voltage plate winding:	Red			
Center tap:	Red/yellow striped			
Rectifier filament winding:	Yellow			
Center tap:	Yellow/blue striped			
Filament winding 1:	Green			
Center tap:	_ , ,			
Filament winding 2:	Brown			
Center tap:	Brown/yellow striped			
Filament winding 3:	Slate			
Center tap:	Slate/yellow striped			

Table 24.13 IF Transformer Wiring Color Codes

Plate lead:	Blue
B+ lead:	Red
Grid (or diode) lead:	Green
Grid (or diode) return:	Black

Note: If the secondary of the IF transformer is center-tapped, the second diode plate lead is greenand-black striped, and black is used for the center-tap lead.

Table 24.14 IF Transformer Slug Color Codes

Frequency	Application	Slug color
455 kHz	1st IF	Yellow
	2nd IF	White
	3rd IF	Black
	Osc tuning	Red
10.7 MHz	1st IF	Green
	2nd or 3rd IF	Orange, Brown or Black

Table 24.15

Audio Transformer Wiring Color Codes

5	
Plate lead of primary B+ lead (plain or center-tapped) Plate (start) lead on center-tapped primaries	Blue Red Brown (or blue if polarity is not important)
Grid (finish) lead to secondary	Green
Grid return (plain or center tapped)	Black
Grid (start) lead on center tapped secondaries	Yellow (or green if polarity not important)
Note: These markings also apply to	line-to-grid and

Note: These markings also apply to line-to-grid and tube-to-line transformers.

dard part numbers). In such cases, it is often possible to find the standard equivalent or a suitable replacement by using one of the semiconductor cross-reference directories available from various replacement-parts distributors. If you look up the house number and find the recommended replacement part, you can often find other standard parts that are replaced by that same part.

Diodes

Most diodes are marked with a part number and some means of identifying which lead is the cathode. Some diodes are marked with a color-band code (see **Fig 24.5**). Important diode parameters include maximum forward current, maximum peak inverse voltage (PIV) and the power-handling capacity.

Transistors

Some important parameters for transistor selection are voltage

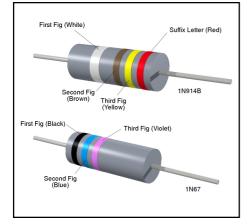


Fig 24.5—Color coding for semiconductor diodes. At A, the cathode is identified by the double-width first band. At B, the bands are grouped toward the cathode. Two-figure designations are signified by a black first band. The color code is given in Table 24.2. The suffix-letter code is A—Brown, B—red, C—orange, D—yellow, E—green, F—blue. The 1N prefix is understood. and current limits, power-handling capability, beta or gain characteristics and useful frequency range. The case style may also be an issue; some transistors are available in several different case styles.

Integrated Circuits

Integrated circuits (ICs) come in a variety of packages, including transistor-like metal cans, dual and single in-line packages (DIPs and SIPs), flat-packs and surface-mount packages. Most are marked with a part number and a four-digit manufacturer's date code indicating the year (first two digits) and week (last two digits) that the component was made. ICs are frequently house-marked, and the cross-reference directories mentioned above can be helpful in identification and replacement.

Another very useful reference tool for working with ICs is *IC Master*, a master selection guide that organizes ICs by type, function and certain key parameters. A part number index is included, along with application notes and manufacturer's information for tens of thousands of IC devices. Some of the data from *IC Master* is also available on computer disks.

IC part numbers usually contain a few digits that identify the circuit die or function and several other letters and/or digits that identify the production process, manufacturer and package. For example, a '4066 IC contains four independent SPST switches. Harris (CD74HC4066, CD4066B and CD4066BE), National (MM74HC4066, CD4066BC and CD4066BM) and Panasonic (MN74HC4066 and MN4066B) all make similar devices (as do many other manufacturers) with slight differences. Among the numbers listed, "CD" (CMOS Digital), "MM" (MOS Monolithic), and "MN" indicate CMOS parts. "74" indicates a commercial quality product (for applications from 0°C to 70°C), which is pin compatible with the 74/54 TTL families. "HC" means high-speed CMOS family, which is as fast as the LS TTL family. The "B" suffix, as is CD4066B, indicates a buffered output. This is only a small example of the conventions used in IC part numbers. For more information look at data books from the various manufacturers. Base diagrams for many common ICs appear in *The ARRL Electronics Data Book*.

When choosing ICs that are not exact replacements, several operating needs and performance aspects should be considered. First, the replacement power requirements must be met: Some ICs require 5 V dc, others 12 V and some need both positive and negative supplies. Current requirements vary among the various IC families, so be sure that sufficient current is available from the power supply. If a replacement IC uses much more current than the device it replaces, a heat sink or blower may be needed to keep it cool.

Next consider how the replacement interacts with its neighboring components. Input capacitance and "fanout" are critical factors in digital circuits. Increased input capacitance may overload the driving circuits. Overload slows circuit operation, which may prevent lines from reaching the "high" condition. Fanout tells how many inputs a device can drive. The fanout of a replacement should be equal to, or greater than, that required in the circuit. Operating speed and propagation delay are also significant. Choose a replacement IC that operates at or above the circuit clock speed. (Although increased speed can increase EMI and cause other problems.) Some circuits may not function if the propagation delay varies much from the specified part. Look at the **Digital** chapter for details of how these operating characteristics relate to circuit performance.

Analog ICs have similar characteristics. Input and output capacities are often defined as how much current an analog IC can "sink" (accept at an input) or "source" (pass to a load). A replacement should be able to source or sink at least as much current as the device it replaces. Analog speed is sometimes listed as bandwidth (as in discrete-component circuits) or slew rate (common in op amps). Each of these quantities should meet or exceed that of the replaced component.

Some ICs are available in different operating temperature ranges. Op amps, for example, are commonly available in three standard ranges:

- Commercial 0°C to 70°C
- Industrial $-25^{\circ}C$ to $85^{\circ}C$
- Military –55°C to 125°C

In some cases, part numbers reflect the temperature ratings. For example, an LM301A op amp is rated for the commercial temperature range; an LM201A op amp for the industrial range and an LM101A for the military range.

When necessary, you can add interface circuits or buffer amplifiers that improve the input and output capabilities of replacement ICs, but auxiliary circuits cannot improve basic device ratings, such as speed or bandwidth.

An excellent source of information on many common ICs is *The ARRL Electronics Data Book*, which contains detailed data for digital ICs (CMOS and TTL), op amps and other analog ICs.

OTHER SOURCES OF COMPONENT DATA

There are many sources you can consult for detailed component data. Many manufacturers publish data books for the components they make. Many distributors will include data sheets for parts you order if you ask for them. Parts catalogs themselves are often good sources of component data. The following list is representative of some of the data resources available from manufacturers and distributors.

Motorola Small-Signal Transistor Data Motorola RF Device Data Motorola Linear and Interface ICs Signetics: General Purpose/Linear ICs NTE Technical Manual and Cross Reference TCE SK Replacement Technical Manual and Cross Reference National Semiconductor: Discrete Semiconductor Products Databook CMOS Logic Databook Linear Applications Handbook Linear Application-Specific ICs Databook Operational Amplifiers Databook

Copper Wire Specifications

Bare and Enamel-Coated Wire

						- .	Current Carrying Capacity				
			_			Feet	Ohms	Continuo	us Duty		Nearest
Wire			Ename				per	at		Conduit	British
Size	Diam	Area	Turns /			Pound	1000 ft	700 CM	Open	or	SWG
(AWG)	(Mils)	(CM1)	Single	Heavy	l riple	Bare	25° C	per Amp ⁴	air	bundles	No.
1	289.3	83694.49				3.948	0.1239	119.564			1
2	257.6	66357.76				4.978	0.1563	94.797			2
3	229.4	52624.36				6.277	0.1971	75.178			4
4	204.3	41738.49				7.918	0.2485	59.626			5
5	181.9	33087.61				9.98	0.3134	47.268			5 6 7
6	162.0	26244.00				12.59	0.3952	37.491			7
7	144.3	20822.49				15.87	0.4981	29.746			8
8	128.5	16512.25				20.01	0.6281	23.589			9
9	114.4	13087.36				25.24	0.7925	18.696			11
10	101.9	10383.61				31.82	0.9987	14.834			12
11	90.7	8226.49				40.16	1.2610	11.752			13
12	80.8	6528.64				50.61	1.5880	9.327			13
13	72.0	5184.00				63.73	2.0010	7.406			15
14	64.1	4108.81	15.2	14.8	14.5	80.39	2.5240	5.870	32	17	15
15	57.1	3260.41	17.0	16.6	16.2	101.32	3.1810	4.658			16
16	50.8	2580.64	19.1	18.6	18.1	128	4.0180	3.687	22	13	17
17	45.3	2052.09	21.4	20.7	20.2	161	5.0540	2.932			18
18	40.3	1624.09	23.9	23.2	22.5	203.5	6.3860	2.320	16	10	19
19	35.9	1288.81	26.8	25.9	25.1	256.4	8.0460	1.841			20
20	32.0	1024.00	29.9	28.9	27.9	322.7	10.1280	1.463	11	7.5	21
21	28.5	812.25	33.6	32.4	31.3	406.7	12.7700	1.160		-	22
22	25.3	640.09	37.6	36.2	34.7	516.3	16.2000	0.914		5	22
23	22.6	510.76	42.0	40.3	38.6	646.8	20.3000	0.730			24
24	20.1	404.01	46.9	45.0	42.9	817.7	25.6700	0.577			24
25	17.9	320.41	52.6	50.3	47.8 53.2	1031 1307	32.3700	0.458			26 27
26 27	15.9 14.2	252.81 201.64	58.8 65.8	56.2 62.5	53.2 59.2	1639	41.0200 51.4400	0.361 0.288			28
28	14.2	158.76	73.5	69.4	65.8	2081	65.3100	0.288			20
28 29	12.0	127.69	82.0	76.9	72.5	2587	81.2100	0.227			29 31
30	10.0	100.00	91.7	86.2	80.6	3306	103.7100	0.162			33
31	8.9	79.21	103.1	95.2	00.0	4170	130.9000	0.143			34
32	8.0	64.00	113.6	105.3		5163	162.0000	0.091			35
33	7.1	50.41	128.2	117.6		6553	205.7000	0.072			36
34	6.3	39.69	142.9	133.3		8326	261.3000	0.057			37
35	5.6	31.36	161.3	149.3		10537	330.7000	0.045			38
36	5.0	25.00	178.6	166.7		13212	414.8000	0.036			39
37	4.5	20.25	200.0	181.8		16319	512.1000	0.029			40
38	4.0	16.00	222.2	204.1		20644	648.2000	0.023			
39	3.5	12.25	256.4	232.6		26969	846.6000	0.018			
40	3.1	9.61	285.7	263.2		34364	1079.2000	0.014			
41	2.8	7.84	322.6	294.1		42123	1323.0000	0.011			
42	2.5	6.25	357.1	333.3		52854	1659.0000	0.009			
43	2.2	4.84	400.0	370.4		68259	2143.0000	0.007			
44	2.0	4.00	454.5	400.0		82645	2593.0000	0.006			
45	1.8	3.10	526.3	465.1	1	06600	3348.0000	0.004			
46	1.6	2.46	588.2	512.8		34000	4207.0000	0.004			

Teflon Coated, Stranded Wire

Continued from previous page. (As supplied by Belden Wire and Cable)

Turns	per	Linear	inch ²
		tyle No.	

Size	Strands ⁵	1180	1213	1371
16	19x29	11.2		
18	19×30	12.7		
20	7×28	14.7	17.2	
20	19×32	14.7	17.2	
22	19×34	16.7	20.0	23.8
22	7×30	16.7	20.0	23.8
24	19×36	18.5	22.7	27.8
24	7×32		22.7	27.8
26	7×34		25.6	32.3
28	7×36		28.6	37.0
30	7×38		31.3	41.7
32	7×40			47.6

Notes

¹ A circular mil (CM) is a unit of area equal to that of a one-mil-diameter circle ($\pi/4$ square mils). The CM area of a wire is the square of the mil diameter.

- ² Figures given are approximate only; insulation thickness varies with manufacturer.
- ³ Maximum wire temperature of 212°F (100°C) with a maximum ambient temperature of 13°F (57°C) as specified by the manufacturer. The *National Electrical Code* or local building codes may differ.
- ⁴ 700 CM per ampere is a satisfactory design figure for small transformers, but values from 500 to 1000 CM are commonly used. The *National Electrical Code* or local building codes may differ.
- ⁵ Stranded wire construction is given as "count" × "strand size" (AWG).

Color Code for Hookup Wire

Type of Circuit
Grounds, grounded elements and returns
Heaters or filaments, off ground
Power Supply B plus
Screen grids and base 2 of transistors
Cathodes and transistor emitters
Control grids, diode plates, and base 1 of transistors
Plates and transistor collectors
Power supply, minus leads
Ac power line leads
Bias supply, B or C minus, AGC

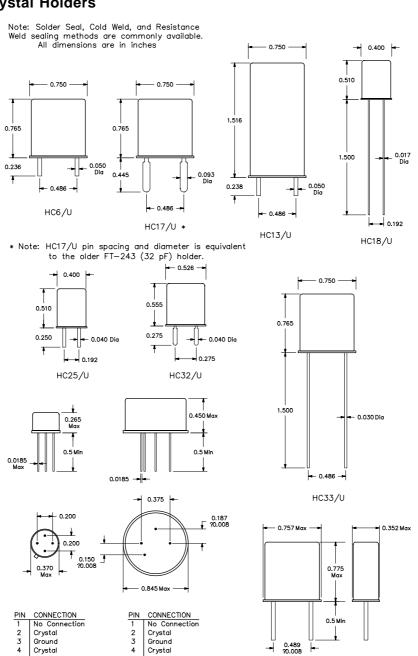
Note: Wires with tracers are coded in the same manner as solid-color wires, allowing additional circuit identification over solid-color wiring. The body of the wire is white and the color band spirals around the wire lead. When more than one color band is used, the widest band represents the first color.

Aluminum Alloy Characteristics

Common Alloy Numbers

	•
Туре	Characteristic
2024	Good formability, high strength
5052	Excellent surface finish, excellent corro-
	sion resistance, normally not heat
	treatable for high strength
6061	Cood machinghility, good waldahility, or

- 6061 Good machinability, good weldability, can be brittle at high tempers
- 7075 Good formability, high strength


General Uses

- Type Uses
- 2024-T3 Chassis boxes, antennas, anything that will be bent or flexed repeatedly
- 7075-T3
- 6061-T6 Mounting plates, welded assemblies or machined parts

Common Tempers

- Type Characteristics
- T0 Special soft condition
- T3 Hard
- T6 Very hard, possibly brittle
- TXXX Three digit tempers—usually specialized high-strength heat treatments, similar to T6

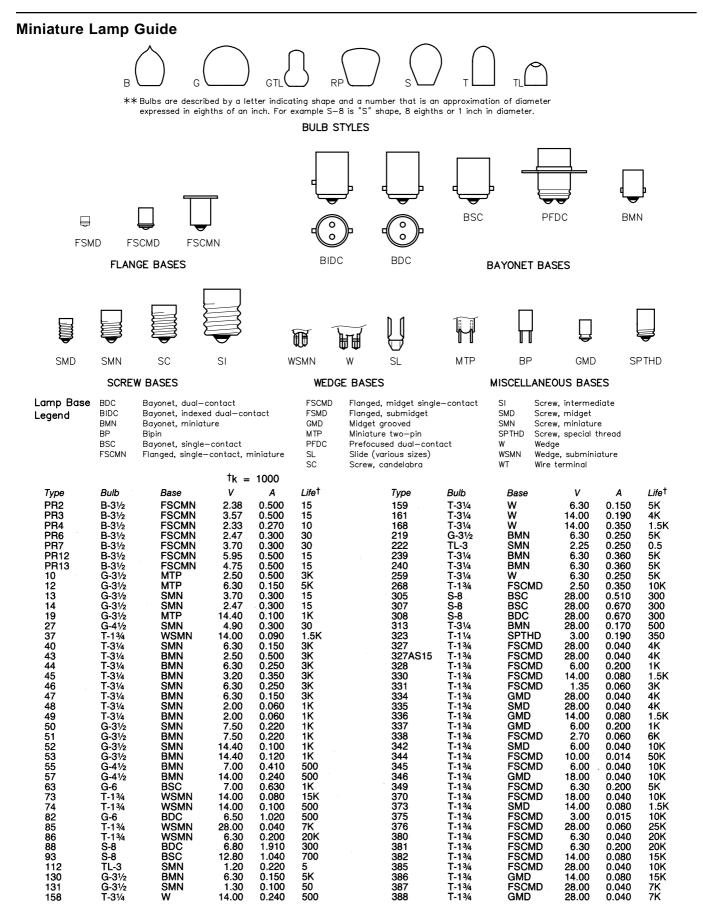
Crystal Holders

* Note: HC17/U pin spacing and diameter is equivalent to the older FT-243 (32 pF) holder.

