Chapter 7

Component Data and References

Component Data

None of us has the time or space to collect all the literature available on the many different commercially available manufactured components. Even if we did, the task of keeping track of new and obsolete devices would surely be formidable. Fortunately, amateurs tend to use a limited number of component types. This section, by Douglas Heacock, AAØMS, provides information on the components most often used by the Amateur Radio experimenter.

COMPONENT VALUES

Throughout this Handbook, composition resistors and small-value capacitors are specified in terms of a system of "preferred values." This system allows manufacturers to supply these components in a standard set of values, which, when considered along with component tolerances, satisfy the vast majority of circuit requirements.

The preferred values are based on a roughly logarithmic scale of numbers between 1 and 10. One decade of these values for three common tolerance ratings is shown in **Table 7.1**.

Table 7.1 represents the two significant digits in a resistor or capacitor value. Multiply these numbers by multiples of ten to get other standard values. For example, 22 pF, 2.2 μ F, 220 μ F, and 2200 μ F are all standard capacitance values, available in all three tolerances. Standard resistor values include 3.9 Ω , 390 Ω , 39000 Ω and 3.9 M Ω in ±5% and ±10% tolerances. All standard resistance values, from less than 1 Ω to about 5 M Ω are based on this table.

Each value is greater than the next smaller value by a multiplier factor

that depends on the 1 tolerance. For $\pm 5\%$ devices, each value is approximately 1.1 times the next lower one. For $\pm 10\%$ devices, the multiplier is 1.21, and for $\pm 20\%$ devices, the multiplier is 1.47. The resultant values are rounded to make up the series.

Tolerance refers to a range of acceptable values above and below the specified component value. For example, a 4700- Ω resistor rated for ±20% tolerance can have an actual value anywhere between 3760 Ω

	74						
Table							
Standard Values for Resistors and							
Capac	citors						
±5%	±10%	±20%					
1.0	1.0	1.0					
1.1							
1.2	1.2						
1.3							
1.5	1.5	1.5					
1.6							
1.8	1.8						
2.0							
2.2	2.2	2.2					
2.4	~ -						
2.7	2.7						
3.0							
3.3	3.3	3.3					
3.6 3.9	3.9						
3.9 4.3	3.9						
4.3	4.7	4.7					
5.1	4.7	4.7					
5.6	5.6						
6.2	0.0						
6.8	6.8	6.8					
7.5	0.0	0.0					
8.2	8.2						
9.1	-						
10.0	10.0	10.0					

and 5640 Ω . You may always substitute a closer-tolerance device for one with a wider tolerance. For projects in this Handbook, assume a 10% tolerance if none is specified.

COMPONENT MARKINGS

The values, tolerances or types of most small components are typically marked with a color code or an alphanumeric code according to standards agreed upon by component manufacturers. The Electronic Industries Alliance (EIA) is a US agency that sets standards for electronic components, testing procedures, performance and device markings. The EIA cooperates with other standards agencies such as the International Electrotechnical Commission (IEC), a worldwide standards agency. You can often find published EIA standards in the engineering library of a college or university.

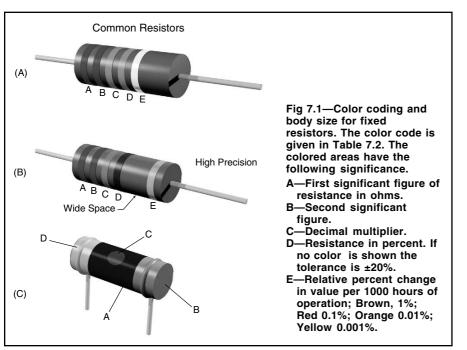
The standard EIA color code is used to identify a variety of electronic components. Most resistors are marked with color bands according to the code, shown in **Table 7.2**. Some types of capacitors and inductors are also marked using this color code.

Resistor Markings

Carbon-composition, carbon-film, and metal-film resistors are typically manufactured in roughly cylindrical cases with axial leads. They are marked with color bands as shown in **Fig 7.1A**. The first two bands represent the two significant digits of the component value, the third band represents the multiplier, and the fourth band (if there is one) represents the tolerance. Some units

Table 7.2Resistor-Capacitor Color Codes

Color	Significant Figure	Decimal Multiplier	Tolerance (%)	Voltage Rating*	
.			(70)	nating	
Black	0	1	-	-	
Brown	1	10	1*	100	
Red	2	100	2*	200	
Orange	3	1,000	3*	300	
Yellow	4	10,000	4*	400	
Green	5	100,000	5*	500	
Blue	6	1,000,000	6*	600	
Violet	7	10,000,000	7*	700	
Gray	8	100,000,000	8*	800	
White	9	1,000,000,000	9*	900	
Gold	-	0.1	5	1000	
Silver	-	0.01	10	2000	
No color	-	-	20	500	
*Applies to	capacitors only				


are marked with a fifth band that represents the percentage of resistance change per 1000 hours of oper-ation: brown = 1%; red = 0.1%; orange = 0.01%; and yellow = 0.001%. Precision resistors (EIA Std RS-279,Fig 7.1B) and some mil-spec (MIL STD-1285A) resistors also use five color bands. On precision resistors, the first *three* bands are used for significant figures and the space between the fourth and fifth bands is wider than the others, to identify the tolerance band. On the military resistors, the fifth band indicates reliability information, such as failure rate.

For example, if a resistor of the type shown in Fig 7.1A is marked with A = red; B = red; C = orange; D = no color, the significant figures are 2 and 2, the multiplier is 1000, and the tolerance is $\pm 20\%$. The device is a 22,000- Ω , $\pm 20\%$ unit.

Some resistors are made with radial leads (Fig 7.1C) and are marked with a color code in a slightly different scheme. For example, a resistor as shown in Fig 7.1C is marked as follows: A (body) = blue; B (end) = gray; C (dot) = red; D (end) = gold. The significant figures are 6 and 8, the multiplier is 100, and the tolerance is $\pm 5\%$; 6800 Ω with $\pm 5\%$ tolerance.

Resistor Power Ratings

Carbon-composition and metal-film resistors are available in standard power ratings of $^{1}/_{10}$, $^{1}/_{8}$, $^{1}/_{4}$, $^{1}/_{2}$, 1 and 2 W. The $^{1}/_{10-}$ and $^{1}/_{8-}$ W sizes are relatively expensive and difficult to purchase in small

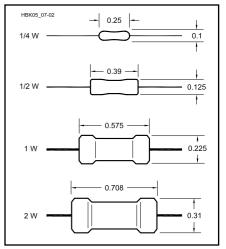


Fig 7.2—Typical carbon-composition resistor sizes.

quantities. They are used only where miniaturization is essential. The $^{1}/_{4}$, $^{1}/_{2}$, 1, and 2-W composition resistor packages are drawn to scale in **Fig 7.2.** Metal-film resistors are typically slightly smaller than carbon-composition units of the same power rating. Film resistors can usually be identified by a glossy enamel coating and an hourglass profile. Carbon-film and metal-film are the most commonly available resistors today, having largely replaced the less-stable carbon-composition resistors.

Capacitor Markings

A variety of systems for capacitor markings are in use. Some use color bands, some use combinations of numbers and letters. Capacitors may be marked with their value, tolerance, temperature characteristics, voltage ratings or some subset of these specifications. **Fig 7.3** shows several popular capacitor marking systems.

In addition to the value, ceramic disk capacitors may be marked with an alphanumeric code signifying temperature characteristics. **Table 7.3** explains the EIA code for ceramic-disk capacitor temperature characteristics. The code is made up of one character from each column in the table. For example, a capacitor marked Z5U is suitable for use between +10 and +85°C, with a maximum change in capacitance of -56% or +22%.

Capacitors with highly predictable temperature coefficients of capacitance are sometimes used in oscillators that must be frequency stable with temperature. If an application called for a temperature coefficient of -750 ppm/°C (N750), a capacitor marked U2J would be suitable. The older industry code for these ratings is being replaced with the EIA code shown

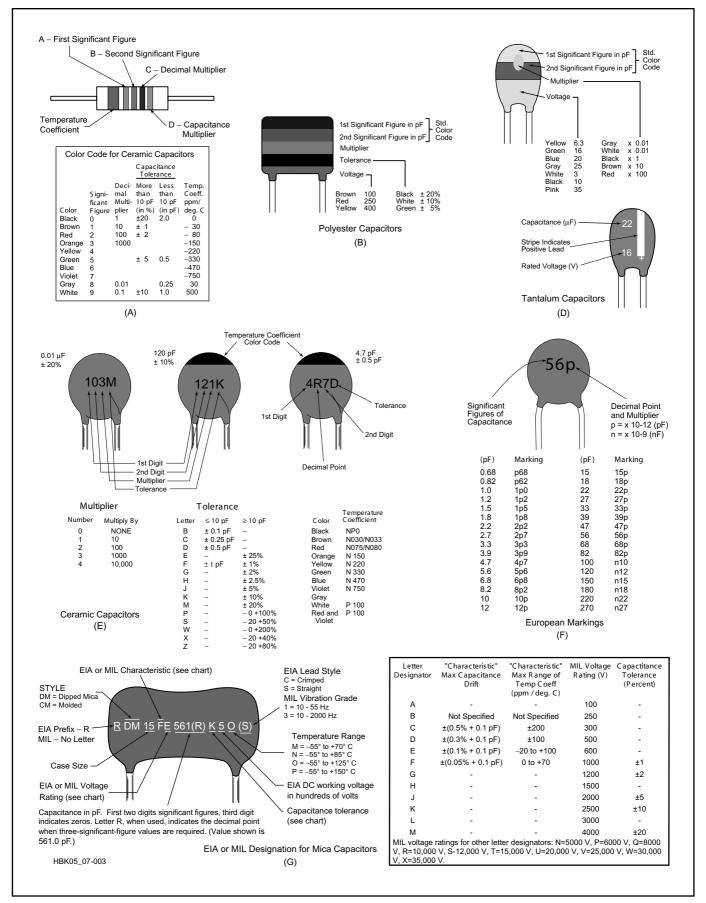


Fig 7.3—Capacitors can be identified by color codes and markings. Shown here are identifying markings found on many common capacitor types.

in **Table 7.4**. NPO (that is, N-P-zero) means "negative, positive, zero." It is a characteristic often specified for RF circuits requiring temperature stability, such as VFOs. A capacitor of the proper value marked COG is a suitable replacement for an NPO unit.

Some capacitors, such as dipped silvermica units, have a letter designating the capacitance tolerance. These letters are deciphered in **Table 7.5**.

Surface-Mount Resistor and Capacitor Markings

Many different types of electronic components, both active and passive, are now available in surface-mount packages. These are commonly known as *chip* resistors and capacitors. The very small size of these components leaves little space for marking with conventional codes, so brief alphanumeric codes are used to convey the most information in the smallest possible space.

Surface-mount resistors are typically marked with a three- or four-digit value code and a character indicating tolerance. The nominal resistance, expressed in ohms, is identified by three digits for 2% (and greater) tolerance devices. The first two digits represent the significant figures; the last digit specifies the multiplier as the exponent of ten. (It may be easier to remember the multiplier as the number of zeros you must add to the significant figures.) For values less than 100 Ω , the letter R is substituted for one of the significant digits and represents a decimal point. Here are some examples:

Resistor Code 101 224	Value 10 and 1 zero = 100Ω 22 and 4 zeros = $220,000 \Omega$
1R0	1.0 and no zeros = 1 Ω
22R	22.0 and no zeros = 22 Ω
R10	0.1 and no zeros = 0.1 Ω

If the tolerance of the unit is narrower than $\pm 2\%$, the code used is a four-digit code where the first three digits are the significant figures and the last is the multiplier. The letter R is used in the same way to represent a decimal point. For example, 1001 indicates a 1000- Ω unit, and 22R0 indicates a 22- Ω unit. The tolerance rating for a surface-mount resistor is expressed with a single character at the end of the numeric value code in **Table 7.6**.

Surface-mount capacitors are marked with a two-character code consisting of a letter indicating the significant digits (see **Table 7.7**) and a number indicating the multiplier (see **Table 7.8**). The code rep-

Table 7.3

EIA Temperature Characteristic Codes for Ceramic Disc Capacitors

Minimum temperature X –55°C Y –30°C Z +10°C	Maximum temperature 2 +45°C 4 +65°C 5 +85°C 6 +105°C 7 +125°C	Maximum capacitance change over temperature range A ±1.0% B ±1.5% C ±2.2% D ±3.3% E ±4.7% F ±7.5% P ±10% R ±15% S ±22% T -33%, +22% U -56%, +22%
		U -56%, +22% V -82%, +22%

Table 7.4EIA Capacitor Temperature-Coefficient Codes

Industry	EIA
NP0	COG
N033	S1G
N075	U1G
N150	P2G
N220	R2G
Industry	<i>EIA</i>
N330	S2H
N470	U2J
N1500	P3K
N2200	R3L

Table 7.5

EIA Capacitor Tolerance Codes

Code	Tolerance
Coue	TOIETAILCE
С	±1/4 pF
D	±1/2 pF
F	±1 pF or ±1%
G	±2 pF or ±2%
J	±5%
К	±10%
L	±15%
Μ	±20%
Ν	±30%
P or GMV*	-0%, +100%
W	-20%, +40%
Y	-20%, +50%
Z	-20%, +80%

*GMV = guaranteed minimum value.

Table 7.6

SMT Resistor Tolerance Codes

Letter	Tolerance
D	±0.5%
F	±1.0%
G	±2.0%
J	±5.0%

resents the capacitance in picofarads. For example, a chip capacitor marked "A4" would have a capacitance of 10,000 pF, or 0.01 μ F. A unit marked "N1" would be a 33-pF capacitor. If there is sufficient space on the device package, a tolerance code

Table 7.7 SMT Capacitor Significant Figures Code

Character	Significant Figures	Character	Significant Figures
А	1.0	Т	5.1
В	1.1	Ú	5.6
С	1.2	V	6.2
D	1.3	w	6.8
E	1.5	X	7.5
F	1.6	Y	8.2
G	1.8	Z	9.1
Н	2.0	a	2.5
J	2.2	b	3.5
K	2.4	d	4.0
L	2.7	e	4.5
Μ	3.0	f	5.0
Ν	3.3	m	6.0
Р	3.6	n	7.0
Q	3.9	t	8.0
R	4.3	У	9.0
S	4.7		

Table 7.8

SMT Capacitor Multiplier Codes

Numeric Character	Decimal Multiplier
0	1
1	10
2	100
3	1,000
4	10,000
5	100,000
6	1,000,000
7	10,000,000
8	100,000,000
9	0.1

Table 7.9Powdered-Iron Toroidal Cores: Magnetic Properties

Inductance and Turns Formula

The turns required for a given inductance or inductance for a given number of turns can be calculated from:

$$N = 100 \sqrt{\frac{L}{A_L}} \qquad L = A_L \left(\frac{N^2}{10,000}\right)$$

where N = number of turns; L = desired inductance (μ H); A_L = inductance index (μ H per 100 turns).*

AL Valu	es					Mix					
Size	26**	3	15	1	2	7	6	10	12	17	0
T-12	na	60	50	48	20	18	17	12	7.5	7.5	3.0
T-16	145	61	55	44	22	na	19	13	8.0	8.0	3.0
T-20	180	76	65	52	27	24	22	16	10.0	10.0	3.5
T-25	235	100	85	70	34	29	27	19	12.0	12.0	4.5
T-30	325	140	93	85	43	37	36	25	16.0	16.0	6.0
T-37	275	120	90	80	40	32	30	25	15.0	15.0	4.9
T-44	360	180	160	105	52	46	42	33	18.5	18.5	6.5
T-50	320	175	135	100	49	43	40	31	18.0	18.0	6.4
T-68	420	195	180	115	57	52	47	32	21.0	21.0	7.5
T-80	450	180	170	115	55	50	45	32	22.0	22.0	8.5
T-94	590	248	200	160	84	na	70	58	32.0	na	10.6
T-106	900	450	345	325	135	133	116	na	na	na	19.0
T-130	785	350	250	200	110	103	96	na	na	na	15.0
T-157	870	420	360	320	140	na	115	na	na	na	na
T-184	1640	720	na	500	240	na	195	na	na	na	na
T-200	895	425	na	250	120	105	100	na	na	na	na

*The units of AL (μH per 100 turns) are an industry standard; however, to get a correct result use AL only in the formula above. **Mix-26 is similar to the older Mix-41, but can provide an extended frequency range.

Magnetic Properties Iron Powder Cores

Mix	Color	Material	μ	Temp stability (ppm/°C)	f (MHz)	Notes
26	Yellow/white	Hydrogen reduced	75	825	dc - 1	Used for EMI filters and dc chokes
3	Gray	Carbonyl HP	35	370	0.05 - 0.50	Excellent stability, good Q for lower frequencies
15	Red/white	Carbonyl GS6	25	190	0.10 - 2	Excellent stability, good Q
1	Blue	Carbonyl C	20	280	0.50 - 5	Similar to Mix-3, but better stability
2	Red	Carbonyl E	10	95	2 - 30	High Q material
7	White	Carbonyl TH	9	30	3 - 35	Similar to Mix-2 and Mix-6, but better temperature stability
6	Yellow	Carbonyl SF	8	35	10 - 50	Very good Q and temp. stability for 20-50 MHz
10	Black	Powdered iron W	6	150	30 - 100	Good Q and stability for 40 - 100 MHz
12	Green/white	Synthetic oxide	4	170	50 - 200	Good Q, moderate temperature stability
17	Blue/yellow	Carbonyl	4	50	40 - 180	Similar to Mix-12, better temperature stability, Q drops about 10% above 50 MHz, 20% above 100 MHz
0	Tan	phenolic	1	0	100 - 300	Inductance may vary greatly with winding technique

Courtesy of Amidon Assoc and Micrometals

Note: Color codes hold only for cores manufactured by Micrometals, which makes the cores sold by most Amateur Radio distributors.

may be included (see Fig 7.3E for tolerance codes). Surface-mount capacitors can be very small; you may need a magnifying glass to read the markings.

INDUCTORS AND CORE MATERIALS

Inductors, both fixed and variable, are available in a wide variety of types and packages, and many offer few clues as to their values. Some coils and chokes are marked with the EIA color code shown in Table 7.2. See **Fig 7.4** for another marking system for tubular encapsulated RF chokes.

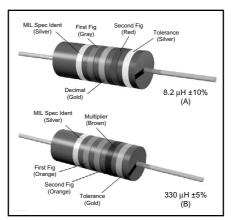


Fig 7.4—Color coding for tubular encapsulated RF chokes. At A, an example of the coding for an $8.2-\mu$ H choke is given. At B, the color bands for a 330- μ H inductor are illustrated. The color code is given in Table 7.2.

T-12-10

Powdered-Iron Toroidal Cores: Dimensions

Red E Cores—500 kHz to 30 MHz (μ = 10)						
No.	OD (in)	ID (in)	H (in)			
T-200-2	2.00	1.25	0.55			
T-94-2	0.94	0.56	0.31			
T-80-2	0.80	0.50	0.25			
T-68-2	0.68	0.37	0.19			
T-50-2	0.50	0.30	0.19			
T-37-2	0.37	0.21	0.12			
T-25-2	0.25	0.12	0.09			
T-12-2	0.125	0.06	0.05			
Black W Co	ores—30 MH	z to 200 M	Hz (μ=6)			
No.	OD (In)	ID (In)	H (In)			
T-50-10	0.50	0.30	0.19			
T-37-10	0.37	0.21	0.12			
T-25-10	0.25	0.12	0.09			

Yellow SF Cores-10 MHz to 90 MHz (µ=8)

0.06

0 125

No.	OD (In)	ID (In)	H (In)
T-94-6	0.94	0.56	0.31
T-80-6	0.80	0.50	0.25
T-68-6	0.68	0.37	0.19
T-50-6	0.50	0.30	0.19
T-26-6	0.25	0.12	0.09
T-12-6	0.125	0.06	0.05

Number of Turns vs Wire Size and Core Size

Approximate maximum number of turns—single layer wound—enameled wire.

0.05

Wire Size	T-200	T-130	T-106	T-94	T-80	T-68	T-50	T-37	T-25	T-12
10	33	20	12	12	10	6	4	1		
12	43	25	16	16	14	9	6	3		
14	54	32	21	21	18	13	8	5	1	
16	69	41	28	28	24	17	13	7	2	
18	88	53	37	37	32	23	18	10	4	1
20	111	67	47	47	41	29	23	14	6	1
22	140	86	60	60	53	38	30	19	9	2
24	177	109	77	77	67	49	39	25	13	4
26	223	137	97	97	85	63	50	33	17	7
28	281	173	123	123	108	80	64	42	23	9
30	355	217	154	154	136	101	81	54	29	13
32	439	272	194	194	171	127	103	68	38	17
34	557	346	247	247	218	162	132	88	49	23
36	683	424	304	304	268	199	162	108	62	30
38	875	544	389	389	344	256	209	140	80	39
40	1103	687	492	492	434	324	264	178	102	51

Actual number of turns may differ from above figures according to winding techniques, especially when using the larger size wires. Chart prepared by Michel J. Gordon, Jr, WB9FHC.

Courtesy of Amidon Assoc.

Most powdered-iron toroid cores that we amateurs use are manufactured by Micrometals, who uses paint to identify the material used in the core. The Micrometals color code is part of **Table 7.9**. **Table 7.10** gives the physical characteristics of powdered-iron toroids. Ferrite cores are not typically painted, so identification is more difficult. See **Table 7.11** for information about ferrite cores.

TRANSFORMERS

Many transformers, including power transformers, IF transformers and audio transformers, are made to be installed on PC boards, and have terminals designed for that purpose. Some transformers are manufactured with wire leads that are color-coded to identify each connection. When colored wire leads are present, the color codes in **Tables 7.12**, **7.13** and **7.14**

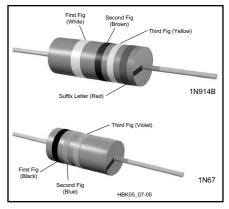


Fig 7.5—Color coding for semi-conductor diodes. At A, the cathode is identified by the double-width first band. At B, the bands are grouped toward the cathode. Two-figure designations are signified by a black first band. The color code is given in Table 7.2. The suffix-letter code is A—Brown, B—red, C—orange, D—yellow, E—green, F—blue. The 1N prefix is understood.

usually apply.

In addition, many miniature IF transformers are tuned with slugs that are color-coded to signify their application. **Table 7.15** lists application vs slug color.

SEMICONDUCTORS

Most semiconductor devices are clearly marked with the part number and in some cases, a manufacturer's date code as well. Identification of semiconductors can be difficult, however, when the parts are "house-marked" (marked with codes used by an equipment manufacturer instead of the standard part numbers). In such cases, it is often possible to find the standard equivalent or a suitable replacement by using one of the semiconductor cross-reference directories available from various replacement-parts distributors. If you look up the house number and find the recommended replacement part, you can often find other standard parts that are replaced by that same part.

Diodes

Most diodes are marked with a part number and some means of identifying which lead is the cathode. Some diodes are marked with a color-band code (see **Fig 7.5**). Important diode parameters include maximum forward current, maximum peak inverse voltage (PIV) and the power-handling capacity.

