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Chapter 4

DC Circuits and Resistance
Glossary

Introduction
The DC Circuits and Resistance section

of this chapter was written by Roger Tay-
lor, K9ALD.

The atom is the primary building block
of the universe. The main parts of the atom
include protons, electrons and neutrons.
Protons have a positive electrical charge,
electrons a negative charge and neutrons
have no electrical charge. All atoms are
electrically neutral, so they have the same
number of electrons as protons. If an atom
loses electrons, so it has more protons than
electrons, it has a net positive charge. If an
atom gains electrons, so it has more elec-
trons than protons, it has a negative
charge. Particles with a positive or nega-
tive charge are called ions. Free electrons
are also called ions, because they have a
negative charge.

When there are a surplus number of
positive ions in one location and a surplus

number of negative ions (or electrons) in
another location, there is an attractive
force between the two collections of par-
ticles. That force tries to pull the collec-
tions together. This attraction is called
electromotive force, or EMF.

If there is no path (conductor) to allow
electric charge to flow between the
two locations, the charges cannot move
together and neutralize one another. If a
conductor is provided, then electric cur-
rent (usually electrons) will flow through
the conductor.

Electrons move from the negative to the
positive side of the voltage, or EMF
source. Conventional current has the
opposite direction, from positive to nega-
tive. This comes from an arbitrary deci-
sion made by Benjamin Franklin in the
18th century. The conventional current
direction is important in establishing the

proper polarity sign for many electronics
calculations. Conventional current is used
in much of the technical literature. The
arrows in semiconductor schematic sym-
bols point in the direction of conventional
current, for example.

To measure the quantities of charge,
current and force, certain definitions have
been adopted. Charge is measured in cou-
lombs. One coulomb is equal to 6.25 × 1018

electrons (or protons). Charge flow is
measured in amperes. One ampere repre-
sents one coulomb of charge flowing past
a point in one second. Electromotive force
is measured in volts. One volt is defined as
the potential force (electrical) between
two points for which one ampere of cur-
rent will do one joule (measure of energy)
of work flowing from one point to another.
(A joule of work per second represents a
power of one watt.)

Alternating current — A flow of
charged particles through a conductor,
first in one direction, then in the other
direction.

Ampere — A measure of flow of
charged particles per unit time. One
ampere represents one coulomb of charge
flowing past a point in one second.

Atom — The smallest particle of mat-
ter that makes up an element. Consists of
protons and neutrons in the central area
called the nucleus, with electrons sur-
rounding this central region.

Coulomb — A unit of measure of a

quantity of electrically charged particles.
One coulomb is equal to 6.25 × 1018 elec-
trons.

Direct current — A flow of charged
particles through a conductor in one direc-
tion only.

EMF — Electromotive Force is the
term used to define the force of attraction
between two points of different charge
potential. Also called voltage.

Energy — Capability of doing work. It
is usually measured in electrical terms as
the number of watts of power consumed
during a specific period of time, such as

watt-seconds or kilowatt-hours.
Joule — Measure of a quantity of

energy. One joule is defined as one new-
ton (a measure of force) acting over a dis-
tance of one meter.

Ohm — Unit of resistance. One ohm is
defined as the resistance that will allow
one ampere of current when one volt of
EMF is impressed across the resistance.

Power — Power is the rate at which
work is done. One watt of power is equal
to one volt of EMF, causing a current of
one ampere through a resistor.

Volt — A measure of electromotive force.
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4.2 Chapter 4

Voltage can be generated in a variety of
ways. Chemicals with certain characteris-
tics can be combined to form a battery.
Mechanical motion such as friction (static
electricity, lightning) and rotating con-
ductors in a magnetic field (generators)
can also produce voltage.

Any conductor between points at dif-
ferent voltages will allow current to pass
between the points. No conductor is per-
fect or lossless, however, at least not at
normal temperatures. Charged particles
such as electrons resist being moved and it
requires energy to move them. The amount
of resistance to current is measured in
ohms.

OHM’S LAW
One ohm is defined as the amount of

resistance that allows one ampere of cur-
rent to flow between two points that have
a potential difference of one volt. Thus,
we get Ohm’s Law, which is:

I
E

R =                 (1)

where:
R = resistance in ohms,
E = potential or EMF in volts and
I = current in amperes.

Transposing the equation gives the
other common expressions of Ohm’s Law
as:

E = I × R   (2)

and

R

E
I =   (3)

All three forms of the equation are used
often in radio work. You must remember
that the quantities are in volts, ohms and
amperes; other units cannot be used in the
equations without first being converted.
For example, if the current is in milliam-
peres you must first change it to the
equivalent fraction of an ampere before
substituting the value into the equations.

The following examples illustrate the
use of Ohm’s Law. The current through a
20000-Ω resistance is 150 mA. See Fig
4.1. What is the voltage? To find voltage,
use equation 2 (E = I × R). Convert the
current from milliamperes to amperes.
Divide by 1000 mA / A (or multiply by
10-3A / mA) to make this conversion.
(Notice the conversion factor of 1000 does
not limit the number of significant figures
in the calculated answer.)

A0.150

A
mA

1000

mA150
I ==

Then:

E = 0.150 A × 20000 Ω = 3000 V

When 150 V is applied to a circuit, the
current is measured at 2.5 A. What is the
resistance of the circuit? In this case R is
the unknown, so we will use equation 1:

Ω60
A2.5

V150

I

E
R ===

No conversion was necessary because
the voltage and current were given in volts
and amperes.

How much current will flow if 250 V is
applied to a 5000-Ω resistor? Since I is
unknown,

A0.05
Ω5000

V250

R

E
I ===

It is more convenient to express the
current in mA, and 0.05 A × 1000 mA / A
= 50 mA.

RESISTANCE AND
CONDUCTANCE

Suppose we have two conductors of the
same size and shape, but of different
materials. The amount of current that will
flow when a given EMF is applied will
vary with the resistance of the material.
The lower the resistance, the greater the
current for a given EMF. The resistivity of
a material is the resistance, in ohms, of a
cube of the material measuring one centi-
meter on each edge. One of the best
conductors is copper, and in making
resistance calculations it is frequently
convenient to compare the resistance of
the material under consideration with that
of a copper conductor of the same size and
shape. Table 4.1 gives the ratio of the
resistivity of various conductors to the
resistivity of copper.

The longer the physical path, the higher
the resistance of that conductor. For direct
current and low-frequency alternating
currents (up to a few thousand hertz) the
resistance is inversely proportional to the
cross-sectional area of the path the cur-
rent must travel; that is, given two con-
ductors of the same material and having
the same length, but differing in cross-sec-

tional area, the one with the larger area
will have the lower resistance.

RESISTANCE OF WIRES
The problem of determining the resis-

tance of a round wire of given diameter
and length—or its converse, finding a suit-
able size and length of wire to provide a
desired amount of resistance—can easily
be solved with the help of the copper wire
table given in the Component Data and
References chapter. This table gives the
resistance, in ohms per 1000 ft, of each
standard wire size. For example, suppose
you need a resistance of 3.5 Ω, and some
#28 wire is on hand. The wire table in the
Component Data and References  chap-
ter shows that #28 wire has a resistance of
66.17 Ω / 1000 ft. Since the desired resis-
tance is 3.5 Ω, the required wire length is:

ft1000
Ω66.17
Ω3.5

ft1000

R
R

Length
WIRE

DESIRED ==

             ft53
Ω66.17

ft1000Ω3.5
=

×
=   (4)

As another example, suppose that the
resistance of wire in a circuit must not
exceed 0.05 Ω and that the length of wire
required for making the connections totals
14 ft. Then:

ft14.0

Ω0.05

Length

R

ft1000

R MAXIMUMWIRE =〈   (5)

ft1000

ft1000

ft

Ω
103.57 3 ××= −

ft1000

Ω3.57
  

ft1000

RWIRE 〈

Find the value of RWIRE / 1000 ft that is
less than the calculated value. The wire
table shows that #15 is the smallest size

Table 4.1
Relative Resistivity of Metals

Resistivity Compared
Material           to Copper
Aluminum (pure) 1.60
Brass 3.7-4.90
Cadmium 4.40
Chromium 1.80
Copper (hard-drawn) 1.03
Copper (annealed) 1.00
Gold 1.40
Iron (pure) 5.68
Lead 12.80
Nickel 5.10
Phosphor bronze 2.8-5.40
Silver 0.94
Steel 7.6-12.70
Tin 6.70
Zinc 3.40

Fig 4.1 — A simple circuit consisting of
a battery and a resistor.
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having a resistance less than this value.
(The resistance of #15 wire is given as
3.1810 Ω / 1000 ft.) Select any wire size
larger than this for the connections in your
circuit, to ensure that the total wire resis-
tance will be less than 0.05 Ω.

When the wire in question is not made
of copper, the resistance values in the wire
table should be multiplied by the ratios
shown in Table 4.1 to obtain the resulting
resistance. If the wire in the first example
were made from nickel instead of copper,
the length required for 3.5 Ω would be:

ft1000

R
R

Length
WIRE

DESIRED=
                            (6)

5.1
ft1000
Ω66.17
Ω3.5

×
=

5.1Ω66.17

ft1000Ω3.5

×
×

=

ft10.37
337.5

ft3500
Length ==

TEMPERATURE EFFECTS
The resistance of a conductor changes

with its temperature. The resistance of
practically every metallic conductor
increases with increasing temperature.
Carbon, however, acts in the opposite
way; its resistance decreases when its tem-
perature rises. It is seldom necessary to
consider temperature in making resistance
calculations for amateur work. The tem-
perature effect is important when it is nec-
essary to maintain a constant resistance
under all conditions, however. Special
materials that have little or no change in
resistance over a wide temperature range
are used in that case.

RESISTORS
A package of material exhibiting a cer-

tain amount of resistance, made up into a
single unit is called a resistor. Different
resistors having the same resistance value
may be considerably different in physical
size and construction (see Fig 4.2). Cur-

rent through a resistance causes the
conductor to become heated; the higher
the resistance and the larger the current,
the greater the amount of heat developed.
Resistors intended for carrying large cur-
rents must be physically large so the heat
can be radiated quickly to the surrounding
air. If the resistor does not dissipate the
heat quickly, it may get hot enough to melt
or burn.

The amount of heat a resistor can safely
dissipate depends on the material, surface
area and design. Typical carbon resistors
used in amateur electronics (1/8 to 2-W
resistors) depend primarily on the surface
area of the case, with some heat also being
carried off through the connecting leads.
Wirewound resistors are usually used for
higher power levels. Some have finned
cases for better convection cooling and/or
metal cases for better conductive cooling.

In some circuits, the resistor value may
be critical. In this case, precision resistors
are used. These are typically wirewound,
or carbon-film devices whose values are
carefully controlled during manufacture.

In addition, special material or construc-
tion techniques may be used to provide
temperature compensation, so the value
does not change (or changes in a precise
manner) as the resistor temperature
changes. There is more information about
the electrical characteristics of real resis-
tors in the Real-World Component
Characteristics chapter.

CONDUCTANCE
The reciprocal of resistance (1/R) is

conductance. It is usually represented by
the symbol G. A circuit having high con-
ductance has low resistance, and vice
versa. In radio work, the term is used
chiefly in connection with electron-tube
and field-effect transistor characteristics.
The unit of conductance is the siemens,
abbreviated S. A resistance of 1 Ω has a
conductance of 1 S, a resistance of 1000 Ω
has a conductance of 0.001 S, and so on. A
unit frequently used in connection with
electron devices is the µS or one millionth
of a siemens. It is the conductance of a
1-MΩ resistance.

Fig 4.2 — Examples
of various resistors.
At the top left is a
small 10-W
wirewound resistor.
A single in-line
package (SIP) of
resistors is at the top
right. At the top
center is a small PC-
board-mount
variable resistor. A
tiny surface-mount
(chip) resistor is also
shown at the top.
Below the variable
resistor is a 1-W
carbon compo-sition
resistor and then a ½-W composition unit. The
dog-bone-shaped resistors at the bottom are ½-W
and ¼-W film resistors. The ¼-inch-ruled graph
paper background provides a size comparison.
The inset photo shows the chip resistor with a
penny for size comparison.

Series and Parallel Resistances
Very few actual electric circuits are as

simple as Fig 4.1. Commonly, resistances
are found connected in a variety of ways.
The two fundamental methods of connect-
ing resistances are shown in Fig 4.3. In
part A, the current flows from the source
of EMF (in the direction shown by the ar-

row) down through the first resistance, R1,
then through the second, R2 and then back
to the source. These resistors are con-
nected in series. The current everywhere
in the circuit has the same value.

In part B, the current flows to the com-
mon connection point at the top of the two

resistors and then divides, one part of it
flowing through R1 and the other through
R2. At the lower connection point these
two currents again combine; the total is
the same as the current into the upper com-
mon connection. In this case, the two
resistors are connected in parallel.
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4.4 Chapter 4

RESISTORS IN PARALLEL
In a circuit with resistances in parallel,

the total resistance is less than that of the
lowest resistance value present. This is
because the total current is always greater
than the current in any individual resistor.
The formula for finding the total resistance
of resistances in parallel is:

...
R4
1

R3
1

R2
1

R1
1

1
R

++++
=

                (7)

where the dots indicate that any number of
resistors can be combined by the same
method. For only two resistances in paral-
lel (a very common case) the formula
becomes:

R2R1

R2R1
R

+
×

=   (8)

Example: If a 500-Ω resistor is con-
nected in parallel with one of 1200 Ω, what
is the total resistance?

Ω1200Ω500

Ω1200Ω500

R2R1

R2R1
R

+
×

=
+
×

=

Ω 353  
Ω 1700

Ω 600000
 R 

2
==

KIRCHHOFF’S FIRST LAW
(KIRCHHOFF’S CURRENT LAW)

Suppose three resistors (5.00 kΩ,
20.0 kΩ and 8.00 kΩ) are connected in
parallel as shown in Fig 4.4. The same
EMF, 250 V, is applied to all three resis-
tors. The current in each can be found from

Fig 4.4 — An example of resistors in
parallel. See text for calculations.

Fig 4.3 — Resistors connected in series
at A, and in parallel at B.

Ohm’s Law, as shown below. The current
through R1 is I1, I2 is the current through
R2 and I3 is the current through R3.

For convenience, we can use resistance
in kΩ, which gives current in milliam-
peres.

mA50.0
kΩ5.00

V250

R1

E
I1 ===

mA12.5
kΩ20.0

V250

R2

E
I2 ===

mA31.2
kΩ8.00

V250

R3

E
I3 ===

Notice that the branch currents are
inversely proportional to the resistances.
The 20000-Ω resistor has a value four times
larger than the 5000-Ω resistor, and has a
current one quarter as large. If a resistor
has a value twice as large as another, it will
have half as much current through it when
they are connected in parallel.

The total circuit current is:

I3I2I1ITOTAL ++=   (9)

mA31.2mA12.5mA50.0ITOTAL ++=

mA93.7ITOTAL =
This example illustrates Kirchhoff’s

Current Law: The current flowing into a
node or branching point is equal to the sum
of the individual currents leaving the node
or branching point. The total resistance of
the circuit is therefore:

kΩ2.67
mA93.7

V250

I

E
R ===

You can verify this calculation by com-
bining the three resistor values in parallel,
using equation 7.

RESISTORS IN SERIES
When a circuit has a number of resis-

tances connected in series, the total
resistance of the circuit is the sum of the
individual resistances. If these are num-
bered R1, R2, R3 and so on, then:

...R4R3R2R1RTOTAL +++= (10)

where the dots indicate that as many resis-
tors as necessary may be added.

Example: Suppose that three resistors are

Fig 4.5 — An example of resistors in
series. See text for calculations.

connected to a source of EMF as shown in
Fig 4.5. The EMF is 250 V, R1 is 5.00 kΩ,
R2 is 20.0 kΩ and R3 is 8.00 kΩ. The total
resistance is then

R3R2R1RTOTAL ++=

kΩ8.00kΩ20.0kΩ5.00R ++=
R = 33.0 kΩ.

The current in the circuit is then

mA7.58
kΩ33.0

V250

R

E
I ===

(We need not carry calculations beyond
three significant figures; often, two will
suffice because the accuracy of measure-
ments is seldom better than a few percent.)

KIRCHHOFF’S SECOND LAW
(KIRCHHOFF’S VOLTAGE LAW)

Ohm’s Law applies in any portion of a
circuit as well as to the circuit as a whole.
Although the current is the same in all
three of the resistances in the example of
Fig 4.5, the total voltage divides between
them. The voltage appearing across each
resistor (the voltage drop) can be found
from Ohm’s Law.

Example: If the voltage across R1 is
called E1, that across R2 is called E2 and
that across R3 is called E3, then

V37.9Ω5000A0.00758IR1E =×==

V152Ω20000A0.00758IR2E =×==

V60.6Ω8000A0.00758IR3E =×==
Notice here that the voltage drop across

each resistor is directly proportional to the
resistance. The 20000-Ω resistor value is
four times larger than the 5000-Ω resistor,
and the voltage drop across the 20000-Ω
resistor is four times larger. A resistor that
has a value twice as large as another will
have twice the voltage drop across it when
they are connected in series.

Kirchhoff’s Voltage Law accurately de-
scribes the situation in the circuit: The sum
of the voltages in a closed current loop is
zero. The resistors are power sinks, while
the battery is a power source. It is common
to assign a + sign to power sources and a
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– sign to power sinks. This means the volt-
ages across the resistors have the opposite
sign from the battery voltage. Adding all
the voltages yields zero. In the case of a
single voltage source, algebraic manipula-
tion implies that the sum of the individual
voltage drops in the circuit must be equal
to the applied voltage.

E3E2E1ETOTAL ++= (11)

V60.6V152V37.9ETOTAL ++=

V250ETOTAL =
(Remember the significant figures rule

for addition.)
In problems such as this, when the cur-

rent is small enough to be expressed in
milliamperes, considerable time and
trouble can be saved if the resistance is
expressed in kilohms rather than in ohms.
When the resistance in kilohms is substi-
tuted directly in Ohm’s Law, the current
will be milliamperes, if the EMF is in volts.

RESISTORS IN SERIES-PARALLEL
A circuit may have resistances both

in parallel and in series, as shown in
Fig 4.6A. The method for analyzing such
a circuit is as follows: Consider R2 and R3
to be the equivalent of a single resistor,
REQ whose value is equal to R2 and R3 in
parallel.

Ω8000Ω20000

Ω8000Ω20000

R3R2

R3R2
REQ +

×
=

+
×

=

         Ω28000

Ω101.60 28×
=

kΩ5.71Ω5710REQ ==

This resistance in series with R1 forms
a simple series circuit, as shown in Fig
4.6B. The total resistance in the circuit is:

kΩ5.71kΩ5.00RR1R EQTOTAL +=+=

kΩ10.71RTOTAL=

The current is:

mA23.3
kΩ10.71

V250

R

E
I ===

The voltage drops across R1 and REQ are:

V117kΩ5.00mA23.3R1IE1 =×=×=

V133kΩ5.71mA23.3RIE2 EQ =×=×=

with sufficient accuracy. These two volt-
age drops total 250 V, as described by
Kirchhoff’s Current Law. E2 appears
across both R2 and R3 so,

mA6.65
kΩ20.0

V133

R2

E2
I2 ===

mA16.6
kΩ8.00

V133

R3

E3
I3 ===

where:
I2 = current through R2 and
I3 = current through R3.

The sum of I2 and I3 is equal to 23.3 mA,
conforming to Kirchhoff’s Voltage Law.

THEVENIN’S THEOREM
Thevenin’s Theorem is a useful tool

for simplifying electrical networks.
Thevenin’s Theorem states that any two-
terminal network of resistors and voltage
or current sources can be replaced by a
single voltage source and a series resistor.
Such a transformation can simplify the
calculation of current through a parallel
branch. Thevenin’s Theorem can be
readily applied to the circuit of Fig 4.6A,
to find the current through R3.

In this example, R1 and R2 form a volt-
age divider circuit, with R3 as the load
(Fig 4.7A). The current drawn by the load
(R3) is simply the voltage across R3,
divided by its resistance. Unfortunately,
the value of R2 affects the voltage across
R3, just as the presence of  R3 affects the
potential appearing across R2. Some
means of separating the two is needed;
hence the Thevenin-equivalent circuit.

The voltage of the Thevenin-equivalent
battery is the open-circuit voltage, mea-
sured when there is no current from either
terminal A or B. Without a load connected
between A and B, the total current through
the circuit is (from Ohm’s Law):

R2R1

E
I

+
= (12)

and the voltage between terminals A and
B (EAB) is:

R2IEAB ×= (13)

By substituting the first equation into
the second, we can find a simplified
expression for EAB:

E
R2R1

R2
EAB ×

+
=               (14)

Fig 4.6 — At A, an example of resistors
in series-parallel. The equivalent circuit
is shown at B. See text for calculations.

Fig 4.7 — Equivalent circuits for the
circuit shown in Fig 4.6. A shows the
load resistor (R3) looking into the
circuit. B shows the Thevenin-
equivalent circuit, with a resistor and a
voltage source in series. C shows the
Norton-equivalent circuit, with a
resistor and current source in parallel.
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4.6 Chapter 4

Using the values in our example, this
becomes:

V200V250
kΩ25.0

kΩ20.0
EAB =×=

when nothing is connected to terminals A
or B. With no current drawn, E is equal to
EAB.

The Thevenin-equivalent resistance is
the total resistance between terminals A
and B. The ideal voltage source, by defini-
tion, has zero internal resistance. Assum-
ing the battery to be a close approximation
of an ideal source, put a short between
points X and Y in the circuit of Fig 4.7A.
R1 and R2 are then effectively placed in
parallel, as viewed from terminals A and B.
The Thevenin-equivalent resistance is
then:

R2R1

R2R1
RTHEV +

×
=               (15)

Ω20000Ω5000

Ω20000Ω5000
RTHEV +

×
=

Ω4000
Ω25000

Ω101.00
R

28

THEV =
×

=

This gives the Thevenin-equivalent cir-
cuit as shown in Fig 4.7B. The circuits of
Figures 4.7A and 4.7B are equivalent as
far as R3 is concerned.

Once R3 is connected to terminals A and

through terminals A and B. In the case of
the voltage divider shown in Fig 4.7A, the
short-circuit current is:

R1

E
ISC = (17)

Substituting the values from our ex-
ample, we have:

mA50.0
Ω5000

V250

R1

E
ISC ===

The resulting Norton-equivalent circuit
consists of a 50.0-mA current source placed
in parallel with a 4000-Ω resistor. When
R3 is connected to terminals A and B, one-
third of the supply current flows through
R3 and the remainder through RTHEV. This
gives a current through R3 of 16.7 mA,
again agreeing with previous conclusions.

A Norton-equivalent circuit can be
transformed into a Thevenin-equivalent
circuit and vice versa. The equivalent
resistor stays the same in both cases; it is
placed in series with the voltage source in
the case of a Thevenin-equivalent circuit
and in parallel with the current source in
the case of a Norton-equivalent circuit.
The voltage for a Thevenin-equivalent
source is equal to the no-load voltage ap-
pearing across the resistor in the Norton-
equivalent circuit. The current for a
Norton-equivalent source is equal to the
short-circuit current provided by the
Thevenin source.

Power and Energy
Regardless of how voltage is generated,

energy must be supplied if current is drawn
from the voltage source. The energy
supplied may be in the form of chemical
energy or mechanical energy. This energy
is measured in joules. One joule is defined
from classical physics as the amount of
energy or work done when a force of one
newton (a measure of force) is applied to
an object that is moved one meter in the
direction of the force.

Power is another important concept. In
the USA, power is often measured in
horsepower in mechanical systems. We
use the metric power unit of watts in elec-
trical systems, however. In metric coun-
tries, mechanical power is usually
expressed in watts also. One watt is
defined as the use (or generation) of one
joule of energy per second. One watt is
also defined as one volt of potential push-
ing one ampere of current through a resis-
tance. Thus,

E  I P ×=                             (18)

where:
P = power in watts
I = current in amperes
E = EMF in volts.

When current flows through a resistance,
the electrical energy is turned into heat.
Common fractional and multiple units for
power are the milliwatt (one thousandth of
a watt) and the kilowatt (1000 W).

Example: The plate voltage on a trans-
mitting vacuum tube is 2000 V and the
plate current is 350 mA. (The current must
be changed to amperes before substitution
in the formula, and so is 0.350 A.) Then:

 W700  A 0.350  V 2000  E  I P =×=×=

By substituting the Ohm’s Law equiva-
lent for E and I, the following formulas are
obtained for power:

R

E
 P 

2
= (19)

and

R  I P 2 ×= (20)

These formulas are useful in power cal-
culations when the resistance and either
the current or voltage (but not both) are
known.

Example: How much power will be con-
verted to heat in a 4000-Ω resistor if the
potential applied to it is 200 V? From equa-
tion 19,

R

E
 P 

2
=

 W10.0  
Ω 4000

V 40000
 

2
==

As another example, suppose a current

B, there will be current through RTHEV,
causing a voltage drop across RTHEV and
reducing EAB. The current through R3 is
equal to

R3R

E

R

E
I3

THEV

THEV

TOTAL

THEV

+
==               (16)

Substituting the values from our example:

mA16.7
Ω8000Ω4000

V200
I3 =

+
=

This agrees with the value calculated
earlier.

NORTON’S THEOREM
Norton’s Theorem is another tool for

analyzing electrical networks. Norton’s
Theorem states that any two-terminal net-
work of resistors and current or voltage
sources can be replaced by a single cur-
rent source and a parallel resistor.
Norton’s Theorem is to current sources
what Thevenin’s Theorem is to voltage
sources. In fact, the Thevenin resistance
calculated previously is also used as the
Norton equivalent resistance.

The circuit just analyzed by means of
Thevenin’s Theorem can be analyzed just
as easily by Norton’s Theorem. The
equivalent Norton circuit is shown in Fig
4.7C. The current ISC of the equivalent
current source is the short-circuit current
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of 20 mA flows through a 300-Ω resistor.
Then:

Ω 300  A 0.020 R   I P 222 ×=×=

Ω 300  A 0.00040 P 2 ×=

 W0.12 P =

Note that the current was changed from
milliamperes to amperes before substi-
tution in the formula.

Electrical power in a resistance is turned
into heat. The greater the power, the more
rapidly the heat is generated. Resistors for
radio work are made in many sizes, the
smallest being rated to dissipate (or carry
safely) about 1/16 W. The largest resistors
commonly used in amateur equipment will
dissipate about 100 W. Large resistors,
such as those used in dummy-load anten-
nas, are often cooled with oil to increase
their power-handling capability.

If you want to express power in horse-
power instead of watts, the following rela-
tionship holds:

1 horsepower = 746 W               (21)

This formula assumes lossless transfor-
mation; practical efficiency is taken up
shortly. This formula is especially useful
if you are working with a system that con-
verts electrical energy into mechanical
energy, and vice versa, since mechanical
power is often expressed in horsepower,
in the US.

This discussion relates to direct current
in resistive circuits. See the AC Theory
and Reactive Components section of this
chapter for a discussion about power in ac
circuits, including reactive circuits.

GENERALIZED DEFINITION OF
RESISTANCE

Electrical energy is not always turned
into heat. The energy used in running a
motor, for example, is converted to
mechanical motion. The energy supplied
to a radio transmitter is largely converted
into radio waves. Energy applied to a loud-
speaker is changed into sound waves. In
each case, the energy is converted to other
forms and can be completely accounted
for. None of the energy just disappears!
This is a statement of the Law of Conser-
vation of Energy. When a device converts
energy from one form to another, we often
say it dissipates the energy, or power.
(Power is energy divided by time.) Of
course the device doesn’t really “use up”
the energy, or make it disappear, it just
converts it to another form. Proper opera-
tion of electrical devices often requires
that the power must be supplied at a spe-
cific ratio of voltage to current. These fea-

tures are characteristics of resistance, so it
can be said that any device that “dissipates
power” has a definite value of resistance.

This concept of resistance as something
that absorbs power at a definite voltage-
to-current ratio is very useful; it permits
substituting a simple resistance for the
load or power-consuming part of the
device receiving power, often with con-
siderable simplification of calculations.
Of course, every electrical device has
some resistance of its own in the more
narrow sense, so a part of the energy sup-
plied to it is converted to heat in that resis-
tance even though the major part of the
energy may be converted to another form.

EFFICIENCY
In devices such as motors and vacuum

tubes, the objective is to convert the sup-
plied energy (or power) into some form
other than heat. Therefore, power con-
verted to heat is considered to be a loss,
because it is not useful power. The effi-
ciency of a device is the useful power out-
put (in its converted form) divided by the
power input to the device. In a vacuum-
tube transmitter, for example, the objec-
tive is to convert power from a dc source
into ac power at some radio frequency.
The ratio of the RF power output to the dc
input is the efficiency of the tube. That is:

The Ohm’s Law and Power Circle

During the first semester of my Electrical Power Technology program, one of
the first challenges issued by our dedicated instructor—Roger Crerie—to his new
freshman students was to identify and develop 12 equations or formulas that
could be used to determine voltage, current, resistance and power. Ohm’s Law is
expressed as

I
E

R =
and it provided three of these equation forms while the basic equation relating
power to current and voltage (P = I×E) accounted for another three. With six
known equations, it was just a matter of applying mathematical substitution for his
students to develop the remaining six. Together, these 12 equations compose the

circle or wheel of voltage (E), current
(I), resistance (R) and power (P)
shown in Fig A. Just as Roger’s
previous students had learned at the
Worcester Industrial Technical Institute
(Worcester, Massachusetts), our Class
of ’82 now held the basic electrical
formulas needed to proceed in our
studies or professions. As can be seen
in Fig A, we can determine any one of
these four electrical quantities by
knowing the value of any two others.
You may want to keep this page
bookmarked for your reference.  You’ll
probably be using many of these
formulas as the years go by—this has
certainly been my experience—Dana
G. Reed, W1LC, ARRL Handbook
EditorFig A—Electrical formulas.

I

O

P

P
  Eff = (22)

where:
Eff = efficiency (as a decimal)
PO = power output (W)
PI = power input (W).
Example: If the dc input to the tube is

100 W, and the RF power output is 60 W,
the efficiency is:

0.6  
 W100

 W60
  

P

P
  Eff

I

O ===

Efficiency is usually expressed as a
percentage — that is, it tells what percent
of the input power will be available as
useful output. To calculate percent effi-
ciency, just multiply the value from equa-
tion 22 by 100%. The efficiency in the
example above is 60%.

Suppose a mobile transmitter has an RF
power output of 100 W with 52% effi-
ciency at 13.8 V. The vehicle’s alternator
system charges the battery at a 5.0-A rate
at this voltage. Assuming an alternator
efficiency of 68%, how much horsepower
must the engine produce to operate the
transmitter and charge the battery? Solu-
tion: To charge the battery, the alternator
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must produce 13.8 V × 5.0 A = 69 W. The
transmitter dc input power is 100 W / 0.52
= 190 W. Therefore, the total electrical
power required from the alternator is 190
+ 69 = 260 W. The engine load then is:

 W380  
0.68

 W260
  

Eff

P
  P O

I ===

We can convert this to horsepower
using the formula given earlier to convert
between horsepower and watts:

horsepower 0.51  
 W746

horsepower 1
   W380 =×

ENERGY
When you buy electricity from a power

company, you pay for electrical energy,
not power. What you pay for is the work

that electricity does for you, not the rate at
which that work is done. Work is equal to
power multiplied by time. The common
unit for measuring electrical energy is the
watt-hour, which means that a power of
1 W has been used for one hour. That is:

W hr = P T

where:
W hr = energy in watt-hours
P = power in watts
T = time in hours.
Actually, the watt-hour is a fairly small

energy unit, so the power company bills
you for kilowatt-hours of energy used.
Another energy unit that is sometimes
useful is the watt-second (joule).

