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Fig 16.1—Sine wave of frequency much less than the sampling frequency (A). The
sampled sine wave (B).

Digital signal processing (DSP) is one
of the great technological innovations of
the last hundred years. It has found a per-
manent place not only in radio, but also in
the exploration for oil and other fossil
fuels, high-definition television (HDTV),

compact-disc (CD) recording and many
other facets of our lives. Its popularity
stems from certain advantages: DSP fil-
ters do not need tuning and may be exactly
duplicated from unit to unit; temperature
variations are virtually non-existent; and

DSP represents the ultimate in flexibility,
since general-purpose DSP hardware can
be programmed to perform many different
functions, often eliminating other hard-
ware. This chapter was written by Doug
Smith, KF6DX.

DSP FUNDAMENTALS
In this chapter, you will see that DSP is

about rapidly measuring analog signals,
recording the measurements as a series of
numbers, processing those numbers, then
converting the new sequence back to ana-
log signals. How we process the numbers
depends on which of many possible func-
tions we are performing. We will take a
look at some of those functions and ex-
plore how real DSP systems are imple-
mented in software and hardware.

Sampling
The process of generating a sequence of

numbers that represent periodic measure-
ments of a continuous analog waveform is
called sampling. Each number in the se-
quence is a single measurement of the in-
stantaneous amplitude of the waveform at
a sampling time. When we make the mea-
surements continually at regular intervals,
the result is a sequence of numbers repre-
senting the amplitude of the signal at
evenly spaced times.

This process is illustrated in Fig 16.1.
Note that the frequency of the sine wave
being sampled is much less than the sam-
pling frequency, fs. In other words, we are
taking many samples during each cycle of
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Fig 16.2—Spectrum of an analog sine wave (A). The spectrum of a sampling
function (B). The spectrum of the sampled sine wave (C).

Fig 16.3—Sine wave of frequency greater than the sampling frequency (A).
Harmonically sampled sine wave (B).

the sine wave. The sampled waveform
does not contain information about what
the analog signal did between samples, but
it still roughly resembles the sine wave.
Were we to feed the analog sine wave into
a spectrum analyzer, we would see a single
spike at the sine wave’s frequency. Pretty
obviously, the spectrum of the sampled
waveform is not the same, since it is a step-
wise representation.

The sampled signal’s spectrum can be
predicted and interpreted in the following
way. The analog sine wave’s spectrum is
shown in Fig 16.2A, above the spectrum of
the sampling function in Fig 16.2B. The
sampled signal is just the product of the two
signals; its spectrum is the convolution of
the two input spectra, as shown in Fig 16.2C.
The sampling process is equivalent to a mix-
ing process: They each perform a multipli-
cation of the two input signals.

Note that the sampled spectrum repeats
at intervals of fs. These repetitions are
called aliases and are as real as the funda-
mental in the sampled signal. Each con-
tains all the information necessary to fully
describe the original signal. In general, we
are only interested in the fundamental, but
let’s see what happens when the sampling
frequency is less than that of the analog
input.

Sine Wave, Alias Sine Wave:
Harmonic Sampling

Take the case wherein the sampling fre-
quency is less than that of the analog sine
wave. See Fig 16.3. The sampled output
no longer matches the input waveform.
Notice that the sampled signal retains the
shape of a sine wave at a frequency lower
than that of the input. Ordinarily, this
would not be a happy situation.

A downward frequency translation is
useful, though, in the design of IF-DSP
receivers. In addition, lower sampling fre-
quencies are good because they allow
more time between samples for signal pro-
cessing algorithms to do their work; that
is, lower sampling rates ease the process-
ing burden. Caution is required, though:
An input signal near twice the sampling
frequency would produce the same output
as that of Fig 16.3. To use this technique,
then, we must first limit the bandwidth
(BW) of the input: A band-pass filter
(BPF) is called for. This is known as har-
monic sampling. The BPF is referred to as
an anti-aliasing filter.

Input signals must fall between the funda-
mental (or some harmonic) of the sampling
frequency and the point half way to the next
higher harmonic. A frequency translation
will take place, but no information about the
shape of the input signal will be lost. A spec-
tral representation of harmonic sampling is
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shown in Fig 16.4. It reveals the basis for the
often-misquoted Nyquist sampling theorem:
The sampling frequency must be at least
twice the input BW to avoid aliasing. Such
aliasing would destroy information; once
incurred, nothing can remedy it.

Data Converters and Quantization
Noise

The device used to perform sampling is
called an analog-to-digital converter
(ADC). For each sample, an ADC pro-
duces a binary number that is directly pro-
portional to the input voltage. The number
of bits in its binary output limits the num-
ber of discrete voltage levels that can be
represented. An 8-bit ADC, for example,
can only give one of 256 values. This
means the amplitude reported is not the
exact amplitude of the input, but only the
closest value of those available. The dif-
ference is called the quantization error.

The amplitude reported by the ADC
can, therefore, be thought of as the sum of
two signals: the desired input and the
quantization error. In a perfect ADC, the
error cannot exceed ±1/2 of the value of the
least-significant bit of the converter—this
is the error signal’s peak-to-peak ampli-

tude. Assuming the desired input is chang-
ing and covers a large range of quantiza-
tion levels, the error is just as likely to be
negative as positive, and just as likely to
be small as large. Hence, the error signal
is pseudo-random and appears as quanti-
zation noise.

This noise is spread uniformly over the
entire input BW of fs/2. Taking this and
the maximum signal the ADC can handle
into account, the maximum signal-to-
quantization-noise ratio produced by the
ADC is:

dB 76.1b02.6SNRmax +≈ (1)

where b is the number of bits used by the
converter.

For a simple 16-bit ADC, the SNR cannot
exceed about 98 dB. The reason we wrote
that the quantization noise was pseudo-ran-
dom and not truly random is the following:
If there were a harmonic relationship be-
tween the input signal and the sampling fre-
quency, the noise might tend to concentrate
itself at discrete frequencies.

Aperture Jitter
In addition to quantization noise, noise

is introduced in ADCs by slight variations
in the exact times of sampling. Phase noise
in the ADC’s clock source, as well as other
inaccuracies in the sampling mechanisms,
produce undesired phase modulation of
the sampled signal. Again, assuming it is
uncorrelated with the input signal, this
aperture jitter noise will be distributed
across the entire input BW. Its amplitude
is proportional to the squares of both the
desired signal’s frequency and the RMS
time jitter in the sampling rate, and in-
versely proportional to the sampling rate
itself. With contemporary crystal-derived
clock sources, aperture jitter is usually
not a significant factor until the sampling
frequencies reach VHF; even at those fre-
quencies, the effect may be small com-
pared with quantization noise.

Over-Sampling and Sigma-Delta
ADCs

The nature of the above-mentioned noise
sources is such that if we could increase the
sampling frequency by some factor N, then
digitally filter the output back down to a
lower rate, we could improve the SNR by
almost the factor N. This is because the noise
would be spread over a larger BW; much of
the high-frequency noise would be elimi-
nated by the digital filter. This technique is
called over-sampling.

So-called sigma-delta converters use
this method to achieve the best possible
dynamic range. They employ one-bit
quantizers at very high speed and digital
decimation filters (described later) to re-
duce the sampling frequency, thus im-
proving SNR. They represent the state of
the art in ADC technology. Other factors,
such as the noise figure of analog stages
inside an ADC, tend to limit the SNR of
real converters to within a few dB of that
calculated by Eq 1.

Non-Linearity in ADCs
The quantization steps of a real converter

are not perfectly spaced; conversion results
are contaminated by the inaccuracy. In gen-
eral, two types of non-linearity are charac-
terized by manufacturers: differential
non-linearity (DNL) and integral non-
linearity (INL).

DNL is the measure of the output non-
uniformity from one input step to the next.
It is expressed as the maximum error in the
output between adjacent input steps as
measured over the entire input range of the
device. The worst errors usually occur near
the middle of the scale. Since we are talk-
ing about the accuracy of the smallest steps
the converter can resolve, noisy low-order
distortion products caused by this effect
limit dynamic range. Current technology
uses correction systems to compensate for

Fig 16.4—Spectrum of a sampling function (A). Spectrum of a band of real signals
(B). Spectrum of a harmonically sampled band of real signals (C).
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temperature variations that would other-
wise further degrade performance.

An ADC is considered monotonic if a
steady increase in the input signal always
results in an increase in the output. Device
manufacturers hold DNL to ±0.5 bits or
better so that monotonicity is maintained.

INL is a measure of an ADC’s large-
signal handling capability. To measure it,
we first inject a signal of amplitude A and
measure the output; when we inject a sig-
nal of amplitude 100A, we expect the out-
put to grow in exact proportion. INL
represents the maximum error in the out-
put between any two input levels. Another
way to think about this is to plot the input
against the output and see how straight the
line is. INL produces harmonic distortion
and IMD; values for typical converters are
±1 or 2 bits over the entire range.

Spurious-Free Dynamic Range and
Dithering

Spurious-free dynamic range (SFDR) is
defined as the ratio of the largest signal
the converter can accurately handle to the
largest source of noise and distortion
caused by effects mentioned above. Quite
often, undesired components may appear
in unexpected parts of the input spectrum;
spurious responses may be found without
apparent explanation. It turns out there are
explanations, of course, but we will defer
that discussion. Suffice it to write here that
manufacturers test for SFDR and usually
specify it on their data sheets, especially
for high-speed devices.

Sometimes noise and distortion effects
conspire to add at discrete frequencies. It is
found that the addition of random noise at
the clock input helps dissipate these spuri-
ous responses. This technique is known as
dithering. It may seem strange, but artificial
noise—usually several bits in amplitude and
high enough in frequency to be eliminated
by the decimation filter—actually reduces
quantization noise and improves perfor-
mance rather than degrading it.

Digital-to-Analog Converters:
Additional Distortion Sources

Digital-to-analog converters (DACs) per-
form the conversion of binary numbers back
into analog voltages—the reverse operation
of ADCs. They suffer from all the inadequa-
cies described earlier, as well as a few of
their own. The first unique distortion of
DACs is one of frequency response: zero-
order sample-and-hold distortion.

Typical converters are sample-and-hold
devices: They continue to output the last
sampled value throughout the sample
period. This effect acts as a low-pass filter
having a frequency response:
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Note the classical (sin x)/x form. The
high-frequency roll-off is quite undesir-
able in many circumstances. For example,
if the output frequency is one quarter the
sampling frequency, an attenuation of
about 1 dB will occur. Correction can be
made for this, but an increase in sampling
frequency reduces the attenuation. Inter-
polation of the sampled output signal (de-
scribed later) is called for in many cases.

Settling Time and Glitch Energy
When the output of a DAC changes from

one voltage to another, it obviously can-
not do so instantaneously; a finite time is
required for the voltage to reach its new
value. This is known as the settling time.
It is usually defined as the time required to
settle to within some number of voltage-
equivalent bits of the final value.

Glitch energy or glitch area is defined as
the product of the voltage error during the
settling time and the settling time itself.
While volt-seconds are not units of energy,
it is assumed the DAC is driving some kind
of load; thus, these units can be translated
into units of energy (watt-seconds), per-
forming work on that load. The settling
mechanism is an important factor in the
production of spurious outputs in DACs.
Manufacturers usually specify the glitch
energy for their high-speed devices. It is an
especially important number for direct-
digital-synthesis (DDS) applications.

Note also that DACs produce aliases,
again repeating at intervals of fs. These
must usually be removed using an analog
LPF. Occasionally, a BPF may be used,
and one of the aliases taken as the desired
output. This can be a clever way of getting
an upward frequency translation under
certain conditions.

Reducing the Sampling
Frequency: Decimation

As we have seen, sampling at high rates is
beneficial because it eases the design of the
analog filters we must use to avoid aliasing.
It also reduces quantization noise and aper-
ture jitter. We have also noted that lower
sampling rates help reduce the computa-
tional burden in DSP systems. In addition,
we will discover that when it is time to digi-
tally filter some signals, making the filter’s
BW a large fraction of the sampling fre-
quency makes it easier to build sharp-skirted
filters—exactly what DSP is famous for.

Reduction of the sampling frequency is

usually called decimation. Decimation is
normally done by integer factors (although
it does not have to be) and is equivalent to
resampling an already-sampled signal at a
lower rate. The resampled signal has a fam-
ily of aliases, repeating at intervals of the
lower sampling frequency; we have to re-
duce the BW to less than half this lower
sampling frequency to avoid the aliasing
that would destroy information.

The process of decimation is simple:
Just throw away the unwanted samples.
To decimate by two, for example, only
every other sample is retained. A decima-
tion filter, operating at the higher sam-
pling rate, fs, reduces signal BW to less
than fs/4 prior to discarding the samples to
avoid aliasing. But why spend time com-
puting filter outputs that we are only go-
ing to discard? We may compute only
those we intend to keep. This is exactly
the same as running the decimation filter
at the lower rate. This method is typical of
those used by DSP designers to save time
and effort. See the chapter Appendix for a
software project (Project A) that demon-
strates decimation using Alkin’s PC-DSP
program. This program is included with
the book listed in the Bibliography.

Increasing the Sampling Fre-
quency: Interpolation

We learned that when it is time to con-
vert back to analog, an artificial increase
in sampling rate may be advantageous. It
will push aliases higher in frequency
where they are easier to remove by analog
filtering, and it will relieve some of the
sample-and-hold distortion. So, even hav-
ing decimated the data at some earlier
stage in our designs, we may later employ
the process of interpolation.

Decimation was performed by deleting
samples. Interpolation is performed by
inserting them. The inserted samples have
a value of zero and are placed between the
existing samples. While this increases the
sampling frequency, the information in the
original samples is not destroyed; how-
ever, new information is added in the form
of aliases, and an interpolation filter is
usually required. This filter, most often a
low-pass, operates at the higher sampling
frequency, fs, and eliminates components
in the interpolated data above half the
original sampling frequency.

The way numbers are represented in
DSPs is a major consideration. Let’s take
a look at this before moving on to filtering
algorithms.

Representation of Numbers:
Floating-Point vs Fixed-Point

One of the things that makes general-
purpose computers so useful is their abil-
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ity to perform floating-point calculations.
In this form of numeric representation,
numbers are stored in two pieces: a frac-
tional part, or mantissa, and an exponent.
The mantissa is assumed to be a binary
number representing an absolute value
less than unity, and the exponent, a binary
integer. This approach allows the com-
puter to handle a large range of numbers,
from very small to very large. Some DSP
chips support floating-point calculations,

but it is not as great an advantage in signal
processing as it is in general-purpose com-
puting because the range of values we are
dealing with in DSP is limited anyway.
For this reason, fixed-point processors are
common in DSP.

A fixed-point processor treats numbers as
just the mantissa and does away with the
exponent. The radix point—the separation
between the integer and fractional parts of a
number—is usually assumed to reside to the

left of the most-significant bit. This is con-
venient, since the product of two fractions
less than unity is always another fraction less
than unity. The sum of two fractions, though,
may be greater than unity: overflow would
be the result. Overflow is a constant concern
for fixed-point DSP programmers and leads
to considerations for scaling of data, as dis-
cussed further below, which may limit sys-
tem dynamic range to less than the data
converters’ capabilities.

Fig 16.5—Block diagram of an FIR filter for L = 5.

DSP ALGORITHMS FOR RADIO

Digital Filters
The ability to construct high-perfor-

mance filters is probably the most im-
portant rationale for using DSP in radio
transceivers. An expensive crystal or
mechanical filter having a single BW can
be replaced by a set of superior digital fil-
ters, offering as many BWs as the associ-
ated on-board memory can support.

As shape-factor requirements get more
stringent, filters get more complex. As a
filter gets more complex—with additional
inductors and capacitors in the analog case,
or additional delay elements in the digital
case—the sensitivity of the filter’s re-
sponse to errors in the element values be-
comes more severe. Thus, for analog filters,
precise values of resistance, inductance and
capacitance must be maintained if the filter
is to operate as designed. Establishing those
values is difficult; holding them within
tolerances over temperature variations and
aging is more so. DSP filters, on the other
hand, are unchanging. The “component”
values are numbers stored in a computer
that are not susceptible to temperature

changes or aging. Filters that would be
impractical or impossible in the analog
realm are easily implemented by DSP algo-
rithms.

We can build digital filters having lin-
ear phase responses, which is very diffi-
cult in the analog world. This is an
advantage mainly for digital communica-
tion modes such as FSK and PSK. Also,
filters may be combined numerically to
yield composite responses without the
need for adding hardware. This is useful
for passband tuning or graphic-equalizer
applications.

DSP filters are usually characterized by
their impulse responses. The impulse re-
sponse of a digital filter is the output of the
filter when the input is a one-sample,
unity-amplitude impulse. Impulse re-
sponse is directly related to frequency re-
sponse by a Fourier transform, about
which we will learn more later. Suffice it
to write for now that digital filters may be
broadly divided into two classes: finite
impulse response (FIR) and infinite im-
pulse response (IIR). The presence or ab-

sence of feedback separates the two.

FIR Filters
Take a look at the block diagram of the

FIR filter shown in Fig 16.5. The string of
boxes labeled z-1 is simply a delay line,
with each box representing a one-sample
delay. Programmers will note that with
one input sample in each position, this is
just a buffer of length five. Each buffer
location may be referred to as a tap in the
delay line. The datum at each tap, x(n), is
multiplied by one of the filter coefficients,
h(n). All the products are summed at each
sample time to produce the filter output.
At the next sample time, samples are
shifted down the delay line by one posi-
tion and the multiply-and-accumulate
(MAC) operation is performed again. Co-
efficients remain in place and do not shift.
The mathematical expression describing
this repetitive MAC operation is also
called a convolution sum:

∑ −=
−

=
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where x(k-n) represents the input data in
the buffer.

