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AC Theory and
Reactive Components

Glossary
Admittance (Y)—The reciprocal of impedance, measured in siemens (S).
Capacitance (C)—The ability to store electrical energy in an electrostatic field, measured in farads (F).

A device with capacitance is a capacitor.
Conductance (G)—The reciprocal of resistance, measured in siemens (S).
Current (I)—The rate of electron flow through a conductor, measured in amperes (A).
Flux density (B)—The number of magnetic-force lines per unit area, measured in gauss.
Frequency (f)—The rate of change of an ac voltage or current, measured in cycles per second, or hertz

(Hz).
Impedance (Z)—The complex combination of resistance and reactance, measured in ohms (Ω).
Inductance (L)—The ability to store electrical energy in a magnetic field, measured in henrys (H). A

device, such as a coil, with inductance is an inductor.
Peak (voltage or current)—The maximum value relative to zero that an ac voltage or current attains

during any cycle.
Peak-to-peak (voltage or current)—The value of the total swing of an ac voltage or current from its peak

negative value to its peak positive value, ordinarily twice the value of the peak voltage or current.
Period (T)—The duration of one ac voltage or current cycle, measured in seconds (s).
Permeability (µ)—The ratio of the magnetic flux density of an iron, ferrite, or similar core in an

electromagnet compared to the magnetic flux density of an air core, when the current through the
electromagnet is held constant.

Power (P)—The rate of electrical-energy use, measured in watts (W).
Q (quality factor)—The ratio of energy stored in a reactive component (capacitor or inductor) to the

energy dissipated, equal to the reactance divided by the resistance.
Reactance (X)—Opposition to alternating current by storage in an electrical field (by a capacitor) or in

a magnetic field (by an inductor), measured in ohms (Ω).
Resistance (R)—Opposition to current by conversion into other forms of energy, such as heat, measured

in ohms (Ω).
Resonance—Ordinarily, the condition in an ac circuit containing both capacitive and inductive reac-

tance in which the reactances are equal.
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RMS (voltage or current)—Literally, “root mean square;” the square root of the average of the squares
of the instantaneous values for one cycle of a waveform. A dc voltage or current that will produce the
same heating effect as the waveform. For a sine wave, the RMS value is equal to 0.707 times the peak
value of ac voltage or current.

Susceptance (B)—The reciprocal of reactance, measured in siemens (S).
Time constant (t )—The time required for the voltage in an RC circuit or the current in an RL circuit

to rise from zero to approximately 63.2% of its maximum value or to fall from its maximum value
63.2% toward zero.

Toroid—Literally, any donut-shaped solid; most commonly referring to ferrite or powdered-iron cores
supporting inductors and transformers.

Transducer—Any device that converts one form of energy to another; for example an antenna, which
converts electrical energy to electromagnetic energy or a speaker, which converts electrical energy
to sonic energy.

Transformer—A device consisting of at least two coupled inductors capable of transferring energy
through mutual inductance.

Voltage (E)—Electromotive force or electrical pressure, measured in volts (V).
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Alternating Current, Frequency and Wavelength
AC IN CIRCUITS

A circuit is a complete conductive route for electrons to follow from a source, through a load and back
to the source. If the source permits the electrons to flow in only one direction, the current is dc or direct
current. If the source permits the current periodically to change direction, the current is ac or alternating
current. Fig 6.1 illustrates the two types of circuits. Drawing A shows the source as a battery, a typical
dc source. Drawing B shows a more abstract source symbol to indicate ac. In an ac circuit, not only does
the current change direction periodically; the voltage also periodically reverses. The rate of reversal may
range from a few times per second to many billions per second.

Graphs of current or voltage, such as Fig 6.1, begin with a horizontal axis that represents time. The
vertical axis represents the amplitude of the current or the voltage, whichever is graphed. Distance above
the zero line means a greater positive amplitude; distance below the zero line means a greater negative
amplitude. Positive and negative simply designate the opposing directions in which current may flow
in an alternating current circuit or the opposing directions of force of an ac voltage.

If the current and voltage never change direction, then from one perspective, we have a dc circuit, even
if the level of dc constantly changes. Fig 6.2 shows a current that is always positive with respect to 0.
It varies periodically in amplitude, however. Whatever the shape of the variations, the current can be
called pulsating dc. If the current periodically reaches 0, it can be called intermittent dc. From another
perspective, we may look at intermittent and pulsating dc as a combination of an ac and a dc current.
Special circuits can separate the two currents into ac and dc components for separate analysis or use.
There are also circuits that
combine ac and dc currents and
voltages for many purposes.

We can combine ac and dc
voltages and currents. Differ-
ent ac voltages and currents
also form combinations. Such
combinations will result in
complex waveforms. A wave-
form is the pattern of ampli-
tudes reached by the voltage or
current as measured over time.
Fig 6.3 shows two ac wave-
forms fairly close in frequency,
and their resultant combina-
tion. Fig 6.4 shows two ac
waveforms dissimilar in both
frequency and wavelength,
along with the resultant com-
bined waveform. Note the
similarities (and the differ-
ences) between the resultant
waveform in Fig 6.4 and the
combined ac-dc waveform in
Fig 6.2.

Alternating currents may

Fig 6.1 — Basic circuits for
direct and alternating currents.
With each circuit is a graph of
the current, constant for the dc
circuit, but periodically chang-
ing direction in the ac circuit.

Fig 6.2 — A pulsating dc current
(A) and its resolution into an ac
component (B) and a dc compo-
nent (C).
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take on many useful wave shapes. Fig 6.5 shows a few that are commonly used in practical circuits and
in test equipment. The square wave is vital to digital electronics. The triangular and ramp waves —
sometimes called “sawtooth” waves — are especially useful in timing circuits. The sine wave is both
mathematically and practically the foundation of all other forms of ac; the other forms can usually be
reduced to (and even constructed from) a particular collection of sine waves.

There are numerous ways to generate alternating currents: with an ac power generator (an alternator), with
a transducer (for example, a microphone) or with an electronic circuit (for example, an RF oscillator). The
basis of the sine wave is circular motion, which underlies the most usual methods of generating alternating
current. The circular motion of the ac generator may be physical or mechanical, as in an alternator. Currents
in the resonant circuit of an oscillator may also produce sine waves without mechanical motion.

Fig 6.6 demonstrates the relationship of the current (and voltage) amplitude to relative positions of a
circular rotation through one complete revolution of 360º. Note that the current is zero at point 1. It rises to
its maximum value at a point 90º from point 1, which is point 3. At a point 180º from point 1, which is point
4, the current level falls back to zero. Then the current begins to rise again. The direction of the current after
point 4 and prior to its return to point 1, however, is opposite the direction of current from point 1 to point
4. Point 2 illustrates one of the innumerable intermediate values of current throughout the cycle.

Tracing the rise and fall of current over a linear time line produces the curve accompanying the circle
in Fig 6.6. The curve is sinusoidal or a sine wave. The amplitude of the current varies as the sine of the
angle made by the circular movement with respect to the zero point. The sine of 90° is 1, and 90° is also
the point of maximum current (along with 270°). The sine of 45° (point 2) is 0.707, and the value of
current at the 45° point of rotation is 0.707 times the maximum current. Similar considerations apply to
the variation of ac voltage over time.

FREQUENCY AND PERIOD

With a continuously rotating generator, alternating current will pass through many equal cycles over

Fig 6.3 — Two ac waveforms of
similar frequencies (f1 = 1.5 f2)
and amplitudes form a com-
posite wave. Note the points
where the positive peaks of
the two waves combine to
create high composite peaks:
this is the phenomenon of
beats. The beat note frequency
is 1.5f – f = 0.5f and is visible
in the drawing.

Fig 6.4 — Two ac waveforms
of widely different frequen-
cies and amplitudes form a
composite wave in which one
wave appears to ride upon
the other.

Fig 6.5 — Some common ac
waveforms: square, triangle,
ramp and sine.

Fig 6.6 — The relationship of
circular motion and the result-
ant graph of ac current or
voltage. The curve is sinusoidal,
a sine wave.
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time. Select an arbitrary point on any one cycle and use it as a marker. For this example, the positive peak
will work as an unambiguous marker. The number of times per second that the current (or voltage)
reaches this positive peak in any one second is called the frequency of the ac. In other words, frequency
expresses the rate at which current (or voltage) cycles occur. The unit of frequency is cycles per second,
or hertz—abbreviated Hz (after the 19th century radio-phenomena pioneer, Heinrich Hertz).

The length of any cycle in units of time is the period of the cycle, as measured from and to equivalent
points on succeeding cycles. Mathematically, the period is simply the inverse of the frequency. That is,

seconds in (T) Period

1
=Hz in (f) Frequency (1)

and

Hz in (f) Frequency

1
=seconds in (T) Period (2)

Example: What is the period of a 400-hertz ac current?

ms2.5s0.00250
Hz400

1

f

1
T ====

The frequency of alternating currents used in Amateur Radio circuits varies from a few hertz, or cycles per
second, to thousands of millions of hertz. Likewise, the period of alternating currents amateurs use ranges
from significant fractions of a second down to nanoseconds or smaller. In order to express units of frequency,
time and almost everything else in electronics compactly, electronics uses a standard system of prefixes. In
magnitudes of 1000 or 103, frequency is measurable in hertz, in kilohertz (1000 hertz or kHz), in megahertz
(1 million hertz or MHz), gigahertz (1 billion hertz or GHz) and even in terahertz (1 trillion hertz or THz).
For units smaller than one, as in the measurement of period, the basic unit seconds can become milliseconds
(1 thousandth of a second or ms), microseconds (1 millionth of a second or µs), nanoseconds (1 billionth of
a second or ns) and picoseconds (1 trillionth of a second or ps). See the Mathematics for Amateur Radio
chapter for a complete list of prefixes and their relationship to basic units.

The uses of ac in Amateur Radio circuits are many and varied. Most can be cataloged by reference to
ac frequency ranges used in circuits. For example, ac power used in the home, office and factory is
ordinarily 60 Hz in the United States and Canada. In Great Britain and much of Europe, ac power is
50 Hz. For special purposes, ac power has been generated up to about 400 Hz.

Sonic and ultrasonic applications of ac run from about 20 Hz up to several MHz. Audio work makes
use of the lower end of the sonic spectrum, with communications audio focusing on the range from about
300 to 3000 Hz. High-fidelity audio uses ac circuits capable of handling 20 Hz to at least 20 kHz.
Ultrasonics — used in medicine and industry — makes use of ac circuits above 20 kHz.

Amateur Radio circuits include both power- and sonic-frequency-range circuits. Radio communica-
tion and other electronics work, however, require ac circuits capable of operation with frequencies up
to the gigahertz range. Some of the applications include signal sources for transmitters (and for circuits
inside receivers); industrial induction heating; diathermy; microwaves for cooking, radar and commu-
nication; remote control of appliances, lighting, model planes and boats and other equipment; and radio
direction finding and guidance.

AC IN CIRCUITS AND TRANSDUCED ENERGY

Alternating currents are often loosely classified as audio frequency (AF) and radio frequency (RF).
Although these designations are handy, they actually represent something other than the electrical
energy of ac circuits: They designate special forms of energy that we find useful.

Audio or sonic energy is the energy imparted by the mechanical movement of a medium, which can
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be air, metal, water or even the human body. Sound that humans can hear normally requires the move-
ment of air between 20 Hz and  20 kHz, although the human ear loses its ability to detect the extremes
of this range as we age. Some animals, such as elephants, can apparently detect air vibrations well below
20 Hz, while others, such as dogs and cats, can detect air vibrations well above 20 kHz.

Electrical circuits do not directly produce air vibrations. Sound production requires a transducer, a
device to transform one form of energy into another form of energy; in this case electrical energy into
sonic energy. The speaker and the microphone are the most common audio transducers. There are
numerous ultrasonic transducers for various applications.

Likewise, converting electrical energy into radio signals also requires a transducer, usually called an
antenna. In contrast to RF alternating currents in circuits, RF energy is a form of electromagnetic energy.
The frequencies of electromagnetic energy run from 3 kHz to above 1012 GHz. They include radio,
infrared, visible light, ultraviolet and a number of energy forms of greatest interest to physicists and
astronomers. Table 6.1 provides a brief glimpse at the total spectrum of electromagnetic energy.

All electromagnetic energy has one thing in common: it travels, or propagates, at the speed of light.
This speed is approximately 300000000 (or 3.00 × 108) meters per second in a vacuum. Electromagnetic-
energy waves have a length uniquely associated with each possible frequency. The wavelength (λ) is
simply the speed of propagation divided by the frequency (f) in hertz.
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Example: What is the frequency of an 80.0-m RF wave?
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We could use a similar equation to calculate
the wavelength of a sound wave in air, but we
would have to use the speed of sound instead of
the speed of light in the numerator of the equa-
tion. The speed of propagation of the mechanical
movement of air that we call sound varies con-
siderably with air temperature and altitude. The
speed of sound at sea level is about 331 m/s at
0ºC and 344 m/s at 20ºC.

To calculate the frequency of an electromag-
netic wave directly in kilohertz, change the speed
constant to 300,000 (3.00 × 105) km/s.

Table 6.1
Key Regions of the Electromagnetic Energy
Spectrum

Region Name Frequency Range
Radio frequencies 3.0 × 103 Hz to 3.0 × 1011 Hz
Infrared 3.0 × 1011 Hz to 4.3 × 1014 Hz
Visible light 4.3 × 1014 Hz to 1.0 × 1015 Hz
Ultraviolet 1.0 × 1015 Hz to 6.0 × 1016 Hz
X-rays 6.0 × 1016 Hz to 3.0 × 1019 Hz
Gamma rays 3.0 × 1019 Hz to 5.0 × 1020 Hz
Cosmic rays 5.0 × 1020 Hz to 8.0 × 1021 Hz
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For frequencies in megahertz, use:
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You would normally just drop the units that go with the speed of light constant, to make the equation
look simpler.

Example: What is the wavelength of an RF wave whose frequency is 4.0 MHz?
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At higher frequencies, circuit elements act like transducers. This property can be put to use, but it can
also cause problems for some circuit operations. Therefore, wavelength calculations are of some impor-
tance in designing ac circuits for those frequencies.

Within the part of the electromagnetic-energy spectrum of most interest to  radio applications, fre-
quencies have been classified into groups and given names. Table 6.2 provides a reference list of these
classifications. To a significant degree, the frequencies within each group exhibit similar properties. For
example, HF or high frequencies, from 3 to 30 MHz, all exhibit skip or ionospheric refraction that
permits regular long-range radio communications. This property also applies occasionally both to MF
(medium frequencies) and to VHF (very high frequencies).

Despite the close relationship between RF electromagnetic energy and RF ac circuits, it remains important
to distinguish the two. To the ac circuit producing or amplifying a 15-kHz alternating current, the ultimate
transformation and use of the
electrical energy may make no
difference to the circuit’s opera-
tion. By choosing the right trans-
ducer, one can produce either an
audio tone or a radio signal — or
both. Such was the accidental
fate of many horizontal oscilla-
tors and amplifiers in early tele-
vision sets; they found ways to
vibrate parts audibly and to radi-
ate electromagnetic energy.

Table 6.2
Classification of the Radio Frequency Spectrum

Abbreviation Classification Frequency Range
VLF Very low frequencies 3 to 30 kHz
LF Low frequencies 30 to 300 kHz
MF Medium frequencies 300 to 3000 kHz
HF High frequencies 3 to 30 MHz
VHF Very high frequencies 30 to 300 MHz
UHF Ultrahigh frequencies 300 to 3000 MHz
SHF Superhigh frequencies 3 to 30 GHz
EHF Extremely high frequencies 30 to 300 GHz
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PHASE

When tracing a sine-wave curve of an ac voltage or current, the
horizontal axis represents time. We call this the time domain of the
sine wave. Events to the right take place later; events to the left
occur earlier. Although time is measurable in parts of a second, it
is more convenient to treat each cycle as a complete time unit that
we divide into 360°. The conventional starting point for counting
degrees is the zero point as the voltage or current begins the posi-
tive half cycle. The essential elements of an ac cycle appear in
Fig 6.7.

The advantage of treating the ac cycle in this way is that many
calculations and measurements can be taken and recorded in a
manner that is independent of frequency. The positive peak volt-
age or current occurs at 90° along the cycle. Relative to the start-
ing point, 90° is the phase of the ac at that point. Thus, a complete
description of an ac voltage or current involves reference to three
properties: frequency, amplitude and phase.

Phase relationships also permit the comparison of two ac volt-
ages or currents at the same frequency, as Fig 6.8 demonstrates.
Since B crosses the zero point in the positive direction after A has
already done so, there is a phase difference between the two waves.
In the example, B lags A by 45°, or A leads B by 45°. If A and B
occur in the same circuit, their composite waveform will also be
a sine wave at an intermediate phase angle relative to each. Add-
ing any number of sine waves of the same frequency always re-
sults in a sine wave at that frequency.

Fig 6.8 might equally apply to a voltage and a current measured
in the same ac circuit. Either A or B might represent the voltage;
that is, in some instances voltage will lead the current and in others
voltage will lag the current.

Two important special cases appear in Fig 6.9. In Part A, line
B lags 90° behind line A. Its cycle begins exactly one quarter cycle
later than the A cycle. When one wave is passing through zero, the
other just reaches its maximum value.

In Part B, lines A and B are 180° out of phase. In this case, it
does not matter which one is considered to lead or lag. Line B is
always positive while line A is negative, and vice versa. If the two
waveforms are of two voltages or two currents in the same circuit
and if they have the same amplitude, they will cancel each other
completely.

MEASURING AC VOLTAGE, CURRENT AND POWER

Measuring the voltage or current in a dc circuit is straightfor-
ward, as Fig 6.10A demonstrates. Since the current flows in only
one direction, for a resistive load, the voltage and current have
constant values until the circuit components change.

Fig 6.10B illustrates a perplexing problem encountered when

Fig 6.8 — When two waves of the
same frequency start their cycles
at slightly different times, the
time difference or phase differ-
ence is measured in degrees. In
this drawing, wave B starts 45°
(one-eighth cycle) later than
wave A, and so lags 45° behind
A.

Fig 6.7 — An ac cycle is divided
into 360° that are used as a
measure of time or phase.

Fig 6.9 — Two important special
cases of phase difference: In the
upper drawing, the phase differ-
ence between A and B is 90°; in
the lower drawing, the phase
difference is 180°.

(A)

(B)



AC Theory and Reactive Components 6.9

measuring voltages and cur-
rents in ac circuits. The current
and voltage continuously
change direction and value.
Which values are meaningful?
In fact, several values of con-
stant sine-wave voltage and
current in ac circuits are impor-
tant to differing applications
and concerns.

Instantaneous Voltage
and Current

Fig 6.11 shows a sine wave
of some arbitrary frequency
and amplitude with respect to
either voltage or current. The
instantaneous voltage (or cur-
rent) at point A on the curve is
a function of three factors: the
maximum value of voltage (or
current) along the curve (point
B), the frequency of the wave,
and the time elapsed in seconds
or fractions of a second. Thus,

Einst = Emax sin (2π f t) θ (9)

Considering just one sine
wave, independent of fre-
quency, the instantaneous
value of voltage (or current)
becomes

Einst = Emax sin θ (10)

where θ is the angle in degrees through which the voltage has moved over time after the beginning of
the cycle.

Example: What is the instantaneous value of voltage at point D in Fig 6.11, if the maximum voltage
value is 120. V and the angular travel is 60.0°?

Einst = 120. V × sin 60.0° = 120. × 0.866 = 104 V

Peak and Peak-to-Peak Voltage and Current

The most important instantaneous voltages and currents are the maximum or  peak values reached on
each positive and negative half cycle of the sine wave. In  Fig 6.11, points B and C represent the positive
and negative peaks of voltage or current. Peak (pk) values are especially important with respect to
component ratings, which the voltage or current in a circuit must not exceed without danger of compo-
nent failure.

The peak power in an ac circuit is simply the product of the peak voltage and the peak current, or

Fig 6.10 — Voltage and current measurements in dc and ac cir-
cuits.

Fig 6.11 — Two cycles of a sine wave to illustrate instantaneous,
peak, and peak-to-peak ac voltage and current values.

(A)

(B)
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Ppk = Epk × Ipk (11)

The span from points B to C in Fig 6.11 represents the largest voltage or current swing of the sine wave.
Designated the peak-to-peak (P-P) voltage (or current), this span is equal to twice the peak value of the
voltage (or current). Thus,

EP-P = 2Epk (12)

Amplifying devices often specify their input limits in terms of peak-to-peak voltages. Operational
amplifiers, which have almost unlimited gain potential, often require input-level limiting to prevent the
output signals from distorting if they exceed the peak-to-peak output rating of the devices.

RMS Voltages and Currents

The root mean square or RMS values of voltage and current are the most common values encountered
in electronics. Sometimes called the effective values of ac voltage and current, they are based upon
equating the values of ac and dc power required to heat a resistive element to exactly the same degree.
The peak ac power required for this condition is twice the dc power needed. Therefore, the average ac
power equivalent to a corresponding average dc power is half the peak ac power.

2

P
=P pk

ave (13)

Since a circuit with a constant resistance is linear — that is, raising or lowering the voltage will raise
or lower the current proportionally — the voltage and current values needed to arrive at average ac power
are related to their peak values by the factor 2 .

0.707E=
1.414

E
=

2

E
=E pk

pkpk
RMS × (14)

0.707pkI=
1.414

pkI
=

2

pkI
=RMSI × (15)

In the time domain of a sine wave, the RMS values of voltage and current occur at the 45°, 135°,
225° and 315° points along the cycle shown in Fig 6.12. (The sine of 45° is approximately 0.707.)
The absolute instantaneous
value of voltage or current is
greater than the RMS value
for half the cycle and less
than the RMS value for half
the cycle.

The RMS values of voltage
and current get their name
from the means used to de-
rive their value relative to
peak voltage and current.
Square the individual values
of all the instantaneous val-
ues of voltage or current in a
single cycle of ac. Take the
average of these squares and
then find the square root of

Fig 6.12 — The relationships between RMS, average, peak, and
peak-to-peak values of ac voltage and current.
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the average. This root mean square procedure produces the RMS value of voltage or current.
If the RMS voltage is the peak voltage divided by the 2 , then the peak voltage must be the RMS

voltage multiplied by the 2 , or

Epk = ERMS × 1.414 (16)

Ipk = IRMS × 1.414 (17)

Since circuit specifications will most commonly list only RMS voltage and current values, these
relationships are important in finding the peak voltages or currents that will stress components.

Example: What is the peak voltage on a capacitor if the RMS voltage of a sinusoidal waveform signal
across it is 300. V ac?

Epk = 300 V × 1.414 = 424 V

The capacitor must be able to withstand this higher voltage, plus a safety margin. The capacitor must
also be rated for ac use. A capacitor rated for 1 kV dc may explode if used in this application. In power
supplies that convert ac to dc and use capacitive input filters, the output voltage will approach the peak
value of the ac voltage rather than the RMS value.

Example: What is the peak voltage and the peak-to-peak voltage at the usual household ac outlet, if
the RMS voltage is 120. V?

Epk = 120 V × 1.414 = 170 V

Ep-p = 2 × 170 V = 340 V.

Unless otherwise specified, unlabeled ac voltage and current values found in most electronics litera-
ture are normally RMS values.

Average Values of Voltage and Current

Certain kinds of circuits respond to the average value of an ac waveform. Among these circuits are
electrodynamic meter movements and power supplies that convert ac to dc and use heavily inductive
(“choke”) input filters, both of which use the pulsating dc output of a full-wave rectifier. The average
value of each ac half cycle is the mean of all the instantaneous values in that half cycle. Related to the
peak values of voltage and current, average values are 2 / π (or 0.6366) times the peak value.

Eave = 0.6366 Epk (18)

Iave = 0.6366 Ipk (19)

For convenience, Table 6.3
summarizes the relationships
between all of the common ac
values. All of these relation-
ships apply only to pure sine
waves.