Transistors

Some important parameters for transistor selection are voltage and current limits, power-handling capability, beta or

Table 7.11 Ferrite Toroids: A, Chart (mH per 1000 turns) Enameled Wire

Core	63/67-Mix	61-Mix	43-Mix	77 (72)-Mix	J (75)-Mix
Size	μ = 40	m = 125	μ = 850	μ = 2000	μ = 5000
FT-23	7.9	24.8	188.0	396	980
FT-37	19.7	55.3	420.0	884	2196
FT-50	22.0	68.0	523.0	1100	2715
FT-82	22.4	73.3	557.0	1170	NA
FT-114	25.4	79.3	603.0	1270	3170

Number of turns = 1000 $\sqrt{\text{desired L}(\text{mH}) \div \text{A}_{\text{L}} \text{ value (above)}}$

Ferrite Magnetic Properties

Property	Unit	63/67-Mix	61-Mix	43-Mix	77 (72)-Mix	J (75)-Mix
Initial perm.	(μ _i)	40	125	850	2000	5000
Max. perm. Saturation flux		125	450	3000	6000	8000
density @ 10 oer	Gauss	1850	2350	2750	4600	3900
Residual flux						
density	Gauss	750	1200	1200	1150	1250
Curie temp.	°C	450	350	130	200	140
Vol. resistivity	ohm/cm	1×10 ⁸	1×10 ⁸	1×10 ⁵	1×10 ²	5×10 ²
Resonant circuit						
frequency	MHz	15-25	0.2-10	0.01-1	0.001-1	0.001-1
Specific gravity		4.7	4.7	4.5	4.8	4.8
	1					
Loss	μ _i Q	110×10 ⁻⁶	32×10 ⁻⁶	120×10 ⁻⁶	4.5×10 ⁻⁶	15×10 ⁻⁶
factor		@25 MHz	@2.5 MHz	@1 MHz	@0.1 MHz	@0.1 MHz
Coercive force	Oer	2.40	1.60	0.30	0.22	0.16
Temp. Coef.	%/°C					
of initial perm.	(20°-70°)	0.10	0.15	1.0	0.60	0.90

Ferrite Toroids—Physical Properties

Core						.,	_	
Size	OD	ID	Height	A _e	l _e	V _e	A_S	A_W
FT-23	0.230	0.120	0.060	0.00330	0.529	0.00174	0.1264	0.01121
FT-37	0.375	0.187	0.125	0.01175	0.846	0.00994	0.3860	0.02750
FT-50	0.500	0.281	0.188	0.02060	1.190	0.02450	0.7300	0.06200
FT-82	0.825	0.520	0.250	0.03810	2.070	0.07890	1.7000	0.21200
FT-114	1.142	0.750	0.295	0.05810	2.920	0.16950	2.9200	0.43900
OD—Outer diameter (inches) ID—Inner diameter (inches)								

Height (inches)

 A_{W} —Total window area (in)²

 $A_{e}^{"}$ -Effective magnetic cross-sectional area (in)²

Effective magnetic path length (inches)

لَّe-Effective magnetic volume (in)

As-Surface area exposed for cooling (in)²

Courtesy of Amidon Assoc.

Table 7.12 Power-Transformer Wiring Color Codes

Non-tapped primary leads: Tapped primary leads:	Black Comi Tap: Finis
High-voltage plate winding:	Red
Center tap:	Red/y
Rectifier filament winding:	Yello
Center tap:	Yello
Filament winding 1:	Gree
Center tap:	Gree
Filament winding 2:	Brow
Center tap:	Brow
Filament winding 3:	Slate
Center tap:	Slate

Black Common: Black Tap: Black/yellow striped Finish: Black/red striped Red Red/yellow striped Yellow Yellow/blue striped Green Green/yellow striped Brown Brown/yellow striped Slate Slate/yellow striped

Table 7.13

IF Transformer Wiring Color Codes

Plate lead: B+ lead: Grid (or diode) Grid (or diode)	ו:	Re	ue ed reen ack	

Note: If the secondary of the IF transformer is center-tapped, the second diode plate lead is green-and-black striped, and black is used for the center-tap lead.

Table 7.14IF Transformer Slug Color Codes

Frequency	Application	Slug color
455 kHz	1st IF 2nd IF 3rd IF Osc tuning	Yellow White Black Red
10.7 MHz	1st IF 2nd or 3rd IF	Green Orange, Brown or Black

Table 7.15

Audio Transformer Wiring Color Codes

Plate lead of primary B+ lead (plain or center- tapped)	Blue Red
Plate (start) lead on	Brown (or blue
center-tapped primaries	if polarity is not important)
Grid (finish) lead to secondary	Green
Grid return (plain or center tapped)	Black
Grid (start) lead on green	Yellow (or
center tapped secondaries	if polarity not important)

Note: These markings also apply to line-togrid and tube-to-line transformers.

gain characteristics and useful frequency range. The case style may also be an issue; some transistors are available in several different case styles.

Integrated Circuits

Integrated circuits (ICs) come in a variety of packages, including transistor-like metal cans, dual and single in-line packages (DIPs and SIPs), flat-packs and surface-mount packages. Most are marked with a part number and a four-digit manufacturer's date code indicating the year (first two digits) and week (last two digits) that the component was made. ICs are frequently house-marked, and the cross-reference directories mentioned above can be helpful in identification and replacement. Another very useful reference tool for

Table 7.16 **Copper Wire Specifications**

Bare and Enamel-Coated Wire

				<i></i>	~			Current Ca			.
Wire			Enomo	Feet Wire Co	Ohms	nor	por	at	inuous L		Nearest
Size	Diam	4.000		Linear in	•	per Pound	per	700 CM	Onen	Conduit	British SWG
(AWG)	Diam (Mils)	Area (CM¹)		Heavy		Bare	1000 ft 25° C	per Amp ⁴	Open air	or bundles	No.
1	289.3	83694.49	emgre			3.948	0.1239	119.564	a.r.	Danaloo	1
2	257.6	66357.76				4.978	0.1263	94.797			2
3	229.4	5267.36				6.277	0.1971	75.178			4
4	204.3	41738.49				7.918	0.2485	59.626			5
5	181.9	33087.61				9.98	0.3134	47.268			6
6	162.0	26244.00				12.59	0.3952	37.491			7
7	144.3	20822.49				15.87	0.4981	29.746			8
8	128.5	16512.25				20.01	0.6281	23.589			9
9	114.4	13087.36				25.24	0.7925	18.696			11
10	101.9	10383.61				31.82	0.9987	14.834			12
11	90.7	8226.49				40.16	1.2610	11.752			13
12	80.8	6528.64				50.61	1.5880	9.327			13
13	72.0	5184.00				63.73	2.0010	7.406			15
14	64.1	4108.81	15.2	14.8	14.5	80.39	2.5240	5.870	32	17	15
15	57.1	3260.41	17.0	16.6	16.2	101.32	3.1810	4.658	02	17	16
16	50.8	2580.64	19.1	18.6	18.1	128	4.0180	3.687	22	13	17
17	45.3	2052.09	21.4	20.7	20.2	161	5.0540	2.932		10	18
18	40.3	167.09	23.9	23.2	22.5	203.5	6.3860	2.320	16	10	19
19	35.9	1288.81	26.8	25.2	25.1	200.0	8.0460	1.841	10	10	20
20	32.0	107.00	20.0	28.9	27.9	322.7	10.1280	1.463	11	7.5	21
21	28.5	812.25	33.6	32.4	31.3	406.7	12.7700	1.160		7.5	22
22	25.3	640.09	37.6	36.2	34.7	516.3	16.2000	0.914		5	22
23	22.6	510.76	42.0	40.3	38.6	646.8	20.3000	0.730		5	24
24	20.1	404.01	46.9	45.0	42.9	817.7	25.6700	0.577			24
25	17.9	320.41	52.6	50.3	47.8	1031	32.3700	0.458			26
26	15.9	252.81	58.8	56.2	53.2	1307	41.0200	0.361			27
27	14.2	201.64	65.8	62.5	59.2	1639	51.4400	0.288			28
28	12.6	158.76	73.5	69.4	65.8	2081	65.3100	0.227			29
29	11.3	127.69	82.0	76.9	72.5	2587	81.2100	0.182			31
30	10.0	100.00	91.7	86.2	80.6	3306	103.7100	0.143			33
31	8.9	79.21	103.1	95.2	00.0	4170	130.9000	0.113			34
32	8.0	64.00	113.6	105.3		5163	162.0000	0.091			35
33	7.1	50.41	128.2	117.6		6553		0.072			36
34	6.3	39.69	142.9	133.3			261.3000	0.057			37
35	5.6	31.36	161.3	149.3		10537	330.7000	0.045			38
36	5.0	25.00	178.6	166.7			414.8000	0.036			39
37	4.5	20.25	200.0	181.8		16319		0.029			40
38	4.0	16.00	222.2	204.1		20644	648.2000	0.023			10
39	3.5	12.25	256.4	232.6			846.6000	0.018			
40	3.1	9.61	285.7	263.2			1079.2000	0.014			
41	2.8	7.84	322.6	294.1			1323.0000	0.011			
42	2.5	6.25	357.1	333.3			1659.0000	0.009			
43	2.2	4.84	400.0	370.4			2143.0000	0.007			
44	2.0	4.00	454.5	400.0			2593.0000	0.006			
45	1.8	3.10	526.3	465.1			3348.0000	0.004			
46	1.6	2.46	588.2	512.8			4207.0000	0.004			
10	1.0	2.40	000.L	012.0		104000	07.0000	0.004			
Teflon	Coated,	Stranded Wir	е								
(As sup	plied by	Belden Wire a	nd Cable)	r inah?							

(As supplied by Belden Wire and Cable)								
	Turns per Linear inch ²							
UL Style No.								
Size	Strands⁵	1100	1213	1371				
5120	Stranus	1180	1213	13/1				
16	19×29	11.2						
18	19×30	12.7						
20	7×28	14.7	17.2					
20	19×32	14.7	17.2					
22	19×34	16.7	20.0	23.8				
22	7×30	16.7	20.0	23.8				
24	19×36	18.5	22.7	27.8				
24	7×32		22.7	27.8				
26	7×34		25.6	32.3				
28	7×36		28.6	37.0				
30	7×38		31.3	41.7				
32	7×40			47.6				

Notes

¹A circular mil (CM) is a unit of area equal to that of a one-mil-diameter circle (π /4 square mils). The CM area of a wire is the square of the mil diameter. ²Figures given are approximate only; insulation thickness varies with manufac-

turer.

³Maximum wire temperature of 212°F (100°C) with a maximum ambient temperature of 13°F (57°C) as specified by the manufacturer. The National Electrical Code or local building codes may differ.
 ⁴700 CM per ampere is a satisfactory design figure for small transformers, but

values from 500 to 1000 CM are commonly used. The National Electrical Code or local building codes may differ. ⁵Stranded wire construction is given as "count" × "strand size" (AWG).

Table 7.17 Color Code for Hookup Wire

Wire Color	Type of Circuit
Black	Grounds, grounded elements and returns
Brown	Heaters or filaments, off ground
Red	Power Supply B plus
Orange	Screen grids and base 2 of transistors
Yellow	Cathodes and transistor emitters
Green	Control grids, diode plates, and base 1 of
	transistors
Blue	Plates and transistor collectors
Violet	Power supply, minus leads
Gray	Ac power line leads
White	Bias supply, B or C minus, AGC

Note: Wires with tracers are coded in the same manner as solid-color wires, allowing additional circuit identification over solid-color wiring. The body of the wire is white and the color band spirals around the wire lead. When more than one color band is used, the widest band represents the first color.

working with ICs is *IC Master*, a master selection guide that organizes ICs by type, function and certain key parameters. A part number index is included, along with application notes and manufacturer's information for tens of thousands of IC devices. Some of the data from *IC Master* is also available on computer disk.

IC part numbers usually contain a few digits that identify the circuit die or function and several other letters and/or digits that identify the production process, manufacturer and package. For example, a '4066 IC contains four independent SPST switches. Harris (CD74HC4066, CD4066B and CD4066BE). Nation-(MM74HC4066, CD4066BC al and CD4066BM) and Panasonic (MN74HC4066 and MN4066B) all make similar devices (as do many other manufacturers) with slight differences. Among the numbers listed, "CD" (CMOS Digital), "MM" (MOS Monolithic), and "MN" indicate CMOS parts. The number "74" indicates a commercial quality product (for applications from 0°C to 70°C), which is pin compatible with the 74/54 TTL families. "HC" means high-speed CMOS family, which is as fast as the LS TTL family. The "B" suffix, as is CD4066B, indicates a buffered output. This is only a small example of the conventions used in IC part numbers. For more information look at data books from the various manufacturers.

When choosing ICs that are not exact replacements, several operating needs and performance aspects should be considered. First, the replacement power requirements must be met: Some ICs require 5 V dc, others 12 V and some need both positive and negative supplies. Current requirements

Table 7.18

Aluminum Alloy Characteristics

Common Alloy Numbers

Туре	Characteristic						
2024	Good formability, high strength						
5052	Excellent surface finish, excellent corrosion resistance, normally not heat treatable for high strength						
6061	Good machinability, good weldability, can be brittle at high tempers						
7075	Good formability, high strength						
General Us	General Uses						
Туре	Uses						
2024-T3	Chassis boxes, antennas, anything that will be bent or flexed repeatedly						
7075-T3							
6061-T6	Mounting plates, welded assemblies or machined parts						
Common Tempers							

Туре	Characteristics
Т0	Special soft condition
ТЗ	Hard
T6	Very hard, possibly brittle
тххх	Three digit tempers—usually specialized high- strength heat treatments, similar to T6

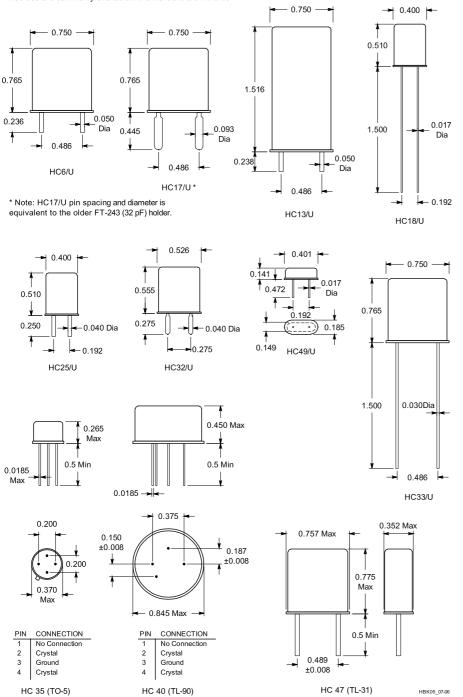
vary among the various IC families, so be sure that sufficient current is available from the power supply. If a replacement IC uses much more current than the device it replaces, a heat sink or blower may be needed to keep it cool.

Next consider how the replacement interacts with its neighboring components. Input capacitance and "fanout" are critical factors in digital circuits. Increased input capacitance may overload the driving circuits. Overload slows circuit operation, which may prevent lines from reaching the "high" condition. Fanout tells how many inputs a device can drive. The fanout of a replacement should be equal to, or greater than, that required in the circuit. Operating speed and propagation delay are also significant. Choose a replacement IC that operates at or above the circuit clock speed. (Be careful: Increased speed can increase EMI and cause other problems.) Some circuits may not function if the propagation delay varies much from the specified part. Look at the Electrical Signals and Components chapter for details of how these operating characteristics relate to circuit performance.

Analog ICs have similar characteristics. Input and output capacities are often defined as how much current an analog IC can "sink" (accept at an input) or "source" (pass to a load). A replacement should be able to source or sink at least as much current as the device it replaces. Analog speed is sometimes listed as bandwidth (as in discrete-component circuits) or slew rate (common in op amps). Each of these quantities should meet or exceed that of the replaced component.

Some ICs are available in different operating temperature ranges. Op amps, for example, are commonly available in three standard ranges:

• Commercial:	0°C to 70°C
 Industrial: 	–25°C to 85°C
• Military:	–55°C to 125°C


In some cases, part numbers reflect the temperature ratings. For example, an LM301A op amp is rated for the commercial temperature range; an LM201A op amp for the industrial range and an LM101A for the military range.

When necessary, you can add interface circuits or buffer amplifiers that improve the input and output capabilities of replacement ICs, but auxiliary circuits cannot improve basic device ratings, such as speed or bandwidth.

An excellent source of information on many common ICs is *The ARRL Electronics Data Book*, which contains detailed data for digital ICs (CMOS and TTL), op amps and other analog ICs.

Table 7.19 Crystal Holders

Note: Solder Seal, Cold Weld, and Resistance Weld sealing methods are commonly available. All dimensions are in inches

* Note: HC17/U pin spacing and diameter is equivalent to the older FT-243 (32 pF) holder.

OTHER SOURCES OF COMPONENT DATA

There are many sources you can consult for detailed component data. Many manufacturers publish data books for the components they make. Many distributors will include data sheets for parts you order if you ask for them. Parts catalogs themselves are often good sources of component data. The following list is representative of some of the data resources available from manufacturers and distributors.

Motorola Small-Signal Transistor Data Motorola RF Device Data Motorola Linear and Interface ICs Signetics: General Purpose/Linear ICs NTE Technical Manual and Cross Reference

TCE SK Replacement Technical Manual and Cross Reference National Semiconductor: Discrete Semiconductor Products Databook CMOS Logic Databook Linear Applications Handbook Linear Application-Specific ICs Databook Operational Amplifiers Databook

THE ARRL TECHNICAL INFORMATION SERVICE (TIS)

The ARRL answers questions of a technical nature for ARRL members and nonmembers alike through the Technical Information Service. Questions may be submitted via e-mail (**tis@arrl.org**); Fax (860-594-0259); or mail (TIS, ARRL, 225 Main St, Newington, CT 06111). The TIS also maintains a home page on ARRLWeb: **www.arrl.org/tis**. This site contains links to several technical areas. **TISfind** — This search engine contains over 2000 providers of products, services and information of interest to radio amateurs. Before contacting TIS for the address of someone who can repair your radio, or sells antennas, or has old manuals or schematics, look in *TISfind*. Instructions and categories are on the *TISfind* page on ARRLWeb at: www.arrl.org/tis/ tisfind.html.

SOURCING SUPPLIERS AND CONTACTS ON THE WEB

If you need to extend your search area beyond the TIS search engine described above, please refer to the Web section of the **Web**, **WiFi**, **Wireless and PC Technology** chapter in this *Handbook*. It contains information on using a search engine on the Web and tips that can help tailor your search.

Table 7.20 Miniature Lamp Guide

HBK05_C	07-07		G G G G scribed by a letter indicatin example S - 8 is "S" shape	ng shape and a numb	per that is an approximation of di	T C	TL State of			
	₽ FSMD F	FSCMD FLANGE BASES	FSCMN	BULB ST		BSC	BAYONET BASE		вми вми	
			SI	WSMN	W SL	МТР	BP	GMD	SPTHD	
Lamp E Legenc	Base BDC	C Bayonet, in I Bayonet, m Bipin Bayonet, si	dexed dual-contact	WEDG FSCMD FSMD GMD MTP PFDC SL SC	E BASES Flanged, midget single-con Flanged, submidget Midget grooved Miniature two-pin Prefocused dual-contact Slide (various sizes) Screw, candelabra	ntact	SMD Screw SMN Screw SPTHD Screw W Wedge WSMN Wedge	r, intermediate r, midget r, miniature r, special thread		
<i>Type</i> PR2 PR3 PR4 PR6 PR7 PR12 13 14 19 27 37 40 43 44 45 46 47 48 950 51 52 53 55 57 63 73 74	$\begin{array}{l} \textit{Bulb} \\ \textit{B-31}/_2 \\ \textit{G-31}/_2 \\ \textit{G-31}/_4 \\ \textit{T-31}/_4 \\ \textit{G-31}/_2 \\ \textit{G-31}/_2 \\ \textit{G-31}/_2 \\ \textit{G-31}/_2 \\ \textit{G-31}/_2 \\ \textit{G-41}/_2 \\ \textit{G-41}/_2 \\ \textit{G-6} \\ \textit{T-13}/_4 \\ \textit{T-13}/_4 \end{array}$	Base FSCMN FSCMN FSCMN FSCMN FSCMN FSCMN FSCMN SMN SMN SMN SMN BMN SMN BMN SMN BMN SMN BMN SMN BMN SMN BMN SMN BMN SMN BMN SMN BMN SMN BMN SMN BMN SMN SMN SMN SMN SMN SMN SMN SMN SMN S	V A 2.38 0.500 3.57 0.500 2.33 0.270 2.47 0.300 5.95 0.500 4.75 0.500 4.75 0.500 6.30 0.150 3.70 0.300 2.47 0.300 2.47 0.300 2.47 0.300 14.4 0.100 4.90 0.300 14.40 0.090 6.30 0.150 2.50 0.500 6.30 0.250 6.30 0.250 6.30 0.250 6.30 0.250 6.30 0.250 7.50 0.220 7.50 0.220 7.50 0.220 7.50 0.220 7.440 0.100 14.40 0.120 7.00 0.630 14.00 0.080 14.00 0.100 <td>15 10 30 15 15 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td> <td>Type 82 85 86 88 93 112 130 131 158 159 161 168 219 222 239 240 259 268 305 307 308 313 323 327 327AS15 328 330 331 334 335 336</td> <td><math display="block">\begin{array}{c} \textit{Bulb}\\ \mathbf{G}\text{-}6\\ \mathbf{T}\text{-}1^{3}/_{4}\\ \mathbf{S}\text{-}8\\ \mathbf{S}\text{-}8\\ \mathbf{T}\text{-}3^{3}/_{2}\\ \mathbf{G}\text{-}3^{1}/_{2}\\ \mathbf{G}\text{-}3^{1}/_{2}\\ \mathbf{T}\text{-}3^{1}/_{4}\\ \mathbf{T}\text{-}3^{1}/_{4}\\ \mathbf{T}\text{-}3^{1}/_{4}\\ \mathbf{T}\text{-}3^{1}/_{4}\\ \mathbf{T}\text{-}3^{1}/_{4}\\ \mathbf{T}\text{-}3^{1}/_{4}\\ \mathbf{S}\text{-}8\\ \mathbf{T}\text{-}1^{3}/_{4}\\ \mathbf{T}\text{-}\mathbf{T}^{3}/_{4}\\ \mathbf{T}\text{-}\mathbf{T}^{3}</math></td> <td>Base BDC WSMN BDC BSC SMN BMN SMN W W W W W W W W W W W W W W W M MN SMN BMN BMN BMN BMN SMN BMN SMN BMN SMD FSCMD FSCMD FSCMD FSCMD FSCMD FSCMD SMD GMD SMD</td> <td>V 6.50 28.00 6.30 6.80 12.80 1.20 6.30 14.00 6.30 14.00 6.30 2.25 6.30 6.30 2.25 6.30 6.30 2.50 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 14.00 14.00</td> <td>$egin{array}{c} A \\ 1.020 \\ 0.040 \\ 0.200 \\ 1.910 \\ 1.040 \\ 0.220 \\ 0.150 \\ 0.150 \\ 0.150 \\ 0.250 \\ 0.250 \\ 0.250 \\ 0.360 \\ 0.250 \\ 0.360 \\ 0.250 \\ 0.350 \\ 0.510 \\ 0.670 \\ 0.510 \\ 0.670 \\ 0.170 \\ 0.190 \\ 0.040 \\ 0.080 \\$</td> <td>Life 500 7K 20K 300 5 5K 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td>	15 10 30 15 15 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Type 82 85 86 88 93 112 130 131 158 159 161 168 219 222 239 240 259 268 305 307 308 313 323 327 327AS15 328 330 331 334 335 336	$\begin{array}{c} \textit{Bulb}\\ \mathbf{G}\text{-}6\\ \mathbf{T}\text{-}1^{3}/_{4}\\ \mathbf{S}\text{-}8\\ \mathbf{S}\text{-}8\\ \mathbf{T}\text{-}3^{3}/_{2}\\ \mathbf{G}\text{-}3^{1}/_{2}\\ \mathbf{G}\text{-}3^{1}/_{2}\\ \mathbf{T}\text{-}3^{1}/_{4}\\ \mathbf{T}\text{-}3^{1}/_{4}\\ \mathbf{T}\text{-}3^{1}/_{4}\\ \mathbf{T}\text{-}3^{1}/_{4}\\ \mathbf{T}\text{-}3^{1}/_{4}\\ \mathbf{T}\text{-}3^{1}/_{4}\\ \mathbf{S}\text{-}8\\ \mathbf{T}\text{-}1^{3}/_{4}\\ \mathbf{T}\text{-}\mathbf{T}^{3}/_{4}\\ \mathbf{T}\text{-}\mathbf{T}^{3}$	Base BDC WSMN BDC BSC SMN BMN SMN W W W W W W W W W W W W W W W M MN SMN BMN BMN BMN BMN SMN BMN SMN BMN SMD FSCMD FSCMD FSCMD FSCMD FSCMD FSCMD SMD GMD SMD	V 6.50 28.00 6.30 6.80 12.80 1.20 6.30 14.00 6.30 14.00 6.30 2.25 6.30 6.30 2.25 6.30 6.30 2.50 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 14.00 14.00	$egin{array}{c} A \\ 1.020 \\ 0.040 \\ 0.200 \\ 1.910 \\ 1.040 \\ 0.220 \\ 0.150 \\ 0.150 \\ 0.150 \\ 0.250 \\ 0.250 \\ 0.250 \\ 0.360 \\ 0.250 \\ 0.360 \\ 0.250 \\ 0.350 \\ 0.510 \\ 0.670 \\ 0.510 \\ 0.670 \\ 0.170 \\ 0.190 \\ 0.040 \\ 0.080 \\ $	Life 500 7K 20K 300 5 5K 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