Energy units are seldom used in ama-
teur practice, but it is obvious that a small
amount of power used for a long time can

eventually result in a power bill that is just
as large as if a large amount of power had
been used for a very short time.

One practical application of energy
units is to estimate how long a radio (such
as a hand-held unit) will operate from a
certain battery. For example, suppose a
fully charged battery stores 900 mA hr of
energy, and a radio draws 30 mA on re-
ceive. You might guess that the radio will
receive 30 hrs with this battery, assuming
100% efficiency. You shouldn’t expect to
get the full 900 mA hr out of the battery,
and you will probably spend some of the
time transmitting, which will also reduce
the time the battery will last. The Real-
World Component Characteristics and
Power Supplies chapters include addi-
tional information about batteries and
their charge/discharge cycles.

Circuits and Components
SERIES AND PARALLEL CIRCUITS

Passive components (resistors for dc
circuits) can be used to make voltage and
current dividers and limiters to obtain a
desired value. For instance, in Fig 4.8A,
two resistors are connected in series to
provide a voltage divider. As long as the
device connected at point A has a much
higher resistance than the resistors in the
divider, the voltage will be approximately
the ratio of the resistances. Thus, if E =
10 V, R1 = 5 Ω and R2 = 5 Ω, the voltage
at point A will be 5 V measured on a high-
impedance voltmeter. A good rule of
thumb is that the load at point A should be
at least ten times the value of the highest
resistor in the divider to get reasonably
close to the voltage you want. As the load
resistance gets closer to the value of the
divider, the current drawn by the load
affects the division and causes changes
from the desired value. If you need pre-
cise voltage division from fixed resistors
and know the value of the load resistance,
you can use Kirchhoff’s Laws and
Thevenin’s Theorem (explained earlier)
to calculate exact values.

Similarly, resistors can be used, as
shown in Fig 4.8B, to make current divid-
ers. Suppose you had two LEDs (light
emitting diodes) and wanted one to glow
twice as brightly as the other. You could
use one resistor with twice the value of the
other for the dimmer LED. Thus, approxi-
mately two-thirds of the current would
flow through one LED and one-third
through the other (neglecting any effect of
the 0.7-V drop across the diode).

Resistors can also be used to limit the
current through a device from a fixed volt-
age source. A typical example is shown in
Fig 4.8C. Here a high-voltage source feeds
a battery in a battery charger. This is typi-
cal of nickel cadmium chargers. The high
resistor value limits the current that can
possibly flow through the battery to a
value that is low enough so it will not dam-
age the battery.

SWITCHES
Switches are used to start or stop a

signal (current) flowing in a particular
circuit. Most switches are mechanical
devices, although the same effect may be
achieved with solid-state devices. Relays
are switches that are controlled by another
electrical signal rather than manual or
mechanical means.

Switches come in many different forms
and a wide variety of ratings. The most
important ratings are the voltage and cur-
rent handling capabilities. The voltage
rating usually includes both the break-
down rating and the interrupt rating. Nor-
mally, the interrupt rating is the lower
value, and therefore the one given on (for)
the switch. The current rating includes
both the current carrying capacity and the
interrupt capability.

Most power switches are rated for alter-
nating current use. Because ac voltage
goes through zero with each cycle,
switches can successfully interrupt much
more alternating current than direct cur-
rent without arcing. A switch that has a
10-A ac current rating may arc and dam-

Fig 4.8 — This circuit shows a resistive
voltage divider at A, a resistive current
divider at B, and a current-limiting
resistor at C.
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age the contacts if used to turn off more
than an ampere or two of dc.

Switches are normally designated by
the number of poles (circuits controlled)
and positions (circuit path choices). The
simplest switch is the on-off switch, which
is a single-pole, single-throw (SPST)
switch as shown in Fig 4.9A. The off
position does not direct the current to an-
other circuit. The next step would be to
change the current path to another path.
This would be a single-pole, double-throw
(SPDT) switch as shown in Fig 4.9B. Add-
ing an off position would give a single-
pole, double-throw, center-off switch as
shown in Fig 4.9C.

Several such switches can be “ganged”
to the same mechanical activator to pro-
vide double pole, triple pole or even more,
separate control paths all activated at once.
Switches can be activated in a variety of
ways. The most common methods include
lever, push button and rotary switches.
Samples of these are shown in Fig 4.10.
Most switches stay in the position set, but
some are spring loaded so they only stay in
the desired position while held there. These
are called momentary switches.

Switches typically found in the home
are usually rated for 125 V ac and 15 to
20 A. Switches in cars are usually rated
for 12 V dc and several amperes. The
breakdown voltage rating of a switch,
which is usually higher than the interrupt
rating, primarily depends on the insulat-
ing material surrounding the contacts and
the separation between the contacts. Plas-
tic or phenolic material normally provides
both structural support and insulation. Ce-
ramic material may be used to provide
better insulation, particularly in rotary
(wafer) switches.

The current carrying capacity of the
switch depends on the contact material and
size and on the pressure between the con-
tacts. It is primarily determined from the

allowable contact temperature rise. On
larger ac switches, or most dc switches,
the interrupt capability may be lower than
the current carrying value.

Rotary/wafer switches can provide very
complex switching patterns. Several poles
(separate circuits) can be included on each
wafer. Many wafers may be stacked on the
same shaft. Not only may many different
circuits be controlled at once, but by wir-
ing different poles/positions on different
wafers together, a high degree of circuit
switching logic can be developed. Such
switches can select different paths as they
are turned and can also “short” together
successive contacts to connect numbers of
components or paths. They can also be
designed to either break one contact
before making another, or to short two
contacts together before disconnecting the
first one (make before break) to eliminate
arcing or perform certain logic functions.

In choosing a switch for a particular task,
consideration should be given to function,
voltage and current ratings, ease of use,
availability and cost. If a switch is to be
operated frequently, a slightly higher cost
for a better-quality switch is usually less
costly over the long run. If signal noise or
contact corrosion is a potential problem,
(usually in low-current signal applications)
it is best to get gold plated contacts. Gold
does not oxidize or corrode, thus providing
surer contact, which can be particularly
important at very low signal levels. Gold
plating will not hold up under high-current-
interrupt applications, however.

FUSES
Fuses self-destruct to protect circuit

wiring or equipment. The fuse element
that melts is a carefully shaped piece of
soft metal, usually mounted in a cartridge
of some kind. The element is designed to
safely carry a given amount of current and
to melt at a current value that is a certain

Fig 4.9 — Schematic diagrams of
various types of switches. A is an
SPST, B is an SPDT, and C is an SPDT
switch with a center-off position.

Fig 4.10 — This
photo shows
examples of
various styles
of switches. The
¼-inch-ruled graph
paper background
provides for size
comparison.

percentage over the rated value. The melt-
ing value depends on the type of material,
the shape of the element and the heat dis-
sipation capability of the cartridge and
holder, among other factors. Some fuses
(Slo-blo) are designed to carry an over-
load for a short period of time. They typi-
cally are used in motor starting and
power-supply circuits that have a large
inrush current when first started. Other
fuses are designed to blow very quickly to
protect delicate instruments and solid-
state circuits. A replacement fuse should
have the same current rating and the
same characteristics as the fuse it replaces.
Fig 4.11 shows a variety of fuse types and
sizes.

The most important fuse rating is the
nominal current rating that it will safely
carry. Next most important are the timing
characteristics, or how quickly it opens
under a given current overload. A fuse also
has a voltage rating, both a value in volts
and whether it is expected to be used in ac
or dc circuits. While you should never
substitute a fuse with a higher current rat-
ing than the one it replaces, you can use a
fuse with a higher voltage rating. There is
no danger in replacing a 12-V, 2-A fuse
with a 250-V, 2-A unit.

Fuses fail for several reasons. The most
obvious reason is that a problem develops
in the circuit, which causes too much cur-
rent to flow. In this case, the circuit prob-
lem needs to be fixed. A fuse may just fail
eventually, particularly when cycled on
and off near its current rating. A kind of
metal fatigue sets in, and eventually the
fuse goes. A fuse can also blow because of
a momentary power surge, or even turning
something on and off several times
quickly when there is a large inrush cur-
rent. In these cases it is only necessary to
replace the fuse with the same type and
value. Never substitute a fuse with a larger
current rating. You may cause permanent
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damage (maybe even a fire) to the wiring
or circuit elements if/when there is an in-
ternal problem in the equipment.

RELAYS
Relays are switches that are driven by

an electrical signal, usually through a
magnetic coil. An armature that moves
when current is applied pushes the switch
contacts together, or pulls them apart.
Many such contacts can be connected to
the same armature, allowing many circuits
to be controlled by a single signal. Usu-
ally, relays have only two positions (open-
ing some contacts and closing others)
although there are special cases.

Like switches, relays have specific volt-
age and current ratings for the contacts.
These may be far different from the volt-
age and current of the coil that drives the
relay. That means a small signal voltage
might control very large values of voltage
and/or current. Relay contacts (and hous-
ings) may be designed for ac, dc or RF
signals. The control voltages are usually
12 V dc or 125 V ac for most amateur

Fig 4.11 — These photos show
examples of various styles of fuses.
The ¼-inch-ruled graph paper
background provides a size
comparison.

Fig 4.12 — These photos show
examples of various styles and sizes of
relays. Photo A shows a large reed
relay, and a small reed relay in a
package the size of a DIP IC. The
contacts and coil can clearly be seen in
the open-frame relay. Photo B shows a
relay inside a plastic case. Photo C
shows a four-position relay with SMA
coaxial connectors. The ¼-inch-ruled
graph paper background provides a
size comparison.

(A)

(B)

(C)

Fig 4.13 — Various uses of
potentiometers.

Coaxial relays are specially designed
to handle RF signals and to maintain
a characteristic impedance to match cer-
tain values of coaxial-cable impedance.
They typically are used to switch an
antenna between a receiver and transmit-
ter or between a linear amplifier and a
transceiver.

POTENTIOMETERS
Potentiometer is a big name for a vari-

able resistor. They are commonly used as
volume controls on radios, televisions and
stereos. A typical potentiometer is a cir-
cular pattern of resistive material, usually
a carbon compound, that has a wiper on a
shaft moving across the material. For
higher power applications, the resistive
material may be wire, wound around a
core. As the wiper moves along the mate-
rial, more resistance is introduced between
the wiper and one of the fixed contacts on
the material. A potentiometer may be used
primarily to control current, voltage or
resistance in a circuit. Fig 4.13 shows sev-
eral circuits to demonstrate various uses.
Fig 4.14 shows several different types of
potentiometers.

Typical specifications for a potentio-
meter include maximum resistance, power
dissipation, voltage and current ratings,
number of turns (or degrees) the shaft can
rotate, type and size of shaft, mounting
arrangements and resistance “taper.”

Not all potentiometers have a linear
taper. That is, the resistance may not be
the same for a given number of degrees of
shaft rotation along different portions of
the resistive material. A typical use of a
potentiometer with a nonlinear taper is as

applications, but the coils may be designed
to be “current sensing” and operate when
the current through the coil exceeds a
specific value. Fig 4.12 shows some typi-
cal relays found in amateur equipment.
Relays with 24- and 28-V coils are also
common.
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a volume control. Since the human ear has
a logarithmic response to sound, a volume
control may actually change the volume
(resistance) much more near one end of
the potentiometer than the other (for a
given amount of rotation) so that the “per-
ceived” change in volume is about the
same for a similar change in the control.
This is commonly called an “audio taper”
as the change in resistance per degree of
rotation attempts to match the response of
the human ear. The taper can be designed
to match almost any desired control func-
tion for a given application. Linear and
audio tapers are the most common.

Fig 4.14 — This
photo shows
examples of
different styles of
potentiometers.
The ¼ -inch-ruled
graph paper
background
provides a size
comparison.

AC Theory and Reactance Glossary
the value of the peak voltage or current.

Period (T) — The duration of one ac
voltage or current cycle, measured in sec-
onds (s).

Permeability (µ) — The ratio of the
magnetic flux density of an iron, ferrite,
or similar core in an electromagnet com-
pared to the magnetic flux density of an
air core, when the current through the
electromagnet is held constant.

Power (P) — The rate of electrical-en-
ergy use, measured in watts (W).

Q (quality factor) — The ratio of en-
ergy stored in a reactive component (ca-
pacitor or inductor) to the energy
dissipated, equal to the reactance divided
by the resistance.

Reactance (X) — Opposition to alter-
nating current by storage in an electrical
field (by a capacitor) or in a magnetic field
(by an inductor), measured in ohms (Ω).

Resistance (R) — Opposition to cur-
rent by conversion into other forms of
energy, such as heat, measured in ohms
(Ω).

Resonance — Ordinarily, the condition
in an ac circuit containing both capacitive
and inductive reactance in which the reac-
tances are equal.

RMS (voltage or current) — Literally,
“root mean square,” the square root of the

average of the squares of the instanta-
neous values for one cycle of a waveform.
A dc voltage or current that will produce
the same heating effect as the waveform.
For a sine wave, the RMS value is equal to
0.707 times the peak value of ac voltage
or current.

Susceptance (B) — The reciprocal of
reactance, measured in siemens (S).

Time constant (τττττ) — The time required
for the voltage in an RC circuit or the cur-
rent in an RL circuit to rise from zero to
approximately 63.2% of its maximum
value or to fall from its maximum value
63.2% toward zero.

Toroid — Literally, any donut-shaped
solid; most commonly referring to ferrite
or powdered-iron cores supporting induc-
tors and transformers.

Transducer — Any device that con-
verts one form of energy to another; for
example an antenna, which converts elec-
trical energy to electromagnetic energy
or a speaker, which converts electrical
energy to sonic energy.

Transformer — A device consisting of
at least two coupled inductors capable of
transferring energy through mutual induc-
tance.

Voltage (E) — Electromotive force or
electrical pressure, measured in volts (V).

Admittance (Y) — The reciprocal of
impedance, measured in siemens (S).

Capacitance (C) — The ability to store
electrical energy in an electrostatic field,
measured in farads (F). A device with ca-
pacitance is a capacitor.

Conductance (G )— The reciprocal of
resistance, measured in siemens (S).

Current (I) — The rate of electron flow
through a conductor, measured in amperes
(A).

Flux density (B) — The number of
magnetic-force lines per unit area, mea-
sured in gauss.

Frequency (f) — The rate of change of
an ac voltage or current, measured in
cycles per second, or hertz (Hz).

Impedance (Z) — The complex combi-
nation of resistance and reactance, mea-
sured in ohms (Ω).

Inductance (L) — The ability to store
electrical energy in a magnetic field, mea-
sured in henrys (H). A device, such as a
coil, with inductance is an inductor.

Peak (voltage or current) — The maxi-
mum value relative to zero that an ac volt-
age or current attains during any cycle.

Peak-to-peak (voltage or current) —
The value of the total swing of an ac volt-
age or current from its peak negative value
to its peak positive value, ordinarily twice
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AC Theory and Reactive Components
AC IN CIRCUITS

A circuit is a complete conductive route
for electrons to follow from a source,
through a load and back to the source. If
the source permits the electrons to flow
in only one direction, the current is dc or
direct current. If the source permits the
current periodically to change direction,
the current is ac or alternating current. Fig
4.15 illustrates the two types of circuits.
Drawing A shows the source as a battery,
a typical dc source. Drawing B shows a
more abstract source symbol to indicate ac.
In an ac circuit, not only does the current
change direction periodically; the voltage
also periodically reverses. The rate of re-
versal may range from a few times per sec-
ond to many billions per second.

Graphs of current or voltage, such as Fig
4.15, begin with a horizontal axis that rep-
resents time. The vertical axis represents
the amplitude of the current or the voltage,
whichever is graphed. Distance above the
zero line means a greater positive ampli-
tude; distance below the zero line means a
greater negative amplitude. Positive and
negative simply designate the opposing
directions in which current may flow in an

Fig 4.15 — Basic circuits for direct and
alternating currents. With each circuit
is a graph of the current, constant for
the dc circuit, but periodically changing
direction in the ac circuit.

Fig 4.16 — A pulsating dc current (A)
and its resolution into an ac component
(B) and a dc component (C).

Fig 4.17 — Two ac waveforms of similar
frequencies (f1 = 1.5 f2) and amplitudes
form a composite wave. Note the points
where the positive peaks of the two
waves combine to create high
composite peaks: this is the phenom-
enon of beats. The beat note frequency
is 1.5f – f = 0.5f and is visible in the
drawing.

Fig 4.18 — Two ac waveforms of widely
different frequencies and amplitudes
form a composite wave in which one
wave appears to ride upon the other.

Fig 4.19 — Some common ac
waveforms: square, triangle, ramp
and sine.

alternating current circuit or the opposing
directions of force of an ac voltage.

If the current and voltage never change
direction, then from one perspective, we
have a dc circuit, even if the level of dc
constantly changes. Fig 4.16 shows a cur-
rent that is always positive with respect to
0. It varies periodically in amplitude, how-
ever. Whatever the shape of the variations,
the current can be called pulsating dc. If
the current periodically reaches 0, it can
be called intermittent dc. From another
perspective, we may look at intermittent
and pulsating dc as a combination of an ac
and a dc current. Special circuits can sepa-
rate the two currents into ac and dc com-

ponents for separate analysis or use. There
are also circuits that combine ac and dc
currents and voltages for many purposes.

We can combine ac and dc voltages and
currents. Different ac voltages and cur-
rents also form combinations. Such
combinations will result in complex wave-
forms. A waveform is the pattern of
amplitudes reached by the voltage or cur-
rent as measured over time. Fig 4.17
shows two ac waveforms fairly close in
frequency, and their resultant combina-
tion. Fig 4.18 shows two ac waveforms
dissimilar in both frequency and wave-
length, along with the resultant combined
waveform. Note the similarities (and the
differences) between the resultant wave-
form in Fig 4.18 and the combined ac-dc
waveform in Fig 4.16.

Alternating currents may take on many
useful wave shapes. Fig 4.19 shows a few
that are commonly used in practical cir-
cuits and in test equipment. The square
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wave is vital to digital electronics. The tri-
angular and ramp waves — sometimes
called “sawtooth” waves — are especially
useful in timing circuits. The sine wave is
both mathematically and practically the
foundation of all other forms of ac; the
other forms can usually be reduced to (and
even constructed from) a particular col-
lection of sine waves.

There are numerous ways to generate
alternating currents: with an ac power gen-
erator (an alternator), with a transducer
(for example, a microphone) or with an
electronic circuit (for example, an RF
oscillator). The basis of the sine wave is
circular motion, which underlies the most
usual methods of generating alternating
current. The circular motion of the ac gen-
erator may be physical or mechanical, as
in an alternator. Currents in the resonant
circuit of an oscillator may also produce
sine waves without mechanical motion.

Fig 4.20 demonstrates the relationship
of the current (and voltage) amplitude to
relative positions of a circular rotation
through one complete revolution of 360º.
Note that the current is zero at point 1. It
rises to its maximum value at a point 90º
from point 1, which is point 3. At a point
180º from point 1, which is point 4, the
current level falls back to zero. Then the
current begins to rise again. The direction
of the current after point 4 and prior to its
return to point 1, however, is opposite the
direction of current from point 1 to point
4. Point 2 illustrates one of the innumer-
able intermediate values of current
throughout the cycle.

Tracing the rise and fall of current over
a linear time line produces the curve
accompanying the circle in Fig 4.20. The
curve is sinusoidal or a sine wave. The
amplitude of the current varies as the sine
of the angle made by the circular move-
ment with respect to the zero point. The
sine of 90° is 1, and 90° is also the point of
maximum current (along with 270°). The
sine of 45° (point 2) is 0.707, and the value
of current at the 45° point of rotation is

cuits are many and varied. Most can be
cataloged by reference to ac frequency
ranges used in circuits. For example, ac
power used in the home, office and factory
is ordinarily 60 Hz in the United States
and Canada. In Great Britain and much of
Europe, ac power is 50 Hz. For special
purposes, ac power has been generated up
to about 400 Hz.

Sonic and ultrasonic applications of ac
run from about 20 Hz up to several MHz.
Audio work makes use of the lower end of
the sonic spectrum, with communications
audio focusing on the range from about
300 to 3000 Hz. High-fidelity audio uses
ac circuits capable of handling 20 Hz to at
least 20 kHz. Ultrasonics — used in medi-
cine and industry — makes use of ac cir-
cuits above 20 kHz.

Amateur Radio circuits include both
power- and sonic-frequency-range cir-
cuits. Radio communication and other
electronics work, however, require ac cir-
cuits capable of operation with frequen-
cies up to the gigahertz range. Some of the
applications include signal sources for
transmitters (and for circuits inside receiv-
ers); industrial induction heating; dia-
thermy; microwaves for cooking, radar and
communication; remote control of appli-
ances, lighting, model planes and boats and
other equipment; and radio direction find-
ing and guidance.

AC IN CIRCUITS AND
TRANSDUCED ENERGY

Alternating currents are often loosely
classified as audio frequency (AF) and
radio frequency (RF). Although these des-
ignations are handy, they actually repre-
sent something other than the electrical
energy of ac circuits: They designate spe-
cial forms of energy that we find useful.

Audio or sonic energy is the energy
imparted by the mechanical movement of a
medium, which can be air, metal, water or
even the human body. Sound that humans
can hear normally requires the movement
of air between 20 Hz and 20 kHz, although
the human ear loses its ability to detect the
extremes of this range as we age. Some
animals, such as elephants, can apparently
detect air vibrations well below 20 Hz,
while others, such as dogs and cats, can
detect air vibrations well above 20 kHz.

Electrical circuits do not directly pro-
duce air vibrations. Sound production
requires a transducer, a device to trans-
form one form of energy into another form
of energy; in this case electrical energy
into sonic energy. The speaker and the
microphone are the most common audio
transducers. There are numerous ultra-
sonic transducers for various applications.

Likewise, converting electrical energy

Fig 4.20 — The relationship of circular
motion and the resultant graph of ac
current or voltage. The curve is
sinusoidal, a sine wave.

0.707 times the maximum current. Simi-
lar considerations apply to the variation of
ac voltage over time.

FREQUENCY AND PERIOD
With a continuously rotating generator,

alternating current will pass through many
equal cycles over time. Select an arbitrary
point on any one cycle and use it as a
marker. For this example, the positive peak
will work as an unambiguous marker. The
number of times per second that the current
(or voltage) reaches this positive peak in
any one second is called the frequency of
the ac. In other words, frequency expresses
the rate at which current (or voltage) cycles
occur. The unit of frequency is cycles per
second, or hertz—abbreviated Hz (after the
19th century radio-phenomena pioneer,
Heinrich Hertz).

The length of any cycle in units of time
is the period of the cycle, as measured
from and to equivalent points on succeed-
ing cycles. Mathematically, the period is
simply the inverse of the frequency. That
is,

seconds in (T) Period

1
  Hz in (f) Frequency =

              (23)
and

Hz in (f) Frequency

1
  seconds in (T) Period =

(24)

Example: What is the period of a 400-
hertz ac current?

ms 2.5  s 0.00250  
Hz 400

1
  

f

1
  T ====

The frequency of alternating currents
used in Amateur Radio circuits varies
from a few hertz, or cycles per second, to
thousands of millions of hertz. Likewise,
the period of alternating currents amateurs
use ranges from significant fractions of a
second down to nanoseconds or smaller.
In order to express units of frequency, time
and almost everything else in electronics
compactly, a standard system of prefixes
is used. In magnitudes of 1000 or 103, fre-
quency is measurable in hertz, in kilohertz
(1000 hertz or kHz), in megahertz (1 mil-
lion hertz or MHz), gigahertz (1 billion
hertz or GHz) and even in tera-hertz (1
trillion hertz or THz). For units smaller
than one, as in the measurement of period,
the basic unit seconds can become milli-
seconds (1 thousandth of a second or ms),
microseconds (1 millionth of a second or
µs), nanoseconds (1 billionth of a second
or ns) and picoseconds (1 trillionth of a
second or ps).

The uses of ac in Amateur Radio cir-
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into radio signals also requires a trans-
ducer, usually called an antenna. In con-
trast to RF alternating currents in circuits,
RF energy is a form of electromagnetic
energy. The frequencies of electromag-
netic energy run from 3 kHz to above 1012

GHz. They include radio, infrared, visible
light, ultraviolet and a number of energy
forms of greatest interest to physicists and
astronomers. Table 4.2 provides a brief
glimpse at the total spectrum of electro-
magnetic energy.

All electromagnetic energy has one
thing in common: it travels, or propagates,
at the speed of light. This speed is approxi-
mately 300000000 (or 3.00 × 108) meters
per second in a vacuum. Electromagnetic-
energy waves have a length uniquely
associated with each possible frequency.
The wavelength (λ) is simply the speed of
propagation divided by the frequency (f)
in hertz.

(m) λ
s
m

 10  3.00

  (Hz) f

8 





×

=                      (25)

and

( )Hz f

 
s
m

 10  3.00

  (m) λ

8 





×

=                        (26)

Example: What is the frequency of an
80.0-m RF wave?

(m) λ
s
m

 10  3.00

  (Hz) f

8 





×

=

 
m 80.0

s
m

 10  3.00

 

8 





×

=

Hz 10  3.75  (Hz) f 6×=

We could use a similar equation to cal-
culate the wavelength of a sound wave in
air, but we would have to use the speed of
sound instead of the speed of light in the
numerator of the equation. The speed of
propagation of the mechanical movement
of air that we call sound varies consider-
ably with air temperature and altitude. The
speed of sound at sea level is about 331
m/s at 0ºC and 344 m/s at 20ºC.

To calculate the frequency of an elec-
tromagnetic wave directly in kilohertz,
change the speed constant to 300,000 (3.00
× 105) km/s.

(m) λ
s

km
 10  3.00

  (kHz) f

5 





×

=                   (27)

and

(kHz) f

s
km

 10  3.00

  (m) 

5 





×

=λ                        (28)

For frequencies in megahertz, use:

(m) λ
s

Mm
 300

  (MHz) f








=                           (29)

and

(MHz) f

s
Mm

 300

  (m) λ








=                              (30)

You would normally just drop the units
that go with the speed of light constant to
make the equation look simpler.

Example: What is the wavelength of an
RF wave whose frequency is 4.0 MHz?

m 75  
 MHz4.0

300
  

(MHz) f

300
  (m) ===λ

At higher frequencies, circuit elements
act like transducers. This property can be
put to use, but it can also cause problems
for some circuit operations. Therefore,
wavelength calculations are of some
importance in designing ac circuits for
those frequencies.

Within the part of the electromagnetic-

energy spectrum of most interest to
radio applications, frequencies have been
classified into groups and given names.
Table 4.3 provides a reference list of these
classifications. To a significant degree, the
frequencies within each group exhibit simi-
lar properties. For example, HF or high fre-
quencies, from 3 to 30 MHz, all exhibit skip
or ionospheric refraction that permits regu-
lar long-range radio communications. This
property also applies occasionally both to
MF (medium frequencies) and to VHF
(very high frequencies).

Despite the close relationship between
RF electromagnetic energy and RF ac cir-
cuits, it remains important to distinguish
the two. To the ac circuit producing or
amplifying a 15-kHz alternating current,
the ultimate transformation and use of the
electrical energy may make no difference
to the circuit’s operation. By choosing the
right transducer, one can produce either
an audio tone or a radio signal — or both.
Such was the accidental fate of many hori-
zontal oscillators and amplifiers in early
television sets; they found ways to vibrate
parts audibly and to radiate electromag-
netic energy.

PHASE
When tracing a sine-wave curve of an

ac voltage or current, the horizontal axis
represents time. We call this the time
domain of the sine wave. Events to the
right take place later; events to the left
occur earlier. Although time is measurable
in parts of a second, it is more convenient

Table 4.3
Classification of the Radio Frequency Spectrum

Abbreviation Classification Frequency Range

VLF Very low frequencies 3 to 30 kHz
LF Low frequencies 30 to 300 kHz
MF Medium frequencies 300 to 3000 kHz
HF High frequencies 3 to 30 MHz
VHF Very high frequencies 30 to 300 MHz
UHF Ultrahigh frequencies 300 to 3000 MHz
SHF Superhigh frequencies 3 to 30 GHz
EHF Extremely high frequencies 30 to 300 GHz

Table 4.2
Key Regions of the Electromagnetic Energy Spectrum

Region Name          Frequency Range

Radio frequencies 3.0 × 103  Hz to 3.0 × 1011 Hz
Infrared 3.0 × 1011 Hz to 4.3 × 1014 Hz
Visible light 4.3 × 1014 Hz to 1.0 × 1015 Hz
Ultraviolet 1.0 × 1015 Hz to 6.0 × 1016 Hz
X-rays 6.0 × 1016 Hz to 3.0 × 1019 Hz
Gamma rays 3.0 × 1019 Hz to 5.0 × 1020 Hz
Cosmic rays 5.0 × 1020 Hz to 8.0 × 1021 Hz
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to treat each cycle as a complete time unit
that we divide into 360°. The conventional
starting point for counting degrees is the
zero point as the voltage or current begins
the positive half cycle. The essential ele-
ments of an ac cycle appear in Fig 4.21.

The advantage of treating the ac cycle in
this way is that many calculations and
measurements can be taken and recorded
in a manner that is independent of
frequency. The positive peak voltage or
current occurs at 90° along the cycle. Rela-
tive to the starting point, 90° is the phase
of the ac at that point. Thus, a complete
description of an ac voltage or current
involves reference to three properties: fre-
quency, amplitude and phase.

Phase relationships also permit the com-
parison of two ac voltages or currents at
the same frequency, as Fig 4.22 demon-
strates. Since B crosses the zero point in
the positive direction after A has already
done so, there is a phase difference
between the two waves. In the example, B
lags A by 45°, or A leads B by 45°. If A
and B occur in the same circuit, their com-
posite waveform will also be a sine wave
at an intermediate phase angle relative to
each. Adding any number of sine waves of
the same frequency always results in a sine
wave at that frequency.

Fig 4.22 might equally apply to a volt-
age and a current measured in the same ac
circuit. Either A or B might represent the
voltage; that is, in some instances voltage
will lead the current and in others voltage
will lag the current.

Two important special cases appear in
Fig 4.23. In Part A, line B lags 90° behind
line A. Its cycle begins exactly one quarter
cycle later than the A cycle. When one
wave is passing through zero, the other just

Fig 4.21 — An ac cycle is divided into
360° that are used as a measure of time
or phase.

Fig 4.22 — When two waves of the
same frequency start their cycles at
slightly different times, the time
difference or phase difference is
measured in degrees. In this drawing,
wave B starts 45° (one-eighth cycle)
later than wave A, and so lags 45°
behind A.

Fig 4.23 — Two important special cases
of phase difference: In the upper
drawing, the phase difference between
A and B is 90°; in the lower drawing,
the phase difference is 180°. Fig 4.24 — Voltage and current measurements in dc and ac circuits.

reaches its maximum value.
In Part B, lines A and B are 180° out of

phase. In this case, it does not matter
which one is considered to lead or lag.
Line B is always positive while line A is
negative, and vice versa. If the two wave-
forms are of two voltages or two currents
in the same circuit and if they have the
same amplitude, they will cancel each
other completely.

MEASURING AC VOLTAGE,
CURRENT AND POWER

Measuring the voltage or current in a dc
circuit is straightforward, as Fig 4.24A
demonstrates. Since the current flows in
only one direction, for a resistive load, the
voltage and current have constant values
until the circuit components change.

Fig 4.24B illustrates a perplexing prob-
lem encountered when measuring voltages
and currents in ac circuits. The current and
voltage continuously change direction and
value. Which values are meaningful? In
fact, several values of constant sine-wave
voltage and current in ac circuits are
important to differing applications and
concerns.