Complex Waves and
Peak-Envelope Values

Complex waves, as shown
earlier in  Fig 6.4, differ from
pure sine waves. The amplitude

Table 6.3
Conversion Factors for AC Voltage or Current

From To Multiply By
Peak Peak-to-Peak 2
Peak-to-Peak Peak 0.5
Peak RMS 1 / 2  or 0.707
RMS Peak 2  or 1.414
Peak-to-Peak RMS 1 / (2 × 2 ) or 0.35355
RMS Peak-to-Peak 2 × 2  or 2.828
Peak Average 2 / π or 0.6366
Average Peak π / 2 or 1.5708
RMS Average (2 × 2 ) / π or 0.90
Average RMS π / (2 × 2 ) or 1.11

Note: These conversion factors apply only to continuous pure sine
waves.
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of the peak voltage may vary significantly from one cycle to the
next. Therefore, other amplitude measures are required, especially
for accurate measurement of voltage and power with single side-
band (SSB) waveforms. Fig 6.13 illustrates a multitone composite
waveform with an RF ac waveform as the basis.

The RF ac waveform has a frequency many times that of the
audio-frequency ac waveform with which it is usually combined
in SSB operations. Therefore, the resultant waveform appears as
an amplitude envelope superimposed upon the RF waveform. The
peak envelope voltage (PEV), then, is the maximum or peak value
of voltage achieved.

Peak envelope voltage permits the calculation of peak envelope
power (PEP). The Federal Communications Commission (FCC) uses the concept of peak envelope
power to set the maximum power standards for amateur transmitters. PEP is the average power supplied
to the antenna transmission line by a transmitter during one RF cycle at the crest of the modulation
envelope, taken under normal operating conditions. Since calculation of PEP requires the average power
of the cycle, multiply the PEV by 0.707 to obtain the RMS value. Then calculate power by using the
square of the voltage divided by the load resistance.

( )
R

0.707PEV
=PEP

2×
(20)

Fig 6.13 — The peak envelope
voltage (PEV) for a composite
waveform.
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Capacitance and Capacitors
Without the ability to store electrical energy, radio would not be possible. One may build and hold an

electrical charge in an electrostatic field. This phenomenon is called capacitance, and the devices that
exhibit capacitance are called capacitors. See Chapter 10 for more information on practical capacitor
applications and problmes. Fig 6.14 shows several schematic symbols for capacitors. Part A shows a
fixed capacitor; one that has a single value of capacitance. Part B shows variable capacitors; these are
adjustable over a range of values. Ordinarily, the straight line in each symbol connects to a positive
voltage, while the curved line goes to a negative voltage or to ground. Some capacitor designs require
rigorous adherence to polarity markings; other designs are sym-
metrical and nonpolarized.

CHARGE AND ELECTROSTATIC ENERGY STORAGE

Suppose two flat metal plates are placed close to each other (but
not touching) and are connected to a battery through a switch, as
illustrated in Fig 6.15A. At the instant the switch is closed, elec-
trons are attracted from the upper plate to the positive terminal of
the battery, and the same number are repelled into the lower plate
from the negative battery terminal. Enough electrons move into
one plate and out of the other to make the voltage between the
plates the same as the battery voltage.

If the switch is opened after the plates have been charged in this
way, the top plate is left with a deficiency of electrons and the
bottom plate with an excess. Since there is no current path be-
tween the two, the plates remain charged despite the fact that the
battery no longer is connected. The charge remains due to the
electrostatic field between the plates. The large number of oppo-
site charges exert an attractive force across the small distance
between plates, as illustrated in Fig 6.15B.

If a wire is touched between the two plates (short-circuiting them),
the excess electrons on the bottom plate flow through the wire to the
upper plate, restoring electrical neutrality. The plates are discharged.

These two plates represent an electrical capacitor, a device
possessing the property of storing electrical energy in the electric
field between its plates. During the time the electrons are moving
— that is, while the capacitor is being charged or discharged — a
current flows in the circuit even though the circuit apparently is
broken by the gap between the capacitor plates. The current flows
only during the time of charge and discharge, however, and this
time is usually very short. There can be no continuous flow of
direct current through a capacitor.

Fig 6.16 demonstrates the voltage and current in the circuit, first,
at the moment the switch is closed to charge the capacitor and,
second, at the moment the shorting switch is closed to discharge the
unit. Note that the periods of charge and discharge are very short,
but that they are not zero. This finite charging and discharging time
can be lengthened and will prove useful later in timing circuits.

Although dc cannot pass through a capacitor, alternating cur-

Fig 6.14 — Schematic symbol for
a fixed capacitor is shown at A.
The symbols for a variable ca-
pacitor are shown at B.

Fig 6.15 — A simple capacitor
showing the basic charging
arrangement at A, and the reten-
tion of the charge due to the
electrostatic field at B.



6.14 Chapter 6

rent can. As fast as one plate is
charged positively by the posi-
tive excursion of the alternat-
ing current, the other plate is
being charged negatively.
Positive charges flowing into
one plate causes a current to
flow out of the other plate dur-
ing one half of the cycle, re-
sulting in a negative charge on
that plate. The reverse occurs
during the second half of the
cycle.

The charge or quantity of
electricity that can be held on
the capacitor plates is propor-
tional to the applied voltage
and to the capacitance of the
capacitor:

Q = CE (21)

where:
Q = charge in coulombs,
C = capacitance in farads, and
E = electrical potential in

volts.

The energy stored in a ca-
pacitor is also a function of
electrical potential and capaci-
tance:

2

C E
=W

2

(22)

where:
W = energy in joules (watt-seconds),
E = electrical potential in volts (some texts use V instead of E), and
C = capacitance in farads.

The numerator of this expression can be derived easily from the definitions for charge, capacitance,
current, power and energy. The denominator is not so obvious, however. It arises because the voltage
across a capacitor is not constant, but is a function of time. The average voltage over the time interval
determines the energy stored. The time dependence of the capacitor voltage is a very useful property;
see the section on time constants.

UNITS OF CAPACITANCE AND CAPACITOR CONSTRUCTION

A capacitor consists, fundamentally, of two plates separated by an insulator or dielectric. The larger
the plate area and the smaller the spacing between the plates, the greater the capacitance. The capaci-

Fig 6.16 — The flow of current during the charge and discharge of
a capacitor. The charge graphs assume that the charge switch is
closed and the discharge switch is open. The discharge graphs
assume just the opposite.
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tance also depends on the kind of insulating material between the plates: it is smallest with air insulation
or a vacuum. Substituting other insulating materials for air may greatly increase the capacitance.

The ratio of the capacitance with a material other than a vacuum or air between the plates to the
capacitance of the same capacitor with air insulation is called the dielectric constant, or K, of that
particular insulating material. The dielectric constants of a number of materials commonly used as
dielectrics in capacitors are given in Table 6.4. For example, if a sheet of polystyrene is substituted for
air between the plates of a capacitor, the capacitance will be 2.6 times greater.

The basic unit of capacitance, the ability to store electrical energy in an electrostatic field, is the farad.
This unit is generally too large for practical radio work, however. Capacitance is usually measured in
microfarads (abbreviated µF), nanofarads (abbreviated nF) or picofarads (pF). The microfarad is one
millionth of a farad  (10–6 F), the nanofarad is one thousandth of a microfarad (10–9 F) and the picofarad
is one millionth of a microfarad (10–12 F).

In practice, capacitors often have more than two plates, the alternate plates being connected to form
two sets, as shown in Fig 6.17. This practice makes it possible to obtain a fairly large capacitance in a
small space, since several plates of smaller individual area can be stacked to form the equivalent of a
single large plate of the same total area. Also, all plates except the two on the ends are exposed to plates
of the other group on both sides, and so are twice as effective in increasing the capacitance.

The formula for calculating capacitance from these physical properties is:

( )
d

1n AK0.2248
=C

−
(23)

where:
C = capacitance in pF,
K = dielectric constant of

material between plates,
A = area of one side of one

plate in square inches,
d = separation of plate sur-

faces in inches, and
n = number of plates.

If the area (A) is in square cen-
timeters and the separation (d) is
in centimeters, then the formula
for capacitance becomes

Table 6.4
Relative Dielectric Constants of Common Capacitor Dielectric
Materials

(O)rganic or
Material Dielectric Constant (k) (I)norganic
Vacuum 1 (by definition) I
Air 1.0006 I
Ruby mica 6.5 - 8.7 I
Glass (flint) 10 I
Barium titanate (class I) 5 - 450 I
Barium titanate (class II) 200 - 12000 I
Kraft paper ≈ 2.6 O
Mineral Oil ≈ 2.23 O
Castor Oil ≈ 4.7 O
Halowax ≈ 5.2 O
Chlorinated diphenyl ≈ 5.3 O
Polyisobutylene ≈ 2.2 O
Polytetrafluoroethylene ≈ 2.1 O
Polyethylene terephthalate ≈ 3 O
Polystyrene ≈ 2.6 O
Polycarbonate ≈ 3.1 O
Aluminum oxide ≈ 8.4 I
Tantalum pentoxide ≈ 28 I
Niobium oxide ≈ 40 I
Titanium dioxide ≈ 80 I

(Adapted from: Charles A. Harper, Handbook of Components for
Electronics, p 8-7.)

Fig 6.17 — A multiple-plate
capacitor. Alternate plates are
connected to each other.
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( )
d

1n AK0.0885
=C

−
(24)

If the plates in one group do not have the same area as the plates in the other, use the area of the smaller
plates.

Example: What is the capacitance of  2 copper plates, each 1.50 square inches in area, separated by
a distance of 0.00500 inch, if the dielectric is air?

( )

( )

pF 67.4=C
0.00500

12 1.5010.2248
=

d

1n AK0.2248
=C

−××

−

KINDS OF CAPACITORS AND THEIR USES

The capacitors used in radio work differ considerably in physical size, construction and capacitance.
Representative kinds are shown in Fig 6.18. In variable capacitors, which are almost always constructed
with air for the dielectric, one set of plates is made movable with respect to the other set so the capacitance
can be varied. Fixed capacitors — those having a single, nonadjustable value of capacitance — can also
be made with metal plates and with air as the dielectric.

Fixed capacitors are usually constructed from plates of metal foil with a thin solid or liquid dielectric
sandwiched between, so a relatively large capacitance can be obtained in a small unit. The solid dielec-
trics commonly used are mica, paper and special ceramics. An example of a liquid dielectric is mineral
oil. Electrolytic capacitors use aluminum-foil plates with a semiliquid conducting chemical compound
between them. The actual dielectric is a very thin film of insulating material that forms on one set of
plates through electrochemical action when a dc voltage is applied to the capacitor. The capacitance
obtained with a given plate area in an electrolytic capacitor is very large compared to capacitors having

Fig 6.18 — Fixed-value capacitors are shown at A. A large computer-grade unit is at the upper left.
The 40-µF unit is an electrolytic capacitor. The smaller pieces are silvered-mica, disc-ceramic, tanta-
lum, polystyrene and ceramic-chip capacitors. The small black cylindrical unit is a PC-board-mount
electrolytic. Variable capacitors are shown at B. A vacuum variable is at the upper left. The units
with visible plates are air-variable capacitors. Some tiny variable capacitors use a thin piece of mica
as a dielectric.

(A)

(B)
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other dielectrics, because the film is so thin — much less than any thickness practical with a solid
dielectric.

The use of electrolytic and oil-filled capacitors is confined to power-supply filtering and audio-bypass
applications because their dielectrics have high losses at higher frequencies. Mica and ceramic capaci-
tors are used throughout the frequency range from audio to several hundred megahertz.

New dielectric materials appear from time to time and represent improvements in capacitor perfor-
mance. Silvered-mica capacitors, formed by spraying thin coats of silver on each side of the mica
insulating sheet, improved the stability of mica capacitors in circuits sensitive to temperature changes.
Polystyrene and other synthetic dielectrics, along with tantalum electrolytics, have permitted the size of
capacitors to shrink per unit of capacitance.

VOLTAGE RATINGS AND BREAKDOWN

When high voltage is applied to the plates of a capacitor, considerable force is exerted on the electrons
and nuclei of the dielectric. The dielectric is an insulator; its electrons do not become detached from
atoms the way they do in conductors. If the force is great enough, however, the dielectric will break
down. Failed dielectrics usually puncture and offer a low-resistance current path between the two plates.

The breakdown voltage a dielectric can withstand depends on the chemical composition and thickness
of the dielectric. Breakdown voltage is not directly proportional to the thickness; doubling the thickness
does not quite double the breakdown voltage. Gas dielectrics also break down, as evidenced by a spark
or arc between the plates. Spark voltages are generally given with the units kilovolts per centimeter. For
air, the spark voltage or Vs may range from more than 120 kV/cm for gaps as narrow as 0.006 cm down
to 28 kV/cm for gaps as wide as 10 cm. In addition, a large number of variables enter into the actual
breakdown voltage in a real situation. Among the variables are the electrode shape, the gap distance, the
air pressure or density, the voltage, impurities in the air (or any other dielectric material) and the nature
of the external circuit (with air, for instance, the humidity affects conduction on the surface of the
capacitor plate).

Dielectric breakdown occurs at a lower voltage between pointed or sharp-edged surfaces than between
rounded and polished surfaces. Consequently, the breakdown voltage between metal plates of any given
spacing in air can be increased by buffing the edges of the plates. With most gas dielectrics such as air,
once the voltage is removed, the arc ceases and the capacitor is ready for use again. If the plates are
damaged so they are no longer smooth and polished, they may have to be polished or the capacitor
replaced. In contrast, solid dielectrics are permanently damaged by dielectric breakdown, and often will
totally short out and melt or explode.

A thick dielectric must be used to withstand high voltages. Since the capacitance is inversely propor-
tional to dielectric thickness (plate spacing) for a given plate area, a high-voltage capacitor must have
more plate area than a low-voltage one of the same capacitance. High-voltage, high-capacitance capaci-
tors are therefore physically large.

Dielectric strength is specified in terms of a dielectric withstanding voltage (DWV), given in volts per
mil (0.001 inch) at a specified temperature. Taking into account the design temperature range of a
capacitor and a safety margin, manufacturers specify dc working voltage (dcwv) to express the maximum
safe limits of dc voltage across a capacitor to prevent dielectric breakdown.

It is not safe to connect capacitors across an ac power line unless they are rated for such use. Capacitors
with dc ratings may short the line. Several manufacturers make capacitors specifically rated for use
across the ac power line.

For use with other ac signals, the peak value of ac voltage should not exceed the dc working voltage,
unless otherwise specified in component ratings. In other words, the RMS value of ac should be 0.707
times the dcwv value or lower. With many types of capacitors, further derating is required as the
operating frequency increases. An additional safety margin is good practice.
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Any two surfaces having different electrical potentials, and which are close enough to exhibit a
significant electrostatic field, constitute a capacitor. The arrangement of circuit components and leads
sometimes results in the creation of unintended capacitors. This is called stray capacitance: It often
results in the passage of signals in ways that disrupt the normal operation of a circuit. Good design
minimizes stray capacitance.

Stray capacitance may have a greater affect in a high-impedance circuit because the capacitive reac-
tance may be a greater percentage of the circuit impedance. Also, because stray capacitance often
appears in parallel with the circuit, the stray capacitor may bypass more of the desired signal at higher
frequencies. Stray capacitance can often adversely affect sensitive circuits.

For further information of the physical and electrical characteristics of various types of capacitors in
actual use, see the Real-World Component Characteristics chapter.

CAPACITORS IN SERIES AND PARALLEL

When a number of capacitors are connected in parallel, as in Fig 6.19A, the total capacitance of the
group is equal to the sum of the individual capacitances:

Ctotal = C1 + C2 + C3 + C4 + . . . + Cn (25)

When two or more capacitors are connected in series, as in Fig
6.19B, the total capacitance is less than that of the smallest capaci-
tor in the group. The rule for finding the capacitance of a number
of series-connected capacitors is the same as that for finding the
resistance of a number of parallel-connected resistors.

n

total

C
1

++
C3
1

+
C2
1

+
C1
1

1
=C

� (26)

For only two capacitors in series, the formula becomes:

C2C1

C2C1
=Ctotal +

×
(27)

The same units must be used throughout; that is, all capaci-
tances must be expressed in either µF, nF or pF. Different units
cannot be used in the same equation.

Capacitors are usually connected in parallel to obtain a larger
total capacitance than is available in one unit. The largest voltage
that can be applied safely to a parallel-connected group of capaci-
tors is the voltage that can be applied safely to the one having the
lowest voltage rating.

When capacitors are connected in series, the applied voltage is
divided between them according to Kirchhoff’s Voltage Law: The
situation is much the same as when resistors are in series and there
is a voltage drop across each. The voltage that appears across each
series-connected capacitor is inversely proportional to its capaci-
tance, as compared with the capacitance of the whole group. (This
assumes ideal capacitors.)

Example: Three capacitors having capacitances of 1, 2 and
4 µF, respectively, are connected in series as shown in Fig 6.20.
The voltage across the entire series is 2000 V. What is the total

Fig 6.19 — Capacitors in parallel
are shown at A, and in series at
B.

Fig 6.20 — An example of capaci-
tors connected in series. The text
shows how to find the voltage
drops, E1 through E3.
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capacitance? (Since this is a calculation using theoretical values to illustrate a technique, we will not
follow the rules of significant figures for the calculations.)

F0.5714=
7

F4
=

F4
7
1

=C

F4
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+
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1
+
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1

1
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µ
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The voltage across each capacitor is proportional to the total capacitance divided by the capacitance
of the capacitor in question. So the voltage across C1 is:

 V1143 V=2000
F1

F5714.0
=1E ×

µ
µ

Similarly, the voltages across C2 and C3 are:

 V571 V=2000
F2

F5714.0
=2E ×

µ
µ

and

 V286 V=2000
F4

F5714.0
=3E ×

µ
µ

The sum of these three voltages equals 2000 V, the applied voltage.
Capacitors may be connected in series to enable the group to withstand a larger voltage than any

individual capacitor is rated to withstand. The trade-off is a decrease in the total capacitance. As shown
by the previous example, the applied voltage does not divide equally between the capacitors except when
all the capacitances are precisely the same. Use care to ensure that the voltage rating of any capacitor
in the group is not exceeded. If you use capacitors in series to withstand a higher voltage, you should
also connect an “equalizing resistor” across each capacitor. Use resistors with about 100 Ω per volt of
supply voltage, and be sure they have sufficient power-handling capability for the circuit. With real
capacitors, the leakage resistance of the capacitors may have more effect on the voltage division than
does the capacitance. A capacitor with a high parallel resistance will have the highest voltage across it.
Adding equalizing resistors reduces this effect.

RC TIME CONSTANT

Connecting a dc voltage source directly to the terminals of a
capacitor charges the capacitor to the full source voltage almost
instantaneously. Any resistance added to the circuit as in Fig 6.21A
limits the current, lengthening the time required for the voltage
between the capacitor plates to build up to the source-voltage
value. During this charging period, the current flowing from the
source into the capacitor gradually decreases from its initial value.
The increasing voltage stored in the capacitor’s electric field of-
fers increasing opposition to the steady source voltage.

Fig 6.21 — An illustration of the
time constant in an RC circuit.
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While it is being charged, the voltage between the capacitor
terminals is an exponential function of time, and is given by:













= RC

t
–

–1EV(t) e (28)

where:
V(t) = capacitor voltage in volts at time t;
E = potential of charging source in volts;
t = time in seconds after initiation of charging current;
e = natural logarithmic base = 2.718;
R = circuit resistance in ohms; and
C = capacitance in farads.

Theoretically, the charging process is never really finished, but
eventually the charging current drops to an unmeasurable value.
For many purposes, it is convenient to let t = RC. Under this
condition, the above equation becomes:

V(RC) = E(1 – e–1) ≈ 0.632 E (29)

The product of R in ohms times C in farads is called the time
constant of the circuit and is the time in seconds required to charge
the capacitor to 63.2% of the supply voltage. (The lower-case Greek
letter tau [ τ ] is often used to represent  the time constant in elec-
tronics circuits.) After two time constants (t = 2τ) the capacitor
charges another 63.2% of the difference between the capacitor
voltage at one time constant and the supply voltage, for a total
charge of 86.5%. After three time constants the capacitor reaches
95% of the supply voltage, and so on, as illustrated in the curve of
Fig 6.22A. After 5 RC time periods, a capacitor is considered fully
charged, having reached 99.24% of the source voltage.

If a charged capacitor is discharged through a resistor, as indicated in Fig 6.21B, the same time
constant applies for the decay of the capacitor voltage. A direct short circuit applied between the
capacitor terminals would discharge the capacitor almost instantly. The resistor, R, limits the current,
so the capacitor voltage decreases only as rapidly as the capacitor can discharge itself through R. A
capacitor discharging through a resistance exhibits the same time-constant characteristics (calculated in
the same way as above) as a charging capacitor. The voltage, as a function of time while the capacitor
is being discharged, is given by:













= RC

t–
EV(t) e (30)

where t = time in seconds after initiation of discharge.
Again, by letting t = RC, the time constant of a discharging capacitor represents a decrease in the

voltage across the capacitor of about 63.2%. After 5 time-constant periods, the capacitor is considered
fully discharged, since the voltage has dropped to less than 1% of the full-charge voltage.

Time constant calculations have many uses in radio work. The following examples are all derived from
practical-circuit applications.

Fig 6.22 — At A, the curve shows
how the voltage across a capaci-
tor rises, with time, when
charged through a resistor. The
curve at B shows the way in
which the voltage decreases
across a capacitor when dis-
charging through the same
resistance. For practical pur-
poses, a capacitor may be
considered charged or dis-
charged after 5 RC periods.
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Example 1: A 100-µF capacitor in a high-voltage power supply is shunted by a 100-kΩ resistor. What
is the minimum time before the capacitor may be considered fully discharged? Since full discharge is
approximately 5 RC periods,

t = 5 × RC = 5 × 100 × 103 Ω × 100 × 10–6 F = 50000 × 10–3 seconds

t = 50.0 s

(Look at the table of metric-system units in the Mathematics for Amateur Radio chapter to prove that
ohms times farads gives units of seconds.)

Note: Although waiting almost a minute for the capacitor to discharge seems safe in this high-voltage
circuit, never rely solely on capacitor-discharging resistors (often called bleeder resistors). Be certain the
power source is removed and the capacitors are totally discharged before touching any circuit components.

Example 2: Smooth CW keying without clicks requires approximately 5 ms (0.005 s) of delay in both
the make and break edges of the waveform, relative to full charging and discharging of a capacitor in
the circuit. What typical values might a builder choose for an RC delay circuit in a keyed voltage line?
Since full charge and discharge require 5 RC periods,

s001.0
5

 s005.0
5
t

RC ===

Any combination of resistor and capacitor whose values, multiplied together, equaled 0.001 would do
the job. A typical capacitor might be 0.05 µF. In that case, the necessary resistor would be:

k�20�����200001002.0

F1005.0

s010.0
R

6

6–

=×=

×
=

In practice, a builder would likely either experiment with values or use a variable resistor. The final
value would be selected after monitoring the waveform on an oscilloscope.

Example 3: Many modern integrated circuit (IC) devices use RC circuits to control their timing. To
match their internal circuitry, they may use a specified threshold voltage as the trigger level. For
example, a certain IC uses a trigger level of 0.667 of the supply voltage. What value of capacitor and
resistor would be required for a 4.5-second timing period?

First we will solve equation 28 for the time constant, RC. The threshold voltage is 0.667 times the
supply voltage, so we use this value for V(t).
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We want to find a capacitor and resistor combination that will produce a 4.5 s timing period, so we
substitute that value for t.

s1.4
10.1

s 5.4
RC ==

If we select a value of 10. µF, we can solve for R.

Ω=Ω×=
×

= − k4101041.0
F10.10

s 1.4
R 6

6

A 1% tolerance resistor and capacitor will give good precision. You could also use a variable resistor
and an accurate method to measure the time to set the circuit to a 4.5 s period.

As the examples suggest, RC circuits have numerous applications in electronics. The number of
applications is growing steadily, especially with the introduction of integrated circuits controlled by part
or all of a capacitor charge or discharge cycle.