_		_					_		_			
Туре	Bulb	Base	V	A	Life		Type	Bulb	Base	V	A	Life
337	T-1 ³ / ₄	GMD	6.00	0.200	1K		1866	T-3 ¹ /4	BMN	6.30	0.250	5K
338	T-1 ³ / ₄	FSCMD	2.70	0.060	6K		1869	T-1 ³ /4	WT	10.00	0.014	50K
342	T-1 ³ /4	SMD	6.00	0.040	10K		1891	T-3 ¹ /4	BMN	14.00	0.240	500
344	T-1 ³ / ₄	FSCMD	10.00	0.014	50K		1892	T-3 ¹ / ₄	BMN	14.40	0.120	1K
345	T-1 ³ /4	FSCMD	6.00	0.040	10K		1893	T-3 ¹ / ₄	BMN	14.00	0.330	7.5K
346	T-1 ³ / ₄	GMD	18.00	0.040	10K		1895	G-4 ¹ /2	BMN	14.00	0.270	2K
349	T-1 ³ / ₄	FSCMD	6.30	0.200	5K		2102	T-1 ³ /4	WT	18.00	0.040	10K
370	T-1 ³ /4	FSCMD	18.00	0.040	10K		2107	T-1 ³ /4	WT	10.00	0.040	5K
373	T-1 ³ /4	SMD	14.00	0.080	1.5K		2158	T-1 ³ /4	WT	3.00	0.015	10K
375	T-1 ³ / ₄	FSCMD	3.00	0.015	10K		2162	T-1 ³ /4	WT	14.00	0.100	10K
376	T-1 ³ /4	FSCMD	28.00	0.060	25K		2169	T-1 ³ /4	WT	2.50	0.350	20K
380	T-1 ³ /4	FSCMD	6.30	0.040	20K		2180	T-1 ³ /4	WT	6.30	0.040	20K
381	T-1 ³ /4	FSCMD	6.30	0.200	20K		2181	T-1 ³ /4	WT	6.30	0.200	20K
382	T-1 ³ /4	FSCMD	14.00	0.080	15K		2182	T-1 ³ /4	WT	14.00	0.080	40K
385	T-1 ³ /4	FSCMD	28.00	0.040	10K		2187	T-1 ³ /4	WT	28.00	0.040	7K
386	T-1 ³ /4	GMD	14.00	0.080	15K		2304	T-1 ³ / ₄ T-1 ³ / ₄	BP BP	3.00	0.300	1.5K
387	T-1 ³ /4	FSCMD	28.00	0.040	7K		2307			6.30	0.200	5K
388	T-1 ³ /4	GMD	28.00	0.040	7K		2314	T-1 ³ / ₄ T-1 ³ / ₄	BP BP	28.00	0.050	1K
397	T-1 ³ /4	GMD	10.00	0.040	5K		2316 2324	T-1 ³ /4	BP	18.00 28.00	0.040 0.040	10K 4K
398	T-1 ³ /4	GMD	6.30	0.200	5K		2324 2335	T-1 ³ /4	BP	28.00 14.00	0.040	4K 15K
399	T-1 ³ /4	SMD	28.00	0.040	7K		2335	T-1 ³ /4	BP	6.30	0.080	20K
502	G-4 ¹ / ₂	SMN	5.10	0.150	100		2337	T-1 ³ /4	BP	28.00	0.200	20K 25K
555	T-3 ¹ /4	W	6.30	0.250	3K		2342 3149	T-1 ³ /4	BP	5.00	0.040	25K 5K
656	T-3 ¹ /4	W	28.00	0.060	2.5K				WT	5.00	0.060	60K
680AS15	T-1	WT	5.00	0.060	60K		6833AS15		WT	5.00	0.060	25K
682AS15	T-1	FSMD	5.00	0.060	60K		6838	T-1	WT	28.00	0.080	25K 4K
683AS15	T-1	WT	5.00	0.060	25K		6839	T-1	FSMD	28.00	0.024	4K 4K
685AS15	T-1	FSMD	5.00	0.060	25K		7001	T-1 ³ /4	BP	24.00	0.024	2K
715AS15	T-1	WT	5.00	0.115	40K		7003	T-1 ³ /4	BP	24.00	0.050	2K 2K
715AS25	T-1	WT	5.00	0.115	40K				WT	5.00	0.030	40K
718AS25	T-1 T-3¹/₄	FSMD BMN	5.00	0.115	40K		7265	T-1	BP	5.00	0.060	5K
755			6.30	0.150	20K		7327	T-1³/₄	BP	28.00	0.040	4K
756	T-3 ¹ / ₄	BMN BMN	14.00	0.080	15K		7328	T-1 ³ /4	BP	6.00	0.200	1K
757	T-3 ¹ /4		28.00	0.080	7.5K		7330	T-1 ³ /4	BP	14.00	0.080	1.5K
1034 1073	S-8	BIDC BSC	14.00	0.590	5K 200		7344	T-1 ³ / ₄	BP	10.00	0.000	50K
1130	S-8 S-8	BDC	12.80 6.40	1.800 2.630	200		7349	T-1 ³ /4	BP	6.30	0.200	5K
1133	8-0 RP-11	BSC	6.20	2.030	200		7361	T-1 ³ / ₄	BP	5.00	0.060	25K
1133	S-8	BSC	12.80	1.440	200 1K		7362	T-1 ³ /4	BP	5.00	0.115	40K
1141	RP-11	BSC	12.50	1.980	400		7367	T-1 ³ / ₄	BP	10.00	0.040	5K
1184	RP-11	BDC	5.50	6.250	100		7370	T-1 ³ /4	BP	18.00	0.040	10K
1251	G-6	BSC	28.00	0.230	2K		7371	T-1 ³ / ₄	BP	12.00	0.040	10K
1445	G-3 ¹ /2	BMN	14.40	0.230	2K 2K		7373	T-1 ³ /4	BP	14.00	0.100	10K
1487	T-3 ¹ /4	SMN	14.00	0.200	3K		7374	T-1 ³ /4	BP	28.00	0.040	10K
1488	T-3 ¹ /4	BMN	14.00	0.150	200		7375	T-1 ³ /4	BP	3.00	0.015	10K
1490	T-3 ¹ /4	BMN	3.20	0.160	3K		7376	T-1 ³ /4	BP	28.00	0.065	10K
1493	S-8	BDC	6.50	2.750	100		7377	T-1 ³ /4	BP	6.30	0.075	1K
1619	S-8	BSC	6.70	1.900	500		7380	T-1 ³ /4	BP	6.30	0.040	30K
1630	S-8	PFDC	6.50	2.750	100		7381	T-1 ³ /4	BP	6.30	0.200	20K
1691	S-8	BSC	28.00	0.610	1K		7382	T-1 ³ /4	BP	14.00	0.080	15K
1705	T-1 ³ /4	WT	14.00	0.080	1.5K		7387	T-1 ³ /4	BP	28.00	0.040	7K
1728	T-1 ³ /4	WT	1.35	0.060	ЗK		7410	T-1 ³ /4	BP	14.00	0.080	15K
1730	T-1 ³ /4	WT	6.00	0.040	20K		7839	T-1	BP	28.00	0.025	4K
1738	T-1 ³ /4	WT	2.70	0.060	6K		7876	T-1 ³ /4	BP	28.00	0.060	25K
1762	T-1 ³ /4	WT	28.00	0.040	4K		7931	T-1 ³ /4	BP	1.35	0.060	ЗK
1764	T-1 ³ /4	WT	28.00	0.040	4K		7945	T-1 ³ / ₄	BP	6.00	0.040	20K
1767	T-1 ³ /4	SMD	2.50	0.200	500		7968	T-1 ³ / ₄	BP	2.50	0.200	500
1768	T-1 ³ /4	SMD	6.00	0.200	1K		8099	T-1	BP	18.00	0.020	16K
1775	T-1 ³ /4	SMD	6.30	0.075	1K		8362	T-1 ³ /4	SMD	14.00	0.080	15K
1813	T-3 ¹ /4	BMN	14.40	0.100	1K		8369	T-1 ³ /4	SMD	28.00	0.065	10K
1815	T-3 ¹ / ₄	BMN	14.00	0.200	ЗK							
1816	T-3 ¹ /4	BMN	13.00	0.330	1K							
1818	T-3 ¹ / ₄	BMN	24.00	0.170	250							
1819	T-3 ¹ / ₄	BMN	28.00	0.040	2.5K							
1820	T-3 ¹ / ₄	BMN	28.00	0.100	1K							
1821	T-3 ¹ / ₄	SMN	28.00	0.170	500							
1822	T-3 ¹ / ₄	BMN	36.00	0.100	1K							
1828	T-3 ¹ / ₄	BMN	37.50	0.050	ЗK							
1829	T-3 ¹ / ₄	BMN	28.00	0.070	1K							
1835	T-3 ¹ / ₄	BMN	55.00	0.050	5K							
1847	T-3 ¹ /4	BMN	6.30	0.150	5K							
1850	T-3 ¹ /4	BMN	5.00	0.090	1.5K							
1864	T-3 ¹ / ₄	BMN	28.00	0.170	1.5K	I						

(continued on next page)

Standard Line-Voltage	Lamps			Indicator Lamps	
Туре	/ W	Bulb	Base	Each has a T-2 bulb and a slide base.	
10C7DC 115-12	5 10	C-7	BDC	Type V A Life	
3S6 120, 129		S-6	SC	6PSB 6.00 0.140 20K	
6S6 30, 48		S-6	SC	12PSB 12.00 0.170 12K	
115, 120, 125	·			24PSB 24.00 0.073 10K	
130, 135, 145				28PSB 28.00 0.040 5K	
155 6S6/R 115-125		S-6 (red)	SC	48PSB 48.00 0.050 10K	
6S6/W 115-12		S-6 (white)	SC	60PSB 60.00 0.050 7.5K	
6T4-1/2 120, 130		T-4 ¹ /2	SC	120PSB 120.00 0.025 7.5K	
7C7 115-125		C-7	SC		
7C7/W 115-12		C-7 (white)	SC	Neon Glow Lamps	
10C7 115-125	5 10	`C-Ź	SC	Operating circuit voltage 105-125	
10S6 120		S-6	SC		
10\$6/10 220, 230, 250		S-6	SC	Breakdown Voltage	
6S6DC 30, 120	·	S-6	BDC		ernal
125, 145 10S6/10DC 230, 250		S-6	BDC	Res	sistance
10S6/10DC 230, 250 40S11 N 115-125		S-11	SI	NE-2 65 90 T-2 WT ¹ / ₁₂ 150	k
120MB 120		T-2 ¹ /2	BMN	NE-2A 65 90 T-2 WT ¹ / ₁₅ 100	
120MB/6 120		T-2 ¹ /2	BMN	NE-2D 65 90 T-2 FSCMD ¹ / ₁₂ 100	
120PSB 120		T-2	SL	NE-2E 65 90 T-2 WT ¹ / ₁₂ 100	
120PS 120) 3	T-2	WT	NE-2H 95 135 T-2 WT 1/4 30k	
120PS/6 120) 6	T-2 ¹ / ₂	WT	NE-2J 95 135 T-2 FSCMD 1/4 30k NE-2V 65 90 T-2 WT 1/2 100	
				NE-20 85 90 T-2 WT 72 TO NE-45 65 90 T-4 ¹ / ₂ SC ¹ / ₄ Nor	
				NE-51 65 90 T-3 ¹ / ₄ BMN ¹ / ₂₅ 220	
				NE-51H 95 135 T-3 ¹ / ₄ BMN ¹ / ₇ 47k	
				NE-84 95 135 T-2 SL ¹ / ₄ 30k	
				NE-120PSB 95 95 T-2 SL ¹ / ₄ Nor	ıe

Table 7.21Metal-Oxide Varistor (MOV) Transient Suppressors

Listed by voltage

Type No.	ECG/NTE†† no.	V ac _{RMS}	Maximum Applied Voltage V ac _{Peak}	Maximum Energy (Joules)	Maximum Peak Current (A)	Maximum Power (W)	Maximum Varistor Voltage (V)
V180ZA1	1V115	115	163	1.5	500	0.2	285
V180ZA10	2V115	115	163	10.0	2000	0.45	290
V130PA10A		130	184	10.0	4000	8.0	350
V130PA20A		130	184	20.0	4000	15.0	350
V130LA1	1V130	130	184	1.0	400	0.24	360
V130LA2	1V130	130	184	2.0	400	0.24	360
V130LA10A	2V130	130	184	10.0	2000	0.5	340
V130LA20A	524V13	130	184	20.0	4000	0.85	340
V150PA10A		150	212	10.0	4000	8.0	410
V150PA20A		150	212	20.0	4000	15.0	410
V150LA1	1V150	150	212	1.0	400	0.24	420
V150LA2	1V150	150	212	2.0	400	0.24	420
V150LA10A	524V15	150	212	10.0	2000	0.5	390
V150LA20A	524V15	150	212	20.0	4000	0.85	390
V250PA10A		250	354	10.0	4000	0.85	670
V250PA20A		250	354	20.0	4000	7.0	670
V250PA40A		250	354	40.0	4000	13.0	670
V250LA2	1V250	250	354	2.0	400	0.28	690
V250LA4	1V250	250	354	4.0	400	0.28	690
V250LA15A	2V250	250	354	15.0	2000	0.6	640
V250LA20A	2V250	250	354	20.0	2000	0.6	640
V250LA40A	524V25	250	354	40.0	4000	0.9	640

^{††}ECG and NTE numbers for these parts are identical, except for the prefix. Add the "ECG" or "NTE" prefix to the numbers shown for the complete part number.

Table 7.22 Voltage-Variable Capacitance Diodes[†]

Listed numerically by device

Nominal Capacitance

U	apacitance								
	pF ±10% @	Capacitance Ratio	Q @ 4.0 V			pF ±10% @	Capacitance Ratio	Q @ 4.0 V	
	$V_R = 4.0 V$	2-30 V	50 MHz	Case		$V_R = 4.0 V$	2-30 V	50 MHz	Case
Device	f = 1.0 MHz	Min.	Min.	Style	Device	f = 1.0 MHz	Min.	Min.	Style
1N5441A	6.8	2.5	450		1N5471A	39	2.9	450	
1N5442A	8.2	2.5	450		1N5472A	47	2.9	400	
1N5443A	10	2.6	400	DO-7	1N5473A	56	2.9	300	DO-7
1N5444A	12	2.6	400		1N5474A	68	2.9	250	
1N5445A	15	2.6	450		1N5475A	82	2.9	225	
1N5446A	18	2.6	350		1N5476A	100	2.9	200	
1N5447A	20	2.6	350		MV2101	6.8	2.5	450	TO-92
1N5448A	22	2.6	350	DO-7	MV2102	8.2	2.5	450	
1N5449A	27	2.6	350		MV2103	10	2.0	400	
1N5450A	33	2.6	350		MV2104	12	2.5	400	
1N5451A	39	2.6	300		MV2105	15	2.5	400	
1N5452A	47	2.6	250		MV2106	18	2.5	350	TO-92
1N5453A	56	2.6	200	DO-7	MV2107	22	2.5	350	
1N5454A	68	2.7	175		MV2108	27	2.5	300	
1N5455A	82	2.7	175		MV2109	33	2.5	200	
1N5456A	100	2.7	175		MV2110	39	2.5	150	
1N5461A	6.8	2.7	600		MV2111	47	2.5	150	TO-92
1N5462A	8.2	2.8	600		MV2112	56	2.6	150	
1N5463A	10	2.8	550	DO-7	MV2113	68	2.6	150	
1N5464A	12	2.8	550		MV2114	82	2.6	100	
1N5465A	15	2.8	550		MV2115	100	2.6	100	
1N5466A	18	2.8	500						
1N5467A	20	2.9	500		[†] For package	e shape, size and	h nin-connection	information s	۵۵
1N5468A	22	2.9	500	DO-7		rers' data sheets			
1N5469A	27	2.9	500			free of charge on			
1N5470A	33	2.9	500			ufacturers and re			

Table 7.23 Zener Diodes

Zener	Dioues							
			F	Power (Watts)				
Volts	0.25	0.4	0.5	1.0	1.5	5.0	10.0	50.0
1.8	1N4614							
2.0	1N4615							
2.2	1N4616							
2.4	1N4617	1N4370, A	1N4370,A 1N5221,B 1N5985.B					
2.5			1N5222B					
2.6	1N702,A		IIIOEEED					
2.7	1N4618	1N4371,A	1N4371.A					
			1N5223,B 1N5839, 1N5986					
2.8			1N5224B					
3.0	1N4619	1N4372,A	1N4372 1N5225,B					
0.0	4114000		1N5987	4100004	115010			
3.3	1N4620	1N746,A 1N764,A 1N5518	1N746,A 1N5226,B 1N5988	1N3821 1N4728,A	1N5913	1N5333,B		
3.6	1N4621	1N747,A	1N747,A	1N3822	1N5914	1N5334,B		
0.0	1111021	1N5519	1N5227,B 1N5989	1N4729,A		1100001,8		
3.9	1N4622	1N748,A	1N748A	1N3823	1N5915	1N5335,B	1N3993A	1N4549,B
		IN5520	1N5228,B 1N5844, 1N5990	1N4730,A		,		1N4557,B
4.1	1N704,A		,					
4.3	1N4623	1N749,A 1N5521	1N749,A, 1N5229,B 1N5845	1N3824 1N4731,A	1N5916	1N5336,B	1N3994,A	1N4550,B 1N4558,B
			1N5991				(con	tinued on next page

(continued on next page)

			Po	ower (Watts)				
Volts	0.25	0.4	0.5	1.0	1.5	5.0	10.0	50.0
4.7	1N4624	1N750A 1N5522	1N750A 1N5230,B 1N5846 1N5000	1N3825 1N4732,A	1N5917	1N5337,B	1N3995,A 1N4559,B	1N4551,B
5.1	1N4625 1N4689	1N751,A 1N5523	1N5846, 1N5992 1N751,A, 1N5231,B 1N5847	1N3826 1N4733	1N5918	1N5338,B	1N3996,A	1N4552,B 1N4560
5.6	1N708A 1N4626	1N752,A 1N5524	1N5993 1N752,A 1N5232,B 1N5848, 1N5994	1N3827 1N4734,A	1N5919	1N5339,B	1N3997,A	2N4553,B 1N4561,B
5.8 6.0	1N706A	1N762	1N5233B			1N5340,B		
6.2	1N709, 1N462 MZ605, MZ6 MZ620,MZ64	10 10	1N5849 1N753,A 1N821,3,5,7,9;A	1N3828,A 1N5234,B, 1N5995	1N5920 1N5850	1N5341,B 1N4735,A	1N3998,A	1N4554,B 1N4562,B
6.4 6.8	1N4565-84,A 1N4099	1N754,A 1N957,B	1N754,A, 1N757,B 1N5235,B 1N5851	1N3016,B 1N3829	1N3785 1N5921	1N5342,B	1N2970,B 1N3999,A	1N2804B 1N3305B
7.5	1N4100	1N5526 1N755,A 1N958,B 1N5527	1N5996 1N755A, 1N958,B 1N5236,B 1N5852 1N5997	1N4736,A 1N3017,A,E 1N3830 1N4737,A	3 1N3786 1N5922	1N5343,B	1N2971,B 1N4000,A	1N4555, 1N4563 1N2805,B 1N3306,B 1N4556, 1N4564
8.0 8.2	1N707A 1N712A 1N4101	1N756,A 1N959,B 1N5528	1N756,A 1N959,B 1N5237,B 1N5853 1N5998	1N3018,B 1N4738,A	1N3787 1N5923	1N5344,B	1N2972,B	1N2806,B 1N3307,B
8.4		1N3154-57,						
8.5	1N4775-84,A	۱.	1N5238,B 1N5854					
8.7 8.8	1N4102	1N764				1N5345,B		
9.0 9.1	1N4103	1N764A 1N757,A 1N960,B 1N5529	1N935-9;A,B 1N757,A, 1N960,B 1N5239,B, 1N5855 1N5999	1N3019,B 1N4739,A	1N3788 1N5924	1N5346,B	1N2973,B	1N2807,B 1N3308,B
10.0	1N4104	1N758,A 1N961,B 1N5530.B	1N758,A, 1N961,B 1N5240,B, 1N5856 1N6000	1N3020,B 1N4740,A	1N3789 1N5925	1N5347,B	1N2974,B	1N2808,B 1N3309,A,B
11.0	1N715,A 1N4105	1N962,B 1N5531	1N962,B 1N5241,B 1N5857, 1N6001	1N3021,B 1N4741,A	1N3790 1N5926	1N5348,B	1N2975,B	1N2809,B 1N3310,B
11.7	1N716,A 1N4106		1N941-4;A,B					
12.0		1N759,A 1N963,B 1N5532	1N759,A, 1N963,B 1N5242,B, 1N5858 1N6002	1N3022,B 1N4742,A	1N3791 1N5927	1N5349,B	1N2976,B	1N2810,B 1N3311,B
13.0	1N4107	1N964,B 1N5533	1N964,B 1N5243,B, 1N5859 1N6003	1N3023,B 1N4743,A	1N3792 1N5928	1N5350,B	1N2977,B	1N2811,B 1N3312,B
14.0	1N4108	1N5534	1N5244B 1N5860			1N5351,B	1N2978,B	1N2812,B 1N3313,B
15.0	1N4109	1N965,B 1N5535	1N965,B 1N5245,B, 1N5861 1N6004	1N3024,B 1N4744A	1N3793 1N5929	1N5352,B	1N2979,A,B	1N2813,A,B 1N3314,B
16.0	1N4110	1N966,B 1N5536	1N966,B, 1N5246,B 1N5862, 1N6005	1N3025,B 1N4745,A	1N3794 1N5930	1N5353,B	1N2980,B	1N2814,B 1N3315,B
17.0	1N4111	1N5537	1N5247,B 1N5863			1N5354,B	1N2981B	1N2815,B 1N3316,B
18.0	1N4112	1N967,B 1N5538	1N967,B 1N5248,B 1N5864, 1N6006	1N3026,B 1N4746,A	1N3795 1N5931	1N5355,B	1N2982,B	1N2816,B 1N3317,B
19.0	1N4113	1N5539	1N5249,B 1N5865			1N5356,B	1N2983,B	1N2817,B 1N3318,B
20.0	1N4114	1N968,B 1N5540	1N968,B 1N5250,B	1N3027,B 1N4747,A	1N3796 1N5932,A,B	1N5357,B	1N2984,B	1N2818,B 1N3319,B
22.0	1N4115	1N969,B 1N5541	1N5866, 1N6007 1N969,B 1N5241,B 1N5867, 1N6008	1N3028,B 1N4748,A	1N3797 1N5933	1N5358,B	1N2985,B	1N2819,B 1N3320,A,B