0.489 20.008

+

HC 47 (TL-31)


3

4 Crystal

HC 40 (TL-90)

Crystal

HC 35 (TO-5)

Miniature Lamp Guide

Continued from previous page.

Type 397 398 399 502 555 680AS15 685AS15 685AS15 715AS15 715AS15 715AS15 756 757 1034 1133 1141 1445 1487 1488 1490 1691 1630 1691 1728 1738 1762 1764 1765 1815 1816 1818 1821 1828 1829 1821 1828 1829 1821 1828 1829 1821 1828 1829 1847 1864 1869 1891	Bulb T-134 T-134 G-314 T-134 G-314 T-1 T-1 T-1 T-1 T-1 T-1 T-1 T-1 T-1 T-1	GMD 10 GMD 28 SMN 55 SMN 55 W 28 WT 55 WT 55 WT 55 WT 55 WT 55 WT 55 BMN 14 BDC 12 BBSCC 12 BBSCC 12 BBSCC 28 BSCC 28 BDCC 28 BSSCC 28 BSSDC 28 SMD 14 BMNN 14 BMNN 28 SMD 6 SMD 14 BMNN 28 SMD 14 BMNN 28 <	V A 0.00 0.040 3.30 0.200 3.00 0.200 3.00 0.250 3.00 0.250 3.00 0.060 5.00 0.060 5.00 0.060 5.00 0.115 5.00 0.115 5.00 0.115 5.00 0.115 5.00 0.115 5.00 0.590 4.00 0.590 5.00 0.150 8.01 1.800 5.00 0.150 8.01 1.800 5.00 0.230 4.00 0.300 5.00 0.200 5.00 2.750 5.00 0.610 5.00 0.200 5.00 0.200 5.00 0.200 5.00 0.200 5.00 0.200 5.00 0.200 5.00 0.200	Life [†] 5KK 55K 103K 55K 6605K 555 6605 555 5500 200 100 200 200 200 200 200 200 200 2	Type 1892 1893 1895 2102 2107 2158 2162 2169 2180 2181 2182 2187 2304 2307 2314 2335 2337 2342 3149 6803AS25 6833AS15 6838 6839 7001 7003 7153AS15 7285 7330 7344 7349 7361 7376 7376 7377 7380 7381 7382 7381 7382 7381 7382 7381 7382 7381 7382 7387 7381 7382 73	$\begin{array}{l} \textbf{Bulb} \\ \textbf{T}\textbf{-}31/4 \\ \textbf{T}\textbf{-}31/4 \\ \textbf{G}\textbf{-}41/2 \\ \textbf{G}\textbf{-}41/2 \\ \textbf{T}\textbf{-}13/4 \\ \textbf{T}$	Base BMN BMN WT WT WT WT WT WT WT WT BB BB BB BB BB BB BB BB BB BB BB BB BB	$\begin{array}{c} v \\ 14.40 \\ 14.00 \\ 14.00 \\ 14.00 \\ 3.00 \\ 14.00 \\ 2.50 \\ 6.30 \\ 14.00 \\ 28.00 \\ 14.00 \\ 28.00 \\ 14.00 \\ 28.00 \\ 28.00 \\ 14.00 \\ 28.00 \\ 28.00 \\ 14.00 \\ 28.00 \\ 28.00 \\ 14.00 \\ 28.00 \\ 28.00 \\ 14.00 \\ 28.00 \\ 28.00 \\ 28.00 \\ 14.00 \\ 28.00 \\ 28.00 \\ 28.00 \\ 14.00 \\ 28.00 $	A 0.120 0.330 0.270 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.060 0.020 0.024 0.020 0.024 0.020 0.024 0.020 0.024 0.020 0.020 0.024 0.020	Life [†] 1K 7.5K 10K 10K 10K 10K 10K 10K 15K 10K 15K 10K 15K 10K 15K 10K 15K 15K 15K 15K 15K 15K 15K 15K 15K 15	
<i>Type</i> 10C7DC 3S6 6S6	V 115-125 120, 125 30, 48, 115, 120, 125, 130, 135, 145, 155	VOLTAGE LAN W Bulb 10 C-7 3 S-6 6 S-6	Base BDC SC SC		6PSB 6 12PSB 12 24PSB 24 28PSB 28 48PSB 48		slide base. <i>Life</i> † 20K 12K 10K 5K 10K 7.5K				
6S6/R 6S6/W 6T41/2 7C7 7C7/W 10C7 10S6 10S6/10 6S6DC 10S6/10DC 40S11 N 120MB 120MB/6 120PS 120PS 120PS/6	115-125 115-125 1120, 130 115-125 115-125 115-125 120 220, 230, 250 30, 120, 125, 145 230, 250 115-125 120 120 120 120 120	6 S-6 (rec 6 S-6 (wh 6 T-41/2 7 C-7 (wh 10 C-7 10 S-6 10 S-6 6 S-6 40 S-11 3 T-21/2 3 T-2 3 T-2 3 T-2 6 T-21/2	nite) SC SC SC			0.00 0.025	7.5K	Base WT FSCMI WT FSCMI WT SC BMN SL SL	1/1 1/4	5 100K 2 100K 30K 30K 2 100K 0 00K 0 00K 0 00K 0 200K 47K 30K	t

Metal-Oxide Varistor (MOV) Transient Suppressors

Listed by voltage.

Listed by voltage.		Maximum Applied	Maximum	Maximum Peak	Maximum	Maximum Varistor	
	ECG/NTE††		Voltage	Energy	Current	Power	Voltage
Type No.	no.	V ac _{RMS}	V ac _{Peak}	(Joules)	(A)	(W)	(V)
V180ZA1	1V115	115	163	1.5	500	0.2	285
V180ZA10	2V115	115	163	10.0	2000	0.45	290
V130PA10A		130	184	10.0	4000	8.0	350
V130PA20A		130	184	20.0	4000	15.0	350
V130LA1	1V130	130	184	1.0	400	0.24	360
V130LA2	1V130	130	184	2.0	400	0.24	360
V130LA10A	2V130	130	184	10.0	2000	0.5	340
V130LA20A	524V13	130	184	20.0	4000	0.85	340
V150PA10A		150	212	10.0	4000	8.0	410
V150PA20A		150	212	20.0	4000	15.0	410
V150LA1	1V150	150	212	1.0	400	0.24	420
V150LA2	1V150	150	212	2.0	400	0.24	420
V150LA10A	524V15	150	212	10.0	2000	0.5	390
V150LA20A	524V15	150	212	20.0	4000	0.85	390
V250PA10A		250	354	10.0	4000	0.85	670
V250PA20A		250	354	20.0	4000	7.0	670
V250PA40A		250	354	40.0	4000	13.0	670
V250LA2	1V250	250	354	2.0	400	0.28	690
V250LA4	1V250	250	354	4.0	400	0.28	690
V250LA15A	2V250	250	354	15.0	2000	0.6	640
V250LA20A	2V250	250	354	20.0	2000	0.6	640
V250LA40A	524V25	250	354	40.0	4000	0.9	640

⁺⁺ ECG and NTE numbers for these parts are identical, except for the prefix. Add the "ECG" or "NTE" prefix to the numbers shown for the complete part number.

Voltage-Variable Capacitance Diodes[†]

Listed nume	rically by device								
Device	CT Nominal Capacitance pF ± 10% @ V _R =4.0 V f=1.0MHz	Capacitance Ratio 4-60 V Min.	Q @ 4.0 V 50 MHz Min.	Case Style	Device	CT Nominal Capacitance pF ± 10% @ V _R =4.0 V f=1.0MHz	Capacitance Ratio 4-60 V Min.	Q @ 4.0 V 50 MHz Min.	Case Style
1N5441A	6.8	2.5	450	,	1N5471A	39	2.9	450	,
1N5442A	8.2	2.5	450		1N5472A	47	2.9	400	
1N5443A	10	2.6	400	DO-7	1N5473A	56	2.9	300	DO-7
1N5444A	12	2.6	400		1N5474A	68	2.9	250	
1N5445A	15	2.6	450		1N5475A	82	2.9	225	
1N5446A	18	2.6	350		1N5476A	100	2.9	200	
1N5447A	20	2.6	350		MV2101	6.8	2.5	450	
1N5448A	22	2.6	350	DO-7	MV2102	8.2	2.5	450	
1N5449A	27	2.6	350		MV2103	10	2.0	400	TO-92
1N5450A	33	2.6	350		MV2104 MV2105	12	2.5	400	
1N5451A	39	2.6	300			15	2.5	400	
1N5452A	47	2.6	250	DO-7	MV2106	18	2.5	350	
1N5453A	56	2.6 2.7	200 175	00-7	MV2107 MV2108	22 27	2.5 2.5	350 300	TO-92
1N5454A 1N5455A	68 82	2.7	175		MV2109	33	2.5	200	10-92
1N5456A	100	2.7	175		MV2110	39	2.5	150	
1N5461A	6.8	2.7	600		MV2111	47	2.5	150	
1N5462A	8.2	2.8	600		MV2112	56	2.6	150	
1N5463A	10	2.8	550	DO-7	MV2113	68	2.6	150	TO-92
1N5464A	12	2.8	550		MV2114	82	2.6	100	
1N5465A	15	2.8	550		MV2115	100	2.6	100	
1N5466A	18	2.8	500						
1N5467A	20	2.9	500						
1N5468A	22	2.9	500	DO-7					
1N5469A	27	2.9	500						
1N5470A	33	2.9	500						

[†] For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

Zener	Diodes			Douron (14(-44-)				
Volts	0.25	0.4	0.5	Power (Watts) 1.0	1.5	5.0	10.0	50.0
1.8	1N4614	0.4	0.0	1.0	1.5	5.0	10.0	50.0
2.0	1N4615							
2.2	1N4616							
2.4	1N4617	1N4370,A	1N4370,A					
			1N5221,B					
2.5			1N5985,B 1N5222B					
2.6	1N702,A		INJELED					
2.7	1N4618	1N4371,A	1N4371,A					
			1N5223,B					
<u> </u>			1N5839, 1N5986					
2.8 3.0	1N4619	1N4372,A	1N5224B 1N4372					
3.0	114015	1114072,A	1N5225,B					
			1N5987					
3.3	1N4620	1N746,A	1N746,A	1N3821	1N5913	1N5333,B		
		1N764,A	1N5226,B	1N4728,A				
3.6	1N4621	1N5518 1N747,A	1N5988 1N747A	1N3822	1N5914	1N5334,B		
3.0	1114021	1N5519	1N5227,B	1N3622 1N4729,A	1110914	11100004,6		
			1N5989	1111120,11				
3. 9	1N4622	1N748,A	1N748A	1N3823	1N5915	1N5335,B	1N3993A	1N4549,B
		1N5520	1N5228,B	1N4730,A				1N4557,B
4.1	1N704,A		1N5844, 1N5990					
4.3	1N4623	1N749.A	1N749,A 1N5229,B	1N3824	1N5916	1N5336,B	1N3994,A	1N4550,B
		1N5521	1N5845	1N4731,A			11000-1,14	1N4558,B
			1N5991					,-
4.7	1N4624	1N750,A	1N750A	1N3825	1N5917	1N5337,B	1N3995,A	1N4551,B
		1N5522	1N5230,B	1N4732,A				1N4559,B
5.1	1N4625	1N751,A	1N5846, 1N5992 1N751,A, 1N5231,B	1N3826	1N5918	1N5338,B	1N3996.A	1N4552,B
0.1	1N4689	1N5523	1N5847	1N4733	1145810	1140000,0	1113330,A	1N4560,B
			1N5993					(111000,0
5.6	1N708A	1N752,A	1N752,A	1N3827	1N5919	1N5339,B	1N3997,A	1N4553,B
	1N4626	1N5524	1N5232,B	1N4734,A				1N4561,B
5.8	1N706A	1N762	1N5848, 1N5994					
6.0	INTOOR	111/02	1N5233B			1N5340,B		
			1N5849			110040,0		
6.2	1N709,1N4627	1N753,A	1N753,A	1N3828,A	1N5920	1N5341,B	1N3998,A	1N4554,B
	MZ605, MZ610	1N821,3,5,7,9;A	1N5234,B, 1N5850	1N4735,A				1N4562,B
6.4	MZ620, MZ640 1N4565-84,A		1N5995					
6.8	1N4099	1N754,A	1N754,A 1N757,B	1N3016,B	1N3785	1N5342,B	1N2970,B	1N2804B
		1N957,B	1N5235,B 1N5851	1N3829	1N5921		1N3999,A	1N3305B
		1N5526	1N5996	1N4736,A				1N4555, 1N4563
7.5	1N4100	1N755,A	1N755A, 1N958,B	1N3017,A,B	1N3786	1N5343,B	1N2971,B	1N2805,B
		1N958,B 1N5527	1N5236,B 1N5852 1N5997	1N3830 1N4737,A	1N5922		1N4000,A	1N3306,B
8.0	1N707A	110027	1100007	114101,A				1N4556, 1N4564
8.2	1N712A	1N756,A	1N756,A	1N3018,B	1N3787	1N5344,B	1N2972,B	1N2806,B
	1N4101	1N959,B	1N959,B	1N4738,A	1N5923			1N3307,B
		1N5528	1N5237,B					
			1N5853 1N5998					
04		410454574						
8.4		1N3154-57,A	1N3154,A 1N3155-57					
8.5	1N4775-84.A		1N5238,B					
			1N5854					
8.7	1N4102					1N5345,B		
8.8		1N764						
9.0 9.1	1N4103	1N764A 1N757,A	1N935-9;A,B 1N757,A, 1N960,B	1N3019.B	1N3788	1115040 0	110070 0	410007 0
0.1	1114100	1N960,B	1N5239,B, 1N5855	1N4739,A	1N5924	1N5346,B	1N2973,B	1N2807,B 1N3308,B
		1N5529	1N5999		(1002)			1110000,0
10.0	1N4104	1N758,A	1N758,A, 1N961,B	1N3020,B	1N3789	1N5347,B	1N2974,B	1N2808,B
		1N961,B	1N5240,B, 1N5856	1N4740,A	1N5925			1N3309,A,B
11.0	1N715,A	1N5530,B 1N962,B	1N6000 1N962,B	110001 0	110700		4110075 0	4110000 0
11.0	1N4105	1N5531	1N5241,B	1N3021,B 1N4741,A	1N3790 1N5926	1N5348,B	1N2975,B	1N2809,B 1N3310,B
		110001	1N5857, 1N6001	1114741,A	1145920			TN3310,B
11.7	1N716,A		1N941-4;A,B					
40.0	1N4106	411700						
12.0		1N759,A	1N759,A, 1N963,B,	1N3022,B	1N3791	1N5349,B	1N2976,B	1N2810,B
		1N963,B 1N5532	1N5242,B, 1N5858 1N6002	1N4742,A	1N5927			1N3311,B
13.0	1N4107	1N964,B	1N964,B	1N3023,B	1N3792	1N5350,B	1N2977,B	1N2811,B
		1N5533	1N5243,B, 1N5859	1N4743,A	1N5928			1N3312,B
			1N6003					,
							Continue	d on next nade

Zener Diodes

Continued from previous page.