ALTERNATING CURRENT IN CAPACITANCE

Everything said about capacitance and capacitors in a dc circuit applies to capacitance in an ac
circuit with one major exception. Whereas a capacitor in a dc circuit will appear as an open circuit
except for the brief charge and discharge periods, the same capacitor in an ac circuit will both pass
and limit current. A capacitor in an ac circuit does not handle electrical energy like a resistor,
however. Instead of converting the energy to heat and dissipating it, capacitors store electrical
energy and return it to the circuit.

In Fig 6.23 a sine-wave ac voltage having a maximum value of 100 is applied to a capacitor. In the
period OA, the applied voltage increases from 0 to 38; at the end of this period the capacitor is charged
to that voltage. In interval AB the voltage increases to 71; that is, 33 V additional. During this interval
a smaller quantity of charge has been added than in OA, because the voltage rise during interval AB is
smaller. Consequently the average current during interval AB is smaller than during OA. In the third
interval, BC, the voltage rises from 71 to 92, an increase of 21 V. This is less than the voltage increase
during AB, so the quantity of electricity added is less; in other words, the average current during interval
BC is still smaller. In the fourth interval, CD, the voltage increases only 8 V; the charge added is smaller
than in any preceding interval
and therefore the current also
is smaller.

By dividing the first quarter
cycle into a very large number of
intervals, it could be shown that
the current charging the capaci-
tor has the shape of a sine wave,
just as the applied voltage does.
The current is largest at the be-
ginning of the cycle and becomes
zero at the maximum value of the
voltage, so there is a phase dif-
ference of 90° between the volt-
age and the current. During the
first quarter cycle the current is
flowing in the normal direction
through the circuit, since the

Fig 6.23 — Voltage and current phase relationships when an alter-
nating current is applied to a capacitor.
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capacitor is being charged. Hence the current is positive, as indicated by the dashed line in Fig 6.23.
In the second quarter cycle — that is, in the time from D to H — the voltage applied to the capacitor

decreases. During this time the capacitor loses its charge. Applying the same reasoning, it is evident that
the current is small in interval DE and continues to increase during each succeeding interval. The current
is flowing against the applied voltage, however, because the capacitor is discharging into the circuit. The
current flows in the negative direction during this quarter cycle.

The third and fourth quarter cycles repeat the events of the first and second, respectively, with this
difference: the polarity of the applied voltage has reversed, and the current changes to correspond. In
other words, an alternating current flows in the circuit because of the alternate charging and discharging
of the capacitance. As shown in Fig 6.23, the current starts its cycle 90° before the voltage, so the current
in a capacitor leads the applied voltage by 90°. You might find it helpful to remember the word “ICE”
as a mnemonic because the current (I) in a capacitor (C) comes before voltage (E). We can also turn this
statement around, to say the voltage in a capacitor lags the current by 90°.

CAPACITIVE REACTANCE

The quantity of electric charge that can be placed on a capacitor is proportional to the applied voltage and
the capacitance. This amount of charge moves back and forth in the circuit once each cycle, and so the rate
of movement of charge (the current) is proportional to voltage, capacitance and frequency. When the effects
of capacitance and frequency are considered together, they form a quantity that plays a part similar to that of
resistance in Ohm’s Law. This quantity is called reactance. The unit for reactance is the ohm, just as in the
case of resistance. The formula for calculating the reactance of a capacitor at a given frequency is:

C f  2

1
=XC π (31)

where:
XC = capacitive reactance in ohms,
f = frequency in hertz,
C = capacitance in farads
π = 3.1416

Note: In many references and texts, the symbol ω is used to represent 2 π f. In such references, equation
31 would read

C 

1
=XC ω

Although the unit of reactance is the ohm, there is no power dissipated in reactance. The energy stored
in the capacitor during one portion of the cycle is simply returned to the circuit in the next.

The fundamental units for frequency and capacitance (hertz and farads) are too cumbersome for
practical use in radio circuits. If the capacitance is specified in microfarads (µF) and the frequency is in
megahertz (MHz), however, the reactance calculated from the previous formula retains the unit ohms.

Example: What is the reactance of a capacitor of 470. pF (0.000470 µF) at a frequency of 7.15 MHz?
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Example: What is the reactance of the same capacitor, 470. pF (0.000470 µF), at a frequency of 14.30
MHz?
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The rate of change of voltage in a sine wave increases directly with the frequency. Therefore, the
current into the capacitor also increases directly with frequency. Since, for a given voltage, an increase
in current is equivalent to a decrease in reactance, the reactance of any capacitor decreases proportionally
as the frequency increases. Fig 6.24 traces the decrease in reactance of an arbitrary-value capacitor with
respect to increasing frequency. The only limitation on the application of the graph is the physical make-
up of the capacitor, which may favor low-frequency uses or high-frequency applications.

Among other things, reactance is a measure of the ability of a capacitor to limit the flow of ac in a
circuit. For some purposes. it is important to know the ability of
a capacitor to pass current. This ability is called susceptance, and
it corresponds to conductance in resistive circuit elements. In an
ideal capacitor with no resistive losses — that is, no energy lost as
heat — susceptance is simply the reciprocal of reactance. Hence,

CX

1
=B

(32)

where:
XC is the reactance, and
B is the susceptance.

The unit of susceptance (and conductance and admittance) is
the siemens (abbreviated S). In literature only a few years old, the
term mho is also sometimes given as the unit of susceptance (as
well as of conductance and admittance). The role of reactance and
susceptance in current and other Ohm’s Law calculations will
appear in a later section of this chapter.

Fig 6.24 — A graph showing the
general relationship of reactance
to frequency for a fixed value of
capacitance.
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Inductance and Inductors
A second way to store electrical energy is in a magnetic field. This phenomenon is called inductance,

and the devices that exhibit inductance are called inductors. Inductance depends upon some basic
underlying magnetic properties. See Chapter 10 for more information on practical inductor applications
and problems.

MAGNETISM

Magnetic Fields, Flux and Flux Density

Magnetic fields are closed fields that surround a magnet, as illustrated in Fig 6.25. The field consists
of lines of magnetic force or flux. It exhibits polarity, which is conventionally indicated as north-seeking
and south-seeking poles, or north and south poles for short. Magnetic flux is measured in the SI unit of
the weber, which is a volt second (Wb = V s). In the centimeter gram second (cgs) metric system units,
we measure magnetic flux in maxwells (1 Mx = 10–8 Wb).

The field intensity, known as the flux density, decreases with the
square of the distance from the source. Flux density (B) is represented
in gauss (G), where one gauss is equivalent to one line of force per
square centimeter of area across the field (G = Mx / cm2). The gauss
is a cgs unit. In SI units, flux density is represented by the tesla (T),
which is one weber per square meter (T = Wb / m2).

Magnetic fields exist around two types of materials. First, cer-
tain ferromagnetic materials contain molecules aligned so as to
produce a magnetic field. Lodestone, Alnico and other materials
with high retentivity form permanent magnets because they retain
their magnetic properties for long periods. Other materials, such
as soft iron, yield temporary magnets that lose their magnetic
properties rapidly.

The second type of magnetic material is an electrical conductor
with a current through it. As shown in Fig 6.26, moving electrons
are surrounded by a closed magnetic field lying in planes perpen-
dicular to their motion. The needle of a compass placed near a wire
carrying direct current will be deflected by the magnetic field
around the wire. This phenomenon is one aspect of a two-way
relationship: a moving magnetic field whose lines cut across a
wire will induce an electrical current in the wire, and an electrical
current will produce a magnetic field.

If the wire is coiled into a solenoid, the magnetic field greatly
intensifies as the individual flux lines add together. Fig 6.27 illus-
trates the principle by showing a coil section. Note that the result-
ing electromagnet has magnetic properties identical in principle
to those of a permanent magnet, including poles and lines of force
or flux. The strength of the magnetic field depends on several
factors: the number of turns of the coil, the magnetic properties of
the materials surrounding the coil (both inside and out), the length
of the magnetic path and the amplitude of the current.

The magnetizing or magnetomotive force that produces a flux
or total magnetic field is measured in gilberts (Gb). The force in

Fig 6.25 — The magnetic field
and poles of a permanent mag-
net. The magnetic field direction
is from the north to the south
pole.

Fig 6.26 — The magnetic field
around a conductor carrying an
electrical current. If the thumb of
your right hand points in the
direction of the conventional
current (plus to minus), your
fingers curl in the direction of the
magnetic field around the wire.



6.26 Chapter 6

gilberts equals 0.4 π (approximately 1.257) times the number of
turns in the coil times the current in amperes. (The SI unit of
magnetomotive force is the ampere turn, abbreviated A, just like
the ampere.) The magnetic field strength, H, measured in oersteds
(Oe) produced by any particular magnetomotive force (measured
in gilberts) is given by:

�

IN�0.4
H = (33)

where:
H = magnetic field strength in oersteds,
N = number of turns,
I = dc current in amperes,
π = 3.1416, and
� = mean magnetic path length in centimeters.

The gilbert and oersted are cgs units. These are given here
because most amateur calculations will use these units. You may
also see the preferred SI units in some literature. The SI unit of
magnetic field strength is the ampere (turn) per meter.

A force is required to produce a given magnetic field strength. This
implies that there is a resistance, called reluctance, to be overcome.

Core Properties: Permeability, Saturation,
Reluctance, Hysteresis

The nature of the material within the coil of an electromagnet,
where the lines of force are most concentrated, has the greatest effect
upon the magnetic field established by the coil. All materials are
compared to air. The ratio of flux density produced by a given ma-
terial compared to the flux density produce by an air core is the
permeability of the material. Suppose the coil in Fig 6.28 is wound
on an iron core having a cross-sectional area of 2 square inches. When a certain current is sent through the
coil, it is found that there are 80000 lines of force in the core. Since the area is 2 square inches, the magnetic
flux density is 40000 lines per square inch. Now suppose that the iron core is removed and the same current
is maintained in the coil. Also suppose the flux density without the iron core is found to be 50 lines per square
inch. The ratio of these flux densities, iron core to air, is 40000 / 50 or 800, the core’s permeability.

Permeabilities as high as 106 have been attained. The three most common types of materials used in
magnetic cores are these:

A. stacks of laminated steel sheets (for power and audio applications);
B. various ferrite compounds (for cores shaped as rods, toroids, beads and numerous other forms); and
C. powdered iron (shaped as slugs, toroids and other forms for RF inductors).
Brass has a permeability less than 1. A brass core inserted into a coil will decrease the inductance

compared to an air core.
The permeability of silicon-steel power-transformer cores approaches 5000 in high-quality units.

Powdered-iron cores used in RF tuned circuits range in permeability from 3 to about 35, while ferrites
of nickel-zinc and manganese-zinc range from 20 to 15000. Table 6.5 lists some common magnetic
materials, their composition and their permeabilities. Core materials are often frequency sensitive,
exhibiting excessive losses outside the frequency band of intended use.

Fig 6.27 — Cross section of an
inductor showing its flux lines
and overall magnetic field.

Fig 6.28 — A coil of wire wound
around a laminated iron core.
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As a measure of the ease with
which a magnetic field may be
established in a material as
compared with air, permeabil-
ity (µ) corresponds roughly to
electrical conductivity. Perme-
ability is given as:

H

B
=µ (34)

where:
B is the flux density in gauss,

and
H is the magnetomotive

force in oersteds.

Unlike electrical conductiv-
ity, which is independent of
other electrical parameters, the
permeability of a magnetic ma-
terial varies with the flux den-
sity. At low flux densities (or
with an air core), increasing the
current through the coil will
cause a proportionate increase
in flux. But at very high flux
densities, increasing the cur-
rent beyond a certain point may
cause no appreciable change in
the flux. At this point, the core
is said to be saturated. Satura-
tion causes a rapid decrease in
permeability, because it de-
creases the ratio of flux lines to
those obtainable with the same
current using an air core. Fig
6.29 displays a typical permeability curve, showing the region of saturation. The saturation point varies
with the makeup of different magnetic materials. Air and other nonmagnetic materials do not saturate
and have a permeability of one. Reluctance, which is the reciprocal of permeability and corresponds
roughly to resistance in an electrical circuit, is also one for air and other nonmagnetic cores.

The retentivity of magnetic core materials creates another potential set of losses caused by hysteresis.
Fig 6.30 illustrates the change of flux density (B) with a changing magnetizing force (H). From starting
point A, with no residual flux, the flux reaches point B at the maximum magnetizing force. As the force
decreases, so too does the flux, but it does not reach zero simultaneously with the force at point D. As
the force continues in the opposite direction, it brings the flux density to point C. As the force decreases
to zero, the flux once more lags behind. In effect, a reverse force is necessary to overcome the residual
magnetism retained by the core material, a coercive force. The result is a power loss to the magnetic
circuit, which appears as heat in the core material. Air cores are immune to hysteresis effects and losses.

Table 6.5
Properties of Some High-Permeability Materials

Material Approximate Percent Composition Maximum
Permeability

Fe Ni Co Mo Other
Iron 99.91 — — — — 5000
Purified Iron 99.95 — — — — 180000
4% silicon-iron 96 — — — 4 Si 7000
45 Permalloy 54.7 45 — — 0.3 Mn 25000
Hipernik 50 50 — — — 70000
78 Permalloy 21.2 78.5 — — 0.3 Mn 100000
4-79 Permalloy 16.7 79 — — 0.3 Mn 100000
Supermalloy 15.7 79 — 5 0.3 Mn 800000
Permendur 49.7 — 50 — 0.3 Mn 5000
2V Permendur 49 — 49 — 2 V 4500
Hiperco 64 — 34 — 2 Cr 10000
2-81 Permalloy* 17 81 — 2 — 130
Carbonyl iron* 99.9 — — — — 132
Ferroxcube III** (MnFe2O4 + ZnFe2O4) 1500

Note: all materials in sheet form except * (insulated powder) and **
(sintered powder).
(Reference: L. Ridenour, ed., Modern Physics for the Engineer, p 119.)

Fig 6.29 — A typical permeabil-
ity curve for a magnetic core,
showing the point where satura-
tion begins.

Fig 6.30 — A typical hysteresis
curve for a magnetic core,
showing the additional energy
needed to overcome residual
flux.
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INDUCTANCE AND DIRECT CURRENT

In an electrical circuit, any element having a magnetic field is called an inductor. Fig 6.31 shows
schematic-diagram symbols and photographs of a few representative inductors: an air-core inductor, a
slug-tuned variable inductor
with a nonmagnetic core and an
inductor with a magnetic (iron)
core.

The transfer of energy to the
magnetic field of an inductor
represents work performed by
the source of the voltage.
Power is required for doing
work, and since power is equal
to current multiplied by volt-
age, there must be a voltage
drop in the circuit while energy
is being stored in the field. This
voltage drop, exclusive of any
voltage drop caused by resis-
tance in the circuit, is the result
of an opposing voltage induced
in the circuit while the field is
building up to its final value.
Once the field becomes con-
stant, the induced voltage or
back-voltage disappears, be-
cause no further energy is be-
ing stored. The induced volt-
age opposes the voltage of the
source and tends to prevent the
current from rising rapidly
when the circuit is closed. Fig
6.32A illustrates the situation
of energizing an inductor or
magnetic circuit, showing the
relative amplitudes of induced
voltage and the delayed rise in
current to its full value.

The amplitude of the induced
voltage is proportional to the rate
at which the current changes
(and consequently, the rate at
which the magnetic field
changes) and to a constant asso-
ciated with the circuit itself: the
inductance (or self-inductance)
of the circuit. Inductance de-

Fig 6.31 — Schematic symbols for representative inductors, includ-
ing (from left to right) an air-core inductor, a variable inductor with
a nonmagnetic slug, and an inductor with a magnetic core.

Fig 6.32 — Inductive circuit showing and graphing the generation
of induced voltage and the rise of current in an inductor at A, and
the decay of current as power is removed and the coil shorted at B.
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pends on the physical configuration of the inductor. Coiling a conductor increases its inductance. In effect,
the growing (or shrinking) magnetic field of each turn produces magnetic lines of force that — in their
expansion (or contraction) — cut across the other turns of the coil, inducing a voltage in every other turn. The
mutuality of the effect multiplies the ability of the coiled conductor to store electrical energy.

A coil of many turns will have more inductance than one of few turns, if both coils are otherwise
physically similar. Furthermore, if an inductor is placed around a magnetic core, its inductance will
increase in proportion to the permeability of that core, if the circuit current is below the point at which
the core saturates.

The polarity of an induced voltage is always such as to oppose any change in the circuit current. This
means that when the current in the circuit is increasing, work is being done against the induced voltage
by storing energy in the magnetic field. Likewise, if the current in the circuit tends to decrease, the stored
energy of the field returns to the circuit, and adds to the energy being supplied by the voltage source.
Inductors try to maintain a constant current through the circuit. This phenomenon tends to keep the
current flowing even though the applied voltage may be decreasing or be removed entirely. Fig 6.32B
illustrates the decreasing but continuing flow of current caused by the induced voltage after the source
voltage is removed from the circuit.

The energy stored in the magnetic field of an inductor is given by the formula:

2

L I
=W

2

(35)

where:
W = energy in joules,
I = current in amperes, and
L = inductance in henrys.

This formula corresponds to the energy-storage formula for capacitors: energy storage is a function
of current squared over time. As with capacitors, the time dependence of inductor current is a significant
property; see the section on time constants.

The basic unit of inductance is the henry (abbreviated H), which equals an induced voltage of one volt when
the inducing current is varying at a rate of one ampere per second. In various aspects of radio work, inductors
may take values ranging from a fraction of a nanohenry (nH) through millihenrys (mH) up to about 20 H.

MUTUAL INDUCTANCE AND MAGNETIC COUPLING

Mutual Inductance

When two coils are arranged with their axes on the same line,
as shown in Fig 6.33, current sent through coil 1 creates a mag-
netic field that cuts coil 2. Consequently, a voltage will be induced
in coil 2 whenever the field strength of coil 1 is changing. This
induced voltage is similar to the voltage of self-induction, but
since it appears in the second coil because of current flowing in the
first, it is a mutual effect and results from the mutual inductance
between the two coils.

When all the flux set up by one coil cuts all the turns of the other
coil, the mutual inductance has its maximum possible value. If
only a small part of the flux set up by one coil cuts the turns of the
other, the mutual inductance is relatively small. Two coils having
mutual inductance are said to be coupled.

Fig 6.33 — Mutual inductance:
When S is closed, current flows
through coil number 1, setting up
a magnetic field that induces a
voltage in the turns of coil num-
ber 2.
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The ratio of actual mutual inductance to the maximum possible value that could theoretically be
obtained with two given coils is called the coefficient of coupling between the coils. It is frequently
expressed as a percentage. Coils that have nearly the maximum possible mutual inductance (coefficient
= 1 or 100%) are said to be closely, or tightly, coupled. If the mutual inductance is relatively small the
coils are said to be loosely coupled. The degree of coupling depends upon the physical spacing between
the coils and how they are placed with respect to each other. Maximum coupling exists when they have
a common axis and are as close together as possible (for example, one wound over the other). The
coupling is least when the coils are far apart or are placed so their axes are at right angles.

The maximum possible coefficient of coupling is closely approached when the two coils are wound
on a closed iron core. The coefficient with air-core coils may run as high as 0.6 or 0.7 if one coil is wound
over the other, but will be much less if the two coils are separated. Although unity coupling is suggested
by Fig 6.33, such coupling is possible only when the coils are wound on a closed magnetic core.

Unwanted Couplings: Spikes, Lightning and Other Pulses

Every conductor passing current has a magnetic field associated with it — and therefore inductance
— even though the conductor is not formed into a coil. The inductance of a short length of straight wire
is small, but it may not be negligible. If the current through it changes rapidly, the induced voltage may
be appreciable. This is the case in even a few inches of wire with an alternating current having a
frequency on the order of 100 MHz or higher. At much lower frequencies or at dc, the inductance of the
same wire might be ignored because the induced voltage would seemingly be negligible.

There are many phenomena, however, both natural and man-made, which create sufficiently strong
magnetic fields to induce voltages into straight wires. Many of them are brief but intense pulses of energy
that act like the turning on of the switch in a circuit containing self-inductance. Because the fields created
grow to very high levels rapidly, they cut across wires leading into and out of — and wires wholly within
— electronic equipment, inducing unwanted voltages by mutual coupling.

Short-duration, high-level voltage spikes occur on ac and dc power lines. Because the field intensity
is great, these spikes may induce voltages upon conducting elements in sensitive circuits, disrupting
them and even injuring components. Lightning in the vicinity of the equipment can induce voltages on
power lines and other conductive paths (even ground conductors) that lead to the equipment location.
Lightning that seems a safe distance away can induce large spikes on power lines that ultimately lead
to the equipment. Closer at hand, heavy equipment with electrical motors can induce significant spikes
into power lines within the equipment location. Even though the power lines are straight, the powerful
magnetic field of a spike source can induce damaging voltages on equipment left “plugged in” during
electrical storms or during the operation of heavy equipment that inadequately filters its spikes.

Parallel-wire cables linking elements of electronic equipment consist of long wires in close proximity
to each other. Signal pulses can couple both magnetically and capacitively from one wire to another.
Since the magnetic field of a changing current decreases as the square of distance, separating the signal-
carrying lines diminishes inductive coupling. Placing a grounded wire between signal-carrying lines
reduces capacitive coupling. Unless they are well-shielded and filtered, however, the lines are still
susceptible to the inductive coupling of pulses from other sources.

INDUCTORS IN RADIO WORK

Various facets of radio work make use of inductors ranging from the tiny up to the massive. Small
values of inductance, as illustrated by Fig 6.34A, serve mostly in RF circuits. They may be self-
supporting air-core or air-wound coils or the winding may be supported by nonmagnetic strips or a form.
Phenolic, certain plastics and ceramics are the most common coil forms for air-core inductors. These
inductors range in value from a few hundred µH for medium- and high-frequency circuits down to tenths
of a µH for VHF and UHF work. The smallest values of inductance in radio work result from component
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leads. For VHF work and
higher frequencies, component
lead length is often critical.
Circuits may fail to operate
properly because leads are a
little too short or too long.

It is possible to make these
solenoid coils variable by in-
serting a slug in the center of
the coil. (Slug-tuned coils nor-
mally have a ceramic, plastic
or phenolic insulating form

between the conductive slug and the coil winding.) If the slug material is magnetic, such as powdered
iron, the inductance increases as the slug is centered along the length of the coil. If the slug is brass or
some other conductive but nonmagnetic material, centering the slug will reduce the coil’s inductance.
This effect stems from the fact that brass has low electrical resistance and acts as an effective short-
circuited one-turn secondary for the coil. (See more on transformer effects later in this chapter.)

An alternative to air-core inductors for RF work are toroidal coils wound on cores composed of
powdered iron mixed with a binder to hold the material together. The availability of many types and sizes
of powdered-iron cores has made these inductors popular for low-power fixed-value service. The tor-
oidal shape concentrates the inductor’s field tightly about the coil, eliminating the need in many cases
for other forms of shielding to limit the interaction of the inductor’s magnetic field with the fields of
other inductors.

Fig 6.34B shows samples of inductors in the millihenry range. Among these inductors are multisection
RF chokes designed to keep RF currents from passing beyond them to other parts of circuits. Low-
frequency radio work may also use inductors in this range of values, sometimes wound with litz wire.
Litz wire is a special version of stranded wire, with each strand insulated from the others. For audio
filters, toroidal coils with values below 100 mH are useful. Resembling powdered-iron-core RF toroids,
these coils are wound on ferrite or molybdenum-permalloy cores having much higher permeabilities.

Audio and power-supply inductors appear in Fig 6.34C. Lower values of these iron-core coils, in the
range of a few henrys, are useful as audio-frequency chokes. Larger values up to about 20 H may be found
in power supplies, as choke filters, to suppress 120-Hz ripple.
Although some of these inductors are open frame, most have iron
covers to confine the powerful magnetic fields they produce.