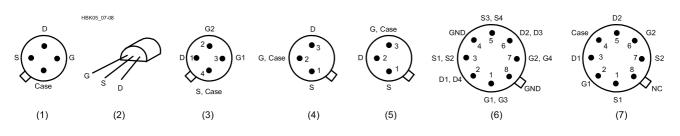
			Pou	ver (Watts)				
Volts	0.25	0.4	0.5	1.0	1.5	5.0	10.0	50.0
24.0	1N4116	1N5542 1N970B	1N970,B 1N5252,B, 1N5868 1N6009	1N3029,B 1N4749,A	1N3798 1N5934	1N5359,B	1N2986,B	1N2820,B 1N3321,B
25.0	1N4117	1N5543	1N5253,B 1N5869			1N5360,B	1N2987B	1N2821,B 1N3322,B
27.0	1N4118	1N971,B	1N971 1N5254,B, 1N5870 1N6010	1N3030,B 1N4750,A	1N3799 1N5935	1N5361,B	1N2988,B	1N2822B 1N3323,B
28.0	1N4119	1N5544	1N5255,B 1N5871			1N5362,B		
30.0	1N4120	1N972,B 1N5545	1N972,B 1N5256,B, 1N5872 1N6011	1N3031,B 1N4751,A	1N3800 1N5936	1N5363,B	1N2989,B	1N2823,B 1N3324,B
33.0	1N4121	1N973,B 1N5546	1N973,B 1N5257,B 1N5873, 1N6012	1N3032,B 1N4752,A	1N3801 1N5937	1N5364,B	1N2990,A,B	1N2824,B 1N3325,B
36.0	1N4122	1N974,B	1N974,B 1N5258,B 1N5874, 1N6013	1N3033,B 1N4753,A	1N3802 1N5938	1N5365,B	1N2991,B	1N2825,B 1N3326,B
39.0	1N4123	1N975,B	1N975,B, 1N5259,B 1N5875, 1N6014	1N3034,B 1N4754,A	1N3803 1N5939	1N5366,B	1N2992,B	1N2826,B 1N3327,B
43.0	1N4124	1N976,B	1N976,B 1N5260,B, 1N5876 1N6015	1N3035,B 1N4755,A	1N3804 1N5940	1N5367,B	1N2993,A,B	
45.0							1N2994B	1N2828B 1N3329B
47.0 50.0	1N4125	1N977,B	1N977,B, 1N5261,B 1N5877, 1N6016	1N3036,B 1N4756,A	1N3805 1N5941	1N5368,B	1N2996,B	1N2829,B 1N3330,B 1N2830B
51.0	1N4126	1N978,B	1N978,B, 1N5262,A,B	1N3037 B	1N3806	1N5369,B	1N2997,B	1N3331B 1N2831,B
52.0	1114120	11070,D	1N5878, 1N6017	1N4757,A	1N5942	1100003,B	1N2998B	1N3332,B 1N3333
56.0	1N4127	1N979,B	1N979 1N5263,B 1N6018	1N3038,B 1N4758,A	1N3807 1N5943	1N5370,B	1N2999,B	1N33334,B
60.0 62.0	1N4128 1N4129	1N980,B	1N5264,A,B 1N980	1N3039,B	1N3808	1N5371,B 1N5372,B	1N3000,B	1N2833,B
68.0	1N4130	1N981,B	1N5265,A,B, 1N6019 1N981,B 1N5266,A,B, 1N6020	1N4759,A 1N3040,A,E 1N4760,A	1N5944 3 1N3809 1N5945	1N5373,B	1N3001,B	1N3335,B 1N2834,B 1N3336,B
75.0	1N4131	1N982,B	1N982	1N3041,B	1N3810	1N5374,B	1N3002,B	1N2835,B
82.0	1N4132	1N983,B	1N5267,A,B, 1N6021 1N983 1N5268,A,B, 1N6022	1N4761,A 1N3042,B 1N4762,A	1N5946 1N3811 1N5947	1N5375,B	1N3003,B	1N3337,B 1N2836,B 1N3338,B
87.0 91.0	1N4133 1N4134	1N984,B	1N5269,B 1N984	1N3043,B	1N3812	1N5376,B 1N5377,B	1N3004,B	1N2837,B
100.0	1N4135	1N985	1N5270,B, 1N6023 1N985,B	1N4763,A 1N3044,A,E	1N5948 3 1N3813	1N5378,B	1N3005,B	1N3339,B 1N2838,B
105.0			1N5271,B, 1N6024	1N4764,A	1N5949		1N3006B	1N3340,B 1N2839,B
110.0		1N986	1N986	1N3045,B	1N3814	1N5379,B	1N3007A,B	1N3341,B 1N2840,B
120.0		1N987	1N5272,B, 1N6025 1N987,B	1M110ZS1 1N3046,B	1N3815	1N5380,B	1N3008A,B	1N3342,B 1N2841,B
130.0		1N988	1N5273,B, 1N6026 1N988,B	1M120ZS1 1N3047,B	1N3816	1N5381,B	1N3009,B	1N3343,B 1N2842,B
140.0		(1)	1N5274,B, 1N6027 1N5275,B	1M130ZS1		1N5382B	1N3010B	1N3344,B 1N3345B
150.0		1N989	1N989,B 1N5276,B, 1N6028	1N3048,B 1M150ZS1		1N5383,B	1N3011,B	1N2843,B 1N3346,B
160.0		1N990	1N990,B 1N5277,B, 1N6029	1N3048,B 1M160ZS1	1N3818 0 1N5954	1N5384,B	IN3012A,B	1N2844B 1N3347,B
170.0 175.0			1N5278,B	1M170ZS1	0	1N5385,B	1N3013B	1N3348B
180.0			1N991,B, 1N5279,B 1N6030	1M180ZS1 1N3819	0 1N5955			1N3349,B
190.0 200.0			1N5280,B 1N992, 1N5281,B 1N6031	1N3051,B 1M200ZS1	1N3820 0 1N5956	1N5387,B 1N5388B	1N3015,B	1N2846,B 1N3350,B

Table 7.24 Semiconductor Diode Specifications[†]

Listed numerically by device

Device	Туре	Material	Peak Inverse Voltage, PIV (V)	Average Rectified Current Forward (Reverse) I _O (A)(I _R (A))	Peak Surge Current, I _{FSM} 1 s @ 25°C (A)	Average Forward Voltage, V _F (V)
1N34 1N34A 1N67A 1N191 1N270 1N914 1N1183 1N1184 1N2071 1N3666 1N4001 1N4002 1N4003 1N4004 1N4005 1N4005 1N4005 1N4006 1N4007 1N4148 1N4149 1N4152 1N5400 1N5401 1N5402 1N5403 1N5406 1N5406 1N5408 1N5408	Signal Signal Signal Signal Fast Switch RFR RFR RFR Signal RFR RFR RFR RFR RFR RFR Signal Signal Fast Switch Signal Fast Switch Signal RFR RFR RFR RFR RFR RFR RFR RFR RFR RF	Ge GGe GGe Si Si Si Si Si Si Si Si Si Si Si Si Si	$\begin{array}{c} \textit{Voltage, PIV} \\ \textit{(V)} \\ 60 \\ 60 \\ 100 \\ 90 \\ 80 \\ 75 \\ 50 \\ 100 \\ 600 \\ 80 \\ 50 \\ 100 \\ 200 \\ 400 \\ 600 \\ 800 \\ 1000 \\ 75 \\ 75 \\ 40 \\ 100 \\ 50 \\ 1000 \\ 50 \\ 100 \\ 500 \\ 600 \\ 1000 \\ 500 \\ 600 \\ 1000 \\ 70 \\ \end{array}$	$I_O(A)(I_R(A))$ 8.5 m (15.0 µ) 5.0 m (30.0 µ) 4.0 m (5.0 µ) 15.0 m 0.2 (100 µ) 75.0 m (25.0 n) 40 (5 m) 40 (5 m) 40 (5 m) 0.75 (10.0 µ) 0.2 (25.0 µ) 1.0 (0.03 m) 1.0 (0.05 m) 3.0 (500 µ) 3.0 (500 µ) 3.		(V) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1
1N5767 1N5817 1N5819 1N5821	Signal Schottky Schottky Schottky	Si Si Si Si	20 40 30	0.1 (1.0 μ) 1.0 (1 m) 1.0 (1 m) 3.0	25 25	1.0 0.75 0.9
ECG5863 1N6263 5082-2835	RFR Schottky Schottky	Si Si Si	600 70 8	6 15 m 1 m (100 n)	150 50 m 10 m	0.9 0.41 @ 1 mA 0.34 @ 1 mA

Si = Silicon; Ge = Germanium; RFR = rectifier, fast recovery.
 [†]For package shape, size and pin-connection information see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

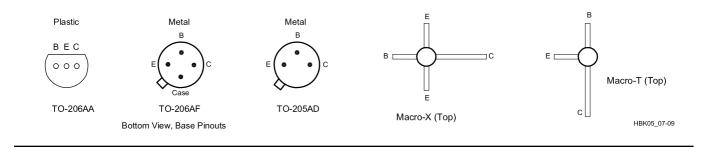

Table 7.25 Suggested Small-Signal FETs

ouggoo		Jignai i	210										
<i>Device</i> 2N4416	<i>Type</i> N-JFET	<i>Max Diss (mW)</i> 300	<i>Max</i> V _{DS} (V) ³ 30	V _{GS(off)} (V) ³ –6	Min gfs (μS) 4500	Input C (pF) 4	<i>Max</i> <i>ID</i> (<i>mA</i>) ¹ –15	f _{max} (MHz) 450	<i>Noise Figure (typ)</i> 4 dB @400 MHz	<i>Case</i> TO-72	<i>Base</i> 1	<i>Mfr²</i> S, M	<i>Applications</i> VHF/UHF
2N5484	N-JFET	310	25	-3	2500	5	30	200	4 dB @200 MHz	TO-92	2	М	amp, mix, osc VHF/UHF amp,
2N5485	N-JFET	310	25	-4	3500	5	30	400	4 dB @400 MHz	TO-92	2	S	mix, osc VHF/UHF amp,
2N5486	N-JFET	360	25	-2	5500	5	15	400	4 dB @400 MHz	TO-92	2	М	mix, osc VHF/UHF amp,
3N200 NTE222	N-dual-gate MOSFET	330	20	-6	10,000	4-8.5	50	500	4.5 dB @400 MHz	TO-72	3	R	mix, osc VHF/UHF amp, mix, osc
SK3065 3N202 NTE454 SK3991	N-dual-gate MOSFET	360	25	-5	8000	6	50	200	4.5 dB @200 MHz	TO-72	3	S	VHF amp, mixer
MPF102 ECG451 SK9164	N-JFET	310	25	-8	2000	4.5	20	200	4 dB @400 MHz	TO-92	2	Ν, Μ	HF/VHF amp, mix, osc
MPF106 2N5484	N-JFET	310	25	-6	2500	5	30	400	4 dB @200 MHz	TO-92	2	Ν, Μ	HF/VHF/UHF amp, mix, osc
40673 NTE222 SK3050	N-dual-gate MOSFET	330	20	-4	12,000	6	50	400	6 dB @200 MHz	TO-72	3	R	HF/VHF/UHF amp, mix, osc
U304	P-JFET	350	-30	+10	27		-50	_	_	TO-18	4	S	analog switch chopper
U310	N-JFET	500 300	30 30	-6	10,000	2.5	60	450	3.2 dB @450 MHz	TO-52	5	S	common-gate VHF/UHF amp,
U350	N-JFET Quad	1W	25	-6	9000	5	60	100	7 dB @100 MHz	TO-99	6	S	matched JFET doubly bal mix
U431	N-JFET Dual	300	25	-6	10,000	5	30	100	_	TO-99	7	S	matched JFET cascode amp and bal mix
2N5670	N-JFET	350	25	8	3000	7	20	400	2.5 dB @100 MHz	TO-92	2	M mix,	VHF/UHF osc,
2N5668	N-JFET	350	25	4	1500	7	5	400	2.5 dB @100 MHz	TO-92	2	M mix, fro	front-end amp VHF/UHF osc, nt-end
2N5669	N-JFET	350	25	6	2000	7	10	400	2.5 dB @100 MHz	TO-92	2	amp M mix, fro amp	VHF/UHF osc, nt-end
J308	N-JFET	350	25	6.5	8000	7.5	60	1000	1.5 dB @100 MHz	TO-92	2	M mix, from amp	VHF/UHF osc, nt-end
J309	N-JFET	350	25	4	10,000	7.5	30	1000	1.5 dB @100 MHz	TO-92	2	M mix, fro	VHF/UHF osc, nt-end
J310	N-JFET	350	25	6.5	8000	7.5	60	1000	1.5 dB @100 MHz	TO-92	2	amp M mix, fro	VHF/UHF osc, ont-end amp
NE32684	A HJ-FET	165	2.0	-0.8	45,000	_	30	20 GHz	0.5 dB @12 GHz	84A		NE	Low-noise amp

Notes:

125°C.

 ²M = Motorola; N = National Semiconductor; NE=NEC; R = RCA; S = Siliconix.
 ³For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.


Low-Noise Transistors

Low-Noise Transistors												
Device	NF (dB)	F (MHz)	f _T (GHz)	I _C (mA)	Gain (dB)	F (MHz)	V _{(BR)CEO} (V)	I _C (mA)	P _T (mW)	Case		
MRF904	1.5	450	4	15	16	450	15	30	200	TO-206AF		
MRF571	1.5	1000	8	50	12	1000	10	70	1000	Macro-X		
MRF2369	1.5	1000	6	40	12	1000	15	70	750	Macro-X		
MPS911	1.7	500	7	30	16.5	500	12	40	625	TO-226AA		
MRF581A	1.8	500	5	75	15.5	500	15	200	2500	Macro-X		
BFR91	1.9	500	5	30	16	500	12	35	180	Macro-T		
BFR96	2	500	4.5	50	14.5	500	15	100	500	Macro-T		
MPS571	2	500	6	50	14	500	10	80	625	TO-226AA		
MRF581	2	500	5	75	15.5	500	18	200	2500	Macro-X		
MRF901	2	1000	4.5	15	12	1000	15	30	375	Macro-X		
MRF941	2.1	2000	8	15	12.5	2000	10	15	400	Macro-X		
MRF951	2.1	2000	7.5	30	12.5	2000	10	100	1000	Macro-X		
BFR90	2.4	500	5	14	18	500	15	30	180	Macro-T		
MPS901	2.4	900	4.5	15	12	900	15	30	300	TO-226AA		
MRF1001A	2.5	300	3	90	13.5	300	20	200	3000	TO-205AD		
2N5031	2.5	450	1.6	5	14	450	10	20	200	TO-206AF		
	2.5	500	5	90	14	500	12	400	3000	TO-205AD		
BFW92A	2.7	500	4.5	10	16	500	15	35	180	Macro-T		
MRF521*	2.8	1000	4.2	-50	11	1000	-10	-70	750	Macro-X		
2N5109	3	200	1.5	50	11	216	20	400	2500	TO-205AD		
2N4957*	3	450	1.6	-2	12	450	-30	-30	200	TO-206AF		
MM4049*	3	500	5	-20	11.5	500	-10	-30	200	TO-206AF		
2N5943	3.4	200	1.5	50	11.4	200	30	400	3500	TO-205AD		
MRF586	4	500	1.5	90	9	500	17	200	2500	TO-205AD		
2N5179	4.5	200	1.4	10	15	200	12	50	200	TO-206AF		
2N2857	4.5	450	1.6	8	12.5	450	15	40	200	TO-206AF		
2N6304	4.5	450	1.8	10	15	450	15	50	200	TO-206AF		
MPS536*	4.5	500	5	-20	4.5	500	-10	-30	625	TO-226AA		
MRF536*	4.5	1000	6	-20	10	1000	-10	-30	300	Macro-X		

*denotes a PNP device

Complemen	tary devices
NPN	PNP
2N2857	2N4957
MRF904	MM4049
MRF571	MRF521

For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

Table 7.27 Monolithic Amplifiers (50 Ω) Mini-Circuits Labs MMICs

	Freq Range	Gain (dB) at	Output Level 1 dB			
Device	(MHz)	1000 MHz	Comp (dBm)	NF (dB)	I _{max} (mA)	P _{max} (mW)
ERA-1	dc - 8000	12.1	+12.0	4.3	75	330
ERA-2	dc - 6000	15.8	+13.0	4.0	75	330
ERA-3	dc - 3000	21.0	+12.5	3.5	75	330
ERA-4	dc - 4000	14.0	+17.3	4.2	120	650
ERA-5	dc - 4000	19.5	+18.4	4.3	120	650
ERA-6	dc - 4000	12.5	+17.9	4.5	12	650
GAL-1	dc - 8000	12.5	+12.2	4.5	55	225
GAL-2	dc - 8000	15.8	+12.9	4.6	55	225
GAL-3	dc - 8000	21.1	+12.5	3.5	55	225
GAL-4	dc - 8000	14.1	+17.5	4.0	85	475
GAL-5	dc - 8000	19.4	+18.0	3.5	85	475
GAL-6	dc - 8000	12.2	+18.2	4.5	85	475
GAL-21	dc - 8000	13.9	+12.6	4.0	55	225
GAL-33	dc - 8000	18.7	+13.4	3.9	55	265
GAL-51	dc - 8000	17.5	+18.0	3.5	85	475
HELA-10B	50 - 1000	12.0	+30.0	3.5	525	7150
HELA-10D	8 - 300	11.0	+30.0	3.5	525	7150
MAR-1	dc - 1000	15.5	+1.5	5.5	40	200
MAR-2	dc - 2000	12.0	+4.5	6.5	60	325
MAR-3	dc - 2000	12.0	+10.0	6.0	70	400
MAR-4	dc - 1000	8.0	+12.5	6.5	85	500
MAR-6	dc - 2000	16.0	+2.0	3.0	50	200
MAR-7	dc - 2000	12.5	+5.5	5.0	60	275
MAR-8	dc - 1000	22.5	+12.5	3.3	65	500
MAV-1	dc - 1000	15.0	+1.5	5.5	40	200
MAV-2	dc - 1500	11.0	+4.5	6.5	60	325
MAV-3	dc - 1500	11.0	+10.0	6.0	70	400
MAV-4	dc - 1000	7.5	+11.5	7.0	85	500
MAV-11	dc - 1000	10.5	+17.5	3.6	80	550
RAM-1	dc - 1000	15.5	+1.5	5.5	40	200
RAM-2	dc - 2000	11.8	+4.5	6.5	60	325
RAM-3	dc - 2000	12.0	+10.0	6.0	80	425
RAM-4	dc - 1000	8.0	+12.5	6.5	100	540
RAM-6	dc - 2000	16.0	+2.0	2.8	50	200
RAM-7	dc - 2000	12.5	+5.5	4.5	60	275
RAM-8	dc - 1000	23.0	+12.5	3.0	65	420
VAM-3	dc - 2000	11.0	+9.0	6.0	60	240
VAM-6	dc - 2000	15.0	+2.0	3.0	40	125
VAM-7	dc - 2000	12.0	+5.5	5.0	50	175
VNA-25	500 - 2500	18.0	+18.2	5.5	105	1000

Mini-circuits Labs Web site: www.minicircuits.com/.

Agilent MMICs

	Freq		Output Level			
	Range	Typical	1 dB Comp			P _{max}
Device	(MHz)	Gain (dB)	(dBm)	NF (dB)	I _{max} (mA)	(mW)
INA-01170	dc - 500	32.5	+11.0	2.0	50	400
INA-02184	dc - 1500	26.0	+11.0	2.0	50	400
INA-32063	dc - 2400	16.8	+3.6	4.4	25	75
INA-51063	dc - 2400	25.0	+1.0	2.5	14	170
MGA-725M4	100 - 6000	17.6	+13.1	1.2	80	250
MGA-86576	1.5 - 8000	23.0	+6.3	2.0	16	—
MSA-Olxx	dc - 1300	18.5	+1.5	5.5	40	200
MSA-02xx	dc - 2800	12.5	+4.5	6.5	60	325
MSA-03xx	dc - 2800	12.5	+10.0	6.0	80	425
MSA-04xx	dc - 4000	8.3	+11.5	7.0	85	500
MSA-05xx	dc- 2800	7.0	+19.0	6.5	135	1.5
MSA-06xx	dc - 800	19.5	+2.0	3.0	50	200
MSA-07xx	dc - 2500	13.0	+5.5	4.5	50	175
MSA-08xx	dc - 6000	32.5	+12.5	3.0	65	500
MSA-09xx	dc - 6000	7.2	+10.5	6.2	65	500
MSA-11xx	50-1300	12.0	+17.5	3.6	80	550

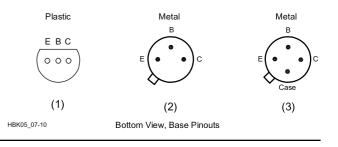
Agilent Web site: www.agilent.com/Products/English/index.html.

(continued on next page)

Motorola Hybrid Amplifiers (50 Ω)

Device type	Freq Range (MHz)	Gain (dB) min/typ	Supply Voltage (V)	Output Level, 1 dB Comp (dBm)	NF at 250 MHz (dB)
MWA110	0.1 - 400	13/14	2.9	-2.5	4.0
MWA120	0.1 - 400	13/14	5	+8.2	5.5
MWA130	0.1-400	13/14	5.5	+18.0	7.0
MWA131	0.1 - 400	13/14	5.5	+20.0	5.0
MWA210	0.1- 600	9/10	1.75	+1.5	6.0
MWA220	0.1- 600	9/10	3.2	+10.5	6.5
MWA230	0.1- 600	9/10	4.4	+18.5	7.5
MWA310	0.1- 1000	7/8	1.6	+3.5	6.5
MWA320	0.1- 1000	7/8	2.9	+11.5	6.7
MWA330	0.1- 1000	na/6.2	4	+15.2	9.0

Motorola Web site: merchant.hibbertco.com/servlet/MtrlDeactServlet.