ontinued	d from prev	vious page.		D				
Volts	0.25	0.4	0.5	Power (Watts) 1.0	1.5	5.0	10.0	50.0
14.0	1N4108	1N5534	1N5244B 1N5860			1N5351,B	1N2978,B	1N2812,B 1N3313,B
15.0	1N4109	1N965,B 1N5535	1N965,B 1N5245,B, 1N5861, 1N6004	1N3024,B 1N4744A	1N3793 1N5929	1N5352,B	1N2979,A,B	1N2813,A,B 1N3314,B
16.0	1N4110	1N966,B 1N5536	1N966,B, 1N5246,B 1N5862, 1N6005	1N3025,B 1N4745,A	1N3794 1N5930	1N5353,B	1N2980,B	1N2814,B 1N3315,B
17.0	1N4111	1N5537	1N5247,B 1N5863		110000	1N5354,B	1N2981B	1N2815,B 1N3316,B
18.0	1N4112	1N967,B 1N5538	1N967,B 1N5248,B 1N5864, 1N6006	1N3026,B 1N4746,A	1N3795 1N5931	1N5355,B	1N2982,B	1N2816,B 1N3317,B
19.0	1N4113	1N5539	1N5864, 1N6006 1N5249,B 1N5865			1N5356,B	1N2983,B	1N2817,B 1N3318,B
20.0	1N4114	1N968.B 1N5540	1N968,B 1N5250,B	1N3027,B 1N4747,A	1N3796 1N5932,A,B	1N5357,B	1N2984,B	1N2818,B 1N3319,B
22.0	1N4115	1N959,B 1N5541	1N5866, 1N6007 1N969,B 1N5241,B	1N3028,B 1N4748,A	1N3797 1N5933	1N5358,B	1N2985,B	1N2819,B 1N3320,A,B
24.0	1N4116	1N5542 1N9701B	1N5867, 1N6008 1N970,B 1N5252,B, 1N586	1N3029,B 1N4749,A	1N3798 1N5934	1N5359,B	1N2986,B	1N2820,B 1N3321,B
25.0	1N4117	1N5543	1N6009 1N5253,B			1N5360,B	1N2987B	1N2821,B
27.0	1N4118	1N971,B	1N5869 1N971 1N5254,B, 1N5870,	1N3030,B 1N4750,A	1N3799 1N5935	1N5361,B	1N2988,B	1N3322,B 1N2822B 1N3323,B
28.0	1N4119	1N5544	1N6010 1N5255,B			1N5362,B		
30.0	1N4120	1N972,B 1N5545	1N5871 1N972,B 1N5256,B, 1N5872,	1N3031,B 1N4751,A	1N3800 1N5936	1N5363,B	1 N2989,B	1N2823,B 1N3324,B
33.0	1N4121	1N973,B 1N5546	1N6011 1N973,B 1N5257,B 1N5873 1N6012	1N3032,B 1N4752,A	1N3801 1N5937	1N5364,B	1N2990,A,B	1N2824,B 1N3325,B
36.0	1N4122	1N974,B	1N974,B 1N5258,B	1 N3033,B 1 N4753,A	1N3802 1N5938	1N5365,B	1N2991,B	1N2825,B 1N3326,B
39.0	1N4123	1N975,B	1N5874, 1N6013 1N975,B, 1N5259,B	1N3034,B	1N3803 1N5939	1N5366,B	1N2992,B	1N2826,B 1N3327,B
43.0	1N4124	1N976,B	1N5875, 1N6014 1N976,B 1N5260,B, 1N5876,	1N4754,A 1N3035,B 1N4755,A	1N3804 1N5940	1N5367,B	1N2993,A,B	1N2827,B 1N3328,B
45.0			1 N6015				1N2994B	1N2828B 1N3329B
47.0	1N4125	1N977,B	1N977,B, 1N5261,B 1N5877, 1N6016	1N3036,B 1N4756,A	1N3805 1N5941	1N5368,B	1N2996,B	1N3329B 1N2829,B 1N3330,B 1N2830B
50.0 51.0	1N4126	1N978,B	1N978,B, 1N5262,A,I		1N3806	1N5369,B	1N2997,B	1N3331B 1N2831,B 1N3332,B
52.0			1N5878, 1N6017	1N4757,A	1N5942	115270 0	1N2998B	1N3333
56.0	1N4127	1N979,B	1N979 1N5263,B 1N6018	1N3038,B 1N4758,A	1N3807 1N5943	1N5370,B	1N2999,B	1N2822,B 1N3334,B
60.0 62.0	1N4128 1N4129	1N980,B	1N5264,A,B 1N980 1N5265,A,B 1N6019	1N3039,B 1N4759,A	1N3808 1N5944	1N5371,B 1N5372,B	1N3000,B	1N2833,B 1N3335,B
68.0	1 N4130	1N981,B	1N981,B 1N5266,A,B 1N6020	1N3040,A,B 1N4760,A	1N3809 1N5945	1N5373,B	1N3001,B	1N2834,B 1N3336,B
75.0	1N4131	1N982,B	1N982 1N5267,A,B 1N6021	1N3041,B 1N4761,A	1N3810 1N5946	1N5374,B	1N3002,B	1N2835,B 1N3337,B
82.0	1 N4132	1N983,B	1N983 1N5268,A,B 1N6022	1N3042,B 1N4762,A	1N3811 1N5947	1N5375,B	1N3003,B	1N2836,B 1N3338,B
87.0 91.0	1N4133 1N4134	1N984,B	1N5269,B 1N984 1N5270,B	1N3043,B 1N4763,A	1N3812 1N5948	1N5376,B 1N5377,B	1 N3004,B	1N2837,B 1N3339,B
100.0	1N4135	1N985	1N6023 1N985,B 1N5271,B	1N3044,A,B 1N4764,A	1N3813 1N5949	1N5378,B	1N3005,B	1N2838,B 1N3340,B
105.0			1N6024				1N3006B	1N2839,B 1N3341,B
110.0		1N986	1N986 1N5272,B 1N6025	1N3045,B 1M110ZS10	1N3814 1N5950	1N5379,B	1N3007A,B	1N3341,B 1N2840,B 1N3342,B
							Continued	on next na

Zener Diodes

Continued from previous page.

	Power (Watts)										
Volts	0.25	0.4	0.5	1.0	1.5	5.0	10.0	5 0 .0			
120.0		1N987	1N987,B 1N5273,B 1N6026	1N3046,B 1M120ZS10	1N3815 1N5951	1N5380,B	1N3008A,B	1N2841,B 1N3343,B			
130.0		1N988	1N988,B 1N5274,B 1N6027	1N3047,B 1M130ZS10	1N3816 1N5952	1N5381,B	1N3009,B	1N2842,B 1N3344,B			
140.0		1N989	1N5275,B			1N5382B	1N3010B	1N3345B			
150.0		1N990	1N989	1N3048,B	1N3817	1N5383,B	1N3011,B	1N2843,B			
			1N5276,B 1N6028	1M150ZS10	1N5953			1N3346,B			
160.0		1N991	1N990 1N5277,B 1N6029	1N3049,B 1M160ZS10	1N3818 1N5954	1N5384,B	1N3012A,B	1N2844,B 1N3347,B			
170.0		1N992	1N5278,B	1M170ZS10		1N5385,B					
175.0							1N3013B	1N3348B			
180.0			1N991,B 1N5279,B 1N6030	1N3050,A,B 1M180ZS10	1N3819 1N5955	1N5386,B	1N3014,B	1N2845,B 1N3349,B			
190.0			1N5280,B			1N5387,B					
200.0			1N992 1N5281,B 1N6031	1N3051,B 1M200ZS10	1N3820 1N5956	1N5388B	1N3015,B	1N2846,B 1N3350,B			

Semiconductor Diode Specifications[†]

Listed numerically by device

Device 1N34 1N34A 1N67A 1N191 1N270 1N914 1N1183 1N1184 1N2071 1N3666 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 1N4148 1N4149 1N4152 1N4445 1N5400 1N5401	<i>Type</i> Signal Signal Signal Signal Fast Switch RFR RFR RFR RFR RFR RFR RFR RFR RFR RF	<i>Material</i> Ge Ge Ge Si Si Si Si Si Si Si Si Si Si Si Si Si	Peak Inverse Voltage, PIV (V) 60 60 100 90 80 75 50 100 600 80 50 100 200 400 600 800 1000 75 75 40 100 50 100	Average Rectified Current Forward (Reverse) $I_O(A)(I_R(A))$ 8.5 m (15.0 µ) 5.0 m (30.0 µ) 4.0 m (5.0 µ) 5.0 m 0.2 (100 µ) 75.0 m (25.0 n) 40 (5 m) 40 (5 m) 0.75 (10.0 µ) 0.2 (25.0 µ) 1.0 (0.03 m) 1.0 (0.00 m)	Peak Surge Current, I _{FSM} 1 s @ 25°C (A) 0.5 800 800 800	Average Forward Voltage, V _F (V) 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1
					200 200 200 200 200 200 200 200	1.0
1N5406 1N5711 1N5767 1N5817 1N5819 1N5821 ECG5863 1N6263 5082-2835	Schottky Signal Schottky Schottky Schottky RFR Schottky Schottky	Si Si Si Si Si Si Si Si	1000 70 20 40 30 600 70 8	3.0 (500 μ) 1 m (200 n) 0.1 (1.0 μ) 1.0 (1 m) 3.0 6 15 m 1 m (100 n)	250 25 25 150 50 m 10 m	0.41 @ 1 mA 1.0 0.75 0.9 0.9 0.41 @ 1 mA 0.34 @ 1 mA

Si = Silicon; Ge = Germanium; RFR = rectifier, fast recovery. [†] For package shape, size and pin-connection information see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

European Semiconductor Nun	.	·	n Code)
	<u> </u> B F	R90	
			· · · · · · · · · · · · · · · · · · ·
First Letter (Material)	Second Letter (Ty	vpe)	Third, Fourth, Fifth Character (Serial Code)
A Germanium	A Low-power dio voltage-variabl		Y## Industrial service (no letter "Z") ## is a W## registration number from 10 to 99.
B Silicon	B Varicap		100 - Device for consumer or 999 entertainment use.
C Compound materials such as cadmium sulfide or gallium arsenide used in semiconductor devices (Energy gap band of 1.3 or more electron-volts)	C Small-signal au	udio transistor	
D Materials with an energy gap band of less than 0.6 electron- volts such as indium antimonide	D Audio power tra	ansistor	
R Radiation detectors, photo- conductive cells, hall-effect generators and so on	E Tunnel diode		
	 F Small-signal R G Miscellaneous H Field probe K Hall generator L RF-power trans M Hall modulators P Photodiode, phy photoconductive radiation device R Low-power cordination device R Low-power swiit T Breakdown device T Breakdown device controlled rective Thyristor, pnphy U High-power swiit X Multiplier diode Y High-power rective 	sistor s and multipliers nototransistor, ve cell (LDR), e ntrolled rectifier tching transistor vices, high-powe fier, Schottky did diodes itching transistor	er ode,

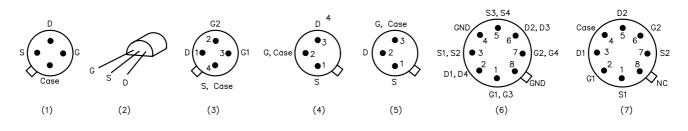
Japanese Semiconductor Nomenclature

All transistors manufactured in Japan are registered with the Electronic Industries Association of Japan (EIAJ). In addition, the Japan industrial Standard JIS-C-7012 provides type numbers for transistors and thyristors.

Each transistor type number contains five elements.

i	<u>ii</u>	<u>iii</u>	iv	<u>v</u>
2	S	С	82D	A
		-		

Figure Letter Letter Figure Letter


- i) Kind of device, indicating number of effective electrical connections minus one.
- ii) For a semiconductor registered with the EIAJ this letter is always an S.
- iii) This letter designates polarity and application, as follows:
 - Letter Polarity and Application
 - A PNP transistor, high frequency
 - B PNP transistor, low frequency
 - C NPN transistor, high frequency
 - D NPN transistor, low frequency
 - E P-gate thyristor
 - G N-gate thyristor
 - H N-base unijunction transistor
 - J P-channel FET
 - K N-channel FET
 - M Bi-directional triode thyristor
- iv) These figures designate the order of application for EIAJ registration, starting with 11.
- v) This letter indicates the level of improvement. An improvement device may be used in place of a previous-generation device, but not necessarily the other way around.

Suggested Small-Signal FETs

		Max Diss	Max V _{DS}	VGS _(off)	Min gfs	Input C	Max ID	f _{max}	Noise Figure				
Device No.	Туре	(mW)	(V) ³	(V) ³	(µS)	(pF)	(mA)1	(MHz)	(typ)	Case	Base	Mfr ²	Applications
2N4416	N-JFET	300	30	-6	4500	4	-15	450	400 MHz 4 dB	TO-72	1	S, M	VHF/UHF amp, mix, osc
2N5484	N-JFET	310	25	-3	2500	5	30	200	200 MHz 4 dB	TO-92	2	М	VHF/UHF amp, mix, osc
2N5485	N-JFET	310	25	-4	3500	5	30	400	400 MHz 4 dB	TO-92	2	S	VHF/UHF amp, mix, osc
2N5486	N-JFET	360	25	-2	5500	5	15	400	400 MHz 4 dB	TO-92	2	М	VHF/UHF amp, mix, osc
3N200 NTE222 SK3065	N-dual-gate MOSFET	330	20	-6	10,000	4-8.5	50	500	400 MHz 4.5 dB	TO-72	3	R	VHF/UHF amp, mix, osc
3N202 NTE454 SK3991	N-dual-gate MOSFET	360	25	-5	8000	6	50	200	200 MHz 4.5 dB	TO-72	3	S	VHF amp, mixer
MPF102 ECG451 SK9164	N-JFET	310	25	-8	2000	4.5	20	200	400 MHz 4 dB	TO-92	2	N, M	HF/VHF amp, mix, osc
MPF106 2N5484	N-JFET	310	25	-6	2500	5	30	400	200 MHz 4 dB	TO-92	2	N, M	HF/VHF/UHF amp, mix, osc
40673 NTE222 SK3050	N-dual-gate MOSFET	330	20	-4	12,000	6	50	400	200 MHz 6 dB	TO-72	3	R	HF/VHF/UHF amp, mix, osc
U304	P-JFET	350	-30	+10		27	-50	—	—	TO-18	4	S	analog switch chopper
U310	N-JFET	500 300	30 30	-6	10,000	2.5	60	450	450 MHz 3.2 dB	TO-52	5	S	common-gate VHF/UHF amp,
U350	N-JFET Quad	1W	25	-6	9000	5	60	100	100 MHz 7 dB	TO-99	6	S	matched JFET doubly bal mix
U431	N-JFET Dual	300	25	-6	10,000	5	30	100	<u>10nV</u> √Hz	TO-99	7	S	matched JFET cascode amp and bal mix
2N5670	N-JFET	350	25	8	3000	7	20	400	100 MHz 2.5 dB	TO-92	2	М	VHF/UHF osc, mix, front-end amp
2N5668	N-JFET	350	25	4	1500	7	5	400	100 MHz 2.5 dB	TO-92	2	М	VHF/UHF osc, mix, front-end amp
2N5669	N-JFET	350	25	6	2000	7	10	400	100 MHz 2.5 dB	TO-92	2	М	VHF/UHF osc, mix, front-end amp
J308	N-JFET	350	25	6.5	8000	7.5	60	1000	100 MHz 1.5 dB	TO-92	2	Μ	VHF/UHF osc, mix, front-end amp
J309	N-JFET	350	25	4	10,000	7.5	30	1000	100 MHz 1.5 dB	TO-92	2	М	VHF/UHF osc, mix, front-end amp
J310	N-JFET	350	25	6.5	8000	7.5	60	1000	100 MHz 1.5 dB	TO-92	2	Μ	VHF/UHF osc, mix, front-end amp
NE32684A	HJ-FET	165	2.0	-0.8	45,000	_	30	20 GHz	12 GHz 0.5 dB	84A		NE	Low-noise amp

Notes:

- ¹ 25°C.
- ² M = Motorola; N = National Semiconductor; NE=NEC; R = RCA; S = Siliconix.
- ³ For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

Low-Noise Transistors

Device	NF (dB)	F (MHz)	f _T (GHz)	I _C (mA)	Gain (dB)	F (MHz)	V _{(BR)CEO} (V)	I _C (mA)	P _T (mW)	Case
MRF904	1.5	450	4	15	16	450	15	30	200	TO-206AF
MRF571	1.5	1000	8	50	12	1000	10	70	1000	Macro-X
MRF2369	1.5	1000	6	40	12	1000	15	70	750	Macro-X
MPS911	1.7	500	7	30	16.5	500	12	40	625	TO-226AA
MRF581A	1.8	500	5	75	15.5	500	15	200	2500	Macro-X
BFR91	1.9	500	5	30	16	500	12	35	180	Macro-T
BFR96	2	500	4.5	50	14.5	500	15	100	500	Macro-T
MPS571	2	500	6	50	14	500	10	80	625	TO-226AA
MRF581	2	500	5	75	15.5	500	18	200	2500	Macro-X
MRF901	2	1000	4.5	15	12	1000	15	30	375	Macro-X
MRF941	2.1	2000	8	15	12.5	2000	10	15	400	Macro-X
MRF951	2.1	2000	7.5	30	12.5	2000	10	100	1000	Macro-X
BFR90	2.4	500	5	14	18	500	15	30	180	Macro-T
MPS901	2.4	900	4.5	15	12	900	15	30	300	TO-226AA
MRF1001A	2.5	300	3	90	13.5	300	20	200	3000	TO-205AD
2N5031	2.5	450	1.6	5	14	450	10	20	200	TO-206AF
MRF4239A	2.5	500	5	90	14	500	12	400	3000	TO-205AD
BFW92A	2.7	500	4.5	10	16	500	15	35	180	Macro-T
MRF521*	2.8	1000	4.2	-50	11	1000	-10	-70	750	Macro-X
2N5109	3	200	1.5	50	11	216	20	400	2500	TO-205AD
2N4957*	3	450	1.6	-2	12	450	-30	-30	200	TO-206AF
MM4049*	3	500	5	-20	11.5	500	-10	-30	200	TO-206AF
2N5943	3.4	200	1.5	50	11.4	200	30	400	3500	TO-205AD
MRF586	4	500	1.5	90	9	500	17	200	2500	TO-205AD
2N5179	4.5	200	1.4	10	15	200	12	50	200	TO-206AF
2N2857	4.5	450	1.6	8	12.5	450	15	40	200	TO-206AF
2N6304	4.5	450	1.8	10	15	450	15	50	200	TO-206AF
MPS536*	4.5	500	5	-20	4.5	500	-10	-30	625	TO-226AA
MRF536*	4.5	1000	6	-20	10	1000	-10	-30	300	Macro-X

* denotes a PNP device

Complimentary devices NPN PNP 2N2857 2N4957 MRF904 MM4049 MRF571 MRF521

For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

VHF and UHF Class-A Transistors

The devices listed below are recommended for class-A linear applications, and include medium-power parts that are useful at frequencies from 100 MHz to 2 GHz.