INDUCTANCES IN SERIES AND PARALLEL

When two or more inductors are connected in series (Fig 6.35A),
the total inductance is equal to the sum of the individual inductances,
provided that the coils are sufficiently separated so that coils are not
in the magnetic field of one another. That is:

Ltotal = L1 + L2 + L3 . . . +Ln (36)

If inductors are connected in parallel (Fig 6.35B), and if the
coils are separated sufficiently, the total inductance is given by:

n

total

L
1

++
L3
1

+
L2
1

+
L1
1

1
=L

� (37)

(A) (B)
(C)

Fig 6.34 — Part A shows small-value air-wound inductors, B shows
some inductors with values in the range of a few millihenrys and C
shows large inductors as might be used in audio circuits or as
power-supply chokes.

Fig 6.35 — Part A shows induc-
tances in series, and Part B
shows inductances in parallel.
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For only two inductors in parallel, the formula becomes:

L2L1

L2L1
=Ltotal +

×
(38)

Thus, the rules for combining inductances in series and parallel are the same as those for resistances,
assuming that the coils are far enough apart so that each is unaffected by another’s magnetic field. When
this is not so, the formulas given above will not yield correct results.

RL TIME CONSTANT

A comparable situation to an RC circuit exists when resistance and
inductance are connected in series. In Fig 6.36, first consider L to
have no resistance and also consider that R is zero. Closing S1 sends
a current through the circuit. The instantaneous transition from no
current to a finite value, however small, represents a rapid change in
current, and a reverse voltage is developed by the self-inductance of
L. The value of reverse voltage is almost equal and opposite to the
applied voltage. The resulting initial current is very small.

The reverse voltage depends on the change in the value of the
current and would cease to offer opposition if the current did not
continue to increase. With no resistance in the circuit (which, by
Ohm’s Law, would lead to an infinitely large current), the current
would increase forever, always growing just fast enough to keep
the self-induced voltage equal to the applied voltage.

When resistance in the circuit limits the current, Ohm’s Law
defines the value that the current can reach. The reverse voltage
generated in L must only equal the difference between E and the
drop across R, because the difference is the voltage actually ap-
plied to L. This difference becomes smaller as the current ap-
proaches the final Ohm’s Law value. Theoretically, the reverse
voltage never quite disappears, and so the current never quite reaches the Ohm’s Law value. In practical
terms, the differences become unmeasurable after a time.

The current at any time after the switch in Fig 6.36 has been closed, can be found from:
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(39)

where:
I(t) = current in amperes at time t,
E = power supply potential in volts,
t = time in seconds after initiation of current,
e = natural logarithmic base = 2.718,
R = circuit resistance in ohms, and
L= inductance in henrys.

The time in seconds required for the current to build up to 63.2% of the maximum value is called the
time constant, and is equal to L / R, where L is in henrys and R is in ohms. After each time interval equal
to this constant, the circuit conducts an additional 63.2% of the remaining current. This behavior is

Fig 6.36 — Time constant of an
RL circuit being energized.
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graphed in Fig 6.36. As is the case with capacitors, after 5 time constants the current is considered to have
reached its maximum value. As with capacitors, we often use the lower-case Greek tau (τ) to represent
the time constant.

Example: If a circuit has an inductor of 5.0 mH in series with a resistor of 10. Ω, how long will it take
for the current in the circuit to reach full value after power is applied? Since achieving maximum current
takes approximately five time constants,

t = 5 L / R = (5 × 5.0 × 10–3 H) / 10. Ω = 2.5 × 10–3 second or 2.5 ms

(Look at the table of metric-system units in the Mathematics for Amateur Radio chapter to prove
that henrys divided by ohms gives units of seconds.)

Note that if the inductance is increased to 5.0 H, the required time increases by a factor of 1000 to 2.5
seconds. Since the circuit resistance didn’t change, the final current is the same for both cases in this
example. Increasing inductance increases the time required to reach full current.

Zero resistance would prevent the circuit from ever achieving full current. All inductive circuits have
some resistance, however, if only the resistance of the wire making up the inductor.

An inductor cannot be discharged in the simple circuit of Fig 6.36 because the magnetic field collapses
as soon as the current ceases. Opening S1 does not leave the inductor charged in the way that a capacitor
would remain charged. The energy stored in the magnetic field returns instantly to the circuit when S1
is opened. The rapid collapse of the field causes a very large voltage to be induced in the coil. Usually
the induced voltage is many times larger than the applied voltage, because the induced voltage is
proportional to the rate at which the field changes. The common result of opening the switch in such a
circuit is that a spark or arc forms at the switch contacts during the instant the switch opens. When the
inductance is large and the current in the circuit is high, large amounts of energy are released in a very
short time. It is not at all unusual for the switch contacts to burn or melt under such circumstances. The
spark or arc at the opened switch can be reduced or suppressed by connecting a suitable capacitor and
resistor in series across the contacts. Such an RC combination is called a snubber network.

Transistor switches connected to and controlling coils, such as
relay solenoids, also require protection. In most cases, a small
power diode connected in reverse across the relay coil will prevent
field-collapse currents from harming the transistor.

If the excitation is removed without breaking the circuit, as
theoretically diagrammed in Fig 6.37, the current will decay ac-
cording to the formula:
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where t = time in seconds after removal of the source voltage.
After one time constant the current will lose 63.2% of its steady-

state value. (It will decay to 36.8% of the steady-state value.) The
graph in Fig 6.37 shows the current-decay waveform to be iden-
tical to the voltage-discharge waveform of a capacitor. Be careful
about applying the terms charge and discharge to an inductive
circuit, however. These terms refer to energy storage in an electric
field. An inductor stores energy in a magnetic field.

ALTERNATING CURRENT IN INDUCTORS

When an alternating voltage is applied to an ideal inductance

Fig 6.37 — Time constant of an
RL circuit being deenergized.
This is a theoretical model only,
since a mechanical switch
cannot change state instanta-
neously.
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(one with no resistance — all
practical inductors have some
resistance), the current is 90°
out of phase with the applied
voltage. In this case the current
lags 90° behind the voltage the
opposite of the capacitor cur-
rent-voltage relationship, as
shown in Fig 6.38. (Here again,
we can also say the voltage
across an inductor leads the
current by 90°.)

If you have difficulty re-
membering the phase relation-
ships between voltage and cur-
rent with inductors and
capacitors, you may find it
helpful to think of the
mnemonic, “ELI the ICE man.” This little phrase will remind you that voltage leads current through an
inductor, because the E comes before the I, with an L between them, as you read from left to right. (The
letter L represents inductance.) It will also help you remember the capacitor conditions because I comes
before E with a C between them.

Interpreting Fig 6.38 begins with understanding that the primary cause for current lag in an inductor
is the reverse voltage generated in the inductance. The amplitude of the reverse voltage is proportional
to the rate at which the current changes. In time segment OA, when the applied voltage is at its positive
maximum, the reverse or induced voltage is also maximum, allowing the least current to flow. The rate
at which the current is changing is the highest, a 38% change in the time period OA. In the segment AB,
the current changes by only 33%, yielding a reduced level of induced voltage, which is in step with the
decrease in the applied voltage. The process continues in time segments BC and CD, the latter producing
only an 8% rise in current as the applied and induced voltage approach zero.

In segment DE, the applied voltage changes direction. The induced voltage also changes direction,
which returns current to the circuit from storage in the magnetic field. The direction of this current is
now opposite to the applied voltage, which sustains the current in the positive direction. As the applied
voltage continues to increase negatively, the current — although positive — decreases in value, reaching
zero as the applied voltage reaches its negative maximum. The negative half-cycle continues just as did
the positive half-cycle.

Compare Fig 6.38 with Fig 6.23. Whereas in a pure capacitive circuit, the current leads the voltage
by 90º, in a pure inductive circuit, the current lags the voltage by 90º. These phenomena are especially
important in circuits that combine inductors and capacitors.

INDUCTIVE REACTANCE

The amplitude of alternating current in an inductor is inversely proportional to the applied frequency.
Since the reverse voltage is directly proportional to inductance for a given rate of current change, the
current is inversely proportional to inductance for a given applied voltage and frequency.

The combined effect of inductance and frequency is called inductive reactance, which — like capaci-
tive reactance — is expressed in ohms. The formula for inductive reactance is:

XL = 2 π f L (41)

Fig 6.38 — Phase relationships between voltage and current when
an alternating current is applied to an inductance.
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where:
XL = inductive reactance,
f = frequency in hertz,
L = inductance in henrys, and
π = 3.1416.
(If ω = 2 π f, then XL = ω L.)

Example: What is the reactance of a coil having an inductance of 8.00 H at a frequency of 120. Hz?

XL = 2 π f L = 6.2832 × 120. Hz × 8.00 H = 6030 Ω
In RF circuits the inductance values are usually small and the frequencies are large. When the induc-

tance is expressed in millihenrys and the frequency in kilohertz, the conversion factors for the two units
cancel, and the formula for reactance may be used without first converting to fundamental units. Simi-
larly, no conversion is necessary if the inductance is expressed in microhenrys and the frequency in
megahertz.

Example: What is the reactance of a 15.0-microhenry coil at a frequency of 14.0 MHz?

XL = 2 π f L = 6.2832 × 14.0 MHz × 15.0 µH = 1320 Ω
The resistance of the wire used to wind the coil has no effect on the reactance, but simply acts as a

separate resistor connected in series with the coil.
Example: What is the reactance of the same coil at a frequency of 7.0 MHz?

XL = 2 π f L = 6.2832 × 7.0 MHz × 15.0 µH = 660 Ω
Comparing the two examples suggests correctly that inductive reactance varies directly with fre-

quency. The rate of change of the current varies directly with the frequency, and this rate of change also
determines the amplitude of the induced or reverse voltage. Hence, the opposition to the flow of current
increases proportionally to frequency. This opposition is called inductive reactance. The direct relation-
ship between frequency and reactance in inductors, combined with the inverse relationship between
reactance and frequency in the case of capacitors, will be of fundamental importance in creating resonant
circuits.

As a measure of the ability of an inductor to limit the flow of ac in a circuit, inductive reactance is
similar to capacitive reactance in having a corresponding susceptance, or ability to pass ac current in a
circuit. In an ideal inductor with no resistive losses — that is, no energy lost as heat — susceptance is
simply the reciprocal of reactance.

LX

1
=B (42)

where:
XL = reactance, and
B = susceptance.

The unit of susceptance for both inductors and capacitors is the siemens, abbreviated S.
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Quality Factor, or Q of Components
Components that store energy, like capacitors and inductors, may be compared in terms of quality or

Q. The Q of any such component is the ratio of its ability to store energy to the sum total of all energy
losses within the component. In practical terms, this ratio reduces to the formula:

R

X
Q = (43)

where:
Q = figure of merit or quality (no units),
X = XL (inductive reactance) for inductors and XC (capacitive reactance) for capacitors (in ohms), and
R = the sum of all resistances associated with the energy losses in the component (in ohms).

The Q of capacitors is ordinarily high. Good quality ceramic capacitors and mica capacitors may have
Q values of 1200 or more. Small ceramic trimmer capacitors may have Q values too small to ignore in
some applications. Microwave capacitors can have poor Q values; 10 or less at 10 GHz and higher
frequencies.

Inductors are subject to many types of electrical energy losses, however: wire resistance, core losses
and skin effect. All electrical conductors have some resistance through which electrical energy is lost
as heat. Moreover, inductor wire must be sized to handle the anticipated current through the coil. Wire
conductors suffer additional ac losses because alternating current tends to flow on the conductor surface.
As the frequency increases, the current is confined to a thinner layer of the conductor surface. This
property is called skin effect. If the inductor’s core is a conductive material, such as iron, ferrite, or brass,
the core will introduce additional losses of energy. The specific details of these losses are discussed in
connection with each type of core material.

The sum of all core losses may be depicted by showing a resistor in series with the inductor (as in Figs
6.36 and 6.37), although there is no separate component represented by the symbol. As a result of
inherent energy losses, inductor Q rarely, if ever, approaches capacitor Q in a circuit where both
components work together. Although many circuits call for the highest Q inductor obtainable, other
circuits may call for a specific Q, even a very low one.
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Calculating Practical Inductors
Although builders and experimenters rarely construct their own capacitors, inductor fabrication is

common. In fact, it is often necessary, since commercially available units may be unavailable or expen-
sive. Even if available, they may consist of coil stock to be trimmed to the required value. Core materials
and wire for winding both solenoid and toroidal inductors are readily available. The following informa-
tion includes fundamental formulas and design examples for calculating practical inductors, along with
additional data on the theoretical limits in the use of some materials.

AIR-CORE INDUCTORS

Many circuits require air-core inductors using just one layer of wire. The approximate inductance of
a single-layer air-core coil may be calculated from the simplified formula:

( )
� 40 d18

 nd
HL 

22

+
=µ (44)

where:
L = inductance in microhenrys,
d = coil diameter in inches (from wire center to wire center),
� = coil length in inches, and
n = number of turns.

The notation is explained in Fig 6.39. This formula is a close
approximation for coils having a length equal to or greater than 0.4
d. (Note: Inductance varies as the square of the turns. If the number
of turns is doubled, the inductance is quadrupled. This relationship
is inherent in the equation, but is often overlooked. For example, if
you want to double the inductance, put on additional turns equal to
1.4 times the original number of turns, or 40% more turns.)

Example: What is the inductance of a coil if the coil has 48 turns
wound at 32 turns per inch and a diameter of 3/4 inch? In this case,
d = 0.75, � = 48/32 = 1.5 and n = 48.

( ) ( )
H18

74

1300
5.14075.018

4875.0
L

22

µ==

×+×
×=

To calculate the number of turns of a single-layer coil for a required value of inductance, the formula
becomes:

( )
d

 40 d18L 
n

�+
= (45)

Example: Suppose an inductance of 10.0 µH is required. The form on which the coil is to be wound
has a diameter of one inch and is long enough to accommodate a coil of 11/4 inches. Then d = 1.00 inch,
��= 1.25 inches and L = 10.0. Substituting:

( ) ( )[ ]

 turns1.26.680

1

25.140+00.118 0.10
n

==

××
=

Fig 6.39 — Coil dimensions used
in the inductance formula for air-
core inductors.
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A 26-turn coil would be
close enough in practical
work. Since the coil will be
1.25 inches long, the number
of turns per inch wil l be
26.1 / 1.25 = 20.9. Consulting
the wire table in the Refer-
ences chapter, we find that #17
enameled wire (or anything
smaller) can be used. The
proper inductance is obtained
by winding the required num-
ber of turns on the form and
then adjusting the spacing be-
tween the turns to make a uni-
formly spaced coil 1.25 inches
long.

Most inductance formulas
lose accuracy when applied to
small coils (such as are used in
VHF work and in low-pass fil-
ters built for reducing har-
monic interference to televi-
sions) because the conductor
thickness is no longer negli-
gible in comparison with the
size of the coil. Fig 6.40 shows
the measured inductance of VHF coils and may be used as a basis for circuit design. Two curves are
given; curve A is for coils wound to an inside diameter of 1/2 inch; curve B is for coils of 3/4-inch inside
diameter. In both curves, the wire size is #12, and the winding pitch is eight turns to the inch (1/8 inch
center-to-center turn spacing). The inductance values given include leads 1/2 inch long.

Machine-wound coils with the preset diameters and turns per inch are available in many radio stores,
under the trade names of B&W Miniductor, Airdux and Polycoil. The References chapter provides
information on using such coil stock to simplify the process of designing high-quality inductors for most
HF applications. Forming a wire into a solenoid increases its inductance, and also introduces distributed
capacitance. Since each turn is at a slightly different ac potential, each pair of turns effectively forms
a parasitic capacitor. See the Real-World Components chapter for information on the effects of these
complications to the “ideal” inductors under discussion in this chapter. Moreover, the Q of air-core
inductors is, in part, a function of the coil shape, specifically its ratio of length to diameter. Q tends to
be highest when these dimensions are nearly equal. With wire properly sized to the current carried by
the coil, and with high-caliber construction, air-core inductors can achieve Qs above 200. Air-core
inductors with Qs as high as 400 are possible.

STRAIGHT-WIRE INDUCTANCE

At low frequencies the inductance of a straight, round, nonmagnetic wire in free space is given by:









−












 0.75

a

 b2
 ln b0.00508=L (46)

Fig 6.40 — Measured inductance of coils wound with #12 bare wire,
eight turns to the inch. The values include half-inch leads.
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where:
L = inductance in µH,
a = wire radius in inches,
b = wire length in inches, and
ln = natural logarithm =

2.303 × common logarithm
(base 10).

If the dimensions are ex-
pressed in millimeters instead
of inches, the equation may still
be used, except replace the
0.00508 value with 0.0002.

Skin effect reduces the induc-
tance at VHF and above. As the
frequency approaches infinity,
the 0.75 constant within the
brackets approaches unity. As a
practical matter, skin effect will
not reduce the inductance by
more than a few percent.

Example: What is the induc-
tance of a wire that is
0.1575 inch in diameter and
3.9370 inches long? For the
calculations, a = 0.0787 inch
(radius) and b = 3.9370 inch.
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Fig 6.41 is a graph of the in-
ductance for wires of various
radii as a function of length.

A VHF or UHF tank circuit
can be fabricated from a wire
parallel to a ground plane, with
one end grounded. A formula for
the inductance of such an ar-
rangement is given in Fig 6.42.

Example: What is the induc-
tance of a wire 3.9370 inches

Fig 6.41 — Inductance of various conductor sizes as straight wires.

Fig 6.42 — Equation for determining the inductance of a wire
parallel to a ground plane, with one end grounded. If the dimen-
sions are in millimeters, the numerical coefficients become
0.0004605 for the first term and 0.0002 for the second term.
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where
L=inductance in µH
a=wire radius in inches
b=wire length parallel to ground

plane in inches
h= wire height above ground

plane in inches
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long and 0.0787 inch in radius, suspended 1.5748 inch above a ground plane? (The inductance is measured
between the free end and the ground plane, and the formula includes the inductance of the 1.5748-inch
grounding link.) To demonstrate the use of the formula in Fig 6.42, begin by evaluating these quantities:
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Substituting these values into the formula yields:
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Another conductor configuration that is frequently used is a flat strip over a ground plane. This arrangement
has lower skin-effect loss at high frequencies than round wire because it has a higher surface-area to volume
ratio. The inductance of such a
strip can be found from the for-
mula in Fig 6.43. For a large col-
lection of formulas useful in con-
structing air-core inductors of
many configurations, see the
“Circuit Elements” section in
Terman’s Radio Engineers’
Handbook or the “Transmission
Media” chapter of The ARRL
UHF/Microwave Experi-
menter’s Manual.

IRON-CORE INDUCTORS

If the permeability of an iron
core in an inductor is 800, then






 +++
+

=
b

hw
0.22350.5

hw
2b

lnb0.00508L

Fig 6.43 — Equation for determining the inductance of a flat strip
inductor.

where
L=inductance in microhenrys
b=length in inches
w=width in inches
h=thickness in inches
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the inductance of any given air-wound coil is increased 800 times
by inserting the iron core. The inductance will be proportional to the
magnetic flux through the coil, other things being equal. The induc-
tance of an iron-core inductor is highly dependent on the current
flowing in the coil, in contrast to an air-core coil, where the induc-
tance is independent of current because air does not saturate.

Iron-core coils such as the one sketched in Fig 6.44 are used
chiefly in power-supply equipment. They usually have direct cur-
rent flowing through the winding, and any variation in inductance
with current is usually undesirable. Inductance variations may be
overcome by keeping the flux density below the saturation point
of the iron. Opening the core so there is a small air gap, indicated
by the dashed lines in Fig 6.44, will achieve this goal. The reluc-
tance or magnetic resistance introduced by such a gap is very large
compared with that of the iron, even though the gap is only a small
fraction of an inch. Therefore, the gap — rather than the iron —
controls the flux density. Air gaps in iron cores reduce the induc-
tance, but they hold the value practically constant regardless of the
current magnitude.

When alternating current flows through a coil wound on an iron
core, a voltage is induced. Since iron is a conductor, a current also
flows in the core. Such currents are called eddy currents. Eddy
currents represent lost power because they flow through the resis-
tance of the iron and generate heat. Losses caused by eddy cur-
rents can be reduced by laminating the core (cutting the core into thin strips). These strips or laminations
are then insulated from each other by painting them with some insulating material such as varnish or
shellac. These losses add to hysteresis losses, which are also significant in iron-core inductors.

Eddy-current and hysteresis losses in iron increase rapidly as the frequency of the alternating current
increases. For this reason, ordinary iron cores can be used only at power-line and audio frequencies —
up to approximately 15000 Hz. Even then, a very good grade of iron or steel is necessary for the core
to perform well at the higher audio frequencies. Laminated iron cores become completely useless at radio
frequencies.

SLUG-TUNED INDUCTORS

For RF work, the losses in iron cores can be reduced to a more useful level by grinding the iron into
a powder and then mixing it with a “binder” of insulating material in such a way that the individual iron
particles are insulated from each other. Using this approach, cores can be made that function satisfac-
torily even into the VHF range.

Because a large part of the magnetic path is through a nonmagnetic material (the “binder”), the
permeability of the iron is low compared with the values obtained at power-line frequencies. The core
is usually shaped in the form of a slug or cylinder for fit inside the insulating form on which the coil is
wound. Despite the fact that the major portion of the magnetic path for the flux is in air, the slug is quite
effective in increasing the coil inductance. By pushing (or screwing) the slug in and out of the coil, the
inductance can be varied over a considerable range. See The ARRL Electronics Data Book for informa-
tion on a wide variety of representative slug-tuned coils available commercially.

POWDERED-IRON TOROIDAL INDUCTORS

For fixed-value inductors intended for use at HF and VHF, the powdered-iron toroidal core has

Fig 6.44 — Typical construction
of an iron-core inductor. The
small air gap prevents magnetic
saturation of the iron and thus
maintains the inductance at high
currents.
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become almost the standard core and material in low power cir-
cuits. Fig 6.45 shows the general outlines of a toroidal coil on a
magnetic core. Manufacturers offer a wide variety of core mate-
rials, or mixes, to provide units that will perform over a desired
frequency range with a reasonable permeability. Initial perme-
abilities for powdered-iron cores fall in the range of 3 to 35 for
various mixes. In addition, core sizes are available in the range of
0.125-inch outside diameter (OD) up to 1.06-inch OD, with larger
sizes to 5-inch OD available in certain mixes. The range of sizes
permits the builder to construct single-layer inductors for almost
any value using wire sized to meet the circuit current demands.
While powdered-iron toroids are often painted various colors,
you must know the manufacturer to identify the mix. There seems
to be no set standard between manufacturers. Iron-powder toroids
usually have rounded edges.

The use of powdered iron in a binder reduces core losses usually
associated with iron, while the permeability of the core permits a
reduction in the wire length and associated resistance in forming
a coil of a given inductance. Therefore, powdered-iron-core tor-
oidal inductors can achieve Qs well above 100, often approaching
or exceeding 200 within the frequency range specified for a given
core. Moreover, these coils are considered self-shielding since
most of the flux lines are within the core, a fact that simplifies
circuit design and construction.

Each powdered-iron core has a value of AL determined and
published by the core manufacturer. For powdered-iron cores, AL represents the inductance index, that
is, the inductance in µH per 100 turns of wire on the core, arranged in a single layer. The builder must
select a core size capable of holding the calculated number of turns, of the required wire size, for the
desired inductance. Otherwise, the coil calculation is straightforward. To calculate the inductance of a
powdered-iron toroidal coil, when the number of turns and the core material are known, use the formula:

10000

NA
L

2
L ×

= (47)

where:
L = the inductance in µH,
AL = the inductance index in µH per 100 turns, and
N = the number of turns.