Table 7.28

General-Purpose Transistors

Listed numerically by device

	nenean	y by acvice	,								
Device	Type	V _{CEO} Maximum Collector Emitter Voltage (V)	V _{CBO} Maximum Collector Base Voltage (V)	V _{EBO} Maximum Emitter Base Voltage (V)	l I _C Maximum Collector Current (mA)	P _O Maximum Device Dissipation (W)		C Current Gain h_{FE} I_C = 150 mA	Current- Gain Bandwidth Product f _T (MHz)	Noise Figure NF Maximum (dB)	Base
2N918	NPN	15	30	3.0	50	0.2	20 (3 mA)	_	600	6.0	3
2N2102	NPN	65	120	7.0	1000	1.0	20` ´	40	60	6.0	2
2N2218	NPN	30	60	5.0	800	0.8	20	40	250		
2N2218A	NPN	40	75	6.0	800	0.8	20	40	250		2
2N2219	NPN	30	60	5.0	800	3.0	35	100	250		2
2N2219A	NPN	40	75	6.0	800	3.0	35	100	300	4.0	2
2N2222	NPN	30	60	5.0	800	1.2	35	100	250		2
2N2222A	NPN	40	75	6.0	800	1.2	35	100	200	4.0	2
2N2905	PNP	40	60	5.0	600	0.6	35	_	200		2
2N2905A	PNP	60	60	5.0	600	0.6	75	100	200		2 2 2 2 2 2 2 2 2 2 2
2N2907	PNP	40	60	5.0	600	0.4	35	_	200		
2N2907A	PNP	60	60	5.0	600	0.4	75	100	200		2
2N3053	NPN	40	60	5.0	700	5.0	_	50	100		2 2 2
2N3053A	NPN	60	80	5.0	700	5.0	_	50	100		2
2N3563	NPN	15	30	2.0	50	0.6	20	_	800		1
2N3904	NPN	40	60	6.0	200	0.625	40		300	5.0	1
2N3906	PNP	40	40	5.0	200	0.625	60	_	250	4.0	1
2N4037	PNP	40	60	7.0	1000	5.0		50			2
2N4123	NPN	30	40	5.0	200	0.35	_	25 (50 mA)	250	6.0	1
2N4124	NPN	25	30	5.0	200	0.35	120 (2 mA)	60 (50 mA)	300	5.0	1
2N4125	PNP	30	30	4.0	200	0.625	50 (2 mA) ́	25 (50 mA)	200	5.0	1
2N4126	PNP	25	25	4.0	200	0.625	120 (2 mÁ)	60 (50 mA)	250	4.0	1
2N4401	NPN	40	60	6.0	600	0.625	20 ` ´	100	250		1
2N4403	PNP	40	40	5.0	600	0.625	30	100	200		1
2N5320	NPN	75	100	7.0	2000	10.0	_	30 (I A)			2
2N5415	PNP	200	200	4.0	1000	10.0	_	30 (50 mA)	15		2 2
MM4003	PNP	250	250	4.0	500	1.0	20 (10 mA)	_ ` ` `			2
MPSA55	PNP	60	60	4.0	500	0.625	_ ` ` `	50 (0.1 A)	50		1
MPS6531	NPN	40	60	5.0	600	0.625	60 (10 mA)	90 (0.1 A)			1
MPS6547	NPN	25	35	3.0	50	0.625	20 (2 mA)		600		1

Test conditions: $I_C = 20 \text{ mA dc}$; $V_{CE} = 20 \text{ V}$; f = 100 MHz

Table 7.29 RF Power Amplifier Modules

Listed by frequency

Device	Supply (V)	Frequency Range (MHz)	Output Power (W)	Power Gain (dB)	Package [†]	Mfr/ Notes
M57735 M57719N S-AV17 S-AV7 MHW607-1	17 17 16 16 7.5	50-54 142-163 144-148 144-148 136-150	14 14 60 28 7	21 18.4 21.7 21.4 38.4	H3C H2 5-53L 5-53H 301K-02/3	MI; SSB mobile MI; FM mobile T, FM mobile T, FM mobile MO; class C
BGY35 M67712 M57774 MHW720-1 MHW720-2 M57789 MHW912	12.5 17 17 12.5 12.5 17 12.5	132-156 220-225 220-225 400-440 440-470 890-915 880-915	18 25 25 20 20 12 12	20.8 20 21 21 33.8 40.8	SOT132B H3B H2 700-04/1 700-04/1 H3B 301B-01/1	P MI; SSB mobile MI; FM mobile MO; class C MO; class C MI MO: class AB
MHW820-3	12.5	870-950	18	17.1	301G-03/1	MO; class C

Manufacturer codes: MO = Motorola; MI = Mitsubishi; P = Philips; T = Toshiba.

[†]For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

General Purpose Silicon Power Transistors

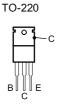
TO-220 Case, Pin 1=Base, Pin 2, Case = Collector; Pin 3 = Emitter TO-204 Case (TO-3), Pin 1=Base, Pin 2 = Emitter, Case = Collector;

NPN	PNP	I _C Max (A)	V _{CEO} Max (V)	h _{FE} Min	F _T (MHz)	Power Dissipation (W)	NPN	PNP	I _C Max (A)	V _{CEO} Max (V)	h _{FE} Min	F _T (MHz)	Power Dissipation (W)
D44C8		4	60	100/220	50	30	2N3055	Δ	15	60	20/70	0.8	115
04400	D45C8	4	60	40/120	50	30	2N3055		15	60	20/70	2.5	115
TIP29	D-1000	1	40	15/75	3	30	2110000	MJ2955	15	60	20/70	2.5	115
111 20	TIP30	1	40	15/75	3	30	2N6545		8	400	7/35	6	125
TIP29A		1	50	15/75	3	30	2N5039		20	75	20/100	_	140
0/.	TIP30A	1	60	15/75	3	30	2N3771		30	40	15	0.2	150
TIP29B		1	80	15/75	3	30	2N3789		10	60	15	4	150
TIP29C		1	100	15/75	3	30	2N3715		10	60	30	4	150
	TIP30C	1	100	15/75	3	30		2N3791	10	60	30	4	150
TIP47		1	250	30/150	10	40		2N5875	10	60	20/100	4	150
TIP48		1	300	30/150	10	40		2N3790	10	80	15	4	150
TIP49		1	350	30/150	10	40	2N3716		10	80	30	4	150
TIP50		1	400	30/150	10	40		2N3792	10	80	30	4	150
TIP110	*	2	60	500	> 5	50	2N3773		16	140	15/60	4	150
	TIP115 *	2	60	500	> 5	50	2N6284		20	100	750/18K	—	160
TIP116		2	80	500	25	50		2N6287	20	100	750/18K		160
TIP31		3	40	25	3	40	2N5881		15	60	20/100	4	160
	TIP32	3	40	25	3	40	2N5880		15	80	20/100	4	160
TIP31A		3	60	25	3	40	2N6249		15	200	10/50	2.5	175
	TIP32A	3	60	25	3	40	2N6250		15	275	8/50	2.5	175
TIP31B		3	80	25	3	40	2N6546		15	300	6/30	6-28	175
	TIP32B	3	80	25	3	40	2N6251		15	350	6/50	2.5	175
TIP31C		3	100	25	3	40	2N5630		16	120	20/80	1	200
	TIP32C	3	100	25	3	40	2N5301		30	40	15/60	2	200
2N6124		4	45	25/100	2.5	40	2N5303		20	80	15/60	2	200
2N6122		4	60	25/100	2.5	40	2N5885		25	60	20/100	4	200
MJE130	00	4	300	6/30	4	60	2N5302		30	60	15/60	2	200
TIP120	*	5	60	1000	> 5	65		2N4399	30	60	15/60	4	200
	TIP125 *	5	60	1000	> 10	65	2N5886		25	80	20/100	4	200
	TIP42	6	40	15/75	3	65		2N5884	25	80	20/100	4	200
TIP41A		6	60	15/75	3	65	MJ802		30	100	25/100	2	200
TIP41B		6	80	15/75	3	65		MJ4502	30	100	25/100	2	200
2N6290		7	50	30/150	4	40	MJ1500		20	140	25/150	2	250
2N6292	2N6109	7	50 70	30/150	4	40		MJI5004	20	140	25/150	2	250
2110292	2N6107	7 7	70 70	30/150 30/150	4 4	40 40	MJ1502	4	25	250	15/60	4	250
MJE305		10	50	20/70	4	40 75		0					
NJE300	MJE2955T		60	20/70	2	75	* D		imentary	pairs			
2N6486		15	40	20/70	∠ 5	75	= Dari	ington trar	ISISTOR				
2N6488		15	40 80	20/150	5	75 75							
TIP140	*	10	60	500	> 5	125							
111 140	TIP145 *	10	60	600	> 10	125							
	111145	10	00	000	210	120							

Useful URLs for finding transistor/IC data sheets:

1. General-purpose URL: members.nbci.com/cbradiomods/transistors/sigtransistors.html.

2. General-purpose substitution URL: www.nteinc.com/.


3. Philips semiconductors: www.semiconductors.philips.com/pack/discretes.html and

www.semiconductors.philips.com/catalog.

4. Mitsubishi: www.mitsubishichips.com/data/datasheets/hf-optic/index.html, then click "Si Modules."

5. Motorola: design-net.com/redirect/books/index.html. Look for archive section for older products.

- 6. STMicroelectronics (Thompson): us.st.com/stonline/products/index.htm.
- 7. Toshiba: www.semicon.toshiba.co.jp/seek/us/td/16ktran/160021.htm.

Front View

Bottom View

TO-204

F B

HBK05 07-11

7.24 Chapter 7

HBK05_07-11

Table 7.31 RF Power Transistors

Device	,	ut Input er Power (W)	Gain (dB)	Typ Supply Voltage (V)	/ Case	Mfr	Device		ut Input er Power (W)	Gain (dB)	Typ Supply Voltage (V)	/ Case	Mfr
1.5 to 30	MHz. HF	SSB/CV	v				DTOTO	с о ́	()	_			
2SC2086 BLV10 BLV11 MRF476 BLW87 2SC2166 BLW83	0.3 1 2 3 6 6 1.0	0.1	13 18 18 15 18 13.8 20	1.2 12 12.5-13.6 1.2 1.2 26	TO-92 SOT123 SOT123 221A-04/1 SOT123 TO-220 SOT123	MI PH MO PH MI PH	BLW78	50 60 70 75 80 100 100 100	10 15 8 25 12.5	7 6.7 6.5 10 6 9	28 28 12.5 12.5 28 12.5 28 28 28	145A-09/1 221A-04/2 T-40 SOT119 316-01/1 M111 SOT121 316-01/1	MO MI PH MO ST PH MO
MRF475 MRF433	1.2 12.5	1.2 0.125	10 20 14	12.5-13.6 12.5-13.6	221A-04/1 211-07/1	MO MO MI	-	150	15	10	28	316-01/1	MO
2SC3133 MRF485 2SC1969 BLW50F MRF406 SD1285 MRF426 MRF427 MRF427 MRF477 MRF466	1.3 1.5 1.6 20 20 25 25 40 40	1.5 1.25 0.65 0.16 0.4 1.25 1.25	10 1.2 19.5 12 15 22 18 15 15	1.2 28 1.2 45 12.5-13.6 12.5 28 50 12.5-13.6 28	TO-220 221 A-04/1 TO-220 SOT123 221-07/1 M113 211-07/1 211-11/1 211-11/1 211-07/1	MO MI PH MO ST MO MO MO	MRF207 2N5109 MRF227 MRF208 MRF226 2SC2133 2SC2134 2SC2609 UHF to 512	1 2.5 3 1.0 1.3 30 60 100 2 MHz	0.15 0.13 1 1.6	8.2 11 13.5 10 9 8.2 7 6	12.5 12 12.5 12.5 12.5 28 28 28 28	79-04/1 TO-205AD 79-05/5 145A-09/1 145A-09/1 T-40E T-40E T-40E T-40E	MO MO MO MO MI MI MI
BLW96 2SC3241 SDI405 2SC2097 MRF464	50 75 75 75 80	3.8 2.53	1.9 12.3 13 12.3 10	40 12.5 12.5 13.5 28	SOT121 T-45E M174 T-40E 211-11/1	PH MI ST MI MO	2N4427 2SC3019 MRF581 2SC908	0.4 0.5 0.6 1	0.03	10 14 13 4	12.5 12.5 12.5 12.5	TO-39 T-43 317-01/2 TO-39	PH MI MO MI
MRF484 MRF421 SD1487 2SC2904 SD1729 MRF422 MRF428 SD1726 PT9790 MRF448 MRF430	80 100 100 130 150 150 150 150 250 600	2.33 10 7.9 8.2 15 7.5 6 4.8 15.7 60	10 10 11 11.5 12 10 13 14 15 12 10	12.5-13.6 12.5 12.5 28 28 50 50 50 50 50 50	211-11/1 211-11/1 M174 T-40E M174 211-11/1 211-11/1 M174 211-11/1 211-11/1 368-02/1	MO ST MI ST MO ST MO MO MO	2N3866 2SC2131 BLX65E BLW89 MRF586 MRF630 2SC3020 BLW80 BLW90 MRF652 MRF652	1 2 2.5 3 4 4 5 5	0.33 0.3 0.5	10 6.7 9 12 16.5 9.5 10 8 11 10 16.5	28 13.5 12.5 28 1.5 12.5 12.5 12.5 12.5 12.5 12.5 15	TO-39 TO-39 SOT122 79-04 79-05/5 T-31 E SOT122 SOT122 244-04/1 244A-01/1	PH MI PH MO MO MI PH PH MO MO
50 MHz MRF475	4	0.4	10	12.5-13.6	221A-04/1	мо	2SC3021 BLW81	7 10	1.2	7.6 6	12.5 12.5	T-31 E SOT122	MI PH
MRF497 SDI446 MRF492 SD1405	40 70 70 100	4 7 5.6 20	10 10 11 7	12.5-13.6 12.5 12.5-13.6 12.5	221A-04/2 M113 211-11/1 M174	MO ST MO ST	MRF653 BLW91 MRF654 2SC3022	10 10 15 18	2 2.5 6	7 9 7.8 4.7	12.5 28 12.5 12.5	244-04/1 SOT122 244-04/1 T-31 E	MO PH MO MI
VHF to 17	′5 MHz						BLU20/12 BLX94A	20 25		6.5 6	12.5 28	SOT119 SOT48/2	PH PH
2N4427 2N3866 BFQ42 2SC2056 2N3553 BF043 SD1012 2SC2627 2N5641 MRF340 BLW29 SD1143 2SC1729 SD1014-0		0.25 0.25 1 0.4 1 3.5	8 10 8.4 9 10 9.4 12 13 8.4 13 7.4 10 10 6.3	7.5 28 7.5 7.2 28 7.5 12.5 12.5 28 28 7.5 12.5 13.5 12.5	TO-39 TO-39 TO-39 T-41 79-04/1 TO-39 M135 T-40 144B-05/1 221A-04/2 SOT120 M135 T-31 E M135 T-31 E	PH PH MI MO PH ST MO PH ST MI ST	2SC2695 BLU30/12 BLU45/12 2SC2905 MRF650 TP5051 BLU60/12 2SC3102 BLU60/28 MRF658 MRF338 SD1464 UHF to 960	28 30 45 50 50 60 60 60 65 80 100 MHz	15.8 6 20 25 15 28.2	6 4.9 6 4.8 5 9 4.4 4.8 7 4.15 7.3 5.5	13.5 12.5 12.5 12.5 24 12.5 24 12.5 28 12.5 28 28 28	T-31 E SOT119 SOT119 T-40E 316-01/1 333A-02/2 SOT119 T-41 E SOT119 316-01/1 333-04/1 M168	PH MI PH MO PH MO PH MO ST
BLVII 2N5642 MRF342 BLW87 2SC1946 MRF314 SD1018 2N5643 BLW40 MRF315	15 20 24 25 28 30 40 40 40 40 45	3 1.9 3 14 6.9 5.7	8 8.2 11 6 6.7 10 4.5 7.6 10 9	13.5 28 28 13.5 13.5 28 12.5 28 12.5 28	SOT123 145A-09/1 221A-04/2 SOT123 T-31 E 211-07/1 M135 145A-09/1 SOT120 211-07/1	PH MO PH MI MO ST MO PH MO	MRF581 MRF8372 MRF557 BLV99 SD1420 MRF839 MRF896 MRF891	0.6 0.75 1.5 2 2.1 3 5	0.06 0.11 0.23 0.27 0.46 0.3 0.63	10 8 9 9 8 10 9	12.5 12.5 24 24 12.5 24 24 24 24 24 24 (continu	317-01/2 751-04/1 317D-02/2 SOT172 M122 305A-01/1 305-01/1 319-06/2 ed on next pa	PH ST MO MO MO
												-	-

Device	Output Power (W)		Gain (dB)	Typ Supply Voltage (V)	Case	Mfr
Device	$(\mathbf{v}\mathbf{v})$	(•••)	(uD)	(V)	Case	IVIII
2SC2932	6		7.8	12.5	T-31 B	MI
SD1398	6	0.6	10	24	M142	ST
2SC2933	14	3	6.7	12.5	T-31 B	MI
SD1400-03	14	1.6	9.5	24	M118	ST
MRF873	15	3	7	12.5	319-06/2	MO
SD1495-03	30	6	7	24	M142	ST
SD1424	30	5.3	7.5	24	M156	ST
MRF897	30	3	10	24	395B-01/1	MO
MRF847	45 [·]	16	4.5	12.5	319-06/1	MO
BLV101A	50		8.5	26	SOT273	PH
SD1496-03	55	10	7.4	24	M142	ST
MRF898	60 ·	12	7	24	333A-02/1	MO
MRF880	90	12.7	8.5	26	375A-01/1	MO
MRF899 1	50 2	24	8	26	375A-01/1	MO

Manufacturer codes:

MI = Mitsubishi; MO = Motorola; PH Philips; ST = STMicroelectronics

There is a bewildering variety of package types, sizes and pinout connections. (For example, for the 137 different transistors in this table there are 54 different packages.) See the data sheets on each manufacturer's Web pages for details.

Mitsubishi: www.mitsubishichips.com/data/datasheets/hfoptic/index.html, then click "Si Modules." Scroll to section for "Si Discrete" and then choose frequency range and device.

- Motorola: design-net.com/redirect/books/index.html. Type the part number in the search window at the upper left of the screen. If you receive a message that "No results were found for your search" the part you want is probably obsolete. Click on the text highlighted in red as "Motorola's SPS Literature Distribution Center Archive Site." In the Description box, type the part number you want, click the Search button and then click on the Document Number for the latest Revision level of that obsoleted part number.
- Philips: www.semiconductors.philips.com/. Type the part number in the "search" box at the upper right corner of the screen. Click on the highlighted part number in the Description field and then click on Datasheet. Finally, view the PDF by clicking on the highlighted "Download" text or hold down the right-mouse button while clicking on "Download" to save the PDF to disk.

STMicroelectronics: us.st.com/stonline/discretes/ index.shtml. Click on "Datasheets" at the top and then scroll down to the bottom of the listing to find "Radio Frequency, RF Power." Then specify the frequency range you want and either view the PDF directly or download the PDF by holding down the right-mouse button while clicking on the device's part number.

RF Power Transistors Recommended for New Designs

	Outpu Power		Gain	Typ Suppl Voltage	У			Output Power		Gain	Typ Suppl Voltage	Y	
Device	(W)	Туре	(dB)	(V)	Case	Mfr	Device	(W)	Туре	(dB)	(V)	Case	Mfr
1.5 to 30 I	MHz, HF		N				VHF to 512	2 MHz					
MRF171A BLF145 MRF148A SD2918 SD1405 SD1733 SD1407 SD1729 BLF147 BLF175 SD1726 SD1727 MRF150 SD1727 MRF150 SD1731 SD1731 SD1728 SD2923 SD2933 MRF154	30 30 30 75 75 100 125 130 150 150 150 150 150 220 220 220 220 250 300 300 600	MOS MOS MOS BJT BJT BJT BJT BJT BJT BJT BJT BJT BJT	20 24 18 13 14 11 15 12 17 20 24 14 17 16 12 13 14.5 16 18 17	28 28 50 12.5 50 12.5 28 28 28 50 50 50 50 50 50 50 50 50 50	211-07/2 SOT123A 211-07/2 M113 M174 M135 M174 M174 SOT121B SOT121B SOT121B SOT121B SOT121B SOT123A M174 M164 211-07/2 M153 M174 M177 M177 M177 368-03/2	MO PH OS TT TT TT HH H HT TO ST TT TT TO ST ST ST ST OT TT TT TO ST ST S	BLF521 MRF158 MRF160 BLF542 VLF544 MRF166C MRF166W BLF546 MRF393 MRF275L BLF548 MRF275G UHF to 960 BLT70 BLT80 BLT70 BLT80 BLT71/8 BLT1043 BLF1043 BLF1047 BLF1048	80 100 100 150 150	MOS MOS MOS MOS MOS MOS BJT MOS MOS BJT BJT BJT BJT BJT BJT BJT BJT BJT BJT	10 17.5 17 13 11 16 14 11 7.5 8.8 10 10 6 6 6 6 6 16 14 14 14	12.5 28 28 28 28 28 28 28 28 28 28 28 28 28	SOT172D 305A-01/2 249-06/3 SOT171A SOT171A 319-07/3 412-01/1 SOT268A 744A-01/1 333-04/2 SOT262A 375-04/2 SOT223 SOT223 SOT223 SOT223 SOT223 SOT223 SOT223 SOT223 SOT223 SOT223 SOT223 SOT223 SOT223 SOT538A SOT467C SOT541A SOT502A	РНООРН МООРНООРНООРН РНООРНООРНООРНООРНООРНООРНО
50 to 175	MHz							90	1003	14	20	301302A	ГП
BLF202 BLF242 SD1274 BLF245 SD1275 BLF246B SD1477 SD1480 SD2921 MRF141 MRF151 SD2931 BLF248 SD2932 VHF to 22 MRF134 MRF136 MRF173 MRF174	2 5 30 40 60 100 150 150 150 150 300 300 0 MHz 5 15 80 125	MOS BJT MOS BJT MOS BJT BJT MOS MOS MOS MOS MOS MOS MOS	10 13 10 13 9 14 6 9.2 12.5 13 13 14 10 15 10.6 16 13 11.8	12.5 28 13.6 28 12.5 28 50 28 50 28 50 28 50 28 50 28 50	SOT409A SOT123A M135 SOT123 M135 SOT161A M111 M174 211-11/2 211-11/2 211-11/2 M174 SOT262 M244 211-07/2 211-07/2 211-07/2 211-11/2	PH PH ST PH ST ST ST MO ST PH ST MO MO MO MO MO	 Notes: Manufacturer codes: MI = Mitsubishi; MO = Motorola; PH = Philips; ST = STMicroelectronics There is a bewildering variety of package types, sizes and pir out connections. (For example, for the 71 different transistors this table there are 35 different packages.) See the data shee on each manufacturer's Web pages for details. Mitsubishi: www.mitsubishichips.com/data/datasheets/ hf-optic/index.html, then click on "Si Modules." Scroll to section for "Si Discrete" and then choose frequency range and device. Motorola: design-net.com/redirect/books/index.html. Type the part number in the search window at the upper left of t screen. If you receive a message that "No results were found for your search" the part you want is probably obsolete. Click on the text highlighted in red as "Motorola's SPS Literature Distribution Center Archive Site." In the Description box, type the part number you want, click the 						
BLF278 VHF to 47	250 0 MH7	MOS	14	50	SOT261A1	РП						Type the pa ht corner of	
BLT50 SD2900 SD1433 SD2902 SD2904 SD2903 SD1488 SD1434 MRF392 SD2921	1.2 5 10 15 30 30 38 45 125 150	BJT MOS BJT MOS MOS BJT BJT BJT MOS	10 13.5 7 12.5 10 13 5.8 5 8 12.5	7.5 28 12.5 28 28 28 12.5 12.5 28 50	SOT223 M113 M122 M113 M229 M111 M111 744A-01/1 M174	PH ST ST ST ST ST ST MO ST	 screen. Click on the highlighted part number in the Description field and then click on Datasheet. Finally, view the PDF by clicking on the highlighted "Download" text or hold down the right-mouse button while clicking on "Download" to save the PDF to disk. STMicroelectronics: us.st.com/stonline/discretes/index. shtml. Click on "Datasheets" at the top and then scroll down to the bottom of the listing to find "Radio Frequency, RF Power." Then specify the frequency range you want and either view the PDF directly or download the PDF by holding down the right-mouse button while clicking on the device's part number. 						