	Frequency		P _O @ 1 dB	Small Signal	Bias Point	
Device	(MHz)	$V_{CC}(V)$	Compression (W)	Gain/Frequency (MHz)	(V _{dc} /A)	Package
MRA1000-3.5L	1000	19	3.5	10/1000	19/0.6	145A-09/1
MRA1000-7L	1000	19	7	9/1000	19/1.2	145A-09/1
MRA1000-14L	1000	19	14	8/1000	19/2.4	145A-09/1
MRF1029	1000	25	1.5	8/1000	25/0.2	244-04/1
MRF1030	1000	25	3	7.5/1000	25/0.4	244-04/1
MRF1031	1000	25	4.5	7/1000	25/0.6	244-04/1
MRF1032	1000	25	6	6.5/1000	25/0.85	244-04/1
MRF3094	2000	20	0.5	10.5/2000	20/0.12	328A-03/1
MRF3104	2000	20	0.5	10.5/2000	20/0.12	305A-01/1
MRF3095	2000	20	0.8	9/2000	20/0.12	328A-03/1
MRF3105	2000	20	0.8	9/2000	20/0.12	305A-01/1
MRF3096	2000	20	1.6	9/2000	20/0.24	328A-03/1
MRF3106	2000	20	1.6	9/2000	20/0.24	305A-01/1
MRF2000-5L	2000	20	5	7/2000	19/0.6	360A-01/1

For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

Monolithic Amplifiers (50 Ω)

Mini-Circuits Labs MMICs

	Freq Range	Gain (dB) at	Output Level 1 dB			
Device	(MHz)	1000 MHz	Comp (dBm)	NF (dB)	I _{max} (mA)	P _{max} (mW)
MAR-1	dc - 1000	15.5	+1.5	5.5	40	200
MAR-2	dc - 2000	12.0	+4.5	6.5	60	325
MAR-3	dc - 2000	12.0	+10.0	6.0	70	400
MAR-4	dc - 1000	8.0	+12.5	6.5	85	500
MAR-6	dc - 2000	16.0	+2.0	3.0	50	200
MAR-7	dc - 2000	12.5	+5.5	5.0	60	275
MAR-8	dc - 1000	22.5	+12.5	3.3	65	500
RAM-1	dc - 1000	15.5	+1.5	5.5	40	200
RAM-2	dc - 2000	11.8	+4.5	6.5	60	325
RAM-3	dc - 2000	12.0	+10.0	6.0	80	425
RAM-4	dc - 1000	8.0	+12.5	6.5	100	540
RAM-6	dc - 2000	16.0	+2.0	2.8	50	200
RAM-7	dc - 2000	12.5	+5.5	4.5	60	275
RAM-8	dc - 1000	23.0	+12.5	3.0	65	420
MAV-1	dc - 1000	15.0	+1.5	5.5	40	200
MAV-2	dc - 1500	11.0	+4.5	6.5	60	325
MAV-3	dc - 1500	11.0	+10.0	6.0	70	400
MAV-4	dc - 1000	7.5	+11.5	7.0	85	500
MAV-11	dc - 1000	10.5	+17.5	3.6	80	550

RAM-x, case VV105; MAR-x, case BBB123; MAV-x, case AF190[†]

Avantek MMICs

Device	Freq Range (MHz)	Typical Gain (dB)	Output Level 1 dB Comp (dBm)	NF (dB)	I _{max} (mA)	P _{max} (mW)
MSA-01xx	dc - 1300	18.5	1.5	5.5	40	200
MSA-02xx	dc - 2800	12.5	4.5	6.5	60	325
MSA-03xx	dc - 2800	12.5	10	6.0	80	425
MSA-04xx	dc - 4000	8.3	11.5	7.0	85	500
MSA-05xx	dc- 2800	7.0	19.0	6.5	135	1.5
MSA-06xx	dc - 800	19.5	2.0	3.0	50	200
MSA-07xx	dc - 2500	13.0	5.5	4.5	50	175
MSA-08xx	dc - 6000	32.5	12.5	3.0	65	500
MSA-09xx	dc - 6000	7.2	10.5	6.2	65	500
MSA-11xx	50 - 1300	12.0	17.5	3.6	80	550

Each listing represents a series of devices in different cases. Performance varies somewhat with the case (for example, the frequency range is often 30% less for a plastic package, as compared to that with a ceramic package).[†]

Monolithic Amplifiers (50 Ω)

Continued from previous page.

Hewlett-Packard MMIC[†]

	Freq Range	Typical	Output Level 1 dB		
Device	(GHz)	Gain (dB)	Comp (dBm)	NF (dB)	I _{max} (mA)
MGA-86576	1.5-8	15.4	3.8	2.1	22

Motorola Hybrid Amplifiers (50 Ω)

Device	Freq Range (MHz)	Gain (dB) min/typ	Supply Voltage (V)	Output Level, 1 dB Comp (dBm)	NF at 250 MHz (dB)
MWA110	0.1 - 400	13/14	2.9	-2.5	4
MWA120	0.1 - 400	13/14	5	+8.2	5.5
MWA130	0.1 - 400	13/14	5.5	+18	7
MWA131	0.1 - 400	13/14	5.5	+20	5
MWA210	0.1 - 600	9/10	1.75	+1.5	6
MWA220	0.1 - 600	9/10	3.2	+10.5	6.5
MWA230	0.1 - 600	9/10	4.4	+18.5	7.5
MWA310	0.1 - 1000	7/8	1.6	+3.5	6.5
MWA320	0.1 - 1000	7/8	2.9	+11.5	6.7
MWA330	0.1 - 1000	na/6.2	4	+15.2	9

MWAxxx case 31A-03/2⁺

⁺ For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

General Purpose Transistors[†]

Listed numerically by device

Davias	Turne	V _{CEO} Maximum Collector Emitter Voltage	V _{CBO} - Maximum Emitter Base Voltage	V _{EBO} Maximum Emitter Base Voltage	I _c Maximum Collector Current (m A)	P _D Maximum Device Dissipation		Current Gain h _{FE}	Current- Gain Bandwidth Product f_{T}^*	Noise Figure NF Maximum
Device	Туре	(V)	(V)	(V)	(mA)	(W)	$I_{C} = 0.1 \ mA$	I _C = 150 mA	(MHz)	(dB)
2N918	NPN	15	30	3.0	50	0.200	20 (3 mA)	—	600	6.0
2N2102	NPN	65	120	7.0	1000	1.0	20	40	60	6.0
2N2218	NPN	30	60	5.0	800	0.8	20	40	250	
2N2218A	NPN	40	75	6.0	800	0.8	20	40	250	
2N2219	NPN	30	60	5.0	800	3.0	35	100	250	
2N2219A	NPN	40	75	6.0	800	3.0	35	100	300	4.0
2N2222	NPN	30	60	5.0	800	1.2	35	100	250	
2N2222A	NPN	40	75	6.0	800	1.2	35	100	200	4.0
2N2905	PNP	40	60	5.0	600	0.6	35	—	200	
2N2905A	PNP	60	60	5.0	600	0.6	75	100	200	
2N2907	PNP	40	60	5.0	600	0.400	35	—	200	
2N2907A	PNP	60	60	5.0	600	0.400	75	100	200	
2N3053	NPN	40	60	5.0	700	5.0	_	50	100	
2N3053A	NPN	60	80	5.0	700	5.0	_	50	100	
2N3563	NPN	15	30	2.0	50	0.600	20	_	800	
2N3904	NPN	40	60	6.0	200	0.625	40	_	300	5.0
2N3906	PNP	40	40	5.0	200	1.5	60	_	250	4.0
2N4037	PNP	40	60	7.0	1000	5.0	_	50		
2N4123	NPN	30	40	5.0	200	0.35	_	25(50 mA)	250	6.0
2N4124	NPN	25	30	5.0	200	0.350	120 (2 mA)	60(50 mA)	300	5.0
2N4125	PNP	30	30	4.0	200	0.625	50 (2 mA)	25(50 mA)	200	5.0
2N4126	PNP	25	25	4.0	200	0.625	120 (2 mA)	60(50 mA)	250	4.0
2N4401	NPN	40	60	6.0	600	0.625	20	100	250	
2N4403	PNP	40	40	5.0	600	0.625	30	100	200	
2N5320	NPN	75	100	7.0	2000	10.0	_	30(1 A)		
2N5415	PNP	200	200	4.0	1000	10.0	_	30(50 mA)	15	
MM4003	PNP	250	250	4.0	500	1.0	20 (10 mA)	_ ` `		
MPSA55	PNP	60	60	4.0	500	0.625	_ ` ` `	50 (0.1 A)	50	
MPS6531	NPN	40	60	5.0	600	0.625	60 (10 mA)	90 (0.1 A)		
MPS6547		25	35	3.0	50	0.625	20 (2 mA)	_ ` `	600	
		ns: I _C = 20	mA dc; \	/ <i>CE =</i> 20 \						

RF Power Amplifier Modules

Listed by frequency

Device	Supply (V)	Frequency Range (MHz)	Ouput Power (W)	Power Gain (dB)	Package [†]	Mfr/ Notes
M57735	17	50-54	14	21	H3C	MI; SSB mobile
M57719N	17	142-163	14	18.4	H2	MI; FM mobile
S-AV17	16	144-148	60	21.7	5-53L	T, FM mobile
S-AV7	16	144-148	28	21.4	5-53H	T, FM mobile
MHW607-1	7.5	136-150	7	38.4	301K-02/3	MO; class C
BGY35	12.5	132-156	18	20.8	SOT132B	Р
M67712	17	220-225	25	20	H3B	MI; SSB mobile
M57774	17	220-225	25	20	H2	MI; FM mobile
MHW720-1	12.5	400-440	20	21	700-04/1	MO; class C
MHW720-2	12.5	440-470	20	21	700-04/1	MO; class C
M57789	17	890-915	12	33.8	H3B	MI
MHW912	12.5	880-915	12	40.8	301R-01/1	MO; class AB
MHW820-3	12.5	870-950	18	17.1	301G-03/1	MO; class C

Manufacturer codes: MO = Motorola; MI = Mitsubishi; P = Philips; T = Toshiba.

[†] For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

General Purpose Silicon Power Transistors *TO-220 case**

NPN	PNP	I _c Max (A)	V _{CEO} Max (V)	h _{FE} Min	F _T (MHz)	Power Dissipation (W)
D44C8	D45C8	4 4	60 60	100/220 40/120	50 50	30 30
TIP29	TIP30A	1 1	40 40	15/75 15/75	3 3	30 30
TIP29A	TIP30A	1 1	60 60	15/75 15/75	3 3	30 30
TIP29B		1	80	15/75	3	30
TIP29C	TIP30C	1 1	100 100	15/75 15/75	3 3	30 30
TIP47 TIP48 TIP49 TIP50		1 1 1 1	250 300 350 400	30/150 30/150 30/150 30/150	10 10 10 10	40 40 40 40
TIP110	TIP115	2 2	60 60	500 500	> 5 > 5	50 50
TIP116		2	80	500	25	50
TIP31	TIP32	3 3	40 40	25 25	3 3	40 40
TIP31A	TIP32A	3 3	60 60	25 25	3 3	40 40
TIP31B	TIP32B	3 3	80 80	25 25	3 3	40 40
TIP31C	TIP32C	3 3	100 100	25 25	3 3	40 40
2N6124 2N6122 MJE13004		4 4 4	45 60 300	25/100 25/100 6/30	2.5 2.5 4	40 40 60
TIP120	TIP125	5 5	60 60	1000 1000	> 5 > 10	65 65
TIP42 TIP41A TIP41B		6 6 6	40 60 80	15/75 15/75 15/75	3 3 3	65 65 65
2N6290	2N6109	7 7	50 50	30/150 30/150	4 4	40 40
2N6292	2N6107	7 7	70 70	30/150 30/150	4 4	40 40
MJE3055T	MJE2955T	10 10	60 60	20/70 20/70	_	75 57
TIP140	TIP145	10 10	60 60	500 500	> 5 > 10	125 125

General Purpose Silicon Power Transistors

Continued from previous page.

TO-204 case (TO-3)*

NPN	PNP	I _c Max (A)	V _{CEO} Max (V)	h _{FE} Min	F _T (MHz)	Power Dissipation (W)
2N6486 2N6488 2N6545 2N3789		15 15 8 10	40 80 400 60	20/150 20/150 7/35 15	5 5 6 4	75 75 125 150
2N3715	2N3791	10 10	60 60	30 30	4 4	150 150
2N5875 2N3790		10 10	60 80	20/100 15	4 4	150 150
2N3716	2N3792	10 10	80 80	30 30	4 4	150 150
2N3055	MJ2955	15 15	60 60	20/70 20/70	2.5 2.5	115 115
2N3055A 2N5881 2N5880 2N6249 2N6250 2N6546 2N6251 2N5630 2N3773 2N5039 2N5303		15 15 15 15 15 15 15 16 16 20 20	60 60 80 200 275 300 350 120 140 75 80	20/70 20/100 10/50 8/50 6/30 6/50 20/80 15/60 20/100 15/60	0.8 4 2.5 2.5 6-24 2.5 1 4 60 2	115 160 175 175 175 175 175 200 200 140 200
2N6284	2N6287	20 20	100 100	750/18K 750/18K	_	160 160
MJ15003	MJ15004	20 20	140 140	25/150 25/150	2 2	250 250
2N5885		25	60		4	200
2N5886	2N5884	25 25	80 80	20/100 20/100	4 4	200 200
MJ15024 2N3771 2N5301		25 30 30	250 40 40	15/60 15/60	5 2 2	250 150 200
2N5302	2N4399	30 30	60 60	15/60 15/60	2 2	200 200
MJ802	MJ4502	30 30	100 100	25/100 25/100	2 2	200 200