Instantaneous Voltage and Current
Fig 4.25 shows a sine wave of some

arbitrary frequency and amplitude with
respect to either voltage or current. The
instantaneous voltage (or current) at point
A on the curve is a function of three fac-
tors: the maximum value of voltage (or
current) along the curve (point B), the fre-
quency of the wave, and the time elapsed
in seconds or fractions of a second. Thus,

θ ft)(2π sin E  E maxinst =                       (31)
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Considering just one sine wave, inde-
pendent of frequency, the instantaneous
value of voltage (or current) becomes

θ sin E  E maxinst =               (32)

where θ is the angle in degrees through
which the voltage has moved over time
after the beginning of the cycle.

Example: What is the instantaneous
value of voltage at point D in Fig 4.25, if
the maximum voltage value is 120 V and
the angular travel is 60.0°?

V 104  0.866  120 

 60.0 sin  V 120  Einst

=×=

°×=

Peak and Peak-to-Peak Voltage
and Current

The most important instantaneous volt-
ages and currents are the maximum or
peak values reached on each positive and
negative half cycle of the sine wave. In
Fig 4.25, points B and C represent the
positive and negative peaks of voltage or
current. Peak (pk) values are especially
important with respect to component rat-
ings, which the voltage or current in a cir-
cuit must not exceed without danger of
component failure.

The peak power in an ac circuit is sim-
ply the product of the peak voltage and the
peak current, or

pkpkpk I  E  P ×=               (33)

The span from points B to C in Fig 4.25
represents the largest voltage or current
swing of the sine wave. Designated the
peak-to-peak (P-P) voltage (or current),
this span is equal to twice the peak value
of the voltage (or current). Thus,

age ac power equivalent to a correspond-
ing average dc power is half the peak ac
power.

2

P
  P pk

ave = (35)

Since a circuit with a constant resistance
is linear — that is, raising or lowering the
voltage will raise or lower the current pro-
portionally — the voltage and current
values needed to arrive at average ac power
are related to their peak values by the
factor.

0.707  E  
1.414

E
  

2

E
  E pk

pkpk
RMS ×===      (36)

0.707  I  
1.414

I
  

2

I
  I pk

pkpk
RMS ×=== (37)

In the time domain of a sine wave, the
RMS values of voltage and current occur
at the 45°, 135°, 225° and 315° points
along the cycle shown in Fig 4.26. (The
sine of 45° is approximately 0.707.) The
absolute instantaneous value of voltage or
current is greater than the RMS value for
half the cycle and less than the RMS value
for half the cycle.

The RMS values of voltage and current
get their name from the means used to
derive their value relative to peak voltage
and current. Square the individual values
of all the instantaneous values of voltage
or current in a single cycle of ac. Take the
average of these squares and then find the
square root of the average. This root mean
square procedure produces the RMS value
of voltage or current.

If the RMS voltage is the peak voltage
divided by the 2 , then the peak voltage
must be the RMS voltage multiplied by

Fig 4.25 — Two cycles of a sine wave to illustrate instantaneous, peak, and peak-
to-peak ac voltage and current values.

Fig 4.26 — The relationships between RMS, average, peak, and peak-to-peak
values of ac voltage and current.

pkPP 2E  E =− (34)

Amplifying devices often specify their
input limits in terms of peak-to-peak volt-
ages. Operational amplifiers, which have
almost unlimited gain potential, often
require input-level limiting to prevent the
output signals from distorting if they
exceed the peak-to-peak output rating of
the devices.

RMS Voltages and Currents
The root mean square or RMS values of

voltage and current are the most common
values encountered in electronics. Some-
times called the effective values of ac volt-
age and current, they are based upon
equating the values of ac and dc power
required to heat a resistive element to
exactly the same temperature. The peak ac
power required for this condition is twice
the dc power needed. Therefore, the aver-

chap4.pmd 8/13/2004, 3:52 PM16



Electrical Fundamentals 4.17

the 2 , or

Epk = ERMS × 1.414 (38)

1.414  I  I RMSpk ×= (39)

Since circuit specifications will most
commonly list only RMS voltage and cur-
rent values, these relationships are impor-
tant in finding the peak voltages or
currents that will stress components.

Example: What is the peak voltage on a
capacitor if the RMS voltage of a sinusoi-
dal waveform signal across it is 300 V ac?

V 424  1.414  V 300  Epk =×=

The capacitor must be able to withstand
this higher voltage, plus a safety margin.
The capacitor must also be rated for ac
use. A capacitor rated for 1 kV dc may
explode if used in this application. In
power supplies that convert ac to dc and
use capacitive input filters, the output
voltage will approach the peak value of
the ac voltage rather than the RMS value.

Example: What is the peak voltage and
the peak-to-peak voltage at the usual
household ac outlet, if the RMS voltage is
120 V?

V 170  1.414  V 120  Epk =×=

V 340  V 170  2  E pp =×=−

Unless otherwise specified, unlabeled
ac voltage and current values found in
most electronics literature are normally
RMS values.

Average Values of Voltage and
Current

Certain kinds of circuits respond to the
average value of an ac waveform. Among
these circuits are electrodynamic meter
movements and power supplies that convert
ac to dc and use heavily inductive (“choke”)
input filters, both of which use the pulsa-
ting dc output of a full-wave rectifier. The
average value of each ac half cycle is the
mean of all the instantaneous values in that
half cycle. Related to the peak values of
voltage and current, average values are 2 / π
(or 0.6366) times the peak value.

pkave E 0.6366  E =                              (40)

pkave I 0.6366  I =                                (41)

For convenience, Table 4.4 summarizes
the relationships between all of the com-
mon ac values. All of these relationships
apply only to pure sine waves.

Complex Waves and Peak-
Envelope Values

Complex waves, as shown earlier in Fig
4.18, differ from pure sine waves. The
amplitude of the peak voltage may vary
significantly from one cycle to the next.
Therefore, other amplitude measures are
required, especially for accurate measure-
ment of voltage and power with single
sideband (SSB) waveforms. Fig 4.27
illustrates a multitone composite wave-
form with an RF ac waveform as the basis.

The RF ac waveform has a frequency
many times that of the audio-frequency ac
waveform with which it is usually com-
bined in SSB operations. Therefore, the
resultant waveform appears as an ampli-
tude envelope superimposed upon the RF
waveform. The peak envelope voltage
(PEV), then, is the maximum or peak value
of voltage achieved.

Peak envelope voltage permits the cal-
culation of peak envelope power (PEP).
The Federal Communications Commis-
sion (FCC) uses the concept of peak enve-
lope power to set the maximum power
standards for amateur transmitters. PEP is
the average power supplied to the antenna
transmission line by a transmitter during
one RF cycle at the crest of the modulation
envelope, taken under normal operating
conditions. Since calculation of PEP
requires the average power of the cycle,
multiply the PEV by 0.707 to obtain the
RMS value. Then calculate power by using
the square of the voltage divided by the
load resistance.

R

0.707)  (PEV
 PEP

2×
= (42)

Fig 4.27 — The peak envelope voltage
(PEV) for a composite waveform.

Table 4.4
Conversion Factors for AC Voltage or Current

From To Multiply By

Peak Peak-to-Peak 2
Peak-to-Peak Peak 0.5

Peak RMS 1 / 2  or 0.707

RMS Peak 2  or 1.414

Peak-to-Peak RMS 1 / (2 × 2 ) or 0.35355

RMS Peak-to-Peak 2 ×  2 or 2.828

Peak Average 2 / π or 0.6366
Average Peak π / 2 or 1.5708

RMS Average (2 × 2 ) / π or 0.90

Average RMS π / (2 × 2 ) or 1.11

Note: These conversion factors apply only to continuous pure sine waves.
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Capacitance and Capacitors

Fig 4.28 — Schematic symbol for a
fixed capacitor is shown at A. The
symbols for a variable capacitor are
shown at B.

Fig 4.29 — A simple capacitor showing
the basic charging arrangement at A,
and the retention of the charge due to
the electrostatic field at B.

Fig 4.30 — The flow of current during the charge and discharge of a capacitor. The
charge graphs assume that the charge switch is closed and the discharge switch
is open. The discharge graphs assume just the opposite.

Without the ability to store electrical
energy, radio would not be possible. One
may build and hold an electrical charge in
an electrostatic field. This phenomenon is
called capacitance, and the devices that
exhibit capacitance are called capacitors.
See Chapter 6 for more information on
practical capacitor applications and prob-
lems. Fig 4.28 shows several schematic
symbols for capacitors. Part A shows a
fixed capacitor; one that has a single value
of capacitance. Part B shows variable
capacitors; these are adjustable over a
range of values. Ordinarily, the straight
line in each symbol connects to a positive
voltage, while the curved line goes to a
negative voltage or to ground. Some
capacitor designs require rigorous adher-
ence to polarity markings; other designs
are symmetrical and non-polarized.

CHARGE AND ELECTROSTATIC
ENERGY STORAGE

Suppose two flat metal plates are placed
close to each other (but not touching) and
are connected to a battery through a
switch, as illustrated in Fig 4.29A. At the
instant the switch is closed, electrons are
attracted from the upper plate to the posi-
tive terminal of the battery, and the same
number are repelled into the lower plate
from the negative battery terminal.
Enough electrons move into one plate and
out of the other to make the voltage be-
tween the plates the same as the battery
voltage.

If the switch is opened after the plates
have been charged in this way, the top
plate is left with a deficiency of electrons
and the bottom plate with an excess. Since
there is no current path between the two,
the plates remain charged despite the fact
that the battery no longer is connected.
The charge remains due to the electro-
static field between the plates. The large
number of opposite charges exert an at-
tractive force across the small distance
between plates, as illustrated in Fig 4.29B.

If a wire is touched between the two
plates (short-circuiting them), the excess
electrons on the bottom plate flow through
the wire to the upper plate, restoring elec-
trical neutrality. The plates are dis-
charged.

These two plates represent an electrical
capacitor, a device possessing the prop-
erty of storing electrical energy in the
electric field between its plates. During
the time the electrons are moving — that
is, while the capacitor is being charged or
discharged — a current flows in the cir-
cuit even though the circuit apparently is
broken by the gap between the capacitor
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plates. The current flows only during the
time of charge and discharge, however,
and this time is usually very short. There
can be no continuous flow of direct cur-
rent through a capacitor.

Fig 4.30 demonstrates the voltage and
current in the circuit, first, at the moment
the switch is closed to charge the capaci-
tor and, second, at the moment the short-
ing switch is closed to discharge the unit.
Note that the periods of charge and
discharge are very short, but that they are
not zero. This finite charging and
discharging time can be lengthened and
will prove useful later in timing circuits.

Although dc cannot pass through a
capacitor, alternating current can. As fast
as one plate is charged positively by the
positive excursion of the alternating cur-
rent, the other plate is being charged nega-
tively. Positive charges flowing into one
plate causes a current to flow out of the
other plate during one half of the cycle,
resulting in a negative charge on that plate.
The reverse occurs during the second half
of the cycle.

The charge or quantity of electricity that
can be held on the capacitor plates is pro-
portional to the applied voltage and to the
capacitance of the capacitor:

CE  Q = (43)

where:
Q = charge in coulombs,
C = capacitance in farads, and
E = electrical potential in volts.

The energy stored in a capacitor is
also a function of electrical potential and
capacitance:

2

C E
  W

2
= (44)

where:
W = energy in joules (watt-seconds),
E = electrical potential in volts (some

texts use V instead of E), and
C = capacitance in farads.

The numerator of this expression can be
derived easily from the definitions for
charge, capacitance, current, power and
energy. The denominator is not so obvi-
ous, however. It arises because the volt-
age across a capacitor is not constant, but
is a function of time. The average voltage
over the time interval determines the
energy stored. The time dependence of the
capacitor voltage is a very useful prop-
erty; see the section on time constants.

UNITS OF CAPACITANCE AND
CAPACITOR CONSTRUCTION

A capacitor consists, fundamentally, of
two plates separated by an insulator or

Table 4.5
Relative Dielectric Constants of Common Capacitor Dielectric Materials

(O)rganic or
Material Dielectric Constant (k) (I)norganic

Vacuum 1 (by definition) I
Air 1.0006 I
Ruby mica 6.5 - 8.7 I
Glass (flint) 10 I
Barium titanate (class I) 5 - 450 I
Barium titanate (class II) 200 - 12000 I
Kraft paper ≈ 2.6 O
Mineral Oil ≈ 2.23 O
Castor Oil ≈ 4.7 O
Halowax ≈ 5.2 O
Chlorinated diphenyl ≈ 5.3 O
Polyisobutylene ≈ 2.2 O
Polytetrafluoroethylene ≈ 2.1 O
Polyethylene terephthalate ≈ 3 O
Polystyrene ≈ 2.6 O
Polycarbonate ≈ 3.1 O
Aluminum oxide ≈ 8.4 I
Tantalum pentoxide ≈ 28 I
Niobium oxide ≈ 40 I
Titanium dioxide ≈ 80 I

(Adapted from: Charles A. Harper, Handbook of Components for
Electronics, p 8-7.)

Fig 4.31 — A multiple-plate capacitor.
Alternate plates are connected to each
other.

dielectric. The larger the plate area
and the smaller the spacing between the
plates, the greater the capacitance. The
capacitance also depends on the kind of
insulating material between the plates; it
is smallest with air insulation or a vacuum.
Substituting other insulating materials for
air may greatly increase the capacitance.

The ratio of the capacitance with a
material other than a vacuum or air
between the plates to the capacitance of
the same capacitor with air insulation is
called the dielectric constant, or K, of that
particular insulating material. The dielec-
tric constants of a number of materials
commonly used as dielectrics in capaci-
tors are given in Table 4.5. For example,
if a sheet of polystyrene is substituted for
air between the plates of a capacitor, the
capacitance will be 2.6 times greater.

The basic unit of capacitance, the abil-
ity to store electrical energy in an elec-
trostatic field, is the farad. This unit is
generally too large for practical radio
work, however. Capacitance is usually
measured in microfarads (abbreviated
µF), nanofarads (abbreviated nF) or pico-
farads (pF). The microfarad is one mil-
lionth of a farad  (10–6 F), the nanofarad is
one thousandth of a microfarad (10–9 F)
and the picofarad is one millionth of a
microfarad (10–12 F).

In practice, capacitors often have more
than two plates, the alternate plates being
connected to form two sets, as shown in
Fig 4.31. This practice makes it possible to

obtain a fairly large capacitance in a small
space, since several plates of smaller indi-
vidual area can be stacked to form the
equivalent of a single large plate of the
same total area. Also, all plates except the
two on the ends are exposed to plates of the
other group on both sides, and so are twice
as effective in increasing the capacitance.

The formula for calculating capacitance
from these physical properties is:

d

1)(n AK  0.2248
  C

−
= (45)

where:
C = capacitance in pF,
K = dielectric constant of material

between plates,
A = area of one side of one plate in

square inches,

chap4.pmd 8/13/2004, 3:52 PM19



4.20 Chapter 4

d = separation of plate surfaces in
inches, and

n = number of plates.

If the area (A) is in square centimeters
and the separation (d) is in centimeters,
then the formula for capacitance becomes

d

 1)(n AK  0.0885
  C

−
= (46)

If the plates in one group do not have the
same area as the plates in the other, use the
area of the smaller plates.

Example: What is the capacitance of  2
copper plates, each 1.50 square inches in
area, separated by a distance of 0.00500
inch, if the dielectric is air?

d

1)  (n AK  0.2248
  C

−
=

0.00500

1)  (2 1.50  1  0.2248
  C

−××
=

pF 67.4  C =

Fig 4.32 — Fixed-value capacitors are shown in parts A and B. Aluminum electrolytic capacitors are pictured near the center
of photo A. The small tear-drop units to the left of center are tantalum electrolytic capacitors. The rectangular units are
silvered-mica, polystyrene film and monolithic ceramic. At the right edge is a disc-ceramic capacitor and near the top right
corner is a surface-mount capacitor. B shows a large “computer-grade” electrolytic. These have very low equivalent series
resistance (ESR) and are often used as filter capacitors in switch-mode power supplies, and in series-strings for high-voltage
supplies of RF power amplifiers. Parts C and D show a variety of variable capacitors, including air variable capacitors and
mica compression units. Part E shows a vacuum variable capacitor such as is sometimes used in high-power amplifier
circuits. The 1/4-inch-ruled graph paper backgrounds provide size comparisons.

(B)

(A)

(C)

(D) (E)

KINDS OF CAPACITORS AND
THEIR USES

The capacitors used in radio work differ
considerably in physical size, construc-
tion and capacitance. Representative
kinds are shown in Fig 4.32. In variable
capacitors, which are almost always con-
structed with air for the dielectric, one set
of plates is made movable with respect to
the other set so the capacitance can be
varied. Fixed capacitors — those having a
single, nonadjustable value of capacitance
— can also be made with metal plates and
with air as the dielectric.

Fixed capacitors are usually con-
structed from plates of metal foil with a
thin solid or liquid dielectric sandwiched
between, so a relatively large capacitance
can be obtained in a small unit. The solid
dielectrics commonly used are mica, pa-
per and special ceramics. An example of a
liquid dielectric is mineral oil. Electrolytic
capacitors use aluminum-foil plates with
a semiliquid conducting chemical com-
pound between them. The actual dielec-
tric is a very thin film of insulating
material that forms on one set of plates
through electrochemical action when a
dc voltage is applied to the capacitor. The
capacitance obtained with a given plate
area in an electrolytic capacitor is very

large compared to capacitors having other
dielectrics, because the film is so thin —
much less than any thickness practical
with a solid dielectric.

The use of electrolytic and oil-filled
capacitors is confined to power-supply fil-
tering and audio-bypass applications be-
cause their dielectrics have high losses at
higher frequencies. Mica and ceramic ca-
pacitors are used throughout the frequency
range from audio to several hundred
megahertz.

New dielectric materials appear from
time to time and represent improvements
in capacitor performance. Silvered-mica
capacitors, formed by spraying thin coats
of silver on each side of the mica insulat-
ing sheet, improved the stability of mica
capacitors in circuits sensitive to tempera-
ture changes. Polystyrene and other syn-
thetic dielectrics, along with tantalum
electrolytics, have permitted the size of
capacitors to shrink per unit of capaci-
tance.

VOLTAGE RATINGS AND
BREAKDOWN

When high voltage is applied to the
plates of a capacitor, considerable force is
exerted on the electrons and nuclei of the
dielectric. The dielectric is an insulator;
its electrons do not become detached from

chap4.pmd 8/13/2004, 3:52 PM20



Electrical Fundamentals 4.21

atoms the way they do in conductors. If
the force is great enough, however, the
dielectric will break down. Failed dielec-
trics usually puncture and offer a low-re-
sistance current path between the two
plates.

The breakdown voltage a dielectric can
withstand depends on the chemical com-
position and thickness of the dielectric.
Breakdown voltage is not directly propor-
tional to the thickness; doubling the thick-
ness does not quite double the breakdown
voltage. Gas dielectrics also break down,
as evidenced by a spark or arc between the
plates. Spark voltages are generally given
with the units kilovolts per centimeter. For
air, the spark voltage or Vs may range from
more than 120 kV/cm for gaps as narrow
as 0.006 cm down to 28 kV/cm for gaps as
wide as 10 cm. In addition, a large number
of variables enter into the actual break-
down voltage in a real situation. Among
the variables are the electrode shape, the
gap distance, the air pressure or density,
the voltage, impurities in the air (or any
other dielectric material) and the nature of
the external circuit (with air, for instance,
the humidity affects conduction on the
surface of the capacitor plate).

Dielectric breakdown occurs at a lower
voltage between pointed or sharp-edged
surfaces than between rounded and pol-
ished surfaces. Consequently, the break-
down voltage between metal plates of any
given spacing in air can be increased by
buffing the edges of the plates. With most
gas dielectrics such as air, once the volt-
age is removed, the arc ceases and the
capacitor is ready for use again. If the
plates are damaged so they are no longer
smooth and polished, they may have to be
polished or the capacitor replaced. In con-
trast, solid dielectrics are permanently
damaged by dielectric breakdown, and
often will totally short out and melt or
explode.

A thick dielectric must be used to with-
stand high voltages. Since the capacitance
is inversely proportional to dielectric
thickness (plate spacing) for a given plate
area, a high-voltage capacitor must have
more plate area than a low-voltage one of
the same capacitance. High-voltage, high-
capacitance capacitors are therefore physi-
cally large.

Dielectric strength is specified in terms
of a dielectric withstanding voltage
(DWV), given in volts per mil (0.001 inch)
at a specified temperature. Taking into
account the design temperature range of a
capacitor and a safety margin, manufac-
turers specify dc working voltage (dcwv)
to express the maximum safe limits of dc
voltage across a capacitor to prevent
dielectric breakdown.

It is not safe to connect capacitors
across an ac power line unless they are
rated for such use. Capacitors with dc rat-
ings may short the line. Several manufac-
turers make capacitors specifically rated
for use across the ac power line.

For use with other ac signals, the peak
value of ac voltage should not exceed the
dc working voltage, unless otherwise
specified in component ratings. In other
words, the RMS value of ac should be
0.707 times the dcwv value or lower. With
many types of capacitors, further derating
is required as the operating frequency
increases. An additional safety margin is
good practice.

Any two surfaces having different elec-
trical potentials, and which are close
enough to exhibit a significant electro-
static field, constitute a capacitor. The
arrangement of circuit components and
leads sometimes results in the creation of
unintended capacitors. This is called stray
capacitance: It often results in the passage
of signals in ways that disrupt the normal
operation of a circuit. Good design mini-
mizes stray capacitance.

Stray capacitance may have a greater
affect in a high-impedance circuit because
the capacitive reactance may be a greater
percentage of the circuit impedance. Also,
because stray capacitance often appears
in parallel with the circuit, the stray
capacitor may bypass more of the desired
signal at higher frequencies. Stray capaci-
tance can often adversely affect sensitive
circuits.

For further information about the physi-
cal and electrical characteristics of vari-
ous types of capacitors in actual use, see
the Real-World Component Character-
istics chapter.

CAPACITORS IN SERIES AND
PARALLEL

When a number of capacitors are con-
nected in parallel, as in Fig 4.33A, the
total capacitance of the group is equal to
the sum of the individual capacitances:

ntotal C  ...  C4 C3  C2  C1  C +++++= (47)

When two or more capacitors are con-
nected in series, as in Fig 4.33B, the total
capacitance is less than that of the small-
est capacitor in the group. The rule for
finding the capacitance of a number of
series-connected capacitors is the same as
that for finding the resistance of a number
of parallel-connected resistors.

n

total

C
1

  ...  
C3
1

  
C2
1

  
C1
1

1
  C

++++
=

(48)

For only two capacitors in series, the

Fig 4.33 — Capacitors in parallel are
shown at A, and in series at B.

formula becomes:

C2  C1

C2  C1
  Ctotal +

×
= (49)

The same units must be used through-
out; that is, all capacitances must be
expressed in either µF, nF or pF. Different
units cannot be used in the same equation.

Capacitors are usually connected in par-
allel to obtain a larger total capacitance
than is available in one unit. The largest
voltage that can be applied safely to a par-
allel-connected group of capacitors is the
voltage that can be applied safely to the
one having the lowest voltage rating.

When capacitors are connected in series,
the applied voltage is divided between
them according to Kirchhoff’s Voltage
Law. The situation is much the same as
when resistors are in series and there is a

Fig 4.34 — An example of capacitors
connected in series. The text shows
how to find the voltage drops, E1
through E3.
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voltage drop across each. The voltage that
appears across each series-connected
capacitor is inversely proportional to its
capacitance, as compared with the capaci-
tance of the whole group. (This assumes
ideal capacitors.)

Example: Three capacitors having
capacitances of 1, 2 and 4 µF, respectively,
are connected in series as shown in Fig
4.34. The voltage across the entire series
is 2000 V. What is the total capacitance?
(Since this is a calculation using theoreti-
cal values to illustrate a technique, we will
not follow the rules of significant figures
for the calculations.)

C3
1

  
C2
1

  
C1
1

1
  Ctotal

++
=

       
µF 4
1

  
µF 2
1

  
µF 1
1

1
 

++
=

µF 0.5714  
7

µF 4
  

µF 4
7
1

  Ctotal ===

The voltage across each capacitor is
proportional to the total capacitance
divided by the capacitance of the capaci-
tor in question. So the voltage across C1
is:

V 1143  V 2000  
µF 1

µF 0.5714
  E1 =×=

Similarly, the voltages across C2 and
C3 are:

V 571  V 2000  
µF 2

µF 0.5714
  E2 =×=

and

V 286  V 2000  
µF 4

µF 0.5714
  E3 =×=

The sum of these three voltages equals
2000 V, the applied voltage.

Capacitors may be connected in series
to enable the group to withstand a larger
voltage than any individual capacitor is
rated to withstand. The trade-off is a
decrease in the total capacitance. As shown
by the previous example, the applied volt-
age does not divide equally between the
capacitors except when all the capaci-
tances are precisely the same. Use care to
ensure that the voltage rating of any
capacitor in the group is not exceeded. If
you use capacitors in series to withstand a
higher voltage, you should also connect an
“equalizing resistor” across each capaci-
tor. Use resistors with about 100 Ω per volt
of supply voltage, and be sure they have
sufficient power-handling capability for

the circuit. With real capacitors, the leak-
age resistance of the capacitors may have
more effect on the voltage division than
does the capacitance. A capacitor with a
high parallel resistance will have the high-
est voltage across it. Adding equalizing
resistors reduces this effect.

RC TIME CONSTANT
Connecting a dc voltage source directly

to the terminals of a capacitor charges the
capacitor to the full source voltage almost
instantaneously. Any resistance added to
the circuit as in Fig 4.35A limits the cur-
rent, lengthening the time required for the
voltage between the capacitor plates to
build up to the source-voltage value. Dur-
ing this charging period, the current flow-
ing from the source into the capacitor
gradually decreases from its initial value.
The increasing voltage stored in the
capacitor’s electric field offers increasing
opposition to the steady source voltage.

While it is being charged, the voltage
between the capacitor terminals is an
exponential function of time, and is given
by:














−=

−
RC
1

 
  1E  V(t) e (50)

where:
V(t) = capacitor voltage in volts at time t;
E = potential of charging source in volts;
t = time in seconds after initiation of

charging current;
e = natural logarithmic base = 2.718;
R = circuit resistance in ohms; and
C = capacitance in farads.

Theoretically, the charging process is
never really finished, but eventually the
charging current drops to an unmeasurable
value. For many purposes, it is convenient
to let t = RC. Under this condition, the
above equation becomes:

V(RC) = E(1 – e–1) ≈ 0.632 E (51)

The product of R in ohms times C in

farads is called the time constant of the
circuit and is the time in seconds required
to charge the capacitor to 63.2% of the
supply voltage. (The lower-case Greek
letter tau [τ] is often used to represent  the
time constant in electronics circuits.)
After two time constants (t = 2τ) the
capacitor charges another 63.2% of the
difference between the capacitor voltage
at one time constant and the supply volt-
age, for a total charge of 86.5%. After
three time constants the capacitor reaches
95% of the supply voltage, and so on, as
illustrated in the curve of Fig 4.36A. After
5 RC time periods, a capacitor is consid-
ered fully charged, having reached
99.24% of the source voltage.

If a charged capacitor is discharged
through a resistor, as indicated in Fig
4.35B, the same time constant applies for
the decay of the capacitor voltage. A
direct short circuit applied between the
capacitor terminals would discharge the
capacitor almost instantly. The resistor, R,
limits the current, so the capacitor voltage
decreases only as rapidly as the capacitor
can discharge itself through R. A capaci-
tor discharging through a resistance

Fig 4.35 — An illustration of the time
constant in an RC circuit.

Fig 4.36 — At A, the curve shows how
the voltage across a capacitor rises,
with time, when charged through a
resistor. The curve at B shows the way
in which the voltage decreases across
a capacitor when discharging through
the same resistance. For practical
purposes, a capacitor may be
considered charged or discharged after
5 RC periods.
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exhibits the same time-constant charac-
teristics (calculated in the same way as
above) as a charging capacitor. The volt-
age, as a function of time while the capaci-
tor is being discharged, is given by:

 e E  V(t) RC
1

 












=

−

                                (52)

where t = time in seconds after initia-
tion of discharge.

Again, by letting t = RC, the time con-
stant of a discharging capacitor represents
a decrease in the voltage across the ca-
pacitor of about 63.2%. After 5 time-con-
stant periods, the capacitor is considered
fully discharged, since the voltage has
dropped to less than 1% of the full-charge
voltage.

Time constant calculations have many
uses in radio work. The following
examples are all derived from practical-
circuit applications.

Example 1: A 100-µF capacitor in a
high-voltage power supply is shunted by a
100-kΩ resistor. What is the minimum
time before the capacitor may be consid-
ered fully discharged? Since full discharge
is approximately 5 RC periods,

seconds 10  50000 

F  10  100  Ω 10  100  5  RC  5 t 

3-

-63

×=

××××=×=

s 50.0 t =

Note: Although waiting almost a minute
for the capacitor to discharge seems safe
in this high-voltage circuit, never rely
solely on capacitor-discharging resistors
(often called bleeder resistors). Be cer-
tain the power source is removed and the
capacitors are totally discharged before
touching any circuit components.

Example 2: Smooth CW keying without
clicks requires approximately 5 ms (0.005
s) of delay in both the make and break
edges of the waveform, relative to full
charging and discharging of a capacitor in
the circuit. What typical values might a
builder choose for an RC delay circuit in
a keyed voltage line? Since full charge and
discharge require 5 RC periods,

s 0.001  
5

s 0.005
  

5

t
  RC ===

Any combination of resistor and capa-
citor whose values, when multiplied
together, equal 0.001 would do the job. A
typical capacitor might be 0.05 µF. In that
case, the necessary resistor would be:

F 10  0.05

s 0.001
 R 

6-×
=

     kΩ20  Ω 20000  Ω 10  0.02 6 ==×=
In practice, a builder would likely

either experiment with values or use a
variable resistor. The final value would
be selected after monitoring the waveform
on an oscilloscope.

Example 3: Many modern integrated cir-
cuit (IC) devices use RC circuits to control
their timing. To match their internal cir-
cuitry, they may use a specified threshold
voltage as the trigger level. For example, a
certain IC uses a trigger level of 0.667 of
the supply voltage. What value of capaci-
tor and resistor would be required for a
4.5-second timing period?

First we will solve equation 50 for the
time constant, RC. The threshold voltage
is 0.667 times the supply voltage, so we
use this value for V(t).














−=

−
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e  1E  (t) V
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−
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e  1 E  E 0.667

0.667  1 e
RC

t

−=
−

(0.333) ln  e ln RC
t

 
=











 −

1.10 
RC

t
 −=−

We want to find a capacitor and resistor
combination that will produce a 4.5 s

timing period, so we substitute that value
for t.

s 4.1  
1.10

s 4.5
  RC ==

If we select a value of 10 µF, we can
solve for R.

 kΩ410  Ω 10  0.41  
F 10  10

s 4.1
 R 6

6 
=×=

×
=

−

A 1% tolerance resistor and capacitor
will give good precision. You could also
use a variable resistor and an accurate
method to measure the time to set the cir-
cuit to a 4.5 s period.

As the examples suggest, RC circuits
have numerous applications in electron-
ics. The number of applications is
growing steadily, especially with the
introduction of integrated circuits con-
trolled by part or all of a capacitor charge
or discharge cycle.

ALTERNATING CURRENT IN
CAPACITANCE

Everything said about capacitance and
capacitors in a dc circuit applies to capaci-
tance in an ac circuit with one major
exception. Whereas a capacitor in a dc cir-
cuit will appear as an open circuit except
for the brief charge and discharge periods,
the same capacitor in an ac circuit will
both pass and limit current. A capacitor in
an ac circuit does not handle electrical
energy like a resistor, however. Instead of
converting the energy to heat and dissi-
pating it, capacitors store electrical energy
and return it to the circuit.