Example: What is the inductance of a 60-turn coil on a core with an AL of 55? This AL value was
selected from manu-facturer’s information about a 0.8-inch OD core with an initial permeability of 10.
This particular core is intended for use in the range of 2 to 30 MHz. See the Component Data chapter
for more detailed data on the range of available cores.
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To calculate the number of turns needed for a particular inductance, use the formula:

Fig 6.45 — A typical toroidal
inductor wound on a powdered-
iron or ferrite core. Some key
physical dimensions are noted.
Equally important are the core
material, its permeability, its
intended range of operating
frequencies, and its AL value.
This is an 11-turn toroid.
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LA

L
 100N = (48)

Example: How many turns are needed for a 12.0-µH coil if the AL for the selected core is 49?

 turns49.50.4951000.245 100

49
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 100
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L
 100N
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=×==

==

If the value is critical, experimenting with 49-turn and 50-turn coils is in order, especially since core
characteristics may vary slightly from batch to batch. Count turns by each pass of the wire through the
center of the core. (A straight wire through a toroidal core amounts to a one-turn coil.) Fine adjustment
of the inductance may be possible by spreading or squeezing inductor turns.

The power-handling ability of toroidal cores depends on many variables, which include the cross-
sectional area through the core, the core material, the numbers of turns in the coil, the applied voltage
and the operating frequency. Although powdered-iron cores can withstand dc flux densities up to
5000 gauss without saturating, ac flux densities from sine waves above certain limits can overheat cores.
Manufacturers provide guideline limits for ac flux densities to avoid overheating. The limits range from
150 gauss at 1 MHz to 30 gauss at 28 MHz, although the curve is not linear. To calculate the maximum
anticipated flux density for a particular coil, use the formula:
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where:
Bmax = the maximum flux density in gauss,
ERMS = the voltage across the coil,
Ae = the cross-sectional area of the core in square centimeters,
N = the number of turns in the coil, and
f = the operating frequency in Hz.

Example: What is the maximum ac flux density for a coil of 15 turns if the frequency is 7.0 MHz, the
RMS voltage is 25 V and the cross-sectional area of the core is 0.133 cm2?
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Since the recommended limit for cores operated at 7 MHz is 57 gauss, this coil is well within guidelines.

FERRITE TOROIDAL INDUCTORS

Although nearly identical in general appearance to powdered-iron cores, ferrite cores differ in a
number of important characteristics. They are often unpainted, unlike powdered-iron toroids. Ferrite
toroids often have sharp edges, while powdered-iron toroids usually have rounded edges. Composed of
nickel-zinc ferrites for lower permeability ranges and of manganese-zinc ferrites for higher permea-
bilities, these cores span the permeability range from 20 to above 10000. Nickel-zinc cores with permea-
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bilities from 20 to 800 are useful in high-Q applications, but function more commonly in amateur
applications as RF chokes. They are also useful in wide-band transformers (discussed later in this
chapter).

Because of their higher permeabilities, the formulas for calculating inductance and turns require slight
modification. Manufacturers list ferrite AL values in mH per 1000 turns. Thus, to calculate inductance,
the formula is

1000000

NA
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2
L ×

= (50)

where:
L = the inductance in mH,
AL = the inductance index in mH per 1000 turns, and
N = the number of turns.

Example: What is the inductance of a 60-turn coil on a core with an AL of 523? (See the Component
Data chapter for more detailed data on the range of available cores.)
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To calculate the number of turns needed for a particular inductance, use the formula:
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Example: How many turns are needed for a 1.2-mH coil if the AL for the selected core is 150?
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For inductors carrying both dc and ac currents, the upper saturation limit for most ferrites is a flux
density of 2000 gauss, with power calculations identical to those used for powdered-iron cores. For
detailed information on available cores and their characteristics, see Iron-Powder and Ferrite Coil
Forms, a combination catalog and information book from Amidon Associates, Inc. (See the Address List
in the References chapter for information about contacting Amidon.)
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Ohm’s Law for Reactance
Only ac circuits containing capacitance or inductance (or both) have reactance. Despite the fact that

the voltage in such circuits is 90° out of phase with the current, circuit reactance does limit current in
a manner that corresponds to resistance. Therefore, the Ohm’s Law equations relating voltage, current
and resistance apply to purely reactive circuits:

E = I X (52)

X

E
I = (53)

I

E
X = (54)

where:
E = ac voltage in RMS,
I = ac current in amperes, and
X = inductive or capacitive reactance.

Example: What is the voltage across a capacitor of 200. pF at 7.15 MHz, if the current through the
capacitor is 50. mA?

Since the reactance of the capacitor is a function of both frequency and capacitance, first calculate the
reactance:
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Next, use Ohm’s Law:

E = I × XC = 0.050 A × 111 Ω = 5.6 V

Example: What is the current through an 8.00-H inductor at 120. Hz, if 420. V is applied?

XL = 2 π f L = 2 × 3.1416 × 120. Hz × 8.00 H = 6030 Ω

mA 69.7A 0.0697
 6030
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X

E
I

L
==
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==

Fig 6.46 charts the reactances of capacitors from 1 pF to 100 µF, and the reactances of inductors from
0.1 µH to 10 H, for frequencies between 100 Hz and 100 MHz. Approximate values of reactance can be
read or interpolated from the chart. The formulas will produce more exact values, however.

Although both inductive and capacitive reactance limit current, the two types of reactance differ. With
capacitive reactance, the current leads the voltage by 90°, whereas with inductive reactance, the current lags
the voltage by 90°. The convention for charting the two types of reactance appears in Fig 6.47. On this graph,
inductive reactance is plotted along the +90° vertical line, while capacitive reactance is plotted along the
–90° vertical line. This convention of assigning a positive value to inductive reactance and a negative value
to capacitive reactance results from the mathematics involved in impedance calculations.
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Fig 6.46 — Inductive and capacitive reactance vs frequency. Heavy lines represent multiples of 10,
intermediate lines multiples of 5. For example, the light line between 10 µH and 100 µH represents
50 µH; the light line between 0.1 µF and 1 µF represents 0.5 µF, and so on. Other values can be
extrapolated from the chart. For example, the reactance of 10 H at 60 Hz can be found by taking the
reactance of 10 H at 600 Hz and dividing by 10 for the 10 times decrease in frequency.

REACTANCES IN SERIES AND PARALLEL

If a circuit contains two reactances of the same type, whether in series or in parallel, the resultant
reactance can be determined by applying the same rules as for resistances in series and in parallel. Series
reactance is given by the formula

Xtotal = X1 + X2 + X3 + . . . + Xn (55)

Example: Two noninteracting inductances are in series. Each has a value of 4.0 µH, and the operating
frequency is 3.8 MHz. What is the resulting reactance?
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The reactance of each inductor is:

XL = 2 π f L = 2 × 3.1416 × 3.8 × 106 Hz × 4 × 10–6 H = 96 Ω

Xtotal = X1 + X2 = 96 Ω + 96 Ω = 192 Ω
We might also calculate the total reactance by first adding the

inductances:

Ltotal = L1 + L2 = 4.0 µH + 4.0 µH = 8.0 µH

Xtotal = 2 π f L = 2 × 3.1416 × 3.8 × 106 Hz × 8.0 × 10–6 H

Xtotal = 191 Ω
(The fact that the last digit differs by one illustrates the uncer-
tainty of the calculation caused by the uncertainty of the measured
values in the problem, and differences caused by rounding off the
calculated values. This also shows why it is important to follow
the rules for significant figures discussed in the Mathematics for
Amateur Radio chapter.)

Example: Two noninteracting capacitors are in series. One has
a value of 10.0 pF, the other of 20.0 pF. What is the resulting
reactance in a circuit operating at 28.0 MHz?

Ω=Ω=

×××××
=

=

−

568
1760

10

 F100.10 Hz100.281416.32

1

Cf2

1
X

6

126

1C π

Ω=Ω=

×××××
=

=

−

284
3520

 10

 F1020.0 Hz1028.03.14162

1
C f  2

1
X

6

126

C2 π

Xtotal = XC1 + XC2 = 568 Ω + 284 Ω = 852 Ω
Alternatively, for series capacitors, the total capacitance is 6.67 × 10–12 F or 6.67 pF. Then:
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(Within the uncertainty of the measured values and the rounding of values in the calculations, this is the

Fig 6.47 — The conventional
method of plotting reactances on
the vertical axis of a graph, using
the upward or “plus” direction
for inductive reactance and the
downward or “minus” direction
for capacitive reactance. The
horizontal axis will be used for
resistance in later examples.
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same result as we obtained with the first method.)
This example serves to remind us that series capacitance is not calculated in the manner used by other

series resistance and inductance, but series capacitive reactance does follow the simple addition for-
mula.

For reactances of the same type in parallel, the general formula is:

n

total

X
1

X3
1

X2
1

X1
1

1
X

++++
=

� (56)

or, for exactly two reactances in parallel

X2X1

X2X1
Xtotal +

×= (57)

Example: Place the capacitors in the last example (10.0 pF and 20.0 pF) in parallel in the 28.0 MHz
circuit. What is the resultant reactance?
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Alternatively, two capacitors in parallel add their capacitances.

Ctotal = C1 + C2 = 10.0 pF + 20.0 pF = 30.0 pF
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Example: Place the series inductors above (4.0 µH each) in parallel in a 3.8-MHz circuit. What is the
resultant reactance?
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Of course, equal reactances (or resistances) in parallel yield a reactance that is the value of one of them
divided by the number (n) of equal reactances, or:

Ω=Ω== 48
2

 96

n

X
Xtotal

All of these calculations apply only to reactances of the same type; that is, all capacitive or all
inductive. Mixing types of reactances requires a different approach.

UNLIKE REACTANCES IN SERIES

When combining unlike reactances — that is, combinations of inductive and capacitive reactance
— in series, it is necessary to take into account that the voltage-to-current phase relationships differ
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for the different types of reac-
tance. Fig 6.48 shows a series
circuit with both types of reac-
tance. Since the reactances are
in series, the current must be
the same in both. The voltage
across each circuit element
differs in phase, however. The
voltage EL leads the current by
90°, and the voltage EC lags
the current by 90°. Therefore,
EL and EC have opposite po-
larities and cancel each other
in whole or in part. The dotted
line in Fig 6.48 approximates
the resulting voltage E, which
is the difference between EL

and EC.
Since, for a constant current,

the reactance is directly pro-
portional to the voltage, the net
reactance must be the differ-
ence between the inductive and
the capacitive reactances, or:

Xtotal = XL – XC (58)

For this and subsequent calculations in which there is a mixture of inductive and capacitive reactance,
use the absolute value of each reactance. The convention of recording inductive reactances as positive
and capacitive reactances as negative is built into the mathematical operators in the formulas.

Example: Using Fig 6.48 as a visual aid, let XC = 20.0 Ω and XL = 80.0 Ω. What is the resulting
reactance?

Xtotal = XL – XC = 80.0 Ω – 20.0 Ω = +60.0 Ω
Since the result is a positive value, reactance is inductive. Had the result been a negative number, the

reactance would have been capacitive.
When reactance types are mixed in a series circuit, the resulting reactance is always smaller than the

larger of the two reactances. Likewise, the resulting voltage across the series combination of reactances
is always smaller than the larger of the two voltages across individual reactances.

Every series circuit of mixed reactance types with more than two circuit elements can be reduced to
the type of circuit covered here. If the circuit has more than one capacitor or more than one inductor in
the overall series string, first use the formulas given earlier to determine the total series inductance alone
and the total series capacitance alone (or their respective reactances). Then combine the resulting single
capacitive reactance and single inductive reactance as shown in this section.

UNLIKE REACTANCES IN PARALLEL

The situation of parallel reactances of mixed type appears in Fig 6.49. Since the elements are in
parallel, the voltage is common to both reactive components. The current through the capacitor, IC, leads
the voltage by 90°, and the current through the inductor, IL, lags the voltage by 90°. The two currents

Fig 6.48 — A series circuit containing both inductive and capaci-
tive components, together with representative voltage and current
relationships.
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are 180° out of phase and thus
cancel each other in whole or in
part. The total current is the
difference between the indi-
vidual currents, as indicated by
the dotted line in Fig 6.49.

Since reactance is the ratio
of voltage to current, the total
reactance in the circuit is:

CL
total II

E
X

−
= (59)

In the drawing, IC is larger
than IL, and the resulting dif-
ferential current retains the
phase of IC. Therefore, the
overall reactance, Xtotal, is ca-
pacitive in this case. The total
reactance of the circuit will be
larger than the larger of the in-
dividual reactances, because
the total current is smaller than
the larger of the two individual currents.

In parallel circuits of this type, reactance and current are inversely proportional to each other for a
constant voltage. Therefore, to calculate the total reactance directly from the individual reactances, use
the formula:
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CL
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×−=

(60)

As with the series formula for mixed reactances, use the absolute values of the reactances, since the
minus signs in the formula take into account the convention of treating capacitive reactances as negative
numbers. If the solution yields a negative number, the resulting reactance is capacitive, and if the
solution is positive, then the reactance is inductive.

Example: Using Fig 6.49 as a visual aid, place a capacitive reactance of 10.0 Ω in parallel with an
inductive reactance of 40.0 Ω. What is the resulting reactance?
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The reactance is capacitive, as indicated by the negative solution. Moreover, the resultant reactance
is always smaller than the larger of the two individual reactances.

As with the case of series reactances, if each leg of a parallel circuit contains more than one reactance, first
simplify each leg to a single reactance. If the reactances are of the same type in each leg, the series reactance
formulas for reactances of the same type will apply. If the reactances are of different types, then use the
formulas shown above for mixed series reactances to simplify the leg to a single value and type of reactance.

Fig 6.49 — A parallel circuit containing both inductive and capaci-
tive components, together with representative voltage and current
relationships.
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APPROACHING
RESONANCE

When two unlike reactances
have the same numerical value,
any series or parallel circuit in
which they occur is said to be
resonant. For any given induc-
tance or capacitance, it is theo-
retically possible to find a
value of the opposite reactance
type to produce a resonant cir-
cuit for any desired frequency.

When a series circuit like the
one shown in Fig 6.48 is reso-
nant, the voltage EC and EL are
equal and cancel; their sum is
zero. Since the reactance of the
circuit is proportional to the
sum of these voltages, the total
reactance also goes to zero.
Theoretically, the current, as
shown in Fig 6.50, can rise
without limit. In fact, it is lim-
ited only by power losses in the
components and other resistances that would be in a real circuit of this type. As the frequency of
operation moves slightly off resonance, the reactance climbs rapidly and then begins to level off.
Similarly, the current drops rapidly off resonance and then levels.

In a parallel-resonant circuit of the type in Fig 6.49, the current IL and IC are equal and cancel to zero.
Since the reactance is inversely proportional to the current, as the current approaches zero, the reactance
rises without limit. As with series circuits, component power losses and other resistances in the circuit
limit the current drop to some point above zero. Fig 6.51 shows the theoretical current curve near and
at resonance for a purely reactive parallel-resonant circuit. Note that in both Fig 6.50 and Fig 6.51, the
departure of current from the resonance value is close to, but not quite, symmetrical above and below
the resonant frequency.

Example: What is the reactance of a series L-C circuit consisting of a 56.04-pF capacitor and an 8.967-
µH inductor at 7.00, 7.10 and 7.20 MHz? Using the formulas from earlier in this chapter, we calculate
a table of values:
Frequency XL (Ω) XC (Ω) Xtotal (Ω)

(MHz)
7.000 394.4 405.7 –11.3
7.100 400.0 400.0 0
7.200 405.7 394.4 11.3

The exercise shows the manner in which the reactance rises rapidly as the frequency moves
above and below resonance. Note that in a series-resonant circuit, the reactance at frequencies
below resonance is capacitive, and above resonance, it is inductive. Fig 6.52 displays this fact
graphically. In a parallel-resonant circuit, where the reactance increases without limit at reso-
nance, the opposite condition exists: above resonance, the reactance is capacitive and below reso-

Fig 6.50 — The relative genera-
tor current with a fixed voltage
in a series circuit containing
inductive and capacitive reac-
tances as the frequency
approaches and departs from
resonance.

Fig 6.51 — The relative genera-
tor current with a fixed voltage
in a parallel circuit containing
inductive and capacitive reac-
tances as the frequency
approaches and departs from
resonance. (The circulating
current through the parallel
inductor and capacitor is a
maximum at resonance.)
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nance it is inductive, as shown
in Fig 6.53. Of course, all
graphs and calculations in this
section are theoretical and pre-
sume a purely reactive circuit.
Real circuits are never purely
reactive; they contain some
resistance that modifies their
performance considerably.
Real resonant circuits will be
discussed later in this chapter.

REACTIVE POWER

Although purely reactive cir-
cuits, whether simple or com-
plex, show a measurable ac volt-
age and current, we cannot
simply multiply the two together to arrive at power. Power is the rate at which energy is consumed by
a circuit, and purely reactive circuits do not consume power. The charge placed on a capacitor during
part of an ac cycle is returned to the circuit during the next part of a cycle. Likewise, the energy stored
in the magnetic field of an inductor returns to the circuit as the field collapses later in the ac cycle. A
reactive circuit simply cycles and recycles energy into and out of the reactive components. If a purely
reactive circuit were possible in reality, it would consume no power at all.

In reactive circuits, circulation of energy accounts for seemingly odd phenomena. For example, in a
series circuit with capacitance and inductance, the voltages across the components may exceed the
supply voltage. That condition can exist because, while energy is being stored by the inductor, the
capacitor is returning energy to the circuit from its previously charged state, and vice versa. In a parallel
circuit with inductive and capacitive branches, the current circulating through the components may
exceed the current drawn from the source. Again, the phenomenon occurs because the inductor’s col-
lapsing field supplies current to the capacitor, and the discharging capacitor provides current to the
inductor.

To distinguish between the nondissipated power in a purely reactive circuit and the dissipated power
of a resistive circuit, the unit of reactive power is called the volt-ampere reactive, or VAR. The term watt
is not used; sometimes reactive power is called wattless power. Formulas similar to those for resistive
power are used to calculate VAR:

VAR = I E (61)

VAR = I2 X (62)

X

E
VAR

2
= (63)

These formulas have only limited use in radio work.

REACTANCE AND COMPLEX WAVEFORMS

All of the formulas and relationships shown in this section apply to alternating current in the form of
regular sine waves. Complex wave shapes complicate the reactive situation considerably. A complex or
nonsinusoidal wave can be resolved into a fundamental frequency and a series of harmonic frequencies

Fig 6.52 — The transition from
capacitive to inductive reac-
tance in a series-resonant
circuit as the frequency passes
resonance.

Fig 6.53 — The transition from
inductive to capacitive reac-
tance in a parallel-resonant
circuit as the frequency passes
resonance.
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whose amplitudes depend on the original wave shape. When such a complex wave — or collection of
sine waves — is applied to a reactive circuit, the current through the circuit will not have the same wave
shape as the applied voltage. The difference results because the reactance of an inductor and capacitor
depend in part on the applied frequency.

For the second-harmonic component of the complex wave, the reactance of the inductor is twice and
the reactance of the capacitor is half their respective values at the fundamental frequency. A third-
harmonic component produces inductive reactances that are triple and capacitive reactances that are one-
third those at the fundamental frequency. Thus, the overall circuit reactance is different for each har-
monic component.

The frequency sensitivity of a reactive circuit to various components of a complex wave shape creates
both difficulties and opportunities. On the one hand, calculating the circuit reactance in the presence of
highly variable as well as complex waveforms, such as speech, is difficult at best. On the other hand, the
frequency sensitivity of reactive components and circuits lays the
foundation for filtering, that is, for separating signals of different
frequencies and passing them into different circuits. For example,
suppose a coil is in the series path of a signal and a capacitor is
connected from the signal line to ground, as represented in
Fig 6.54. The reactance of the coil to the second harmonic of the
signal will be twice that at the fundamental frequency and oppose
more effectively the flow of harmonic current. Likewise, the re-
actance of the capacitor to the harmonic will be half that to the
fundamental, allowing the harmonic an easier current path away
from the signal line toward ground. See the Filters chapter for
detailed information on filter theory and construction.

Fig 6.54 — A signal path with a
series inductor and a shunt
capacitor. The circuit presents
different reactances to an ac
signal and to its harmonics.
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Impedance
When a circuit contains both resistance and reactance, the com-

bined opposition to current is called impedance. Symbolized by
the letter Z, impedance is a more general term than either resis-
tance or reactance. Frequently, the term is used even for circuits
containing only resistance or reactance. Qualifications such as
“resistive impedance” are sometimes added to indicate that a cir-
cuit has only resistance, however.

The reactance and resistance comprising an impedance may be
connected either in series or in parallel, as shown in Fig 6.55. In
these circuits, the reactance is shown as a box to indicate that it
may be either inductive or capacitive. In the series circuit at A, the
current is the same in both elements, with (generally) different
voltages appearing across the resistance and reactance. In the par-
allel circuit at B, the same voltage is applied to both elements, but
different currents may flow in the two branches.

In a resistance, the current is in phase with the applied voltage,
while in a reactance it is 90° out of phase with the voltage. Thus,
the phase relationship between current and voltage in the circuit
as a whole may be anything between zero and 90°, depending on
the relative amounts of resistance and reactance.

As shown in Fig 6.47 in the preceding section, reactance is
graphed on the vertical (Y) axis to record the phase difference
between the voltage and the current. Fig 6.56 adds resistance to
the graph. Since the voltage is in phase with the current, resistance
is recorded on the horizontal axis, using the positive or right side
of the scale.

CALCULATING Z FROM R AND X IN SERIES CIRCUITS

Impedance is the complex combination of resistance and reac-
tance. Since there is a 90° phase difference between resistance and
reactance (whether inductive or capacitive), simply adding the
two values will not yield what actually happens in a circuit. There-
fore, expressions like “Z = R ± X” can be misleading, because they
suggest simple addition. As a result, impedance is often expressed
“Z = R ± jX.”

In pure mathematics, “i” indicates an imaginary number. Be-
cause i represents current in electronics, we use the letter “j” for
the same mathematical operator, although there is nothing imagi-
nary about what it represents in electronics. With respect to resis-
tance and reactance, the letter j is normally assigned to those fig-
ures on the vertical scale, 90° out of phase with the horizontal
scale. The actual function of j is to indicate that calculating imped-
ance from resistance and reactance requires vector addition. In
vector addition, the result of combining two values at a 90° phase difference results in a new quantity
for the combination, and also in a new combined phase angle relative to the base line.

Consider Fig 6.57, a series circuit consisting of an inductive reactance and a resistance. As given, the

Fig 6.55 — Series and parallel
circuits containing resistance
and reactance.

Fig 6.56 — The conventional
method of charting impedances
on a graph, using the vertical
axis for reactance (the upward or
“plus” direction for inductive
reactance and the downward or
“minus” direction for capacitive
reactance), and using the hori-
zontal axis for resistance.
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inductive reactance is 100 Ω and the resistance is 50 Ω. Using
rectangular coordinates, the impedance becomes

Z = R + jX (64)

where:
Z = the impedance in ohms,
R = the resistance in ohms, and
X = the reactance in ohms.
In the present example,

Z = 50 + j100 Ω
As the graph shows, the combined opposition to current (or

impedance) is represented by a line triangulating the two given
values. The graph will provide an estimate of the value. A more
exact way to calculate the resultant impedance involves the for-
mula for right triangles, where the square of the hypotenuse equals
the sum of the squares of the two sides. Since impedance is the
hypotenuse:

22 XRZ += (65)
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The impedance that results from combining 50. Ω of resistance with 100. Ω of inductive reactance is
112 Ω. The phase angle of the resultant is neither 0° nor +90°. Instead, it lies somewhere between the two.
Let θ be the angle between the horizontal axis and the line representing the impedance. From trigonometry,
the tangent of the angle is the side-opposite the angle divided by the side adjacent to the angle, or

R

X
tan =θ (66)

where:
X = the reactance, and
R = the resistance.
Find the angle by taking the inverse tangent, or arctan:

R

X
arctan=θ (67)

In the example shown in Fig 6.57,

°==
Ω
Ω= 4.630.2arctan

50

100
arctanθ

Combining the resultant impedance with the angle provides the impedance in polar coordinate form:

θ∠Z (68)

Fig 6.57 — A series circuit con-
sisting of an inductive reactance
of 100 ΩΩΩΩΩ and a resistance of 50 ΩΩΩΩΩ.
At B, the graph plots the resis-
tance, reactance, and impedance.
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Using the information just calculated, the impedance is:

°∠Ω= 4.63112Z

The expressions R ± jX and Z∠θ both provide the same infor-
mation, but in two different forms. The procedure just given per-
mits conversion from rectangular coordinates into polar coordi-
nates. The reverse procedure is also important. Fig 6.58 shows an
impedance composed of a capacitive reactance and a resistance.
Since capacitive reactance appears as a negative value, the imped-
ance will be at a negative phase angle, in this case, 12.0 Ω at a
phase angle of –42.0° or °−∠Ω= 0.420.12Z .