Since the output depends only on past
input values, the filter is said to be a causal
process. Since no feedback is employed,
it is unconditionally stable.

In an FIR filter, the set of coefficients,
h(n), is identical to the impulse response
of the filter. The trick, then, is to find the
impulse response that gives us the fre-
quency response we want. Almost any fre-
quency response can be generated if we
use enough taps. In general, low shape
factors (steeper roll-offs) require more
taps. Most filter-design methods begin
with an estimate of the number of taps
needed. Rabiner and Gold indicate the
estimate may be taken as:
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where δ1 is the passband ripple, δ2 is the
stopband attenuation, fT is the transition BW
(the bandwidth between the edge of the pass-
band and the edge of the stopband (ie, the
filter skirt), fs is the sampling frequency, and
L, the number of taps, is called the length of
the filter. This equation assumes that enough
bits of resolution are used to achieve the
required accuracy. In practice, filters of over
100 taps are used to realize shape factors of
less than 1.15:1.

Normally, an FIR filter’s impulse re-
sponse has a symmetry about center; that
is, h(0) = h(L–1), h(1) = h(L–2), and so
forth. It turns out this is sufficient to ensure
a linear phase response and flat group-
delay characteristics. The total delay
through an FIR filter of length L is:

sf2

L
t = (5)

As noted, this delay is independent of
frequency. Remember that longer filters
demand more processing than shorter filters.

When personal computers are used to
design FIR filters, coefficients are usually
represented in floating-point format to the
full accuracy of the computer—often with
12 or more decimal digits in the mantissa.
Embedded, fixed-point DSP implemen-
tations ordinarily achieve only 16-bit accu-
racy. The truncation of coefficients and data
to this accuracy affects the frequency re-
sponse and ultimate attenuation of filters,
and may be the factor that determines dy-
namic range. Also notice that when we mul-
tiply a 16-bit coefficient by a 16-bit datum,
the product is a 32-bit number. We are then
adding several 32-bit numbers in the final

accumulator of an FIR filter. The result may
grow by several more bits to 35 or so by the
time we are done. At some stage, the result
may overflow the accumulator, especially
in FIR filters with small transition BWs
(sharp skirts). The worst-case output can
grow as large as the sum of the absolute value
of all the coefficients:
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We might have to scale the data, the
coefficients, or both by the reciprocal of
this number to avoid overflow.

The filter output at each sample time is
usually rounded back down to the bit-reso-
lution of the DAC; say, to 16 bits. The
rounding operation introduces a small
error in the result. This rounding error is
directly analogous to quantization noise;
it is computed in almost exactly the same
way. A trade-off exists between the possi-
bility of overflow, which is catastrophic,
and loss of accuracy because of rounding.
It is interesting to note that truncation of
filter coefficients affects the frequency
response of the filter but not the amount of
noise in the output. On the other hand,
truncation and rounding of data do not
affect the frequency response but add
quantization noise to the output.

One FIR filter-design approach takes
advantage of the fact that a filter’s fre-
quency response is the Fourier transform
of its impulse response. Thus, we may start
with a sampled version of the frequency
response and apply an inverse Fourier
transform to obtain the impulse response.
All filter-design software is capable of
using this method. Better designs may be
obtained in many cases by using an algo-
rithm developed by Parks and McClellan.
This approach produces an equi-ripple
design in which all of the passband ripples
are the same amplitude, as are all the
stopband ripples. Another popular algo-
rithm is the least-squares method. Its
claim to fame is that it minimizes the error
in the desired frequency response.

Since finding coefficient sets for a given
filter design is so computationally inten-
sive, it is a good job for a computer pro-
gram. DSP filter-design programs are
readily available at low cost. Refer to the
DSP System Software section toward the
end of this chapter for further discussion
of filter design and the Bibliography for a
list of software design tools. The article
by Kossor has a practical circuit example
of a commutating BPF that employs prin-
ciples of DSP. Also see Project B in the
chapter Appendix for examples of FIR
filter designs.

IIR Filters
While FIR filters have a lot going for

them, they tend to require a large number of
taps and a proportional amount of process-
ing power. As opposed to that, an IIR (infi-
nite impulse response) filter can provide
sharp transition BWs with relatively few
calculations. What it will not provide, in
general, is a linear phase response. In cir-
cumstances where the computational bur-
den is of more concern than the phase
response, IIR filters may be desirable.

Unlike FIR filters, IIR filters employ
feedback: That is what makes their im-
pulse responses infinite. For this reason,
IIR filters are usually designed by con-
verting traditional analog filter designs,
such as Chebyshev and elliptical types.
See the RF and AF Filters chapter of this
book for a description of those designs.
The transfer function of an analog
Chebyshev low-pass filter can be written
as the ratio of a constant to an nth-order
polynomial:
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Tables in the literature, such as in Zverev,
list the values of the coefficients, an, related
to the cutoff frequency; these are used to
derive actual component values for the fil-
ter. The low-pass design can be transformed
to band-pass or band-stop responses. Two
popular methods exist for deriving the digi-
tal transfer function from the analog: These
are known as the impulse-invariant and
bilinear transform methods.

The impulse-invariant method assures
that the digital filter will have an impulse
response equivalent to its analog counter-
part, and thus the same phase response.
Problems arise, though, if the bands of
interest are near half the sampling fre-
quency; the digital filter’s response can
develop serious errors in this case. Be-
cause of this problem, the impulse-invari-
ant method is not as good as the bilinear
transform method. As indicated by Sabin
and Schoenike, the bilinear transform
method makes a convenient substitution
for s in Eq 7 above. The filter output comes
out as:
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This filter has L zeros and L–1 poles.
The block diagram of such a filter for L =
5 is shown in Fig 16.6. Feedback is evi-
dent in the diagram: The paths involving
coefficients β loop back and are added to

ch16.pmd 8/17/2004, 9:58 AM6



DSP and Software Radio Design 16.7

Fig 16.6—Block diagram of an IIR filter for L = 5.

Fig 16.7—Block diagram of a cascade-form IIR filter.
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the signal path.
The direct form of Eq 8 may be factored

into 2-pole sections and implemented in
cascaded form. The output of each section
serves as the input to the next. See Fig 16.7.
This configuration requires a few more
multiplications than the direct form, but suf-
fers less from instability problems that may
plague IIR filters. Since feedback is being
used, IIR filters are not necessarily uncon-
ditionally stable. They also tend to be prone
to limit cycles, low-level oscillations that
arise near the lower end of the dynamic
range. For these and other reasons, data and
coefficient storage should be cleared or set
to zero before processing begins.

A Simple Digital Notch Filter
Along with common LPFs, HPFs and

BPFs, radio designers are interested in one
other type of filter, the notch. While most
filter-design software can generate notch
filters using FIR methods discussed above,
Widrow and Stearns have described an un-
usual type in which the number of taps is
minimized. In fact, they were able to prove
that only two taps are needed for each fre-
quency to be notched. This is great, since it
reduces computation to almost nil. We will

take a look at it here and touch briefly on
some of the theory of adaptive signal pro-
cessing, treated in depth later.

The situation is this: We want to copy a
broadband signal, such as an SSB phone
signal, and suddenly a dreadful carrier
appears in the passband. Our notch filter
will remove it and we will have complete
control over the notch width, as well as a
notch depth limited only by the bit resolu-
tion of our system. Dr Widrow found that
one can build a filtering system that mini-
mizes repetitive signal energy by altering
the filter coefficients “on the fly” using a
certain algorithm. Known as the least-
mean-squares (LMS) method, it describes
a way to adjust filter coefficients over time
to remove undesired, steady tones in the
input. A complex reference signal is used
at the exact frequency of the offending
tone. The algorithm then forms a BPF cen-
tered at the tone frequency whose output
is subtracted from the input to create the
notch. The block diagram of a two-tap
system is shown in Fig 16.8.

The broadband input is called x(t). The
reference input consists of two signals, cos
(ω0t) and sin (ω0t). These signals feed
multipliers having coefficients h(1) and

h(2), which in turn feed an accumulator
just as in a normal FIR filter. This is the
BPF output; it is subtracted from the input
to form the notch output, e(t). Note that
the BPF output is also available at no ad-
ditional overhead. While the initial values
of the coefficients are unimportant to the
steady state, the procedure for updating
them with the LMS algorithm is:

)2(µe(t)x2)2(h)2(h

)1(µe(t)x2)1(h)1(h

tt1t

tt1t

+=

+=

+

+
(9)

where 0 < µ < 1. Analysis shows that as the
reference inputs are sinusoidal, the system
is linear and time-invariant for output e(t),
although the coefficient values do not nec-
essarily approach any fixed value. The 3-dB
BW of the notch is:

 rad/s
t

µA2
BW

s

2
= (10)

The Q of the filter may be readily com-
puted. Thus, we have control over the BW
by varying the factor µ and the amplitude of
the reference signal. The depth of the null is,
in general, superior to that of a fixed filter
because the algorithm tracks the correct
phase relationship for ideal cancellation,
even if the reference frequency is changing
slowly with the offending tone. Each addi-
tional tone to be notched demands two addi-
tional taps in the filter. Noise in the input
may cause us to have to add more taps to
maintain sufficient accuracy. Additional
detail of adaptive signal processing will be
found below and in material shown in the
Bibliography.

Lattice and Other Structures
While many filter-design software

packages do not have the capability to
work with them, lattice structures and
other types of digital filters have seen use,
especially in adaptive signal processing.
Crystal and mechanical lattice filters are
common elements of many transceivers.
A digital lattice or ladder filter is a lot like
its analog brother. The design of digital
lattice filters is similar as well. Digital
lattice filters may be either FIR or IIR.
Also note that from the IIR cascade form
above, we can derive a parallel form that
may be computationally beneficial in
some cases. The design of this kind of fil-
ter is a very complicated session in partial
fraction expansion. Widrow and Stearns
provide more information on these and
other exotic concepts.Fig 16.8—Block diagram of a two-tap, adaptive notch filter.
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ANALYTIC SIGNALS AND MODULATION

Fig 16.9—Vector representation of a
real cosine wave.

Fig 16.10—Hilbert transformer
producing an analytic signal.

Fig 16.11—Block diagram of a half-complex mixer.

DSP implementations of transceiver
functions, such as modulation and de-
modulation, compel designers to examine
the mathematics behind them. Computers
are good at crunching numbers, but they
do exactly what they are told! If we expect
a DSP system to generate an SSB signal,
for example, we had better know which
calculations to perform and which to
avoid.

Mathematics of Complex Signals
Because DSP makes it easy to build fre-

quency-independent phase shifters—a
fantasy in the analog world—the phasing
or “I/Q” method has dominated other
modulation techniques. Complex signals
are not generally well understood and
quite often form a stumbling block to those
wishing to grasp DSP concepts. The idea
of negative frequency is especially
troublesome. The key to understanding
these concepts lies in the theory of com-
plex numbers. A real signal, such as a co-
sine wave, is normally thought of as a
positive frequency. It can be transmitted
and detected normally; however, we shall
see that such a signal actually consists of
positive and negative frequencies when
examined in the complex domain.

A real cosine wave embodies the rela-
tion:

x(t) = cos(wt) (11)

where ω = 2πf and t is time. In the complex
domain, the cosine wave is really the sum
of two complex signals:

[ ]
[ ] 


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)tsin(j)tcos(
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ωω

ωω

2

1
)t(x

                                           (12)
This signal has both positive and nega-

tive frequency components. The real parts
add and the imaginary parts cancel to make
the equation true. In the complex plane,
where the real part is one axis and the
imaginary part the other, this signal can be
represented as two vectors rotating in op-
posite directions. See Fig 16.9.

While this depiction is beautiful and
elegant to the mathematician, what does it
really mean to you and me? Well, it means
that signals represented in complex form
can have a one-sided spectrum—that is,
only a positive or a negative frequency
component. This is useful as we mix our
signals upward to their final frequency
positions in a modulator.

As our first example, let’s select the task
of taking a real input signal, such as the

audio from a microphone, and converting
it to an SSB signal that can be transmitted.
We obviously have to translate the audio
signal upward in frequency and preserve
its spectral content within the band we
want the transmitted signal to occupy. If
we wish to produce an upper-sideband
(USB) signal, we want the carrier and
lower sideband to be suppressed as much
as possible. Were we able to translate the
spectrum of our cosine wave—with its
symmetrical positive- and negative-fre-
quency components—upward in fre-
quency far enough, we would have two

positive frequencies separated by twice
the original signal’s frequency. For a real
signal, this is exactly what happens when
it is applied to an analog mixer: Both sum
and difference frequencies are generated.
See the Receivers, Transmitters and
Transverters chapter for more detail of
the operation of mixers as multipliers.

To move our sampled audio signal up-
ward in frequency, we must multiply it by
(mix it with) a local oscillator. The local-
oscillator function can be implemented in
DSP software using direct digital synthesis
(DDS) techniques. In this case, though, the
local oscillator must be complex; that is, it
must have two outputs with a 90° phase rela-
tionship between them. This is the same as
saying there must be both a sine and a cosine
output from it. This will enable us to mix
signals having a one-sided spectrum.

When we implement a complex mixer
in DSP, we are multiplying complex num-
bers by complex numbers. Note that the
calculations for the real and imaginary
parts are carried out separately; each part
is treated as if it were a single, real multi-
plication. Two complex numbers a + j b
and c + j d, when multiplied, produce:

(a + j b)(c + j d) = (ac – bd) + j (ad + bc)
(13)

Four real multiplications and two real
additions are required.

Hilbert Transformers and an SSB
Modulator

If we want to create a signal having a
one-sided spectrum from a real input sig-
nal, such as from the microphone, we need
to shift all the frequency components in
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the sampled signal by 90º. Fortunately, in
DSP, we have a way to do that: the Hilbert
transformer. Recall that an FIR filter with
a symmetrical impulse response exhibits a
constant, frequency-independent delay. It
turns out a filter with an anti-symmetrical
impulse response—that is, with h(0) =
–h(L –1), h(1) = –h(L –2), and so forth—
produces a linear phase response, too, but
with a phase response exactly 90° differ-
ent from the symmetrical-impulse-re-
sponse filter. This is exactly the type of
filter we need to generate the components
of an analytic signal.

Fig 16.10 shows a system using a

Fig 16.12—Block diagram of a digital SSB modulator.

Fig 16.13—Block diagram of a digital ISB modulator.

Hilbert transformer to create an analytic
signal from the microphone audio. Since
the Hilbert transformer includes not only
a 90° phase shift, but also a fixed delay of
L/2 sample periods, we need an L/2 delay
in the leg that does not contain a phase
shift. The delay through the two paths is
then equal and the only difference between
the two signals produced is the 90° phase
shift. The non-phase-shifted signal is
called I, the phase-shifted signal is called
Q. Together, these signals form our ana-
lytic signal I + j Q. Now let’s see what it
looks like when we multiply this signal by
a complex local oscillator. In this case, we

are performing the multiplication:

[ ][ ]
[ ]
[ ])t ωcos()t(Q)t ωsin()t(I

)t Q(t)sin(ω)t I(t)cos(ω
Q(t)I(t))tsin()tcos(

+
+−

=+ω+ω

j 

jj

This is the equation for a USB signal.
We are only interested in the real part of
the result, since we only have one real
channel on which to transmit. For this rea-
son, the system is really a half-complex
mixer.

A block diagram of such a mixer is shown
in Fig 16.11. This is, in fact, the phasing

(14)
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method. Output signals are translated up-
ward by the frequency of the local oscilla-
tor, ω0 radians per second, or ω0/2π hertz.
Most transmitter designs will translate sig-
nals to an IF significantly higher in fre-
quency than audio, so it is wise to include
an increase in the sampling rate prior to
mixing. An interpolation filter is naturally
needed. It is particularly convenient to
choose an interpolation factor of 4, because
the cosine LO produces values of 1, 0, –1
and 0 during a full cycle; the sine LO pro-
duces values of 0, 1, 0 and –1. No actual
multiplications need take place, saving
time and accuracy. The Hilbert transformer
can operate at the lower, original sampling
rate, but we would like to include band-
pass filtering to limit the spectrum to about
3 kHz BW. In fact, we can build a pair of
DSP filters that provide the BPF response
and the 90° phase relationship, as described
below. Our SSB modulator then matches
that shown in Fig 16.12.

Before discussing how to generate ana-
lytic filter pairs, it is worth noting a few prop-
erties of SSB signals created in this way.
First, were we to add the I and Q signals
instead of subtract them in the summation
block of Fig 16.11, we would have an LSB
signal instead of USB. It is not too hard to
see that we could easily both add and sub-
tract to produce a DSB, suppressed-carrier
signal. We can even pre-add and subtract
two audio signals to produce an indepen-
dent-sideband (ISB) signal, as shown in
Fig 16.13. More than two channels can be
combined in this way. Second, since the am-
plitude of the carrier, cos (ω0 t) ± j sin (ω0 t),

is constant, the amplitude of an SSB signal
can be specified as some function of the
modulating signal. If we think of the ana-
lytic audio signal as a vector in the complex
plane, its length is equal to the signal’s in-
stantaneous amplitude:

[ ] 2/122 )1(tQ)t(I)t(A += (15)

Finally, the phase of the signal is the in-
stantaneous angle of this rotating vector:


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)t(Q
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Now we can rewrite the real part of
Eq 14 as:
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)t(dωcos)t(A)t(y (17)

dt

)t(dφ
is the rate of change of phase (the

frequency) of the baseband signal (the
audio). Eq 17 shows that a USB signal is
just an upward frequency translation of the
baseband signal by some RF of angular
frequency ω. We may also write:

[ ]
( )[ ] [ ]{ }(t)sintcos)t(A

)t(Q)t(I

φ+φ

=+

j 

j 
(18)

which shows that while the envelope, A(t),
of an SSB signal is identical to that of the
baseband signal producing it, A(t) is not the
same as the baseband signal’s waveform,

represented by x(t) in Figs 16.11 and 16.12.
An SSB signal preserves the amplitude and
phase information of the baseband signal
and occupies identical bandwidth.