In Fig 4.37 a sine-wave ac voltage having
a maximum value of 100 is applied to a ca-

Fig 4.37 — Voltage and current phase relationships when an alternating current is
applied to a capacitor.
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pacitor. In the period OA, the applied volt-
age increases from 0 to 38; at the end of this
period the capacitor is charged to that volt-
age. In interval AB the voltage increases to
71; that is, 33 V additional. During this in-
terval a smaller quantity of charge has been
added than in OA, because the voltage rise
during interval AB is smaller. Consequently
the average current during interval AB is
smaller than during OA. In the third interval,
BC, the voltage rises from 71 to 92, an in-
crease of 21 V. This is less than the voltage
increase during AB, so the quantity of elec-
tricity added is less; in other words, the av-
erage current during interval BC is still
smaller. In the fourth interval, CD, the volt-
age increases only 8 V; the charge added is
smaller than in any preceding interval and
therefore the current also is smaller.

By dividing the first quarter cycle into a
very large number of intervals, it could be
shown that the current charging the ca-
pacitor has the shape of a sine wave, just
as the applied voltage does. The current is
largest at the beginning of the cycle and
becomes zero at the maximum value of the
voltage, so there is a phase difference of
90° between the voltage and the current.
During the first quarter cycle the current is
flowing in the normal direction through
the circuit, since the capacitor is being
charged. Hence the current is positive, as
indicated by the dashed line in Fig 4.37.

In the second quarter cycle — that is, in
the time from D to H — the voltage
applied to the capacitor decreases. During
this time the capacitor loses its charge.
Applying the same reasoning, it is evident
that the current is small in interval DE and
continues to increase during each succeed-
ing interval. The current is flowing against
the applied voltage, however, because the
capacitor is discharging into the circuit.
The current flows in the negative direction
during this quarter cycle.

The third and fourth quarter cycles
repeat the events of the first and second,
respectively, with this difference: the
polarity of the applied voltage has reversed,
and the current changes to correspond. In
other words, an alternating current flows in
the circuit because of the alternate charg-
ing and discharging of the capacitance. As
shown in Fig 4.37, the current starts its
cycle 90° before the voltage, so the current
in a capacitor leads the applied voltage by
90°. You might find it helpful to remember
the word “ICE” as a mnemonic because the
current (I) in a capacitor (C) comes before
voltage (E). We can also turn this statement
around, to say the voltage in a capacitor
lags the current by 90°.

CAPACITIVE REACTANCE
The quantity of electric charge that can

be placed on a capacitor is proportional to

the applied voltage and the capacitance.
This amount of charge moves back and
forth in the circuit once each cycle; hence,
the rate of movement of charge (the cur-
rent) is proportional to voltage, capaci-
tance and frequency. When the effects of
capacitance and frequency are considered
together, they form a quantity that plays a
part similar to that of resistance in Ohm’s
Law. This quantity is called reactance.
The unit for reactance is the ohm, just as in
the case of resistance. The formula for
calculating the reactance of a capacitor at
a given frequency is:

C f π 2

1
  XC = (53)

where:
XC = capacitive reactance in ohms,
f = frequency in hertz,
C = capacitance in farads
π = 3.1416

Note: In many references and texts, the
symbol ω is used to represent 2 π f. In such
references, equation 53 would read

C ω
1

  XC =

Although the unit of reactance is the
ohm, there is no power dissipated in reac-
tance. The energy stored in the capacitor
during one portion of the cycle is simply
returned to the circuit in the next.

The fundamental units for frequency
and capacitance (hertz and farads) are too
cumbersome for practical use in radio cir-
cuits. If the capacitance is specified in
microfarads (µF) and the frequency is in
megahertz (MHz), however, the reactance
calculated from the previous formula
retains the unit ohms.

Example: What is the reactance of a
capacitor of 470 pF (0.000470 µF) at a
frequency of 7.15 MHz?

C f π 2

1
  XC =

µF 0.000470   MHz7.15   2

1
 

××π
=

Ω 47.4  
0.0211

Ω 1
 ==

Example: What is the reactance of the
same capacitor, 470 pF (0.000470 µF), at
a frequency of 14.29 MHz?

C f π 2

1
  XC =

µF 0.000470   MHz14.30  2

1
 

××π
=

 Ω 23.7  
0.0422

Ω 1
 ==

Fig 4.38 — A
graph showing
the general
relationship of
reactance to
frequency for a
fixed value of
capacitance.

The rate of change of voltage in a sine
wave increases directly with the fre-
quency. Therefore, the current into the
capacitor also increases directly with fre-
quency. Since, for a given voltage, an
increase in current is equivalent to a
decrease in reactance, the reactance of
any capacitor decreases proportionally as
the frequency increases. Fig 4.38 traces
the decrease in reactance of an arbitrary-
value capacitor with respect to increasing
frequency. The only limitation on the
application of the graph is the physical
make-up of the capacitor, which may
favor low-frequency uses or high-fre-
quency applications.

Among other things, reactance is a mea-
sure of the ability of a capacitor to limit
the flow of ac in a circuit. For some pur-
poses it is important to know the ability of
a capacitor to pass current. This ability is
called susceptance, and it corresponds to
conductance in resistive circuit elements.
In an ideal capacitor with no resistive
losses — that is, no energy lost as heat —
susceptance is simply the reciprocal of
reactance. Hence,

CX

1
  =B               (54)

where:
XC is the reactance, and
B is the susceptance.

The unit of susceptance (and conduc-
tance and admittance) is the siemens
(abbreviated S). In literature only a few
years old, the term mho is also sometimes
given as the unit of susceptance (as well as
of conductance and admittance). The role
of reactance and susceptance in current
and other Ohm’s Law calculations will
appear in a later section of this chapter.
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Fig 4.40 — The magnetic field around a
conductor carrying an electrical
current. If the thumb of your right hand
points in the direction of the
conventional current (plus to minus),
your fingers curl in the direction of the
magnetic field around the wire.

Fig 4.41 — Cross section of an inductor
showing its flux lines and overall
magnetic field.

Fig 4.42 — A coil of wire wound around
a laminated iron core.

Fig 4.39 — The magnetic field and
poles of a permanent magnet. The
magnetic field direction is from the
north to the south pole.

Inductance and Inductors
A second way to store electrical energy

is in a magnetic field. This phenomenon is
called inductance, and the devices that
exhibit inductance are called inductors.
Inductance depends upon some basic
underlying magnetic properties. See
Chapter 6 for more information on practi-
cal inductor applications and problems.

MAGNETISM

Magnetic Fields, Flux and Flux
Density

Magnetic fields are closed fields that sur-
round a magnet, as illustrated in Fig 4.39.
The field consists of lines of magnetic
force or flux. It exhibits polarity, which is
conventionally indicated as north-seeking
and south-seeking poles, or north and
south poles for short. Magnetic flux is
measured in the SI unit of the
weber, which is a volt second (Wb = Vs).
In the centimeter gram second (cgs)

metric system units, we measure magnetic
flux in maxwells (1Mx = 10-8 Wb).

The field intensity, known as the flux
density, decreases with the square of the
distance from the source. Flux density (B)
is represented in gauss (G), where one
gauss is equivalent to one line of force per
square centimeter of area across the field
(G = Mx / cm2). The gauss is a cgs unit. In
SI units, flux density is represented by the
tesla (T), which is one weber per square
meter (T = Wb/m2).

Magnetic fields exist around two types
of materials. First, certain ferromagnetic
materials contain molecules aligned so
as to produce a magnetic field. Lodestone,
Alnico and other materials with high
retentivity form permanent magnets
because they retain their magnetic proper-
ties for long periods. Other materials, such
as soft iron, yield temporary magnets that
lose their magnetic properties rapidly.

The second type of magnetic material is
an electrical conductor with a current
through it. As shown in Fig 4.40, moving
electrons are surrounded by a closed mag-
netic field lying in planes perpendicular to
their motion. The needle of a compass
placed near a wire carrying direct current
will be deflected by the magnetic field
around the wire. This phenomenon is one
aspect of a two-way relationship: a mov-
ing magnetic field whose lines cut across
a wire will induce an electrical current in
the wire, and an electrical current will pro-
duce a magnetic field.

If the wire is coiled into a solenoid, the
magnetic field greatly intensifies as the
individual flux lines add together. Fig 4.41
illustrates the principle by showing a coil
section. Note that the resulting electro-

magnet has magnetic properties identical
in principle to those of a permanent mag-
net, including poles and lines of force or
flux. The strength of the magnetic field
depends on several factors: the number of
turns of the coil, the magnetic properties
of the materials surrounding the coil (both
inside and out), the length of the magnetic
path and the amplitude of the current.

The magnetizing or magnetomotive
force that produces a flux or total mag-
netic field is measured in gilberts (Gb).
The force in gilberts equals 0.4π (approxi-
mately 1.257) times the number of turns
in the coil times the current in amperes.
(The SI unit of magnetomotive force is the
ampere turn, abbreviated A, just like the
ampere.) The magnetic field strength, H,
measured in oersteds (Oe) produced by
any particular magnetomotive force (mea-
sured in gilberts) is given by:

l

I  Nπ 0.4
  H = (55)

where:
H = magnetic field strength in oersteds,
N = number of turns,
I = dc current in amperes,
π = 3.1416, and
l = mean magnetic path length in cen-

timeters.
The gilbert and oersted are cgs units.

These are given here because most ama-
teur calculations will use these units. You
may also see the preferred SI units in some
literature. The SI unit of magnetic field
strength is the ampere (turn) per meter.

A force is required to produce a given
magnetic field strength. This implies that
there is a resistance, called reluctance, to
be overcome.
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Core Properties: Permeability,
Saturation, Reluctance, Hysteresis

The nature of the material within the
coil of an electromagnet, where the lines
of force are most concentrated, has the
greatest effect upon the magnetic field
established by the coil. All materials are
compared to air. The ratio of flux density
produced by a given material compared to
the flux density produce by an air core is
the permeability of the material. Suppose
the coil in Fig 4.42 is wound on an iron
core having a cross-sectional area of
2 square inches. When a certain current is
sent through the coil, it is found that there
are 80000 lines of force in the core. Since
the area is 2 square inches, the magnetic
flux density is 40000 lines per square inch.
Now suppose that the iron core is removed
and the same current is maintained in the
coil. Also suppose the flux density with-
out the iron core is found to be 50 lines per
square inch. The ratio of these flux densi-
ties, iron core to air, is 40000 / 50 or 800,
the core’s permeability.

Permeabilities as high as 106 have been
attained. The three most common types of
materials used in magnetic cores are these:

A. stacks of laminated steel sheets (for
power and audio applications);

B. various ferrite compounds (for cores
shaped as rods, toroids, beads and numer-
ous other forms); and

C. powdered iron (shaped as slugs, tor-
oids and other forms for RF inductors).

Brass has a permeability less than 1. A
brass core inserted into a coil will decrease
the inductance compared to an air core.

The permeability of silicon-steel power-
transformer cores approaches 5000 in

Table 4.6
Properties of Some High-Permeability Materials

Material       Approximate Percent Composition Maximum
Permeability

Fe Ni Co Mo Other
Iron 99.91 — — — — 5000
Purified Iron 99.95 — — — — 180000
4% silicon-iron 96 — — — 4 Si 7000
45 Permalloy 54.7 45 — — 0.3 Mn 25000
Hipernik 50 50 — — — 70000
78 Permalloy 21.2 78.5 — — 0.3 Mn 100000
4-79 Permalloy 16.7 79 — — 0.3 Mn 100000
Supermalloy 15.7 79 — 5 0.3 Mn 800000
Permendur 49.7 — 50 — 0.3 Mn 5000
2V Permendur 49 — 49 — 2 V 4500
Hiperco 64 — 34 — 2 Cr 10000
2-81 Permalloy* 17 81 — 2 — 130
Carbonyl iron* 99.9 — — — — 132
Ferroxcube III** (MnFe2O4 + ZnFe2O4) 1500

Note: all materials in sheet form except * (insulated powder) and ** (sintered powder).
(Reference: L. Ridenour, ed., Modern Physics for the Engineer, p 119.)

Fig 4.44 — A typical hysteresis curve
for a magnetic core, showing the
additional energy needed to overcome
residual flux.

Fig 4.43 — A typical permeability curve
for a magnetic core, showing the point
where saturation begins.

Fig 4.45 — Photos and schematic symbols for representative inductors. A, an air-
core inductor; B, a variable inductor with a nonmagnetic slug and C, an inductor
with a toroidal magnetic core. The 1/4-inch-ruled graph paper background provides
a size comparison.

high-quality units. Powdered-iron cores
used in RF tuned circuits range in perme-
ability from 3 to about 35, while ferrites
of nickel-zinc and manganese-zinc range
from 20 to 15000. Table 4.6 lists some
common magnetic materials, their com-
position and their permeabilities. Core
materials are often frequency sensitive,
exhibiting excessive losses outside the
frequency band of intended use.

As a measure of the ease with which a
magnetic field may be established in a
material as compared with air, permeabil-
ity (µ) corresponds roughly to electrical
conductivity. Permeability is given as:
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H

B
  µ = (56)

where:
B is the flux density in gauss, and
H is the magnetic field strength in oer-

steds.
Unlike electrical conductivity, which is

independent of other electrical param-
eters, the permeability of a magnetic
material varies with the flux density. At
low flux densities (or with an air core),
increasing the current through the coil will
cause a proportionate increase in flux. But
at very high flux densities, increasing the
current beyond a certain point may cause
no appreciable change in the flux. At this
point, the core is said to be saturated. Satu-
ration causes a rapid decrease in perme-
ability, because it decreases the ratio of
flux lines to those obtainable with the
same current using an air core. Fig 4.43
displays a typical permeability curve,
showing the region of saturation. The satu-
ration point varies with the makeup of dif-
ferent magnetic materials. Air and other
nonmagnetic materials do not saturate and
have a permeability of one. Reluctance,
which is the reciprocal of permeability and
corresponds roughly to resistance in an
electrical circuit, is also one for air and
other nonmagnetic cores.

The retentivity of magnetic core materi-
als creates another potential set of losses
caused by hysteresis. Fig 4.44 illustrates the
change of flux density (B) with a changing
magnetizing force (H). From starting point
A, with no residual flux, the flux reaches
point B at the maximum magnetizing force.
As the force decreases, so too does the flux,
but it does not reach zero simultaneously
with the force at point D. As the force con-
tinues in the opposite direction, it brings
the flux density to point C. As the force
decreases to zero, the flux once more lags
behind. In effect, a reverse force is neces-
sary to overcome the residual magnetism
retained by the core material, a coercive
force. The result is a power loss to the mag-
netic circuit, which appears as heat in the
core material. Air cores are immune to hys-
teresis effects and losses.

INDUCTANCE AND DIRECT
CURRENT

In an electrical circuit, any element
having a magnetic field is called an induc-
tor. Fig 4.45 shows schematic-diagram
symbols and photographs of a few repre-
sentative inductors: an air-core inductor,
a slug-tuned variable inductor with a
nonmagnetic core and an inductor with a
magnetic (iron) core.

The transfer of energy to the magnetic
field of an inductor represents work per-

formed by the source of the voltage. Power
is required for doing work, and since power
is equal to current multiplied by voltage,
there must be a voltage drop in the circuit
while energy is being stored in the field.
This voltage drop, exclusive of any voltage
drop caused by resistance in the circuit, is
the result of an opposing voltage induced in
the circuit while the field is building up to
its final value. Once the field becomes con-
stant, the induced voltage or back-voltage
disappears, because no further energy is
being stored. The induced voltage opposes
the voltage of the source and tends to pre-
vent the current from rising rapidly when
the circuit is closed. Fig 4.46A illustrates
the situation of energizing an inductor or
magnetic circuit, showing the relative am-
plitudes of induced voltage and the delayed
rise in current to its full value.

The amplitude of the induced voltage is
proportional to the rate at which the cur-
rent changes (and consequently, the rate
at which the magnetic field changes) and
to a constant associated with the circuit
itself: the inductance (or self-inductance)
of the circuit. Inductance depends on the
physical configuration of the inductor.

Coiling a conductor increases its induc-
tance. In effect, the growing (or shrink-
ing) magnetic field of each turn produces
magnetic lines of force that — in their
expansion (or contraction) — cut across
the other turns of the coil, inducing a volt-
age in every other turn. The mutuality of
the effect multiplies the ability of the
coiled conductor to store electrical energy.

A coil of many turns will have more
inductance than one of few turns, if both
coils are otherwise physically similar.
Furthermore, if an inductor is placed
around a magnetic core, its inductance will
increase in proportion to the permeability
of that core, if the circuit current is below
the point at which the core saturates.

The polarity of an induced voltage is
always such as to oppose any change in
the circuit current. This means that when
the current in the circuit is increasing,
work is being done against the induced
voltage by storing energy in the magnetic
field. Likewise, if the current in the circuit
tends to decrease, the stored energy of the
field returns to the circuit, and adds to the
energy being supplied by the voltage
source. Inductors try to maintain a

Fig 4.46 — Inductive circuit showing and graphing the generation of induced
voltage and the rise of current in an inductor at A, and the decay of current as
power is removed and the coil shorted at B.
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constant current through the circuit. This
phenomenon tends to keep the current
flowing even though the applied voltage
may be decreasing or be removed entirely.
Fig 4.46B illustrates the decreasing but
continuing flow of current caused by the
induced voltage after the source voltage is
removed from the circuit.

The energy stored in the magnetic field
of an inductor is given by the formula:

2

L I
  W

2
= (57)

where:
W = energy in joules,
I = current in amperes, and
L = inductance in henrys.
This formula corresponds to the energy-

storage formula for capacitors: energy
storage is a function of current squared
over time. As with capacitors, the time
dependence of inductor current is a sig-
nificant property; see the section on time
constants.

The basic unit of inductance is the henry
(abbreviated H), which equals an induced
voltage of one volt when the inducing cur-
rent is varying at a rate of one ampere per
second. In various aspects of radio work,
inductors may take values ranging from a
fraction of a nanohenry (nH) through mil-
lihenrys (mH) up to about 20 H.

MUTUAL INDUCTANCE AND
MAGNETIC COUPLING

Mutual Inductance
When two coils are arranged with their

axes on the same line, as shown in Fig
4.47, current sent through coil 1 creates a
magnetic field that cuts coil 2. Conse-
quently, a voltage will be induced in coil
2 whenever the field strength of coil 1 is
changing. This induced voltage is similar
to the voltage of self-induction, but since
it appears in the second coil because of

current flowing in the first, it is a mutual
effect and results from the mutual induc-
tance between the two coils.

When all the flux set up by one coil cuts
all the turns of the other coil, the mutual
inductance has its maximum possible
value. If only a small part of the flux set up
by one coil cuts the turns of the other, the
mutual inductance is relatively small. Two
coils having mutual inductance are said to
be coupled.

The ratio of actual mutual inductance to
the maximum possible value that could
theoretically be obtained with two given
coils is called the coefficient of coupling
between the coils. It is frequently
expressed as a percentage. Coils that have
nearly the maximum possible mutual
inductance (coefficient = 1 or 100%) are
said to be closely, or tightly, coupled. If
the mutual inductance is relatively small
the coils are said to be loosely coupled.
The degree of coupling depends upon the
physical spacing between the coils and
how they are placed with respect to each
other. Maximum coupling exists when
they have a common axis and are as close
together as possible (for example, one
wound over the other). The coupling is
least when the coils are far apart or are
placed so their axes are at right angles.

The maximum possible coefficient of
coupling is closely approached when the
two coils are wound on a closed iron core.
The coefficient with air-core coils may run
as high as 0.6 or 0.7 if one coil is wound
over the other, but will be much less if the
two coils are separated. Although unity
coupling is suggested by Fig 4.47, such
coupling is possible only when the coils
are wound on a closed magnetic core.

Unwanted Couplings: Spikes,
Lightning and Other Pulses

Every conductor passing current has a
magnetic field associated with it — and
therefore inductance — even though the
conductor is not formed into a coil. The
inductance of a short length of straight
wire is small, but it may not be negligible.
If the current through it changes rapidly,
the induced voltage may be appreciable.
This is the case in even a few inches of
wire with an alternating current having a
frequency on the order of 100 MHz or
higher. At much lower frequencies or at
dc, the inductance of the same wire might
be ignored because the induced voltage
would seemingly be negligible.

There are many phenomena, however,
both natural and man-made, which create
sufficiently strong magnetic fields to
induce voltages into straight wires. Many
of them are brief but intense pulses of en-
ergy that act like the turning on of the

switch in a circuit containing self-induc-
tance. Because the fields created grow to
very high levels rapidly, they cut across
wires leading into and out of — and wires
wholly within — electronic equipment,
inducing unwanted voltages by mutual
coupling.

Short-duration, high-level voltage
spikes occur on ac and dc power lines.
Because the field intensity is great, these
spikes may induce voltages upon conduct-
ing elements in sensitive circuits, disrupt-
ing them and even injuring components.
Lightning in the vicinity of the equipment
can induce voltages on power lines and
other conductive paths (even ground con-
ductors) that lead to the equipment loca-
tion. Lightning that seems a safe distance
away can induce large spikes on power
lines that ultimately lead to the equipment.
Closer at hand, heavy equipment with
electrical motors can induce significant
spikes into power lines within the equip-
ment location. Even though the power
lines are straight, the powerful magnetic
field of a spike source can induce damag-
ing voltages on equipment left “plugged
in” during electrical storms or during the
operation of heavy equipment that inad-
equately filters its spikes.

Parallel-wire cables linking elements of
electronic equipment consist of long wires
in close proximity to each other. Signal
pulses can couple both magnetically and
capacitively from one wire to another.
Since the magnetic field of a changing
current decreases as the square of dis-
tance, separating the signal-carrying lines
diminishes inductive coupling. Placing a
grounded wire between signal-carrying
lines reduces capacitive coupling. Unless
they are well-shielded and filtered, how-
ever, the lines are still susceptible to the
inductive coupling of pulses from other
sources.

INDUCTORS IN RADIO WORK
Various facets of radio work make use

of inductors ranging from the tiny up to
the massive. Small values of inductance,
as illustrated by Fig 4.48A, serve mostly
in RF circuits. They may be self-support-
ing air-core or air-wound coils or the
winding may be supported by nonmag-
netic strips or a form. Phenolic, certain
plastics and ceramics are the most com-
mon coil forms for air-core inductors.
These inductors range in value from a few
hundred µH for medium- and high-
frequency circuits down to tenths of a µH
for VHF and UHF work. The smallest val-
ues of inductance in radio work result from
component leads. For VHF work and
higher frequencies, component lead
length is often critical. Circuits may fail

Fig 4.47 — Mutual inductance: When S
is closed, current flows through coil
number 1, setting up a magnetic field
that induces a voltage in the turns of
coil number 2.
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Fig 4.48 — Part A shows small-value air-
wound inductors. Part B shows some
inductors with values in the range of a
few millihenrys and C shows a large
inductor such as might be used in audio
circuits or as power-supply chokes. The
1/4-inch-ruled graph paper background
provides a size comparison.

(A) (B)

(C)

Fig 4.50 — Time constant of an RL
circuit being energized.

Fig 4.49 — Part A shows inductances in
series, and Part B shows inductances
in parallel.

to operate properly because leads are a
little too short or too long.

It is possible to make these solenoid
coils variable by inserting a slug in the
center of the coil. (Slug-tuned coils nor-
mally have a ceramic, plastic or phenolic
insulating form between the conductive
slug and the coil winding.) If the slug
material is magnetic, such as powdered
iron, the inductance increases as the slug
is centered along the length of the coil. If
the slug is brass or some other conductive
but nonmagnetic material, centering the
slug will reduce the coil’s inductance. This
effect stems from the fact that brass has
low electrical resistance and acts as an
effective short-circuited one-turn second-
ary for the coil. (See more on transformer
effects later in this chapter.)

An alternative to air-core inductors for
RF work are toroidal coils wound on cores
composed of powdered iron mixed with a
binder to hold the material together. The
availability of many types and sizes of
powdered-iron cores has made these
inductors popular for low-power fixed-
value service. The toroidal shape concen-
trates the inductor’s field tightly about the
coil, eliminating the need in many cases
for other forms of shielding to limit the
interaction of the inductor’s magnetic
field with the fields of other inductors.

Fig 4.48B shows samples of inductors
in the millihenry range. Among these
inductors are multisection RF chokes
designed to keep RF currents from pass-
ing beyond them to other parts of circuits.

Low-frequency radio work may also use
inductors in this range of values, some-
times wound with litz wire. Litz wire is a
special version of stranded wire, with each
strand insulated from the others. For
audio filters, toroidal coils with values
below 100 mH are useful. Resembling
powdered-iron-core RF toroids, these
coils are wound on ferrite or molybdenum-
permalloy cores having much higher
permeabilities.

Audio and power-supply inductors
appear in Fig 4.48C. Lower values of these

iron-core coils, in the range of a few hen-
rys, are useful as audio-frequency chokes.
Larger values up to about 20 H may be
found in power supplies, as choke filters,
to suppress 120-Hz ripple. Although some
of these inductors are open frame, most
have iron covers to confine the powerful
magnetic fields they produce.

INDUCTANCES IN SERIES AND
PARALLEL

When two or more inductors are con-
nected in series (Fig 4.49A), the total
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inductance is equal to the sum of the indi-
vidual inductances, provided that the coils
are sufficiently separated so that coils are
not in the magnetic field of one another.
That is:

ntotal L  ... L3  L2  L1  L +++=               (58)

If inductors are connected in parallel
(Fig 4.49B), and if the coils are separated
sufficiently, the total inductance is given
by:

n

total

L
1

  ...  
L3
1

  
L2
1

  
L1
1

1
  L

++++
=

(59)

For only two inductors in parallel, the
formula becomes:

L2  L1

L2  L1
  Ltotal +

×
= (60)

Thus, the rules for combining induc-
tances in series and parallel are the same
as those for resistances, assuming that the
coils are far enough apart so that each is
unaffected by another’s magnetic field.
When this is not so, the formulas given
above will not yield correct results.

RL TIME CONSTANT
A comparable situation to an RC circuit

exists when resistance and inductance are
connected in series. In Fig 4.50, first con-
sider L to have no resistance and also con-
sider that R is zero. Closing S1 sends a
current through the circuit. The instanta-
neous transition from no current to a finite
value, however small, represents a rapid
change in current, and a reverse voltage is
developed by the self-inductance of L. The
value of reverse voltage is almost equal
and opposite to the applied voltage. The
resulting initial current is very small.

The reverse voltage depends on the
change in the value of the current and
would cease to offer opposition if the
current did not continue to increase. With
no resistance in the circuit (which, by
Ohm’s Law, would lead to an infinitely
large current), the current would increase
forever, always growing just fast enough
to keep the self-induced voltage equal to
the applied voltage.

When resistance in the circuit limits the
current, Ohm’s Law defines the value that
the current can reach. The reverse voltage
generated in L must only equal the differ-
ence between E and the drop across R,
because the difference is the voltage actu-
ally applied to L. This difference becomes
smaller as the current approaches the final
Ohm’s Law value. Theoretically, the
reverse voltage never quite disappears,
and so the current never quite reaches the
Ohm’s Law value. In practical terms, the

differences become unmeasurable after a
time.

The current at any time after the switch
in Fig 4.50 has been closed, can be found
from:

R

e  1E
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              (61)

where:
I(t) = current in amperes at time t,
E = power supply potential in volts,
t = time in seconds after initiation of

current,
e = natural logarithmic base = 2.718,
R = circuit resistance in ohms, and
L= inductance in henrys.

The time in seconds required for the
current to build up to 63.2% of the maxi-
mum value is called the time constant, and
is equal to L / R, where L is in henrys and
R is in ohms. After each time interval
equal to this constant, the circuit conducts
an additional 63.2% of the remaining cur-
rent. This behavior is graphed in Fig 4.50.
As is the case with capacitors, after 5 time
constants the current is considered to have
reached its maximum value. As with
capacitors, we often use the lower-
case Greek tau (τ) to represent the time
constant.

Example: If a circuit has an inductor of
5.0 mH in series with a resistor of 10 Ω,
how long will it take for the current in the
circuit to reach full value after power is
applied? Since achieving maximum cur-
rent takes approximately five time con-
stants,

ms 2.5or  seconds 10  2.5 

 Ω 10 / H) 10  5.0  (5 R  / L 5 t 

3

3

−

−

×=

××==

Note that if the inductance is increased
to 5.0 H, the required time increases by a
factor of 1000 to 2.5 seconds. Since the
circuit resistance didn’t change, the final
current is the same for both cases in this
example. Increasing inductance increases
the time required to reach full current.

Zero resistance would prevent the cir-
cuit from ever achieving full current. All
inductive circuits have some resistance,
however, if only the resistance of the wire
making up the inductor.

An inductor cannot be discharged in the
simple circuit of Fig 4.50 because the
magnetic field collapses as soon as the
current ceases. Opening S1 does not leave
the inductor charged in the way that a
capacitor would remain charged. The
energy stored in the magnetic field returns

instantly to the circuit when S1 is opened.
The rapid collapse of the field causes a
very large voltage to be induced in the coil.
Usually the induced voltage is many times
larger than the applied voltage, because
the induced voltage is proportional to the
rate at which the field changes. The com-
mon result of opening the switch in such a
circuit is that a spark or arc forms at the
switch contacts during the instant the
switch opens. When the inductance is
large and the current in the circuit is high,
large amounts of energy are released in a
very short time. It is not at all unusual for
the switch contacts to burn or melt under
such circumstances. The spark or arc at
the opened switch can be reduced or sup-
pressed by connecting a suitable capacitor
and resistor in series across the contacts.
Such an RC combination is called a snub-
ber network.

Transistor switches connected to and
controlling coils, such as relay solenoids,
also require protection. In most cases, a
small power diode connected in reverse
across the relay coil will prevent field-col-
lapse currents from harming the transistor.

If the excitation is removed without
breaking the circuit, as theoretically dia-
grammed in Fig 4.51, the current will
decay according to the formula:














=

−
L
tR 

e 
R

E
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where t = time in seconds after removal of

Fig 4.51 — Time constant of an RL
circuit being deenergized. This is a
theoretical model only, since a
mechanical switch cannot change state
instantaneously.
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the source voltage.
After one time constant the current will

lose 63.2% of its steady-state value. (It
will decay to 36.8% of the steady-state
value.) The graph in Fig 4.51 shows the
current-decay waveform to be identical to
the voltage-discharge waveform of a
capacitor. Be careful about applying the
terms charge and discharge to an induc-
tive circuit, however. These terms refer to
energy storage in an electric field. An
inductor stores energy in a magnetic field.

ALTERNATING CURRENT IN
INDUCTORS

When an alternating voltage is applied
to an ideal inductance (one with no resis-
tance — all practical inductors have some
resistance), the current is 90° out of phase
with the applied voltage. In this case the
current lags 90° behind the voltage, the
opposite of the capacitor current-voltage
relationship, as shown in Fig 4.52. (Here
again, we can also say the voltage across
an inductor leads the current by 90°.)

If you have difficulty remembering the
phase relationships between voltage and
current with inductors and capacitors, you
may find it helpful to think of the phrase,
“ELI the ICE man.” This will remind you
that voltage across an inductor leads the
current through it, because the E comes
before the I, with an L between them, as
you read from left to right. (The letter L
represents inductance.) It will also help you
remember the capacitor conditions because
I comes before E with a C between them.