Think of the impedance as forming a triangle with the values of
X and R from the rectangular coordinates. The reactance axis
forms the side opposite the angle θ.

Z

X

hypotenuse

oppositeside
sin ==θ (69)

Solving this equation for reactance, we have:

X = Z × sin θ (ohms) (70)

Likewise, the resistance forms the side adjacent to the angle.

Z

R

hypotenuse

adjacentside
cos ==θ

Solving for resistance, we have:

R = Z × cos θ (ohms) (71)

Then from our example:

X = 12.0 Ω × sin (–42.0°) = 12.0 Ω × –0.669 = –8.03 Ω

R = 12.0 Ω × cos (–42.0°) = 12.0 Ω × 0.743 = 8.92 Ω
Since X is a negative value, it plots on the lower vertical axis, as shown in Fig 6.58, indicating

capacitive reactance. In rectangular form, Z = 8.92 Ω – j8.03 Ω.
In performing impedance and related calculations with complex circuits, rectangular coordinates are

most useful when formulas require the addition or subtraction of values. Polar notation is most useful
for multiplying and dividing complex numbers. The Mathematics for Amateur Radio chapter has
information about performing addition, subtraction, multiplication and division with complex numbers.

All of the examples shown so far in this section have presumed values of reactance that contribute to
the circuit impedance. Reactance is a function of frequency, however, and many impedance calculations
may begin with a value of capacitance or inductance and an operating frequency. In terms of these values,
the series impedance formula (Eq 65) becomes two formulas:

22 )Lf2(RZ π+= (72)
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Fig 6.58 — A series circuit con-
sisting of a capacitive reactance
and a resistance: the impedance
is given as °∠42.012.0 Ω . At B,
the graph plots the resistance,
reactance, and impedance.
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Example: What is the impedance of a circuit like Fig 6.57 with a resistance of 100 Ω and a 7.00-µH
inductor operating at a frequency of 7.00 MHz? Using equation 72,

266–2
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Since 308 Ω is the value of inductive reactance of the 7.00-µH coil at 7.00 MHz, the phase angle
calculation proceeds as given in the earlier example (equation 67):
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Since the reactance is inductive, the phase angle is positive.

CALCULATING Z FROM R AND X IN PARALLEL CIRCUITS

In a parallel circuit containing reactance and resistance, such as shown in Fig 6.59, calculation of the
resultant impedance from the values of R and X does not proceed by direct triangulation. The general
formula for such parallel circuits is:

22 XR

RXZ
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where the formula uses the absolute (unsigned) reactance value. The phase angle for the parallel circuit
is given by:
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If the parallel reactance is capacitive, then θ is a negative angle,
and if the parallel reactance is inductive, then θ is a positive angle.

Example: An inductor with a reactance of 30.0 Ω is in parallel
with a resistor of 40.0 Ω. What is the resulting impedance and
phase angle?
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Fig 6.59 — A parallel circuit
containing an inductive reac-
tance of 30.0 ΩΩΩΩΩ and a resistor of
40.0 ΩΩΩΩΩ. No graph is given, since
parallel impedances do not
triangulate in the simple way of
series impedances.
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Since the parallel reactance is inductive, the resultant angle is positive.
Example: A capacitor with a reactance of 16.0 Ω is in parallel with a resistor of 12.0 Ω. What is the

resulting impedance and phase angle?
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Because the parallel reactance is capacitive, the resultant phase angle is negative.

ADMITTANCE

Just as the inverse of resistance is conductance (G) and the inverse of reactance is susceptance (B),
so too impedance has an inverse: admittance (Y), measured in siemens (S). Thus,

Z

1=Y (76)

Since resistance, reactance and impedance are inversely proportional to the current (Z = E / I),
conductance, susceptance and admittance are directly proportional to current. That is,

E

I=Y (77)

One handy use for admittance is in simplifying parallel circuit impedance calculations. A parallel
combination of reactance and resistance reduces to a vector addition of susceptance and conductance,
if admittance is the desired outcome. In other words, for parallel circuits:

22 BGY += (78)

where:
Y = admittance,
G = conductance or 1 / R, and
B = susceptance or 1 / X.

Example: An inductor with a reactance of 30.0 Ω is in parallel with a resistor of 40.0 Ω. What is the
resulting impedance and phase angle? The susceptance is 1 / 30.0 Ω = 0.0333 S and the conductance is
1 / 40.0 Ω = 0.0250 S.
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The phase angle in terms of conductance and susceptance is:
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In this example,
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Again, since the reactive component is inductive, the phase angle is positive. For a capacitively
reactive parallel circuit, the phase angle would have been negative. Compare these results with the direct
calculation earlier in the section.

Conversion from resistance, reactance and impedance to conductance, suscep-tance and admittance
is perhaps most useful in complex-parallel-circuit calculations. Many advanced facets of active-circuit
analysis will demand familiarity both with the concepts and with the calculation strategies introduced
here, however.

More than Two Elements in Series or Parallel

When a circuit contains several resistances or several reactances in series, simplify the circuit before
attempting to calculate the impedance. Resistances in series add, just as in a purely resistive circuit.
Series reactances of the same kind — that is, all capacitive or all inductive — also add, just as in a purely
reactive circuit. The goal is to produce a single value of resistance and a single value of reactance for
the impedance calculation.

Fig 6.60 illustrates a more difficult case in which a circuit contains two different reactive elements in series,
along with a further series resistance. The series combination of XC and XL reduce to a single value using the
same rules of combination discussed in the section on purely reactive
components. As Fig 6.60B demonstrates, the resultant reactance is
the difference between the two series reactances.

For parallel circuits with multiple resistances or multiple reac-
tances of the same type, use the rules of parallel combination to
reduce the resistive and reactive components to single elements.
Where two or more reactive components of different types appear
in the same circuit, they can be combined using formulas shown
earlier for pure reactances. As Fig 6.61 suggests, however, they
can also be combined as susceptances. Parallel susceptances of
different types add, with attention to their differing signs. The
resulting single susceptance can then be combined with the con-
ductance to arrive at the overall circuit admittance. The inverse of
the admittance is the final circuit impedance.

Equivalent Series and Parallel Circuits

The two circuits shown in Fig 6.55 are equivalent if the

Fig 6.60 — A series impedance
containing mixed capacitive and
inductive reactances can be
reduced to a single reactance
plus resistance by combining the
reactances algebraically.
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same current flows when a given voltage of the same frequency
is applied, and if the phase angle between voltage and current
is the same in both cases. It is possible, in fact, to transform
any given series circuit into an equivalent parallel circuit, and
vice versa.

A series RX circuit can be converted into its parallel equivalent
by means of the formulas:

S

SS
P R

XR
R

22 += (80)

S

SS
P X

XR
X

22 += (81)

where the subscripts P and S represent the parallel- and series-
equivalent values, respectively. If the parallel values are known,
the equivalent series circuit can be found from:
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Example: Let the series circuit in Fig 6.55 have a series reac-
tance of –50.0 Ω (indicating a capacitive reactance) and a resis-
tance of 50.0 Ω. What are the values of the equivalent parallel circuit?
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The parallel circuit in Fig 6.55 calls for a capacitive reactance of 100 Ω and a resistance of 100 Ω to
be equivalent to the series circuit.

OHM’S LAW FOR IMPEDANCE

Ohm’s Law applies to circuits containing impedance just as readily as to circuits having resistance or
reactance only. The formulas are:

E = I Z (84)

Z

E
I = (85)

Fig 6.61 — A parallel impedance
containing mixed capacitive and
inductive reactances can be
reduced to a single reactance
plus resistance using formulas
shown earlier in the chapter. By
converting reactances to suscep-
tances, as shown in A, you can
combine the susceptances
algebraically into a single sus-
ceptance, as shown in B.
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I

E
Z = (86)

where:
E = voltage in volts,
I = current in amperes, and
Z = impedance in ohms.

Fig 6.62 shows a simple circuit consisting of a resistance of
75.0 Ω and a reactance of 100 Ω. in series. From the series-imped-
ance formula previously given, the impedance is

�125

�15600�10000�5630

�	100(�	0.75(XRZ

222

222
L

2

=

=+=

+=+=

If the applied voltage is 250 V, then
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This current flows through both the resistance and reactance, so the voltage drops are:

ER = I R = 2.00 A × 75.0 Ω = 150 V

EXL = I XL = 2.00 A × 100 Ω = 200 V

The simple arithmetical sum of these two drops, 350 V, is greater than the applied voltage because the
two voltages are 90° out of phase. Their actual resultant, when phase is taken into account, is:

V250

V62500V40000V22500

V)200(V)150(E
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=+=

+=

POWER FACTOR

In the circuit of Fig 6.62, an applied voltage of 250 V results in a current of 2.00 A, giving an apparent
power of 250 V × 2.00 A = 500 W. Only the resistance actually consumes power, however. The power
in the resistance is:

P = I2 R = (2.00 A)2 × 75.0 V = 300 W

The ratio of the consumed power to the apparent power is called the power factor of the circuit.

Z

R

P

P
PF

apparent

consumed == (87)

In this example the power factor would be 300 W / 500 W = 0.600. Power factor is frequently expressed
as a percentage; in this case, 60%. An equivalent definition of power factor is:

PF = cos θ
where θ is the phase angle. Since the phase angle equals:

Fig 6.62 — A series circuit consist-
ing of an inductive reactance of
100 ΩΩΩΩΩ and a resistance of 75.0 ΩΩΩΩΩ.
Also shown is the applied voltage,
voltage drops across the circuit
elements, and the current.
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Then the power factor is:

PF = cos 53.1° = 0.600

as the earlier calculation confirms.
Real, or dissipated, power is measured in watts. Apparent power, to distinguish it from real power,

is measured in volt-amperes (VA). It is simply the product of the voltage across and the current through
an overall impedance. It has no direct relationship to the power actually dissipated unless the power
factor of the circuit is known. The power factor of a purely resistive circuit is 100% or 1, while the power
factor of a pure reactance is zero. In this illustration, the reactive power is:

VAR = I2 XL = (2.00 A)2 × 100 W = 400 VA

Since power factor is always rendered as a positive number, the value must be followed by the words
“leading” or “lagging” to identify the phase of the voltage with respect to the current. Specifying the
numerical power factor is not always sufficient. For example, many dc-to-ac power inverters can safely
operate loads having a large net reactance of one sign but only a small reactance of the opposite sign.
Hence, the final calculation of the power factor in this example yields the value 0.600, leading.
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Resonant Circuits
A circuit containing both an inductor and a capacitor — and therefore, both inductive and capacitive

reactance — is often called a tuned circuit. There is a particular frequency at which the inductive and
capacitive reactances are the same, that is, XL = XC. For most purposes, this is the resonant frequency
of the circuit. (Special considerations apply to parallel circuits; they will emerge in the section devoted
to such circuits.) At the resonant frequency — or at resonance, for short:

Cf2

1
XLf2X CL π

==π=

By solving for f, we can find the resonant frequency of any combination of inductor and capacitor from
the formula:

CL2

1
f

π
=

(88)

where:
f = frequency in hertz (Hz),
L = inductance in henrys (H),
C = capacitance in farads (F), and
π = 3.1416.

For most high-frequency (HF) radio work, smaller units of inductance and capacitance and larger units
of frequency are more convenient. The basic formula becomes:

CL2

10
f

3

π
= (89)

where:
f = frequency in megahertz (MHz),
L = inductance in microhenrys (µH),
C = capacitance in picofarads (pF), and
π = 3.1416.

Example: What is the resonant frequency of a circuit containing an inductor of 5.0 µH and a capacitor
of 35 pF?

MHz12
83

10

350.52832.6

10

LC2

10
f

3

33

==

××
=

π
=

To find the matching component (inductor or capacitor) when the frequency and one component is
known (capacitor or inductor) for general HF work, use the formula:

CL4

1
f

2
2

π
=

(90)

where F, L and C are in basic units. For HF work in terms of MHz, µH and pF, the basic relationship
rearranges to these handy formulas:

Cf

25330
L

2
= (91)
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Lf

25330
C

2
=

(92)

where:
f = frequency in MHz,
L = inductance in µH, and
C = capacitance in pF.

Example: What value of capacitance is needed to create a resonant circuit at  21.1 MHz, if the inductor
is 2.00 µH?

pF5.28
.890

25330

)00.21.21(
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25330
C
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For most radio work, these formulas will permit calculations of frequency and component values well
within the limits of component tolerances. Resonant circuits have other properties of importance, in
addition to the resonant frequency, however. These include impedance, voltage drop across components
in series-resonant circuits, circulating current in parallel-resonant circuits, and bandwidth. These prop-
erties determine such factors as the selectivity of a tuned circuit and the component ratings for circuits
handling considerable power. Although the basic determination of the tuned-circuit resonant frequency
ignored any resistance in the circuit, that resistance will play a vital role in the circuit’s other charac-
teristics.

SERIES-RESONANT CIRCUITS

Fig 6.63 presents a basic schematic diagram of a series-reso-
nant circuit. Although most schematic diagrams of radio circuits
would show only the inductor and the capacitor, resistance is al-
ways present in such circuits. The most notable resistance is asso-
ciated with losses in the inductor at HF; resistive losses in the
capacitor are low enough at those frequencies to be ignored. The
current meter shown in the circuit is a reminder that in series
circuits, the same current flows through all elements.

At resonance, the reactance of the capacitor cancels the reactance
of the inductor. The voltage and current are in phase with each
other, and the impedance of the circuit is determined solely by the
resistance. The actual current through the circuit at resonance, and
for frequencies near resonance, is determined by the formula:
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(93)

where all values are in basic units.
At resonance, the reactive factor in the formula is zero. As the frequency is shifted above or below the

resonant frequency without altering component values, however, the reactive factor becomes significant, and
the value of the current becomes smaller than at resonance. At frequencies far from resonance, the reactive
components become dominant, and the resistance no longer significantly affects the current amplitude.

Fig 6.63 — A series circuit con-
taining L, C, and R is resonant at
the applied frequency when the
reactance of C is equal to the
reactance of L. The I in the circle
is the schematic symbol for an
ammeter.
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The exact curve created by recording the current as the frequency changes depends on the ratio of
reactance to resistance. When the reactance of either the coil or capacitor is of the same order of
magnitude as the resistance, the current decreases rather slowly as the frequency is moved in either
direction away from resonance. Such a curve is said to be broad. Conversely, when the reactance is
considerably larger than the resistance, the current decreases rapidly as the frequency moves away from
resonance, and the circuit is said to be sharp. A sharp circuit will respond a great deal more readily to
the resonant frequency than to frequencies quite close to resonance; a broad circuit will respond almost
equally well to a group or band of frequencies centered around the resonant frequency.

Both types of resonance curves are useful. A sharp circuit gives good selectivity — the ability to
respond strongly (in terms of current amplitude) at one desired frequency and to discriminate against
others. A broad circuit is used when the apparatus must give about the same response over a band of
frequencies, rather than at a single frequency alone.

Fig 6.64 presents a family of curves, showing the decrease in current as the frequency deviates from
resonance. In each case, the reactance is assumed to be 1000 Ω. The maximum current, shown as a
relative value on the graph, occurs with the lowest resistance, while the lowest peak current occurs with
the highest resistance. Equally important, the rate at which the current decreases from its maximum value
also changes with the ratio of reactance to resistance. It decreases most rapidly when the ratio is high
and most slowly when the ratio is low.

Q

As noted in earlier sections of this chapter, the ratio of reactance or stored energy to resistance or
consumed energy is Q. Since both terms of the ratio are measured in ohms, Q has no units and is variously
known as the quality factor, the figure of merit or the multiplying factor. Since the resistive losses of the
coil dominate the energy consumption in HF series-resonant cir-
cuits, the inductor Q largely determines the resonant-circuit Q.
Since this value of Q is independent of any external load to which
the circuit might transfer power, it is called the unloaded Q or QU

of the circuit.

Example: What is the unloaded Q of a series-resonant circuit
with a loss resistance of 5 Ω and inductive and capacitive compo-
nents having a reactance of 500 Ω each? With a reactance of 50 Ω
each?

100
5

500

R

X1
QU1 =

Ω
Ω==

10
5

50

R

2X
Q 2U =

Ω
Ω==

Bandwidth

Fig 6.65 is an alternative way of drawing the family of curves
that relate current to frequency for a series-resonant circuit. By
assuming that the peak current of each curve is the same, the rate
of change of current for various values of QU and the associated
ratios of reactance to resistance are more easily compared. From
the curves, it is evident that the lower QU circuits pass frequencies
over a greater bandwidth of frequencies than the circuits with a
higher QU. For the purpose of comparing tuned circuits, band-

Fig 6.64 — Current in series-
resonant circuits with various
values of series resistance and
Q. The current values are relative
to an arbitrary maximum of 1.0.
The reactance for all curves is
1000 ΩΩΩΩΩ. Note that the current is
hardly affected by the resistance
in the circuit at frequencies more
than 10% away from the resonant
frequency.
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width is often defined as the frequency spread between the two
frequencies at which the current amplitude decreases to 0.707 (or
1 / 2 ) times the maximum value. Since the power consumed by
the resistance, R, is proportional to the square of the current, the
power at these points is half the maximum power at resonance,
assuming that R is constant for the calculations. The half-power,
or –3 dB, points are marked on Fig 6.65.

For Q values of 10 or greater, the curves shown in Fig 6.65 are
approximately symmetrical. On this assumption, bandwidth (BW)
can be easily calculated:

UQ

f
BW = (94)

where BW and f are in the same units, that is, in Hz, kHz or MHz.
Example: What is the bandwidth of a series-resonant circuit

operating at 14 MHz with a QU of 100?

kHz140MHz0.14
100

MHz14

Q

f
BW

U
====

The relationship between QU, f and BW provides a means of
determining the value of circuit Q when inductor losses may be
difficult to measure. By constructing the series-resonant circuit
and measuring the current as the frequency varies above and be-
low resonance, the half-power points can be determined. Then:

BW

f
QU = (95)

Example: What is the QU of a series-resonant circuit operating at 3.75 MHz, if the bandwidth is 375 kHz?

0.10
MHz375.0

MHz75.3

BW

f
QU ===

Table 6.6 provides some simple formulas for estimating the maximum current and phase angle for
various bandwidths, if both f and QU are known.

Fig 6.65 — Current in series-
resonant circuits having different
values of QU. The current at
resonance is set at the same level
for all curves in order to show
the rate of change of decrease in
current for each value of QU. The
half-power points are shown to
indicate relative bandwidth of the
response for each curve. The
bandwidth is indicated for a
circuit with a QU of 10.

Table 6.6
The Selectivity of Resonant Circuits

Approximate percentage Bandwidth (between
of current at resonance1 or half-power or –3 dB Series circuit current
of impedance at resonance2 points on response curve) phase angle (degrees)

95 f / 3Q 18.5
90 f / 2Q 26.5
70.7 f / Q 45
44.7 2f / Q 63.5
24.2 4f / Q 76
12.4 8f / Q 83

1For a series resonant circuit
2For a parallel resonant circuit
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Voltage Drop Across Components

The voltage drop across the coil and across the capacitor in a series-resonant circuit are each propor-
tional to the reactance of the component for a given current (since E = I X). These voltages may be many
times the source voltage for a high-Q circuit. In fact, at resonance, the voltage drop is:

EX = QU E (96)

where:
EX = the voltage across the reactive component,
QU = the circuit unloaded Q, and
E = the source voltage.

(Note that the voltage drop across the inductor is the vector sum of the voltages across the resistance and
the reactance; however, for Qs greater than 10, the error created by using equation 96 is not ordinarily
significant.) Since the calculated value of EX is the RMS voltage, the peak voltage will be higher by a factor
of 1.414. Antenna couplers and other high-Q circuits handling significant power may experience arcing
from high values of EX, even though the source voltage to the circuit is well within component ratings.

Capacitor Losses

Although capacitor energy losses tend to be insignificant compared to inductor losses up to about
30 MHz, the losses may affect circuit Q in the VHF range. Leakage resistance, principally in the solid
dielectric that forms the insulating support for the capacitor plates, is not exactly like the wire resistance
losses in a coil. Instead of forming a series resistance, capacitor leakage usually forms a parallel resis-
tance with the capacitive reactance. If the leakage resistance of a capacitor is significant enough to affect
the Q of a series-resonant circuit, the parallel resistance must be converted to an equivalent series
resistance before adding it to the inductor’s resistance.
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2
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S
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X
R

π×
== (97)

Example: A 10.0 pF capacitor has a leakage resistance of 10000 Ω at 50.0 MHz. What is the equivalent
series resistance?
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In calculating the impedance, current and bandwidth for a series-resonant circuit in which this capaci-
tor might be used, the series-equivalent resistance of the unit is added to the loss resistance of the coil.
Since inductor losses tend to increase with frequency because of skin effect, the combined losses in the
capacitor and the inductor can seriously reduce circuit Q, without special component- and circuit-
construction techniques.

PARALLEL-RESONANT CIRCUITS

Although series-resonant circuits are common, the vast majority of resonant circuits used in radio
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work are parallel-resonant cir-
cuits. Fig 6.66 represents a typi-
cal HF parallel-resonant circuit.
As is the case for series-resonant
circuits, the inductor is the chief
source of resistive losses, and
these losses appear in series with
the coil. Because current through
parallel-resonant circuits is low-
est at resonance, and impedance is highest, they are sometimes called antiresonant circuits. Likewise,
the names acceptor and rejector are occasionally applied to series- and parallel-resonant circuits,
respectively.

Because the conditions in the two legs of the parallel circuit in Fig 6.66 are not the same — the
resistance is in only one of the legs — all of the conditions by which series resonance is determined do
not occur simultaneously in a parallel-resonant circuit. Fig 6.67 graphically illustrates the situation by
showing the currents through the two components. When the inductive and capacitive reactances are
identical, the condition defined for series resonance is met as shown in line (A). The impedance of the
inductive leg is composed of both XL and R, which yields an impedance that is greater than XC and that
is not 180° out of phase with XC. The resultant current is greater than its minimum possible value and
not in phase with the voltage.

By altering the value of the inductor slightly (and holding the Q constant), a new frequency can be
obtained at which the current reaches its minimum. When parallel circuits are tuned using a current meter
as an indicator, this point (B) is ordinarily used as an indication of resonance. The current “dip” indicates
a condition of maximum impedance and is sometimes called the antiresonant point or maximum imped-
ance resonance to distinguish it from the condition where XC = XL. Maximum impedance is achieved
by vector addition of XC, XL and R, however, and the result is a current somewhat out of phase with the
voltage.

Point (C) on the curve represents the unity-power-factor resonant point. Adjusting the inductor value
and hence its reactance (while holding Q constant) produces a new resonant frequency at which the

Fig 6.66 — A typical parallel-
resonant circuit, with the
resistance shown in series with
the inductive leg of the circuit.
Below a QU of 10, resonance
definitions may lead to three
separate frequencies which
converge at higher QU levels.
See text.

Fig 6.67 — Resonant conditions for a low-QU parallel circuit.
Resonance may be defined as (A) XL = XC, (B) minimum current
flow and maximum impedance or (C) voltage and current in phase
with each other. With the circuit of Fig 6.66 and a QU of less than
10, these three definitions may represent three distinct frequen-
cies.
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resultant current is in phase with the voltage. The inductor’s new value of reactance is the value required
for a parallel-equivalent inductor and its parallel-equivalent resistor (calculated according to the formu-
las in the last section) to just cancel the capacitive reactance. The value of the parallel-equivalent
inductor is always smaller than the actual inductor in series with the resistor and has a proportionally
smaller reactance. (The parallel-equivalent resistor, conversely, will always be larger than the coil-loss
resistor shown in series with the inductor.) The result is a resonant frequency slightly different from the
one for minimum current and the one for XL = XC.