Analytic Filter-Pair Synthesis
We have seen how complex mixing

translates signals in frequency with a one-
sided spectrum. We will use this fact to
our advantage in creating an analytic filter
pair. Each filter will have the same fre-
quency response as the other. They will
differ only in their phase responses.

We begin by designing a low-pass filter
having the desired transition-band char-
acteristic, H(ω); we obtain its impulse re-
sponse, h(t). Multiplying the impulse
response by a complex sinusoid of angular
frequency ω0 results in two sets of coeffi-
cients—one for the real part, and one for
the imaginary part:

)tω(sin)t(h)t(h

)tω(cos)t(h)t(h

0Q

0I

=

=
(19)

The frequency response of either one of
these filters is given by:

2

HH
H

)()( 00 ω+ωω−ω
ω

+
=               (20)

which is a BPF centered at ω0. The I filter
has a phase response differing 90° at every
frequency from the Q filter. The frequency
translation theorem works just as well on the
responses of filters as it does on real signals.
To perform this transformation of the L co-

Fig 16.14—Block diagram of a digital SSB demodulator.
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efficients of the prototype LPF, we calculate
new coefficients according to:
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where ts is the sampling period. When the
low-frequency transition band is placed
near zero frequency, as we would like for
SSB, the BW of each BPF is approxi-
mately twice that of the prototype LPF. A
very interesting thing sometimes happens
when the number of taps is odd: The odd-
numbered coefficients are zero. This al-
lows reduction in computation by a factor
of two. Refer to Project C in the Appendix
for a practical example of how analytic
filter pairs are generated.

We can alter the exciter’s frequency
response by convolving the impulse re-
sponse of our analytic filter pair with that
of a filter having the desired characteris-
tic. New coefficients are calculated using
the same convolution sum as in Eq 3.
Graphic or parametric equalizers may be
implemented in this way.

Demodulation: SSB
As in digital exciters, phasing methods

prevail in receivers; the process is almost
exactly the reverse of the modulator’s.
Fig 16.14 presents the block diagram of a
digital SSB receiver. After the IF signal is

digitized, we wish to reduce the sampling
rate and the filtered BW as soon as pos-
sible. This is because we need as much
time as possible between input samples for
the intense filtering and other computa-
tions we must perform. As noted above,
reduced sampling rates also ease the de-
sign of the digital filters that provide the
final selectivity. We therefore include a
decimation filter and decimate by a factor
of 4. Again, the LO signals take on only
values of 1, 0, –1 and 0, eliminating multi-
plications. Digitized signals are translated
to baseband using the complex mixing
algorithms outlined above. Since the in-
put signal, x(t), is real, only two multipli-
cations are necessary:

t)  ω(sin)t(x)t(Q

)t  ω(cos)t(x)t(I

=
=

(22)

Now we have an analytic signal as be-
fore; the frequency of the BFO, ω0 rad/s,
is chosen to beat the carrier frequency to
zero hertz. An analytic filter pair precedes
the summation in which we select the side-
band we want. The equations work pre-
cisely in reverse: That is why they are
Hilbert transforms.

AM Demodulation
One’s first inclination is to demodulate

an AM signal by rectifying it. A better way
is to use the I and Q signals we have al-
ready developed using Eq 15. Now we are
stuck with computing square roots. Lucky
for us, a fellow named Isaac Newton fig-
ured out a slick way almost 400 years ago.
In the 17th century, these calculations were

Fig 16.15—Block diagram of a digital AM demodulator.

Fig 16.16—Flow chart of a fast square-
root algorithm.

ch16.pmd 8/17/2004, 9:58 AM12



DSP and Software Radio Design 16.13

quite a burden—everything had to be done
by hand. Because this is such a common
problem in computing, a lot of additional
effort has gone into finding faster algo-
rithms since that time. A very fast look-
up-table method is also presented here that
may be more attractive where enough
memory is available.

An I/Q AM demodulator dodges prob-
lems associated with rectification methods.
It also can use the decimation filters for final
selectivity, obviating much of the computa-
tions found in the SSB demodulator.
Fig 16.15 shows the circuit. Newton’s
method for square roots goes like this: Take
a crude guess at the square root of the num-
ber in question. Divide the number by the
crude guess. Add the crude guess to this
ratio and divide it all by 2. Use this result as
the new crude guess and repeat the process
until the desired accuracy is obtained:
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In practice, the accuracy of the result
reaches the limit of 16-bit representations
in five or six iterations when the first guess
is good. It is about half an order of magni-
tude slower than the following look-up
table method, but is still among the best
where memory is at a premium. Project D
in the Appendix describes a QuickBasic
4.5 example of Newton’s method.

A very fast look-up-table method for com-
puting integer square roots has been discov-
ered. It employs a short (256-entry) table
and first-order interpolation between table
entries. First-order interpolation is de-
scribed in detail in the DDS section below.
To preserve accuracy, the algorithm also
uses the process of argument normalization.
The algorithm serves as our fifth software
project in DSP in the Appendix.

The argument of this function—the
number of which we must find the square
root—is a 32-bit integer. The result is a
16-bit integer. Refer to Fig 16.16, a flow
chart of the process. In the first step, the
argument is normalized to within the range
222-224. Arguments greater than 224 are
divided by an even integral power of two,
2k, where:

[ ]23(arg)logk 2 −ℑ= (24)

The script I indicates the integer part,
and k—which takes on values of 0, 2, 4 or
6—is saved for later processing. Now the
normalized argument is split into integer

(23)

Fig 16.17—Block diagram of a synchronous, exalted-carrier demodulator.

and fractional parts, with the radix point
residing to the left of bit 15:
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where a is the integer part and b is the frac-
tional part. In other words, a comprises
bits 16-23 of the normalized argument,
and b is bits 0-15, as shown in the flow
chart. Next, we use a as the address into
the look-up table, fetching a 16-bit value,
xa. This value is the nearest table entry
lower than the actual root. Fractional part
b is used to interpolate between this value
and the next higher table entry, xa+1:

( ) aa1a xxxbroot +−= +                         (26)

This is the square root of the normalized
argument.

Finally, this result must be multiplied
by the square root of 2k, which is of course
2k/2. The result is then “de-normalized” and
ready for use. Restricting k to an even inte-
ger (as we did) makes this a simple bit-shift-
ing operation, as in the normalization
process above. The 16-bit result produced
by this algorithm is accurate to within sev-
eral least-significant bits over the entire
range of 32-bit arguments. It is quite a bit
faster than the 5 or 6 iterations of Newton’s
method required for the same accuracy; this
is because it avoids the divisions that
Newton’s method employs. Most DSPs
take 3 or 4 times the processing time for a
fractional division as they take for multi-
plication or look-up table indexing. Project
E in the Appendix describes an assembly-

Fig 16.18—Block diagram of a digital
quadrature detector.

language implementation of this square-
root algorithm.

Additional threshold extension and dis-
tortion-avoidance procedures may be em-
ployed in an AM demodulator. Of particu-
lar interest is the synchronous, exalted-
carrier demodulator. Synchronous, in this
case, means that the demodulator’s fre-
quency standard is phase-locked to the re-
ceived carrier. This forces the phases of
modulation components into their correct
relationships and therefore minimizes
phase distortion. A small advantage in SNR
performance of up to 3 dB is also gained.
DSP makes it relatively easy to build a nar-
row BPF, centered on the carrier, that strips
the modulation prior to application to the
PLL used to achieve lock. The exalted-car-
rier technique is a way of avoiding distor-
tion caused by selective fading of the
carrier. Ordinarily, when the received
carrier’s amplitude drops, the signal be-
comes over-modulated, even though it was
not transmitted that way. Distortion can be
severe. Exalted carrier strips the carrier
from the signal using the narrow BPF and
it is used to drive the PLL. A copy of the
limited carrier is then added back to the
carrier-stripped signal, in its original phase

ch16.pmd 8/17/2004, 9:58 AM13



16.14 Chapter 16

prior to demodulation at an amplitude that
avoids over-modulation. See Fig 16.17 for
a block diagram of this type of demodula-
tor. Refer to the chapter on Modes and
Modulation Sources for more discussion
of AM waveforms, and to the chapter on
Mixers, Modulators and Demodulators
for an implementation of this scheme.

FM and PM Demodulation
Traditional FM and PM demodulators,

such as discriminators (filters) and PLLs
may be implemented in DSP. But again,
the I/Q method carries distinct advantages
as it exploits mathematical relationships.
We already defined the phase of an
analytic signal in Eq 16 and so we can
build a PM demodulator directly by
finding arctangents. Possibilities include
look-up tables and Taylor series. For an
FM demodulator, we would then dif-
ferentiate the string of phase samples
using the technique of first differencing.
We simply take the difference between
adjacent samples by subtracting them:

)1t()t()t(f −φ−φ= (27)

and this is the FM demodulator’s output.
One common analog technique that

stands out among DSP implementations is
the quadrature detector. It is certainly
simple and convenient to generate delays
and multipliers, such as are required. The
input signal is multiplied by a time-de-
layed copy of itself to produce a voltage
proportional to its phase excursions away
from the center frequency. This voltage is
also proportional to the amount of delay
inserted. See Fig 16.18. When the delay is
an odd integral multiple of one quarter the
input period, the output is zero. Longer
delays produce greater output-voltage
sensitivities; that is, dV/dφ increases.

Digital BFO Generation: Direct
Digital Synthesis

Synthesizers have come a long way since
first becoming popular in HF transceivers
of the 1970s. Availability of components
then lagged well behind the development
of theory. Now, hardware capabilities have
nearly caught up—which is the case for
DSP in general—and are driving the very
rapid advancement of equipment we are
now experiencing. Paralleling break-
throughs in the microprocessor and data-
acquisition fields, progress in direct digital
synthesis (DDS) has enabled performance
levels only dreamed of a decade ago. Virtu-
ally all new designs may profit from this
technology. Below, we will cover quite a
few issues having impact on transceiver
performance: phase noise, spectral purity,
frequency stability, lock times and tuning
resolution. A DDS circuit using dedicated

hardware is described; discussion of BFO
and LO generation in software follows.

Synthesizer performance affects re-
ceiver dynamic range. Phase-noise and
spectral-purity issues are in play. Phase
noise is the unwanted phase modulation of
transceiver frequency-control elements by
circuit noise. It appears at and near the
transmitter’s output frequency and may
cause interference to stations on adjacent
frequencies. In addition, it may cause in-
terference in one’s own receiver—even if
the signals received are phase-noise
free—through the process of reciprocal
mixing. See the Oscillators and Synthe-
sizers chapter for a discussion of this ef-
fect. The spectral purity of a synthesizer
may also affect receiver dynamic range by
introducing spurious responses where
spurs exist on the synthesizer’s output.
This may be true especially for the first
LO in a receiver across the entire range of
frequencies present. It is extremely impor-
tant that this LO be clean.

Radio amateurs are free to operate any-
where within large frequency bands, so it
might seem that frequency accuracy is not
very critical. Prevalent narrow-band com-
munication modes require it, though, and
operators have come to expect excellent
stability from their rigs. It is reasonable to
expect ±20-Hz stability over a range of
–10 to +50º C. Digital compensation tech-

niques currently achieve this. We wish to
attain a tuning speed that does not impose
limitations on typical use. “Cross-band”
or split-frequency operation ought to be
considered. For a frequency step of
±600 kHz, an upper limit of 25 ms on the
lock time of a synthesizer is a reasonable
goal. Lock time is defined as the time re-
quired to settle within the stability limits
we already set. The smallest frequency
steps should be such that they do not im-
pede performance. 10 Hz used to be good
enough, but now certain digital modes
benefit from finer tuning. In addition, the
digital notch filter described before is so
sharp that it occasionally needs to be
within 1 Hz!

A DDS system generates digital samples
of a sine wave and converts them to an
analog signal using a DAC. See Fig 16.19.
In a DDS chip, a phase accumulator is
incremented at each clock time; the phase
information is used to look up a sine-wave
amplitude from a table. This value is passed
to the DAC, which outputs a step-wise sine
wave. As we saw before, the spectrum of
this sine wave is seasoned with aliases and
contains other minor pollutants. Since the
phase is represented by a binary number
with a fixed number of bits, p, errors de-
velop because the number is truncated to
that number of bits. Truncation generates
PM spurs in the DDS output. This occurs

Fig 16.19—DDS block diagram.

Fig 16.20—Block diagram of a DDS/PLL hybrid synthesizer.

ch16.pmd 8/17/2004, 9:58 AM14



DSP and Software Radio Design 16.15

prior to the DAC. Further errors are related
to the output resolution of the look-up table.
Table values representing the amplitudes
are truncated to some number of bits, a.
This mechanism produces AM spurs in the
output. According to Cercas et al, the larg-
est PM spurs have amplitude:

dBc )17.5p02.6(Pspur −−= (28)

and maximum AM spurs can rise to:

dBc )75.1a02.6(Pspur +−= (29)

Phase noise at the output is that of the
DDS clock source times the ratio of the
output frequency to the clock frequency,
as limited by divider noise. Spurious lev-
els also tend to grow as the DDS output
frequency approaches the Nyquist limit.
Strange spurs at the output are usually
related to IMD and harmonics of the de-
sired signal and their aliases. Remember
that frequencies exceeding half the sam-
pling frequency “fold back” into the sig-
nal spectrum at a position determined by
their frequency, modulo fs/2. High-order
harmonics are liable to find their way into
one’s band of interest. Traps at the DAC
output have been known to suppress these
responses. See Project F in the Appendix
for the schematic of a DDS project.

In the analog signal we generate, the
DAC introduces more AM spurs, harmon-
ics and IMD because of its inherent non-
linearity, as discussed above. Spurs are
also likely at the clock frequency, its har-
monics and sub-harmonics. A higher-
order LPF will take care of these, but we
must see what we can do about the others.
It turns out we may eliminate all the AM
spurs by squaring the DDS output. We can
do nothing about the remaining PM spurs.
Cranking through Eq 28 will show that
they can be made very low: –113 dBc for
a 20-bit-address sine look-up table and
32-bit phase accumulator. This parameter
is critical in case we want to use the DDS
as the reference to a high-frequency PLL
circuit. The PLL will multiply the phase
noise and PM spurs by the ratio of the PLL
output frequency to the PLL reference fre-
quency within the PLL loop BW. Outside
the loop BW, the VCO itself is responsible
for establishing spectral purity. So while
dividing the DDS to the PLL reference fre-
quency lowers phase noise and PM spurs,
the PLL multiplies them back upward. A
trade-off exists between spur levels and
reference frequency, hence lock time.

A PLL reference frequency near 100 kHz
has been found to be sufficient for the
desired lock times, with an output-to-
reference ratio of 1000. Such a loop should
achieve very fast lock times, as it can be

expected to lock within 500 cycles of the
reference input. The DDS tuning time is at
least three orders of magnitude faster than
this. In the example, the VCO output is
near 100 MHz. DDS energy is injected at
the reference input to the PLL chip, squar-
ing it and dividing it by 10; the DDS runs
near 1000 kHz. The block diagram of a
PLL using a DDS as its reference is shown
in Fig 16.20. Spurs and phase noise inside
a loop BW of, say, 1 kHz are amplified by
the PLL by the factor:

dB 40
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f
log20N
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VCO =







= (30)

Of course, we tune the hybrid synthe-
sizer by programming the DDS; the PLL
programming is fixed. Let’s say we want
1-Hz tuning resolution at the VCO output.
As the DDS frequency is 1/100 of the out-
put, we must tune the DDS in 10 millihertz
steps! Tuning resolution in a DDS circuit
is determined by the phase accumulator’s
bit resolution, p, and the DDS clock’s fre-
quency, fclk:

p
clk

DDS
2

f
df = (31)

A clock frequency around 10 MHz and
p = 32 easily satisfy our conditions, pro-
ducing a step size of 2.3 millihertz. As
noted above, making the DDS output fre-
quency a small fraction of the clock fre-
quency makes it easier to get a clean
output. A range of about half an octave
eases the design of the LPF or BPF used at
the DDS output to limit spurs, aliases and
clock feed-through.

The phase-accumulator/look-up-table
approach is equally useful in generating
numeric BFOs in software. One of the first
things to emerge when considering this
scheme is the potentially large size of the
look-up table. To maintain the full dy-
namic range of a DSP system requires

BFO phase and amplitude performance,
as limited by Eqs 28 and 29, at least as
good as the rest of the system. In 16-bit
systems, we are shooting for about 90-
100 dB of dynamic range. A table with 216

= 65,536 entries is not much of a problem
for DDS chip manufacturers to include on-
board, but it may tax available memory
space in embedded systems.