= Complimentary pairs

* For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

RF Power Transistors								
Device	Output Power (W)	Input Power (W)	Gain (dB)	Typ Supply Voltage (V)	Case [†]	Mfr		
1.5 to 30 Mi	1.5 to 30 MHz, HF SSB/CW							
2SC2086	0.3		13	12	TO-92	MI		
BLV10	1		18	12	SOT123	PH		
BLV11	2	0.4	18	12	SOT123	PH		
MRF476 BLW87	3 6	0.1	15 18	12.5-13.6 12	221A-04/1 SOT123	MO PH		
2SC2166	6		13.8	12	TO-220	MI		
BLW83	10		20	26	SOT123	PH		
MRF475	12	1.2	10	12.5-13.6	221A-04/1	MO		
MRF433	12.5	0.125	20	12.5-13.6	211-07/1	MO		
2SC3133	13	4 5	14	12	TO-220	MI		
MRF485 2SC1969	15 16	1.5	10 12	28 12	221A-04/1 TO-220	MO MI		
BLW50F	16		12	45	SOT123	PH		
MRF406	20	1.25	12	12.5-13.6	221-07/1	MO		
SD1285	20	0.65	15	12.5	M113	SG		
MRF426	25	0.16	22	28	211-07/1	MO		
MRF427	25	0.4	18	50	211-11/1	MO		
MRF477 MRF466	40 40	1.25 1.25	15 15	12.5-13.6 28	211-11/1 211-07/1	MO MO		
BLW96	40 50	1.20	15	20 40	SOT121	PH		
2SC3241	75		12.3	12.5	T-45E	MI		
SD1405	75	3.8	13	12.5	M174	SG		
2SC2097	75		12.3	13.5	T-40E	MI		
MRF464	80	2.53	10	28	211-11/1	MO		
MRF421 SD1487	100 100	10 7.9	10 11	12.5-13.6 12.5	211-11/1 M174	MO SG		
2SC2904	100	7.9	11.5	12.5	T-40E	MI		
SD1729	130	8.2	12	28	M174	SG		
MRF422	150	15	10	28	211-11/1	MO		
MRF428	150	7.5	13	50	211-11/1	MO		
SD1726	150	6	14	50	M174	SG		
PT9790 MRF448	150 250	4.8 15.7	15 12	50 50	211-11/1 211-11/1	MO MO		
MRF430	600	60	10	50	368-02/1	MO		
50 MHz	000	00	10		000 02/1	me		
	4	0.4	10	105 10 6	001 0 04/4	MO		
MRF475 MRF497	4 40	0.4 4	10 10	125-13.6 12.5-13.6	221A-04/1 221A-04/2	MO MO		
SD1446	70	7	10	12.5 15.6	M113	SG		
MRF492	70	5.6	11	12.5-13.6	211-11/1	MO		
SD1405	100	20	7	12.5	M174	SG		
VHF to 175	MHz							
2N4427	0.7		8	7.5	TO-39	PH		
2N3866	1		10	28	TO-39	PH		
BFQ42	1.5		8.4	7.5	TO-39	PH		
2SC2056	1.6 2.5	0.25	9 10	7.2 28	T-41 79-04/1	MI MO		
2N3553 BFQ43	2.5	0.25	9.4	20 7.5	TO-39	PH		
SD1012	4	0.25	12	12.5	M135	SG		
2SC2627	5		13	12.5	T-40	MI		
2N5641	7	1	8.4	28	144B-05/1	MO		
MRF340	8	0.4	13	28	221A-04/2	MO		
BLW29	9	1	7.4	7.5	SOT120	PH		
SD1143	10	I	10	12.5	M135	SG		

RF Power Transistors

Continued from previous page.

Device	Output Power (W)	Input Power (W)	Gain (dB)	Typ Supply Voltage (V)	Case [†]	Mfr
2SC1729 SD1014-02 BLV11 2N5642 MRF342 BLW87 2SC1946 MRF314 SD1018 2N5643 BLW40 MRF315 PT9733 MRF344 2SC2694 BLV75/12 MRF316 SD1477 BLW78 MRF317 TP9386	14 15 15 20 24 25 28 30 40 40 40 40 40 40 40 40 40 40 40 40 50 60 70 75 80 100 100 100 150	3.5 3 1.9 3 14 6.9 5.7 10 15 8 25 12.5 15	10 6.3 8 8.2 11 6 6.7 10 4.5 7.6 10 9 7 6 6.7 6.5 10 6 9 10	13.5 12.5 13.5 28 28 13.5 28 12.5 28 12.5 28 12.5 28 12.5 28 12.5 28 12.5 28 12.5 28 12.5 28 12.5 28 28 28 28 28 12.5 28 28 28 28 28 28 28 28 28 28 28 28 28	T-31E M135 SOT123 145A-09/1 221A-04/2 SOT123 T-31E 211-07/1 M135 145A-09/1 20T120 211-07/1 145A-09/1 221A-04/2 T-40 SOT119 316-01/1 M111 SOT121 316-01/1 316-01/1	MIGHOOHIOGOHOOOIHOGHOO MMANAGOHOOOIHOGHOO MMANAGHOO
<i>220 MHz</i> MRF207 2N5109 MRF227 MRF208 MRF226 2SC2133 2SC2134 2SC2609	1 2.5 3 10 13 30 60 100	0.15 0.13 1 1.6	8.2 11 13.5 10 9 8.2 7 6	12.5 12 12.5 12.5 12.5 28 28 28 28	79-04/1 TO-205AD 79-05/5 145A-09/1 145A-09/1 T-40E T-40E T-40E T-40E	MO MO MO MO MO MI MI MI
UHF to 512	MHz					
2N4427 2SC3019 MRF581 2SC908 2N3866 2SC2131 BLX65E BLW89 MRF586	0.4 0.5 0.6 1 1.4 2 2.5	0.03	10 14 13 4 10 6.7 9 12 16.5	12.5 12.5 12.5 28 13.5 12.5 28 13.5 12.5 28 15	TO-39 T-43 317-01/2 TO-39 TO-39 TO-39 TO-39 SOT122 79-04	PH MI MO MI PH PH MO
MRF630 2SC3020 BLW80 BLW90 MRF652	3 3 4 4 5	0.33 0.3 0.5	9.5 10 8 11 10	12.5 12.5 12.5 12.5 12.5 12.5	79-05/5 T-31E SOT122 SOT122 244-04/1	MO MI PH PH MO
MRF587 2SC3021 BLW81 MRF653 BLW91 MRF654 2SC2022	5 7 10 10 10 15	1.2 2 2.5	16.5 7.6 6 7 9 7.8	15 12.5 12.5 12.5 28 12.5 12.5	244A-01/1 T-31E SOT122 244-04/1 SOT122 244-04/1 T 21E	MO MI PH MO PH MO
2SC3022 BLU20/12 BLX94A	18 20 25	6	4.7 6.5 6	12.5 12.5 28	T-31E SOT119 SOT48/2	MI PH PH

RF Power Transistors

Continued from previous page.

Device 2SC2695 BLU30/12 BLU45/12 2SC2905 MRF650 TP5051 BLU60/12 2SC3102 BLU60/28 MRF658 MRF338 SD1464	Output Power (W) 28 30 45 45 50 50 60 60 60 60 60 65 80 100	Input Power (W) 15.8 6 20 25 15 28.2	Gain (dB) 4.9 6 4.8 4.8 5 9 4.4 4.8 7 4.15 7.3 5.5	Typ Supply Voltage (V) 13.5 12.5 12.5 12.5 12.5 24 12.5 24 12.5 28 12.5 28 12.5 28 28	<i>Case[†]</i> T-31E SOT119 SOT119 T-40E 316-01/1 333A-02/2 SOT119 T-41E SOT119 316-01/1 333-04/1 M168	Mfr MI PH MI MO PH MI PH MO SG
UHF to 960	MHz					
MRF581 MRF8372 MRF557 BLV99 SD1420 MRF839 MRF896 MRF891 2SC2932 SD1398 2SC2933 SD1400-03 MRF873 SD1495-03 SD1424 MRF897 MRF847 BLV101A SD1496-03 MRF898 MRF880 MRF889	$\begin{array}{c} 0.6\\ 0.75\\ 1.5\\ 2\\ 2.1\\ 3\\ 5\\ 6\\ 6\\ 14\\ 14\\ 15\\ 30\\ 30\\ 30\\ 30\\ 45\\ 50\\ 55\\ 60\\ 90\\ 150\\ \end{array}$	$\begin{array}{c} 0.06\\ 0.11\\ 0.23\\ \end{array}$ $\begin{array}{c} 0.27\\ 0.46\\ 0.3\\ 0.63\\ \end{array}$ $\begin{array}{c} 0.6\\ 3\\ 1.6\\ 3\\ 6\\ 5.3\\ 3\\ 16\\ \end{array}$ $\begin{array}{c} 10\\ 12\\ 12.7\\ 24 \end{array}$	10 8 9 9 8 10 9 7.8 10 6.7 9.5 7 7.5 10 4.5 8.5 7.4 7 8.5 8	$12.5 \\ 12.5 \\ 24 \\ 24 \\ 12.5 \\ 24 \\ 12.5 \\ 24 \\ 12.5 \\ 24 \\ 12.5 \\ 24 \\ 12.5 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 2$	317-01/2 751-04/1 317D-02/2 SOT172 M122 305A-01/1 305-01/1 319-06/2 T-31B M142 T-31B M142 T-31B M118 319-06/2 M142 M156 395B-01/1 319-06/1 SOT273 M142 333A-02/1 375A-01/1	MO MO MO MO MI G MO G G O O C H G O O O MO MO MO MO MO MO MO MO MO MO MO

Manufacturer codes: MI = Mitsubishi; MO = Motorola; PH = Philips; SG = SGE/Thomson

[†] For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

Power FETs

<i>Device</i> BS250P IRFZ30 MTP50N05E	<i>Type</i> P-channel N-channel N-channel	VDSS min (V) 45 50 50	RDS(on) max (W) 14 0.050 0.028	<i>ID max (A)</i> 0.23 30 25	PD max (W) 0.7 75 150	<i>Case[†]</i> E-line TO-220 TO-220AB	<i>Mfr</i> Z IR M
IRFZ42	N-channel	50	0.035	50	150	TO-220	IR
2N7000	N-channel	60	5	0.20	0.4	E-line	Z
VN10LP	N-channel	60	7.5	0.27	0.625	E-line	Z S
VN10KM	N-channel	60	5	0.3	1	TO-237	S
ZVN2106B	N-channel	60	2	1.2	5	TO-39	Z
IRF511	N-channel	60	0.6	2.5	20	TO-220AB	М
MTP2955E	P-channel	60	0.3	6	25	TO-220AB	М
IRF531	N-channel	60	0.180	14	75	TO-220AB	М
MTP23P06	P-channel	60	0.12	11.5	125	TO-220AB	М
IRFZ44	N-channel	60	0.028	50	150	TO-220	IR
IRF531	N-channel	80	0.160	14	79	TO-220	IR
ZVP3310A	P-channel	100	20	0.14	0.625	E-line	Z
ZVN2110B	N-channel	100	4	0.85	5	TO-39	Ζ
ZVP3310B	P-channel	100	20	0.3	5	TO-39	Ζ
IRF510	N-channel	100	0.6	2	20	TO-220AB	М
IRF520	N-channel	100	0.27	5	40	TO-220AB	М
IRF150	N-channel	100	0.055	40	150	TO-204AE	М
IRFP150	N-channel	100	0.055	40	180	TO-247	IR
ZVP1320A	P-channel	200	80	0.02	0.625	E-line	Z
ZVN0120B	N-channel	200	16	0.42	5	TO-39	Z
ZVP1320B	P-channel	200	80	0.1	5	TO-39	Z
IRF620	N-channel	200	0.800	5	40	TO-220AB	Μ
MTP6P20E	P-channel	200	1	3	75	TO-220AB	М
IRF220	N-channel	200	0.400	8	75	TO-220AB	Μ
IRF640	N-channel	200	0.18	10	125	TO-220AB	М

Manufacturers: IR = International Rectifier; M = Motorola; S = Siliconix; Z = Zetex.

[†] For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

Logic IC Families

Туре	Propag for C _L = (n: Typ		Max Clock Frequency (MHz)	Power Dissipation (CL = 0) @ 1 MHz (mW/gate)	Output Current @ 0.5 V max (mA)	Input Current (Max mA)	Threshold Voltage (V)	Suppl Min	y Voltage Typ	(V) Max
CMOS										
74AC 74ACT 74HC 74HCT	3 3 9 9	5.1 5.1 18 18	125 125 30 30	0.5 0.5 0.5 0.5	24 24 8 8	0 0 0 0	V+/2 1.4 V+/2 1.4	2 4.5 2 4.5	5 or 3.3 5 5 5	6 5.5 6 5.5
4000B/74C (10 V) 4000B/74C (5V)	30 50	60 90	5 2	1.2 3.3	1.3 0.5	0 0	V+/2 V+/2	3 3	5 - 15 5 - 15	18 18
TTL										
74AS 74F 74ALS 74LS	2 3.5 4 10	4.5 5 11 15	105 100 34 25	8 5.4 1.3 2	20 20 8 8	0.5 0.6 0.1 0.4	1.5 1.6 1.4 1.1	4.5 4.75 4.5 4.75	5 5 5 5	5.5 5.25 5.5 5.25
ECL										
ECL III ECL 100K ECL100KH ECL 10K	1.0 0.75 1.0 2.0	1.5 1.0 1.5 2.9	500 350 250 125	60 40 25 25			-1.3 -1.32 -1.29 -1.3	-5.19 -4.2 -4.9 -5.19	-5.2 -4.5 -5.2 -5.2	-5.21 -5.2 -5.5 -5.21
GaAs 10G 10G	0.3 0.3	0.32 0.32	2700 2700	125 125	_	_	-1.3 -1.3	-3.3 -5.1	-3.4 -5.2	-3.5 -5.5

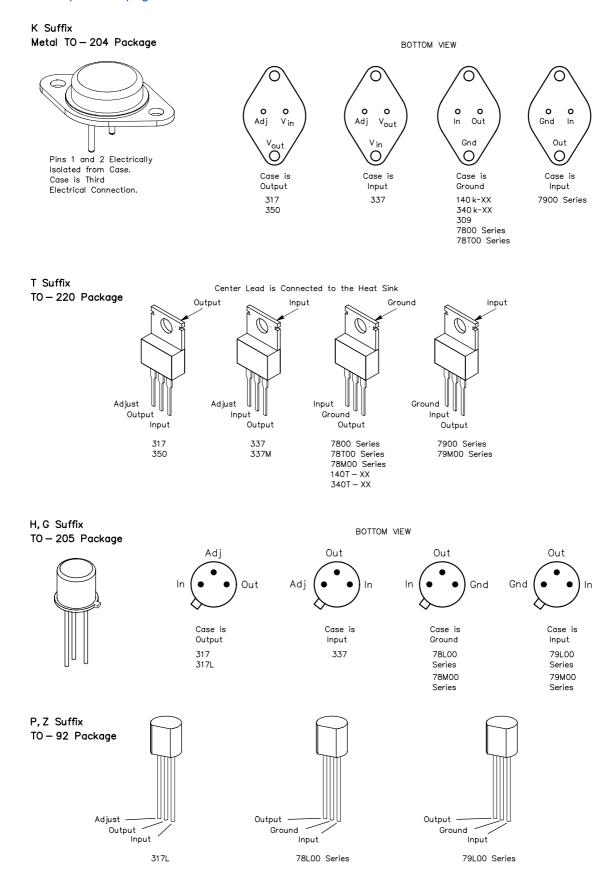
Source: Horowitz (W1HFA) and Hill, *The Art of Electronics—2nd edition,* page 570. © Cambridge University Press 1980, 1989. Reprinted with the permission of Cambridge University Press.

Three-Terminal Voltage Regulators

Listed numerically by device

Device	Description	Package	Voltage	Current (Amps)
317	Adj Pos	TO-205	+1.2 to +37	0.5
317	Adj Pos	TO-204,TO-220	+1.2 to +37	1.5
317L	Low Current Adj Pos	TO-205,TO-92	+1.2 to +37	0.1
317M	Med Current Adj Pos	TO-220	+1.2 to +37	0.5
338	Adj Pos	TO-3	+1.2 to +32	5.0
350	High Current Adj Pos	TO-204,TO-220	+1.2 to +33	3.0
337	Adj Neg	TO-205	–1.2 to -37	0.5
337	Adj Neg	TO-204,TO-220	–1.2 to -37	1.5
337M	Med Current Adj Neg	TO-220	–1.2 to -37	0.5
309		TO-205	+5	0.2
309		TO-204	+5	1.0
323		TO-204,TO-220	+5	3.0
140-XX	Fixed Pos	TO-204,TO-220	Note 1	1.0
340-XX		TO-204,TO-220		1.0
78XX		TO-204,TO-220		1.0
78LXX		TO-205,TO-92		0.1
78MXX		TO-220		0.5
78TXX		TO-204		3.0
79XX	Fixed Neg	TO-204,TO-220	Note 1	1.0
79LXX		TO-205,TO-92		0.1
79MXX		TO-220		0.5

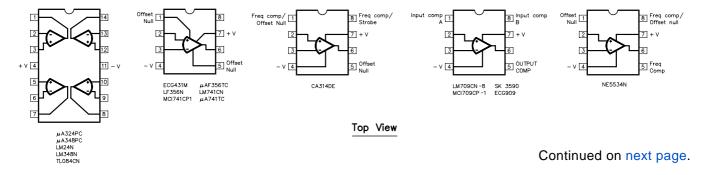
Note 1—XX indicates the regulated voltage; this value may be anywhere from 1.2 V to 35 V. A 7815 is a positive 15-V regulator, and a 7924 is a negative 24-V regulator.