The points shown in the graph in Fig 6.67 represent only one of many possible situations, and the
relative positions of the three resonant points do not hold for all possible cases. Moreover, specific circuit
designs can draw some of the resonant points together, for example, compensating for the resistance of
the coil by retuning the capacitor. The differences among these resonances are significant for circuit Qs
below 10, where the inductor’s series resistance is a significant percentage of the reactance. Above a Q
of 10, the three points converge to within a percent of the frequency and can be ignored for practical
calculations. Tuning for minimum current will not introduce a sufficiently large phase angle between
voltage and current to create circuit difficulties.

Parallel Circuits of Moderate to High Q

The resonant frequencies defined above converge in parallel-resonant circuits with Qs higher than
about 10. Therefore, a single set of formulas will sufficiently approximate circuit performance for
accurate predictions. Indeed, above a Q of 10, the performance of a parallel circuit appears in many ways
to be simply the inverse of the performance of a series-resonant circuit using the same components.

Accurate analysis of a parallel-resonant circuit requires the substitution of a parallel-equivalent
resistor for the actual in-ductor-loss series resistor, as shown in
Fig 6.68. Sometimes called the dynamic resistance of the parallel-
resonant circuit, the parallel-equivalent resistor value will increase
with circuit Q, that is, as the series resistance value decreases. To
calculate the approximate parallel-equivalent resistance, use the
formula:
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Example: What is the parallel-equivalent resistance for a coil
with an inductive reactance of 350 Ω and a series resistance of
5.0 Ω at resonance?
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Since the coil QU remains the inductor’s reactance divided by
its series resistance, the coil QU is 70. Multiplying QU by the
reactance also provides the approximate parallel-equivalent resistance of the coil series resistance.

At resonance, where XL = XC, RP defines the impedance of the parallel-resonant circuit. The reac-
tances just equal each other, leaving the voltage and current in phase with each other. In other words,
the circuit shows only the parallel resistance. Therefore, equation 98 can be rewritten as:
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X
Z =π== (99)

Fig 6.68 — Series and parallel
equivalents when both circuits
are resonant. The series resis-
tance, RS in A, is replaced by the
parallel resistance, RP in B, and
vice versa. RP = XL

2 / RS.
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In this example, the circuit
impedance at resonance is
24,500 Ω.

At frequencies below reso-
nance the current through the
inductor is larger than that
through the capacitor, because
the reactance of the coil is
smaller and that of the capaci-
tor is larger than at resonance.
There is only partial cancella-
tion of the two reactive cur-
rents, and the line current
therefore is larger than the cur-
rent taken by the resistance
alone. At frequencies above
resonance the situation is re-
versed and more current flows
through the capacitor than
through the inductor, so the line
current again increases. The
current at resonance, being de-
termined wholly by RP, will be
small if RP is large, and large if
RP is small. Fig 6.69 illustrates
the relative current flows
through a parallel-tuned circuit as the frequency is moved from below resonance to above resonance. The
base line represents the minimum current level for the particular circuit. The actual current at any
frequency off resonance is simply the vector sum of the currents through the parallel equivalent resis-
tance and through the reactive components.

To obtain the impedance of a parallel-tuned circuit either at or off the resonant frequency, apply the
general formula:

S

LC

Z

ZZ
Z = (100)

where:
Z = overall circuit impedance
ZC = impedance of the capacitive leg (usually, the reactance of the capacitor),
ZL = impedance of the inductive leg (the vector sum of the coil’s reactance and resistance), and
ZS = series impedance of the capacitor-inductor combination as derived from the denominator of

equation 93.

After using vector calculations to obtain ZL and ZS, converting all the values to polar form — as
described earlier in this chapter — will ease the final calculation. Of course, each impedance may be
derived from the resistance and the application of the basic reactance formulas on the values of the
inductor and capacitor at the frequency of interest.

Since the current rises off resonance, the parallel-resonant-circuit impedance must fall. It also be-
comes complex, resulting in an ever greater phase difference between the voltage and the current. The

Fig 6.69 — The currents in a parallel-resonant circuit as the fre-
quency moves through resonance. Below resonance, the current
lags the voltage; above resonance the current leads the voltage.
The base line represents the current level at resonance, which
depends on the impedance of the circuit at that frequency.
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rate at which the impedance falls is a function of QU. Fig 6.70 presents a family of curves showing the
impedance drop from resonance for circuit Qs ranging from 10 to 100. The curve family for parallel-
circuit impedance is essentially the same as the curve family for series-circuit current.

As with series tuned circuits, the higher the Q of a parallel-tuned circuit, the sharper the response peak.
Likewise, the lower the Q, the wider the band of frequencies to which the circuit responds. Using the

half-power (–3 dB) points as a comparative measure of circuit per-
formance, equations 94 and 95 apply equally to parallel-tuned cir-
cuits. That is, BW = f / QU and QU = f / BW, where the resonant
frequency and the bandwidth are in the same units. As a handy re-
minder, Table 6.7 summarizes the performance of parallel-resonant
circuits at high and low Qs and above and below resonant frequency.

It is possible to use either series or parallel-resonant circuits do the
same work in many circuits, thus giving the designer considerable
flexibility. Fig 6.71 illustrates this general principle by showing a
series-resonant circuit in the signal path and a parallel-resonant cir-
cuit shunted from the signal path to ground. Assume both circuits are
resonant at the same frequency, f, and have the same Q. The series
tuned circuit at A has its lowest impedance at f, permitting the maxi-
mum possible current to flow along the signal path. At all other
frequencies, the impedance is greater and the current at those fre-
quencies is less. The circuit passes the desired signal and tends to
impede signals at undesired frequencies. The parallel circuit at B
provides the highest impedance at resonance, f, making the signal
path the lowest impedance path for the signal. At frequencies off

Fig 6.70 — Relative impedance
of parallel-resonant circuits with
different values of QU. The
curves are similar to the series-
resonant circuit current level
curves of Fig 6.64. The effect of
QU on impedance is most pro-
nounced within 10% of the
resonance frequency. Table 6.7

The Performance of Parallel-Resonant Circuits

A. High and Low Q Circuits (in relative terms)

Characteristic High Q Circuit Low Q Circuit
Selectivity high low
Bandwidth narrow wide
Impedance high low
Line current low high
Circulating current high low

B. Off-Resonance Performance for Constant Values of Inductance
and Capacitance

Characteristic Above Resonance Below Resonance
Inductive reactance increases decreases
Capacitive reactance decreases increases
Circuit resistance unchanged* unchanged*
Circuit impedance decreases decreases
Line current increases increases
Circulating current decreases decreases
Circuit behavior capacitive inductive

*This is true for frequencies near resonance. At distant frequencies,
skin effect may alter the resistive losses of the inductor.

Fig 6.71 — Series- and parallel-
resonant circuits configured to
perform the same theoretical
task: passing signals in a
narrow band of frequencies
along the signal path. A real
design example would consider
many other factors.
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resonance, the parallel-resonant circuit presents a lower imped-
ance, thus presenting signals with a path to ground and away from
the signal path. In theory, the effects will be the same relative to
a signal current on the signal path. In actual circuit design exer-
cises, of course, many other variables will enter the design picture
to make one circuit preferable to the other.

Circulating Current

In a parallel-resonant circuit, the source voltage is the same for all
the circuit elements. The current in each element, however, is a func-
tion of the element’s reactance. Fig 6.72 redraws the parallel-tuned
circuit to indicate the line current and the current circulating between
the coil and the capacitor. The current drawn from the source may be
low, because the overall circuit impedance is high. The current
through the individual elements may be high, however, because there
is little resistive loss as the current circulates through the inductor and
capacitor. For parallel-resonant circuits with an unloaded Q of 10 or
greater, this circulating current is approximately:

IC = QU IT (101)

where:
IC = circulating current in A, mA or A,
QU = unloaded circuit Q, and
IT = line current in the same units as IC.

Example: A parallel-resonant circuit permits an ac or RF line current of 30 mA and has a Q of 100.
What is the circulating current through the elements?

IX = QU I = 100 × 30 mA = 3000 mA = 3 A

Circulating currents in high-Q parallel-tuned circuits can reach a level that causes component heating
and power loss. Therefore, components should be rated for the anticipated circulating currents, and not
just the line current.

The Q of Loaded Circuits

In many resonant-circuit applications, the only power lost is that
dissipated in the resistance of the circuit itself. At frequencies below
30 MHz, most of this resistance is in the coil. Within limits, increas-
ing the number of turns in the coil increases the reactance faster than
it raises the resistance, so coils for circuits in which the Q must be
high are made with relatively large inductances for the frequency.

When the circuit delivers energy to a load (as in the case of the
resonant circuits used in transmitters), the energy consumed in the
circuit itself is usually negligible compared with that consumed
by the load. The equivalent of such a circuit is shown in Fig 6.73,
where the parallel resistor, RL, represents the load to which power
is delivered. If the power dissipated in the load is at least 10 times
as great as the power lost in the inductor and capacitor, the parallel
impedance of the resonant circuit itself will be so high compared

Fig 6.72 — A parallel-resonant
circuit redrawn to illustrate both
the line current and the circulat-
ing current.

Fig 6.73 — A loaded parallel-
resonant circuit, showing both
the inductor-loss resistance and
the load, RL. If smaller than the
inductor resistance, RL will
control the loaded Q of the
circuit (QL).
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with the resistance of the load that for all practical purposes the impedance of the combined circuit is
equal to the load impedance. Under these conditions, the load resistance replaces the circuit impedance
in calculating Q. The Q of a parallel-resonant circuit loaded by a resistive impedance is:

X

R
Q L

L = (102)

where:
QL = circuit loaded Q,
RL = parallel load resistance in ohms, and
X = reactance in ohms of either the inductor or the capacitor.

Example: A resistive load of 3000 Ω is connected across a resonant circuit in which the inductive and
capacitive reactances are each 250 Ω. What is the circuit Q?

12
250

3000

X

R
Q L

L =
Ω
Ω==

The effective Q of a circuit loaded by a parallel resistance increases when the reactances are decreased.
A circuit loaded with a relatively low resistance (a few thousand ohms) must have low-reactance ele-
ments (large capacitance and small inductance) to have reasonably high Q. Many power-handling
circuits, such as the output networks of transmitters, are designed by first choosing a loaded Q for the
circuit and then determining component values. See the RF PowerAmplifiers chapter for more details.

Parallel load resistors are sometimes added to parallel-resonant circuits to lower the circuit Q and
increase the circuit bandwidth. By using a high-Q circuit and adding a parallel resistor, designers can
tailor the circuit response to their needs. Since the parallel resistor consumes power, such techniques
ordinarily apply to receiver and similar low-power circuits, however.

Example: Specifications call for a parallel-resonant circuit with a bandwidth of 400. kHz at 14.0 MHz.
The circuit at hand has a QU of 70.0 and its components have reactances of 350 Ω each. What is the
parallel load resistor that will increase the bandwidth to the specified value? The bandwidth of the
existing circuit is:

kHz200MHz200.0
70.0

MHz14.0

Q

f
BW

U
====

The desired bandwidth, 400 kHz, requires a circuit with a Q of:

0.35
MHz400.0

MHz0.14

BW

f
Q ===

Since the desired Q is half the original value, halving the resonant impedance or parallel-resistance
value of the circuit is in order. The present impedance of the circuit is:

Z = QU XL = 70.0 × 350 Ω = 24500 Ω
The desired impedance is:

Z = QU XL = 35.0 × 350 Ω = 12250 Ω = 12.25 kΩ
or half the present impedance.

A parallel resistor of 24500 Ω, or the nearest lower value (to guarantee sufficient bandwidth), will
produce the required reduction in Q and bandwidth increase. Although this example simplifies the situation
encountered in real design cases by ignoring such factors as the shape of the band-pass curve, it illustrates
the interaction of the ingredients that determine the performance of parallel-resonant circuits.
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Impedance Transformation

An important application of the parallel-resonant circuit is as an
impedance matching device in the output circuit of an RF power
amplifier. There is an optimum value of load resistance for each
type of tube or transistor and each set of required operating con-
ditions. The resistance of the load to which the active device de-
livers power may be considerably lower than the value required
for proper device operation, or the load impedance may be consid-
erably higher than the amplifier output impedance.

To transform the actual load resistance to the desired value, the
load may be tapped across part of the coil, as shown in Fig 6.74.
This is equivalent to connecting a higher value of load resistance
across the whole circuit, and is similar in principle to impedance
transformation with an iron-core transformer (described in the
next section of this chapter). In high-frequency resonant circuits,
the impedance ratio does not vary exactly as the square of the turns ratio, because all the magnetic flux
lines do not cut every turn of the coil. A desired impedance ratio usually must be obtained by experi-
mental adjustment.

When the load resistance has a very low value (say below 100 Ω) it may be connected in series in the
resonant circuit (RS in Fig 6.68A, for example), in which case it is transformed to an equivalent parallel
impedance as previously described. If the Q is at least 10, the equivalent parallel impedance is:

L

2

R R

X
Z = (103)

where:
ZR = resistive parallel impedance at resonance,
X = reactance (in ohms) of either the coil or the capacitor, and
RL = load resistance inserted in series.

If the Q is lower than 10, the reactance will have to be adjusted somewhat — for the reasons given
in the discussion of low-Q circuits — to obtain a resistive impedance of the desired value.

Networks like the one in Fig 6.74 have some serious disadvantages for some applications. For in-
stance, the common connection between the input and the output provides no dc isolation. Also, the
common ground is sometimes troublesome with regard to ground-loop currents. Consequently, a net-
work with only mutual magnetic coupling is often preferable. With the advent of ferrites, constructing
impedance transformers that are both broadband and permit operation well up into the VHF portion of
the spectrum has become relatively easy. The basic principles of broadband impedance transformers
appear in the following section.

Fig 6.74 — A parallel-resonant
circuit with a tapped coil to effect
an impedance match. Although
the impedance presented by the
entire circuit is very high, the
impedance “seen” by the load,
RL, is lower.
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Transformers
When the ac source current flows through every turn of an inductor, the generation of a counter-

voltage and the storage of energy during each half cycle is said to be by virtue of self-inductance. If
another inductor — not connected to the source of the original current — is positioned so the expanding
and contracting magnetic field of the first inductor cuts across its turns, a current will be induced into
the second coil. A load such as a resistor may be connected across the second coil to consume the energy
transferred magnetically from the first inductor. This phenomenon is called mutual inductance.

Two inductors positioned so that the magnetic field of one (the primary inductor) induces a current
in the other (the secondary inductor) are coupled. Fig 6.75 illustrates a pair of coupled inductors,
showing an ac energy source connected to one and a load connected to the other. If the coils are wound
tightly on an iron core so that nearly all the lines of force or magnetic flux from the first coil link with
the turns of the second coil, the pair is said to be tightly coupled. Coils with air cores separated by a
distance would be loosely coupled. The signal source for the primary inductor may be household ac
power lines, audio or other waveforms at lower frequencies, or RF currents. The load may be a device
needing power, a speaker converting electrical energy into sonic energy, an antenna using RF energy for
communications or a particular circuit set up to process a signal from a preceding circuit. The uses of
magnetically coupled energy in electronics are innumerable.

Mutual inductance (M) between coils is measured in henrys. Two coils have a mutual inductance of
1 H under the following conditions: as the primary inductor current
changes at a rate of 1 A/s, the voltage across the secondary inductor
is 1 V. The level of mutual inductance varies with many factors: the
size and shape of the inductors, their relative positions and distance
from each other, and the permeability of the inductor core material
and of the space between them.

If the self-inductance values of two coils are known, it is possible
to derive the mutual inductance by way of a simple experiment
schematically represented in  Fig 6.76. Without altering the physi-
cal setting or position of two coils, measure the inductance of the
series-connected coils with their windings complementing each
other and again with their wind-
ings opposing each other. Since,
for the two coils, LC = L1 + L2
+ 2M, in the complementary
case, and LO = L1 + L2 – 2M for
the opposing case,

4

L–L
M OC= (104)

The ratio of magnetic flux set
up by the secondary coil to the
flux set up by the primary coil is
a measure of the extent to which
two coils are coupled, compared
to the maximum possible cou-
pling between them. This ratio
is the coefficient of coupling (k)
and is always less than 1. If k

Fig 6.75 — A basic transformer:
two inductors — one connected
to an ac energy source, the other
to a load — with coupled mag-
netic fields.

Fig 6.76 — An experimental setup for determining mutual induc-
tance. Measure the inductance with the switch in each position and
use the formula in the text to determine the mutual inductance.
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were to equal 1, the two coils
would have the maximum pos-
sible mutual coupling. Thus:

2L1LkM = (105)

where:
M = mutual inductance in

henrys,
L1 and L2 = individual

coupled inductors, each in
henrys, and

k = the coefficient of coupling.

Using the experiment above, it is possible to solve equation 105 for k with reasonable accuracy.
Any two coils having mutual inductance comprise a transformer having a primary winding or inductor

and a secondary winding or inductor. Fig 6.77 provides a pictorial representation of a typical iron-core
transformer, along with the schematic symbols for both iron-core and air-core transformers. Convention-
ally, the term transformer is most commonly applied to coupled inductors having a magnetic core material,
while coupled air-wound inductors are not called by that name. They are still transformers, however.

We normally think of transformers as ac devices, since mutual inductance only occurs when magnetic
fields are expanding or contracting. A transformer connected to a dc source will exhibit mutual induc-
tance only at the instants of closing and opening the primary circuit, or on the rising and falling edges
of dc pulses, because only then does the primary winding have a changing field. The principle uses of
transformers are three: to physically isolate the primary circuit from the secondary circuit, to transform
voltages and currents from one level to another, and to transform circuit impedances from one level to
another. These functions are not mutually exclusive and have many variations.

IRON-CORE TRANSFORMERS

The primary and secondary coils of a transformer may be wound on a core of magnetic material. The
permeability of the magnetic material increases the inductance of the coils so a relatively small number of
turns may be used to induce a given voltage value with a small current. A closed core having a continuous
magnetic path, such as that shown in Fig 6.77, also tends to ensure that practically all of the field set up
by the current in the primary coil will cut the turns of the secondary coil. For power transformers and
impedance-matching transformers used in audio work, cores of iron
strips are most common and generally very efficient.

The following principles presume a coefficient of coupling (k)
of 1, that is, a perfect transformer. The value k = 1 indicates that
all the turns of both coils link with all the magnetic flux lines, so
that the voltage induced per turn is the same with both coils. This
condition makes the induced voltage independent of the induc-
tance of the primary and secondary inductors. Iron-core trans-
formers for low frequencies most closely approach this ideal con-
dition. Fig 6.78 illustrates the conditions for transformer action.

Voltage Ratio

For a given varying magnetic field, the voltage induced in a coil
within the field is proportional to the number of turns in the coil.
When the two coils of a transformer are in the same field (which

Fig 6.77 — A transformer. A is a pictorial diagram. Power is trans-
ferred from the primary coil to the secondary by means of the
magnetic field. B is a schematic diagram of an iron-core trans-
former, and C is an air-core transformer.

Fig 6.78 — The conditions for
transformer action: two coils that
exhibit mutual inductance, an ac
power source, and a load. The
magnetic field set up by the
energy in the primary circuit
transfers energy to the secondary
for use by the load, resulting in a
secondary voltage and current.
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is the case when both are wound on the same closed core), it follows that the induced voltages will be
proportional to the number of turns in each coil. In the primary, the induced voltage practically equals,
and opposes, the applied voltage, as described earlier. Hence:
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where:
ES = secondary voltage,
EP = primary applied voltage,
NS = number of turns on secondary, and
NP = number of turns on primary.

Example: A transformer has a primary of 400 turns and a secondary of 2800 turns, and a voltage of
120 V is applied to the primary. What voltage appears across the secondary winding?

V8407V120
400

2800
V120ES =×=
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(Notice that the number of turns is taken as a known value rather than a measured quantity, so they
do not limit the significant figures in the calculation.) Also, if 840 V is applied to the 2800-turn winding
(which then becomes the primary), the output voltage from the 400-turn winding will be 120 V.

Either winding of a transformer can be used as the primary, provided the winding has enough turns
(enough inductance) to induce a voltage equal to the applied voltage without requiring an excessive
current. The windings must also have insulation with a voltage rating sufficient for the voltage present.

Current or Ampere-Turns Ratio

The current in the primary when no current is taken from the secondary is called the magnetizing
current of the transformer. An ideal transformer, with no internal losses, would consume no power, since
the current through the primary inductor would be 90° out of phase with the voltage. In any properly
designed transformer, the power consumed by the transformer when the secondary is open (not deliv-
ering power) is only the amount necessary to overcome the losses in the iron core and in the resistance
of the wire with which the primary is wound.

When power is taken from the secondary winding by a load, the secondary current sets up a magnetic
field that opposes the field set up by the primary current. For the induced voltage in the primary to equal
the applied voltage, the original field must be maintained. The primary must draw enough additional
current to set up a field exactly equal and opposite to the field set up by the secondary current.

In practical transformer calculations it may be assumed that the entire primary current is caused by
the secondary load. This is justifiable because the magnetizing current should be very small in compari-
son with the primary load current at rated power output.

If the magnetic fields set up by the primary and secondary currents are to be equal, the primary current
multiplied by the primary turns must equal the secondary current multiplied by the secondary turns.
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where:
IP = primary current,
IS = secondary current,
NP = number of turns on primary, and
NS = number of turns on secondary.
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Example: Suppose the secondary of the transformer in the previous example is delivering a current
of 0.20 A to a load. What will be the primary current?

A4.17A20.0
400

2800
A20.0IP =×=


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Although the secondary voltage is higher than the primary voltage, the secondary current is lower than
the primary current, and by the same ratio. The secondary current in an ideal transformer is 180° out of
phase with the primary current, since the field in the secondary just offsets the field in the primary. The
phase relationship between the currents in the windings holds true no matter what the phase difference
between the current and the voltage of the secondary. In fact, the phase difference, if any, between voltage
and current in the secondary winding will be reflected back to the primary as an identical phase difference.

Power Ratio

A transformer cannot create power; it can only transfer it and change the voltage level. Hence, the
power taken from the secondary cannot exceed that taken by the primary from the applied voltage source.
There is always some power loss in the resistance of the coils and in the iron core, so in all practical cases
the power taken from the source will exceed that taken from the secondary.

 PO = n PI (108)

where:
PO = power output from secondary,
PI = power input to primary, and
n = efficiency factor.

The efficiency, n, is always less than 1. It is usually expressed as a percentage: if n is 0.65, for instance,
the efficiency is 65%.

Example: A transformer has an efficiency of 85.0% at its full-load output of 150 W. What is the power
input to the primary at full secondary load?

W176
0.850

W150

n

P
P O
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A transformer is usually designed to have the highest efficiency at the power output for which it is
rated. The efficiency decreases with either lower or higher outputs. On the other hand, the losses in the
transformer are relatively small at low output but increase as more power is taken. The amount of power
that the transformer can handle is determined by its own losses, because these losses heat the wire and
core. There is a limit to the temperature rise that can be tolerated, because too high a temperature can
either melt the wire or cause the insulation to break down. A transformer can be operated at reduced
output, even though the efficiency is low, because the actual loss will be low under such conditions. The
full-load efficiency of small power transformers such as are used in radio receivers and transmitters
usually lies between about 60 and 90%, depending on the size and design.

IMPEDANCE RATIO

In an ideal transformer — one without losses or leakage reactance — the following relationship is true:
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where:
ZP = impedance looking into the primary terminals from the power source,
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ZS = impedance of load connected to secondary, and
NP, NS = turns ratio, primary to secondary.

A load of any given impedance connected to the transformer secondary will be transformed to a
different value looking into the primary from the power source. The impedance transformation is
proportional to the square of the primary-to-secondary turns ratio.