Fortunately, a couple of ways around
the problem have been uncovered. The
first involves the process of interpolation,
very much like the artificial increase of
sampling frequencies we examined above.
In this method, we restrict the number of
table entries to some arbitrary number,
M << 216, while keeping the bit-resolution
of the entries themselves, a, high enough
to satisfy the limits of Eq 29 for the spur
levels we can tolerate. Take the case where
Μ = 28 = 256 and a = 16. The phase accu-
mulator, incremented at each sample time
by an amount df that is directly propor-
tional to the output frequency, forms the
address into the look-up table. Let this
address have bit-resolution p = 16. Ac-
cording to Eq 28, PM spurs will not ex-
ceed –91 dBc. Since there are only 256
table entries, we may use the most-signifi-
cant byte (MSB) of the address to find the
table entries that straddle the correct out-
put value. We then use the least-signifi-
cant byte (LSB) as an unsigned fraction to
find out how far between the two table
entries we must go to reach the correct
output value. If, in order of increasing
address in the table, our two adjacent table
entries are d1 and d2, we may perform a
first-order interpolation between the en-
tries using:


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
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256
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256

LSB256
dd 21int (32)

This results in a linear, piece-wise
representation of the data, as shown in
Fig 16.21. The worst-case amplitude

Fig 16.21—Linear piece-wise representation of data resulting from first-order
interpolation.
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errors caused by this straight-line approxi-
mation place total harmonic distortion
(THD) at the output at around 0.03% or
–70 dBc. Much of this harmonic distor-
tion is concentrated near half the sampling
frequency, though, and may not be of
much concern in actual systems. Dou-
bling Μ would reduce THD to around

Fig 16.22—Digital RF compressor block diagram.

Fig 16.23—AM ALC block diagram.

0.01%. Second and higher-order interpo-
lation algorithms are available that out-
perform the first-order approximations by
a long way.

In systems where an even smaller look-
up table must be used, computation of
sines and cosines using Taylor series
might be attractive. THD is less than

0.008% when using four or five terms
from the polynomials:
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The envelope signal is used to compress
the range of baseband levels prior to modu-
lation so that the peak-to-average ratio is
reduced. A block diagram of this system is
shown in Fig 16.22. The net effect of the
system can be shown to be identical to that of
a direct RF compressor. This naturally in-
volves distortion, since the transmitter is no
longer linear; however, the distortion pro-
duced enhances the syllabic and formant
energy in speech without introducing the
“mushy” sound caused by heavy audio com-
pression or clipping. As the attack and decay
times of an RF compressor are made faster,
it approaches the performance of an RF clip-
per, known to be the most effective form of
processing. Because the baseband audio is
processed prior to filtering and modulation,

occupied BW does not increase much; low-
order IMD products will be created, though,
that fall within the desired transmit BW.
These products ultimately limit the effec-
tiveness of the compressor. This technique
may also be applied to receivers.

Audio Compression: Building an
AM Transmitter

It has long been a problem to hold the
carrier and modulation levels constant in
AM transmitters covering several octaves
of frequency, such as at HF. Because a
baseband signal may not have symmetri-
cal positive and negative amplitudes about
its average value, a suitable analog ALC
system would be incredibly complex.

In DSP, we may prevent carrier shift
using adaptive techniques; we prevent
over-modulation using an audio compres-
sor. (Refer to Fig 16.23.) First, the ratio of
drive level to output level, d(t)/y(t), is eas-
ily computed by a DSP when the transmit-

DIGITAL SPEECH PROCESSING
Virtually all modern transmitters em-

ploy fast-attack, slow-decay RF compres-
sion: It is called automatic level control
(ALC). Because transmitters are usually
peak-power limited, some form of gain
control is necessary to prevent overdrive
of the final RF power amplifier.

RF Compression
A typical ALC system detects the

transmitter’s envelope with a rectifier and
filter, applying this control signal to some
gain-controlled stage or stages in the ex-
citer. An increasing level from the enve-
lope-detector results in decreasing gain
such that the peak envelope power (PEP)
is regulated. ALC is a servo loop employ-
ing negative feedback, usually developed
only on voice peaks. As the decay time of
the detector is decreased, some amplifica-
tion of parts of speech falling between
peaks is achieved. Enhancement cannot
exceed the total gain reduction occurring
at the voice peaks and usually falls in the
range of 3-6 dB. The increase in the
transmitter’s average output power (talk
power) may be quite a bit less than this
depending on the characteristics of the
voice, especially the peak-to-average
ratio. In a digital exciter, we may elimi-
nate the need for an analog gain-controlled
stage by employing a numeric gain con-
trol factor in software and simply regulat-
ing the modulator’s output level.

Human voices have peak-to-average
ratios as high as 15 dB. This does not uti-
lize a peak-limited transmitter very well
in SSB mode: At the 100-W PEP level, the
average output power might be as little as
3 W! RF compression raises the average
output power and tends to further improve
intelligibility by bringing out subtle parts
of speech. In a digital I/Q modulator, we
have a distinct advantage in designing an
RF compressor: The RF envelope can be
calculated before the modulation is per-
formed. Once the microphone audio has
been sampled and converted to an analytic
signal, Eq 15 may be used to compute the
envelope. To avoid the time-consuming
square-root calculation, we may use an
approximation:
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Fig 16.24—AM carrier (A). Baseband input with asymmetrical amplitudes (B).
AM modulator output (C).

Fig 16.25—An adaptive modeling system.

Fig 16.26—An adaptive modeling
system, which requires a person at the
filter controls.

ter is on. From this, we can calculate what
drive level is required to reach exactly
25% of the peak-power setting. We want
the carrier to have this amplitude, regard-
less of modulation (or lack of it). Second,
the baseband signal applied to the modu-
lator must have a maximum peak level
equal to the carrier’s drive level estab-
lished above. When the carrier and com-
pressed baseband levels are added, the
result is a 100%-modulated AM signal.

Fig 16.24 shows this situation, using a
baseband signal whose negative excursions
are greater than its positive excursions about
the average value. Now two servomecha-
nisms are operating in our AM ALC: One
continually computes the drive-to-output
ratio and sets the carrier level; the other com-
presses the peak baseband signal to that
same peak level. Since the baseband peak
detector has to find either the highest nega-
tive or highest positive peak, asymmetrical
audio inputs may produce an unexpected
result: Either the upward or downward
modulation may reach 100% before the
other can do so. If the downward modula-
tion limits baseband amplitude first, the
upward modulation would not cause the
transmitter to reach its set PEP level without
introducing a carrier shift.

INTERFERENCE-REDUCTION TECHNIQUES

We touched on the idea of a manually
tuned adaptive notch filter using the LMS
(least-mean-squares) algorithm. These prin-
ciples are explored in more detail here, espe-
cially as they apply to interference- and
noise-reduction systems. The nature of in-
formation-bearing signals is that they are in
some way coherent; that is, they have some
features that distinguish them from noise.
For example, voice signals have attributes
related to the pitch, syllabic content and
impulse response of a person’s voice.

Adaptive Filtering
We will find it possible to build an adap-

tive filter that accentuates those repetitive
components and suppresses the non-repeti-
tive (noise). Much research has been done
about detection of a sinusoidal signal buried
in noise. Adaptive filtering methods are
based on the exploitation of the statistical
properties of the sampled input signal,
specifically, autocorrelation. Simply put,
autocorrelation refers to how recent samples

of a waveform resemble past input samples.
We will discuss an adaptive predictor,
which actually makes a reasonable guess at
what the next sample will be based on past
samples. This leads directly to an adaptive
noise-reduction system.

An Adaptive Interference Canceler
Imagine we have some sampled input

signal, x(t), that we want to adaptively fil-
ter to enhance its repetitive content. In the
case of a CW signal, all that is required is
a BPF centered on the desired frequency.
We know that this signal takes the form of
a sine wave and that its amplitude will
change markedly. Its frequency may not
be absolutely constant, either, but we will
assume it is fixed for now. We set up an
FIR filter structure and an error-measure-
ment system to compare a reference sine
wave, d(t), with the output of the filter,
y(t). See Fig 16.25. Sine wave d(t) is the
same frequency we expect the CW tone to
be. The difference output, e(t), is known
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as the error signal.
Now imagine some person is watching

the error signal and has their hands on the
controls that change the filter coefficients.
(See Fig 16.26.) Minimizing the error sig-
nal by tweaking the coefficients forces the
filter to converge to a BPF centered at the
frequency of d(t). The speed and accuracy
of that convergence is going to depend on
how well the person analyzes and reacts to
the error data. If it is difficult to tell that a
sine wave is present, then adjusting the
filter will also be difficult. Further, if the
sampling rate is high enough, a person will
not be able to keep up; they can check the
error only so often or can generate long-
term averages of the error.

Using the typical processes of the human
mind, the person will soon discover that if
they turn the controls the wrong way, the
error increases. This information is used to
reverse the direction of adjustment. The
person then turns the controls the other way.
It soon emerges that the person is on a per-
formance surface, with an “uphill” and a
“downhill,” and they know the goal is to go
only downhill. So they thrash about with the
controls, sometimes making mistakes, but
ultimately making headway overall down
the hill. At some point, the error gets rather
small: They know they are near the “bottom
of the bowl.” Once at the bottom, it is uphill
no matter which way they go. The goal of
minimizing the error e(t) has been achieved.
They continue gently flailing about with the
controls, but always staying near the bot-
tom. This situation is analogous to aligning
an analog BPF with an adjustment tool.

After doing this whole thing several
times, the person finds that certain rules help
speed up the process. First, there is a rela-
tionship between the magnitude of the error
and the amount they must tweak the con-
trols. If the total error is large, a lot of tweak-
ing must be done; if small, then it is better to
make small adjustments to stay near the
bottom of the performance surface. Second,
there is a correlation between the error, e(t);
the input samples, x(t); and the coefficient
set, h(t) they need to adjust. Derivation of
algorithms providing for steepest descent
down the hill is a long and tedious exercise
in linear algebra. Let’s just say the person
goes to school, becomes an expert in matrix
mathematics and discovers that one of the
fastest and most accurate ways down the hill
is to adjust coefficients at sample time t
according to:

)t(x)t(eµ2)k(h)k(h t1t +=+
(36)

This is the LMS algorithm. It was developed
by Widrow and Hoff in the late 1950s.

Replacing the person with the LMS algo-
rithm, as shown in Fig 16.27, we have our

Fig 16.28—An adaptive predictor.

Fig 16.27— An adaptive interference canceler.

manually tuned adaptive interference can-
celer. Note that both the desired output, y(t),
and the undesired, e(t), are available. This is
nice in case we want to take only the broad-
band component and reject the tone. An
obvious application of such tone rejection
would be as a notch filter, and conversely,
reception of a desired tone (signal) while
rejecting the broadband (noise) is also pos-
sible; that is, noise reduction! Performance
issues of interest include the adjustment
error near the bottom of the performance sur-
face and the speed of adaptation. One of the
first things we notice about the LMS algo-
rithm is that each of these factors is directly
proportional to µ. We select its value, which
ranges from 0 to 1, to set the desired proper-
ties. A trade-off exists between speed and
misadjustment. Large values of µ result in
fast convergence, but large misadjustment
in the steady state. Total misadjustment is
also proportional to the number of filter taps,
L, and this may place a limitation on the
complexity of the filter that may be used.
The total delay through the filter also grows
with its length; it may become unacceptably
large under certain conditions. As in Eq 10,
the BW of the adaptive BPF is:

 rad/s
t

Aµ2
BW

s

2
= (37)

Small values of µ result in narrower fil-
ters that take longer to adapt. Attempts may
be made to adjust µ on the fly by using a
value that changes in proportion to the error,
e(t). A large value is selected initially for
rapid convergence, then it is decreased to

minimize the long-term misadjustment. This
works fine so long as the characteristics of
the input signal are not rapidly changing.

An Adaptive Interference Canceler
Without An External Reference: An
Adaptive Predictor

In the above example, we knew pretty
much what to expect at the output: a sine
wave of known frequency. What happens
when we do not know much about the
nature of the input signal, except that it
contains coherent components? Quite a
few circumstances like this arise in prac-
tice. It might seem at first that adaptive
processing could not be applied; however,
if a delay, zn is inserted in the primary
input, x(k), to create the reference input,
d(k), periodic signals may be detected
and thereby enhanced (or eliminated). See
Fig 16.28. This delay forms an auto-
correlation offset, representing the time
difference used to compare past input
samples with present samples. The
amount of delay must be chosen so that the
desired components in the input signal
correlate with themselves, and the undes-
ired components do not. This is an adap-
tive predictor: Predictable components
are enhanced, while the unpredictable
parts are removed. Experiments show that
for any given value of m, the filter con-
verges quickest when the delay, z-n, is set
between one half and one times the filter’s
total delay.

We may predict this circuit’s noise-reduc-
tion performance using the ratio of the pre-
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filtered BW to that of the converged filter:
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As an example, for µ = 0.005, A = 1,
BWinput = 3 kHz and fs = 15 kHz, the SNR
improvement is about 13 dB. When adap-
tive filters with many taps are used, mul-
tiple tones may be either enhanced or
notched. Under most conditions, the un-
desired components are large compared to
the desired; enhancement of signals is
needed most when the input SNR is low.
This situation may not give us enough
thrashing about to find our way down the
performance surface to convergence.
Adding artificial noise to satisfy this con-
dition is tempting, but it turns out we can
alter the algorithm slightly to improve our
lot without actually adding such noise.
These additional terms in the algorithm
are known as leakage terms.

The unique feature of leaky LMS algo-
rithms is a continual “nudging” of the filter

coefficients toward zero. The effect of a
leakage term can be striking, especially
when applied to noise-reduction of voice
signals. The SNR increases because the fil-
ter coefficients tend toward a lower through-
put gain in the absence of coherent input
signals. More significantly, leakage helps
the filter adapt under low-SNR conditions—
exactly when we need noise-reduction the
most. One way to implement leakage is to
add a small constant of the appropriate sign
to each coefficient at every sample time:

[ ]{ })k(hsign)t(x)t(eµ2)k(h)k(h tt1t λ−+=+
(39)

The value of λ may be altered to vary
the amount of leakage. Large values pre-
vent the filter from converging on any in-
put components, and things get very quiet
indeed. Small values are useful in extend-
ing the noise floor of the system. In the
absence of coherent input signals, the co-
efficients move linearly toward zero; dur-
ing convergent conditions, the total
misadjustment is increased to at least λ,
but this is not usually serious enough to
affect signal quality.

An alternate way to implement leakage

is to scale the coefficients at each sample
time by some factor, γ, thus also nudging
them toward zero:

)t(x)t(eµ2)k(h)k(h t1t +γ=+ (40)

For values of γ just less than unity, leak-
age is small; values near zero represent
large leakage and again prevent the filter
from converging. It can be shown that the
leaky LMS algorithm is equivalent to
adding normalized noise power to the in-
put x(t) equal to:

µ2

γ1σ 2 −
= (41)

The leaky LMS algorithm must adapt to
survive, much as a hummingbird must flap
its wings. Were the factor µ suddenly set
to zero, the coefficients would all die
away, never to recover. Therefore, it is
perhaps unwise to use these algorithms
with adaptive values of m. Although val-
ues for γ and µ of greater than unity have
been tried, the inventors refer to these pro-
cedures as “the dangerous LMS algo-
rithm.” Enough said.

FOURIER TRANSFORMS
While Fourier transforms are not used

exclusively for interference reduction, we
present them under that heading here be-
cause they are generally superior to adap-
tive-filtering algorithms in that application.
The penalty for this greater effectiveness is
an increased computational burden. The re-
lationship Joseph Fourier (pronounced foor-
ee-ay, 1768-1830) formulated between the
application of heat to a solid body and its
propagation has direct analogy to the behav-
ior of electrical signals as they pass though
filters and other networks. The laws he wrote
define the connection between time- and
frequency-domain descriptions of signals.
They form the basis for DSP spectral analy-
sis, which makes them extremely valuable
tools for many functions, including digging
signals out of the noise, as we will see.

A Fourier transform is a mathematical
technique for determining the frequency

content of a signal. Applied to a signal
over some finite period of time, it pro-
duces an output that describes frequency
content by assuming that the section of
the signal being analyzed repeats itself
indefinitely. The idea of applying Fou-
rier transforms to noise reduction is that
if we can analyze an input signal at many
frequencies and exclude those results not
meeting certain criteria, we can eliminate
undesired signals. Noise reduction may
be accomplished by applying the trans-
form results at frequencies for which a
preset amplitude threshold is not met.
What remains are the frequencies where
the energy is greatest, and that means sig-
nal-to-noise ratio is improved.

Originally, the Fourier transform was
developed for continuous signals. In DSP,
we use a variant of it called the discrete
Fourier transform (DFT). It is the discrete

version because it operates on sampled sig-
nals. It is a block transform because it con-
verts a block of N input samples into a block
of N output bins. The input block may be any
N contiguous samples. A DFT makes use of
complex sinusoids and produces a complex
result. When the input data are real, mean-
ing they lack an imaginary part, half the
output block consists of the complex conju-
gates of the other half, and so is redundant.
When a complex input is used, none of the
output bins is redundant.

We learned before that a complex sinu-
soid is just a pair of waves: a cosine wave
and sine wave of the same frequency.
Since we will be dragging around a lot of
these in the equations below, we introduce
a little mathematical shorthand for them
called the Euler identity:

)t ωsin()t ωcos(e t ω j j += (42)
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where e is base of natural logarithms. We
will shorten this even more later. For each
output bin k, where 0 < k < N–1, the DFT
is computed as:
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Expanding Eq 43 using the Euler iden-
tity yields:
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So each bin has a real part and an imagi-
nary part. Note that each part is calculated
using the same convolution sum we saw in
Eq 3. Eq 44 is in normal complex-number
form: a + j b. These coefficients a and b
yield the amplitude and phase of the sig-
nal x(t) at frequency ω = (k fs)/N:
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k is directly proportional to the frequency
of its bin according to:
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The bins are evenly spaced in frequency
by the amount f1 = fs/N, but there are ac-
tually only N/2 real frequencies repre-
sented. As mentioned above, half the DFT
bins produced from a real input are redun-
dant. Complex inputs may analyze posi-
tive and negative frequencies separately.

Working in reverse, we may reconstruct
time-domain signal x(t) by summing X(k)
for all values of k:
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This is the inverse discrete Fourier trans-
form (IDFT or DFT-1). It is important to note
the duality of the DFT/IDFT relationship.
The transforms are not really altering the
signal in any way, they are only different
ways of representing it mathematically. The
strength of the DFT in noise-reduction sys-
tems is that it evaluates the amplitude and
phase of each frequency component to the
exclusion of others.