The regulator package may be denoted by an additional suffix, according to the following:

Package	Suffix
TO-204 (TO-3)	К
TO-220	Т
TO-205 (TO-39)	H, G
TO-92	Ρ, Ζ

For example, a 7812K is a positive 12-V regulator in a TO-204 package. An LM340T-5 is a positive 5-V regulator in a TO-220 package. In addition, different manufacturers use different prefixes. An LM7805 is equivalent to a μ A7805 or MC7805.

Three-Terminal Voltage Regulators


Continued from previous page.

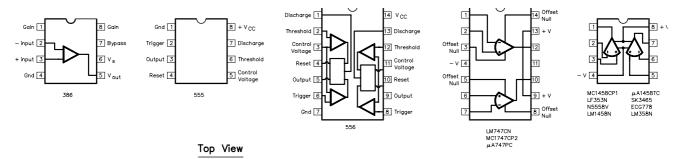
Op Amp ICs

Listed by device number

Freq Device Type Comp		Max nput Offset tance Voltage (mV)	Min dc Open- Loop Gain (dB)	Min Output Current (mA)	Min Small- Signal Bandwidth (MHz)	Min Slew Rate	Notes
	()	3.0	79	. ,	1.0	(<i>V/µs)</i> 0.5	
101A Bipolar ext 108 Bipolar ext	44 1.5 40 30	2.0	100	15 5	1.0	0.5	General purpose
124 Bipolar int	40 30 32	5.0	100	5	1.0		Quad op amp,
	02	0.0	100	U	1.0		low power
148 Bipolar int	44 0.8	5.0	90	10	1.0	0.5	Quad 741
158 Bipolar int	32	5.0	100	5	1.0	0.0	Dual op amp,
·							low power
301 Bipolar ext	36 0.5	7.5	88	5	1.0	10	Bandwidth
-							extendable with
							external com-
							ponents
324 Bipolar int	32	7.0	100	10	1.0		Quad op amp,
	0.0 1.06		4.0.0			4.0	single supply
347 BiFET ext	36 10 ⁶	5.0	100	30	4	13	Quad, high
351 BiFET ext	36 10 ⁶	5.0	100	20	4	13	speed
351 BiFET ext 353 BiFET ext	36 10 ⁶	5.0	100	20 15	4	13	
355 BIFET ext	44 10 ⁶	10.0	100	25	4 2.5	5	
355B BiFET ext	44 10 ⁶	5.0	100	25	2.5	5	
356A BiFET ext	36 10 ⁶	2.0	100	25	4.5	12	
356B BiFET ext	44 10 ⁶	5.0	100	25	5.0	12	
357 BiFET ext	36 10 ⁶	10.0	100	25	20.0	50	
357B BiFET ext	36 10 ⁶	5.0	100	25	20.0	30	
358 Bipolar int	32	7.0	100	10	1.0		Dual op amp,
·							single supply
411 BiFET ext	36 10 ⁶	2.0	100	20	4.0	15	Low offset, low
							drift
709 Bipolar ext	36 0.0		84	5	0.3	0.15	
741 Bipolar int	36 0.3	6.0	88	5	0.4	0.2	
741S Bipolar int	36 0.3	6.0	86	5	1.0	3	Improved 741 for AF
1436 Bipolar int	68 10	5.0	100	17	1.0	2.0	High-voltage
1437 Bipolar ext	36 0.0	50 7.5	90		1.0	0.25	Matched, dual 1709
1439 Bipolar ext	36 0.10	00 7.5	100		1.0	34	
1456 Bipolar int	44 3.0	10.0	100	9.0	1.0	2.5	Dual 1741
1458 Bipolar int	36 0.3	6.0	100	20.0	0.5	3.0	
1458S Bipolar int	36 0.3	6.0	86	5.0	0.5	3.0	Improved 1458 for AF
1709 Bipolar ext	36 0.04	40 6.0	80	10.0	1.0		
1741 Bipolar int	36 0.3	5.0	100	20.0	1.0	0.5	
1747 Bipolar int	44 0.3	5.0	100	25.0	1.0	0.5	Dual 1741

Op Amp ICs

Continued from previous page. Listed by device number


Device Type	Freq Comp	Max Supply* (V)	Min Input Resistance (MΩ)	Max Offset Voltage (mV)	Min dc Open- Loop Gain (dB)	Min Output Current (mA)	Min Small- Signal Bandwidth (MHz)	Min Slew Rate (V/µs)	Notes
1748 Bipolar	ext	44	0.3	6.0	100	25.0	1.0	0.8	Noncomp-
1776 Bipolar	int	36	50	5.0	110	5.0		0.35	ensated 1741 Micro power, programmable
3140 BiFET	int	36	1.5 × 10 ⁶	2.0	86	1	3.7	9	Strobable output
3403 Bipolar	int	36	0.3	10.0	80		1.0	0.6	Quad, low power
3405 Bipolar	ext	36		10.0	86	10	1.0	0.6	Dual op amp and dual comparator
3458 Bipolar	int	36	0.3	10.0	86	10	1.0	0.6	Dual, low power
3476 Bipolar	int	36	5.0	6.0	92	12		0.8	
3900 Bipolar	int	32	1.0		65	0.5	4.0	0.5	Quad, Norton single supply
4558 Bipolar	int	44	0.3	5.0	88	10	2.5	1.0	Dual, wideband
4741 Bipolar	int	44	0.3	5.0	94	20	1.0	0.5	Quad 1741
5534 Bipolar	int	44	0.030	5.0	100	38	10.0	13	Low noise, can swing 20V P-P across 600
5556 Bipolar	int	36	1.0	12.0	88	5.0	0.5	1	Equivalent to 1456
5558 Bipolar	int	36	0.15	10.0	84	4.0	0.5	0.3	Dual, equivalent to 1458
34001 BiFET	int	44	10 ⁶	2.0	94		4.0	13	JFET input
AD745 BiFET	int	±18	10 ⁴	0.5	63	20	20	12.5	Ultra-low noise, high speed

LT1001 Precision op amp, low offset voltage (15 μ V max), low drift (0.6 μ V/°C max), low noise (0.3 μ Vp-p) LT1007 Extremely low noise (0.06 μ Vp-p), very high gain (20 x 10⁶ into 2 k Ω load)

LT1360 High speed, very high slew rate (800 V/µs), 50 MHz gain bandwidth, ±2.5 V to ±15 V supply range

NE5514 Bipolarint NE5532 Bipolarint OP-27A Bipolarext	±16 ±20 44	100 0.03 1.5	1 4 0.025	47 115	10 10	3 10 5.0	0.6 9 1.7	Low noise Ultra-low noise, high speed
OP-37A Bipolar ext TL-071 BiFET int TL-081 BiFET int	44 36 36	1.5 10 ⁶ 10 ⁶	0.025 6.0 6.0	115 91 88		45.0 4.0 4.0	11.0 13.0 8.0	Low noise
TL-082 BiFET int TL-084 BiFET int	36 36	10 ⁶ 10 ⁶	15.0 15.0	99 88		4.0 4.0	8.0 8.0	Low noise Quad, high- performance AF
TLC27M2 CMOS int TLC27M4 CMOS int	18 18	10 ⁶ 10 ⁶	10 10	44 44		0.6 0.6	0.6 0.6	Low noise Low noise

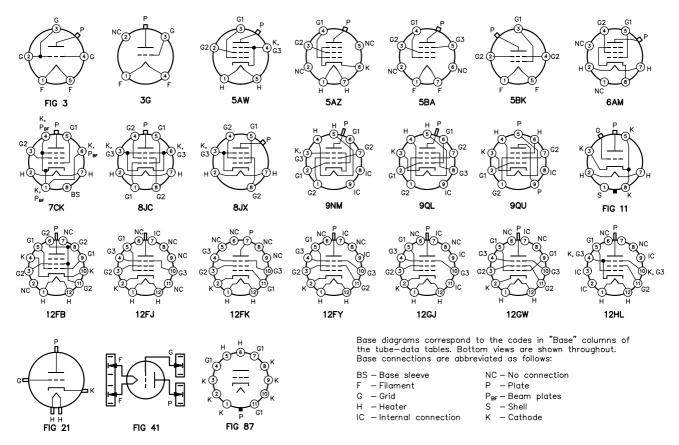
*From –V to +V terminals

				0-1-10												T10					Γ
	Power	_	Crid	Crid															Dup	_	
Tvne	Diss	Plate M	Plate (mA)	g or (Freq (MHz)	Ampl	2	Cathode	ني ل	Capacitanc	Capacitances (pF)	Base	Service Class ¹	Plate	Grid	Plate (mA)	d c (m	input			Output
5675	5	165	30	8	3000	-	9	0	2	╀	+	╋	CCO	120	έφ	25	4	+ '	╋	0.05	
2C40	6.5	500	25		500	36	6.3	0.75	2.1	1.3	0.05	Fig 11	CT0	250	-5	20	0.3			0.075	5
5893	8.0	400	40	13	1000	27	6.0	0.33	2.5	1.75	0.07	Fig 21	с U	350	-33	35	13	2.4		6.5	
													CP	300	-45	30	12	2.0		6.5	
2C43	12	500	40	1	1250	48	6.3	0.9	2.9	1.7	0.05	Fig 11	CTO	470	. 1	387	1	1		92 9	
													C	1500	-70		40	7.1		200	
811-A	65	1500	175	20	99	<u>8</u>	63	4.0	5.9	5.6	0.7	ő	Ð	1250	-120	140	45	10.0		135	
		_											B/CC	1250	0	27/175		12	1	165	
													AB1	1250	0	27/175	13	3.0	1	155	
													J	1500	-120		30		1	190	
812-A	65	1500	175	35	8	59	6.3	4.0	5.4	5.5	0.77	õ	8	1250	-115	-				-	
,									1		1		B ²	1500	8	28/310	-	-†	13.2	-+	
3CX100A5°	3	1000	125	2	0057	3	9.0		0.7	2.15	0.035	-	AGG	800	-20	8	о М	ا و ا		27	
	2	900	<u>b</u>					+	+	+			ۍ ارځ	3	-15	5	₽	9		8	
(0000	ę	ç	001									3	-35	3	₽	2.0		70	
209	8	1000	9	6	200	8	6.3		6.5	1.95	0.03	ł	60	8	4	_	8	-		4	
							_	_	-				Ð	8	-150	_	20	1	1	1	
			_										ط ل	2500	-200		4		1	390	
0066XV	135	2500	200	4	150	25	6.3	5.4	5.8	5.5	0.1	Fig 3	Ð	2000	-225		\$		1		
5866 ⁶									_				B ²	2500	-90	80/330		¹ 14 ³	15.68	560	
572B	160	2750	275	1	1	170	6.3	4.0	1			ပ္ထ	ษ	1650	-70	165			1	205	
T160L										-			B/CC ²	2400	-2.0	90/500		<u>1</u> 8		009	
8873	200	2200	250	1	200	<u>1</u> 8	6.3	3.2	19.5	-	0.03	Fig 87	AB ₂	2000	1	22/500	983	273	1	505	
8875	300	2200	250	1	200	160	6.3	3.2	19.5	2.0	0.03	1	AB ₂	2000		2		273	1	505	
													C10	2250	-125		85	23	1	780	
	350	3300		1	р С							i		800	-160	335	8	50	1	88	
833A	yor,	yooor	002	3	you	ربر ا	2	2	12.3	6.3	8 .5	Fig 41	5	2500	8	_	75	e R	1	635	
	450°	4000°			202									800	240	335	-			80	
							-	-	-	+			B ₂	800	8-	100/750	6	1	9.5	1650	
88/4	904	2200	0.55	1	202	3	6.	3.2	╋	+	0.03	1	AB ₂	2000	1	22/500		272	1	505	
3-4002		2000	₽ ₽			3	<u>_</u>	4 1 1	\dagger	1	10.0	Hg3	1000 1000	3005	5	100/333	071			625	T
7000-0	R		P		2	<u>8</u>	0		†. \ 	- †	0.0/				1	0/S		<u>8</u> 5		/20	T
3-6007	600	4000	475	1	110	165	ſ	15.0	78	46	0.08	Fig 3	BICC					\uparrow		0.00	T
							,						B/CC	3500	1	64 104		╈		950	T
3CX800A7	800	2250	600	60	350	200	13.5	1.5	26	1	6.1	Fig 87	AB, CC	2200	-8.2	205	36	19		750	
3-1000Z	1000	3000	800		110	200	7.5	\mathbf{T}	T	6.9	0.12	Fig 3	B/GC	3000	0	180/670	+	65		1360	
3CX1200A7	1200	5000	800		110	50 20	7.5	21.0	T	12	0.2	Fig 3	AB, GC	3600	-10	202	+	85		1500	
8877	1500	4000	1000		250	200	5.0	10		10	0.1		AB2	2500	-8.2	1000	1	57		1520	
¹ KEY TO CLASS-OF-SERVICE ABBREVIATIONS	ASS-OF-	-SERVICE	ABBRE	VIATIO	NS		CT		= Class-	Class-C CW.			2	Values a	are for 1	² Values are for two tubes in push-pull.	in pus	h-pull.]
Þ.		Class-A ₁ AF modulator.	odulator	1. Poor.			CTO			-C ampli	Class-C amplifier-oscillator.	ator.	en 4	³ Maximum signal value.	m signi	al value.					
AB1 AB2	= Class	Class-AB, push-pull AF modulator. Class-AB, push-pull AF modulator.	ווות-ה FF III AF	moonii -	ator.		n Ga	AB200 -	= Groun	ded-gric	I class Ac	urounded-grid class Ab ₂ amplitter. Grounded-drid class R amp. (single fone)		Peak Ar Maximu	- gria-ic m cathi	⁻ Peak AF grid-to-grid volts. ⁵ Maximum cathode current in mA	s. ⁺in	<			
B	= Class	Class-B push-pull AF modulator.	ull AF m	odulato	Jr.		660			ided-gric	Grounded-grid oscillator.	rinp. taingic r.		Forced-s	air cooli	⁶ Forced-air cooling required.	ž.	ć			
Σ	= Frequ	 Frequency multiplier. 	tiplier.				GIC			Grid-isolation circuit.	circuit.		2	⁷ Key-down CW.	vn CW.						
CP	= Class	Class-C plate-modulated telephone.	nodulate	ed telep	hone.		GMA		= Grid-n	nodulate	Grid-modulated amplifier.	er.									

Triode Transmitting Tubes

Triode Transmitting Tubes

Continued from previous page.