Interpreting Fig 4.52 begins with under-
standing that the primary cause for current

lag in an inductor is the reverse voltage
generated in the inductance. The ampli-
tude of the reverse voltage is proportional
to the rate at which the current changes. In
time segment OA, when the applied volt-
age is at its positive maximum, the reverse
or induced voltage is also maximum,
allowing the least current to flow. The rate
at which the current is changing is the
highest, a 38% change in the time period
OA. In the segment AB, the current
changes by only 33%, yielding a reduced
level of induced voltage, which is in step
with the decrease in the applied voltage.
The process continues in time segments
BC and CD, the latter producing only
an 8% rise in current as the applied and
induced voltage approach zero.

In segment DE, the applied voltage
changes direction. The induced voltage
also changes direction, which returns cur-
rent to the circuit from storage in the mag-
netic field. The direction of this current is
now opposite to the applied voltage,
which sustains the current in the positive
direction. As the applied voltage contin-
ues to increase negatively, the current —
although positive — decreases in value,
reaching zero as the applied voltage
reaches its negative maximum. The nega-
tive half-cycle continues just as did the
positive half-cycle.

Compare Fig 4.52 with Fig 4.37.
Whereas in a pure capacitive circuit, the
current leads the voltage by 90º, in a pure
inductive circuit, the current lags the volt-
age by 90º. These phenomena are espe-
cially important in circuits that combine
inductors and capacitors.

INDUCTIVE REACTANCE
The amplitude of alternating current in

an inductor is inversely proportional to the
applied frequency. Since the reverse volt-
age is directly proportional to inductance
for a given rate of current change, the
current is inversely proportional to induc-
tance for a given applied voltage and
frequency.

The combined effect of inductance and
frequency is called inductive reactance,
which — like capacitive reactance — is
expressed in ohms. The formula for induc-
tive reactance is:

L f π 2  XL = (63)

where:
XL = inductive reactance,
f = frequency in hertz,
L = inductance in henrys, and
π = 3.1416.
( L. ω  X then f, π 2  ω If L == )
Example: What is the reactance of a coil

having an inductance of 8.00 H at a fre-
quency of 120 Hz?

Ω 6030       

H 8.00  Hz 120  6.2832       

L f π 2  XL

=

××=

=

In RF circuits the inductance values are
usually small and the frequencies are
large. When the inductance is expressed
in millihenrys and the frequency in kilo-
hertz, the conversion factors for the two
units cancel, and the formula for reactance
may be used without first converting
to fundamental units. Similarly, no con-
version is necessary if the inductance is
expressed in microhenrys and the fre-
quency in megahertz.

Example: What is the reactance of a
15.0-microhenry coil at a frequency of
14.0 MHz?

Ω 1320       

µH 15.0   MHz14.0  6.2832       

L f π 2  XL

=

××=

=

The resistance of the wire used to wind
the coil has no effect on the reactance, but
simply acts as a separate resistor con-
nected in series with the coil.

Example: What is the reactance of the
same coil at a frequency of 7.0 MHz?

Ω 660       

µH 15.0   MHz7.0  6.2832       

L f π 2  XL

=

××=

=

Comparing the two examples suggests
correctly that inductive reactance varies
directly with frequency. The rate of
change of the current varies directly with
the frequency, and this rate of change also

Fig 4.52 — Phase relationships between voltage and current when an alternating
current is applied to an inductance.
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determines the amplitude of the induced
or reverse voltage. Hence, the opposition
to the flow of current increases propor-
tionally to frequency. This opposition is
called inductive reactance. The direct
relationship between frequency and reac-
tance in inductors, combined with the
inverse relationship between reactance
and frequency in the case of capacitors,
will be of fundamental importance in

creating resonant circuits.
As a measure of the ability of an induc-

tor to limit the flow of ac in a circuit, in-
ductive reactance is similar to capacitive
reactance in having a corresponding
susceptance, or ability to pass ac current
in a circuit. In an ideal inductor with no
resistive losses — that is, no energy lost as
heat — susceptance is simply the recipro-
cal of reactance.

LX

1
  =B                                           (64)

where:
XL = reactance, and
B = susceptance.

The unit of susceptance for both induc-
tors and capacitors is the siemens, abbre-
viated S.

Quality Factor, or Q of Components
Components that store energy, like

capacitors and inductors, may be compared
in terms of quality or Q. The Q of any such
component is the ratio of its ability to store
energy to the sum total of all energy losses
within the component. In practical terms,
this ratio reduces to the formula:

R

X
  Q = (65)

where:
Q = figure of merit or quality (no units),
X = XL (inductive reactance) for induc-

tors and XC (capacitive reactance) for
capacitors (in ohms), and

R = the sum of all resistances associ-
ated with the energy losses in the compo-
nent (in ohms).

The Q of c×apacitors is ordinarily high.

Good quality ceramic capacitors and mica
capacitors may have Q values of 1200 or
more. Small ceramic trimmer capacitors
may have Q values too small to ignore in
some applications. Microwave capacitors
can have poor Q values; 10 or less at
10 GHz and higher frequencies.

Inductors are subject to many types of
electrical energy losses, however, such as
wire resistance, core losses and skin
effect. All electrical conductors have some
resistance through which electrical energy
is lost as heat. Moreover, inductor wire
must be sized to handle the anticipated
current through the coil. Wire conductors
suffer additional ac losses because alter-
nating current tends to flow on the conduc-
tor surface. As the frequency increases, the
current is confined to a thinner layer of the

conductor surface. This property is called
skin effect. If the inductor’s core is a
conductive material, such as iron, ferrite,
or brass, the core will introduce additional
losses of energy. The specific details of
these losses are discussed in connection
with each type of core material.

The sum of all core losses may be
depicted by showing a resistor in series
with the inductor (as in Figs 4.50 and
4.51), although there is no separate com-
ponent represented by the resistor symbol.
As a result of inherent energy losses, in-
ductor Q rarely, if ever, approaches ca-
pacitor Q in a circuit where both
components work together. Although
many circuits call for the highest Q induc-
tor obtainable, other circuits may call for
a specific Q, even a very low one.

AC Component Summary

Component Resistor Capacitor Inductor

Basic Unit ohm (Ω) farad (F) henry (H)
Units Commonly Used microfarads (µF) millihenrys (mH)

picofarads (pF) microhenrys (µH)
Quantity Stored (None) Voltage Current
(Does not want to change
  in circuit)
Combining components in series R1 + R2 C1 × C2 / C1 + C2 L1 + L2
Combining components in parallel R1 × R2 / R1 + R2 C1 + C2 L1 × L2 / L1 + L2
Time constant (None) RC L/R
Voltage-Current Phase In phase Current leads voltage Voltage leads current

Voltage lags current Current lags voltage
Resistance or Reactance Resistance XC = 1 / 2πfC XL = 2πfL
Change with increasing frequency No Reactance decreases Reactance increases
Q of circuit Not defined XC / R XL / R

Calculating Practical Inductors
Although builders and experimenters

rarely construct their own capacitors,
inductor fabrication is common. In fact, it
is often necessary, since commercially
available units may be unavailable or
expensive. Even if available, they may
consist of coil stock to be trimmed to the

required value. Core materials and wire
for winding both solenoid and toroidal
inductors are readily available. The fol-
lowing information includes fundamental
formulas and design examples for calcu-
lating practical inductors, along with
additional data on the theoretical limits in

the use of some materials.

AIR-CORE INDUCTORS
Many circuits require air-core inductors

using just one layer of wire. The
approximate inductance of a single-layer
air-core coil may be calculated from the
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one inch and is long enough to accommo-
date a coil of 11/4 inches. Then d = 1.00
inch, l  = 1.25 inches and L = 10.0. Sub-
stituting:

turns1.26680
1

1.25)] (40  1.00)  [(18 0.10
  n

==

×+×
=

A 26-turn coil would be close enough in
practical work. Since the coil will be 1.25
inches long, the number of turns per inch
will be 26.1 / 1.25 = 20.9. Consulting the
wire table in the Component Data and
References chapter, we find that #17
enameled wire (or anything smaller) can
be used. The proper inductance is obtained
by winding the required number of turns
on the form and then adjusting the spacing
between the turns to make a uniformly
spaced coil 1.25 inches long.

Most inductance formulas lose accu-
racy when applied to small coils (such as
are used in VHF work and in low-pass fil-
ters built for reducing harmonic interfer-
ence to televisions) because the conductor
thickness is no longer negligible in com-
parison with the size of the coil. Fig 4.54
shows the measured inductance of VHF
coils and may be used as a basis for circuit
design. Two curves are given; curve A is
for coils wound to an inside diameter of
1/2 inch; curve B is for coils of 3/4-inch
inside diameter. In both curves, the wire
size is #12, and the winding pitch is eight
turns to the inch (1/8-inch center-to-center
turn spacing). The inductance values
given include leads 1/2-inch long.

Machine-wound coils with the preset
diameters and turns per inch are available
in many radio stores, under the trade names
of B&W Miniductor, Airdux and Polycoil.
The Component Data and References
chapter provides information on using such
coil stock to simplify the process of design-
ing high-quality inductors for most HF
applications. Forming a wire into a sole-
noid increases its inductance, and also
introduces distributed capacitance. Since
each turn is at a slightly different ac poten-
tial, each pair of turns effectively forms a
parasitic capacitor. See the Real-World
Component Characteristics chapter for
information on the effects of these compli-
cations to the “ideal” inductors under dis-
cussion in this chapter. Moreover, the Q of
air-core inductors is, in part, a function of
the coil shape, specifically its ratio of
length to diameter. Q tends to be highest
when these dimensions are nearly equal.
With wire properly sized to the current car-
ried by the coil, and with high-caliber con-
struction, air-core inductors can achieve Qs
above 200. Air-core inductors with Qs as
high as 400 are possible.

Fig 4.54 — Measured inductance of coils wound with #12 bare wire, eight turns to
the inch. The values include half-inch leads.

Fig 4.53 — Coil dimensions used in the
inductance formula for air-core
inductors.

simplified formula:

( )
l40d18

ndµHL
22

+
= (66)

where:
L = inductance in microhenrys,
d = coil diameter in inches (from wire

center to wire center),
l = coil length in inches, and
n = number of turns.

The notation is explained in Fig 4.53.
This formula is a close approximation for
coils having a length equal to or greater

than 0.4 d. (Note: Inductance varies as the
square of the turns. If the number of turns
is doubled, the inductance is quadrupled.
This relationship is inherent in the equa-
tion, but is often overlooked. For example,
if you want to double the inductance, put
on additional turns equal to 1.4 times the
original number of turns, or 40% more
turns.)

Example: What is the inductance of a
coil if the coil has 48 turns wound at 32
turns per inch and a diameter of 3/4 inch?
In this case, d = 0.75, l  = 48/32 = 1.5 and n
= 48.

H18
74

1300

1.5)  (40 0.75)  (18

48  0.75
  L

22

µ==

×+×
×

=

   To calculate the number of turns of a
single-layer coil for a required value of
inductance, the formula becomes:

d

) 40  d (18 L
  n

l+
=                           (67)

Example: Suppose an inductance of
10.0 µH is required. The form on which
the coil is to be wound has a diameter of
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STRAIGHT-WIRE INDUCTANCE
At low frequencies the inductance of a

straight, round, nonmagnetic wire in free
space is given by:

 0.75  
a

 b2
 ln  b0.00508  L













−














=         (68)

where:
L = inductance in µH,
a = wire radius in inches,
b = wire length in inches, and
ln = natural logarithm = 2.303 ×

 common logarithm (base 10).

If the dimensions are expressed in milli-

Fig 4.55 — Inductance of various conductor sizes as straight wires.

Fig 4.56 — Equation for determining the inductance of a wire parallel to a ground plane, with one end grounded. If the
dimensions are in millimeters, the numerical coefficients become 0.0004605 for the first term and 0.0002 for the second term.

where
L=inductance in µH
a=wire radius in inches
b=wire length parallel to ground plane in inches
h= wire height above ground plane in inches
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= a  2h  
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  2a  2b  24h  2b 0.00508  

24h  2b  b

2a  2b  b
 

a

2h
10logb 0.0117  L

meters instead of inches, the equation may
still be used, except replace the 0.00508
value with 0.0002.

Skin effect reduces the inductance at
VHF and above. As the frequency
approaches infinity, the 0.75 constant
within the brackets approaches unity. As a
practical matter, skin effect will not
reduce the inductance by more than a few
percent.

Example: What is the inductance of a
wire that is 0.1575 inch in diameter and
3.9370 inches long? For the calculations,
a = 0.0787 inch (radius) and b = 3.9370
inch.
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= 0.75  
a

 b2
 ln  b0.00508  L

  



























 −×

×=

0.75  
0.0787

3.9370  2
ln

  (3.9370) 0.00508 

L = 0.0200 [1n (100) – 0.75]
=0.0200 (4.60 – 0.75)
=0.0200 × 3.85 = 0.077 µH

   Fig 4.55 is a graph of the inductance for
wires of various radii as a function of
length.

A VHF or UHF tank circuit can be fab-
ricated from a wire parallel to a ground
plane, with one end grounded. A formula
for the inductance of such an arrangement
is given in Fig 4.56.

Example: What is the inductance of a
wire 3.9370 inches long and 0.0787 inch
in radius, suspended 1.5748 inch above a
ground plane? (The inductance is mea-
sured between the free end and the ground
plane, and the formula includes the induc-
tance of the 1.5748-inch grounding link.)
To demonstrate the use of the formula in
Fig 4.56, begin by evaluating these quan-
tities:

2222 0.0787  3.9370  3.9370  a b  b ++=++

7.88  3.94  3.9370 =+=

( )
( )22

22

1.5748 4  3.9370  3.9370 

 h 4  b  b

++=

++

( )2.4800 4  15.500  3.9370 ++=

9.9200 15.500  3.9370 ++=

8.9788  5.0418  3.9370 =+=

40.0  
0.0787

1.5748  2
  

a
h 2

=
×

=

0.98425  
4

3.9370
  

4

b
==
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Fig 4.58 — Typical construction of an
iron-core inductor. The small air gap
prevents magnetic saturation of the
iron and thus maintains the inductance
at high currents.

Fig 4.57 — Equation for determining
the inductance of a flat strip inductor.

where
L=inductance in microhenrys
b=length in inches
w=width in inches
h=thickness in inches








 +
++

+
=

b
h  w

 0.2235  0.5  
h  w

2b
 ln b 0.00508  L

Substituting these values into the for-
mula yields:

 
8.9788

7.88
 40.0 log 3.9370  0.0117  L 10 



























××=

+ 0.00508 × (5.0418 – 3.94 + 0.98425 –
3.1496 + 0.0787)

µH 0.0662  L =

Another conductor configuration that is
frequently used is a flat strip over a ground
plane. This arrangement has lower skin-
effect loss at high frequencies than round
wire because it has a higher surface-area
to volume ratio. The inductance of such a
strip can be found from the formula in Fig
4.57. For a large collection of formulas
useful in constructing air-core inductors
of many configurations, see the “Circuit
Elements” section in Terman’s Radio
Engineers’ Handbook or the “Transmis-
sion Media” chapter of The ARRL UHF/
Microwave Experimenter’s Manual.

IRON-CORE INDUCTORS
If the permeability of an iron core in an

inductor is 800, then the inductance of any
given air-wound coil is increased 800
times by inserting the iron core. The
inductance will be proportional to the
magnetic flux through the coil, other
things being equal. The inductance of an
iron-core inductor is highly dependent on

the current flowing in the coil, in contrast
to an air-core coil, where the inductance is
independent of current because air does
not saturate.

Iron-core coils such as the one sketched
in Fig 4.58 are used chiefly in power-sup-
ply equipment. They usually have direct
current flowing through the winding, and
any variation in inductance with current is
usually undesirable. Inductance variations
may be overcome by keeping the flux den-
sity below the saturation point of the iron.
Opening the core so there is a small air
gap, indicated by the dashed lines in Fig
4.58, will achieve this goal. The reluctance
or magnetic resistance introduced by such
a gap is very large compared with that of
the iron, even though the gap is only a
small fraction of an inch. Therefore, the
gap — rather than the iron — controls the
flux density. Air gaps in iron cores reduce
the inductance, but they hold the value
practically constant regardless of the cur-
rent magnitude.

When alternating current flows through
a coil wound on an iron core, a voltage is
induced. Since iron is a conductor, a cur-
rent also flows in the core. Such currents
are called eddy currents. Eddy currents
represent lost power because they flow
through the resistance of the iron and gen-
erate heat. Losses caused by eddy currents
can be reduced by laminating the core
(cutting the core into thin strips). These
strips or laminations are then insulated
from each other by painting them with
some insulating material such as varnish
or shellac. These losses add to hysteresis

losses, which are also significant in iron-
core inductors.

Eddy-current and hysteresis losses in
iron increase rapidly as the frequency of
the alternating current increases. For this
reason, ordinary iron cores can be used
only at power-line and audio frequencies
— up to approximately 15000 Hz. Even
then, a very good grade of iron or steel is
necessary for the core to perform well at
the higher audio frequencies. Laminated
iron cores become completely useless at
radio frequencies.

SLUG-TUNED INDUCTORS
For RF work, the losses in iron cores

can be reduced to a more useful level by
grinding the iron into a powder and then
mixing it with a “binder” of insulating
material in such a way that the individual
iron particles are insulated from each
other. Using this approach, cores can be
made that function satisfactorily even into
the VHF range.

Because a large part of the magnetic
path is through a nonmagnetic material
(the “binder”), the permeability of the iron
is low compared with the values obtained
at power-line frequencies. The core is usu-
ally shaped in the form of a slug or cylin-
der for fit inside the insulating form on
which the coil is wound. Despite the fact
that the major portion of the magnetic path
for the flux is in air, the slug is quite effec-
tive in increasing the coil inductance. By
pushing (or screwing) the slug in and out
of the coil, the inductance can be varied
over a considerable range.

POWDERED-IRON TOROIDAL
INDUCTORS

For fixed-value inductors intended for
use at HF and VHF, the powdered-iron to-
roidal core has become almost the stan-
dard core and material in low power
circuits. Fig 4.59 shows the general out-
lines of a toroidal coil on a magnetic core.
Manufacturers offer a wide variety of core
materials, or mixes, to provide units that
will perform over a desired frequency
range with a reasonable permeability. Ini-
tial permeabilities for powdered-iron
cores fall in the range of 3 to 35 for various
mixes. In addition, core sizes are avail-
able in the range of 0.125-inch outside di-
ameter (OD) up to 1.06-inch OD, with
larger sizes to 5-inch OD available in cer-
tain mixes. The range of sizes permits the
builder to construct single-layer inductors
for almost any value using wire sized to
meet the circuit current demands. While
powdered-iron toroids are often painted
various colors, you must know the manu-
facturer to identify the mix. There seems
to be no set standard between manufac-
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turers. Iron-powder toroids usually have
rounded edges.

The use of powdered iron in a binder
reduces core losses usually associated
with iron, while the permeability of the
core permits a reduction in the wire length
and associated resistance in forming a
coil of a given inductance. Therefore,
powdered-iron-core toroidal inductors
can achieve Qs well above 100, often
approaching or exceeding 200 within the
frequency range specified for a given core.
Moreover, these coils are considered self-
shielding since most of the flux lines are
within the core, a fact that simplifies cir-
cuit design and construction.

Each powdered-iron core has a value of
AL determined and published by the core
manufacturer. For powdered-iron cores,
AL represents the inductance index, that
is, the inductance in µH per 100 turns of
wire on the core, arranged in a single layer.
The builder must select a core size capable
of holding the calculated number of turns,
of the required wire size, for the desired
inductance. Otherwise, the coil calcula-
tion is straightforward. To calculate the
inductance of a powdered-iron toroidal
coil, when the number of turns and the core
material are known, use the formula:

Fig 4.59 — A typical toroidal inductor
wound on a powdered-iron or ferrite
core. Some key physical dimensions
are noted. Equally important are the
core material, its permeability, its
intended range of operating freq-
uencies, and its AL value. This is an
11-turn toroid.

10000

 N A
  L

2
L ×

= (69)

where:
L = the inductance in µH,
AL = the inductance index in µH per 100

turns, and
N = the number of turns.
Example: What is the inductance of a

60-turn coil on a core with an AL of 55?
This AL value was selected from manu-
facturer’s information about a 0.8-inch
OD core with an initial permeability of 10.
This particular core is intended for use in
the range of 2 to 30 MHz. See the Compo-
nent Data and References chapter for
more detailed data on the range of avail-
able cores.

10000

60  55
  

10000

 N A
  L

22
L ×

=
×

=

 µH19.8
10000
198000 ==

To calculate the number of turns needed
for a particular inductance, use the for-
mula:

LA

L
100  N = (70)

Example: How many turns are needed
for a 12.0-µH coil if the AL for the selected
core is 49?

49

12.0
 100  

A

L
 100  N

L
==

  turns 49.5  0.495  100  0.245 100 =×==

If the value is critical, experimenting
with 49-turn and 50-turn coils is in order,
especially since core characteristics may
vary slightly from batch to batch. Count
turns by each pass of the wire through the
center of the core. (A straight wire through
a toroidal core amounts to a one-turn coil.)
Fine adjustment of the inductance may be
possible by spreading or squeezing induc-
tor turns.

The power-handling ability of toroidal
cores depends on many variables, which
include the cross-sectional area through
the core, the core material, the numbers of
turns in the coil, the applied voltage and
the operating frequency. Although pow-
dered-iron cores can withstand dc flux
densities up to 5000 gauss without satu-
rating, ac flux densities from sine waves
above certain limits can overheat cores.
Manufacturers provide guideline limits
for ac flux densities to avoid overheating.
The limits range from 150 gauss at 1 MHz

to 30 gauss at 28 MHz, although the curve
is not linear. To calculate the maximum
anticipated flux density for a particular
coil, use the formula:

f   N A  4.44

10  E
  

e

8
RMS

max ×××
×

=B (71)

where:
Bmax = the maximum flux density in

gauss,
ERMS = the voltage across the coil,
Ae = the cross-sectional area of the core

in square centimeters,
N = the number of turns in the coil, and
f = the operating frequency in Hz.
Example: What is the maximum ac flux

density for a coil of 15 turns if the fre-
quency is 7.0 MHz, the RMS voltage is
25 V and the cross-sectional area of the
core is 0.133 cm2?

f   N A  4.44

10  E
  

e

8
RMS

max ×××
×

=B

6

8

10  7.0  15  0.133  4.44

10  25
 

××××

×
=

    gauss 40  
10  62

10  25
 

6

8
=

×

×
=

Since the recommended limit for cores
operated at 7 MHz is 57 gauss, this coil is
well within guidelines.

FERRITE TOROIDAL INDUCTORS
Although nearly identical in general

appearance to powdered-iron cores, fer-
rite cores differ in a number of important
characteristics. They are often unpainted,
unlike powdered-iron toroids. Ferrite
toroids often have sharp edges, while pow-
dered-iron toroids usually have rounded
edges. Composed of nickel-zinc ferrites
for lower permeability ranges and of man-
ganese-zinc ferrites for higher per-mea-
bilities, these cores span the permeability
range from 20 to above 10000. Nickel-zinc
cores with permeabilities from 20 to 800
are useful in high-Q applications, but
function more commonly in amateur
applications as RF chokes. They are also
useful in wide-band transformers (dis-
cussed later in this chapter).

Because of their higher permeabilities,
the formulas for calculating inductance
and turns require slight modification.
Manufacturers list ferrite AL values in mH
per 1000 turns. Thus, to calculate induc-
tance, the formula is

1000000

 N A
  L

2
L ×

= (72)
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where:
L = the inductance in mH,
AL = the inductance index in mH per

1000 turns, and
N = the number of turns.
Example: What is the inductance of a

60-turn coil on a core with an AL of 523?
(See the Component Data and Refer-
ences chapter for more detailed data on
the range of available cores.)

1000000

60  523
  

1000000

 N A
  L

22
L ×

=
×

=

mH 1.88  
10  1

10  1.88
 

6

6
=

×

×
=

To calculate the number of turns needed
for a particular inductance, use the formula:

LA

L
 1000  N = (73)

Example: How many turns are needed
for a 1.2-mH coil if the AL for the selected
core is 150?

150

1.2
 1000  

A

L
 1000  N

L
==

  turns 89  0.089  1000  0.008 1000 =×==

For inductors carrying both dc and
ac currents, the upper saturation limit
for most ferrites is a flux density of
2000 gauss, with power calculations iden-
tical to those used for powdered-
iron cores. For detailed information on
available cores and their characteristics,
see Iron-Powder and Ferrite Coil Forms,
a combination catalog and information
book from Amidon Associates, Inc.

Ohm’s Law for Reactance
Only ac circuits containing capacitance

or inductance (or both) have reactance.
Despite the fact that the voltage in such
circuits is 90° out of phase with the cur-
rent, circuit reactance does limit current
in a manner that corresponds to resistance.
Therefore, the Ohm’s Law equations
relating voltage, current and resistance
apply to purely reactive circuits:

X I  E = (74)

X

E
 I = (75)

I

E
  X = (76)

where:
E = ac voltage in RMS,
I = ac current in amperes, and
X = inductive or capacitive reactance.

Example: What is the voltage across a
capacitor of 200 pF at 7.15 MHz, if the
current through the capacitor is 50 mA?

Since the reactance of the capacitor is a
function of both frequency and capaci-
tance, first calculate the reactance:

C f π 2

1
  XC =

 
F 10  200  Hz 10  7.15  3.1416  2

1
 

126 −×××××
=

Ω 111 
8980

Ω 10
 

6
=

Next, use Ohm’s Law:

V 5.6  Ω 111  A 0.050  X  I  E C =×=×=

Example: What is the current through
an 8.00-H inductor at 120 Hz, if 420 V is
applied?

Ω 6030  H 8.00 

 Hz 120  3.1416  2  L f π 2  XL

=×

××==

Fig 4.60 charts the reactances of capa-
citors from 1 pF to 100 µF, and the reac-
tances of inductors from 0.1 µH to 10 H,
for frequencies between 100 Hz and 100
MHz. Approximate values of reactance
can be read or interpolated from the chart.
The formulas will produce more exact val-
ues, however.

Although both inductive and capacitive
reactance limit current, the two types of
reactance differ. With capacitive reac-
tance, the current leads the voltage by 90°,
whereas with inductive reactance, the cur-
rent lags the voltage by 90°. The conven-
tion for charting the two types of reactance
appears in Fig 4.61. On this graph, induc-
tive reactance is plotted along the +90°
vertical line, while capacitive reactance is
plotted along the –90° vertical line. This
convention of assigning a positive value
to inductive reactance and a negative value
to capacitive reactance results from the
mathematics involved in impedance cal-
culations.

REACTANCES IN SERIES AND
PARALLEL

If a circuit contains two reactances of
the same type, whether in series or in par-
allel, the resultant reactance can be deter-

mined by applying the same rules as for
resistances in series and in parallel. Series
reactance is given by the formula

ntotal X  . . .  X3  X2  X1  X ++++= (77)

Example: Two noninteracting induc-
tances are in series. Each has a value of 4.0
µH, and the operating frequency is 3.8
MHz. What is the resulting reactance?

The reactance of each inductor is:

Ω 96  H 10  4  Hz 10

  3.8  3.1416  2  L f π 2  X

66

L

=××

×××==
−

Ω 192   Ω 96  Ω 96  X2  X1  Xtotal =+=+=

We might also calculate the total reac-
tance by first adding the inductances:

 µH 8.0  µH 4.0  µH 4.0  L2  L1  Ltotal =+=+=

H 10  8.0  Hz 10 

 3.8  3.1416  2  L f π 2  X

66

total

−×××

××==

Ω 191  X total =

(The fact that the last digit differs by
one illustrates the uncertainty of the cal-
culation caused by the uncertainty of the
measured values in the problem, and dif-
ferences caused by rounding off the calcu-
lated values. This also shows why it is
important to follow the rules for signifi-
cant figures.

Example: Two noninteracting capacitors
are in series. One has a value of 10.0 pF, the
other of 20.0 pF. What is the resulting reac-
tance in a circuit operating at 28.0 MHz?
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C f π 2

1
  XC1 =

F  10  10.0  Hz 10  28.0  3.1416  2

1
 

12 6 −×××××
=

Ω 568  
1760

Ω 10
 

6
==

C f π 2

1
  XC2 =

F  10  20.0  Hz 10  28.0  3.1416  2

1
 

12 6 −×××××
=

Ω 284  
3520

Ω 10
 

6
==

Fig 4.60 — Inductive and capacitive reactance vs frequency. Heavy lines represent multiples of 10, intermediate lines
multiples of 5. For example, the light line between 10 µH and 100 µH represents 50 µH; the light line between 0.1 µµµµµF and 1 µµµµµF
represents 0.5µµµµµF, and so on. Other values can be extrapolated from the chart. For example, the reactance of 10 H at 60 Hz
can be found by taking the reactance of 10 H at 600 Hz and dividing by 10 for the 10 times decrease in frequency.

Ω 852  Ω 284  Ω 568  C2X  C1X  totalX =+=+=

Alternatively, for series capacitors, the
total capacitance is 6.67 × 10–12 F or 6.67
pF. Then:

C f π 2

1
  Xtotal =

F 10  6.67  Hz 10 28.0  3.1416  2

1
 

126 −×××××
=

Ω 855  
1170

Ω 10
 

6
==

(Within the uncertainty of the measured
values and the rounding of values in the
calculations, this is the same result as we
obtained with the first method.)

This example serves to remind us that
series capacitance is not calculated in the
manner used by other series resistance and
inductance, but series capacitive reac-
tance does follow the simple addition for-
mula.

For reactances of the same type in par-
allel, the general formula is:

n

total

X
1

  . . .  
X3
1

  
X2
1

  
X1
1

1
 X

++++
=

     (78)
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or, for exactly two reactances in parallel

X2  X1

X2  X1
  Xtotal +

×
=                             (79)

Example: Place the capacitors in the last
example (10.0 pF and 20.0 pF) in parallel
in the 28.0 MHz circuit. What is the result-
ant reactance?

X2  X1

X2  X1
  Xtotal +

×
=

Ω 189  
Ω 284  Ω 568

Ω 284  Ω 568
 =

+
×

=

Alternatively, two capacitors in paral-
lel add their capacitances.

pF 30 pF  20.0 pF  10.0  C  C  C 21total =+=+=

C f π 2

1
  XC =

F 10  30  Hz 10  28.0  3.1416  2

1
 

126 −×××××
=

Ω 189  
5280

Ω 10
 

6
==

Example: Place the series inductors
above (4.0 µH each) in parallel in a
3.8-MHz circuit. What is the resultant
reactance?

L2L1

L2L1
total X  X

X  X
  X

+
×

=

     Ω 48  
Ω 96  Ω 96

Ω 96  Ω 96
 =

+
×

=

Of course, equal reactances (or resis-
tances) in parallel yield a reactance that is
the value of one of them divided by the
number (n) of equal reactances, or:

Ω 48  
2

Ω 96
  

n

X
  Xtotal ===

All of these calculations apply only
to reactances of the same type; that is,
all capacitive or all inductive. Mixing
types of reactances requires a different
approach.

UNLIKE REACTANCES IN SERIES
When combining unlike reactances —

that is, combinations of inductive and
capacitive reactance — in series, it is nec-
essary to take into account that the volt-
age-to-current phase relationships differ
for the different types of reactance. Fig
4.62 shows a series circuit with both types
of reactance. Since the reactances are in
series, the current must be the same in
both. The voltage across each circuit ele-
ment differs in phase, however. The volt-
age EL leads the current by 90°, and the
voltage EC lags the current by 90°. There-
fore, EL and EC have opposite polarities
and cancel each other in whole or in part.
The dotted line in Fig 4.62 approximates
the resulting voltage E, which is the dif-
ference between EL and EC.