Table 7.33 Power FETs

Device	Туре	VDSS min (V)	RDS(on) max (Ω)	ID max (A)	PD max (W)	Case†	Mfr
BS250P	P-channel	45	14	0.23	0.7	E-line	Z
IRFZ30	N-channel	50	0.050	30	75	TO-220	IR
MTP50N05E	N-channel	50	0.028	25	150	TO-220AB	М
IRFZ42	N-channel	50	0.035	50	150	TO-220	IR
2N7000	N-channel	60	5	0.20	0.4	E-line	Z
VN10LP	N-channel	60	7.5	0.27	0.625	E-line	Z
VN10KM	N-channel	60	5	0.3	1	TO-237	S Z
ZVN2106B	N-channel	60	2	1.2	5	TO-39	Z
IRF511	N-channel	60	0.6	2.5	20	TO-220AB	Μ
MTP2955E	P-channel	60	0.3	6	25	TO-220AB	Μ
IRF531	N-channel	60	0.180	14	75	TO-220AB	Μ
MTP23P06	P-channel	60	0.12	11.5	125	TO-220AB	М
IRFZ44	N-channel	60	0.028	50	150	TO-220	IR
IRF531	N-channel	80	0.160	14	79	TO-220	IR
ZVP3310A	P-channel	100	20	0.14	0.625	E-line	Z
ZVN2110B	N-channel	100	4	0.85	5	TO-39	Z
ZVP3310B	P-channel	100	20	0.3	5	TO-39	Z
IRF510	N-channel	100	0.6	2	20	TO-220AB	М
IRF520	N-channel	100	0.27	5	40	TO-220AB	М
IRF150	N-channel	100	0.055	40	150	TO-204AE	М
IRFP150	N-channel	100	0.055	40	180	TO-247	IR
ZVP1320A	P-channel	200	80	0.02	0.625	E-line	Z
ZVN0120B	N-channel	200	16	0.42	5	TO-39	Z
ZVP1320B	P-channel	200	80	0.1	5	TO-39	Z
IRF620	N-channel	200	0.800	5	40	TO-220AB	М
MTP6P20E	P-channel	200	1	3	75	TO-220AB	М
IRF220	N-channel	200	0.400	8	75	TO-220AB	M
IRF640	N-channel	200	0.18	10	125	TO-220AB	М

Manufacturers: IR = International Rectifier; M = Motorola; S = Siliconix; Z = Zetex.

[†]For package shape, size and pin-connection information, see manufacturers' data sheets. Many retail suppliers offer data sheets to buyers free of charge on request. Data books are available from many manufacturers and retailers.

Table 7.34 Logic IC Families

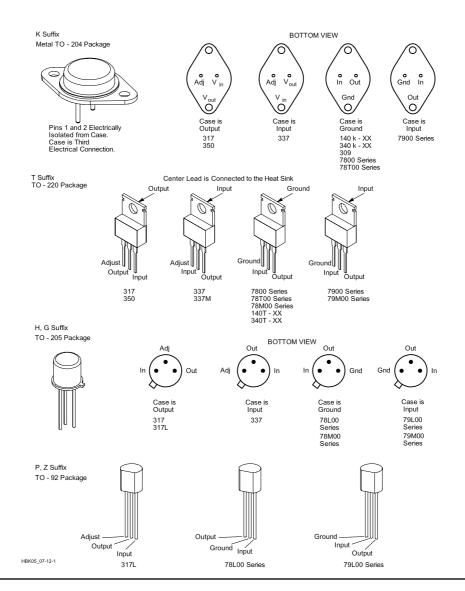
	Propaga for C _L = (ns)	ntion Delay 50 pF	Max Clock Frequency	Power Dissipation (CL = 0) @ 1 MHz	Output Current @ 0.5 V	Input Current	Threshold	Supply	v Voltage (V)
Туре	Тур	Max	(MHz)	(mW/gate)	max (mA)	(Max mA)	Voltage (V)	Min	Тур	Max
CMOS										
74AC	3	5.1	125	0.5	24	0	V+/2	2	5 or 3.3	6
74ACT	3	5.1	125	0.5	24	0	1.4	4.5	5	5.5
74HC	9	18	30	0.5	8	0	V+/2	2	5	6
74HCT	9	18	30	0.5	8	0	1.4	4.5	5	5.5
4000B/74C (10 V)	30	60	5	1.2	1.3	0	V+/2	3	5 - 15	18
4000B/74C (5V)	50	90	2	3.3	0.5	0	V+/2	3	5 - 15	18
TTL										
74AS	2	4.5	105	8	20	0.5	1.5	4.5	5	5.5
74F	3.5	5	100	5.4	20	0.6	1.6	4.75	5	5.25
74ALS	4	11	34	1.3	8	0.1	1.4	4.5	5	5.5
74LS	10	15	25	2	8	0.4	1.1	4.75	5	5.25
ECL										
ECL III	1.0	1.5	500	60	_	_	-1.3	-5.19	-5.2	-5.21
ECL 100K	0.75	1.0	350	40	_	_	-1.32	-4.2	-4.5	-5.2
ECL100KH	1.0	1.5	250	25	—	—	-1.29	-4.9	-5.2	-5.5
ECL 10K	2.0	2.9	125	25	—	_	-1.3	-5.19	-5.2	-5.21
GaAs										
10G	0.3	0.32	2700	125	_	_	-1.3	-3.3	-3.4	-3.5
10G	0.3	0.32	2700	125	—	—	-1.3	-5.1	-5.2	-5.5

Source: Horowitz (W1HFA) and Hill, The Art of Electronics—2nd edition, page 570. © Cambridge University Press 1980, 1989. Reprinted with the permission of Cambridge University Press.

Three-Terminal Voltage Regulators

Listed numerically by device

Device	Description	Package	Voltage	Current (Amps)
317 317	Adj Pos Adj Pos	TO-205 TO-204,TO-220		1.5
317L	Low Current Adj Pos	TO-205,TO-92	+1.2 to +37	0.1
317M	Med Current Adj Pos	TO-220	+1.2 to +37	0.5
338	Adj Pos	TO-3	+1.2 to +32	5.0
350	High Current Adj Pos	TO-204,TO-220	+1.2 to +33	3.0
337	Adj Neg	TO-205	-1.2 to -37	0.5
337	Adj Neg	TO-204,TO-220	-1.2 to -37	1.5
337M	Med Current Adj Neg	TO-220	-1.2 to -37	0.5
309		TO-205	+5	0.2
309		TO-204	+5	1.0
323		TO-204,TO-220	+5	3.0
140-XX	Fixed Pos	TO-204,TO-220	Note 1	1.0
340-XX		TO-204,TO-220		1.0
78XX		TO-204,TO-220		1.0
78LXX		TO-205,TO-92		0.1
78MXX		TO-220		0.5


Device	Description	Package	Voltage	Current (Amps)
78TXX	- :	TO-204		3.0
79XX	Fixed Neg	TO-204,TO-220	Note 1	1.0
79LXX		TO-205,TO-92		0.1
79MXX		TO-220		0.5

Note 1—XX indicates the regulated voltage; this value may be anywhere from 1.2 V to 35 V. A 7815 is a positive 15-V regulator, and a 7924 is a negative 24-V regulator.

The regulator package may be denoted by an additional suffix, according to the following:

Package	Suffix
TO-204 (TO-3)	к
TO-220	Т
TO-205 (TO-39)	H, G
TO-92	P, Z

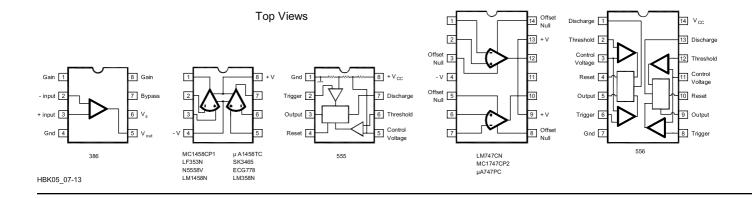
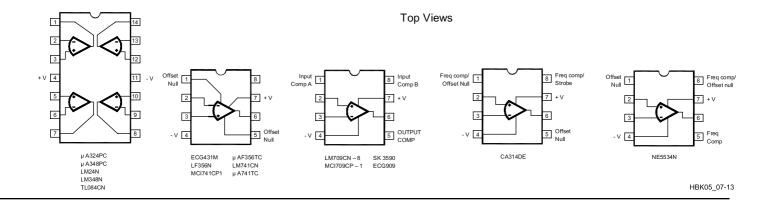

For example, a 7812K is a positive 12-V regulator in a TO-204 package. An LM340T-5 is a positive 5-V regulator in a TO-220 package. In addition, different manufacturers use different prefixes. An LM7805 is equivalent to a mA7805 or MC7805.

Table 7.36 Op Amp ICs


Listed by device number

Listed b	y device r	number			Max	Min dc	Min	Min Small-	Min	
			Max	Min Input	Offset	Open-	Output	Signal	Slew	
	_	Freq	Supply*	Resistance		Loop	Current	Bandwidth	Rate	
Device	Туре	Comp	(V)	(MΩ)	(mV)	Gain (dB)	(mA)	(MHz)	(V/µs)	Notes
101A	Bipolar	ext	44	1.5	3.0	79	15	1.0	0.5	General purpose
108	Bipolar	ext	40	30	2.0	100	5	1.0		
124	Bipolar	int	32		5.0	100	5	1.0		Quad op amp, low power
148	Bipolar	int	44	0.8	5.0	90	10	1.0	0.5	Quad 741
158	Bipolar	int	32		5.0	100	5	1.0		Dual op amp, low power
301	Bipolar	ext	36	0.5	7.5	88	5	1.0	10	Bandwidth extendable with
004	Dissilar	1	00		7.0	100	10	1.0		external components
324	Bipolar	int	32	100	7.0	100	10	1.0	10	Quad op amp, single supply
347	BIFET	ext		106	5.0	100	30	4	13	Quad, high speed
351 353	BiFET BiFET	ext ext		106 106	5.0 5.0	100 100	20 15	4 4	13 13	
353	BIFET	ext		106	5.0 10.0	100	25	4 2.5	5	
355B	BIFET	ext		106	5.0	100	25 25	2.5	5	
356A	BIFET	ext		106	2.0	100	25	2.5 4.5	12	
356B	BIFET	ext		106	2.0 5.0	100	25	5.0	12	
357	BIFET	ext		106	10.0	100	25	20.0	50	
357B	BIFET	ext		106	5.0	100	25	20.0	30	
358	Bipolar	int	32	100	7.0	100	10	1.0	00	Dual op amp, single supply
411	BIFET	ext		106	2.0	100	20	4.0	15	Low offset, low drift
709	Bipolar	ext	36	0.05	7.5	84	5	0.3	0.15	
741	Bipolar	int	36	0.3	6.0	88	5	0.4	0.2	
741S	Bipolar	int	36	0.3	6.0	86	5	1.0	3	Improved 741 for AF
1436	Bipolar	int	68	10	5.0	100	17	1.0	2.0	High-voltage
1437	Bipolar	ext	36	0.050	7.5	90		1.0	0.25	Matched, dual 1709
1439	Bipolar	ext	36	0.100	7.5	100		1.0	34	
1456	Bipolar	int	44	3.0	10.0	100	9.0	1.0	2.5	Dual 1741
1458	Bipolar	int	36	0.3	6.0	100	20.0	0.5	3.0	
1458S	Bipolar	int	36	0.3	6.0	86	5.0	0.5	3.0	Improved 1458 for AF
1709	Bipolar	ext	36	0.040	6.0	80	10.0	1.0		
1741	Bipolar	int	36	0.3	5.0	100	20.0	1.0	0.5	
1747	Bipolar	int	44	0.3	5.0	100	25.0	1.0	0.5	Dual 1741
1748	Bipolar	ext	44	0.3	6.0	100	25.0	1.0	0.8	Non-comp-ensated 1741
1776	Bipolar	int	36	50	5.0	110	5.0	0.7	0.35	Micro power, programmable
3140	BiFET	int	36	1.5×106	2.0	86	1	3.7	9	Strobable output
3403	Bipolar	int	36	0.3	10.0	80	10	1.0	0.6	Quad, low power
3405 3458	Bipolar Bipolar	ext int	36 36	0.3	10.0 10.0	86 86	10 10	1.0 1.0	0.6 0.6	Dual op amp and dual comparator
3400	Bipolar	m	50	0.5	10.0	00	10	1.0	0.0	Dual, low power

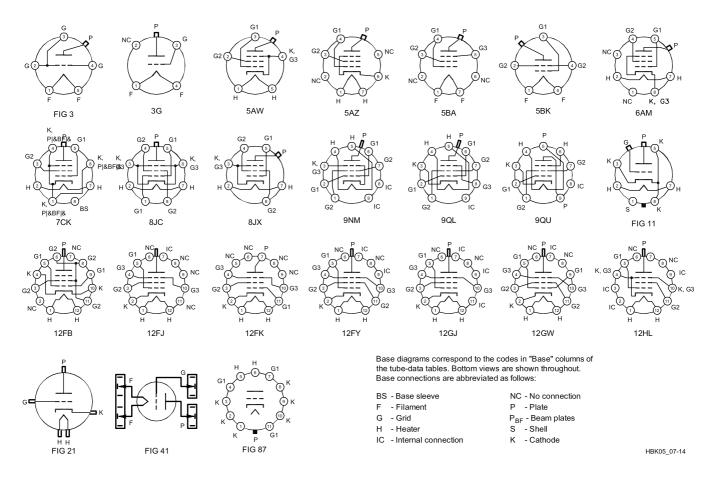
Device	Туре	Freq Comp	Max Supply* (V)	Min Input Resistance (MΩ)	Max Offset Voltage (mV)	Min dc Open- Loop Gain (dB)	Min Output Current (mA)	Min Small- Signal Bandwidth (MHz)	Min Slew Rate (V/μs)	Notes
3476	Bipolar	int	36	5.0	6.0	92	12		0.8	
3900	Bipolar	int	32	1.0		65	0.5	4.0	0.5	Quad, Norton single supply
4558	Bipolar	int	44	0.3	5.0	88	10	2.5	1.0	Dual, wideband
4741	Bipolar	int	44	0.3	5.0	94	20	1.0	0.5	Quad 1741
5534	Bipolar	int	44	0.030	5.0	100	38	10.0	13	Low noise, can swing 20V P-P across 600
5556	Bipolar	int	36	1.0	12.0	88	5.0	0.5	1	Equivalent to 1456
5558	Bipolar	int	36	0.15	10.0	84	4.0	0.5	0.3	Dual, equivalent to 1458
34001	BiFET	int	44	106	2.0	94		4.0	13	JFET input
AD745	BIFET	int	±18	104	0.5	63	20	20	12.5	Ultra-low noise, high speed
LT1001 LT1007 LT1360	Extremely	low nois	se (0.06 µ'	: voltage (15 μ V p-p), very h ate (800 V/μs	igh gain (2	0 x 10 ⁶ into	2 k Ω load)		
NE5514	Bipolar	int	±16	100	1		10	3	0.6	
NE5532	Bipolar	int	±20	0.03	4	47	10	10	9	Low noise
OP-27A	Bipolar	ext	44	1.5	0.025	115		5.0	1.7	Ultra-low noise, high speed
OP-37A	Bipolar	ext	44	1.5	0.025	115		45.0	11.0	
TL-071	BiFET	int	36	10 ⁶	6.0	91		4.0	13.0	Low noise
TL-081	BIFET	int	36	10 ⁶	6.0	88		4.0	8.0	
TL-082	BIFET	int	36	10 ⁶	15.0	99		4.0	8.0	Low noise
TL-084	BIFET	int	36	10 ⁶	15.0	88		4.0	8.0	Quad, high-performance AF
TLC27M2	CMOS	int	18	10 ⁶	10	44		0.6	0.6	Low noise
TLC27M4	CMOS	int	18	10 ⁶	10	44		0.6	0.6	Low noise
	0					•••		0.0	0.0	2011 110100

*From -V to +V terminals

Table 7.37 Triode Tra	Table 7.37 Triode Transmitting Tubes		- Poet																	
The full	The full 1988 Handbook table of power tube specifications Type Power Plate Plate Grid dc Freq Ampl Fil Diss.(W)(V) (mA) (mA) (MHz) Factor (V)	ndbook Plate V)(V)	table o Plate (mA)	of power Grid dc (mA)	tube sp Freq (MHz)	secificati <i>Ampl</i> <i>Factor</i>	ons and Fil (V)	and base diagrams can be viewed in pdf format on the <i>ARRLWeb</i> at www.arrl.org/notes/1921/pwrtubes.pdf. <i>Fil C_{IN} C_{GP} C_{OUT} Base Service Plate Grid Plate Grid dc Input P-P Output (A) (pF) (pF) (pF) Diagram Class¹ (V) (V) (mA) (mA) (kΩ) (W)</i>	rams c $C_N \\ (pF)$	an be v C _{GP} (<i>pF</i>)	riewed i C _{OUT} (<i>pF</i>)	in pdf for Base Diagram	mat on th <i>Service</i> <i>Class</i> ¹	le ARR Plate (V)	LWeb at Grid (V)	t www.arr Plate (mA)	·l.org/no t Grid dc (mA)	tes/192 Input (W)	1 1/pwrtu P-P (kΩ)	bes.pdf. <i>Output</i> (W)
5675	5	165	30	80	3000	20	6.3	0.135	2.3	1.3	0.09	Fig 21	GGO	120	80 	25	4	3/4	Ι	0.05
2C40	6.5	500	25	I	500	36	6.3	0.75	2.1	1.3	0.05	Fig 11	CT0	250	-2	20	0.3	3/4	Ι	0.075
5893	8.0	400	40	13	1000	27	6.0	0.33	2.5	1.75	0.07	Fig 21	ст сР	350 300	-33 -45	35 30	13 12	2.4 2.0	11	6.5 6.5
2C43	12	500	40	Ι	1250	48	6.3	0.9	2.9	1.7	0.05	Fig 11	СТО	470	I	387	I	3/4	Ι	92
811-A	65	1000	175	50	60	160	6.3	4.0	5.9	5.6	0.7	3G	CT CP B/CG AB1	1500 1250 1250 1250	-70 -120 0	173 140 21/175 27/175	40 28 13	7.1 10.0 3.0		200 135 165 155
812-A	65	1500	175	35	60	29	6.3	4.0	5.4	5.5	0.77	3G	CT CP B ²	1500 1250 1500	-120 -115 -48	173 140 28/310	30 35 270 ⁴	6.5 7.6 5.0	13.2 13.2	190 130 340
3CX100A56 100 70	5 ⁶ 100 70	1000 600	125 ⁵ 100 ⁵	50	2500	100	6.0	1.05	7.0	2.15	0.035		AGG CP	800 600	-20 -15	80 75	30 40	99		27 18
2C39	100	1000	60	40	500	100	6.3	1.1	6.5	1.95	0.03	1	G1C CTO CP	600 900 600	-35 -40 -150	60 90 100 ⁵	40 30 50	5.0 34 34	111	20 40 ¾
AX9900,	135	2500	200	40	150	25	6.3	5.4	5.8	5.5	0.1	Fig 3	СТ	2500	-200	200	40	16	I	390
5866													$^{\rm CP}_{\rm B^2}$	2000 2500	-225 -90	127 80/330	40 350 ⁴	16 14 ³	— 15.68	204 560
572B	160	2750	275			170	6.3	4.0	Ι	I	I	3G	ст	1650	-70	165	32	9	Ι	205
T160L													B/GG ²	2400	-2.0	90/200	I	100	Ι	600
8873	200	2200	250		500	160	6.3	3.2	19.5	7.0	0.03	Fig 87	AB_2	2000		22/500	983	27 ³	I	505
8875	300	2200	250		500	160	6.3	3.2	19.5	7.0	0.03	1	AB_2	2000		22/500	983	27 ³	I	505
833A	350	3300	500	100	30	35	10	10	12.3	6.3	8.5	Fig 41	CTO CTO	2250 3000 2500	-125 -160 -300	445 335 335	85 70 75	20 23 20 53		780 800 635
	450 ⁶	4000 ⁶ 500	500	100	206	35	10	10	12.3	6.3	8.5	Fig 41	B2P	3000	-240 -70	335 335 100/750	70 400 ⁴	26 204	9.5	800 1650
8874	400	2200	350	1	500	160	6.3	3.2	19.5	7.0	0.03	1	AB_2	2000		22/500	983	273	I	505
3-400Z	400	3000	400		110	200	5	14.5	7.4	4.1	0.07	Fig 3	B/GG	3000	0	100/333	120	32	I	655
3-500Z	500	4000	400		110	160	5	14.5	7.4	4.1	0.07	Fig 3	B/GG	3000		370	115	30	5	750
3-600Z	600	4000	425	I	110	165	5	15.0	7.8	4.6	0.08	Fig 3	B/GG B/GG	3000 3500		400 400	118 110	33 35		810 950
3CX800A7800	A7 800	2250	600	60	350	200	13.5	1.5	26		6.1	Fig 87	AB_2GG^7	2200	-8.2	500	36	16	Ι	750
3-1000Z	1000	3000	800		110	200	7.5	21.3	17	6.9	0.12	Fig 3	B/GG	3000	0	180/670	300	65	I	1360
3CX1200A7 1200	47 1200	5000	800		110	200	7.5	21.0	20	12	0.2	Fig 3	AB_2GG	3600	-10	700	230	85	1	1500
8877	1500	4000	1000		250	200	5.0	10	42	10	0.1		AB_2	2500	-8.2	1000	1	57	Ι	1520

¹Service Class Abbreviations: AB₂GD=AB₂ linear with 50-Ω passive grid circuit. B=Class-B push-pull CP=Class-C plate-modulated phone CT=Class-C telegraph

Tetrode and Pentode Transmitting Tubes


Table 7.38

GG=Grounded-grid (grid and screen connected together) ²Maximum signal value ³Peak grid-grid volts ⁴Forced-air cooling required. 5 Two tubes triode-connected, G2 to G1 through 20kΩ to G2. 6 Typical operation at 175 MHz. 7 ±1.5 V. 8 Values are for two tubes. 9 Single tone. ¹⁰24-Ω cathode resistance.
¹¹Base same as 4CX250B. Socket is Russian SK2A.
¹²Socket is Russian SK1A.
¹³Socket is Russian SK3A.