		X	Maximum Ratings	atines		Ĉ	Cathodo	ene)	Canacitance (nF)	1 94						Tuni	Tunical Oneration	5				Γ
	Plate		Screen	, 																	P-to-P	
	Diss	Plate	Diss	Screen	Freq							Serv	Plate S	Screen 5		Grid	Plate	Screen	Crid	P.S.	Load	Pout
Type	(W)	S	(M)	s N	(MHz)	S	(A)	C _{IN}	C _{CP}	Cour	Base (Class ¹	S	S	2 S	s	(MA)	(MA)	(MA)	(M)	(kΩ)	<i>S</i>
6146	25	750	3	250	60	6.3	1.25	13	0.24	8.5	7CK		500	170	• T 	-66	135	6	2.5	0.2		48
6146A													750	160		52	120			0.2	1	70
7007	35	750	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	350	60	176	0 585	12	70.04	υ α	- 2 2 4			150	1	<u> </u>	011	τ.O.		0.0	-	
C000	2	2	<u>,</u>	2	8	2.4 	2222					ــلــ ز	009	150		-87	112	7.8		0.4		52
									T			AB ³ ⁸	009	190		╋	28/270	1.2/20	T	03	۲ ۲	1
61598	25	750	~	2:50	60	26.5	0.3	13	0.24	8.5	2CK	1	750	165		╀	+	0.3/20	5	1		131
	<u>}</u>	2	.	2	}		}))		AB ¹⁸	750	195		-50 2	23/220	1/26	L	1	T	120
80.7									T		┝		750	250		╀	100	9	T	0.22		20
807/M	30	750	3 5	300	60	63	60	17	0 2	7	5AW	ا م	009	775		╀	100	29	T	40		47 5
5033	;)	1	2							1	AR.	750	300		╀	15/70	3/8	Т		T	2.2
6666		,	1	000	,			t		-						+	0/10	0/0	T	T		2
1625	30	/20	5.5	300	20	0.21	U.45	2	7.0		ZAZ	à	Uc/	1	- 	- -	5/240	1	, , , , ,	1	1	170
6146B												5	750	200	1 	+	160	2	1	0.3	-	85
8298A	35	750	<u>~</u>	250	60	6.3	1.125	<u>5</u>	0.22	8.5	Ž	-	600	175	1	-92	140	9.5	3.4			62
											L		750	200			5/125	6.3			3.5	61
								T	T		+	╋	1250	300	T	╀	180	35	T	t	t	170
												1	0216	000	T	+	000		T		T	
					0						1	╈	0677	00+		+	27 17 20	₽Î?	2	+	Ť	
813	125	2500	50	800	50	2	<u>^</u>	2.0		4	L Ago	+	7200	Uc/	1	4	5/145	·/7	1			245
												AB2 ⁶	2000	750	0	_	40/315	1.5/58	-	0.1 ²	16	455
													2500	750	0	-95 3	35/360	1.2/55	235 ³	0.352		650
								ſ	ſ		f	CT/CP	4000	300	T	-	270	22.5	10	10	ſ	720
4-400	4004	4000	35	600	110	<u>،</u>	14.5	12.5	0 12	4.7	5BK	╋	2500	C			80/2709	559	L		4 0	3.75
	2			2	2	<u>,</u>	2			2	L	+	2001	750	<u>}</u>	00	210120	111	T	T	t	24
	00.	0 1 0	-+	00,	2007	ļ	· ·	\uparrow	-	-	+	+	0000	700	<u>' </u> 	+	/15/66	41/0	- -			470
4CX400A	400	2500	ø	400	005	6.9	2.2		 80:		Å Å	49 ²	7200	C75	1 	-30 - 11	0/7/0	77	7			405
																	,					
											-	AB ₂	2500	400		-35 - 1(100/400	8	-	13	_	610
												CD		-	-	_						
						ľ	-	ļ	;		$\left \right $											ſ
		Υ.	Maximum Katings	atings	-	Ĵ	Cathode	Cap:	Lapacitance (pF)	PF)		-	-	-	-	NdA	ypical Uperation	ion	-	-	00	
	riate	10			ļ									(Ti C	d	1-01-1	ď
	5517	FIATE	DISS	Doreen	barr							- Alac	Lidit -				Lidle			e 7	t nau	1 001
Tvna	140	40	(141)	VV	(ALL-1)		(V)	ļ				-lact-	00		a S	1 10	(m.4)	(1)	(4)	(VVV)	(04)	Ŵ
adi	(M)	È	(M)	Ξ	(ZHMI)	-	R)	Ę	GP	2001	-+	Udss	(A)	╉	+	┥	(MM)	(VUI)	(VIII)	(M)	(75V)	
4CX800A	800	2500	15	350	150	12.6	3.6	51	6.		See	AB ₂	2200	350	 	-56	160/550	24		32	-	750
												+	-			-						015
												AB ₂	2200	300	1	-57 1	100/590	20	2	41	1	750
												3										001
]	+	3000	200	1	-150	700	146	38	=	,	1430
8166	1000	6000	75	1000	1	7.5	21	27.2	0.24	7.6	1	_	3000	500	- 		600	145	36	12	1	0651
4-1000A											L	-	4000	500	1	-60 30	0/1200	0/95	1	11	7	3000
											L	00	3000	0	0		100/2009	1059	1709	130 ⁹	2.5	1475
								T				┢┈	2000	325	$^{+}$	5	500/2000	-4/60		1	2.8	2160
4CY10004	1000	3000	17	400	400	4	175	5	5000	1)		AR.8	2500	375		t	000070	4/60			-	0696
	3		4		P F	>				4			0000	240			0001000	100			2 8 5	1360
						_				+	+		2000	525	 	+	0/1000	1/10		1	co.c	0000
											See		2400	350	1		500/ 1100	20	7	78		000
4CX1600B	1600	3300	20	350	250	12.6	4.4	86	0.15	12	Note	AB ₂	2400	350	-		0/870	48	2	83 10	-	1500
											13	L	3200	240	1	-57 21	200/740	21	-	33		1600
¹ SERVICE CLASS ABBREVIATIONS:	CLASS	ABBR	EVIATIO	NS:			Σ ,	aximur	Maximum signal value.	l value.						′±1.5 V.						
$AB_2GD = AB_2$ linear with 50- Ω passive grid driver	= AB ₂	linear	with 50-	Ω passi	ve grid	driver	طّ م	eak gric	Peak grid-to-grid volts.	l volts.					• ·	Values	^a Values are for two tubes.	wo tub	es.			
circuit.							يت ۴ ۳	prced-a	ir coolir	⁴ Forced-air cooling required	ired.				., .	"Single tone.	tone.					
B = Class-B push-pull at modulator.	nd B-ss	nd-ysr	ll at mod	ulator.			–	wo tub	es triod	e conn	" Two tubes triode connected, G2 to G1 through	G2 to G	il throu	hgh		24-Ω	$^{10}24-\Omega$ cathode resistance.	esistan	ce.			
CM = FI	requen	cy mu	ltiplier.				20I	udul 🗘	20kΩ Input to G2.							Base s	"Base same as 4CX250B,	4CX250)В,			
CP = Class-C plate-modulated phone.	ass-C p	olate-n	nodulate	d phone			i o	vpical c	peratio	n at 17	Typical operation at 175 MHz.					,	Socket is Russian SK2A.	s Russi	an SK2.	Å.		
CT = CI	ass-C t	telegra	nah.													² Socket	¹² Socket is Russian SK1A.	an SK1	Å.			
CTO - Class-C amplifier-oscillator	راءدور	, amol	ifiar-occi	llator												3 Cocket	ie Blies	an CK3	4			
			incide contraction			4040																
	rounde	nuô-n	(griu ank	n screet	CONTR	nalo																
together).																						

TV Deflection Tubes

			e									RF Operat	tion (Up to	30 MHz)			
	.⊥£	iş ti	uctanc	Heater		Capacitanc	es						A	A	A	riving ts	utput
Туре	Plate Dissi- pation Watts	Screen Dissi- pation Watts	Transconductance Micromhos	(6.3V) Amperes	Cin pF	Cgp pF	Cout pF	Base	Class of Service	Plate Voltage	Screen Voltage	Grid Voltage	Plate Current mA	Screen Current mA	Grid Current mA	Approx. Driving Power Watts	Approx. Output Power Watts
6DQ5	24	3.2	10.5k	2.5	23	0.5	11	8JC			ļ			1		1	
60068	18	3.6	7.3k	1.2	15	0.5	7	6AM] C	400	200	- 40	100	12	1.5	0.1	25
6FH6	17	3.6	6k	1.2	33	0.4	8	6AM]		1						
6GC6	17.5	4.5	6.6k	1.2	15	0.55	7	8JX								1	
6GJ5	17.5	3.5	7.1k	1.2	15	0.26	6.5	9NM	C	500	200	- 75	180	15	5	0.43	63
6013	11.5	5.5	7.IN	1.2	15	0.20	0.5	JIIM	AB1	500	200	-43	85	4		L	35
GHF5	28	5.5	11.3k	2.25	24	0.56	10	12FB	C AB1	500 500	140	- <u>85</u> - 46	232	<u>125</u> 4.5	8	0.76	77 58
	17.5	3.5	7.1k	1.2	15	0.2	6	901	C	500	200	-75	180	13.3	5	0.43	63
6JB6	17.5	3.5	7.1K	1.2	15	0.2	0	JUL	AB1	500	200	- 42	85	4.2			35
6JE6C	30	5	10.5k	2.5	24.3		14.5	901	C	500	125	- 85	222	17	8	0.82	76
	30	5	10.34	2.3	24.5		14.5	JUL	AB1	500	125	-44	110	3.9		L	47
6JG6A	17	3.5	10k	1.6	22	0.7	9	900	<u> </u>	450	150	- 80	202	20	8	0.75	63
		9.5	100	1.0		0.7			AB1	450	150	-35	98	4.5		L	38
6JM6	17.5	3.5	7.3k	1.2	16	0.6	7	12FJ	C	500	200	- 75	190	13.7	4	0.32	61
	1						7		AB1	500	200	- 42	85	4.4			37
6JN6	17.5	3.5	7.3k	1.2	16	0.34		12FK	4								
6JS6C	30	5.5		2.25	24	0.7	10	12FY	ļ		· · · · · · · · · · · · · · · · · · ·	 	100			105	
6KD6	33	5	14k	2.85	40	0.8	16	12GW	GG	800	0	-11	150			12.5	82
6LB6	30	5	13.4k	2.25	33 25	0.4	18	12GJ 12HL	1							1	
6LG6	28	5	11.5k	2			13	90L	4					1			
6LQ6	30	. 5	9.6k	2.5	22	0.46	20	J2GW	-			1					
6MH6	38.5	/	14k	2.65	40	1.0		126W		L	L	1	L	L		L	L

Note: For AB1 operation, input data is average 2-tone value. Output power is PEP.

EIA Vacuum-Tube Base Diagrams

Alphabetical subscripts (D = diode, P = pentode, T = triode and HX = hexode) indicate structures in multistructure tubes. Subscript CT indicates filament or heater center tap.

Generally, when pin 1 of a metal-envelope tube (except all triodes) is shown connected to the envelope, pin 1 of a glass-envelope counterpart (suffix G or GT) is connected to an internal shield.

Properties of Common Thermoplastics

Polyvinyl Chloride (PVC)

Advantages:

- -can be compounded with plasticizers, filters, stabilizers, lubricants and impact modifiers
- to produce a wide range of physical properties -can be pigmented to almost any color
- -Rigid PVC has good corrosion and stain resistance, thermal & electrical insulation, and weatherability

Disadvantages:

- -base resin can be attacked by aromatic solvents, ketones, aldehydes, naphthalenes, and some chloride, acetate, and acrylate esters
- -should not be used above 140°

Applications:

- conduit
- conduit boxes
- -electrical fittings
- -housings
- pipe
- -wire and cable insulation

Polystyrene

Advantages:

- low cost
- moderate strength
- -electrical properties only slightly affected by temperature and humidity
- sparkling clarity
- impact strength is increased by blending with rubbers, such as polybutadiene

Disadvantages:

- brittle

-low heat resistance

Applications:

- capacitors
- -light shields
- knobs

Polyphenylene Sulfide (PPS)

Advantages:

24.48

Chapter 24

- -excellent dimensional stability
- strona
- -high-temperature stability
- chemical resistant
- Inherently completely flame retardant
- completely transparent to microwave radiation

Applications:

- R3-R5 have various glass-fiber levels that are suitable for applications demanding high mechanical and impact strength as well as good dielectric properties.
- R8 and R10 are suitable for high arc-resistance applications
- R9-901 is suitable for encapsulation of electronic devices

Polypropylene

Advantages:

- low density
- good balance of thermal, chemical, and electrical properties
- moderate strength (increases significantly with glass-fiber reinforcement)

Disadvantages:

- Electrical properties affected to varying degrees by temperature (as temperature goes up, dielectric strength increases and volume resistivity decreases.)
- Inherently unstable in presence of oxidative and UV radiation

Applications:

- Automotive battery cases
- -blower housings
- fan blades
- fuse housings insulators
- -lamp housings
- supports for current-carrying electrical
- components. -TV yokes

Polyethylene (PE)

Advantages: Low Density PE

- Good toughness
- -excellent chemical resistance
- -excellent electrical properties
- -low coefficient of friction
- -near zero moisture absorption
- -easy to process
- -relatively low heat resistance

Disadvantage

- -susceptible to environmental and some chemical stress cracking
- wetting agents (such as detergents) accelerate stress cracking

Advantages: High Density PE

Same as above, plus increased rigidity and tensile strength

Advantages: Ultra-High Molecular Weight PE

- outstanding abrasion resistance
- -low coefficient of friction
- -high impact strength
- -excellent chemical resistance
- material does not break in impact strength tests using standard notched specimens

Applications:

- bearinos
- -components requiring maximum abrasion resistance, impact strength, and low coefficent of friction

Phenolic

Advantages:

- -low cost
- superior heat resistance
- -high heat-deflection temperatures
- good electrical properties
- good flame resistance
- excellent moldability
- excellent dimensional stability -good water and chemical resistance

Applications:

Disadvantages:

Applications,

- rope

– bearings

-wire coatings

-wear plates

-wire connectors

-housing and tubing

- commutators and housings for small motors
- heavy duty electrical components
- rotary-switch wafers
- -insulating spacers

Nylon

- Advantages -excellent fatigue resistance
 - low coefficient of friction

-resists repeated impacts

-all nylons absorb moisture

- resists many fuels and chemicals

-toughness a function of degree of crystallinity

good creep- and cold-flow resistance as

compared to less rigid thermoplastics

- nylons that have not been compounded with

a UV stabilizer are sensitive to UV light, and

thus not suitable for extended outdoor use

Properties of Common Thermoplastics

Continued from previous page.

			NYLONS (DRY,	◄	IS MOLDED)	. (<u>a</u> :			PHEN	PHENOLICS	_			POLYET.	POLYETHYLENE	
				Type					Type of c	Type of compound						Ultrahigh
ASTM or UL test	or t Property	6/6	ę	6/12	11	Castable	General purpose	impact	Non- bleeding	Electrical	Heat resistant	Special purpose*	Low density	Medium density	High density	molecular weight
	PHYSICAL															
D792	Specific gravity	1.14	1.13	1.06	1.04	1.15-1.17	1.35-1.46	1.36-1.41	1.37-1.38	1.36-1.75	1.41-1.84	1.37-1.75	0.910-0.925	0.926-0.940	0.941-0.965	0.928-0.941
D792	Specific volume (in ³⁴ lb)	24.2	24.5	25.9	26.6	23.8							30.4-29.9	29.9-29.4	29.4-28.7	29.4
D570	Water absorption, 24 h. ¼-in. thk (%)	1.2	1.6	0.25	0.4	0.9	0.6-0.7	0.6-0.9	0.8-0.9	0.05-0.20	0.30-0.35	0.20-0.40	< 0.01	< 0.01	< 0.01	< 0.01
	MECHANICAL															
D638	Tensile strength (psi)	12,000	11,800	8,800	8,500	11,000- 14,000	6,500-7,000	6,000-7,000	6,000-7,000	5,000-7,000	5,000-6,000	7,000-9,000	600-2,300	1,200-3,500	3,100-5,500	4,000-6,000
D638	Elongation (%)	60	200	150	120	10-50	11-13	12	10	17-25	14	10	90-800	50-600	20-1,000	200-500
D638	Tensile modulus (10 ⁵ psi)	4.2	3.8	2.9	1.8	3.5-4.5							0.14-0.38	0.25-0.55	0.6-1.8	0.20-1.10
D785	Hardness, Rockwell ()	121 (R)	119 (R)	114 (R)	I	112-120 (R)	70-95 (E)	82 (E)	82 (E)	75-88 (E)	94 (E)	76 (E)	10 (R)	15 (R)	65 (F)	55 (R)
D790	Flexural modulus (10 ⁵ psi)	4.1	3.9	2.9	1.5	1	11-14	12-25	10-12	12-25	11-23	10-19	0.08-0.60	0.60-1.15	1.0-2.0	1.0-1.7
D256	Impact strength, Izod (ft-Ib/In of notch)	1.0	0.8	1.0	3.3	0.9	0.30-0.35	0.6-1.05	0.28	0.28-0.45	0.26	0.50	No break	0.5-16	0.5-20	No break
	THERMAL															
C177	Thermal conductivity (Btu-in/hr-ft ² -°F)	1.7	1.7	1.5	·	1.7	7.1†	7.9†	I	16.0†	I	8.8†	8.0†	8.0-10.0 [†]	11.0-12.41	11.0†
D696	Coef of thermal expansion (10 ⁻⁵ in./in°F)	4.0	4.5	5.0	5.1	5.0	3.95	3.56	4.40	2.60	2.80	3.60	5.6-12.2	7.8-8.9	6.1-7.2	7.8
D648	Deflection temperature (°F)															
	At 264 psi	194	152	194	118	300-425	275-360	270-500	370	310-400	330-360	360-430	90-105	105-120	110-130	118
	At 66 psi	455	365	356	154	400-425							100-121	120-165	140-190	170
UL 94	Flammability rating	V-2	V-2	V-2	I	-	V-1	ΗB	1	V-0	0-7	BH				
	ELECTRICAL															
D149	Dielectric strength (V/mil) Short time, 1/s in. thk	600	400	400	425	500-600*	350	350-400	200	400	170	175	460-700	460-650	450-500	*006
D150	Dielectric constant At 1 kHz	3.9	3.7	4.0	3.3	3.7	5.2-5.3	5.2-5.4	I	4.9-6.5	11.7	7.8	2.25-2.35	2.30-2.35	2.30-2.35	
D150	Dissipation factor At 1 kHz	0.02	0.02	0.02	0.03	0.02	0.04-0.05	0.04-0.06	I	0.025-0.10	0.15	0.12	0.0002	0.0002	0.0003	0.0002
D257	Volume resistivity (ohm-cm) At 73°F. 50% RH	1015	1015	1015	2 × 1013	I	1011-1012	1011-1012	10'2	1011-1013	10'2	101	1015	1015	1015	1018
D495	Arc resistance (s)	116	Ι	121	ł		100	50	ł	184	181		135-160	200-235	1	I
	OPTICAL															
D542	Refractive Index									•			1.51	1.52	1.54	I
D1003	Transmittance (%)												4-50	4-50	10-50	-
*KVicm. *Chemic *0.040 in †(10.4 cai	•kVicm. •Chemical-resistant compound. †¼-in. thick specimens. •T(10,* caicmisecem*c)	specimens	*													

Properties of Common Thermoplastics

Continued from previous page.