Example: A transformer has a primary-to-secondary turns ratio of 0.6 (the primary has six-tenths as
many turns as the secondary) and a load of 3000 Ω is connected to the secondary. What is the impedance
at the primary of the transformer?

ZP = 3000 Ω × (0.6)2 = 3000 Ω × 0.36 = 1080 Ω
By choosing the proper turns ratio, the impedance of a fixed load can be transformed to any desired

value, within practical limits. If transformer losses can be neglected, the transformed (reflected) imped-
ance has the same phase angle as the actual load impedance. Thus, if the load is a pure resistance, the
load presented by the primary to the power source will also be a pure resistance. If the load impedance
is complex, that is, if the load current and voltage are out of phase with each other, then the primary
voltage and current will show the same phase angle.

Many devices or circuits require a specific value of load resistance (or impedance) for optimum
operation. The impedance of the actual load that is to dissipate the power may differ widely from the
impedance of the source device or circuit, so a transformer is used to change the actual load into an
impedance of the desired value. This is called impedance matching.

S

P

S

P

Z

Z

N

N = (110)

where:
NP / NS = required turns ratio, primary to secondary,
ZP = primary impedance required, and
ZS = impedance of load connected to secondary.

Example: A transistor audio amplifier requires a load of 150 Ω for optimum performance, and is to
be connected to a loudspeaker having an impedance of 4.0 Ω. What is the turns ratio, primary to
secondary, required in the coupling transformer?
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The primary therefore must have 6.2 times as many turns as the secondary.
These relationships may be used in practical work even though they are based on an ideal transformer.

Aside from the normal design requirements of reasonably low internal losses and low leakage reactance,
the only other requirement is that the primary have enough inductance to operate with low magnetizing
current at the voltage applied to the primary.

The primary terminal impedance of an iron-core transformer is determined wholly by the load con-
nected to the secondary and by the turns ratio. If the characteristics of the transformer have an appreciable
effect on the impedance presented to the power source, the transformer is either poorly designed or is
not suited to the voltage and frequency at which it is being used. Most transformers will operate quite
well at voltages from slightly above to well below the design figure.

Transformer Losses

In practice, none of the formulas given so far provides truly exact results, although they afford reasonable
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approximations. Transformers
in reality are not simply two
coupled inductors, but a network
of resistances and reactances,
most of which appear in Fig
6.79. Since only the terminals
numbered 1 through 4 are acces-
sible to the user, transformer rat-
ings and specifications take into
account the additional losses cre-
ated by these complexities.

In a practical transformer not
all of the magnetic flux is
common to both windings, although in well designed transformers the amount of flux that cuts one coil and
not the other is only a small percentage of the total flux. This leakage flux causes a voltage of self-induction.
Consequently, there are small amounts of leakage inductance associated with both windings of the trans-
former. Leakage inductance acts in exactly the same way as an equivalent amount of ordinary inductance
inserted in series with the circuit. It has, therefore, a certain reactance, depending on the amount of leakage
inductance and the frequency. This reactance is called leakage reactance, shown as XL1 and XL2 in Fig 6.79.

Current flowing through the leakage reactance causes a voltage drop. This voltage drop increases with
increasing current; hence, it increases as more power is taken from the secondary. Thus, the greater the
secondary current, the smaller the secondary terminal voltage becomes. The resistances of the trans-
former windings, R1 and R2, also cause voltage drops when there is current. Although these voltage
drops are not in phase with those caused by leakage reactance, together they result in a lower secondary
voltage under load than is indicated by the transformer turns ratio.

Thus, the voltage regulation in a real transformer is not perfect. At ac line frequencies (50 or 60 Hz),
the voltage at the secondary, with a reasonably well-designed transformer, should not drop more than
about 10% from open-circuit conditions to full load. The voltage drop may be considerably more than
this in a transformer operating at voice and music frequencies, because the leakage reactance increases
directly with the frequency.

In addition to wire resistances and leakage reactances, certain stray capacitances occur in transform-
ers. An electric field exists between any two points having a different voltage. When current flows
through a coil, each turn has a slightly different voltage than its adjacent turns, creating a capacitance
between turns. This distributed capacitance appears in Fig 6.79 as C1 and C2. Another capacitance, CM,
appears between the two windings for the same reason. Moreover, transformer windings can exhibit
capacitance relative to nearby metal, for example, the chassis, the shield and even the core.

Although these stray capacitances are of little concern with power and audio transformers, they
become important as the frequency increases. In transformers for RF use, the stray capacitance can
resonate with either the leakage reactance or, at lower frequencies, with the winding reactances, L1 or
L2, especially under very light or zero loads. In the frequency region around resonance, transformers
no longer exhibit the properties formulated above or the impedance properties to be described below.

Iron-core transformers also experience losses within the core itself. Hysteresis losses include the
energy required to overcome the retentivity of the core’s magnetic material. Circulating currents through
the core’s resistance are eddy currents, which form part of the total core losses. These losses, which add
to the required magnetizing current, are equivalent to adding a resistance in parallel with L1 in Fig 6.79.

Core Construction

Audio and power transformers usually employ one or another grade of silicon steel as the core

Fig 6.79 — A transformer as a network of resistances, inductances
and capacitances. Only L1 and L2 contribute to the transfer of
energy.
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material. With permeabilities of 5000 or greater, these cores satu-
rate at flux densities approaching 105 lines per square inch of cross
section. The cores consist of thin insulated laminations to break up
potential eddy current paths.

Each core layer consists of an E and an I piece butted together,
as represented in Fig 6.80. The butt point leaves a small gap. Since
the pieces in adjacent layers have a continuous magnetic path,
however, the flux density per unit of applied magnetic force is
increased and flux leakage reduced.

Two core shapes are in common use, as shown in Fig 6.81. In
the shell type, both windings are placed on the inner leg, while in
the core type the primary and secondary windings may be placed
on separate legs, if desired. This is sometimes done when it is
necessary to minimize capacitive effects between the primary and
secondary, or when one of the windings must operate at very high
voltage.

The number of turns required in the primary for a given applied
voltage is determined by the size, shape and type of core material
used, as well as the frequency. The number of turns required is
inversely proportional to the cross-sectional area of the core.
As a rough indication, windings of small power transformers
frequently have about six to eight turns per volt on a core of
1-square-inch cross section and have a magnetic path 10 or 12
inches in length. A longer path or smaller cross section requires
more turns per volt, and vice versa.

In most transformers the coils are wound in layers, with a thin
sheet of treated-paper insulation between each layer. Thicker in-
sulation is used between adjacent coils and between the first coil
and the core.

Shielding

Because magnetic lines of force are continuous and closed upon
themselves, shielding requires a path for the lines of force of the
leakage flux. The high-permeability of iron cores tends to concen-
trate the field, but additional shielding is often needed. As de-
picted in Fig 6.82, enclosing the transformer in a good magnetic
material can restrict virtually all of the magnetic field in the outer
case. The nonmagnetic material between the case and the core
creates a region of high reluctance, attenuating the field before it
reaches the case.

AUTOTRANSFORMERS

The transformer principle can be used with only one winding
instead of two, as shown in Fig 6.83A. The principles that relate
voltage, current and impedance to the turns ratio also apply equally
well. A one-winding transformer is called an autotransformer.
The current in the common section (A) of the winding is the dif-
ference between the line (primary) and the load (secondary) cur-

Fig 6.80 — A typical transformer
iron core. The E and I pieces
alternate direction in successive
layers to improve the magnetic
path while attenuating eddy
currents in the core.

Fig 6.81 — Two common trans-
former constructions: shell and
core.

Fig 6.82 — A shielded transformer:
the core plus an outer shield of
magnetic material contain nearly
all of the magnetic field.
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rents, since these currents are out of phase. Hence, if the line and
load currents are nearly equal, the common section of the winding
may be wound with comparatively small wire. The line and load
currents will be equal only when the primary (line) and secondary
(load) voltages are not very different.

Autotransformers are used chiefly for boosting or reducing the
power-line voltage by relatively small amounts. Fig 6.83B
illustrates the principle schematically with a switched, stepped
autotransformer. Continuously variable autotransformers are
commercially available under a variety of trade names; Variac and
Powerstat are typical examples.

Technically, tapped air-core inductors, such as the one in the
network in Fig 6.74 at the close of the discussion of resonant
circuits, are also autotransformers. The voltage from the tap to the
bottom of the coil is less than the voltage across the entire coil.
Likewise, the impedance of the tapped part of the winding is less
than the impedance of the entire winding. Because leakage reac-
tances are great and the coefficient of coupling is quite low, the
relationships true of a perfect transformer grow quite unreliable in
predicting the exact values. For this reason, tapped inductors are
rarely referred to as transformers. The stepped-down situation in
Fig 6.74 is better approximated — at or close to resonance — by
the formula

L

2
COML

P X

XR
R = (111)

where:
RP = tuned-circuit parallel-resonant impedance,
RL = load resistance tapped across part of the coil,
XCOM = reactance of the portion of the coil common to both the

resonant circuit and the load tap, and
XL = reactance of the entire coil.

The result is approximate and applies only to circuits with a Q of
10 or greater.

AIR-CORE RF TRANSFORMERS

Air-core transformers often function as mutually coupled inductors for RF applications. They consist
of a primary winding and a secondary winding in close proximity. Leakage reactances are ordinarily
high, however, and the coefficient of coupling between the primary and secondary windings is low.
Consequently, unlike transformers having a magnetic core, the turns ratio does not have as much sig-
nificance. Instead, the voltage induced in the secondary depends on the mutual inductance.

Nonresonant RF Transformers

In a very basic transformer circuit operating at radio frequencies, such as in Fig 6.84A, the source
voltage is applied to L1. RS is the series resistance inherent in the source. By virtue of the mutual
inductance, M, a voltage is induced in L2. A current flows in the secondary circuit through the reactance
of L2 and the load resistance of RL. Let XL2 be the reactance of L2 independent of L1, that is, independent

Fig 6.83 — The autotransformer
is based on the transformer, but
uses only one winding. The
pictorial diagram at A shows the
typical construction of an au-
totransformer. The schematic
diagram at B demonstrates the
use of an autotransformer to step
up or step down ac voltage,
usually to compensate for exces-
sive or deficient line voltage.
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of the effects of mutual induc-
tance. The impedance of the
secondary circuit is then:

2
2L

2
LS XRZ += (112)

where:
ZS = the impedance of the

secondary circuit in ohms,
RL = the load resistance in

ohms, and
XL2 = the reactance of the sec-

ondary inductance in ohms.

The effect of ZS upon the pri-
mary circuit is the same as a
coupled impedance in series with
L1. Fig 6.84B displays the
coupled impedance (ZP) in a
dashed enclosure to indicate that
it is not a new physical compo-
nent. It has the same absolute
value of phase angle as in the sec-
ondary impedance, but the sign
of the reactance is reversed; it appears as a capacitive reactance. The value of ZP is:
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P Z
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where:
ZP = the impedance introduced into the primary,
ZS = the impedance of the secondary circuit in ohms, and
2 π f M = the mutual reactance between the reactances of the primary and secondary coils (also

designated as XM).

Resonant RF Transformers

The use of at least one resonant circuit in place
of a pair of simple reactances eliminates the reac-
tance from the transformed impedance in the pri-
mary. For loaded or operating Qs of at least 10, the
resistances of individual components is negligible.
Fig 6.85 represents just one of many configura-
tions in which at least one of the inductors is in a
resonant circuit. The reactance coupled into the
primary circuit is cancelled if the circuit is tuned
to resonance while the load is connected. If the
reactance of the load capacitance, CL is at least 10
times any stray capacitance in the circuit, as is the
case for low impedance loads, the value of resis-
tance coupled to the primary is

Fig 6.84 — The coupling of a complex impedance back into the
primary circuit of a transformer composed of nonresonant air-core
inductors.

Fig 6.85 — An air-core transformer circuit con-
sisting of a resonant primary circuit and an
untuned secondary. RS and CS are functions of
the source, while RL and CL are functions of the
load circuit.
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where:
R1 = series resistance coupled into the primary circuit,
XM = mutual reactance,
RL = load resistance, and
X2 = reactance of the secondary inductance.

The parallel impedance of the resonant circuit is just R1 transformed from a series to a parallel value
by the usual formula,  RP = X2 / R1.

The higher the loaded or operating Q of the circuit, the smaller the mutual inductance required for the
same power transfer. If both the primary and secondary circuits consist of resonant circuits, they can be
more loosely coupled than with a single tuned circuit for the same power transfer. At the usual loaded
Q of 10 or greater, these circuits are quite selective, and consequently narrowband.

Although coupling networks have to a large measure replaced RF transformer coupling that uses air-
core transformers, these circuits are still useful in antenna tuning units and other circuits. For RF work,
powdered-iron toroidal cores have generally replaced air-core inductors for almost all applications
except where the circuit handles very high power or the coil must be very temperature stable. Slug-tuned
solenoid coils for low-power circuits offer the ability to tune the circuit precisely to resonance. For either
type of core, reasonably accurate calculation of impedance transformation is possible. It is often easier
to experiment to find the correct values for maximum power transfer, however. For further information
on coupled circuits, see the section on Matching Networks in the Receivers, Transmitters, Transceiv-
ers and Projects chapter.

BROADBAND FERRITE RF TRANSFORMERS

The design concepts and general theory of ideal transformers presented earlier in this chapter apply
also to transformers wound on ferromagnetic-core materials (ferrite and powdered iron). As is the case
with stacked cores made of laminations in the classic I and E shapes, the core material has a specific
permeability factor that determines the inductance of the windings versus the number of wire turns
used.

Toroidal cores are useful from a few hundred hertz well into the UHF spectrum. The principal
advantage of this type of core is the self-shielding characteristic. Another feature is the compactness of
a transformer or inductor. Therefore, toroidal-core transformers are excellent for use not only in dc-to-
dc converters, where tape-wound steel cores are employed, but at frequencies up to at least 1000 MHz
with the selection of the proper core material for the range of operating frequencies. Toroidal cores are
available from microminiature sizes up to several inches in diameter. The latter can be used, as one
example, to build a 20-kW balun for use in antenna systems.

One of the most common ferromagnetic transformers used in Amateur Radio work is the conventional
broadband transformer. Broadband transformers with losses of less than 1 dB are employed in circuits
that must have a uniform response over a substantial frequency range, such as a 2- to 30-MHz broadband
amplifier. In applications of this sort, the reactance of the windings should be at least four times the
impedance that the winding is designed to look into at the lowest design frequency.

Example: What should be the winding reactances of a transformer that has a  300-Ω primary and a
50-Ω secondary load? Relative to the 50-Ω secondary load:

XS = 4 ZS = 4 × 50 Ω = 200 Ω.

The primary winding reactance (XP) is:
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XP = 4 ZP = 4 × 300 Ω = 1200 Ω.

The core-material permeability plays a vital role in designing a good broadband transformer. The
effective permeability of the core must be high enough to provide ample winding reactance at the low
end of the operating range. As the operating frequency is increased, the effects of the core tend to
disappear until there are scarcely any core effects at the upper limit of the operating range. The limiting
factors for high frequency response are distributed capacity and leakage inductance due to uncoupled
flux. A high-permeability core minimizes the number of turns needed for a given reactance and therefore
also minimizes the distributed capacitance at high frequencies.

Ferrite cores with a permeability of 850 are common choices for transformers used between 2 and 30
MHz. Lower frequency ranges, for example, 1 kHz to 1 MHz, may require cores with permeabilities up
to 2000. Permeabilities from 40 to 125 are useful for VHF transformers. Conventional broadband
transformers require resistive loads. Loads with reactive components should use appropriate networks
to cancel the reactance.

Conventional transformers are wound in the same manner as a power transformer. Each winding is
made from a separate length of wire, with one winding placed over the previous one with suitable
insulation between. Unlike some transmission-line transformer designs, conventional broadband trans-
formers provide dc isolation between the primary and secondary circuits. The high voltages encountered
in high-impedance-ratio step-up transformers may require that the core be wrapped with glass electrical
tape before adding the windings (as an additional protection from arcing and voltage breakdown),
especially with ferrite cores that tend to have rougher edges. In addition, high voltage applications
should also use wire with high-voltage insulation and a high temperature rating.

Fig 6.86 illustrates one method of transformer construction using a single toroid as the core. The
primary of a step-down impedance transformer is wound to occupy the entire core, with the secondary
wound over the primary. The first step in planning the winding is to select a core of the desired perme-
ability. Convert the required reactances determined earlier into
inductance values for the lowest frequency of use. To find the
number of turns for each winding, use the AL value for the selected
core and equation 51 from the section on ferrite toroidal inductors
earlier in this chapter. Be certain the core can handle the power by
calculating the maximum flux using equation 49, given earlier in
the chapter, and comparing the result with the manufacturer’s
guidelines.

Example: Design a small broadband transformer having an
impedance ratio of 16:1 for a frequency range of 2.0 to 20.0 MHz
to match the output of a small-signal stage (impedance ≈ 500 Ω)
to the input (impedance ≈ 32 Ω) of an amplifier.

1. Since the impedance of the smaller winding should be at least
4 times the lower impedance to be matched at the lowest fre-
quency, XS = 4 ×  32 Ω = 128 Ω.

2. The inductance of the secondary winding should be LS =
XS / 2 π f = 128 / (6.2832 × 2.0 × 106 Hz) = 0.010 mH

3. Select a suitable core. For this low-power application, a
3/8-inch ferrite core with a permeability of 850 is suitable. The
core has an AL value of 420. Calculate the number of turns for
the secondary.

Fig 6.86 — Schematic and picto-
rial representation of a
conventional broadband trans-
former wound on a ferrite
toroidal core. The secondary
winding (L2) is wound over the
primary winding (L1).
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This low power application will not approach the maximum
flux density limits for the core, and #28 enamel wire should both
fit the core and handle the currents involved.

A second style of broadband transformer construction appears
in Fig 6.87. The key elements in this transformer are the stacks of
ferrite cores aligned with tubes soldered to pc-board end plates.
This style of transformer is suited to high power applications, for
example, at the input and output ports of transistor RF power
amplifiers. Low-power versions of this transformer can be wound
on “binocular” cores having pairs of parallel holes through them.

For further information on conventional transformer matching
using ferromagnetic materials, see the Matching Networks section
in the RF Power Amplifiers chapter. Refer to the Component
Data chapter for more detailed information on available ferrite
cores. A standard reference on conventional broadband transform-
ers using ferro-magnetic materials is Ferromagnetic Core Design
and Applications Handbook by Doug DeMaw, W1FB, published
by Prentice Hall.

TRANSMISSION-LINE TRANSFORMERS

Conventional transformers use flux linkages to deliver energy
to the output circuit. Transmission line transformers use transmis-
sion line modes of energy transfer between the input and the output terminals of the devices. Although
toroidal versions of these transformers physically resemble toroidal conventional broadband transform-
ers, the principles of operations differ significantly. Stray inductances and interwinding capacitances
form part of the characteristic impedance of the transmission line, largely eliminating resonances that
limit high frequency response. The limiting factors for transmission line transformers include line
length, deviations in the constructed line from the design value of characteristic impedance, and parasitic
capacitances and inductances that are independent of the characteristic impedance of the line.

The losses in conventional transformers depend on current and include wire, eddy-current and hys-
teresis losses. In contrast, transmission line transformers exhibit voltage-dependent losses, which make
higher impedances and higher VSWR values limiting factors in design. Within design limits, the can-
cellation of flux in the cores of transmission line transformers permits very high efficiencies across their
passbands. Losses may be lower than 0.1 dB with the proper core choice.

Transmission-line transformers can be configured for several modes of operation, but the chief ama-
teur use is in baluns (balanced-to-unbalanced transformers) and in ununs (unbalanced-to-unbalanced
transformers). The basic principle behind a balun appears in Fig 6.88, a representation of the classic
Guanella 1:1 balun. The input and output impedances are the same, but the output is balanced about a
real or virtual center point (terminal 5). If the characteristic impedance of the transmission line forming

Fig 6.87 — Schematic and picto-
rial representation of a
“binocular” style of conventional
broadband transformer. This
style is used frequently at the
input and output ports of transis-
tor RF amplifiers. It consists of
two rows of high-permeability
toroidal cores, with the winding
passed through the center holes
of the resulting stacks.
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the inductors with numbered
terminals equals the load im-
pedance, then E2 will equal E1.
With respect to terminal 5, the
voltage at terminal 4 is E1 / 2,
while the voltage at terminal 2
is  –E1 / 2, resulting in a bal-
anced output.

The small losses in properly
designed baluns of this order
stem from the potential gradi-
ent that exists along the length
of transmission line forming
the transformer. The value of
this potential is –E1 / 2, and it

forms a dielectric loss that can’t be eliminated. Although the loss is very small in well-constructed 1:1
baluns at low impedances, the losses climb as impedances climb (as in 4:1 baluns) and as the VSWR
climbs. Both conditions yield higher voltage gradients.

The inductors in the transmission-line transformer are equivalent to — and may be — coiled trans-
mission line with a characteristic impedance equal to the load. They form a choke isolating the input from
the output and attenuating undesirable currents, such as antenna current, from the remainder of the
transmission line to the energy source. The result is a current or choke balun. Such baluns may take many
forms: coiled transmission line, ferrite beads placed over a length of transmission line, windings on
linear ferrite cores or windings on ferrite toroids.

Reconfiguring the windings of Fig 6.88 can alter the transformer operation. For example, if terminal
2 is connected to terminal 3, a positive potential gradient appears across the lengths of line, resulting in
a terminal 4 potential of 2 E1 with respect to ground. If the load is disconnected from terminal 2 and
reconnected to ground, 2 E1 appears across the load — instead of ±E1 / 2. The product of this experiment
is a 4:1 impedance ratio, forming an unun. The bootstrapping effect of the new connection is applicable
to many other design configurations involving multiple windings to achieve custom impedance ratios
from 1:1 up to 9:1.

Balun and unun construction for the impedances of most concern to amateurs requires careful selec-
tion of the feed line used to wind the balun. Building transmission line transformers on ferrite toroids
may require careful attention to wire size and spacing to approximate a 50-Ω line. Wrapping wire with
polyimide tape (one or two coatings, depending upon the wire size) and then glass taping the wires
together periodically produces a reasonable 50-Ω transmission line. Ferrite cores in the permeability
range of 125 to 250 are generally optimal for transformer windings, with 1.25-inch cores suitable to 300-
W power levels and 2.4-inch cores usable to the 5 kW level. Special designs may alter the power-
handling capabilities of the core sizes. For the 1:1 balun shown in Fig 6.88, 10 bifilar turns (#16 wire
for the smaller core and #12 wire for the larger, both Thermaleze wire) yields a transformer operable
from 160 to 10 m.

Transmission-line transformers have their most obvious application to antennas, since they isolate the
antenna currents from the feed line, especially where a coaxial feed line is not exactly perpendicular to
the antenna. The balun prevents antenna currents from flowing on the outer surface of the coax shielding,
back to the transmitting equipment. Such currents would distort the antenna radiation pattern. Appro-
priately designed baluns can also transform impedance values at the same time. For example, one might
use a 4:1 balun to match a 12.5-Ω Yagi antenna impedance to a 50-Ω feed line. A 4:1 balun might also
be used to match a 75-Ω TV antenna to 300-Ω feed line.

Fig 6.88 — Schematic representation of the basic Guanella “choke”
balun or 1:1 transmission line transformer. The inductors are a
length of two-wire transmission line. RS is the source impedance
and RL is the load impedance.
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Interstage coupling within solid-state transmitters represents another potential for transmission-line
transformers. Broadband coupling between low-impedance, but mismatched stages can benefit from the
low losses of transmission-line transformers. Depending upon the losses that can be tolerated and the
bandwidth needed, it is often a matter of designer choice between a transmission-line transformer and
a conventional broadband transformer as the coupling device.

For further information on transmission-line transformers and their applications, see the RF Power
Amplifiers chapter. Another reference on the subject is Transmission Line Transformers, by Jerry
Sevick, W2FMI, published by Noble Publishing (see the Address List in the References chapter for
contact information).
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