		410010			}																
	Max. Plate	Max. Plate	Max. Screen	x. reen	Max. Freq.	Max. Filament Freq. Volts	Amps	C _{IN}	C_{GP}	C _{OUT} E	Base S	Serv. F	Plate	Screen	Grid H	Plate	Screen	Grid	$P_{\rm IN}$	д-д	Pour
			M)	() ()	(V) (ZHW)	3	(A)	Ē		_)				(mA)	(mA)	(mA)	(M)	(KO)	(M)
6146/ 29	52	750	e	250	60	6.3	1.25	13 (0.24	8.5 7	7CK 0	CT 5	200	170 -	99	135	6	2.5	0.2	I	48
6146A											0	CT 7	002	160	-62 -63	120	Ħ	3.1	0.2	I	20
8032 24	25	750	e	250	60	12.6	0.585	13 (0.24	8.5 7	7CK 0	CT ⁶ 4	400	190	-54	150	10.4	2.2	3.0	I	35
6883											00	CP 6 CP 6	600	150 150	-87 1	112 112	7.8 7.8	3.4 3.4	0.4 0.4		32 52
6159B/ 2	25	750	ო	250	60	26.5	0.3	13 0	0.24	8.5 7	A A A	AB ₂ ⁸ 6 AB ₂ ⁸ 7 AB ₁ ⁸ 7	600 750 750	190 165 195	-46	28/270 22/240 23/220	1.2/20 0.3/20 1/26	22 2.6 ² 100 ³	0.3 0.4	5 7.4 8	113 131 120
807, 807W 30		750	3.5	300	60	6.3	0.9	12	0.2	7 5	5AW C	CT 7	750 2	250 -	-45 1	100	9	3.5	0.22	Ι	50
5933											Q	CP 6 AB ₁ 7	600 750	275 . 300 .	- 35 1	100 15/70	6.5 3/8	4 753	0.4		42.5 72
1625 3	30	750	3.5	300	60	12.6	0.45	12	0.2	7 5	5AZ E	B ⁵ 7	750 -		0	5/240	1	555 ³	5.3^{2}	6.65	120
6146B 3	35	750	ი	250	60	6.3	1.125	13 (0.22	8.5 7	7CK 0	CT 7	750 2	200 -	-77 1	160	10	2.7	0.3	Ι	85
8298A											04	CP 6 AB ₁ 7	600 750	175 200	-92 -48	140 24/125	9.5 6.3	3.4 	0.5	3.5	62 61
813 1:	125	2500	50	800	30	10.0	5.0	16.3 0	0.25	14.0 5	P P P O O	CTO 1 CTO 2 AB1 2 AB2 ⁸ 2 AB2 ⁸ 2	1250 2500 2500 2500	300 750 750 750	-75 -155 -95 -95 -95 -95	180 220 25/145 40/315 35/260	35 40 27 ² 1.5/58 1.2/55	12 15 0 230 ³ 235 ³	$\begin{array}{c} 1.7\\ 4\\ 0\\ 0.1^{2}\\ 0.35^{2}\end{array}$	116 116	170 375 245 455 650
4CX250B 2	250	2000	5	400	175	6.0	2.9	18.5 (0.04	4.7 -		CTO 2 CP 1 AB ₁ ⁸ 2	2000 1500 2000	250 250 350	-50 00 00 00 00 00 00 00 00 00 00 00 00 0	250 200 500	25 25 30	27 17 100	2:8 0.1	8.26	410 250 650
4-400A 4	4004	4000	35	600	110	5.0	14.5	12.5 (0.12	4.7 5	2BK	CT/CP 4 GG 2 AB ₁ 2	4000 2500 2500	300 0 750	-170 2 0 -130 9	270 80/270 ⁹ 95/317	22.5 55 ⁹ 0/14	10 100 ⁹	10 39 ⁹ 0	4	720 435 425
4CX400A 4	400	2500	ω	400	500	6.3	3.2	24 (. 80.0	7	See ¹¹ A	$AB_2GD2200$ $AB_2GD2500$		325 400	-30 -35 -1	100/270 100/400	22 18	~ - v	9 13		405 610
4CX800A 8	800	2500	15	350	150	12.6	3.6	51 (0.9	11 0	See ¹² A	AB ₂ GD2200		350 -	-56 1	160/550	24		32	Ι	750
4-1000A 1	1000	6000	75	1000	I	7.5	21	27.2 (0.24	7.6 –	1	CT 3	3000	500	-150 7	700	146	38	=	Ι	1430
8166												CP AB ₂ GG 3	3000 3000 3000	500	-200 6 -60 3	600 300/1200 100/700 ⁹	145 0/95 105 ⁹	36 170 ⁹	12 11 130 ⁹	7 2.5	1390 3000 1475
4CX1000A 1000		3000	12	400	110	6.0	9.0	81.5 (0.01	11.8		AB ₁ ⁸ 2 AB ₁ ⁸ 2 AB ₁ ⁸ 3	2000 2500 3000	325 325 325		500/2000 500/2000 500/1800	4/60 4/60 4/60			2.5 3.1 3.85	2160 2920 3360
4CX1500B 1500		3000	12	400	110	6.0	10.0	81.5 (0.02	11.8 -		AB ₁ 2	2750 2	225 -	-34	300/755	-14/60	0.95	1.5	1.9	1100
4CX1600B 1600		3300	20	350	250	12.6	4.4	86 (0.15	12	See ¹³ A	AB ₂ GD2400 AB ₂ GD2400				0	20 48	20	28 83 ¹⁰		1600 1500
											4	AB ₂ GD3200		240	-57	200/740	21	.	33	Ι	1600

	Output Power (W)	25	25	25	25	63 35	8 58	63 35	63 38	61 37	82	82	82	82	82	82	82
	Drive Power (W)	0.1	0.1	0.1	0.1	0.43 	0.76 	0.43 —	0.75 	0.32 —	12.5	12.5	12.5	12.5	12.5	12.5	12.5
	Grid Curr. (A)			1.5	1.5	ا ى		ا ى	∞	4		I	I	I	I	I	I
	Screen Curr. (A)	12	12	12	12	15 4	12.5 4.5	13.3 4.2	20 4.5	13.7 4.4	I	I	I	I	I	I	I
	Plate Curr. (A)	100	100	100	100	180 85	232 133	180 85	202 98	190 85	150	150	150	150	150	150	150
	Grid Volt. (V)			-40	-40	-75 -43	-85 -46	-75 -42	-80 -35	-75 -42	<u>-</u>	.	<u>-</u>	.	- -	.	-11
	Screen Volt. (V)	200	200	200	200	200 200	140 140	200 200	150 150	200 200	0	0	0	0	0	0	0
	Plate Volt. (V)		400	400	400	500 500	500 500	500 500	450 450	500 500	800	800	800	800	800	800	800
	Class of Service	o	ပ	o	υ	с АВ ₁	СC	gC	СO	gC	СC	gC	GC				
	Base	8JC	6AM	6AM	8JX	WN6	12FB	9QL	9QL	12FJ	12FK	12FY	12GW	12GJ	12HL	9QL	12GW
	C _{OUT} (pF)	1	7	8	7	6.5	10	9	14.5	7	7	10	16	18	13	11	20
	C _{GP} (pF)	0.5	0.5	0.4	0.55	0.26	0.56	0.2	I	0.6	0.34	0.7	0.8	0.4	0.8	0.46	1.0
	r C _{IN} (pF)	23	15	33	15	15	24	15	24.3	16	16	24	40	33	25	22	40
	Heater d. 6.3 V (A)	2.5	1.2	1.2	1.2	1.2	2.25	1.2	2.5	1.2	1.2	2.25	2.85	2.25	N	2.5	2.65
		10.5k	7.3k	6k	6.6k	7.1k	11.3k	7.1k	10.5k	7.3k	7.3k	I	14k	13.4k	11.5k	9.6k	14k
TV Deflection Tubes		3.2	3.6	3.6	4.5	3.5	5.5	3.5	5	3.5	3.5	5.5	ъ	£	ъ	£	7
flectior	Plate Diss. (W)	24	18	17	17.5	17.5	28	17.5	30	17.5	17.5	30	33	30	28	30	38.5
TV De	Type	6DQ5	6DQ6B	6FH6	6GC6	6GJ5	6HF5	6JB6	6JE6	9MG	9NC9	6JS6C	6KD6	6LB6	6LG6	6LQ6	6MH6

Table 7.40 EIA Vacuum-Tube Base Diagrams

Alphabetical subscripts (D = diode, P = pentode, T = triode and HX = hexode) indicate structures in multistructure tubes. Subscript CT indicates filament or heater center tap.

Generally, when pin 1 of a metal-envelope tube (except all triodes) is shown connected to the envelope, pin 1 of a glass-envelope counterpart (suffix G or GT) is connected to an internal shield.

Properties of Common Thermoplastics Polyvinyl Chloride (PVC)

Advantages:

- Can be compounded with plasticizers, filters, stabilizers, lubricants and impact modifiers to produce a wide range of physical properties
- · Can be pigmented to almost any color
- Rigid PVC has good corrosion and stain resistance, thermal & electrical insulation, and weatherability

Disadvantages:

- Base resin can be attacked by aromatic solvents, ketones, aldehydes, naphthalenes, and some chloride, acetate, and acrylate esters
- Should not be used above 140°

Applications:

Conduit

- · Conduit boxes
- Housings
- Pipe
- Wire and cable insulation

Polystyrene

Advantages:

- Low cost
- Moderate strength
- Electrical properties only slightly affected by temperature and humidity
- Sparkling clarity
- Impact strength is increased by blending with rubbers, such as polybutadiene
- Disadvantages:

Brittle

· Low heat resistance

Applications:

Capacitors

- Light shields
- Knobs

Polyphenylene Sulfide (PPS)

Advantages:

- · Excellent dimensional stability
- Strong
- High-temperature stability
- Chemical resistant
- Inherently completely flame retardant
- Completely transparent to microwave radiation
- Applications:
- R3-R5 have various glass-fiber levels that are suitable for applications demanding high mechanical and impact strength as well as good dielectric properties
- R8 and R10 are suitable for high arc-resistance applications
- R9-901 is suitable for encapsulation of electronic devices

Polypropylene

Advantages:

Low density

- Good balance of thermal, chemical, and electrical properties
- Moderate strength (increases significantly with glass-fiber reinforcement)

Disadvantages:

- Electrical properties affected to varying degrees by temperature (as temperature goes up, dielectric strength increases and volume resistivity decreases)
- Inherently unstable in presence of oxidative and UV radiation
- Applications:
- Automotive battery cases

Chapter 7

- Blower housings
- Fan blades
- Insulators
- Lamp housings
- Support for current-carrying electrical components
- TV yokes

7.36

Polyethylene (PE)

- Advantages: Low Density PE
- Good toughness
- Excellent chemical resistance
- Excellent coefficient of friction
- Near zero moisture absorption
- Easy to process
- Relatively low heat resistance
- Disadvantages:
- Susceptible to environmental and some chemical stress cracking
- Wetting agents (such as detergents) accelerate stress cracking
 Advantages: High Density PE

• Same as above, plus increased rigidity and tensile strength

- Advantages: Ultra-High Molecular Weight PE
- Outstanding abrasion resistance
- Low coefficient of friction
- High impact strength
- Excellent chemical resistance
- Material does not break in impact strength tests using standard notched specimens

Applications:

- Bearings
- Components requiring maximum abrasion resistance, impact strength, and low coefficient of friction

Phenolic

- Advantages:
- Low cost
- Superior heat resistance
- High heat-deflection temperatures
- Good electrical properties
- Good flame resistance
- Excellent moldability
- Excellent dimensional stability
- Good water and chemical resistance
- Applications:
- Commutators and housings for small motors
- Heavy duty electrical components
- Rotary-switch wafers
- Insulating spacers

Nylon

Advantages:

Disadvantages:

use

Bearings

Rope

Applications:

Wire coatings

· Wear plates

Wire connectors

· Housings and tubing

- Excellent fatigue resistance
- Low coefficient of friction

• All nylons absorb moisture

- Toughness as a function of degree of crystalinity
- Resists many fuels and chemicals
- Good creep- and cold-flow resistance as compared to less rigid thermoplastics
 Resists repeated impacts

· Nylons that have not been compounded with a UV stabilizer are

sensitive to UV light, and thus not suitable for extended outdoor

Table 7.42Coaxial Cable End Connectors

UHF Connectors

Military No.	Style	Cable RG- or Description
PL-259	Str (m)	8, 9, 11, 13, 63, 87, 149, 213, 214, 216, 225
UG-111 SO-239 UG-266	Str (m) Pnl (f) Blkhd (f)	59, 62, 71, 140, 210 Std, mica/phenolic insulation Rear mount, pressurized, copolymer of styrene ins.
Adapters		
PL-258 UG-224,363 UG-646 M-359A M-358	Str (f/f) Blkhd (f/f) Ang (f/m) Ang (m/f) T (f/m/f)	Polystyrene ins. Polystyrene ins. Polystyrene ins. Polystyrene ins. Polystyrene ins.
Reducers		

UG-175	55, 58, 141, 142 (except 55A)
UG-176	59, 62, 71, 140, 210

Family Characteristics:

All are nonweatherproof and have a nonconstant impedance. Frequency range: 0-500 MHz. Maximum voltage rating: 500 V (peak).

N Connectors

Military No.	Style	Cable RG-	Notes
UG-21	Str (m)	8, 9, 213, 214	50 Ω
UG-94A	Str (m)	11, 13, 149, 216	70 Ω
UG-536	Str (m)	58, 141, 142	50 Ω
UG-603	Str (m)	59, 62, 71, 140, 210	50 Ω
UG-23, B-E	Str (f)	8, 9, 87, 213, 214, 225	50 Ω
UG-602	Str (f)	59, 62, 71, 140, 210	_
UG-228B, D, E	Pnl (f)	8, 9, 87, 213, 214, 225	_
UG-1052	Pnl (f)	58, 141, 142	50 Ω
UG-593	Pnl (f)	59, 62, 71, 140, 210	50 Ω
UG-160A, B, D	Blkhd (f)	8, 9, 87, 213, 214, 225	50 Ω
UG-556	Blkhd (f)	58, 141, 142	50 Ω
UG-58, A	Pnl (f)		50 Ω
UG-997A	Ang (f)		50 Ω ¹¹ / ₁₆ "

Panel mount (f) with clearance above panel

M39012/04-	Blkhd (f)	Front mount hermetically sealed
UG-680	Blkhd (f)	Front mount pressurized

N Adapters

Military No.	Style	Notes
UG-29,A,B	Str (f/f)	50 Ω , TFE ins.
UG-57A.B	Str (m/m)	50 Ω , TFE ins.
UG-27A,B	Ang (f/m)	Mitre body
UG-212A	Ang (f/m)	Mitre body
UG-107A	T (f/m/f)	_
UG-28A	T (f/f/f)	_
UG-107B	T (f/m/f)	_

Family Characteristics:

N connectors with gaskets are weatherproof. RF leakage: -90 dB min @ 3 GHz. Temperature limits: TFE: -67° to 390°F (-55° to 199°C). Insertion loss 0.15 dB max @ 10 GHz. Copolymer of styrene: -67° to 185°F (-55° to 85°C). Frequency range: 0-11 GHz. Maximum voltage rating: 1500 V P-P. Dielectric withstanding voltage 2500 V RMS. SWR (MIL-C-39012 cable connectors) 1.3 max 0-11 GHz.

BNC Connectors

Military No.	. Style	Cable RG-	Notes
UG-88C	Str (m)	55, 58, 141, 142, 223, 400	
Military No.	. Style	Cable RG-	Notes
UG-959	Str (m)	8, 9	
UG-260,A		59, 62, 71, 140, 210	Rexolite ins.
UG-262	· · ·	59, 62, 71, 140, 210	
UG-262A		59. 62. 71. 140. 210	nwx. Rexolite ins.
UG-291	Pnl (f)	55, 58, 141, 142, 223,	
		400	2111/
UG-291A	Pnl (f)	55, 58, 141, 142, 223, 400	nwx
UG-624	Blkhd (f)	59, 62, 71, 140, 210	Front mount
Rexolite	()		ins.
UG-1094A	Blkhd		Standard
UG-625B	Recepta	cle	
UG-625			

BNC Adapters

Military No.	Style	Notes
UG-491,A	Str (m/m)	
UG-491B	Str (m/m)	Berylium, outer contact
UG-914	Str (f/f)	
UG-306	Ang (f/m)	
UG-306A,B	Ang (f/m)	Berylium outer contact
UG-414,A	Pnl (f/f)	# 3-56 tapped flange holes
UG-306	Ang (f/m)	
UG-306A,B	Ang (f/m)	Berylium outer contact
UG-274	T (f/m/f)	
UG-274A,B	T (f/m/f)	Berylium outer contact

Family Characteristics:

Z = 50 Ω. Frequency range: 0-4 GHz w/low reflection; usable to 11 GHz. Voltage rating: 500 V P-P. Dielectric withstanding voltage 500 V RMS. SWR: 1.3 max 0-4 GHz. RF leakage -55 dB min @ 3 GHz. Insertion loss: 0.2 dB max @ 3 GHz. Temperature limits: TFE: -67° to 390°F (-55° to 199°C); Rexolite insulators: -67° to 185°F (-55° to 85°C). "Nwx" = not weatherproof.

HN Connectors

Military No.	Style	Cable RG-	Notes
UG-59A	Str (m)	8, 9, 213, 214	
UG-1214	Str (f)	8, 9, 87, 213, 214, 225	Captivated contact
UG-60A	Str (f)	8, 9, 213, 214	Copolymer of styrene ins.
UG-1215	Pnl (f)	8, 9, 87, 213, 214, 225	Captivated contact
UG-560	Pnl (f)		
UG-496	Pnl (f)		
UG-212C	Ang (f/n	n)	Berylium outer contact

Family Characteristics:

Connector Styles: Str = straight; PnI = panel; Ang = Angle; Blkhd = bulkhead. Z = 50 Ω . Frequency range = 0-4 GHz. Maximum voltage rating = 1500 V P-P. Dielectric withstanding voltage = 5000 V RMS SWR = 1.3. All HN series are weatherproof. Temperature limits: TFE: -67° to 390°F (-55° to 199°C); copolymer of styrene: -67° to 185°F (-55° to 85°C).

Cross-Family Adapters

Families	Description	Military No.
HN to BNC	HN-m/BNC-f	UG-309
N to BNC	N-m/BNC-f	UG-201,A
	N-f/BNC-m	UG-349,A
	N-m/BNC-m	UG-1034
N to UHF	N-m/UHF-f	UG-146
	N-f/UHF-m	UG-83,B
	N-m/UHF-m	UG-318
UHF to BNC	UHF-m/BNC-f	UG-273
	UHF-f/BNC-m	UG-255

References

Table 7.43

International System of Units (SI)-Metric Units

Prefix	Symbol			Multiplication Factor
exe	E	10 ¹⁸	=	1,000,000 000,000,000,000
peta	Р	10 ¹⁵	=	1,000 000,000,000,000
tera	Т	1012	=	1,000,000,000,000
giga	G	10 ⁹	=	1,000,000,000
mega	М	10 ⁶	=	1,000,000
kilo	k	10 ³	=	1,000
hecto	h	10 ²	=	100
deca	da	10 ¹	=	10
(unit)		10 ⁰	=	1
deci	d	10 ⁻¹	=	0.1
centi	С	10 ⁻²	=	0.01
milli	m	10 ⁻³	=	0.001
micro	μ	10 ⁻⁶	=	0.000001
nano	n	10 ⁻⁹	=	0.00000001
pico	р	10-12	=	0.00000000001
femto	f	10 ⁻¹⁵	=	0.0000000000000000000000000000000000000
atto	а	10 ⁻¹⁸	=	0.0000000000000000000000000000000000000

Linear

1 meter (m) = 100 centimeters (cm) = 1000 millimeters (mm)

Area

 $1 \text{ m}^2 = 1 \times 10^4 \text{ cm}^2 = 1 \times 10^6 \text{ mm}^2$

Volume

 $1 \text{ m}^3 = 1 \times 10^6 \text{ cm}^3 = 1 \times 10^9 \text{ mm}^3$ 1 liter (l) = 1000 cm³ = 1 × 10⁶ mm³

Mass

1 kilogram (kg) = 1000 grams (g) (Approximately the mass of 1 liter of water) 1 metric ton (or tonne) = 1000 kg

Table 7.44 US Customary Units

Linear Units

12 inches (in) = 1 foot (ft) 36 inches = 3 feet = 1 yard (yd) 1 rod = $5^{1/2}$ yards = $16^{1/2}$ feet 1 statute mile = 1760 yards = 5280 feet 1 nautical mile = 6076.11549 feet Area

1 ft² = 144 in² 1 yd² = 9 ft² = 1296 in² 1 rod² = 30¹/₄ yd² 1 acre = 4840 yd² = 43,560 ft² 1 acre = 160 rod² 1 mile² = 640 acres

Volume

1 ft³ = 1728 in³ 1 yd³ = 27 ft³

Liquid Volume Measure

1 fluid ounce (fl oz) = 8 fluid drams = 1.804 in 1 pint (pt) = 16 fl oz 1 quart (qt) = 2 pt = 32 fl oz = $57^{3/4}$ in³ 1 gallon (gal) = 4 qt = 231 in³ 1 barrel = $31^{1/2}$ gal

Dry Volume Measure

1 quart (qt) = 2 pints (pt) = 67.2 in³ 1 peck = 8 qt 1 bushel = 4 pecks = 2150.42 in³

Avoirdupois Weight

1 dram (dr) = 27.343 grains (gr) or (gr a) 1 ounce (oz) = 437.5 gr 1 pound (lb) = 16 oz = 7000 gr 1 short ton = 2000 lb, 1 long ton = 2240 lb **Troy Weight** 1 grain troy (gr t) = 1 grain avoirdupois

1 pennyweight (dwt) or (pwt) = 24 gr t 1 ounce troy (oz t) = 480 grains 1 lb t = 12 oz t = 5760 grains Apothecaries' Weight 1 grain apothecaries' (gr ap) = 1 gr t = 1 gr 1 dram ap (dr ap) = 60 gr

1 oz ap = 1 oz t = 8 dr ap = 480 gr

1 lb ap = 1 lb t = 12 oz ap = 5760 gr

Conversion

Metric Unit = Metric Unit × US Unit

(Length)

(Length)		
mm cm cm m km km km	25.4 2.54 30.48 0.3048 0.9144 1.609 1.852	inch inch foot foot yard mile nautical mile
(Area)		
mm ² cm ² cm ² m ² cm ² m ² m ² m ² km ²	645.16 6.4516 929.03 0.0929 8361.3 0.83613 4047 2.59	inch ² in ² ft ² ft ² yd ² yd ² acre mi ²
(Mass)	(Avoirdupois W	/eight)
grams g g kg tonne tonne	0.0648 28.349 453.59 0.45359 0.907 1.016	grains oz Ib Ib short ton long ton
(Volume)		
mm ³ cm ³ m ³ m ³ ml ml ml ml l l l l l l l l l l	16387.064 16.387 0.028316 0.764555 16.387 29.57 473 946.333 28.32 0.9463 3.785 1.101 8.809 35.238	in ³ in ³ ft ³ yd ³ in ³ fl oz pint quart ft ³ quart gallon dry quart peck bushel
(Mass)	(Troy Weight)	
g g	31.103 373.248	oz t Ib t
(Mass)	(Apothecaries'	Weight)
g g	3.387 31.103 373.248	dr ap oz ap Ib ap

Multiply \rightarrow

Metric Unit = Conversion Factor × US Customary Unit

← Divide

Metric Unit ÷ Conversion Factor = US Customary Unit

Abbreviations List

Α a—atto (prefix for 10⁻¹⁸) A-ampere (unit of electrical current) ac-alternating current ACC—Affiliated Club Coordinator ACSSB-amplitude-compandored single sideband A/D-analog-to-digital ADC—analog-to-digital converter AF—audio frequency AFC—automatic frequency control AFSK—audio frequency-shift keying AGC—automatic gain control Ah-ampere hour ALC-automatic level control AM-amplitude modulation AMRAD—Amateur Radio Research and **Development Corporation** AMSAT—Radio Amateur Satellite Corporation AMTOR—Amateur Teleprinting Over Radio ANT-antenna ARA—Amateur Radio Association ARC—Amateur Radio Club ARES—Amateur Radio Emergency Service ARQ—Automatic repeat request ARRL—American Radio Relay League ARS—Amateur Radio Society (station) ASCII—American National Standard Code for Information Interchange ATV—amateur television AVC-automatic volume control AWG—American wire gauge az-el-azimuth-elevation

B

B-bel; blower; susceptance; flux density, (inductors) balun-balanced to unbalanced (transformer) BC-broadcast BCD-binary coded decimal BCI-broadcast interference Bd-baud (bids in single-channel binary data transmission) BER-bit error rate BFO-beat-frequency oscillator bit-binary digit bit/s-bits per second BM—Bulletin Manager BPF-band-pass filter **BPL**—Brass Pounders League BPL—Broadband over Power Line BT-battery BW-bandwidth Bytes-Bytes

С

c—centi (prefix for 10⁻²) C-coulomb (quantity of electric charge); capacitor CAC-Contest Advisory Committee CATVI-cable television interference CB—Citizens Band (radio)

CBBS—computer bulletin-board service CBMS—computer-based message system CCITT—International Telegraph and Telephone Consultative Committee CCTV-closed-circuit television CCW-coherent CW ccw-counterclockwise CD-civil defense cm-centimeter CMOS—complementary-symmetry metal-oxide semiconductor coax-coaxial cable COR-carrier-operated relay CP—code proficiency (award) CPU-central processing unit CRT-cathode ray tube CT-center tap CTCSS—continuous tone-coded squelch system cw-clockwise CW-continuous wave D d-deci (prefix for 10⁻¹) D-diode da-deca (prefix for 10) D/A-digital-to-analog DAC-digital-to-analog converter dB-decibel (0.1 bel) dBi-decibels above (or below) isotropic antenna dBm-decibels above (or below) 1 milliwatt