Promotined memory Gamma motined motines Ray motines Ray motin Ray motines Ray moti					Glass re.	Glass reinforced		Glass an	Glass and mineral filled		Polymers	ners		Capalymers			
0.905 105+1.24 0.890.81 1.57 1.65 1.95 1.96+1.86 1.96+1.86 1.95+1.25 - <	ASTM or UL test	Unmodified resin		Impact grade	R-3	R-4	R-8	R-9	R-10°	R-11	General purpose	Impact modified	Crystal clear	Impact modified		Rigid	Flexible
306304 245 308405 - <	D792	0.905	1.05-1.24	0.89-0.91	1.57	1.67	1.8	1.9	1.96-1.98	1.98	1.04-10.9	1.03-1.10	1.08-1.10	1.05-10.8	1.13-1.22	1.30-1.58	1.20-1.70
001-030 001-030 001-030 001-030 001-030 001-030 001-030 1 1 0 0.00 5000 6000-144.60 5500 17,500 10,700 10,000 <	0792 2770	30.8-30.4	24.5	30.8-30.5							26.0-25.6	28.1-25.2	I	I	I	20.5-19.1	1
5.00 6.00-14.50 2.800-4.00 15.50 15.76 10.77 20.800 11.1 12.8 0.47 10.76 10.417 20.800 10.31 10.31 10.31 10.31 10.31 10.20 10.801		0.01-0.03	0.01-0.05	0.01-0.03	I	< 0.05	0.03			1	0.03-0.10	0.05-0.6	0.1	0.1	0.08	0.04-0.4	0.15-0.75
	J638	5,000	6,000-14,500		15,500	17,500	10,750	11,000	10,000-11,500	11,000	5,000-12,000		7,000-7,600	4,800-7,200	10,500-12,500	6,000-7,500	1,500-3,500
	0638	10-20	2.0-3.6	350-500	11	1.25	0.47	0.5	0.5-0.6	0.6	0.5-2.0	2.60	1.4.1.7	2.0-20.0	1.3-2.0	40-80	200-450
B0:10 (#) 10 (#) 5636 (#) - 123 (#) 121 (#) 123 (#) 121 (#) 123 (#) 121 (#) 123 (#) 121 (#) 123 (#) 121 (#) 123 (#) 121 (#) 123 (#) 121 (#) 123 (#) 121 (#) 123 (#) 121 (#) 123 (#) 121 (#) 123 (#) 121 (#) 123 (#) 121 (#) 123 (#) 121 (#) 123 (#) 123 (#) 123 (#) 123 (#) 123 (#) 123 (#) 123 (#) 123 (#) 123 (#) 123 (#) 123 (#) 123 (#) 123 (#) 123 (#) 123 (#) 123 (#) 123 (#) 124 (#) 200 (#) 20	J638	1.6	4.5-9.0	1.0-1.7							4.0-6.0	1.4-5.0	4.4-4.7	2.8-4.2	6.3-10.0	3.5-6.0	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3785	80-110 (R)	110 (F)	50-85 (R)	ł	123 (R)	121 (R)	I	120 (R)	I	65-80	10-90	108	80	101	65-85D (Shore)	50-100A (Shore)
0522 105.0 10-15 10 11 059 07 061.0 08 020.45 054.0 030.5 0.54.4 182.6 28 ¹ - 304.0 ¹ - 2.0 - - - 24-33 103.0 243.3 103.0 - - - - - - - 204.0 ¹ - 202.4 35.37 35.37 35.37 203.2 - - - 204.3 103.0 203.2 202.2 - - 24.3 103.0 243.3 203.2 202.2 - - 35.44 19 35.37 35.37 202.2 202.2 2002550 310 160.200 500 500 500 500 500 100.200 100.200 205.49 235.249 235.249 235.249 235.240 235.240 235.240 235.240 235.240 235.240 235.240 235.240 235.240 235.240 235.240 235.240 235.240 23	0640	1.7-2.5	3.8-8.5	1.2.1.8	14	17	22	5	18	20	4.0-4.7	1.5-4.6	4.6-4.9	3.2-4.5	5.5-9.8	3.5	ł
28 ¹ - 304.0 ¹ - 2.0 - - - 2.4.3.3 1.0.3.0 2.4.3.3 1.0.3.0 - 3.2.5.7 1.6.2.9 3.3.4.7 - 2.2 1.6 1.1 - - 2.4.3.3 1.0.3.0 2.4.3.3 1.0.3.0 - - 2.4.3.3 1.0.3.0 - - 2.4.3.3 1.0.3.0 - - 2.4.3.3 1.0.3.0 - 2.4.3.3 1.0.3.0 - - 2.4.3.3 1.0.3.0 - 2.0.2.2 - - - 3.3.4.4 1.9 3.5.3.7 3.5.3.7 2.5.249 2.55.249 2.55.249 2.55.240 2.9.2.20 -	0256	0.5-2.2	1.0-5.0	1.0-15	1.0	11	0.59	0.7	0.6-1.0	0.8	0.2-0.45	0.5-4.0	0.3-0.5	0.5-4.4	1.8-2.6	0.4-20.0	
2.0^{10} $ 0.040^{10}$ $ 2.0$ $ 2.433^{10}$ 1030^{10} 2.433^{10} 1030^{10} $ 325.7$ 162.20 $33.4.7$ $ 22$ 16 11 $ 2.433^{10}$ 1030^{10} 2.433^{10} 1030^{10} 2.433^{10} 35.37 2.022^{2} $125\cdot140$ $230\cdot300$ $120\cdot135$ 500 500 500 500 500 500 $100\cdot200$ $110\cdot220$ $160\cdot200$ $235\cdot249$ $235\cdot249$ $235\cdot240$ $235\cdot260$ 200250 110^{11} 10^{11} 10^{10}	2112	* c				0								1			
3.25.7 $1.62.9$ $3.3.4.7$ $ 2.2$ 1.6 1.1 $ 3.3.4.4$ 1.9 $3.53.7$ $3.53.7$ $3.53.7$ 2.022 $125-140$ $230-300$ $120-135$ 500 500 500 500 500 500 500 $160-200$ $235-249$ $236-200$ $900-700$	9696	2.01	I	3.0-4.0	I	20	ł	I	I	1	2.4-3.3	1.0-3.0	2.4-3.3	1.0-3.0	I	3.5-5.0†	3.0-4.0 [†]
125-140 230-300 120-135 500		3.2-5.7	1.6-2.9	3.3-4.7	I	2.2	1.6	11	I	ł	3.3-4.4	1.9	3.5-3.7	3.5-3.7	2.0-2.2	2.8-5.6	3.9-13.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J648	106 + 10			001	001	001	001									
HB* HB* <td></td> <td>200-250</td> <td>000-002</td> <td>160 210</td> <td>000</td> <td>000</td> <td>000</td> <td>nne</td> <td>nne</td> <td>nnc</td> <td>100.220</td> <td>160-200</td> <td>235-249</td> <td>235-249</td> <td>235-260</td> <td>140-170</td> <td>I</td>		200-250	000-002	160 210	000	000	000	nne	nne	nnc	100.220	160-200	235-249	235-249	235-260	140-170	I
500-660 475 500-650 -	JL 94	HB ^b	2 å	4Bb	0-7	V-0/5V	V-0/5V	0-7	V-0/5V	077	180-230 HRb	180-220	ıå	ı å		135-180	1
500-660 475 500-650 - - - - - - 500-700 300-600 500-700 300-600 -				2		1000	100-1		A010-A				200			-	
$\begin{array}{rcccccccccccccccccccccccccccccccccccc$	149																
2.2.2.6 2.36 2.3 - 4.0* 4.3* 4.5* 4.8.1* - 2.40.2.65 2.44.5 -	0	500-660	475	500-650	I	ŀ	1	I	I	I	500-700	300-600	500-700	300-600	1	350-500	300-400
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	neir	2.2-2.6	2.36	2.3	I	4.0*	4.3*	4.5*	4.8-6.1*	I	2.40-2.65	2.4-4.5	I	1	I	3.0-3.8	4.0-8.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0005-0.0018		0 0003		0.0014*		*0700.0	0.01-0.02*								010200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											000000-00000	07000 L0000			1	10.0-200.0	0.07-0.10
160 100 - - 34 182 180 116-182 - 60-135 20-100 95 95 - 160 - - 14 182 180 116-182 - 60-135 20-100 95 95 - - 160 - 1.60 - 1.59 -		1017	2×10^{18}	1018	I	ı	I	I	I	1	1012-1018	1016	I	I	I	> 1018	1011-1015
1.60 - 1.59 -	0495	160	100		1	34	182	180	116-182	ı	60-135	20-100	95	95	1	60-80	I
1.60 - 1.59 -																	
	240										1.60	I	1.59	I	I		
- 26 /CCF 78-/9	D1003										87-92	35.57	92	1	ľ		

Coaxial Cable End Connectors

UHF Connectors

<i>Military No.</i> PL-259 UG-111 SO-239 UG-266	<i>Style</i> Str (m) Str (m) Pnl (f) Blkhd (f)	<i>Cable RG- or Description</i> 8, 9, 11, 13, 63, 87, 149, 213, 214, 216, 225 59, 62, 71, 140, 210 Std, mica/phenolic insulation Rear mount, pressurized, copolymer of styrene ins.
Adapters PL-258 UG-224,363 UG-646 M-359A M-358	Str (f/f) Blkhd (f/f) Ang (f/m) Ang (m/f) T (f/m/f)	Polystyrene ins. Polystyrene ins. Polystyrene ins. Polystyrene ins. Polystyrene ins.
<i>Reducers</i> UG-175 UG-176		55, 58, 141, 142 (except 55A) 59, 62, 71, 140, 210

Family Characteristics:

All are nonweatherproof and have a nonconstant impedance. Frequency range: 0-500 MHz. Maximum voltage rating: 500 V (peak).

N Connectors

Military No.	Style	Cable RG-	Notes
UG-21	Str (m)	8, 9, 213, 214	50 Ω
UG-94A	Str (m)	11, 13, 149, 216	70 Ω
UG-536	Str (m)	58, 141, 142	50 Ω
UG-603	Str (m)	59, 62, 71, 140, 210	50 Ω
UG-23, B-E	Str (f)	8, 9, 87, 213, 214, 225	50 Ω
UG-602	Str (f)	59, 62, 71, 140, 210	—
UG-228B, D, E		8, 9, 87, 213, 214, 225	_
UG-1052	Pnl (f)	58, 141, 142	50 Ω
UG-593	Pnl (f)	59, 62, 71, 140, 210	50 Ω
UG-160A, B, D		8, 9, 87, 213, 214, 225	50 Ω
UG-556	Blkhd (f)	58, 141, 142	50 Ω
UG-58, A	Pnl (f)		50 Ω
UG-997A	Ang (f)		50 Ω ¹¹ / ₁₆ "

Pnl mount (f) with clearance above panel

M39012/04-	Blkhd (f)
UG-680	Blkhd (f)

Front mount hermetically sealed Front mount pressurized

Coaxial Cable End Connectors

Continued from previous page.

N Adapters

Military No.	Style	Notes
UG-29,A,B	Str (f/f)	50 Ω , TFE ins
UG-57A.B	Str (m/m)	50 Ω , TFE ins
UG-27A,B	Ang (f/m)	Mitre body
UG-212A	Ang (f/m)	Mitre body
UG-107A	T (f/m/f)	_
UG-28A	T (f/f/f)	_
UG-107B	T (f/m/f)	_

Family Characteristics:

N connectors with gaskets are weatherproof. RF leakage: -90 dB min @ 3 GHz. Temperature limits: TFE: -67° to 390°F (-55° to 199°C). Insertion loss 0.15 dB max @ 10 GHz. Copolymer of styrene: -67° to 185°F (-55° to 85°C). Frequency range: 0-11 GHz. Maximum voltage rating: 1500 V P-P. Dielectric withstanding voltage 2500 V RMS. SWR (MIL-C-39012 cable connectors) 1.3 max 0-11 GHz.

BNC Connectors

Military No.	Style	Cable RG-	Notes
UG-88C	Str (m)	55, 58, 141, 142, 223, 400	
UG-959	Str (m)	8, 9	
UG-260,A	Str (m)	59, 62, 71, 140, 210	Rexolite ins.
UG-262	Pnl (f)	59, 62, 71, 140, 210	Rexolite ins.
UG-262A	Pnl (f)	59, 62, 71, 140, 210	nwx, Rexolite ins.
UG-291	Pnl (f)	55, 58, 141, 142, 223, 400	
UG-291A	Pnl (f)	55, 58, 141, 142, 223, 400	nwx
UG-624	Blkhd (f)	59, 62, 71, 140, 210	Front mount Rexolite ins.
UG-1094A	Blkhd		Standard
UG-625B	Receptacle		
UG-625			

BNC Adapters

Military No.	Style	Notes
UG-491,A	Str (m/m)	
UG-491B	Str (m/m)	Berylium, outer contact
UG-914	Str (f/f)	•
UG-306	Ang (f/m)	
UG-306A,B	Ang (f/m)	Berylium outer contact
UG-414,A	Pnl (f/f)	# 3-56 tapped flange holes
UG-306	Ang (f/m)	
UG-306A,B	Ang (f/m)	Berylium outer contact
UG-274	T (f/m/f)	
UG-274A,B	T (f/m/f)	Berylium outer contact

Family Characteristics:

Z = 50 Ω. Frequency range: 0-4 GHz w/low reflection; usable to 11 GHz. Voltage rating: 500 V P-P. Dielectric withstanding voltage 500 V RMS. SWR: 1.3 max 0-4 GHz. RF leakage –55 dB min @ 3 GHz. Insertion loss: 0.2 dB max @ 3 GHz. Temperature limits: TFE: -67° to 390°F (-55° to 199°C); Rexolite insulators: -67° to 185°F (-55° to 85°C). "Nwx" = not weatherproof.

Coaxial Cable End Connectors

Continued from previous page.

HN Connectors

Military No.	Style	Cable RG-	Notes
UG-59A UG-1214 UG-60A UG-1215 UG-560 UG-496 UG-212C	Str (m) Str (f) Str (f) Pnl (f) Pnl (f) Pnl (f) Ang (f/m)	8, 9, 213, 214 8, 9, 87, 213, 214, 225 8, 9, 213, 214 8, 9, 87, 213, 214, 225	Captivated contact Copolymer of styrene ins. Captivated contact Berylium outer contact
	- ()		•

Family Characteristics:

Connector Styles: Str = straight; Pnl = panel; Ang = Angle; Blkhd = bulkhead. Z = 50 Ω . Frequency range = 0-4 GHz. Maximum voltage rating = 1500 V P-P. Dielectric withstanding voltage = 5000 V RMS SWR = 1.3. All HN series are weatherproof. Temperature limits: TFE: -67° to 390°F (-55° to 199°C); copolymer of styrene: -67° to 185°F (-55° to 85°C).

Cross-Family Adapters

Families	Description	Military No.
HN to BNC	HN-m/BNC-f	UG-309
N to BNC	N-m/BNC-f	UG-201,A
	N-f/BNC-m	UG-349,A
	N-m/BNC-m	UG-1034
N to UHF	N-m/UHF-f	UG-146
	N-f/UHF-m	UG-83,B
	N-m/UHF-m	UG-318
UHF to BNC	UHF-m/BNC-f	UG-273
	UHF-f/BNC-m	UG-255