As far as we can reduce the resolution
BW, fs/N, we can eliminate additional
noise by artificially zeroing frequency
bins not meeting a pre-defined amplitude
threshold. Finer resolution BW is obtained

by increasing the number of bins, N, de-
creasing the sampling frequency, or both.
Increasing the number of bins, N, involves
taking a larger block of N input samples;
the larger block represents a longer time
span. Obviously we have to wait for N
samples to be taken before we can Fourier
transform a complete block: A delay of N
samples is the result.

Since the DFT assumes the input block
repeats indefinitely, we have discontinuities
at the beginning and end of the block where
the data have been chopped out of the con-
tinuous string of input samples. These abrupt
discontinuities cause unexpected spectral
components to appear, just as fast on-off
keying of a CW transmitter does. This phe-
nomenon is known as spectral leakage. Dis-
crete signal components in the input “leak”
some of their energy into adjacent frequency
bins, smearing the spectrum slightly. In-
creasing the number of bins, N, helps allevi-
ate this problem. Increasing N moves the
bins closer together; a signal that falls be-
tween two bins will still cause leakage into
adjacent bins, but since the bins are closer
together, the spread in frequency will be less.
Even so, input components are still spread-
ing their energy over several bins and this
overlap makes it difficult to determine their
exact amplitudes and phases.

To minimize that problem, we use a tech-
nique known as windowing on the input data
prior to transformation. The data block is
multiplied by a window function, then used
as input to the DFT normally. Window func-
tions are chosen to shape the block of data by
removing the sharp transitions in its enve-
lope. Examples of window functions and
their DFTs are shown in Fig 16.29.

The rectangular window is equivalent
to not using a window at all, as all the
samples are multiplied by a constant. The
other window functions achieve various
amounts of side-lobe reduction. These
window functions are also used to design
filters using the Fourier transform method.
In fact, these sequences can be used as the
impulse responses of prototype LPFs, as
should be evident from their frequency
responses. Notice that they each involve a
trade-off between transition BW and ulti-
mate attenuation. Also note that in the fig-
ure values of ultimate attenuation are
plotted without regard to dynamic-range
limitations that may be imposed by the bit-
resolution of actual systems.

Fast Fourier Transforms
In the years before computers, reduction

of computational burden was extremely de-
sirable. Many excellent mathematicians,
including Runge, studied the problem of
calculating DFTs more rapidly than the di-
rect form of Eq 43. They recognized that the

direct form requires N complex multiplica-
tions and additions per bin and that N bins
are to be calculated, for a total computational
burden proportional to N2. The first break-
through was achieved when they realized
that the complex sinusoid e-j2πkn/N is peri-
odic with period N, so a reduction in compu-
tations is possible through the symmetry
property:

N
kn2

N
)nN(k2

ee
π−π−

=
jj

  (49)

This led to the construction of algorithms
that effectively break any N DFT computa-
tions of length N, into N computations of
length log2N. Thus, the computational bur-
den is reduced to be proportional to N
log2N. Because even this much calculation
was not practical by hand, the usefulness of
the faster algorithms was overlooked until
Cooley and Tukey revived it in the 1960s.

To exploit the symmetry referred to, we
have to break the DFT computations of
length N into successively smaller calcula-
tions. This is done by decomposing either
the input or output sequence. Algorithms
wherein the input sequence, x(t), is decom-
posed into smaller sub-sequences are called
decimation-in-time FFT algorithms; output
decompositions result in decimation-in-fre-
quency FFTs. The decomposition is based
on the fact that for some convenient number
of samples, N, many of the sine and cosine
values are the same and products can be
combined prior to computing the convolu-
tion sums. In addition, other products have
factors that are other sine and cosine values.
It turns out that electing to decompose by
successive factors of two produces a very
compact and efficient algorithm: a radix-2
FFT algorithm.

Now for that additional bit of complex-
sinusoidal shorthand mentioned earlier.
Lots of complex sinusoids will appear in
the diagrams to follow, so it sure would be
nice to reduce the clutter a bit more. Let’s
follow the popular DSP text of Oppenheim
and Schafer and select the notation:

kn
N

N
kn2

We =
π− j

(50)

This is used in Fig 16.30 in a flow chart
for a complete FFT calculation, for N = 8.
Multiplication symbols represent complex
multiplications, addition symbols represent
complex additions. Note that each complex
multiplication requires four real multiplica-
tions and two real additions. Complex addi-
tions need two real additions.

We have eight input points and eight
output points. Observe that the diagram
could not be drawn without crossing many
signal paths—there is a lot of calculation
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Fig 16.29—Various window functions and their Fourier transforms.
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Fig 16.32—Modified butterfly calculation.

going on! Computations progress from left
to right in log2N = 3 stages; each stage
requires N complex multiplications and
additions, so the total burden is propor-
tional to N log2N. Further, each stage trans-
forms N complex numbers into another set
of N complex numbers. This suggests we
should use a complex array of size N to
store the inputs and outputs of each stage as
we go along.

An examination of the branching of
terms in the diagram reveals that pairs of
intermediate results are linked by pairs of
calculations like that shown in Fig 16.31.
Because of the appearance of this diagram,
it is known as a butterfly computation.

Making use of another symmetry of
complex sinusoids, we can reduce the total
multiplications of the butterfly by another
factor of two. A modified butterfly flow dia-
gram is shown in Fig 16.32. This calculation
can be performed in place because of the
one-to-one correspondence between the in-
puts and outputs of each butterfly. The nodes
are connected horizontally on the diagram.
The data from locations a and b are required
to compute the new data to be stored in those
same locations, hence only one array is
needed during calculation. A complete

Fig 16.30—Flow chart of an 8-sample FFT.

Fig 16.31—Butterfly calculation in a decimation-in-time FFT.
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8-point FFT with the modified butterflies is
shown in Fig 16.33.

An interesting result of our decomposi-
tion of the input sequence is that in the dia-
gram, the input samples are no longer in
ascending order; in fact, they are in bit-
reversed order. It turns out this is a necessity
for doing the calculation in place. To see
why this is so, let’s review briefly what hap-
pens in the decomposition process. We first
separate the input samples into even- and
odd-numbered samples. Naturally, all the
even-numbered samples appear in the top
half of the diagram, the odds in the bottom.
Next, we separated each of these sets into
their even- and odd-numbered parts. This
process was repeated until we had N sub-
sequences of length one. It resulted in the
sorting of the input data in a bit-reversed
way. This is not very convenient for us in
setting up the calculation, but at least the
output arrives in the correct order.

General FFT Computational
Considerations

While we are on the subject, this busi-
ness of bit-reversed indexing is the first
thing that ties one’s brain in knots during
coding of these algorithms, so let’s have
at it. Several approaches are feasible to

Fig 16.33—Decimation-in-time FFT with different input/output order and modified butterflies.

Fig 16.34—Polling tree for bit reversal.

translate a normally ordered index to a bit-
reversed one: a look-up table, the bit-poll-
ing method, reverse bit-shifting and the
reverse counter approach.

The look-up table is perhaps the most
straightforward approach. The table may
be calculated ahead of time and the index
used as an address into the table. Most

systems do not require very large values
of N, so the space taken by the table is not
objectionable.

For more space-sensitive applications,
the bit-polling method may be attractive.
Since the bit-reversed indices were gener-
ated through successive divisions by two
and determination of odd or even, a tree
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Fig 16.36—FFT-1 implemented by interchange of inputs, outputs, and coefficients.

structure can be devised that leads us
to the correct translation, based on bit-
polling. See Fig 16.34. The algorithm
examines the least-significant bit, then
branches either upward or downward
based on the state of the bit. Then the sec-
ond least-significant bit is examined and
another branch taken, and so forth, until
all bits have been examined.

The bit-shifting method requires about the
same computation time as bit-polling. Two

registers are used: one for the input index
shifting right through the carry bit, the other
shifting left through carry. After all the bits
have been shifted, the left-shifting register
contains the result. See Fig 16.35.

Finally, Gold and Rader have described
a flow diagram for a bit-reversal counter
than can be “decremented” each time the
index is to change. If data are actually to
be moved during sorting, the exchange is
made between data at input index n and
bit-reversed index m, but only once. That
is, only N/2 exchanges need be performed.

During the actual calculations, index-
ing of data and coefficients requires atten-
tion to many details. In particular, several
symmetries about offsets of the index
may be exploited. At the first stage of
Fig 16.33, all the multipliers are equal
to 0

NW = 1, so no actual multiplications
need take place; all the butterfly inputs are
adjacent elements of the input array x(t).
At the second stage, all the multipliers are
either 0

NW  r integral powers of 4/N
NW and

the butterfly inputs are two samples apart,
and so forth.

The coefficients are indexed in ascending
order. These are normally calculated ahead

Fig 16.35—Register arrangement for bit-
reversal shifting.

of time and stored in a table. Another way is
to use a recursion formula to generate them
on the fly, but this is discouraged because of
numerical-accuracy effects that destroy the
efficiency of the technique.

All those multiplications and additions
take their toll on the numerical accuracy
of our final result. Quantization noise is
multiplied and added as well, and at the
output of a DFT, the noise power grows by
N times.

In an FFT calculation, the situation is
roughly the same; however, the require-
ment to avoid overflow at intermediate
stages may force us to scale the data, the
coefficients, or both. This further reduces
the dynamic range of any FFT. Results
have been offered indicating noise in-
creases in the vicinity of 12N. In addition,
the quantization-noise contribution of the
coefficients increases in inverse propor-
tion to p, the number of bits used to repre-
sent them. This, in turn, means that the
noise increase with respect to N is slow.

In FFT-based noise-reduction systems,
we perform some modification of the fre-
quency-domain data, such as zeroing bins
not meeting a pre-defined amplitude
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threshold. Then we transform the modi-
fied data back to the time domain. The
duality of the Fourier transform and its
inverse can be shown in the flow diagram
of a FFT-1 as in Fig 16.36. This diagram
was produced from Fig 16.33 by simply
substituting ½ kn

N
kn

N Wfor W − at each stage
and, of course, using X(k) as the input to
obtain x(t) as the output.

Alternatively, we may compute the
FFT-1 by using the FFT flow diagram and
swapping the inputs and outputs and re-
versing the direction of signal flow. It is
important to note that this is a consequence
of that fact that we can rearrange the nodes
of the flow diagrams however we want, so
long as we do not alter the result. The
transforms work just as well in reverse as
they do in the forward direction.

Damn-Fast Fourier Transforms
When it is necessary to compute Fou-

rier transforms on a sample-by-sample
basis, or where frequency resolution must
be non-uniform across the sampling BW,
even traditional FFTs may be too
computationally intensive for the pro-
cessing horsepower available. A class of
algorithms that computes the next trans-
form output very rapidly—based solely
on current transform output and the next
input sample—has been discovered. A
method is included here for controlling
its inherent divergence problem by brute
force.

The derivation begins by looking at how
the Fourier transform results change for
each bin at each sample time. Say we start
with some discrete Fourier transform out-
put bins Xr(k) at sample time r. Then we
compute the DFT for the next sample time
r + 1 and examine the sequences to see
what has changed. For r = 0, each DFT
sequence expands to:

)N(xW)3(xW   

)2(xW)1(xW)k(x
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What is evident is that each input
sample x(n) that was multiplied by nk

NW in

the summation for X0(k) is now multiplied
by k)1n(

NW − in the summation for X1(k).
The ratio of the two sequences is nearly:

k
Nnk

N

k)1n(
N

0

1 W
W

W

)k(X

)k(X −
−

=≈ (52)

We still have two terms “hanging out” of
the relationship, namely the first and the last:

)N(xW and  )0(xW )1N(
N

k0
N

−
(53)

that have not been accounted for in the
ratio. If we first subtract x(0) from X0(k)
before taking the ratio, then add the new
term )N(xW k)1N(

N
−  after, we have the cor-

rect result:

[ ] )N(xW)0(x)k(xW)k(x )1N(
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(54)

Now this may be simplified a little, since:
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and substituting:

[ ])N(x)0(x)k(XW)k(X 0
k

N1 +−= − (56)

This is the damn-fast Fourier transform
(DFFT). It means: For N values of k, we
can compute the new DFT from the old
with N complex multiplications and 2N
complex additions, or a computational
burden proportional to N. If we begin with
X0(k) = 0 and take the first N value of x(n)
= 0, we can start the thing rolling. It saves
computation over the FFT by a factor of:

2

Nlog

N2

NlogN 22 = (57)

which for large values of N is very signifi-
cant indeed. For example, if N = 1024, the
improvement is by a factor of five. Over the
direct-form DFT, it is a factor of N2/N faster.
But there is a catch: An error term will grow
in the output because the truncation and
rounding noise discussed previously is

cumulative. The error will continue to grow
unless we do something about it.

The simplest way to handle the situa-
tion is to compute two DFFTs for all the
output bins k, resetting every other block
of N input samples to zero. In other words,
one DFFT begins at some time with an
input buffer that has been zeroed, the other
continues to operate on the continuous
stream of real input samples. As sample-
taking continues, DFFT output is taken
from the second calculation. As the buffer
of the first DFFT gradually fills with real
samples, the block of zeroes it originally
held disappears. At this point, each DFFT
produces the same result except for the
greater error in the second DFFT because
of truncation and rounding effects. Output
is then taken from the first DFFT and the
buffer of the second is zeroed; the calcu-
lations continue for another N iterations,
at which time the exchange and reset are
again done, and so forth, continually. This
places an upper bound on the cumulative
error to that associated with 2N iterations
and increases the computational burden by
a factor of two. Now the savings over the
FFT is only:

4

Nlog2 (58)

which for N > 16 still represents an im-
provement. DFFT output quantization
noise is at least twice that of the DFT.

Frequency resolution of DFFTs is con-
trolled by the block length, N, used in the
calculations, just as in DFTs or FFTs.
Resolution may be set differently, though,
for each bin; further, not all bins need be
computed to compute any particular bin,
unlike the Cooley-Tukey FFT. Is there an
inverse DFFT? Well, because inverse Fou-
rier transforms map into the time domain,
it is simple enough to just compute the
next output sample rather than the next N
output samples. The easiest output term to
compute is x(0), since all coefficients are

0
NW = 1. The output is then just:

∑=
−

=

1N

0k
)k(X

N

1
)0(x (59)

and only one multiplication is involved.
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RADIO ARCHITECTURES FOR DSP

Fig 16.37—A typical use of an
outboard, baseband DSP processor.

Fig 16.38—Digital AGC system block diagram.

In radio transceivers, DSP may be applied
at baseband or audio, at an IF stage, or di-
rectly at RF. This section examines general
approaches for each of those topologies. As
we move the analog-to-digital interface
closer to the antenna, we eliminate an in-
creasing amount of analog hardware.

DSP at Baseband
It is reasonably straightforward to ap-

ply DSP at baseband or audio with any
kind of traditional analog transceiver de-
sign. Such an arrangement is shown in
Fig 16.37 as the combination of a regular
analog receiver and an outboard DSP
unit. Many features typically associated
with DSP may be obtained that way, such
as noise reduction, automatic notch and
speech processing. The one feature that
is a bit difficult to obtain with that con-
figuration is additional bandwidth reduc-
tion in the receiver through DSP filtering.

Let’s say the receiver bandwidth is
3.0 kHz and we wish to implement an
RTTY filter having a bandwidth of
500 Hz. It follows that some of the sig-
nals we digitize will be outside the final
bandwidth. When the desired signal is
strong relative to the undesired, every-
thing is fine; but when a strong undesired
signal appears within the receiver’s band-
width and outside the DSP filter, it may
actuate the receiver’s analog AGC. That
would reduce the level of our desired sig-
nal as the receiver keeps the level of the
undesired signal constant. Our desired
signal’s amplitude would go up and down
with the level of the interference.

Without some form of gain compensa-
tion, such a system would be unusable.
Of course, we could turn off the analog
AGC in the receiver; but then, the total
dynamic range would be severely com-
promised and distortion would become
likely for strong signals. Instead, we may
elect to implement a digital AGC system
in DSP that compensates for the gain
variations and provides its own timing.

A block diagram of part of a digital AGC
system is shown in Fig 16.38. It consists
of a gain-control block (multiplier) and a
ratio detector. In the diagram, the peak
undesired signal amplitude is called m; the
peak desired signal amplitude is called n.
The signal that is digitized is naturally the
sum of the desired and undesired signals,
or µ + n. The ratio detector computes the
ratio of that sum to n:

n

nm
k

+
= (60)

where k is the factor by which the fil-

tered output must be digitally boosted to
remain at constant peak amplitude. Note
that is true only when µ + n is constant and
the receiver’s analog AGC is working.
Below the receiver’s analog AGC thresh-
old, no digital gain boost would be re-
quired because no gain reduction occurs.
Thus, a separate digital AGC subsystem is
required to hold n constant. That part is
shown at the right of Fig 16.38. Holding n
constant means that this digital AGC has
no threshold or “knee.” All signals down
to the noise floor of the receiver are ampli-
fied to the same peak amplitude.

Decay times of the two parts of the al-
gorithm must be identical. To make the
thing work properly, they must also be
equal to or less than that of the receiver’s
analog AGC. A delay is inserted in the
detector path µ + n to compensate the delay
through the DSP filter. Scaling might be
necessary to prevent overflow in the algo-
rithm. Special attention must be paid to

what happens during the attack time. Some
receivers exhibit AGC overshoot, which
may cause spikes on incoming signals,
resulting in rapid gain excursions. A good
approach is to allow gain adjustment in
proportion to the attack time of µ + n, but
only if it persists at a higher level for sev-
eral milliseconds. That avoids reaction to
noise pulses.