Since, for a constant current, the
reactance is directly proportional to the
voltage, the net reactance must be the dif-
ference between the inductive and the
capacitive reactances, or:

CLtotal X  X  X −=                               (80)

For this and subsequent calculations in
which there is a mixture of inductive and
capacitive reactance, use the absolute
value of each reactance. The convention
of recording inductive reactances as posi-
tive and capacitive reactances as negative
is built into the mathematical operators in
the formulas.

Example: Using Fig 4.62 as a visual aid,
let XC = 20.0 Ω and XL = 80.0 Ω. What is
the resulting reactance?

Fig 4.61 — The conventional method of
plotting reactances on the vertical axis
of a graph, using the upward or “plus”
direction for inductive reactance and
the downward or “minus” direction for
capacitive reactance. The horizontal
axis will be used for resistance in later
examples.

Ω 60.0   Ω 20.0  Ω 80.0 

 X  X  X CLtotal

+=−=

−=

Since the result is a positive value, reac-
tance is inductive. Had the result been a
negative number, the reactance would
have been capacitive.

When reactance types are mixed in a
series circuit, the resulting reactance is
always smaller than the larger of the two
reactances. Likewise, the resulting volt-
age across the series combination of reac-
tances is always smaller than the larger of
the two voltages across individual reac-
tances.

Every series circuit of mixed reactance
types with more than two circuit elements
can be reduced to the type of circuit cov-
ered here. If the circuit has more than one
capacitor or more than one inductor in the
overall series string, first use the formulas
given earlier to determine the total series
inductance alone and the total series
capacitance alone (or their respective
reactances). Then combine the resulting
single capacitive reactance and single in-
ductive reactance as shown in this section.

UNLIKE REACTANCES IN
PARALLEL

The situation of parallel reactances of
mixed type appears in Fig 4.63. Since the
elements are in parallel, the voltage is
common to both reactive components. The
current through the capacitor, IC, leads the
voltage by 90°, and the current through
the inductor, IL, lags the voltage by 90°.
The two currents are 180° out of phase and
thus cancel each other in whole or in part.
The total current is the difference between
the individual currents, as indicated by the
dotted line in Fig 4.63.

Since reactance is the ratio of voltage to
current, the total reactance in the circuit
is:

CL
total I  I

E
  X

−
= (81)

In the drawing, IC is larger than IL, and
the resulting differential current retains
the phase of IC. Therefore, the overall
reactance, Xtotal, is capacitive in this case.
The total reactance of the circuit will be
larger than the larger of the individual
reactances, because the total current
is smaller than the larger of the two
individual currents.

In parallel circuits of this type, reac-
tance and current are inversely propor-
tional to each other for a constant voltage.
Therefore, to calculate the total reactance
directly from the individual reactances,
use the formula:
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CL

CL
total X  X

X  X 
  X

−
×−

= (82)

As with the series formula for mixed
reactances, use the absolute values of the
reactances, since the minus signs in the
formula take into account the convention
of treating capacitive reactances as nega-

tive numbers. If the solution yields a nega-
tive number, the resulting reactance is ca-
pacitive, and if the solution is positive,
then the reactance is inductive.

Example: Using Fig 4.63 as a visual aid,
place a capacitive reactance of 10.0 Ω in
parallel with an inductive reactance of
40.0 Ω. What is the resulting reactance?

CL

CL
total X  X

X  X 
  X

−
×−

=

Ω 10.0  Ω 40.0

Ω 10.0  Ω 40.0 
 

−
×−

=

Ω 13.3   
Ω 30.0

Ω 400 
 −=
−

=

The reactance is capacitive, as indicated
by the negative solution. Moreover, the
resultant reactance is always smaller than
the larger of the two individual reactances.

As with the case of series reactances, if
each leg of a parallel circuit contains more
than one reactance, first simplify each leg
to a single reactance. If the reactances are
of the same type in each leg, the series
reactance formulas for reactances of the
same type will apply. If the reactances are
of different types, then use the formulas
shown above for mixed series reactances
to simplify the leg to a single value and
type of reactance.

APPROACHING RESONANCE
When two unlike reactances have the

same numerical value, any series or paral-
lel circuit in which they occur is said to be
resonant. For any given inductance or
capacitance, it is theoretically possible to
find a value of the opposite reactance type
to produce a resonant circuit for any
desired frequency.

When a series circuit like the one shown
in Fig 4.62 is resonant, the voltages EC and
EL are equal and cancel; their sum is zero.
Since the reactance of the circuit is pro-
portional to the sum of these voltages, the
total reactance also goes to zero. Theoreti-
cally, the current, as shown in Fig 4.64,
can rise without limit. In fact, it is limited
only by power losses in the components
and other resistances that would be in a
real circuit of this type. As the frequency
of operation moves slightly off resonance,
the reactance climbs rapidly and then be-
gins to level off. Similarly, the current
drops rapidly off resonance and then lev-
els.

In a parallel-resonant circuit of the type
in Fig 4.63, the current IL and IC are equal
and cancel to zero. Since the reactance is
inversely proportional to the current, as
the current approaches zero, the reactance
rises without limit. As with series circuits,
component power losses and other resis-
tances in the circuit limit the current drop
to some point above zero. Fig 4.65 shows
the theoretical current curve near and at
resonance for a purely reactive parallel-
resonant circuit. Note that in both Fig 4.64
and Fig 4.65, the departure of current from
the resonance value is close to, but not
quite, symmetrical above and below the

Fig 4.62 — A series circuit containing both inductive and capacitive components,
together with representative voltage and current relationships.

Fig 4.63 — A parallel circuit containing both inductive and capacitive components,
together with representative voltage and current relationships.
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resonant frequency.
Example: What is the reactance of a

series L-C circuit consisting of a 56.04-pF
capacitor and an 8.967-µH inductor at
7.00, 7.10 and 7.20 MHz? Using the for-
mulas from earlier in this chapter, we cal-
culate a table of values:

Frequency XL (Ω) XC (Ω) Xtotal (Ω)
  (MHz)
   7.000 394.4 405.7 –11.3
   7.100 400.0 400.0    0
   7.200 405.7 394.4   11.3

The exercise shows the manner in which
the reactance rises rapidly as the fre-
quency moves above and below reso-
nance. Note that in a series-resonant
circuit, the reactance at frequencies below
resonance is capacitive, and above reso-
nance, it is inductive. Fig 4.66 displays
this fact graphically. In a parallel-resonant
circuit, where the reactance increases
without limit at resonance, the opposite
condition exists: above resonance, the
reactance is capacitive and below reso-
nance it is inductive, as shown in Fig 4.67.
Of course, all graphs and calculations in
this section are theoretical and presume a
purely reactive circuit. Real circuits are
never purely reactive; they contain some
resistance that modifies their performance
considerably. Real resonant circuits will
be discussed later in this chapter.

REACTIVE POWER
Although purely reactive circuits,

whether simple or complex, show a mea-

surable ac voltage and current, we cannot
simply multiply the two together to arrive
at power. Power is the rate at which
energy is consumed by a circuit, and purely
reactive circuits do not consume power.
The charge placed on a capacitor during
part of an ac cycle is returned to the circuit
during the next part of a cycle. Likewise,
the energy stored in the magnetic field of
an inductor returns to the circuit as the
field collapses later in the ac cycle. A re-
active circuit simply cycles and recycles
energy into and out of the reactive compo-
nents. If a purely reactive circuit were
possible in reality, it would consume no
power at all.

In reactive circuits, circulation of
energy accounts for seemingly odd phe-
nomena. For example, in a series circuit
with capacitance and inductance, the volt-
ages across the components may exceed
the supply voltage. That condition can
exist because, while energy is being stored
by the inductor, the capacitor is returning
energy to the circuit from its previously
charged state, and vice versa. In a parallel
circuit with inductive and capacitive
branches, the current circulating through
the components may exceed the current
drawn from the source. Again, the phe-
nomenon occurs because the inductor’s
collapsing field supplies current to the
capacitor, and the discharging capacitor
provides current to the inductor.

To distinguish between the non-dissi-
pated power in a purely reactive circuit and
the dissipated power of a resistive circuit,
the unit of reactive power is called the volt-
ampere reactive, or VAR. The term watt is
not used; sometimes reactive power is
called wattless power. Formulas similar to
those for resistive power are used to calcu-
late VAR:

E  I VAR ×= (83)

X  I VAR 2 ×= (84)

X

E
 VAR 

2
= (85)

These formulas have only limited use in
radio work.

REACTANCE AND COMPLEX
WAVEFORMS

All of the formulas and relationships
shown in this section apply to alternating
current in the form of regular sine waves.
Complex wave shapes complicate the
reactive situation considerably. A complex
or nonsinusoidal wave can be resolved into
a fundamental frequency and a series of
harmonic frequencies whose amplitudes
depend on the original wave shape. When
such a complex wave — or collection of

Fig 4.64 — The relative generator
current with a fixed voltage in a series
circuit containing inductive and
capacitive reactances as the frequency
approaches and departs from
resonance.

Fig 4.65 — The relative generator
current with a fixed voltage in a parallel
circuit containing inductive and
capacitive reactances as the frequency
approaches and departs from
resonance. (The circulating current
through the parallel inductor and
capacitor is a maximum at resonance.)

Fig 4.66 — The transition from
capacitive to inductive reactance in a
series-resonant circuit as the frequency
passes resonance.

Fig 4.67 — The transition from
inductive to capacitive reactance
in a parallel-resonant circuit as the
frequency passes resonance.
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Fig 4.69 — Series and parallel circuits
containing resistance and reactance.

Fig 4.70 — The conventional method of
charting impedances on a graph, using
the vertical axis for reactance (the
upward or “plus” direction for inductive
reactance and the downward or “minus”
direction for capacitive reactance), and
using the horizontal axis for resistance.

sine waves — is applied to a reactive cir-
cuit, the current through the circuit will
not have the same wave shape as the
applied voltage. The difference results
because the reactance of an inductor and
capacitor depend in part on the applied
frequency.

For the second-harmonic component of
the complex wave, the reactance of the
inductor is twice and the reactance of the
capacitor is half their respective values at
the fundamental frequency. A third-har-
monic component produces inductive
reactances that are triple and capacitive
reactances that are one-third those at the
fundamental frequency. Thus, the overall
circuit reactance is different for each har-
monic component.

The frequency sensitivity of a reactive
circuit to various components of a com-

plex wave shape creates both difficulties
and opportunities. On the one hand, calcu-
lating the circuit reactance in the presence
of highly variable as well as complex
waveforms, such as speech, is difficult at

best. On the other hand, the frequency sen-
sitivity of reactive components and cir-
cuits lays the foundation for filtering, that
is, for separating signals of different fre-
quencies and passing them into different
circuits. For example, suppose a coil is in
the series path of a signal and a capacitor
is connected from the signal line to
ground, as represented in Fig 4.68. The
reactance of the coil to the second har-
monic of the signal will be twice that at the
fundamental frequency and oppose more
effectively the flow of harmonic current.
Likewise, the reactance of the capacitor to
the harmonic will be half that to the funda-
mental, allowing the harmonic an easier
current path away from the signal line
toward ground. See the RF and AF Fil-
ters chapter for detailed information on
filter theory and construction.

Fig 4.68 — A signal path with a series
inductor and a shunt capacitor. The
circuit presents different reactances to
an ac signal and to its harmonics.

Impedance
When a circuit contains both resistance

and reactance, the combined opposition
to current is called impedance. Symbol-
ized by the letter Z, impedance is a more
general term than either resistance or re-
actance. Frequently, the term is used even
for circuits containing only resistance or
reactance. Qualifications such as “resis-
tive impedance” are sometimes added to
indicate that a circuit has only resistance,
however.

The reactance and resistance compris-
ing an impedance may be connected ei-
ther in series or in parallel, as shown in
Fig 4.69. In these circuits, the reactance is
shown as a box to indicate that it may be
either inductive or capacitive. In the
series circuit at A, the current is the same
in both elements, with (generally) differ-
ent voltages appearing across the resis-
tance and reactance. In the parallel circuit
at B, the same voltage is applied to both
elements, but different currents may flow
in the two branches.

In a resistance, the current is in phase
with the applied voltage, while in a reac-
tance it is 90° out of phase with the volt-
age. Thus, the phase relationship between
current and voltage in the circuit as a
whole may be anything between zero and
90°, depending on the relative amounts of
resistance and reactance.

As shown in Fig 4.61 in the preceding

section, reactance is graphed on the verti-
cal (Y) axis to record the phase difference
between the voltage and the current. Fig
4.70 adds resistance to the graph. Since
the voltage is in phase with the current,
resistance is recorded on the horizontal
axis, using the positive or right side of the
scale.

CALCULATING Z FROM R AND X
IN SERIES CIRCUITS

Impedance is the complex combination
of resistance and reactance. Since there is
a 90° phase difference between resistance
and reactance (whether inductive or ca-
pacitive), simply adding the two values
will not yield what actually happens in a
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circuit. Therefore, expressions like “Z = R
± X” can be misleading, because they sug-
gest simple addition. As a result, imped-
ance is often expressed “Z = R ± jX.”

In pure mathematics, “i” indicates an
imaginary number. Because i represents
current in electronics, we use the letter “j”
for the same mathematical operator,
although there is nothing imaginary about
what it represents in electronics. With
respect to resistance and reactance, the let-
ter j is normally assigned to those figures
on the vertical scale, 90° out of phase with
the horizontal scale. The actual function
of j is to indicate that calculating imped-
ance from resistance and reactance
requires vector addition. In vector addi-
tion, the result of combining two values at
a 90° phase difference results in a new
quantity for the combination, and also in a
new combined phase angle relative to the
base line.

Consider Fig 4.71, a series circuit con-
sisting of an inductive reactance and a
resistance. As given, the inductive reac-
tance is 100 Ω and the resistance is 50 Ω.
Using rectangular coordinates, the im-
pedance becomes

X R   Z j+= (86)

where:
Z = the impedance in ohms,
R = the resistance in ohms, and
X = the reactance in ohms.
In the present example,

Ω 100  50  Z j+=

As the graph shows, the combined
opposition to current (or impedance) is
represented by a line triangulating the two
given values. The graph will provide an
estimate of the value. A more exact way to
calculate the resultant impedance involves
the formula for right triangles, where the
square of the hypotenuse equals the sum
of the squares of the two sides. Since
impedance is the hypotenuse:

22 X  R  Z += (87)

In this example:

( ) ( ) 22 Ω 100  Ω 50  Z +=

22 Ω 10000  Ω 2500 +=

   Ω 112  Ω 12500 2 ==

The impedance that results from com-
bining 50 Ω of resistance with 100 Ω of
inductive reactance is 112 Ω. The phase
angle of the resultant is neither 0° nor
+90°. Instead, it lies somewhere between
the two. Let θ be the angle between the
horizontal axis and the line representing
the impedance. From trigonometry, the
tangent of the angle is the side opposite
the angle divided by the side adjacent to
the angle, or

R

X
  θ tan = (88)

where:
X = the reactance, and
R = the resistance.
Find the angle by taking the inverse tan-

gent, or arctan:

R

X
 arctan  θ = (89)

In the example shown in Fig 6.57,

°=== 63.4  2.0 arctan  
Ω 50

Ω 100
 arctan  θ

Combining the resultant impedance
with the angle provides the impedance in
polar coordinate form:

θ∠Z                                                  (90)

Using the information just calculated,
the impedance is:

Z = 112 Ω ∠ 63.4°

The expressions R ± jX and Z ∠θ both
provide the same information, but in two
different forms. The procedure just
given permits conversion from rectangu-
lar coordinates into polar coordinates.
The reverse procedure is also important.
Fig 4.72 shows an impedance composed
of a capacitive reactance and a resistance.
Since capacitive reactance appears as a
negative value, the impedance will be at a
negative phase angle, in this case, 12.0 Ω
at a phase angle of – 42.0° or Z = 12.0 Ω
∠ – 42.0°.

Think of the impedance as forming a
triangle with the values of X and R from
the rectangular coordinates. The reactance
axis forms the side opposite the angle θ.

Z

X
  

hypotenuse

opposite side
  θ sin == (91)

Fig 4.71 — A series circuit consisting
of an inductive reactance of 100 ΩΩΩΩΩ and
a resistance of 50 ΩΩΩΩΩ. At B, the graph
plots the resistance, reactance, and
impedance.

Fig 4.72 — A series circuit consisting
of a capacitive reactance and a
resistance: the impedance is given
as 12.0 ΩΩΩΩΩ at a phase angle θθθθθ of -42
degrees. At B, the graph plots the
resistance, reactance, and impedance.
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Solving this equation for reactance, we
have:

(ohms) θ sin  Z  X ×= (92)

Likewise, the resistance forms the side
adjacent to the angle.

Z

R
  

hypotenuse

adjacent side
  θ cos ==

Solving for resistance, we have:

(ohms) θ cos  Z R ×= (93)

Then from our example:

( ) 42  sin  Ω 12.0  X °−×=

Ω 8.03   0.669   Ω 12.0 −=−×=

)42.0 ( cos  Ω 12.0 R °−×=

Ω 8.92  0.743  Ω 12.0 =×=

Since X is a negative value, it plots on
the lower vertical axis, as shown in Fig
4.72, indicating capacitive reactance. In
rectangular form, Z = 8.92 Ω – j8.03 Ω.

In performing impedance and related
calculations with complex circuits, rect-
angular coordinates are most useful when
formulas require the addition or subtrac-
tion of values. Polar notation is most use-
ful for multiplying and dividing complex
numbers.

All of the examples shown so far in this
section have presumed values of reactance
that contribute to the circuit impedance.
Reactance is a function of frequency, how-
ever, and many impedance calculations
may begin with a value of capacitance or
inductance and an operating frequency. In
terms of these values, the series imped-
ance formula (Eq 87) becomes two formu-
las:

( )22 L f π 2  R  Z += (94)

2
2

C f π 2

1
  R  Z 








+= (95)

Example: What is the impedance of a
circuit like Fig 4.71 with a resistance of
100 Ω and a 7.00-µH inductor operating at
a frequency of 7.00 MHz? Using equation
94,

( )22 L f π 2  R  Z +=

( ) ( )2662
Hz 10  7.00  H10  7.00  π 2  Ω 100 ××××+= −

( )22 Ω 308  Ω 10,000  Z +=

 22 Ω 94,900  Ω 10,000 +=

Ω 323.9  Ω 104900 2 ==
Since 308 Ω is the value of inductive

reactance of the 7.00-µH coil at 7.00 MHz,
the phase angle calculation proceeds as
given in the earlier example (equation 89):

 
 100.0

308.0
 arctan  

R

X
 arctan 








Ω
Ω

==θ

( ) °== 72.0  3.08 arctan 

Since the reactance is inductive, the
phase angle is positive.

CALCULATING Z FROM R AND X
IN PARALLEL CIRCUITS

In a parallel circuit containing reactance
and resistance, such as shown in Fig 4.73,
calculation of the resultant impedance
from the values of R and X does not pro-
ceed by direct triangulation. The general
formula for such parallel circuits is:

22 X  R

RX
  Z

+
= (96)

where the formula uses the absolute (un-
signed) reactance value. The phase angle
for the parallel circuit is given by:







=θ

X

R
 arctan (97)

If the parallel reactance is capacitive,
then θ is a negative angle, and if the par-
allel reactance is inductive, then θ is a
positive angle.

Example: An inductor with a reactance
of 30.0 Ω is in parallel with a resistor of
40.0 Ω. What is the resulting impedance
and phase angle?

( ) ( )2222 Ω 40.0  Ω 30.0

Ω 40.0  Ω 30.0
  

X  R

RX
  Z

+

×
=

+
=

 2

2

22

2

 2500

 1200
  

 1600  900

 1200
 

Ω

Ω
=

Ω+Ω

Ω
=

Ω 24.0  
Ω 50.0

Ω 1200
  Z

2

==









=






=

Ω30.0

Ω40.0
 arctan  

X

R
 arctan  θ

( ) °== 53.1  1.33 arctan θ

Since the parallel reactance is inductive,
the resultant angle is positive.

Example: A capacitor with a reactance
of 16.0 Ω is in parallel with a resistor of
12.0 Ω. What is the resulting impedance
and phase angle?

( ) ( )2222 Ω 12.0  Ω 16.0

Ω 12.0  Ω 16.0
  

X  R

RX
  Z

+

×
=

+
=

2

2

22

2

Ω 400

Ω 192
  

Ω 144  Ω 256

Ω 192
 =

+
=

Ω 9.60  
Ω 20.0

Ω 192
  Z

2

==









=






=

Ω16.0

Ω12.0
 arctan  

X

R
 arctan  θ

( ) °−== 36.9  0.750 arctan θ

Because the parallel reactance is
capacitive, the resultant phase angle is
negative.

ADMITTANCE
Just as the inverse of resistance is con-

ductance (G) and the inverse of reactance
is susceptance (B), so too impedance has
an inverse: admittance (Y), measured in
siemens (S). Thus,

Z

1
    = (98)

Since resistance, reactance and imped-
ance are inversely proportional to the cur-
rent (Z = E / I), conductance, susceptance
and admittance are directly proportional
to current. That is,

E

1
    = (99)

One handy use for admittance is in
simplifying parallel circuit impedance
calculations. A parallel combination of
reactance and resistance reduces to a
vector addition of susceptance and con-

Fig 4.73 — A parallel circuit containing
an inductive reactance of 30.0 ΩΩΩΩΩ and a
resistor of 40.0 ΩΩΩΩΩ. No graph is given,
since parallel impedances do not
triangulate in the simple way of series
impedances.

Y

Y
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ductance, if admittance is the desired out-
come. In other words, for parallel circuits:

22     BGY +=                                 (100)

where:
Y = admittance,
G = conductance or 1 / R, and
B = susceptance or 1 / X.

Example: An inductor with a reactance of
30.0 Ω is in parallel with a resistor of 40.0 Ω.
What is the resulting impedance and phase
angle? The susceptance is 1 / 30.0 Ω =
0.0333 S and the conductance is 1 / 40.0 Ω
= 0.0250 S.

( ) ( )22 S 0.0250  S 0.0333  +=Y

   S 0.0417  S 0.00173 2 ==

Ω 24.0  
S 0.0417

1
  

1
  Z ===
Y

The phase angle in terms of conduc-
tance and susceptance is:








=
G

B
 arctan  θ                                 (101)

In this example,

( ) °==






= 53.1  1.33 arctan  
S 0.0250

S 0.0333
 arctan  θ

Again, since the reactive component is
inductive, the phase angle is positive. For
a capacitively reactive parallel circuit, the
phase angle would have been negative.
Compare these results with the direct
calculation earlier in the section.

Conversion from resistance, reactance
and impedance to conductance, susceptance
and admittance is perhaps most useful in
complex-parallel-circuit calculations. Many
advanced facets of active-circuit analysis
will demand familiarity both with the con-
cepts and with the calculation strategies in-
troduced here, however.

More than Two Elements in Series
or Parallel

When a circuit contains several resis-
tances or several reactances in series,
simplify the circuit before attempting to
calculate the impedance. Resistances in
series add, just as in a purely resistive cir-
cuit. Series reactances of the same kind —
that is, all capacitive or all inductive —
also add, just as in a purely reactive cir-
cuit. The goal is to produce a single value
of resistance and a single value of reac-
tance for the impedance calculation.

Fig 4.74 illustrates a more difficult case
in which a circuit contains two different
reactive elements in series, along with a

further series resistance. The series com-
bination of XC and XL reduce to a single
value using the same rules of combination
discussed in the section on purely reactive
components. As Fig 4.74B demonstrates,
the resultant reactance is the difference
between the two series reactances.

For parallel circuits with multiple resis-
tances or multiple reactances of the same
type, use the rules of parallel combination
to reduce the resistive and reactive com-
ponents to single elements. Where two or
more reactive components of different
types appear in the same circuit, they can
be combined using formulas shown ear-
lier for pure reactances. As Fig 4.75 sug-
gests, however, they can also be combined
as susceptances. Parallel susceptances of
different types add, with attention to their
differing signs. The resulting single
susceptance can then be combined with
the conductance to arrive at the overall
circuit admittance. The inverse of the ad-
mittance is the final circuit impedance.

Equivalent Series and Parallel
Circuits

The two circuits shown in Fig 4.69 are
equivalent if the same current flows when
a given voltage of the same frequency is
applied, and if the phase angle between
voltage and current is the same in both
cases. It is possible, in fact, to transform
any given series circuit into an equivalent
parallel circuit, and vice versa.

A series RX circuit can be converted
into its parallel equivalent by means of the
formulas:

S

2
S

2
S

P R

X  R
  R

+
=             (102)

S

2
S

2
S

P X

X  R
  X

+
=                             (103)

where the subscripts P and S represent the
parallel- and series-equivalent values,
respectively. If the parallel values are
known, the equivalent series circuit can
be found from:

2
P

2
P

2
PP

S
X  R

X R
  R

+
=             (104)

and

2
P

2
P

P
2

P
S

X  R

X R
  X

+
=             (105)

Example: Let the series circuit in Fig
4.69 have a series reactance of –50.0 Ω
(indicating a capacitive reactance) and a
resistance of 50.0 Ω. What are the values
of the equivalent parallel circuit?

( ) ( )
Ω50.0

Ω 50.0  Ω 50.0
  

R

X  R
  R

22

S

2
S

2
S

P
−+

=
+

=

 Ω 100  
Ω 50.0

Ω 5000
  

Ω 50.0

Ω 2500  Ω 2500
 

222
==

+
=

( ) ( )
Ω50.0

Ω 50.0  Ω 50.0
  

X

X  R
  X

22

S

2
S

2
S

P −
−+

=
+

=

 
Ω 100 

 
Ω 50.0

Ω 5000
  

Ω 50.0

Ω 2500  Ω 2500
 

222

−=
−

=
−

+
=

Fig 4.75 — A parallel impedance
containing mixed capacitive and
inductive reactances can be reduced
to a single reactance plus resistance
using formulas shown earlier in the
chapter. By converting reactances to
susceptances, as shown in A, you can
combine the susceptances alge-
braically into a single susceptance,
as shown in B.

Fig 4.74 — A series impedance
containing mixed capacitive and
inductive reactances can be reduced to
a single reactance plus resistance by
combining the reactances algebraically.
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The parallel circuit in Fig 4.69 calls for
a capacitive reactance of 100 Ω and a re-
sistance of 100 Ω to be equivalent to the
series circuit.

OHM’S LAW FOR IMPEDANCE
Ohm’s Law applies to circuits contain-

ing impedance just as readily as to circuits
having resistance or reactance only. The
formulas are:

Z I  E = (106)

Z

E
  I = (107)

I

E
  Z =                                             (108)

where:
E = voltage in volts,
I = current in amperes, and
Z = impedance in ohms.

Fig 4.76 shows a simple circuit consist-
ing of a resistance of 75.0 Ω and a reac-
tance of 100 Ω in series. From the
series-impedance formula previously
given, the impedance is

( ) ( )222
L

2 Ω 100  Ω 75.0  X  R  Z +=+=

222 Ω 15600  Ω 10000  Ω 5630 =+=

Ω 125 =

If the applied voltage is 250 V, then

A 2.00  
Ω 125

V 250
  

Z

E
  I ===

This current flows through both the
resistance and reactance, so the voltage
drops are:

V 150  Ω 75.0  A 2.00 R  I ER =×==

V 200  Ω 100  A 2.00  X I  E LXL =×==

The simple arithmetical sum of these

two drops, 350 V, is greater than the
applied voltage because the two voltages
are 90° out of phase. Their actual result-
ant, when phase is taken into account, is:

( ) ( )22 V 200  V 150  E +=

222 V 62500  V 40000  V 22500 =+=

V 250 =

POWER FACTOR
In the circuit of Fig 4.76, an applied

voltage of 250 V results in a current of
2.00 A, giving an apparent power of 250 V
× 2.00 A = 500 W. Only the resistance
actually consumes power, however. The
power in the resistance is:

( )  W300  V 75.0  A 2.00 R  I P 22 =×==

The ratio of the consumed power to the
apparent power is called the power factor
of the circuit.

Z

R
  

P

P
 PF 

apparent

consumed ==                         (109)

In this example the power factor would
be 300 W / 500 W = 0.600. Power factor is
frequently expressed as a percentage; in
this case, 60%. An equivalent definition
of power factor is:

θ cos PF =

where θ is the phase angle. Since the phase
angle equals:








=






=
Ω 75.0

Ω 100
 arctan  

R

X
 arctan  θ

°== 53.1  (1.33) arctan 

Then the power factor is:

0.600  53.1 cos PF =°=

as the earlier calculation confirms.

Real, or dissipated, power is measured
in watts. Apparent power, to distinguish it
from real power, is measured in volt-
amperes (VA). It is simply the product of
the voltage across and the current through
an overall impedance. It has no direct
relationship to the power actually dissi-
pated unless the power factor of the circuit
is known. The power factor of a purely
resistive circuit is 100% or 1, while the
power factor of a pure reactance is zero. In
this illustration, the reactive power is:

( ) VA 400  Ω 100  A 2.00  X I VAR 2
L

2 =×==

Since power factor is always rendered
as a positive number, the value must be
followed by the words “leading” or “lag-
ging” to identify the phase of the voltage
with respect to the current. Specifying the
numerical power factor is not always suf-
ficient. For example, many dc-to-ac power
inverters can safely operate loads having a
large net reactance of one sign but only a
small reactance of the opposite sign.
Hence, the final calculation of the power
factor in this example yields the value
0.600, leading.

Fig 4.76 — A series circuit consisting of
an inductive reactance of 100 ΩΩΩΩΩ and a
resistance of 75.0 ΩΩΩΩΩ. Also shown is the
applied voltage, voltage drops across
the circuit elements, and the current.
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Resonant Circuits
A circuit containing both an inductor and

a capacitor — and therefore, both induc-
tive and capacitive reactance — is
often called a tuned circuit. There is a par-
ticular frequency at which the inductive and
capacitive reactances are the same, that is,
XL = XC. For most purposes, this is the reso-
nant frequency of the circuit. (Special con-
siderations apply to parallel circuits; they
will emerge in the section devoted to such
circuits.) At the resonant frequency — or at
resonance, for short:

C f π 2

1
  X  L f π 2  X CL ===

By solving for f, we can find the reso-
nant frequency of any combination of
inductor and capacitor from the formula:

C L π 2

1
  f =             (110)

where:
f = frequency in hertz (Hz),
L = inductance in henrys (H),
C = capacitance in farads (F), and
π = 3.1416.

For most high-frequency (HF) radio
work, smaller units of inductance and
capacitance and larger units of frequency
are more convenient. The basic formula
becomes:

C L π 2

10
  f

3
=                                    (111)

where:
f = frequency in megahertz (MHz),
L = inductance in microhenrys (µH),
C = capacitance in picofarads (pF), and
π = 3.1416.

Example: What is the resonant fre-
quency of a circuit containing an inductor
of 5.0 µH and a capacitor of 35 pF?

35  5.0  6.2832

10
  

C L π 2

10
  f

33

××
==

 MHz12  
83

10
 

3
==

To find the matching component (induc-
tor or capacitor) when the frequency and
one component is known (capacitor or
inductor) for general HF work, use the
formula:

C L π 4

1
  f

2
2 =                                  (112)

where F, L and C are in basic units. For HF

Fig 4.77 — A series circuit containing L,
C, and R is resonant at the applied
frequency when the reactance of C is
equal to the reactance of L. The I in the
circle is the schematic symbol for an
ammeter.

work in terms of MHz, µH and pF, the
basic relationship rearranges to these
handy formulas:

C f

25330
  L

2
=                                         (113)

L f

25330
  C

2
=                                         (114)

where:
f = frequency in MHz,
L = inductance in µH, and
C = capacitance in pF.