Factor k is always greater than one,
hence the multiplication is not the simple
fractional type described above. We may
now have a need to extend fixed-point
math to values greater than unity. It is te-
dious but not too difficult. We just handle
the integer and fractional parts separately.
We have to multiply k by a fractional de-
cay factor δ at each sample time and also
multiply k by another fraction—the fil-
tered signal. Separating the integer and
fractional parts by a radix point, we adopt
the notation k = (a.b), where:

a∈ℑ .b∈ (61)

meaning that we treat a as an integer and
b as a fraction.

A number like decay factor δ has a zero
integer part: δ=(0.d). The result of the
multiplication k δ=(a.b)(0.d) is:

(a.b)(0.d) = ([ℑad+ℑbd]×[    ad +    bd])
(62)

where the carry is from the addition of the
fractional products, which must occur
first.

In practice, baseband DSP filtering may
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be limited by in-band IMD and synthesizer
phase-noise effects that plague the analog
transceiver itself. Those may cause un-
wanted signals to appear in the passband,
masking the desired signal. With an other-
wise perfect receiver, performance is lim-
ited by the available SNR and SFDR of the
ADC and by the phase noise of its clock.
As we move the digital-to-analog inter-
face closer to the antenna, converter noise
and phase-noise issues become more criti-
cal. Other factors actually help us as we go
to IF-DSP.

IF-DSP at a Low IF
The primary reason for wanting to digi-

tize signals closer to the antenna is to
eliminate expensive filters and other hard-
ware whose functions may be performed
in DSP. By going to a low IF, we can get
rid of analog balanced modulators, prod-
uct detectors, squelch and even multiple
crystal or mechanical filters. Many things
judged quite difficult or impossible in the
analog world may be included, as well. On
the other hand, many designers are return-
ing to crystal or mechanical filters ahead
of the digitization point in DSP receivers.
That still ensures maximum protection
against interfering signals for those who
want top performance.

To do IF-DSP in a receiver, we apply
harmonic sampling and a fast sigma-delta
ADC at an IF in or near the audio range.
16- and even 24-bit ADCs are common at
the time of this writing because they are
widely used in digital audio applications
such as CD players.

Recall that in harmonic sampling, the
sampling frequency may be as low as the
IF minus half its bandwidth; but the sam-

pling frequency cannot be less than twice
the bandwidth, lest aliasing occur. An IF
bandwidth of 20 kHz, for example, re-
quires a sampling rate of at least 40 kHz.
We ought to consider, however, what im-
age rejection we are going to get based on
such a low IF. Roofing filters in the IF
strips and other frequency-selective cir-
cuits will determine the image rejection
by their attenuation at a frequency offset
equal to twice the IF. If we intend to use
the same IF in transmit mode, the second
LO will appear at a frequency offset equal
to the IF. Quite a few poles of analog fil-
tering are required around this arrange-
ment. See Fig 16.39.

From the antenna, signals are band-pass
filtered to attenuate first-mixer image re-
sponses, to reduce LO leakage and to im-
prove second-order IMD response. Then
they are mixed to a VHF first IF to dodge
as many spurious responses as possible. A
VHF first IF may be chosen above twice
or even three times the highest RF to get
away from second- and third-order prod-
ucts. Six to eight poles of crystal filtering
may be used in the strip, with several gain-
controlled stages interspersed. In any re-
ceiver design, it is best to distribute gain
and loss evenly to avoid degradation of
SNR under reduced-gain conditions. We
would like the received SNR to continue
increasing as the input signal strength in-
creases. Therefore, gain reduction is usu-
ally made to occur in the stages farthest
away from the antenna first, followed by
earlier stages nearest the antenna.

First-IF signals may be converted di-
rectly to the low IF or an intermediate IF
may be used. The second-IF strip ampli-
fies them and possibly filters them further.

Enough gain is included to raise minimum
signal levels to about 10 dB above the
noise floor of the DSP section. That as-
sures that ADC itself will not affect the
sensitivity of the receiver. A traditional
analog AGC is employed.

The analog AGC prevents very large
signals from exceeding the maximum
allowable ADC input level. It thereby ex-
tends the dynamic range of the receiver.
Only a few years ago, state-of-the-art
ADCs did not exhibit sufficient dynamic
range for high-performance HF rigs and
range extension was absolutely necessary.
The analog AGC sets the IF output to 6-
10 dB below the ADC maximum input
level. That margin allows the headroom
necessary to accommodate AGC over-
shoot and noise spikes. ADC overload is
catastrophic and must not be allowed. Fi-
nally, an analog AGC makes it easier to
keep analog stages linear over the range of
signals encountered. These days, receiv-
ers may be called on to handle signals are
large as one watt! Recent designs employ-
ing 18- to 24-bit ADCs exhibit 100 dB or
more of SFDR so that analog AGC need
not come into play until signals reach
S9+30 dB or so.

IF-DSP receivers typically must have
digital AGCs as well as analog. Embed-
ded DSP systems have information about
what the analog AGC is doing, so it is
possible to make the two AGCs work to-
gether to achieve the desired characteris-
tics. Those desired characteristics include
an AGC threshold that resides well above
the noise floor of the receiver. Tradition-
ally, receivers have been designed with
AGC thresholds around 3 mV. Signals
below that level are not gain-controlled

Fig 16.39—IF-DSP receiver block diagram.
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and the receiver gets quiet.
In digital AGC systems, it is relatively

easy to provide a variable threshold. The
net effect of a variable threshold is very
much like that of an IF gain control. It is
also fairly easy to implement a peak-hold
or “hang” function that retains the most
recent peak for an adjustable period of
time. The decay time of the AGC may be
readily set in software to yield settings
from slow to fast. A very fast decay time
essentially turns the digital AGC off, al-
lowing large signals to be clipped at the
set output level. The attack time is gener-
ally fixed.

For traditional analog AGC systems not
under the control of the DSP, analog gain-
reduction information may be obtained by
digitizing the AGC voltage, as shown in Fig
16.39. The voltage value is used to look up
a gain-reduction factor from a table stored in
non-volatile memory. Such a table may be
built using measurements of the actual hard-
ware. Minor unit-to-unit variations are
readily handled by placing the digital gain-
compensation point inside the main digital
AGC loop, as described below.

An alternative approach involves gen-
erating the analog AGC voltage in the DSP
itself. See Fig 16.40. A digital-to-analog
converter develops a voltage for applica-
tion to analog gain-controlled stages. The
chief drawback to the scheme is a signifi-
cant delay between peak detection and
gain change, since signals must propagate

all the way through the DSP section be-
fore being detected. That can be compen-
sated with a delay in the analog IF strip;
but typically, the required delays of sev-
eral ms are impractical.

In any case, call the analog AGC gain-
reduction factor g, where 0 < g < 1. For
example, were g = 1/2, analog gain reduc-
tion would be −20 log (1/2) or about 6 dB.
Now it remains for the DSP to compute
how much of that gain reduction was
caused by in-band signals and how much
by interference. If all of it were caused by
in-band signals, no gain compensation
would be necessary and we would use
digital gain-boost factor f = 1. If all of it
were caused by interference, in-band sig-
nals would have to be boosted by a factor
f = g−1 = 2. For cases in between those two
extremes, the procedure is a little tricky
because f cannot be described by a single
equation.

As in the baseband case of Fig 16.38,
the DSP calculates the ratio k = (m + n)/
n. To restore a variable threshold to the
digital AGC, the next step is to determine
whether n by itself was large enough to
actuate analog AGC. The DSP does that
by comparing k with g−1. The algorithm
accounts for three cases in the compari-
son.

• Case 1: If k < g−1, then n by itself is large
enough to actuate analog AGC and the
gain-boost factor used is f = k. The ratio
of signals solely determines the boost
factor.

• Case 2: If k > g−1, then n by itself is not
large enough to actuate analog AGC and
the gain-boost factor is f = g−1. Analog
gain reduction solely determines the
boost factor.

• Case 3: When k = g−1, it obviously does
not matter which is used as the gain-
boost factor since they are equal.

Remember that when analog AGC is in-
active, no gain boost need be applied. Note
that g depends only on the characteristics of
the analog gain-controlled stage or stages; k
depends on the ratio of in-band and interfer-
ing signals, irrespective of the analog sec-
tion. The two possible gain-boost variables
therefore produce different functions and
curves. The curves are guaranteed to meet
where k = g−1.

Placing the digital gain boost inside the
AGC loop assures that a constant peak
output level will be maintained even in the
face of minor variations in analog gain
control. Inside the loop, we apply digital
gain boost to signals before they are peak-
detected. Therefore, the main digital AGC
loop prevents them from exceeding the set
output level when interference—and k or
g−1—rapidly increase. In addition, IF gain
may be manually reduced by artificially
increasing the analog AGC voltage with-
out deleterious effects.

Finally, gain-boost factor f may be di-
rectly used to compensate a signal-
strength meter by the appropriate amount.
Below the onset of analog AGC, the DSP
makes a measurement of the peak IF level
to find signal strength, along with factor f;
above the analog AGC threshold, the look-
up table mentioned above must be used to
add to the S-meter reading since the IF
peak level remains constant. So just as the
receiver output level remains constant in
the presence of interference, so does the S
meter. When IF gain is manually reduced,
the S meter goes down— not up, as in so
many rigs.

Conversion schemes used in IF-DSP
receivers may also be used in the transmit-
ter by simply swapping the LOs, inputs
and outputs. One switching arrangement
for that is shown in Fig 16.41. Isolation
between the ports of the LO DPDT switch

Fig 16.40—IF-DSP receiver with digitally
derived analog AGC (after Frerking).

Fig 16.41—Block diagram of IF-DSP conversion scheme with T/R switching added.
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must be better than or equal to the desired
level of transmitter spectral purity. An
example of such a DPDT switch is shown
in Fig 16.42 using PIN diodes at VHF.
Switch control voltages swing between
+5 Vdc and −5 Vdc. When the series
diodes are on, the shunt diodes are off, and
vice versa. This particular circuit was
designed for a 75-105-MHz first LO and
a 75.04-MHz second LO. It achieves
around 80 dB of isolation in the worst case
with careful PCB layout.

Switching of the first mixer’s input may
be achieved using a relay or PIN diodes.
The second mixer’s output may be
switched using commercially available
ICs, such as the Signetics SE630. Isola-
tion in these switches is important because
it determines spurious responses in both
receive and transmit modes.

Gain-controlled stages or step attenua-
tors may have to employed to provide a
change in IF-strip gain between transmit
and receive. To see why that might be
necessary, let’s examine the difference in
gain between a transmitter and receiver in
typical service.

A receiver takes as little as −132 dBm
from an antenna and amplifies it to around
1 W, or +30 dBm. The gain is therefore:

dB162dBm )132(30A RX =−−= (63)

In a transmitter, a typical dynamic

microphone might produce 5 mV RMS
into 600 Ω, or –44 dBm. To get to 100 Ω
or +50 dBm, the gain is:

dB 94dBm )44(50ATX =−−= (64)

The receiver has the far more difficult
task, but the transmitter is still doing
yeoman’s duty. Considering a maximum
path loss of:

dB182dBm )132(50LOSS PATH =−−=
(65)

it is a wondrously large amount of en-
hancement we get from our electronics,
since the total power gain from the micro-
phone on one end to the loudspeaker on
the other end must be:

dB25694162A TOTAL =+= (66)

or a factor of 4×1025!
Some recent commercial receiver designs

have gone to a front-end AGC system that
reduces the RF gain instead of or along with
the IF gain under large-signal conditions.
That is fine so long as the subsequent in-
crease in noise figure can be tolerated.

Transmitters are likely to have gains
that vary quite a bit with frequency, tem-
perature and supply voltage. Like receiv-
ers, they may be called on to handle a large
range of input levels without exceeding a
set output level. ALC serves that purpose.

It is plausible to arrange for ALC in an

IF-DSP transmitter by digitizing an indi-
cation of forward power, such as from a
bridge, and adjusting the drive signal ap-
plied to the exciter. In that case, no analog
gain-controlled stages are needed; but it
does reduce the available dynamic range
of the transmitter somewhat, but it is not
usually enough to worry about.

The other possibility is to employ a tra-
ditional analog ALC with gain-controlled
stages. Still, some adjustment of drive
from the DSP is called for to maintain
optimum performance over wide ranges
of frequency and output power.

Transmit gain control (TGC) is a neat
concept that was evidently first practiced
at Collins Radio. It is a secondary ALC
system that slowly changes the maximum
drive applied to a transmitter so that the
main ALC does not have to work so hard.
The benefits include a minimum of over-
shoot on SSB and CW and prevention of
ALC pumping.

We must apply sufficient drive to
achieve desired output power; but we do
not want to apply more drive than abso-
lutely necessary. When a DSP can get in-
formation about the required level, it can
optimize drive. One reason to do so is to
maintain optimal RF rise and fall times
and RF envelope shapes that minimize
interference to others.

When an ALC-controlled transmitter is
driven hard, it rises rapidly to its set power
level. After it gets there, the ALC loop
attempts to reduce gain. If all that happens
too fast, it becomes very difficult to avoid
spikes and other artifacts in the output.
Digital TGC forces a DSP to examine ALC
voltage to determine the amount of gain
reduction occurring in analog. As in the
receiver case, it does that by digitizing the
voltage and using it as an address into a
look-up table. When analog gain reduc-
tion is excessive, the DSP is programmed
to reduce drive. In the absence of ALC, it
is programmed to increase drive to a pre-
set maximum. TGC usually changes quite
slowly, although it is often set to reduce
drive more quickly than to increase it.

TGC is set to achieve a drive level
slightly higher by a fixed margin than what
is necessary to attain rated power. A 1-dB
margin is common. Note that no matter
what the set power level, TGC will alter
drive to match. That is handy in transmit-
ters that use ALC over a wide range of
power levels.

Direct-Conversion Transceivers
In a direct-conversion receiver, signals

are converted directly to baseband with-
out intervening IFs. An increasingly popu-
lar method these days is to use some kind
of image-canceling quadrature mixer at

Fig 16.42—SPDT LO switch using PIN diodes. Diodes are Philips BA682 or equiv.

ch16.pmd 8/17/2004, 9:58 AM29



16.30 Chapter 16

the front end, coupled with a DDS-con-
trolled, low-noise LO and baseband filter-
ing. The quadrature mixer converts RF
signals to an analytic pair which, in turn,
is digitized by a sound card on a PC. The
PC then does the demodulation, spectral
analysis and so forth in DSP.

One implementation of a quadrature
mixer having outstanding performance is the
so-called Tayloe detector, popularized by
Dan Tayloe, N7VE. It is a commutating,
sampling mixer and detector that uses four
LO phases. It reportedly achieves good
large-signal performance, low conversion
loss (< 1 dB) and with proper clock genera-
tion, good noise figure.

Gerald Youngblood, AC5OG, has chosen
the Tayloe detector for his SDR-1000
project. A block diagram of the hardware
portion of his receiver is shown in Fig 16.43.
Refer to Gerald’s QEX articles or visit the
ARRL TIS pages on software radios for
details (www.arrl.org/tis).

Leif Åsbrink, SM5BSZ, uses a similar but
more traditional quadrature-mixer approach
in his Linrad system, which runs under
Linux. His QEX articles, listed in the Bibli-
ography at the end of this chapter, contain
the specifics. They also may be downloaded
from ARRL’s TIS site.

In the direct-conversion technique the
LO is, in effect, placed very close to the
desired signal and through sampling and
decimation, translates it to baseband. The
closeness of the LO to the desired signal
accentuates phase-noise effects such as
reciprocal mixing and makes short-term
clock stability an issue. Fortunately, low-
noise, crystal-derived synthesizer and
clock designs are becoming available.
RMS clock jitter is usually specified in
units of time (picoseconds), but a clock’s
phase-noise-versus-frequency character-
istic tells the whole tale.

The Nyquist criterion compactly deter-
mines the sampling rate required for any
given signal or group of signals. If the
digitized bandwidth is 50 kHz, the mini-
mum sampling frequency must be at least
100 kHz, even if the signal frequencies lie
in the VHF range or beyond. Ancillary
sample-and-hold devices may be em-
ployed in a direct-conversion receiver to
ease the requirements of an ADC. Digi-
tized bandwidth must remain within half
the final sampling frequency to avoid
aliasing; thus, interest in narrow pre-
selector filters has been renewed.

In the example of a 50-kHz received
bandwidth, any increase in sampling rate
above 100 kHz is called over-sampling.
Over-sampling may be important because
it provides an SNR gain by spreading
quantization noise over a larger band-
width, then filtering out some of the noise,

as discussed above. When we use har-
monic sampling, however, we may also be
under-sampling our signals. We can be
both over-sampling and under-sampling
simultaneously because one is defined
with respect to sampled bandwidth and the
other by the frequencies of interest.

Frequency planning is of special concern
in direct-conversion architectures. Quite
commonly, spurious responses appear in
high-speed data converters that we must plan
to avoid. Problems may also be created in
supposedly linear analog stages that gener-
ate significant harmonic content. Some-
times, those harmonics show up as aliases in
the digitized spectrum that may appear in
one’s passband or mix with other signals
present. Careful selection of sampling fre-
quency and IF may place those responses
where they are harmless: outside the band of
interest. Over-sampling generally moves us
toward the goal of high SFDR by providing
more spectrum into which spurs may harm-
lessly fall.

The technique known as dithering fur-
ther improves SFDR in general by spread-
ing the energy in discrete spurs over
greater bandwidths. Dithering artificially
adds noise to the data-converter clock, to
the input, or both to achieve spreading.
Spurious reduction on the order of 20 dB
has been attained with modern high-speed
(> 40 MHz) data converters.

Digital Direct Conversion
In the ultimate digital receiver, signals

are sampled directly at RF without any
analog mixers or conversion stages. In
practice, some gain is required ahead of
the ADC because of the current limitations
of technology. So far as gain stages can
be designed with high dynamic ranges
and good large-signal handling capacities,
direct digital conversion (DDC) comes
within reach.

In a DDC receiver, RF signals are trans-
lated to baseband using a numerically con-
trolled digital oscillator or DDS. Such a
DDS produces only digital samples of the
LO, since it mixes samples of the RF digi-
tally. Harmonic sampling may be em-
ployed to capture only a small portion of
the spectrum available, or high-speed
sampling may be used to capture large
chunks of the band of interest. In a nar-
row-band situation such as SSB or CW on
HF, several stages of decimation are
implemented in hardware to reduce the
sampling rate as bandwidth is decreased.
Analog pre-selectors may still be a wise
addition to the design to preserve second-
order dynamic range. See Fig 16.44.

Note that a DDC receiver may sepa-
rately down-convert and demodulate more
than one channel at a time. Digital down-
converter ICs are now appearing that as-
sist the designer toward that goal.
Cellular-telephone and other commercial
systems have been exploiting that DSP
advantage for several years now and it is
expected to appear in Amateur Radio.

Digital direct conversion is easier to

Fig 16.43—Block diagram of AC5OG’s hardware.

Fig 16.44—Block diagram of digital direct-conversion hardware.
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implement in transmitters than in receiv-
ers. Advances in DAC technology have
come faster than for ADCs. ICs such as
the Analog Device AD9854 (300 MHz)
and AD9858 (1 GHz) make it possible to

directly generate virtually any kind of
waveform directly at RF. Filtering and
amplification yield a simple yet very ac-
curate DSP system for exciters.

All this flexibility has led to a univer-

sally accepted concept that opens vast
possibilities for amateurs: the software
radio. Let’s look at what’s possible now
with software radios and what they hold in
store for the future.

SOFTWARE RADIOS
What is a software radio? Well, to be as

comprehensive as possible, we can state
that a software radio is a radio:

1. Whose hardware is so ubiquitous as to
be able to handle almost any modula-
tion format, signal bandwidth and fre-
quency desired.

2. Whose functionality may be altered at
will by downloading new software.

3. That replaces traditional analog sub-
systems with DSP implementations.

4. That may be commanded to perform
adaptive signal processing and other
operations with the goals of finding
clear channels on which to communi-
cate and avoiding interference with
other users.

5. That may be instructed how to inde-
pendently recognize various commu-
nications signal formats and conform
to them.

The first three definitions may be con-
sidered primary and the last two, second-
ary; but they all illustrate certain
possibilities. One virtue of software radios
is their flexibility. Only software stands
between the status quo and a new set of
functions or a new level of performance.
Writing software is not for everyone; but
once it is written, it is readily ported
among compatible platforms, such as PCs.

A software radio that uses a PC for its
DSP functions and a standard hardware
interface is attractive for that and other
reasons. The newest designs incorporate a

high-speed digital interface between the
head-end hardware and PC, using USB
2.0, IEEE 1394 or 100BaseT, for example,
providing access to digitized signals at an
early stage in the signal-processing chain.
It is possible to write a software program
that not only allows the user to perform
the usual radio functions, but that also al-
lows configuration of DSP algorithms at
the various levels. Processing elements
may be customized and rearranged,
thereby facilitating experimentation.

A PC-controlled software radio may be
commanded and controlled through what is
called an applications programming inter-
face or API. The job of the API is to translate
a standard set of commands or protocols to
a radio-specific set. Using the API tech-
nique, programmers may use a standard soft-
ware interface to program and communicate
with the radio and be assured that an API,
usually written by the radio designer, will
interpret commands accordingly. Hams
have caught on to that idea and developed
APIs for their units. See the article by Larry
Dobranski, VA3LGD, in the Bibliography
for more information.

One area in which Amateur Radio rigs
have made little progress in the last 40 years
is that of transmitter IMD reduction. Soft-
ware radio technology and DSP present the
possibility of pre-distortion of the drive sig-
nals applied to final power amplifiers for
that purpose. Drive signals may be purpose-
fully distorted using the inverse of the re-
sponse of the power amplifier. The net result

is some compensation for the amplitude and
phase non-linearities of the amplifier and
therefore reduction of IMD and interference.
Designers, however, are finding that the
bandwidth required by the pre-distorted sig-
nal is at least five times that of a regular,
uncompensated signal. That and the diffi-
culties of measuring power amplifier distor-
tion from unit to unit in production have
rendered the method largely impractical to
date, but that is expected to change as re-
search continues.

Adaptive beamforming, or the creation of
antenna systems with automatically varying
radiation patterns, extends the concept of
adaptive signal processing to the spatial
domain. The goal of such “smart” antenna
systems is to condition the radiation pattern
of an array to maximize reception of desired
signals and to minimize interference and
noise on an adaptive basis.

A simple form of adaptive array consists
of two or more omnidirectional antennas,
like verticals, connected to a multi-channel
adaptive receiver and signal processor. At
least one of the antennas in the array feeds
the signal processor through an adaptive fil-
ter. The DSP controls the impulse response
of the filter to either enhance or cancel re-
ceived signals based on their direction of
arrival or certain other criteria. For example,
the DSP may be programmed to accept only
sinusoidal signals and reject broadband sig-
nals such as noise. See the article “Introduc-
tion to Adaptive Beamforming,” listed in the
Bibliography, for more information.

ch16.pmd 8/17/2004, 9:58 AM31



16.32 Chapter 16

HARDWARE FOR EMBEDDED DSP SYSTEMS

Table 16.1
Fixed and Floating-Point DSPs
Part Number Manufacturer # of bits Fixed/Floating
TMS320Cxx Texas Instr. 16 Fixed
DSP320Cxx Microchip 16 "
DSP16 ATT 16 "
ADSP21xx Analog Dev. 16 "
MC68HC16 Motorola 16 "
MC5600x Motorola 24 "
MB862xx Fujitsu 24 Floating
MC9600x Motorola 32 "
DSP32x ATT 32 "
TMS320Cxx Texas Instr. 32 "
ADSP21xxx Analog Dev. 32 "

Fig 16.45—Fixed-point DSP block diagram.

What is it about a microprocessor that
makes it a DSP? Well, DSPs are special
because they include facilities uniquely
designed for the type of calculations com-
mon in signal-processing algorithms.
They are almost all 16-bit machines, or
better, and so are very powerful even with-
out their special facilities. DSPs may be
classified primarily by their representa-
tion of numbers (fixed-point vs floating-
point), also by their data-path width
(16-bit, 32-bit), by their programmability
(general-purpose vs dedicated co-proces-
sor) and their speed.

Fixed-Point DSPs
Fixed-point DSPs are generally simpler

than floating-point units, so they are typi-
cally less expensive. Fixed-point proces-
sors are common in embedded systems,
especially for radio. Special software in-
structions and separate high-speed compu-
tational units are included to accelerate the
processing of those common DSP calcula-
tions already mentioned. Perhaps the most-
used operation is the convolution sum,
performed as a series of MAC instructions
(see the section on FIR Filters). Designers
are interested in how many MACs per sec-
ond a DSP can execute, because for any-
thing beyond simple audio processing, only
a small amount of time is available between
samples for filtering and other functions.

A typical 16-bit, fixed-point DSP is
shown in the block diagram of Fig 16.45.
It employs what is called the Harvard ar-
chitecture: It has separate program and
data memory paths and also includes a
pipeline for holding instructions waiting
to be executed. This arrangement speeds
things along because the CPU can fetch
future instructions even when it is execut-
ing the current instruction or fetching data
from another path.

Consider how this affects an FIR filter
algorithm, for example. For each tap in the
filter, the processor must multiply a con-
stant (a filter coefficient) by a data value
(a stored sample). When the processor can
fetch both values simultaneously, an en-
tire cycle time is saved. The subsequent
addition of the product to the accumulator
and the incrementing of indices for the
next MAC instruction may also be ex-
ecuted in a single cycle. When large filters
are being implemented, time savings
quickly mount. Contrast this with the
many cycles needed to perform the same
operations in a general-purpose computer
and you will see why specialized proces-
sors are so much more capable of handling
sampled signals.

This business of execution speed is a

large factor in the selection of a DSP for
any particular use. System planning must
begin by reckoning how many instructions
can be executed between sample times. In
a system with a 30-kHz sampling rate,
only 33 µs are available, so a fixed-point
DSP that can execute two million MACs
per second (2 M-MACs/s) can only get 66
of these in the space between samples. For
all but the simplest of systems, this is gen-
erally insufficient power for good filter-
ing and other requirements and a separate
filter co-processor must be employed.
This is discussed further below. DSPs are
now available having over 200 M-MACs/s
performance.

Many fixed-point DSPs are available that
also have undedicated parallel and serial
input/output (I/O) on board. These may be
very useful for embedded applications by
obviating the need for other hardware. Pro-
cessors embedded in radios have tradition-
ally been shut off during times when no user
input is present, stopping their clocks. This
is done to eliminate the digital-circuit noise
that otherwise would be difficult to remove.
With a DSP in critical signal paths, this
luxury is not possible. Careful attention to
shielding, grounding and bypassing must

therefore be paid. A DSP and associated
support components humming along at
25 MHz—or more—tend to generate lots of
noise and discrete spectral elements. They
also tend to draw significant current, al-
though dissipations in the one-watt range are
typical; for base-station equipment, this is
not usually a big concern.

Fixed-point math brings with it a limi-
tation on the range of numbers that can be
represented, notwithstanding the ex-
tended integer/fractional representation
demonstrated above. This limitation may
form an obstacle to achieving the highest
possible dynamic range. For this reason,
floating-point DSPs are also widely avail-
able for use where greater boundaries must
be set on the range of numbers handled.
Table 16.1 shows a listing of popular
fixed-point DSPs, along with their float-
ing-point cousins. Manufacturers supply
evaluation boards, some of which include
data converters and other support cir-
cuitry. Control software running on a
desk-top computer is available for down-
loading object code—the DSP instruc-
tions that make up the program—as well
as for debugging by use of tools such as
break-points and register dumps.
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Floating-Point DSPs
Representation of numbers is a critical

decision to be made early in the system
design process. A decision to use a float-
ing-point DSP, at generally higher cost
than fixed-point, is usually made either to
remove dynamic-range barriers or to grant
greater flexibility to algorithms that re-
quire scaling of data and coefficients, such
as the FFT algorithms discussed above.
We saw that each floating-point number
requires two storage locations: one for the
mantissa and one for the exponent. One
would expect the processing of these num-
bers to be slowed by having to handle
twice the data, but floating-point architec-
tures are devised in such a way as to mini-
mize or even eliminate this apparent
handicap.

Multiplying two floating-point num-
bers involves multiplying the mantissas,
then adding the exponents and any carry
(or borrow) from the multiplication. Since
multiplications generally require more
time than additions, summing the expo-

nents does not really slow the machine
very much. Adding two floating-point
numbers, though, requires the addition of
the mantissas and a possible adjustment to
the exponent, and this is always a bit
slower than can be done on fixed-point
numbers. With an optimized MAC unit,
even this restriction can be removed for
the bulk of calculations in typical DSP
applications. Other than for these points,
the block diagram of a floating-point DSP
does not look very different from that of
the fixed-point unit in Fig 16.45.

Selecting Data Converters
Complete DSP systems almost always

include data converters in the form of one
or more ADCs and DACs. Selection of
these devices for any particular applica-
tion is made with regard to cost, bit-reso-
lution, speed, SFDR and digital interface.
Manufacturers characterize devices on
these bases and obviously, we must choose
them so they will handle the highest sam-
pling rate at our analog interface. In gen-
eral, bit-resolution and speed determine

SFDR. Dual 16-bit ADCs and DACs are
now very common because they are used in
compact-disc (CD) recorders and playback
units at a sampling rate of 44.1 kHz. Note
that 44.1 kilosamples/s of two channels in a
stereo system is equal to (2) × (44,100) × (16)
≈ 1.41 megabits per second. Devices with 20
and even 24-bit capability are catching on.
This is a lot of data and the bit-resolution of
data converters is most often chosen to match
that of the DSP, although there may be ad-
vantages in having slightly more bit-resolu-
tion in the DSP to mitigate round-off errors,
as noted in the FIR Filters section above.

We noted before that over-sampling of
input signals brings significant advan-
tages for the DSP designer. For this rea-
son, sigma-delta ADCs are the “top of the
crop” for use in IF-DSP and DDC receiv-
ers. As sampling frequencies increase,
over-sampling becomes more difficult to
achieve. Engineers working in cellular
radio and similar technologies deal with
much wider BWs than most of those found
in Amateur Radio, and so must grapple
with reduced dynamic range—fortu-
nately, they also require less. ADCs that
handle 12 to 16 bits at speeds exceeding
65 MHz are available. Viable DDC de-
signs are finding their ways into many
commercial services worldwide.

Converters must interface with DSPs
through a high-speed digital connection of
some kind. Parallel transfer—all 16 bits at
once, for example—is more common
among DACs than ADCs. High-speed,
three-line serial interfaces are popular
among converter manufacturers and sev-
eral standards have evolved. Some of these
are compatible with one another. Bearing
in mind the amount of data being trans-
ferred, realize that these serial links may
run at clock speeds in excess of 100 MHz.
ADC/DAC evaluation boards may be con-
nected to DSP evaluation boards to form a
prototype DSP system. Some data convert-
ers are listed in Table 16.2.

Extra Processing Power:
DSP Co-Processors

Quite often, a single, general-purpose
DSP by itself is not sufficient to handle
the computational load in a project. This
may be determined early in the system
design by evaluating the number of MACs
required by filters and other algorithms.
Several solutions present themselves:
adding one or more general-purpose
DSPs, adding specialized co-processor
chips, or designing a custom co-processor
using programmable-logic chips.

More than one general-purpose DSP
may be used to augment net data capacity.
The trend these days, though, is to use
dedicated co-processor chips that are op-

Table 16.2
Data Converters
Part Number Manufacturer # bits Speed ADC/DAC
HI1276 Harris/Intersil   8 500 Ms/s ADC
AD6645 Analog Dev. 14 80/105 Ms/s "
AD7722 Analog Dev. 16 200 ks/s "
AD9854 Analog Dev. 12 300 Ms/s NCO + DAC
AD9858 Analog Dev. 12 300 Ms/s NCO + DAC
ADC76 Burr Brown 16 50 ks/s ADC
PCM1750 " 18 44 ks/s dual ADC
CS5322 Crystal 24 2 ks/s ADC
CS5360 Crystal 24 50 ks/s "
AD1871 Analog Dev. 24 96 ks/s "
PCM1802 TI 24 96 ks/s "
UDA1361TS Philips 24 96 ks/s "
AK5394A AKM 24 192 ks/s "
BT254 Brooktree 24 30 Ms/s "
Note: Also see Maxim, National, Sipex, Analogic
CA3338A Harris/Int.   8 50 Ms/s DAC
HI1171 "   8 40 Ms/s "
HI5780 " 10 40 Ms/s "
HI20201 " 10 160 Ms/s "
AD9777 Analog Dev. 16 160 Ms/s "
PCM56 Burr Brown 16 93 ks/s "
PCM66 " 16 44 ks/s dual DAC
Note: See also National, Maxim, etc.

Table 16.3
Co-processors and DDC Chips
Part Number Manufacturer # bits Speed Function
AD6620/34 Analog Dev. 14 100Ms/s DSP down-conv.
HSP50016 Harris/Int. 16 52 Ms/s DSP down-conv.
HSP50110 " 10 60 Ms/s Quadr. tuner
HSP50210 " 10 52 Ms/s DSP Costas loop
HSP50306 "  6 2 Mbit/s QPSK demod
HSP43xxx " 10-24 Var. DSP filters
510 Harris et al 16 10 Ms/s Mult/Acc
LMA2010 Logic Dev, IDT 16 40 Ms/s Mult/Acc
HSP4510x Harris/Int. 20-32 33 Ms/s DDS
Various Xylinx, Altera, Atmel, etc. 8-32 >100 Ms/s FPGAs
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timized for the function they are to per-
form. This is especially true of FFT and
other operations that do not lend them-
selves well to the MAC procedures for
which general-purpose chips are opti-
mized. Whatever the algorithm, it seems
that multiplication of numbers takes the
most time, so a co-processor that incorpo-
rates a astmultiplication algorithm is de-
sirable. A lot of effort has gone into fast
multipliers since the 1980s and for the
IF-DSP or DDC designer, a knowledge of
how it is done may bring plentiful results.

The multiplication of two binary numbers

Fig 16.46—Long multiplication of two
4-bit binary numbers.

may be decomposed into an addition of
several binary numbers. We know that fast
binary addition is readily achieved by rela-
tively simple logic. Let’s take a look at this,
since it forms the basis for most fast multi-
pliers. Shown in Fig 16.46 is the long multi-
plication of two 4-bit binary numbers. It is
performed in base two the same way as it is
in base ten: First, take the least-significant
digit of the lower multiplicand and multiply
it by the other multiplier. Since in binary,
this digit is either one or zero, the digits we
write under the line is either a copy of the top
multiplicand, or all zeros. Then, the next-
significant digit of the lower multiplicand is
used, with the result written below the first
and shifted one digit to the left. This process
continues until all bits of the lower multipli-
cand have been used. Finally, all the interim
results are added. This last result is the prod-
uct of the two numbers. Note that the result
may contain a number of bits as high as the
sum of the number of bits in both the multi-
plicands. Project G in the Appendix shows
how simple logic is used to implement a fast
multiplier. Pipe-lining and latency issues are
discussed there.