Example: What value of capacitance
is needed to create a resonant circuit at
21.1 MHz, if the inductor is 2.00 µH?

( )2.00  21.1

25330
  

L f

25330
  C

22
×

==

pF 28.5  
890

25330
 ==

For most radio work, these formulas
will permit calculations of frequency and
component values well within the limits
of component tolerances. Resonant cir-
cuits have other properties of importance,
in addition to the resonant frequency,
however. These include impedance, volt-
age drop across components in series-
resonant circuits, circulating current in
parallel-resonant circuits, and bandwidth.
These properties determine such factors
as the selectivity of a tuned circuit and the
component ratings for circuits handling
considerable power. Although the basic
determination of the tuned-circuit reso-
nant frequency ignored any resistance in
the circuit, that resistance will play a vital
role in the circuit’s other characteristics.

SERIES-RESONANT CIRCUITS
Fig 4.77 presents a basic schematic

diagram of a series-resonant circuit.
Although most schematic diagrams of
radio circuits would show only the induc-
tor and the capacitor, resistance is always
present in such circuits. The most notable
resistance is associated with losses in the
inductor at HF; resistive losses in the
capacitor are low enough at those frequen-
cies to be ignored. The current meter
shown in the circuit is a reminder that in
series circuits, the same current flows
through all elements.

At resonance, the reactance of the
capacitor cancels the reactance of the
inductor. The voltage and current are in
phase with each other, and the impedance

of the circuit is determined solely by the
resistance. The actual current through the
circuit at resonance, and for frequencies
near resonance, is determined by the for-
mula:

( )
2

2

C f π 2

1
  L f π 2 R

E
  

Z

E
  I









−+

==

(115)

where all values are in basic units.

At resonance, the reactive factor in the
formula is zero. As the frequency is shifted
above or below the resonant frequency
without altering component values, how-
ever, the reactive factor becomes signifi-
cant, and the value of the current becomes
smaller than at resonance. At frequencies
far from resonance, the reactive compo-
nents become dominant, and the resistance
no longer significantly affects the current
amplitude.

The exact curve created by recording
the current as the frequency changes
depends on the ratio of reactance to resis-
tance. When the reactance of either the
coil or capacitor is of the same order of
magnitude as the resistance, the current
decreases rather slowly as the frequency
is moved in either direction away from
resonance. Such a curve is said to be
broad. Conversely, when the reactance is
considerably larger than the resistance, the
current decreases rapidly as the frequency
moves away from resonance, and the cir-
cuit is said to be sharp. A sharp circuit will
respond a great deal more readily to the
resonant frequency than to frequencies
quite close to resonance; a broad circuit
will respond almost equally well to a
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group or band of frequencies centered
around the resonant frequency.

Both types of resonance curves are use-
ful. A sharp circuit gives good selectivity
— the ability to respond strongly (in terms
of current amplitude) at one desired fre-
quency and to discriminate against others.
A broad circuit is used when the apparatus
must give about the same response over a
band of frequencies, rather than at a single
frequency alone.

Fig 4.78 presents a family of curves,
showing the decrease in current as the
frequency deviates from resonance. In
each case, the reactance is assumed to be
1000 Ω. The maximum current, shown as
a relative value on the graph, occurs with
the lowest resistance, while the lowest
peak current occurs with the highest resis-
tance. Equally important, the rate at which
the current decreases from its maximum
value also changes with the ratio of reac-
tance to resistance. It decreases most rap-
idly when the ratio is high and most slowly
when the ratio is low.

Q
As noted in earlier sections of this chap-

ter, the ratio of reactance or stored energy
to resistance or consumed energy is Q.
Since both terms of the ratio are measured
in ohms, Q has no units and is variously
known as the quality factor, the figure of
merit or the multiplying factor. Since the
resistive losses of the coil dominate the
energy consumption in HF series-resonant

circuits, the inductor Q largely determines
the resonant-circuit Q. Since this value of
Q is independent of any external load to
which the circuit might transfer power, it is
called the unloaded Q or QU of the circuit.

Example: What is the unloaded Q of a
series-resonant circuit with a loss resis-
tance of 5 Ω and inductive and capacitive
components having a reactance of 500 Ω
each? With a reactance of 50 Ω each?

100  
Ω 5

Ω 500
  

R

X1
  QU1 ===

10  
Ω 5

Ω 50
  

R

X2
  QU2 ===

Bandwidth
Fig 4.79 is an alternative way of draw-

ing the family of curves that relate current
to frequency for a series-resonant circuit.
By assuming that the peak current of each
curve is the same, the rate of change of
current for various values of QU and the
associated ratios of reactance to resistance
are more easily compared. From the
curves, it is evident that the lower QU cir-
cuits pass frequencies over a greater band-
width of frequencies than the circuits with
a higher QU. For the purpose of comparing
tuned circuits, bandwidth is often defined
as the frequency spread between the two
frequencies at which the current amplitude
decreases to 0.707 (or 21 ) times the

maximum value. Since the power con-
sumed by the resistance, R, is proportional
to the square of the current, the power at
these points is half the maximum power at
resonance, assuming that R is constant for
the calculations. The half-power, or –3 dB,
points are marked on Fig 4.79.

For Q values of 10 or greater, the curves
shown in Fig 4.79 are approximately sym-
metrical. On this assumption, bandwidth
(BW) can be easily calculated:

UQ

f
  BW =                                       (116)

where BW and f are in the same units, that
is, in Hz, kHz or MHz.

Example: What is the bandwidth of a
series-resonant circuit operating at
14 MHz with a QU of 100?

 kHz140   MHz0.14  
100

 MHz14
  

Q

f
  BW

U
====

The relationship between QU, f and BW
provides a means of determining the value
of circuit Q when inductor losses may be
difficult to measure. By constructing the
series-resonant circuit and measuring the
current as the frequency varies above and
below resonance, the half-power points
can be determined. Then:

BW

f
  QU =                                       (117)

Example: What is the QU of a series-
resonant circuit operating at 3.75 MHz, if
the bandwidth is 375 kHz?

10.0  
 MHz0.375

 MHz3.75
  

BW

f
  QU ===

Table 4.7 provides some simple formu-
las for estimating the maximum current
and phase angle for various bandwidths, if
both f and QU are known.

Voltage Drop Across Components
The voltage drop across the coil and

across the capacitor in a series-resonant
circuit are each proportional to the reac-
tance of the component for a given current
(since E = I X). These voltages may be
many times the source voltage for a high-
Q circuit. In fact, at resonance, the voltage
drop is:

E Q  E UX =                                      (118)

where:
EX = the voltage across the reactive

component,
QU = the circuit unloaded Q, and
E = the source voltage.

Fig 4.78 — Current in series-resonant
circuits with various values of series
resistance and Q. The current values
are relative to an arbitrary maximum
of 1.0. The reactance for all curves is
1000 ΩΩΩΩΩ. Note that the current is hardly
affected by the resistance in the circuit
at frequencies more than 10% away
from the resonant frequency.

Fig 4.79 — Current in series-resonant
circuits having different values of QU.
The current at resonance is set at the
same level for all curves in order to
show the rate of change of decrease in
current for each value of QU. The half-
power points are shown to indicate
relative bandwidth of the response for
each curve. The bandwidth is indicated
for a circuit with a QU of 10.

chap4.pmd 8/13/2004, 3:53 PM48



Electrical Fundamentals 4.49

(Note that the voltage drop across the
inductor is the vector sum of the voltages
across the resistance and the reactance;
however, for Qs greater than 10, the error
created by using equation 96 is not ordi-
narily significant.) Since the calculated
value of EX is the RMS voltage, the peak
voltage will be higher by a factor of 1.414.
Antenna couplers and other high-Q
circuits handling significant power may
experience arcing from high values of EX,
even though the source voltage to the cir-
cuit is well within component ratings.

Capacitor Losses
Although capacitor energy losses tend

to be insignificant compared to inductor
losses up to about 30 MHz, the losses may
affect circuit Q in the VHF range. Leakage
resistance, principally in the solid dielec-
tric that forms the insulating support for
the capacitor plates, is not exactly like the
wire resistance losses in a coil. Instead of
forming a series resistance, capacitor leak-
age usually forms a parallel resistance
with the capacitive reactance. If the leak-
age resistance of a capacitor is significant
enough to affect the Q of a series-resonant
circuit, the parallel resistance must be
converted to an equivalent series resis-
tance before adding it to the inductor’s
resistance.

( )2pp

2
C

S
C f π 2  R

1
  

R

X
  R

×
==              (119)

Example: A 10.0 pF capacitor has a leak-
age resistance of 10000 Ω at 50.0 MHz.
What is the equivalent series resistance?

( )2p
S

C f π 2  R

1
  R

×
=

 ( )21264 10  10.0  10  50.0  6.283  10  1.00

1
 

−××××××
=

64S
10  9.87  10  1.00

1
  R

−×××
=

 Ω 10.1  
0.0987

1
 ==

In calculating the impedance, current
and bandwidth for a series-resonant cir-
cuit in which this capacitor might be used,
the series-equivalent resistance of the unit
is added to the loss resistance of the coil.
Since inductor losses tend to increase with
frequency because of skin effect, the com-
bined losses in the capacitor and the

Table 4.7
The Selectivity of Resonant Circuits

Approximate percentage Bandwidth (between
of current at resonance1 or half-power or –3 dB Series circuit current
of impedance at resonance2 points on response curve) phase angle (degrees)

95 f / 3Q 18.5
90 f / 2Q 26.5
70.7 f / Q 45
44.7 2f / Q 63.5
24.2 4f / Q 76
12.4 8f / Q 83

1For a series resonant circuit
2For a parallel resonant circuit

Fig 4.80 — A typical parallel-resonant
circuit, with the resistance shown in
series with the inductive leg of the
circuit. Below a QU of 10, resonance
definitions may lead to three separate
frequencies which converge at higher
QU levels. See text.

Fig 4.81 — Resonant conditions for a low-QU parallel circuit. Resonance may be
defined as (a) XL = XC, (b) minimum current flow and maximum impedance or (c)
voltage and current in phase with each other. With the circuit of Fig 4.80 and a QU
of less than 10, these three definitions may represent three distinct frequencies.

inductor can seriously reduce circuit Q,
without special component- and circuit-
construction techniques.

PARALLEL-RESONANT CIRCUITS
Although series-resonant circuits are

common, the vast majority of resonant cir-
cuits used in radio work are parallel-reso-
nant circuits. Fig 4.80 represents a typical
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HF parallel-resonant circuit. As is the case
for series-resonant circuits, the inductor
is the chief source of resistive losses, and
these losses appear in series with the coil.
Because current through parallel-resonant
circuits is lowest at resonance, and imped-
ance is highest, they are sometimes called
antiresonant circuits. Likewise, the names
acceptor and rejector are occasionally
applied to series- and parallel-resonant
circuits, respectively.

Because the conditions in the two legs
of the parallel circuit in Fig 4.80 are not
the same — the resistance is in only one of
the legs — all of the conditions by which
series resonance is determined do not oc-
cur simultaneously in a parallel-resonant
circuit. Fig 4.81 graphically illustrates the
situation by showing the currents through
the two components. When the inductive
and capacitive reactances are identical, the
condition defined for series resonance is
met as shown in line (A). The impedance
of the inductive leg is composed of both
XL and R, which yields an impedance that
is greater than XC and that is not 180° out
of phase with XC. The resultant current is
greater than its minimum possible value
and not in phase with the voltage.

By altering the value of the inductor
slightly (and holding the Q constant), a
new frequency can be obtained at which
the current reaches its minimum. When
parallel circuits are tuned using a current
meter as an indicator, this point (B) is
ordinarily used as an indication of reso-
nance. The current “dip” indicates a con-
dition of maximum impedance and is
sometimes called the antiresonant point
or maximum impedance resonance to dis-
tinguish it from the condition where XC =
XL. Maximum impedance is achieved by
vector addition of XC, XL and R, however,
and the result is a current somewhat out of
phase with the voltage.

Point (C) on the curve represents the
unity-power-factor resonant point. Adjust-
ing the inductor value and hence its
reactance (while holding Q constant) pro-
duces a new resonant frequency at which
the resultant current is in phase with the
voltage. The inductor’s new value of
reactance is the value required for a paral-
lel-equivalent inductor and its parallel-
equivalent resistor (calculated according
to the formulas in the last section) to just
cancel the capacitive reactance. The value
of the parallel-equivalent inductor is
always smaller than the actual inductor in
series with the resistor and has a propor-
tionally smaller reactance. (The parallel-
equivalent resistor, conversely, will
always be larger than the coil-loss resistor
shown in series with the inductor.) The
result is a resonant frequency slightly dif-

ferent from the one for minimum current
and the one for XL = XC.

The points shown in the graph in Fig
4.82 represent only one of many possible
situations, and the relative positions of the
three resonant points do not hold for all
possible cases. Moreover, specific circuit
designs can draw some of the resonant
points together, for example, compensat-
ing for the resistance of the coil by retun-
ing the capacitor. The differences among
these resonances are significant for cir-
cuit Qs below 10, where the inductor’s
series resistance is a significant percent-
age of the reactance. Above a Q of 10, the
three points converge to within a percent
of the frequency and can be ignored for
practical calculations. Tuning for mini-
mum current will not introduce a suffi-
ciently large phase angle between voltage
and current to create circuit difficulties.

Parallel Circuits of Moderate to
High Q

The resonant frequencies defined above
converge in parallel-resonant circuits with
Qs higher than about 10. Therefore, a single
set of formulas will sufficiently approxi-
mate circuit performance for accurate pre-
dictions. Indeed, above a Q of 10, the
performance of a parallel circuit appears in
many ways to be simply the inverse of the
performance of a series-resonant circuit
using the same components.

Accurate analysis of a parallel-resonant
circuit requires the substitution of a paral-
lel-equivalent resistor for the actual induc-
tor-loss series resistor, as shown in Fig
4.82. Sometimes called the dynamic resis-
tance of the parallel-resonant circuit, the
parallel-equivalent resistor value will in-
crease with circuit Q, that is, as the series
resistance value decreases. To calculate

Fig 4.82 — Series and parallel
equivalents when both circuits are
resonant. The series resistance, RS
in A, is replaced by the parallel resis-
tance, RP in B, and vice versa. RP =
XL

2 / RS.

the approximate parallel-equivalent resis-
tance, use the formula:

( )
LU

S

2

S

2
L

P XQ  
R

L f π 2
  

R

X
  R ===        (120)

Example: What is the parallel-equiva-
lent resistance for a coil with an inductive
reactance of 350 Ω and a series resistance
of 5.0 Ω at resonance?

( )
Ω 5.0

Ω 350
  

R

X
  R

2

S

2
L

P ==

     Ω 24,500  
Ω 5.0

Ω 122,500
 

2
==

Since the coil QU remains the inductor’s
reactance divided by its series resistance,
the coil QU is 70. Multiplying QU by the
reactance also provides the approximate
parallel-equivalent resistance of the coil
series resistance.

At resonance, where XL = XC, RP
defines the impedance of the parallel-
resonant circuit. The reactances just equal
each other, leaving the voltage and cur-
rent in phase with each other. In other
words, the circuit shows only the parallel
resistance. Therefore, equation 120 can be
rewritten as:

( )
LU

S

2

S

2
L XQ  

R

L f π 2
  

R

X
  Z ===           (121)

In this example, the circuit impedance
at resonance is 24,500 Ω.

At frequencies below resonance the cur-
rent through the inductor is larger than that
through the capacitor, because the reac-
tance of the coil is smaller and that of the
capacitor is larger than at resonance. There
is only partial cancellation of the two
reactive currents, and the line current
therefore is larger than the current taken
by the resistance alone. At frequencies
above resonance the situation is reversed
and more current flows through the ca-
pacitor than through the inductor, so the
line current again increases. The current
at resonance, being determined wholly by
RP, will be small if RP is large, and large if
RP is small. Fig 4.83 illustrates the rela-
tive current flows through a parallel-tuned
circuit as the frequency is moved from
below resonance to above resonance. The
base line represents the minimum current
level for the particular circuit. The actual
current at any frequency off resonance is
simply the vector sum of the currents
through the parallel equivalent resistance
and through the reactive components.

To obtain the impedance of a parallel-
tuned circuit either at or off the resonant
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frequency, apply the general formula:

S

LC

Z

Z Z
  Z =             (122)

where:
Z = overall circuit impedance
ZC = impedance of the capacitive leg

(usually, the reactance of the
capacitor),

ZL = impedance of the inductive leg
(the vector sum of the coil’s reac-
tance and resistance), and

ZS = series impedance of the capacitor-
inductor combination as derived
from the denominator of equation
115.

After using vector calculations to obtain
ZL and ZS, converting all the values to
polar form — as described earlier in this
chapter — will ease the final calculation.
Of course, each impedance may be derived
from the resistance and the application of
the basic reactance formulas on the values
of the inductor and capacitor at the fre-
quency of interest.

Since the current rises off resonance, the
parallel-resonant-circuit impedance must
fall. It also becomes complex, resulting in
an ever greater phase difference between
the voltage and the current. The rate at

which the impedance falls is a function of
QU. Fig 4.84 presents a family of curves
showing the impedance drop from reso-
nance for circuit Qs ranging from 10 to
100. The curve family for parallel-circuit
impedance is essentially the same as the
curve family for series-circuit current.

As with series tuned circuits, the higher
the Q of a parallel-tuned circuit, the sharper
the response peak. Likewise, the lower the
Q, the wider the band of frequencies to
which the circuit responds. Using the half-
power (–3 dB) points as a comparative
measure of circuit performance, equations
116 and 117 apply equally to parallel-tuned
circuits. That is, BW = f / QU and QU =
f / BW, where the resonant frequency and
the bandwidth are in the same units. As a
handy reminder, Table 4.8 summarizes the
performance of parallel-resonant circuits
at high and low Qs and above and below
resonant frequency.

It is possible to use either series or par-
allel-resonant circuits do the same work in
many circuits, thus giving the designer con-
siderable flexibility. Fig 4.85 illustrates
this general principle by showing a series-
resonant circuit in the signal path and a
parallel-resonant circuit shunted from the
signal path to ground. Assume both circuits

Fig 4.83 — The currents in a parallel-resonant circuit as the frequency moves
through resonance. Below resonance, the current lags the voltage; above
resonance the current leads the voltage. The base line represents the current level
at resonance, which depends on the impedance of the circuit at that frequency.

Fig 4.84 — Relative impedance of
parallel-resonant circuits with different
values of QU. The curves are similar to
the series-resonant circuit current level
curves of Fig 4.78. The effect of QU on
impedance is most pronounced within
10% of the resonance frequency.

are resonant at the same frequency, f, and
have the same Q. The series tuned circuit at
A has its lowest impedance at f, permitting
the maximum possible current to flow
along the signal path. At all other frequen-
cies, the impedance is greater and the cur-
rent at those frequencies is less. The circuit
passes the desired signal and tends to im-
pede signals at undesired frequencies. The
parallel circuit at B provides the highest
impedance at resonance, f, making the sig-
nal path the lowest impedance path for the
signal. At frequencies off resonance, the

Fig 4.85 — Series- and parallel-
resonant circuits configured to perform
the same theoretical task: passing
signals in a narrow band of frequencies
along the signal path. A real design
example would consider many other
factors.
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Fig 4.86 — A parallel-resonant circuit
redrawn to illustrate both the line
current and the circulating current.

Fig 4.87 — A loaded parallel-resonant
circuit, showing both the inductor-loss
resistance and the load, RL. If smaller
than the inductor resistance, RL will
control the loaded Q of the circuit (QL).

Table 4.8
The Performance of Parallel-Resonant Circuits

A. High and Low Q Circuits (in relative terms)

Characteristic High Q Circuit Low Q Circuit
Selectivity high low
Bandwidth narrow wide
Impedance high low
Line current low high
Circulating current high low

B. Off-Resonance Performance for Constant Values of Inductance and Capacitance

Characteristic Above Resonance Below Resonance
Inductive reactance increases decreases
Capacitive reactance decreases increases
Circuit resistance unchanged* unchanged*
Circuit impedance decreases decreases
Line current increases increases
Circulating current decreases decreases
Circuit behavior capacitive inductive

*This is true for frequencies near resonance. At distant frequencies, skin effect may alter the
resistive losses of the inductor.

parallel-resonant circuit presents a lower
impedance, thus presenting signals with a
path to ground and away from the signal
path. In theory, the effects will be the same
relative to a signal current on the signal
path. In actual circuit design exercises, of
course, many other variables will enter the
design picture to make one circuit prefer-
able to the other.

Circulating Current
In a parallel-resonant circuit, the source

voltage is the same for all the circuit
elements. The current in each element,
however, is a function of the element’s

cies below 30 MHz, most of this resistance
is in the coil. Within limits, increasing the
number of turns in the coil increases the
reactance faster than it raises the resis-
tance, so coils for circuits in which the Q
must be high are made with relatively
large inductances for the frequency.

When the circuit delivers energy to a
load (as in the case of the resonant circuits
used in transmitters), the energy consumed
in the circuit itself is usually negligible
compared with that consumed by the load.
The equivalent of such a circuit is shown in
Fig 4.87, where the parallel resistor, RL,
represents the load to which power is de-
livered. If the power dissipated in the load
is at least 10 times as great as the power lost
in the inductor and capacitor, the parallel
impedance of the resonant circuit itself will
be so high compared with the resistance of
the load that for all practical purposes the
impedance of the combined circuit is equal
to the load impedance. Under these condi-
tions, the load resistance replaces the cir-
cuit impedance in calculating Q. The Q of
a parallel-resonant circuit loaded by a re-
sistive impedance is:

X

R
  Q L

L =             (124)

where:
QL = circuit loaded Q,
RL = parallel load resistance in ohms,

and
X = reactance in ohms of either the in-

ductor or the capacitor.

Example: A resistive load of 3000 Ω is
connected across a resonant circuit in which
the inductive and capacitive reactances are
each 250 Ω. What is the circuit Q?

12  
Ω 250

Ω 3000
  

X

R
  Q L

L ===

The effective Q of a circuit loaded by a
parallel resistance increases when the re-
actances are decreased. A circuit loaded
with a relatively low resistance (a few

reactance. Fig 4.86 redraws the parallel-
tuned circuit to indicate the line current
and the current circulating between the
coil and the capacitor. The current drawn
from the source may be low, because the
overall circuit impedance is high. The
current through the individual elements
may be high, however, because there is
little resistive loss as the current circulates
through the inductor and capacitor.
For parallel-resonant circuits with an
unloaded Q of 10 or greater, this circulat-
ing current is approximately:

TUC IQ  I =             (123)

where:
IC = circulating current in A, mA or µA,
QU = unloaded circuit Q, and
IT = line current in the same units as IC.

Example: A parallel-resonant circuit
permits an ac or RF line current of 30 mA
and has a Q of 100. What is the circulating
current through the elements?

A 3  mA 3000  mA 30  100  I Q  I UX ==×==

Circulating currents in high-Q parallel-
tuned circuits can reach a level that causes
component heating and power loss. There-
fore, components should be rated for the
anticipated circulating currents, and not
just the line current.

The Q of Loaded Circuits
In many resonant-circuit applications,

the only power lost is that dissipated in the
resistance of the circuit itself. At frequen-
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thousand ohms) must have low-reactance
elements (large capacitance and small
inductance) to have reasonably high Q.
Many power-handling circuits, such as the
output networks of transmitters, are
designed by first choosing a loaded Q for
the circuit and then determining compo-
nent values. See the RF PowerAmplifiers
chapter for more details.

Parallel load resistors are sometimes
added to parallel-resonant circuits to lower
the circuit Q and increase the circuit band-
width. By using a high-Q circuit and adding
a parallel resistor, designers can tailor the
circuit response to their needs. Since the
parallel resistor consumes power, such tech-
niques ordinarily apply to receiver and simi-
lar low-power circuits, however.

Example: Specifications call for a par-
allel-resonant circuit with a bandwidth of
400 kHz at 14.0 MHz. The circuit at hand
has a QU of 70.0 and its components have
reactances of 350 Ω each. What is the par-
allel load resistor that will increase the
bandwidth to the specified value? The
bandwidth of the existing circuit is:

 kHz200         

 MHz0.200  
0.70

 MHz14.0
  

Q

f
  BW

U

=

===

The desired bandwidth, 400 kHz, re-
quires a circuit with a Q of:

35.0  
 MHz400.0

 MHz14.0
  

BW

f
  Q ===

Since the desired Q is half the original
value, halving the resonant impedance or
parallel-resistance value of the circuit is
in order. The present impedance of the
circuit is:

Ω 24500  Ω 350  70.0 X Q  Z LU =×==

The desired impedance is:

 kΩ12.25  Ω 12250 

 Ω 350  35.0  X Q  Z LU

==

×==

or half the present impedance.
A parallel resistor of 24500 Ω, or the

nearest lower value (to guarantee suf-
ficient bandwidth), will produce the
required reduction in Q and bandwidth
increase. Although this example simpli-
fies the situation encountered in real
design cases by ignoring such factors as
the shape of the band-pass curve, it illus-
trates the interaction of the ingredients that
determine the performance of parallel-
resonant circuits.

Impedance Transformation
An important application of the paral-

lel-resonant circuit is as an impedance
matching device in the output circuit of an
RF power amplifier. There is an optimum
value of load resistance for each type of
tube or transistor and each set of required
operating conditions. The resistance of the
load to which the active device delivers
power may be considerably lower than the
value required for proper device opera-
tion, or the load impedance may be con-
siderably higher than the amplifier output
impedance.

To transform the actual load resistance
to the desired value, the load may be
tapped across part of the coil, as shown in
Fig 4.88. This is equivalent to connecting

a higher value of load resistance across
the whole circuit, and is similar in prin-
ciple to impedance transformation with an
iron-core transformer (described in the
next section of this chapter). In high-fre-
quency resonant circuits, the impedance
ratio does not vary exactly as the square of
the turns ratio, because all the magnetic
flux lines do not cut every turn of the coil.
A desired impedance ratio usually must
be obtained by experimental adjustment.

When the load resistance has a very low
value (say below 100 Ω) it may be con-
nected in series in the resonant circuit (RS
in Fig 4.82A, for example), in which case
it is transformed to an equivalent parallel
impedance as previously described. If the
Q is at least 10, the equivalent parallel
impedance is:

L

2

R R

X
  Z =             (125)

where:
ZR = resistive parallel impedance at

resonance,
X = reactance (in ohms) of either the

coil or the capacitor, and
RL = load resistance inserted in series.

If the Q is lower than 10, the reactance
will have to be adjusted somewhat — for
the reasons given in the discussion of low-
Q circuits — to obtain a resistive imped-
ance of the desired value.

Networks like the one in Fig 4.88 have
some serious disadvantages for some
applications. For instance, the common
connection between the input and the out-
put provides no dc isolation. Also, the
common ground is sometimes trouble-
some with regard to ground-loop currents.
Consequently, a network with only
mutual magnetic coupling is often prefer-
able. With the advent of ferrites, con-
structing impedance transformers that are
both broadband and permit operation well
up into the VHF portion of the spectrum
has become relatively easy. The basic
principles of broadband impedance trans-
formers appear in the following section.

Fig 4.88 — A parallel-resonant circuit
with a tapped coil to effect an
impedance match. Although the
impedance presented by the entire
circuit is very high, the impedance
“seen” by the load, RL, is lower.
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Fig 4.91 — A transformer. A is a pictorial diagram. Power is transferred from the
primary coil to the secondary by means of the magnetic field. B is a schematic
diagram of an iron-core transformer, and C is an air-core transformer.

Transformers
When the ac source current flows

through every turn of an inductor, the gen-
eration of a counter-voltage and the stor-
age of energy during each half cycle is said
to be by virtue of self-inductance. If an-
other inductor — not connected to the
source of the original current — is posi-
tioned so the expanding and contracting
magnetic field of the first inductor cuts
across its turns, a current will be induced
into the second coil. A load such as a
resistor may be connected across the sec-
ond coil to consume the energy transferred
magnetically from the first inductor. This
phenomenon is called mutual inductance.

Two inductors positioned so that the
magnetic field of one (the primary induc-
tor) induces a current in the other (the
secondary inductor) are coupled. Fig 4.89
illustrates a pair of coupled inductors,
showing an ac energy source connected to
one and a load connected to the other. If
the coils are wound tightly on an iron core
so that nearly all the lines of force or mag-
netic flux from the first coil link with the
turns of the second coil, the pair is said to
be tightly coupled. Coils with air cores
separated by a distance would be loosely
coupled. The signal source for the primary
inductor may be household ac power lines,
audio or other waveforms at lower fre-
quencies, or RF currents. The load may be
a device needing power, a speaker con-
verting electrical energy into sonic
energy, an antenna using RF energy for
communications or a particular circuit set
up to process a signal from a preceding
circuit. The uses of magnetically coupled
energy in electronics are innumerable.

Mutual inductance (M) between coils is
measured in henrys. Two coils have a
mutual inductance of 1 H under the fol-
lowing conditions: as the primary induc-
tor current changes at a rate of 1 A/s, the
voltage across the secondary inductor is
1 V. The level of mutual inductance varies
with many factors: the size and shape of
the inductors, their relative positions and
distance from each other, and the perme-

Fig 4.89 — A basic transformer: two
inductors — one connected to an ac
energy source, the other to a load —
with coupled magnetic fields.

Fig 4.90 — An experimental setup for determining mutual inductance. Measure the
inductance with the switch in each position and use the formula in the text to
determine the mutual inductance.

ability of the inductor core material and of
the space between them.

If the self-inductance values of two
coils are known, it is possible to derive the
mutual inductance by way of a simple
experiment schematically represented in
Fig 4.90. Without altering the physical
setting or position of two coils, measure
the inductance of the series-connected
coils with their windings complementing
each other and again with their windings
opposing each other. Since, for the two
coils, LC = L1 + L2 + 2M, in the comple-
mentary case, and LO = L1 + L2 – 2M for
the opposing case,

4

L  L
  M OC −
=             (126)

The ratio of magnetic flux set up by the
secondary coil to the flux set up by the
primary coil is a measure of the extent to
which two coils are coupled, compared to
the maximum possible coupling between

them. This ratio is the coefficient of cou-
pling (k) and is always less than 1. If k
were to equal 1, the two coils would have
the maximum possible mutual coupling.
Thus:

L2 L1 k M =             (127)

where:
M = mutual inductance in henrys,
L1 and L2 = individual coupled induc-

tors, each in henrys, and
k = the coefficient of coupling.

Using the experiment above, it is pos-
sible to solve equation 127 for k with rea-
sonable accuracy.

Any two coils having mutual inductance
comprise a transformer having a primary
winding or inductor and a secondary wind-
ing or inductor. Fig 4.91 provides a picto-
rial representation of a typical iron-core
transformer, along with the schematic
symbols for both iron-core and air-core
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transformers. Conventionally, the term
transformer is most commonly applied to
coupled inductors having a magnetic core
material, while coupled air-wound induc-
tors are not called by that name. They are
still transformers, however.

We normally think of transformers as
ac devices, since mutual inductance only
occurs when magnetic fields are expand-
ing or contracting. A transformer con-
nected to a dc source will exhibit mutual
inductance only at the instants of closing
and opening the primary circuit, or on the
rising and falling edges of dc pulses,
because only then does the primary wind-
ing have a changing field. The principle
uses of transformers are three: to physi-
cally isolate the primary circuit from the
secondary circuit, to transform voltages
and currents from one level to another,
and to transform circuit impedances from
one level to another. These functions are
not mutually exclusive and have many
variations.