Refinements of this technique that use

look-up tables and combinatorial methods
yield speed increases. Field-programmable
gate array (FPGA) manufacturers have
worked out the details of these algorithms
and routinely provide them to users. FPGAs
are available now in very-high-speed ver-
sions (fclk ≥ 200 MHz) that may be used for
DSP co-processing. FPGA designs may
also employ the Harvard architecture us-
ing external, dual-port memory to provide
a register-based interface to host DSPs.
Normally, one sample is passed to the co-
processor and one retrieved at each sample
time. Filters exceeding 100 taps may be
implemented this way, saving processing
time in the host DSP for other housekeep-
ing tasks.

Entire down-conversion and I/Q modu-
lation sub-systems have been incorporated
on a single chip. These chip sets may be
advantageous where FPGA-based designs
either do not meet requirements or are too
expensive. A sampling of ready-to-use co-
processors and DDC chips is given in
Table 16.3. Also read some of the refer-
ence material listed at the end of this chap-
ter for more information on dedicated DSP
co-processors.

DSP SYSTEM SOFTWARE

Assembly Language and Timing
Requirements

Embedded-DSP application software is
most often written in assembly language,
the native language of the DSP in use.
Instructions to be executed are arranged in
order, according to the von Neumann
model, and entered as lines in a text file,
using the mnemonics provided by the DSP
manufacturer. When this source code is
ready, an assembler program is invoked
that translates the source code into object
code—the numbers that the DSP under-
stands as instructions. The object code is
then transferred to the program memory
of the target system for execution.

The reason assembly language is so
prevalent in embedded applications is the
critical timing involved. Programs compiled
in high-level languages do not always handle
interrupt-driven events well (the input or
output samples) and may bog down. To
minimize the required hardware speed, pro-
cessing of some second-line tasks such as
squelch and ALC must have reduced sam-
pling rates to fit into the whole picture. Only
a part of their processing burden may be
performed at each sample time. This is a
form of time-distributed processing and is
just one in the DSP designer’s bag of tricks.

Someone will always think of some-
thing more for a transceiver to do and it is

better to err on the side of higher speed
and more memory at the start than to run
out later. Even so, DSP designers must
carefully evaluate all the functions in-
cluded at the outset. Other shortcuts—like
the assumption of only integer values by a
BFO at one-fourth the sampling fre-
quency—may present themselves, but one
cannot always count on it; one must plan
diligently to avoid roadblocks. In addi-
tion, unexpected things can occur if due
thought is not given to quantization and
scaling effects, especially where adaptive
processing is applied, no matter the repre-
sentation of numbers used. DSP-chip
manufacturers provide assemblers and in-
struction details free of charge. Their ap-
plications engineers are ordinarily ready
to assist. A plethora of information is
available on the Web.

Filter-Design Software
Several software packages for DSP fil-

ter design are listed at the end of this chap-
ter. Many more are available. You can
expect to find reasonably priced software
that will design FIR and IIR filters, as well
as let you perform convolution, multipli-
cation, addition, logarithms and other cal-
culations on numeric sequences.

FIR filters usually may be designed
with a choice of method (Fourier, Parks-

McClellan, least-squares), length, fre-
quency response, and ripple magnitude;
they may use various window functions to
achieve different shape factors and pass-
band/stopband attenuations. Some are able
to take coefficient and data quantization into
account and some are not. Large filters may
deviate significantly from their theoretical
responses because of these effects, so if you
are contemplating reasonably long filters,
check into this capability.

IIR filter design usually includes a
choice of various analog-filter prototypes.
Software packages may vary in their abil-
ity to display, print, or plot responses and
write coefficient files to disk. Filter coef-
ficients are generally part of system firm-
ware and must be transferred from the host
DSP to a filter co-processor on demand. It
must be possible to translate the filter-
design software’s output to a format the
compiler software understands. A transla-
tion program may have to be written to
accomplish this.

Longer and more-complex FIR filters
may be implemented by convolving the
impulse responses of several different fil-
ters. This allows the alteration of the fre-
quency response of standard filters to
include graphic or parametric equalization
and IF shift. Such filtering systems are
already being employed in Amateur Radio

ch16.pmd 8/17/2004, 9:58 AM34



DSP and Software Radio Design 16.35

and commercial transceivers.

Other DSP Design Tools
FPGA design software is generally avail-

able from chip manufacturers. In addition,
many schematic-capture and PCB-layout
software vendors provide interfaces to
popular FPGAs and other programmable
devices. Hardware Design Language
(HDL) and Verilog Hardware Design Lan-
guage (VHDL) have become popular for
translating user requirements into pro-
gramming code for FPGAs. Most FPGA
programmers understand HDL or VHDL.

A rich variety of flow-chart software
exists in both the public and private do-
mains. It may be especially useful for
time-sensitive applications in DSP.
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Appendix: DSP Projects
Project A: Decimation
Project B: FIR Filter Design Variations
Project C: Analytic Filter-Pair Generation
Project D: Newton’s Method for Square Roots in QuickBasic 4.5
Project E: A Fast Square-Root Algorithm Using a Small Look-Up Table in Assembly Language
Project F: A High-Performance DDS
Project G: A Fast Binary Multiplier in High-Speed CMOS Logic

PROJECT A: DECIMATION

This project illustrates the concept of
decimation using Alkin’s PC-DSP pro-
gram, included with the book of that name
listed in the Bibliography. First, generate
40 samples of the sinusoid y(n) = sin(n/4),
where 0 < n < 39. This sequence may be

Fig 16.A1—A 40-sample sine wave. Fig 16.A2—Decimated, 20-sample sine wave.

generated using the “Sine” function of the
“Generate” sub-menu under the “Data”
menu, with parameters Var1 = SIN, A = 1,
B = 0.25, C = 0 and #Samples = 40. Press
F2 to display the data, which should match
Fig 16.A1.

Next, decimate the sequence by a factor
of 2 using the “Decimate” function found in
the “Process” sub-menu under the “Data”
menu. Use parameters Var1 = SIN2, Var2 =
SIN, Factor = 2. Display the new sequence
by pressing F2. It should match Fig 16.A2.

PROJECT B: FIR FILTER DESIGN VARIATIONS

An FIR filter’s ultimate attenuation and
its transition BW are largely determined
by the filter’s length: the number of taps
used in its design. Fourier and other de-
sign methods do not always readily opti-
mize the trade-off among transition BW,
ultimate attenuation and ripple. One way
to achieve better ultimate attenuation at
the expense of passband ripple is to con-
volve the impulse responses of two short
filters to obtain a longer filter. The two
impulse-response sequences are pro-
cessed by precisely the same convolution
sum that is used to compute FIR filter
outputs (Eq 3 in the main text).

A filter obtained by convolving two fil-
ters of length L has length 2L –1. In one
example, two LPFs of length 31 may be
convolved to produce a filter of length 61.
The resulting frequency response, plotted
against that of a LPF designed with Fou-
rier methods for an identical length of 61
taps, would show that the ultimate attenu-
ation of the convolved filter is 20 dB or 10
times greater than that of the plain, Fou-
rier-designed filter. Also, the convolved
filter would have a greater passband ripple
and a narrower transition region. Quite
often, filters that were designed using dif-
ferent window functions may be con-

volved to get some of the benefits of each
in the final filter.

A look back at Fig 16.29 reveals that
different window functions achieve dif-
ferent transition BWs and values of ulti-
mate attenuation. The rectangular window
attains a narrow transition BW, but a poor
ultimate attenuation; the Blackman win-
dow, on the other hand, has nearly optimal
ultimate attenuation and a moderate tran-
sition BW. Let’s see what happens when
we convolve the impulse responses of fil-
ters designed using each method. We will
constrain ourselves to filters with odd
numbers of taps so that the convolved
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Fig 16.B1—LPF frequency response, rectangular window (A). LPF frequency
response, Blackman window (B). LPF frequency response, convolution of filters
shown in A and B (C).

impulse response will also have an odd
number of taps.

Using your favorite filter-design soft-
ware, first design a LPF by the Fourier
method with a length of 31, using a rectan-
gular window, and a cut-off frequency
(–6 dB point) of 0.25fs. Its frequency re-
sponse is shown in Fig 16.B1A. We pro-
duce a second filter having the same
cut-off frequency of 0.25fs using a
Blackman window, whose response is
shown in Fig 16.B1B. The response of the
filter formed by the convolution of the two
filters is shown in Fig 16.B1C, along with
that of a standard Fourier-designed LPF.
The final filter has length 61 taps. Notice
that the filter obtains the benefits of the
rectangular window’s sharp transition re-
gion and those of the Blackman window’s
good ultimate attenuation.

A second advantage may be garnered
by convolving two different filters in that
their responses may be governed sepa-
rately, while producing desired changes
in frequency (or phase) response. A good
example of this arises when it is desired to
alter the audio response of an SSB trans-
mitter (or receiver), but keep the ultimate
attenuation characteristics the same. A
long BPF with excellent transition proper-
ties may be convolved with a much shorter
filter that is manipulated to provide the
desired passband response.

FIR filters used in Amateur Radio trans-
ceivers must usually have at least 60 dB
ultimate attenuation. This generally re-
quires at least 63 taps. As our second FIR
filter variation, let’s consider a case
wherein we want to customize an IF-DSP
transmitter’s frequency response without
impacting opposite-sideband rejection.
We will use a 99-tap BPF in each leg of a
Hilbert transformer (as part of an SSB
modulator) whose response is convolved
with that of a 31-tap filter describing the
variation in frequency response we want.
The 99-tap fixed filter has the frequency
response shown in Fig 16.B2A. The 31-
tap filter has been designed using Fourier
methods to have a 6 dB/octave rise in its
frequency response, as shown in Fig
16.B2B.

The frequency response of the convolu-
tion of the two filters’ impulse responses
is shown in Fig 16.B2C. It is important to
note that the net response is that of the
product of the two filters’ frequency re-
sponses; that is, if H1(ω) and H2(ω) are
the two frequency response functions, the
final response is simply:

)  ω(H)  ω(H)  ω(H 21composite = (B1)
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Fig 16.B2—BPF for SSB use, L = 99 (A).
LPF having rising frequency response,
L = 31 (B). Frequency response of
convolution of filters shown in A and B
(C).
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PROJECT C: ANALYTIC FILTER PAIR GENERATION

Frequency-translation properties of
complex multiplication work just as well
on the responses of filters as they do on
real signals. In this project, we will ex-
plore just how these properties are applied
to the generation of analytic filter pairs.
Analytic filter pairs are used to produce

complex signals from real signals for the
purposes of modulation, demodulation,
and other processing algorithms.

An analytic filter pair consists of two
filters (usually BPFs) whose frequency
responses are identical, but whose phase
responses differ at every frequency by 90°.
These filters are used in legs of a Hilbert
transformer, as shown in Fig 16.C1. The
creation of these filters begins with the de-
sign of a LPF prototype having the desired
passband, transition-band, and stopband
characteristics. Such a prototype filter, as
might suffice for an SSB receiver, would
have a frequency response such as that
shown in Fig 16.C2A.

The filter’s impulse response (L = 63) is
then multiplied by a sine-wave sequence
(also L = 63) whose frequency represents
the amount of upward translation applied
to the LPF’s frequency response. If the
sine wave is high enough in frequency, the

resulting impulse response is a BPF filter
centered on ω0, the sine wave’s frequency.
See Fig 16.C2B. Likewise, the prototype
LPF’s impulse response is multiplied by a
cosine-wave sequence to produce a filter
having the same frequency response as
that of the sine-wave filter, but with a
phase response differing by 90°. Sample-
by-sample multiplication occurs accord-
ing to Eq 21 in the main text.

When an analytic filter pair is used in a
demodulator, IF shift may be included by
varying the frequency of w0. In combina-
tion with various filter BWs, IF shift is
useful in avoiding interference by modi-
fying a receiver’s frequency response.
Further modification may be obtained by
convolving each filter in the analytic pair
with a filter having the desired character-
istic. The phase relation between the fil-
ters in the pair will not be altered by the
convolution.

Fig 16.C1—Hilbert transformer using
an analytic filter pair.

Fig 16.C2—LPF prototype frequency response (A). BPF frequency response of processed impulse response (B).

PROJECT D: NEWTON’S METHOD FOR SQUARE ROOTS IN QUICKBASIC 4.5

In this example of Newton’s method, a
generic BASIC program is given that com-
putes the root of a 32-bit integer to within an
error margin, DERROR. The root of a 32-bit
integer is naturally a 16-bit integer. Emphasis
is placed in what follows on speed of execu-
tion and accuracy as influenced by truncation
and rounding. 32-bit integer variables are
defined DEFLONG, 16-bit integers are
DEFINT. Integer math in QuickBasic is much
faster than floating-point math.

As described in the AM Demodulation
section in the main text, Newton’s method
iteratively converges on a result. Experi-
ence has shown that three to six iterations
are necessary to obtain best accuracy for a
16-bit result, but here we execute as many
iterations as necessary to obtain accuracy
DERROR, initially defined to be one least-
significant bit or 1/(215) ≈ 30 × 10-6. Note
that if DERROR is small or zero, conver-
gence may never be reached because of

quantization noise. A loop counter, K, is
established to count iterations. The pro-
gram displays on the computer screen the
argument, its root and the iteration count.
Users may readily modify the program to
use random numbers as arguments to time
the number of roots per second it calculates.

The program is included in the 2002
ARRL Handbook companion software. The
software is available for free download
from ARRLWeb at: www.arrl.org/notes.

PROJECT E: A FAST SQUARE-ROOT ALGORITHM USING A SMALL LOOP-UP TABLE
This project is a machine-language ex-

ample of a fast square-root algorithm. The
target processor in this case is the
Motorola MC68HC16Z1, a 16-bit, fixed-

point DSP. The method is depicted in
Fig 16.16 in the main text. Like the pre-
vious project, this is included in the
2002 ARRL Handbook companion soft-

ware. The software is available for free
download from ARRLWeb at www.arrl.
org/notes.
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Fig 16.F1—High-performance DDS schematic diagram.

PROJECT F: A HIGH-PERFORMANCE DDS
A DDS is described below that is used

as a reference for a PLL. See Fig 16.F1.
This DDS is designed to cover a small
range of frequencies near 1 MHz. A crys-
tal-oscillator clock at 19.2 MHz is applied
to both the DDS, a Harris/Intersil
HSP45106, and the DAC, a Harris/Intersil
HI5780. Making the DDS output fre-
quency a small fraction of the clock fre-
quency makes it relatively easy to obtain
excellent spurious performance. PM spurs
are limited to –90 dBc and AM spurs to
about –60 dBc. If the output is not squared
at the input to a PLL chip, an external
Schmitt-trigger squaring stage may be

added, eliminating virtually all the AM
spurs prior to the LPF.

The LPF at the output of the circuit is
a 4-section elliptical type. Design im-
pedance is 100 Ω. This filter cuts out
many high-frequency spurs and stops
clock feed-through. The DAC’s 10 input
lines are fed from the 10 most-significant
bits of one of the DDS’s outputs. The
HSP45106 has two 16-bit outputs (sine
and cosine) to accommodate the needs of
complex-mixer designs, but only one is
being used here.

The DDS chip itself is programmed
using a 16-bit parallel interface. This is

transformed into a serial interface by shift
registers U5 and U6, divider U3 and
counter U4. Each time the frequency is
changed, an internal 32-bit phase-incre-
ment accumulator must be updated. The
phase increment is just fout/fclk, expressed
as a 32-bit, unsigned fraction. This value
is written into the chip in two 16-bit seg-
ments, most-significant bit of the most-
significant word first.

During serial programming, a data bit is
placed on the DATA line by the host mi-
croprocessor; the clock line is toggled
high, then low to shift the bit into the shift
registers. After the first 16 bits have been
shifted, they are written into the DDS by
toggling the ENABLE line. Counter U4
supplies the necessary write pulse with
appropriate timing. The remaining 16 bits
are then shifted and written to the chip,
completing the operation.

An example of the output spectrum of this
circuit is shown in Fig 16.F2. Components
are surface-mount types and care must be
exercised during construction. See Ulbing’s
article in the Bibliography for information
on surface-mount soldering techniques.

Fig 16.F2—Typical output spectrum of
DDS.
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Fig 16.G1—A 4-bit adder schematic diagram.

PROJECT G: A FAST BINARY MULTIPLIER IN HIGH-SPEED CMOS LOGIC
In this project, a fast 4-bit binary multi-

plier is described that may be constructed
from ‘HC-series logic gates or program-
med into an FPGA. Two variations are
explored: one without pipelining, and one
with pipelining. Pipelining is employed
where the propagation delays of gates
limit throughput.

As seen in Fig 16.45 in the main text,
a 4-bit multiplication may be broken
into several 4-bit additions. In our circuit,
4-bit adders are used to add rows of bits in
the summation, each one producing a
single output bit. The diagram of a fast,
4-bit adder with look-ahead carry is shown
in Fig 16.G1.

In this multiplier, 4-bit adders are used
to add adjacent rows of bits in the tradi-
tional way. A multiplier connected this
way is shown in Fig 16.G2. Not all bits in
each addend have mates in the other, so
4-bit adders suffice. In the case where
execution speed exceeds the reciprocal of
the total propagation delay, pipelining
must be employed to avoid error.

To use pipelining, we place storage
registers between the stages of addition
and one interim result is held by each stage
at each clock time. See Fig 16.G3. The
result is the same, but appears only after a
latency of three clock times. When maxi-
mum gate delays are well known, this
approach also yields more predictable
performance because the latency is inde-
pendent of the input data.
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Fig 16.G2—Complete 4-bit multiplier, no pipelining.
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Fig 16.G3—Complete 4-bit multiplier with pipelining.
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