IRON-CORE TRANSFORMERS
The primary and secondary coils of a

transformer may be wound on a core of
magnetic material. The permeability of
the magnetic material increases the induc-
tance of the coils so a relatively small
number of turns may be used to induce a
given voltage value with a small current.
A closed core having a continuous mag-
netic path, such as that shown in Fig 4.91,
also tends to ensure that practically all of
the field set up by the current in the pri-
mary coil will cut the turns of the second-
ary coil. For power transformers and
impedance-matching transformers used
in audio work, cores of iron strips are most
common and generally very efficient.

The following principles presume a co-
efficient of coupling (k) of 1, that is, a
perfect transformer. The value k = 1 indi-
cates that all the turns of both coils link
with all the magnetic flux lines, so that
the voltage induced per turn is the same
with both coils. This condition makes the
induced voltage independent of the induc-
tance of the primary and secondary induc-
tors. Iron-core transformers for low
frequencies most closely approach this
ideal condition. Fig 4.92 illustrates the
conditions for transformer action.

Voltage Ratio
For a given varying magnetic field, the

voltage induced in a coil within the field
is proportional to the number of turns in
the coil. When the two coils of a trans-
former are in the same field (which is the
case when both are wound on the same
closed core), it follows that the induced
voltages will be proportional to the num-

ber of turns in each coil. In the primary,
the induced voltage practically equals,
and opposes, the applied voltage, as de-
scribed earlier. Hence:
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where:
ES = secondary voltage,
EP = primary applied voltage,
NS = number of turns on secondary,

and
NP = number of turns on primary.

Example: A transformer has a primary
of 400 turns and a secondary of 2800 turns,
and a voltage of 120 V is applied to the
primary. What voltage appears across the
secondary winding?

V 840  7  V 120  
400

2800
 V 120  ES =×=







=

(Notice that the number of turns is taken
as a known value rather than a measured
quantity, so they do not limit the signifi-
cant figures in the calculation.) Also, if
840 V is applied to the 2800-turn winding
(which then becomes the primary), the
output voltage from the 400-turn winding
will be 120 V.

Either winding of a transformer can be
used as the primary, provided the winding
has enough turns (enough inductance) to
induce a voltage equal to the applied volt-
age without requiring an excessive
current. The windings must also have insu-
lation with a voltage rating sufficient for
the voltage present.

Current or Ampere-Turns Ratio
The current in the primary when no cur-

rent is taken from the secondary is called
the magnetizing current of the trans-
former. An ideal transformer, with no
internal losses, would consume no power,
since the current through the primary in-

ductor would be 90° out of phase with the
voltage. In any properly designed trans-
former, the power consumed by the trans-
former when the secondary is open (not
delivering power) is only the amount nec-
essary to overcome the losses in the iron
core and in the resistance of the wire with
which the primary is wound.

When power is taken from the second-
ary winding by a load, the secondary cur-
rent sets up a magnetic field that opposes
the field set up by the primary current. For
the induced voltage in the primary to equal
the applied voltage, the original field must
be maintained. The primary must draw
enough additional current to set up a field
exactly equal and opposite to the field set
up by the secondary current.

In practical transformer calculations it
may be assumed that the entire primary
current is caused by the secondary load.
This is justifiable because the magnetiz-
ing current should be very small in com-
parison with the primary load current at
rated power output.

If the magnetic fields set up by the pri-
mary and secondary currents are to be
equal, the primary current multiplied by
the primary turns must equal the second-
ary current multiplied by the secondary
turns.
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where:
IP = primary current,
IS = secondary current,
NP = number of turns on primary, and
NS = number of turns on secondary.

Example: Suppose the secondary of the
transformer in the previous example is
delivering a current of 0.20 A to a load.
What will be the primary current?

A 1.4  7  A 0.20  
400

2800
  A 0.20  IP =×=







×=

Although the secondary voltage is
higher than the primary voltage, the sec-
ondary current is lower than the primary
current, and by the same ratio. The sec-
ondary current in an ideal transformer is
180° out of phase with the primary cur-
rent, since the field in the secondary just
offsets the field in the primary. The phase
relationship between the currents in the
windings holds true no matter what the
phase difference between the current and
the voltage of the secondary. In fact, the
phase difference, if any, between voltage
and current in the secondary winding will
be reflected back to the primary as an iden-
tical phase difference.

Fig 4.92 — The conditions for
transformer action: two coils that
exhibit mutual inductance, an ac power
source, and a load. The magnetic field
set up by the energy in the primary
circuit transfers energy to the secon-
dary for use by the load, resulting in a
secondary voltage and current.
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Power Ratio
A transformer cannot create power; it

can only transfer it and change the voltage
level. Hence, the power taken from the
secondary cannot exceed that taken by the
primary from the applied voltage source.
There is always some power loss in the
resistance of the coils and in the iron core,
so in all practical cases the power taken
from the source will exceed that taken
from the secondary.

IO P n  P =             (130)

where:
PO = power output from secondary,
PI = power input to primary, and
n = efficiency factor.
The efficiency, n, is always less than 1.

It is usually expressed as a percentage: if
n is 0.65, for instance, the efficiency is
65%.

Example: A transformer has an effi-
ciency of 85.0% at its full-load output of
150 W. What is the power input to the pri-
mary at full secondary load?

 W176  
0.850

 W150
  

n

P
  P O

I ===

A transformer is usually designed to
have the highest efficiency at the power
output for which it is rated. The efficiency
decreases with either lower or higher out-
puts. On the other hand, the losses in the
transformer are relatively small at low
output but increase as more power is taken.
The amount of power that the transformer
can handle is determined by its own losses,
because these losses heat the wire and
core. There is a limit to the temperature
rise that can be tolerated, because too high
a temperature can either melt the wire or
cause the insulation to break down. A
transformer can be operated at reduced
output, even though the efficiency is low,
because the actual loss will be low under
such conditions. The full-load efficiency
of small power transformers such as are
used in radio receivers and transmitters
usually lies between about 60 and 90%,
depending on the size and design.

IMPEDANCE RATIO
In an ideal transformer — one without

losses or leakage reactance — the follow-
ing relationship is true:
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where:
ZP = impedance looking into the pri-

mary terminals from the power
source,

ZS = impedance of load connected to
 secondary, and

NP, NS = turns ratio, primary to
 secondary.

A load of any given impedance con-
nected to the transformer secondary will
be transformed to a different value look-
ing into the primary from the power
source. The impedance transformation is
proportional to the square of the primary-
to-secondary turns ratio.

Example: A transformer has a primary-
to-secondary turns ratio of 0.6 (the primary
has six-tenths as many turns as the second-
ary) and a load of 3000 Ω is connected to
the secondary. What is the impedance at
the primary of the transformer?

( ) 0.36  Ω 3000  0.6  Ω 3000  Z 2
P ×=×=

Ω 1080  ZP =

By choosing the proper turns ratio, the
impedance of a fixed load can be trans-
formed to any desired value, within prac-
tical limits. If transformer losses can be
neglected, the transformed (reflected) im-
pedance has the same phase angle as the
actual load impedance. Thus, if the load is
a pure resistance, the load presented by
the primary to the power source will also
be a pure resistance. If the load imped-
ance is complex, that is, if the load current
and voltage are out of phase with each
other, then the primary voltage and cur-
rent will show the same phase angle.

Many devices or circuits require a
specific value of load resistance (or
impedance) for optimum operation. The
impedance of the actual load that is to dis-
sipate the power may differ widely from
the impedance of the source device or cir-
cuit, so a transformer is used to change the
actual load into an impedance of the de-
sired value. This is called impedance
matching.
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where:
NP / NS = required turns ratio, primary

to secondary,
ZP = primary impedance required, and
ZS = impedance of load connected to

secondary.

Example: A transistor audio amplifier
requires a load of 150 Ω for optimum per-
formance, and is to be connected to a loud-
speaker having an impedance of 4.0 Ω.
What is the turns ratio, primary to second-
ary, required in the coupling transformer?

6.2  38  
Ω 4.0

Ω 150
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Z
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P ====

The primary therefore must have 6.2 times
as many turns as the secondary.

These relationships may be used in prac-
tical work even though they are based on
an ideal transformer. Aside from the nor-
mal design requirements of reasonably
low internal losses and low leakage reac-
tance, the only other requirement is that
the primary have enough inductance to
operate with low magnetizing current at
the voltage applied to the primary.

The primary terminal impedance of an
iron-core transformer is determined
wholly by the load connected to the sec-
ondary and by the turns ratio. If the char-
acteristics of the transformer have an
appreciable effect on the impedance
presented to the power source, the trans-
former is either poorly designed or is not
suited to the voltage and frequency at
which it is being used. Most transformers
will operate quite well at voltages from
slightly above to well below the design
figure.

Transformer Losses
In practice, none of the formulas given

so far provides truly exact results, although
they afford reasonable approximations.
Transformers in reality are not simply two
coupled inductors, but a network of resis-
tances and reactances, most of which
appear in Fig 4.93. Since only the terminals
numbered 1 through 4 are accessible to the
user, transformer ratings and specifications
take into account the additional losses cre-
ated by these complexities.

In a practical transformer not all of the
magnetic flux is common to both windings,
although in well designed transformers the
amount of flux that cuts one coil and not the
other is only a small percentage of the total
flux. This leakage flux causes a voltage of
self-induction. Consequently, there are
small amounts of  leakage inductance asso-
ciated with both windings of the trans-
former. Leakage inductance acts in
exactly the same way as an equivalent
amount of ordinary inductance inserted in
series with the circuit. It has, therefore, a
certain reactance, depending on the amount
of leakage inductance and the frequency.
This reactance is called leakage reactance,
shown as XL1 and XL2 in Fig 4.93.

Current flowing through the leakage
reactance causes a voltage drop. This volt-
age drop increases with increasing
current; hence, it increases as more power
is taken from the secondary. Thus, the
greater the secondary current, the smaller
the secondary terminal voltage becomes.
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Fig 4.94 — A typical transformer iron
core. The E and I pieces alternate
direction in successive layers to
improve the magnetic path while
attenuating eddy currents in the core.

Fig 4.95 — Two common transformer
constructions: shell and core.

Fig 4.96 — A shielded transformer: the
core plus an outer shield of magnetic
material contain nearly all of the
magnetic field.

Fig 4.93 — A transformer as a network of resistances, inductances and
capacitances. Only L1 and L2 contribute to the transfer of energy.

The resistances of the transformer wind-
ings, R1 and R2, also cause voltage drops
when there is current. Although these volt-
age drops are not in phase with those
caused by leakage reactance, together they
result in a lower secondary voltage under
load than is indicated by the transformer
turns ratio.

Thus, the voltage regulation in a real
transformer is not perfect. At ac line fre-
quencies (50 or 60 Hz), the voltage at the
secondary, with a reasonably well-designed
transformer, should not drop more than
about 10% from open-circuit conditions
to full load. The voltage drop may be con-
siderably more than this in a transformer
operating at voice and music frequencies,
because the leakage reactance increases
directly with the frequency.

In addition to wire resistances and leak-
age reactances, certain stray capacitances
occur in transformers. An electric field
exists between any two points having a
different voltage. When current flows
through a coil, each turn has a slightly dif-
ferent voltage than its adjacent turns, cre-
ating a capacitance between turns. This
distributed capacitance appears in Fig
4.93 as C1 and C2. Another capacitance,
CM, appears between the two windings for
the same reason. Moreover, transformer
windings can exhibit capacitance relative
to nearby metal, for example, the chassis,
the shield and even the core.

Although these stray capacitances are
of little concern with power and audio
transformers, they become important as
the frequency increases. In transformers
for RF use, the stray capacitance can reso-
nate with either the leakage reactance or,
at lower frequencies, with the winding
reactances, L1 or L2, especially under
very light or zero loads. In the frequency
region around resonance, transformers no
longer exhibit the properties formulated
above or the impedance properties to be
described below.

Iron-core transformers also experience
losses within the core itself. Hysteresis

losses include the energy required to over-
come the retentivity of the core’s magnetic
material. Circulating currents through the
core’s resistance are eddy currents, which
form part of the total core losses. These
losses, which add to the required magne-
tizing current, are equivalent to adding a
resistance in parallel with L1 in Fig 4.93.

Core Construction
Audio and power transformers usually

employ one or another grade of silicon
steel as the core material. With
permeabilities of 5000 or greater, these
cores saturate at flux densities approach-
ing 105 lines per square inch of cross sec-
tion. The cores consist of thin insulated
laminations to break up potential eddy
current paths.

Each core layer consists of an E and an
I piece butted together, as represented in
Fig 4.94. The butt point leaves a small gap.
Since the pieces in adjacent layers have a
continuous magnetic path, however,
the flux density per unit of applied mag-
netic force is increased and flux leakage
reduced.

Two core shapes are in common use, as
shown in Fig 4.95. In the shell type, both
windings are placed on the inner leg, while
in the core type the primary and secondary
windings may be placed on separate legs,
if desired. This is sometimes done when it
is necessary to minimize capacitive
effects between the primary and second-
ary, or when one of the windings must
operate at very high voltage.

The number of turns required in the pri-
mary for a given applied voltage is deter-
mined by the size, shape and type of core
material used, as well as the frequency.
The number of turns required is inversely
proportional to the cross-sectional area of
the core. As a rough indication, windings
of small power transformers frequently
have about six to eight turns per volt on a
core of 1-square-inch cross section and
have a magnetic path 10 or 12 inches in
length. A longer path or smaller cross sec-
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tion requires more turns per volt, and vice
versa.

In most transformers the coils are
wound in layers, with a thin sheet of
treated-paper insulation between each
layer. Thicker insulation is used between
adjacent coils and between the first coil
and the core.

Shielding
Because magnetic lines of force are

continuous and closed upon themselves,
shielding requires a path for the lines of
force of the leakage flux. The high-per-
meability of iron cores tends to concen-
trate the field, but additional shielding is
often needed. As depicted in Fig 4.96,
enclosing the transformer in a good mag-
netic material can restrict virtually all of
the magnetic field in the outer case. The

Fig 4.97 — The autotransformer is
based on the transformer, but uses
only one winding. The pictorial diagram
at A shows the typical construction of
an autotransformer. The schematic
diagram at B demonstrates the use of
an autotransformer to step up or step
down ac voltage, usually to com-
pensate for excessive or deficient line
voltage.

nonmagnetic material between the case
and the core creates a region of high reluc-
tance, attenuating the field before it
reaches the case.

AUTOTRANSFORMERS
The transformer principle can be used

with only one winding instead of two, as
shown in Fig 4.97A. The principles that
relate voltage, current and impedance to
the turns ratio also apply equally well. A
one-winding transformer is called an auto-
transformer. The current in the common
section (A) of the winding is the difference
between the line (primary) and the load
(secondary) currents, since these currents
are out of phase. Hence, if the line and load
currents are nearly equal, the common sec-
tion of the winding may be wound with
comparatively small wire. The line and load
currents will be equal only when the pri-
mary (line) and secondary (load) voltages
are not very different.

Autotransformers are used chiefly for
boosting or reducing the power-line volt-
age by relatively small amounts. Fig 4.97B
illustrates the principle schematically
with a switched, stepped autotransformer.
Continuously variable autotransformers
are commercially available under a vari-
ety of trade names; Variac and Powerstat
are typical examples.

Technically, tapped air-core inductors,
such as the one in the network in Fig 4.88
at the close of the discussion of resonant
circuits, are also autotransformers. The
voltage from the tap to the bottom of the
coil is less than the voltage across the
entire coil. Likewise, the impedance of
the tapped part of the winding is less than
the impedance of the entire winding. Be-
cause leakage reactances are great and the
co-efficient of coupling is quite low, the
relationships true of a perfect transformer
grow quite unreliable in predicting the ex-
act values. For this reason, tapped
induc-tors are rarely referred to as trans-
formers. The stepped-down situation in
Fig 4.88 is better approximated — at or
close to resonance — by the formula

L

2
COML

P X

X R
  R =                            (133)

where:
RP = tuned-circuit parallel-resonant

 impedance,
RL = load resistance tapped across part

of the coil,
XCOM = reactance of the portion of the

coil common to both the resonant
circuit and the load tap, and

XL = reactance of the entire coil.

The result is approximate and applies only

to circuits with a Q of 10 or greater.

AIR-CORE RF TRANSFORMERS
Air-core transformers often function as

mutually coupled inductors for RF appli-
cations. They consist of a primary wind-
ing and a secondary winding in close
proximity. Leakage reactances are ordi-
narily high, however, and the coefficient
of coupling between the primary and sec-
ondary windings is low. Consequently,
unlike transformers having a magnetic
core, the turns ratio does not have as much
significance. Instead, the voltage induced
in the secondary depends on the mutual
inductance.

Nonresonant RF Transformers
In a very basic transformer circuit oper-

ating at radio frequencies, such as in Fig
4.98A, the source voltage is applied to L1.
RS is the series resistance inherent in the
source. By virtue of the mutual induc-
tance, M, a voltage is induced in L2. A
current flows in the secondary circuit
through the reactance of L2 and the load
resistance of RL. Let XL2 be the reactance
of L2 independent of L1, that is, indepen-
dent of the effects of mutual inductance.
The impedance of the secondary circuit is
then:

2
L2

2
LS R  R  Z +=             (134)

where:
ZS = the impedance of the secondary

circuit in ohms,
RL = the load resistance in ohms, and
XL2 = the reactance of the secondary

inductance in ohms.

The effect of ZS upon the primary cir-
cuit is the same as a coupled impedance
in series with L1. Fig 4.98B displays
the coupled impedance (ZP) in a dashed
enclosure to indicate that it is not a new
physical component. It has the same
absolute value of phase angle as in the sec-
ondary impedance, but the sign of the
reactance is reversed; it appears as a
capacitive reactance. The value of ZP is:

( )
S

2

P Z

 Mf π 2
  Z =             (135)

where:
ZP = the impedance introduced into the

primary,
ZS = the impedance of the secondary

circuit in ohms, and
2 π f M = the mutual reactance between

the reactances of the primary and
secondary coils (also designated as
XM).
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Fig 4.99 — An air-core transformer circuit consisting of a resonant primary circuit
and an untuned secondary. RS and CS are functions of the source, while RL and CL
are functions of the load circuit.

series to a parallel value by the usual for-
mula, RP = X2 / R1.

The higher the loaded or operating Q of
the circuit, the smaller the mutual induc-
tance required for the same power trans-
fer. If both the primary and secondary
circuits consist of resonant circuits, they
can be more loosely coupled than with a
single tuned circuit for the same power
transfer. At the usual loaded Q of 10 or
greater, these circuits are quite selective,
and consequently narrowband.

Although coupling networks have to a
large measure replaced RF transformer
coupling that uses air-core transformers,
these circuits are still useful in antenna
tuning units and other circuits. For RF
work, powdered-iron toroidal cores have
generally replaced air-core inductors for
almost all applications except where the
circuit handles very high power or the coil
must be very temperature stable. Slug-
tuned solenoid coils for low-power circuits
offer the ability to tune the circuit precisely
to resonance. For either type of core, rea-
sonably accurate calculation of impedance
transformation is possible. It is often easier
to experiment to find the correct values for
maximum power transfer, however. For
further information on coupled circuits,
see the section on Tuned (Resonant) Net-
works in the Receivers and Transmitters,
chapter.

BROADBAND FERRITE RF TRANS-
FORMERS

The design concepts and general theory
of ideal transformers presented earlier in
this chapter apply also to transformers
wound on ferromagnetic-core materials
(ferrite and powdered iron). As is the case
with stacked cores made of laminations in
the classic I and E shapes, the core mate-
rial has a specific permeability factor that
determines the inductance of the windings
versus the number of wire turns used.

Toroidal cores are useful from a few
hundred hertz well into the UHF spectrum.
The principal advantage of this type of
core is the self-shielding characteristic.
Another feature is the compactness of a
transformer or inductor. Therefore, toroi-
dal-core transformers are excellent for use
not only in dc-to-dc converters, where
tape-wound steel cores are employed, but
at frequencies up to at least 1000 MHz
with the selection of the proper core mate-
rial for the range of operating frequencies.
Toroidal cores are available from micro-
miniature sizes up to several inches in
diameter. The latter can be used, as one
example, to build a 20-kW balun for use in
antenna systems.

One of the most common ferromagnetic
transformers used in Amateur Radio work

Fig 4.98 — The coupling of a complex impedance back into the primary circuit of a
transformer composed of nonresonant air-core inductors.

Resonant RF Transformers
The use of at least one resonant circuit

in place of a pair of simple reactances
eliminates the reactance from the trans-
formed impedance in the primary. For
loaded or operating Qs of at least 10, the
resistances of individual components is
negligible. Fig 4.99 represents just one of
many configurations in which at least one
of the inductors is in a resonant circuit.
The reactance coupled into the primary
circuit is cancelled if the circuit is tuned to
resonance while the load is connected. If
the reactance of the load capacitance, CL
is at least 10 times any stray capacitance
in the circuit, as is the case for low imped-

ance loads, the value of resistance coupled
to the primary is

2
L

2
L

2
M

R  X2

R X
  R1

+
=                           (136)

where:
R1 = series resistance coupled into the

primary circuit,
XM = mutual reactance,

RL = load resistance, and
X2 = reactance of the secondary induc-

tance.

The parallel impedance of the resonant
circuit is just R1 transformed from a
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is the conventional broadband trans-
former. Broadband transformers with
losses of less than 1 dB are employed in
circuits that must have a uniform response
over a substantial frequency range, such
as a 2- to 30-MHz broadband amplifier. In
applications of this sort, the reactance
of the windings should be at least four
times the impedance that the winding is
designed to look into at the lowest design
frequency.

Example: What should be the winding
reactances of a transformer that has a
300-Ω primary and a 50-Ω secondary
load? Relative to the 50-Ω secondary load:

Ω 200  Ω 50  4  Z 4  X SS =×==

The primary winding reactance (XP) is:

Ω 1200  Ω 300  4  Z 4  X PP =×==

The core-material permeability plays a
vital role in designing a good broadband
transformer. The effective permeability of
the core must be high enough to provide
ample winding reactance at the low end of
the operating range. As the operating fre-
quency is increased, the effects of the core
tend to disappear until there are scarcely
any core effects at the upper limit of the
operating range. The limiting factors for
high frequency response are distributed
capacity and leakage inductance due to
uncoupled flux. A high-permeability core
minimizes the number of turns needed for
a given reactance and therefore also mini-
mizes the distributed capacitance at high
frequencies.

Ferrite cores with a permeability of 850
are common choices for transformers used
between 2 and 30 MHz. Lower frequency
ranges, for example, 1 kHz to 1 MHz, may
require cores with permeabilities up to
2000. Permeabilities from 40 to 125 are
useful for VHF transformers. Conven-
tional broadband transformers require
resistive loads. Loads with reactive com-
ponents should use appropriate networks
to cancel the reactance.

Conventional transformers are wound
in the same manner as a power trans-
former. Each winding is made from a sepa-
rate length of wire, with one winding
placed over the previous one with suitable
insulation between. Unlike some trans-
mission-line transformer designs, conven-
tional broadband transformers provide dc
isolation between the primary and second-
ary circuits. The high voltages encoun-
tered in high-impedance-ratio step-up
transformers may require that the core be
wrapped with glass electrical tape before
adding the windings (as an additional
protection from arcing and voltage break-

Fig 4.100 — Schematic and pictorial
representation of a conventional
broadband transformer wound on a
ferrite toroidal core. The secondary
winding (L2) is wound over the primary
winding (L1).

Fig 4.101 — Schematic and pictorial
representation of a “binocular” style of
conventional broadband transformer.
This style is used frequently at the
input and output ports of transistor RF
amplifiers. It consists of two rows of
high-permeability toroidal cores, with
the winding passed through the center
holes of the resulting stacks.

down), especially with ferrite cores that
tend to have rougher edges. In addition,
high voltage applications should also use
wire with high-voltage insulation and a
high temperature rating.

Fig 4.100 illustrates one method of
transformer construction using a single
toroid as the core. The primary of a step-
down impedance transformer is wound to
occupy the entire core, with the secondary
wound over the primary. The first step in
planning the winding is to select a core of
the desired permeability. Convert the
required reactances determined earlier
into inductance values for the lowest fre-
quency of use. To find the number of turns
for each winding, use the AL value for the
selected core and equation 73 from the
section on ferrite toroidal inductors ear-
lier in this chapter. Be certain the core can
handle the power by calculating the maxi-
mum flux using equation 71, given earlier
in the chapter, and comparing the result
with the manufacturer’s guidelines.

Example: Design a small broadband
transformer having an impedance ratio of
16:1 for a frequency range of 2.0 to 20.0
MHz to match the output of a small-signal
stage (impedance ≈ 500 Ω) to the input
(impedance ≈ 32 Ω) of an amplifier.

1. Since the impedance of the smaller
winding should be at least 4 times the lower
impedance to be  matched at the lowest
frequency, Ω 128  Ω 32  4  XS =×= .

2. The inductance of the secondary
winding should be

( ) mH 0.0101  Hz 10  2.0  6.2832 

/ 128  f π 2X  L

6

SS

=××

==

3. Select a suitable core. For this low-
power application, a 3/8-inch ferrite core
with permeability of 850 is suitable. The
core has an value of 420. Calculate the
number of turns for the secondary.

420

0.010
 1000  

A

L
 1000  N

L
S ==

4. A 5-turn secondary winding should
suffice. The primary winding derives from
the impedance ratio:

turns 20  4  5 

 
1

16
 5  

Z

Z
  NNP 

S

P
S

=×=

==

This low power application will not
approach the maximum flux density lim-
its for the core, and #28 enamel wire
should both fit the core and handle the
currents involved.

A second style of broadband trans-
former construction appears in Fig 4.101.
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Fig 4.102 — Schematic representation of the basic Guanella “choke” balun or 1:1
transmission line transformer. The inductors are a length of two-wire transmission
line. RS is the source impedance and RL is the load impedance.

The key elements in this transformer are
the stacks of ferrite cores aligned with
tubes soldered to pc-board end plates. This
style of transformer is suited to high power
applications, for example, at the input and
output ports of transistor RF power ampli-
fiers. Low-power versions of this trans-
former can be wound on “binocular” cores
having pairs of parallel holes through
them.

For further information on conventional
transformer matching using ferromagnetic
materials, see the Matching Networks sec-
tion in the RF Power Amplifiers chapter.
Refer to the Component Data and Refer-
ences chapter for more detailed informa-
tion on available ferrite cores. A standard
reference on conventional broadband
transformers using ferro-magnetic materi-
als is Ferromagnetic Core Design and
Applications Handbook by Doug DeMaw,
W1FB, published by Prentice Hall.

TRANSMISSION-LINE
TRANSFORMERS

Conventional transformers use flux
linkages to deliver energy to the output
circuit. Transmission line transformers
use transmission line modes of energy
transfer between the input and the output
terminals of the devices. Although toroi-
dal versions of these transformers physi-
cally resemble toroidal conventional
broadband transformers, the principles of
operation differ significantly. Stray induc-
tances and interwinding capacitances
form part of the characteristic impedance
of the transmission line, largely eliminat-
ing resonances that limit high frequency
response. The limiting factors for trans-
mission line transformers include line
length, deviations in the constructed line
from the design value of characteristic
impedance, and parasitic capacitances and
inductances that are independent of the
characteristic impedance of the line.

The losses in conventional transform-
ers depend on current and include wire,
eddy-current and hysteresis losses. In con-
trast, transmission line transformers ex-
hibit voltage-dependent losses, which
make higher impedances and higher
VSWR values limiting factors in design.
Within design limits, the cancellation of
flux in the cores of transmission line trans-
formers permits very high efficiencies
across their passbands. Losses may be
lower than 0.1 dB with the proper core
choice.

Transmission-line transformers can be
configured for several modes of operation,
but the chief amateur use is in baluns (bal-
anced-to-unbalanced transformers) and in
ununs (unbalanced-to-unbalanced trans-
formers). The basic principle behind a
balun appears in Fig 4.102, a representa-
tion of the classic Guanella 1:1 balun. The
input and output impedances are the same,
but the output is balanced about a real or
virtual center point (terminal 5). If the
characteristic impedance of the transmis-
sion line forming the inductors with num-
bered terminals equals the load impedance,
then E2 will equal E1. With respect to ter-
minal 5, the voltage at terminal 4 is E1  / 2,
while the voltage at terminal 2 is  –E1 / 2,
resulting in a balanced output.

The small losses in properly designed
baluns of this order stem from the poten-
tial gradient that exists along the length of
transmission line forming the transformer.
The value of this potential is –E1 / 2, and
it forms a dielectric loss that can’t be
eliminated. Although the loss is very small
in well-constructed 1:1 baluns at low im-
pedances, the losses climb as impedances
climb (as in 4:1 baluns) and as the VSWR
climbs. Both conditions yield higher volt-
age gradients.

The inductors in the transmission-line
transformer are equivalent to — and may
be — coiled transmission line with a char-

acteristic impedance equal to the load.
They form a choke isolating the input from
the output and attenuating undesirable
currents, such as antenna current, from the
remainder of the transmission line to the
energy source. The result is a current or
choke balun. Such baluns may take many
forms: coiled transmission line, ferrite
beads placed over a length of transmission
line, windings on linear ferrite cores or
windings on ferrite toroids.

Reconfiguring the windings of Fig
4.102 can alter the transformer operation.
For example, if terminal 2 is connected to
terminal 3, a positive potential gradient
appears across the lengths of line, result-
ing in a terminal 4 potential of 2 E1 with
respect to ground. If the load is discon-
nected from terminal 2 and reconnected to
ground, 2 E1 appears across the load —
instead of ±E1 / 2. The product of this
experiment is a 4:1 impedance ratio, form-
ing an unun. The bootstrapping effect of
the new connection is applicable to many
other design configurations involving
multiple windings to achieve custom
impedance ratios from 1:1 up to 9:1.

Balun and unun construction for the
impedances of most concern to amateurs
requires careful selection of the feed line
used to wind the balun. Building transmis-
sion line transformers on ferrite toroids
may require careful attention to wire size
and spacing to approximate a 50-Ω line.
Wrapping wire with polyimide tape (one
or two coatings, depending upon the wire
size) and then glass taping the wires
together periodically produces a reason-
able 50-Ω transmission line. Ferrite cores
in the permeability range of 125 to 250 are
generally optimal for transformer wind-
ings, with 1.25-inch cores suitable to
300-Ω power levels and 2.4-inch cores
usable to the 5 kW level. Special designs
may alter the power-handling capabilities
of the core sizes. For the 1:1 balun shown
in Fig 4.102, 10 bifilar turns (#16 wire for
the smaller core and #12 wire for the
larger, both Thermaleze wire) yields a
transformer operable from 160 to 10 m.

Transmission-line transformers have
their most obvious application to anten-
nas, since they isolate the antenna currents
from the feed line, especially where a
coaxial feed line is not exactly perpen-
dicular to the antenna. The balun prevents
antenna currents from flowing on the outer
surface of the coax shielding, back to the
trans-mitting equipment. Such currents
would distort the antenna radiation pat-
tern. Appropriately designed baluns can
also transform impedance values at the
same time. For example, one might use a
4:1 balun to match a 12.5-Ω Yagi antenna
impedance to a 50-Ω feed line. A 4:1 balun
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might also be used to match a 75-Ω TV
antenna to 300-Ω feed line.

Interstage coupling within solid-state
transmitters represents another potential
for transmission-line transformers. Broad-
band coupling between low-impedance,
but mismatched stages can benefit from

the low losses of transmission-line trans-
formers. Depending upon the losses that
can be tolerated and the bandwidth
needed, it is often a matter of designer
choice between a transmission-line trans-
former and a conventional broadband
transformer as the coupling device.

For further information on transmis-
sion-line transformers and their applica-
tions, see the RF Power Amplifiers
chapter. Another reference on the subject
is Transmission Line Transformers, by
Jerry Sevick, W2FMI, published by Noble
Publishing.
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