DBM—double balanced mixer dBV-decibels above/below 1 V (in video, relative to 1 V P-P) dBW-decibels above/below 1 W dc-direct current D-C-direct conversion DDS-direct digital synthesis DEC—District Emergency Coordinator deg—degree DET—detector DF-direction finding; direction finder DIP-dual in-line package DMM-digital multimeter DPDT-double-pole double-throw (switch) DPSK—differential phase-shift keying DPST—double-pole single-throw (switch) DS-direct sequence (spread spectrum); display DSB-double sideband DSP-digital signal processing DTMF—dual-tone multifrequency DVM-digital voltmeter DX—long distance; duplex DXAC—DX Advisory Committee DXCC—DX Century Club

Ε

e-base of natural logarithms (2.71828) E-voltage

EA—ARRL Educational Advisor

EC-Emergency Coordinator ECL-emitter-coupled logic EHF—extremely high frequency (30-300 GHz) EIA—Electronic Industries Alliance EIRP—effective isotropic radiated power ELF-extremely low frequency ELT—emergency locator transmitter EMC—electromagnetic compatibility EME—earth-moon-earth (moonbounce) EMF-electromotive force EMI-electromagnetic interference EMP-electromagnetic pulse EOC—emergency operations center EPROM—erasable programmable read only memory F

f—femto (prefix for 10⁻⁵); frequency F-farad (capacitance unit); fuse fax-facsimile FCC—Federal Communications Commission FD—Field Day FEMA—Federal Emergency Management Agency FET-field-effect transistor FFT-fast Fourier transform FL-filter FM—frequency modulation FMTV—frequency-modulated television FSK—frequency-shift keying FSTV—fast-scan (real-time) television ft—foot (unit of length) G

g-gram (unit of mass) G—giga (prefix for 10⁹); conductance GaAs-gallium arsenide GB-gigabytes GDO-grid- or gate-dip oscillator GHz—gigahertz (10⁹ Hz) GND—ground

н

h-hecto (prefix for 10²) H—henry (unit of inductance)

HF—high frequency (3-30 MHz)

HFO—high-frequency oscillator; heterodyne frequency oscillator

- HPF—highest probable frequency; high-pass filter
- Hz-hertz (unit of frequency, 1 cycle/s)

I-current, indicating lamp

- IARU—International Amateur Radio Union
- IC-integrated circuit
- ID-identification; inside diameter
- IEEE—Institute of Electrical and
- Electronics Engineers IF—intermediate frequency
- IMD—intermodulation distortion

- in.—inch (unit of length) in./s—inch per second (unit of velocity) I/O—input/output IRC—international reply coupon ISB—independent sideband ITF—Interference Task Force ITU—International Telecommunication Union ITU-T—ITU Telecommunication
- Standardization Bureau

J-K

j—operator for complex notation, as for reactive component of an impedance (+j inductive; -j capacitive) J—joule (kg m²/s²) (energy or work unit); jack JFET-junction field-effect transistor k—kilo (prefix for 10³); Boltzmann's constant (1.38x10⁻²³ J/K) K-kelvin (used without degree symbol) absolute temperature scale; relay kB-kilobytes kBd—1000 bauds kbit-1024 bits kbit/s-1024 bits per second kbyte—1024 bytes kg-kilogram kHz-kilohertz km-kilometer kV-kilovolt kW-kilowatt kΩ—kilohm L

Ļ

- I-liter (liquid volume) L-lambert; inductor Ib-pound (force unit) LC-inductance-capacitance LCD-liquid crystal display LED-light-emitting diode LF—low frequency (30-300 kHz) LHC—left-hand circular (polarization) LO-local oscillator; Leadership Official LP-log periodic LS-loudspeaker lsb—least significant bit LSB-lower sideband LSI—large-scale integration LUF—lowest usable frequency Μ m-meter (length); milli (prefix for 10-3) M-mega (prefix for 10⁶); meter
- (instrument) mA-milliampere
- mAh-milliampere hour
- MB—megabytes
- MCP—multimode communications processor
- MDS—Multipoint Distribution Service; minimum discernible (or detectable) signal
- MF—medium frequency (300-3000 kHz)

mH-millihenry MHz-megahertz mi-mile, statute (unit of length) mi/h (MPH)-mile per hour mi/s-mile per second mic-microphone min-minute (time) MIX—mixer mm-millimeter MOD-modulator modem-modulator/demodulator MOS-metal-oxide semiconductor MOSFET-metal-oxide semiconductor field-effect transistor MS-meteor scatter ms-millisecond m/s-meters per second msb-most-significant bit MSI-medium-scale integration MSK-minimum-shift keying MSO-message storage operation MUF-maximum usable frequency mV-millivolt mW-milliwatt $M\Omega$ —megohm

Ν

n-nano (prefix for 10-9); number of turns (inductors) NBFM—narrow-band frequency modulation NC-no connection; normally closed NCS-net-control station; National Communications System nF-nanofarad NF-noise figure nH-nanohenry NiCd—nickel cadmium NM—Net Manager NMOS—N-channel metal-oxide silicon NO-normally open NPN-negative-positive-negative (transistor) NPRM—Notice of Proposed Rule Making (FCC) ns-nanosecond NTIA—National Telecommunications and Information Administration NTS—National Traffic System 0

OBS—Official Bulletin Station OD—outside diameter OES—Official Emergency Station OO—Official Observer op amp—operational amplifier ORS—Official Relay Station OSC—oscillator OSCAR—Orbiting Satellite Carrying Amateur Radio OTC—Old Timer's Club oz—ounce (1/16 pound)

Ρ

 p—pico (prefix for 10⁻¹²)
 P—power; plug
 PA—power amplifier
 PACTOR—digital mode combining aspects of packet and AMTOR

PAM—pulse-amplitude modulation PBS—packet bulletin-board system PC—printed circuit PD—power dissipation PEP—peak envelope power PEV—peak envelope voltage pF—picofarad pH—picohenry PIC—Public Information Coordinator PIN—positive-intrinsic-negative (semiconductor) PIO—Public Information Officer PIV-peak inverse voltage PLC—Power Line Carrier PLL—phase-locked loop PM—phase modulation PMOS—P-channel (metal-oxide semiconductor) PNP-positive negative positive (transistor) pot-potentiometer P-P—peak to peak ppd—postpaid PROM—programmable read-only memory PSAC—Public Service Advisory Committee PSHR—Public Service Honor Roll PTO—permeability-tuned oscillator PTT-push to talk Q-R Q—figure of merit (tuned circuit); transistor QRP-low power (less than 5-W output) R—resistor RACES—Radio Amateur Civil Emergency Service RAM—random-access memory RC-resistance-capacitance R/C-radio control RCC-Rag Chewer's Club

- RDF—radio direction finding
- RF—radio frequency
- RFC—radio-frequency choke
- RFI—radio-frequency interference
- RHC—right-hand circular (polarization)
- RIT—receiver incremental tuning
- RLC—resistance-inductance-capacitance
- RM—rule making (number assigned to petition)
- r/min (RPM)—revolutions per minute rms—root mean square
- ROM—read-only memory
- r/s—revolutions per second
- RS—Radio Sputnik (Russian ham satellite)
- ${\sf RST-}readability{-}strength{-}tone~({\sf CW}$
- signal report)
- RTTY—radioteletype RX—receiver, receiving

S

 s—second (time)
 S—siemens (unit of conductance); switch

- SASE—self-addressed stamped envelope
- SCF-switched capacitor filter
- SCR-silicon controlled rectifier
- SEC—Section Emergency Coordinator
- SET—Simulated Emergency Test
- SGL—State Government Liaison SHF—super-high frequency (3-30 GHz) SM—Section Manager; silver mica
- (capacitor) S/N-signal-to-noise ratio
- SPDT—single-pole double-throw
- (switch)
- SPST—single-pole single-throw (switch)
- SS—ARRL Sweepstakes; spread spectrum
- SSB—single sideband
- SSC—Special Service Club
- SSI-small-scale integration
- SSTV—slow-scan television
- STM—Section Traffic Manager
- SX—simplex
- sync-synchronous, synchronizing
- SWL—shortwave listener
- SWR-standing-wave ratio

- T-tera (prefix for 1012); transformer
- TA—ARRL Technical Advisor TC—Technical Coordinator
- TCC—Transcontinental Corps (NTS)
- TCP/IP—Transmission Control Proto-
- col/ Internet Protocol
- tfc-traffic
- TNC-terminal node controller (packet radio)
- TR-transmit/receive
- TS—Technical Specialist
- TTL—transistor-transistor logic TTY—teletypewriter
- TU-terminal unit
- TV-television
- TVI-television interference
- TX-transmitter, transmitting

U

- U-integrated circuit
- UHF-ultra-high frequency (300 MHz to 3 GHz)
- USB—upper sideband UTC—Coordinated Universal Time (also abbreviated Z)
- UV—ultraviolet

V-volt; vacuum tube

VCO—voltage-controlled oscillator VCR—video cassette recorder VDT-video-display terminal VE—Volunteer Examiner VEC—Volunteer Examiner Coordinator VFO—variable-frequency oscillator VHF-very-high frequency (30-300 MHz) VLF—very-low frequency (3-30 kHz) VLSI—very-large-scale integration VMOS—V-topology metal-oxidesemiconductor VOM—volt-ohmmeter VOX—voice-operated switch VR—voltage regulator VSWR—voltage standing-wave ratio VTVM—vacuum-tube voltmeter VUCC—VHF/UHF Century Club VXO—variable-frequency crystal oscillator

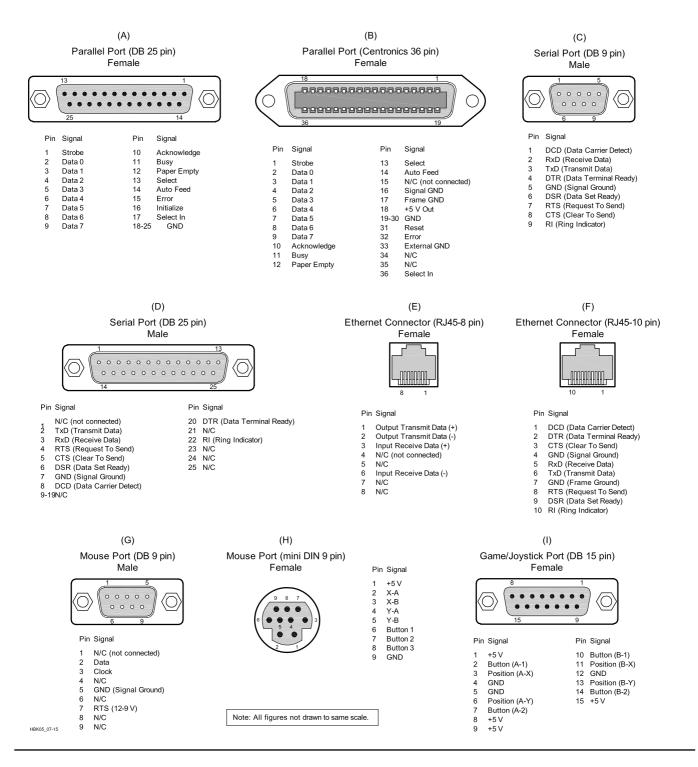
w

- W-watt (kg m²s⁻³), unit of power
- WAC—Worked All Continents WAS—Worked All States
- WBFM—wide-band frequency modulation
- WEFAX—weather facsimile
- Wh-watthour
- WPM—words per minute
- WRC—World Radiocommunication Conference
- WVDC—working voltage, direct current

Х

-reactance Х-XCVR—transceiver XFMR—transformer XIT—transmitter incremental tuning XO—crystal oscillator XTAL—crystal XVTR—transverter

Y-Z


Y-crystal; admittance YIG—yttrium iron garnet Z-impedance; also see UTC

Numbers/Symbols

5BDXCC—Five-Band DXCC 5BWAC-Five-Band WAC 5BWAS—Five-Band WAS 6BWAC—Six-Band WAC °—degree (plane angle) °C-degree Celsius (temperature) °F-degree Fahrenheit (temperature) α —(alpha) angles; coefficients, attenuation constant, absorption factor, area, common-base forward current-transfer ratio of a bipolar transistor

- β —(beta) angles; coefficients, phase constant, current gain of commonemitter transistor amplifiers
- γ —(gamma) specific gravity, angles, electrical conductivity, propagation constant
- Γ —(gamma) complex propagation constant
- δ —(delta) increment or decrement; density: angles
- Δ —(delta) increment or decrement determinant, permittivity
- ϵ —(epsilon) dielectric constant; permittivity; electric intensity
- ζ —(zeta) coordinates; coefficients
- η —(eta) intrinsic impedance; efficiency; surface charge density; hysteresis; coordinate
- θ —(theta) angular phase displacement; time constant; reluctance; angles
- 1-(iota) unit vector
- K-(kappa) susceptibility; coupling coefficient
- λ —(lambda) wavelength; attenuation constant
- Λ —(lambda) permeance
- μ-(mu) permeability; amplification factor; micro (prefix for 10⁻⁶)
- μF—microfarad
- μH—microhenry
- μP-microprocessor
- ξ —(xi) coordinates
- π—(pi) ≈3.14159
- ρ —(rho) resistivity; volume charge density; coordinates; reflection coefficient
- σ —(sigma) surface charge density; complex propagation constant; electrical conductivity; leakage coefficient; deviation
- Σ —(sigma) summation
- τ-(tau) time constant; volume resistivity; time-phase displacement; transmission factor; density
- Φ —(phi) summation
- χ —(chi) electric susceptibility; angles Ψ —(psi) dielectric flux; phase differ-
- ence; coordinates; angles
- ω—(omega) angular velocity 2 π F Ω —(omega) resistance in ohms; solid
 - angle

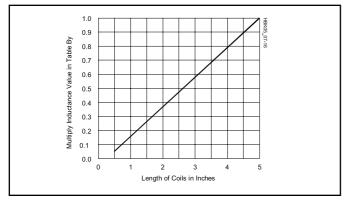
Table 7.46Computer Connector Pinouts

Table 7.47 Voltage-Power Conversion Table

Based on a 50-ohm system

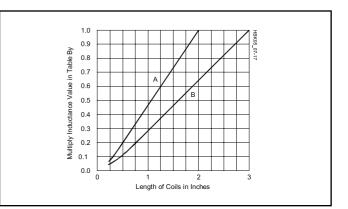
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dBm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-147.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-141.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-134.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-128.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-127.0
0.8 μ V 2.236 μ V -61.94 12.8×10 ⁻¹⁵ 1.0 μ V 2.828 μ V -60.0 20.0×10 ¹⁵ 2.0 μ V 5.657 μ V -53.98 80.0×10 ⁻¹⁵ 4.0 μ V 11.31 μ V -47.96 320.0×10 ⁻¹⁵ 1.0 μ V 28.28 μ V -41.94 1.28×10 ⁻¹² 20.0 μ V 56.57 μ V -33.98 8.0×10 ⁻¹² 20.0 μ V 56.57 μ V -27.96 32.0×10 ⁻¹² 20.0 μ V 226.3 μ V -21.94 128.0×10 ⁻¹² 20.0 μ V 226.3 μ V -20.0 200.0×10 ⁻¹² 20.0 μ V 282.8 μ V -20.0 200.0×10 ⁻¹² 20.0 μ V 56.57 μ V -13.98 80.0×10 ⁻¹² 20.0 μ V 56.57 μ V -13.98 12.8×10 ⁻⁹ 30.0 μ V 2.263 mV -19.38 12.8×10 ⁻⁹ 30.0 μ V 2.263 mV 18.06 1.28 μ W 1.0 mV 2.828 mV 20.00 12.0 μ W 20.0 mV 56.57 mV 26.02 8.0 μ W 10.0 mV 28.28 mV 20.00 12.8 μ W 10.0 mV	-121.0
1.0 μ V2.828 μ V-60.020.0×10 ¹⁵ 2.0 μ V5.657 μ V-53.9880.0×10 ⁻¹⁵ 4.0 μ V11.31 μ V-47.96320.0×10 ⁻¹⁵ 8.0 μ V22.63 μ V-41.941.28×10 ⁻¹² 20.0 μ V26.57 μ V-33.988.0×10 ⁻¹² 20.0 μ V56.57 μ V-27.9632.0×10 ⁻¹² 80.0 μ V226.3 μ V-21.94128.0×10 ⁻¹² 100.0 μ V282.8 μ V-20.0200.0×10 ⁻¹² 200.0 μ V565.7 μ V-13.98800.0×10 ⁻¹² 200.0 μ V565.7 μ V-7.9593.2×10 ⁻⁹ 300.0 μ V2.263mV-1.93812.8×10 ⁻⁹ 400.0 μ V1.131mV-7.9593.2×10 ⁻⁹ 1.0mV2.828mV0.020.0×10 ⁻⁹ 2.0mV5.657mV6.0280.0×10 ⁻⁹ 4.0mV11.31mV12.04320×10 ⁻⁹ 8.0mV22.63mV38.0612.810.0mV28.28mV20.01.2.020.0mV56.57mV46.0280.020.0mV22.63mV38.0612.8.010.0mV22.63N88.0612.8.020.0mV26.280.0 μ W20.0mV22.6378.0612.820.0mV <td>-114.9</td>	-114.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-108.9
$4.0 \ \mu V$ $11.31 \ \mu V$ -47.96 320.0×10^{-15} $8.0 \ \mu V$ $22.63 \ \mu V$ -41.94 1.28×10^{-12} $20.0 \ \mu V$ $28.28 \ \mu V$ -40.00 2.0×10^{-12} $20.0 \ \mu V$ $56.57 \ \mu V$ -33.98 8.0×10^{-12} $40.0 \ \mu V$ $113.1 \ \mu V$ -27.96 32.0×10^{-12} $80.0 \ \mu V$ $226.3 \ \mu V$ -21.94 128.0×10^{-12} $200.0 \ \mu V$ $282.8 \ \mu V$ -20.0 200.0×10^{-12} $200.0 \ \mu V$ $282.8 \ \mu V$ -20.0 200.0×10^{-12} $200.0 \ \mu V$ $565.7 \ \mu V$ -13.98 800.0×10^{-12} $400.0 \ \mu V$ $2.263 \ m V$ -1.938 12.8×10^{-9} $800.0 \ \mu V$ $2.263 \ m V$ -1.938 12.8×10^{-9} $4.0 \ m V$ $11.31 \ m V$ 12.04 320×10^{-9} $4.0 \ m V$ $11.31 \ m V$ 12.04 320×10^{-9} $8.0 \ m V$ $22.63 \ m V$ 18.06 $1.28 \ \mu W$ $10.0 \ m V$ $28.28 \ m V$ 20.00 $12.0 \ \mu W$ $20.0 \ m V$ $565.7 \ m V$ 26.02 $8.0 \ \mu W$ $20.0 \ m V$ $565.7 \ m V$ 46.02 $800.0 \ \mu W$ $20.0 \ m V$ $565.7 \ m V$ 46.02 $80.0 \ \mu W$ $20.0 \ m V$ $2263 \ m V$ 32.04 $32.0 \ \mu W$ $20.0 \ m V$ $226.3 \ m V$ $40.0 \ M $ $22.0 \ m W$ $20.0 \ m V$ $565.7 \ m V$ 46.02 $80.0 \ \mu W$ $20.0 \ m V$ $22.63 \ V$ 78.06 $12.80 \ m W$ <t< td=""><td>-107.0</td></t<>	-107.0
$8.0 \ \mu V$ $22.63 \ \mu V$ -41.94 1.28×10^{-12} $10.0 \ \mu V$ $28.28 \ \mu V$ -40.00 2.0×10^{-12} $20.0 \ \mu V$ $56.57 \ \mu V$ -33.98 8.0×10^{-12} $40.0 \ \mu V$ $113.1 \ \mu V$ -27.96 32.0×10^{-12} $80.0 \ \mu V$ $226.3 \ \mu V$ -21.94 128.0×10^{-12} $200.0 \ \mu V$ $226.3 \ \mu V$ -21.94 128.0×10^{-12} $200.0 \ \mu V$ $226.57 \ \mu V$ -13.98 800.0×10^{-12} $200.0 \ \mu V$ $565.7 \ \mu V$ -13.98 800.0×10^{-12} $200.0 \ \mu V$ $2.263 \ m V$ -1.938 12.8×10^{-9} $400.0 \ \mu V$ $2.263 \ m V$ -1.938 12.8×10^{-9} $1.0 \ m V$ $2.828 \ m V$ 0.0 20.0×10^{-9} $4.0 \ m V$ $11.31 \ m V$ 12.04 320×10^{-9} $4.0 \ m V$ $11.31 \ m V$ 12.04 320×10^{-9} $8.0 \ m V$ $22.63 \ m V$ 80.06 $1.28 \ \mu W$ $10.0 \ m V$ $28.28 \ m V$ 20.00 $12.0 \ \mu W$ $20.0 \ m V$ $56.57 \ m V$ 26.02 $8.0 \ \mu W$ $40.0 \ m V$ $113.1 \ m V$ 32.04 $32.0 \ \mu W$ $20.0 \ m V$ $565.7 \ m V$ 46.02 $80.0 \ \mu W$ $20.0 \ m V$ $26.3 \ m W$ 36.66 $128.0 \ \mu W$ $20.0 \ m V$ $26.3 \ m W$ 40.0 $20.0 \ m W$ $20.0 \ m V$ $26.63 \ V$ 58.06 $12.80 \ m W$ $20.0 \ m V$ $26.63 \ V$ 78.06 $12.80 \ m W$ $20.0 \$	-101.0
$10.0 \mu V$ $28.28 \mu V$ -40.00 2.0×10^{-12} $20.0 \mu V$ $56.57 \mu V$ -33.98 8.0×10^{-12} $40.0 \mu V$ $113.1 \mu V$ -27.96 32.0×10^{-12} $80.0 \mu V$ $226.3 \mu V$ -21.94 128.0×10^{-12} $100.0 \mu V$ $282.8 \mu V$ -20.0 200.0×10^{-12} $200.0 \mu V$ $565.7 \mu V$ -13.98 800.0×10^{-12} $400.0 \mu V$ $1.131 m V$ -7.959 3.2×10^{-9} $800.0 \mu V$ $2.263 m V$ -1.938 12.8×10^{-9} $1.0 m V$ $2.828 m V$ 0.0 20.0×10^{-9} $2.0 m V$ $5.657 m V$ 6.02 80.0×10^{-9} $4.0 m V$ $11.31 m V$ 12.04 320×10^{-9} $8.0 m V$ $22.63 m V$ 18.06 $1.28 \mu W$ $10.0 m V$ $28.28 m V$ 20.00 $12.0 \mu W$ $20.0 m V$ $56.57 m V$ 26.02 $8.0 \mu W$ $10.0 m V$ $226.3 m V$ 38.06 $128.0 \mu W$ $20.0 m V$ $56.57 m V$ 26.02 $80.0 \mu W$ $20.0 m V$ $226.3 m V$ 38.06 $128.0 \mu W$ $10.0 m V$ $228.28 m V$ 40.0 $200.0 \mu W$ $223.6 m V$ $65.7 m V$ 46.02 $800.0 \mu W$ $223.6 m V$ $5657 V$ 66.02 $80.0 m W$ $1.0 V$ $2.828 V$ 80.0 $2.00 m W$ $20.0 m V$ $2.63 V$ 78.06 $12.80 m W$ $10.0 V$ $2.828 V$ 80.0 $2.0 V$ $80.0 V$ $22.63 V$ 78.06 $12.8 W$ <	-94.95
$20.0 \ \mu V$ $56.57 \ \mu V$ -33.98 8.0×10^{-12} $40.0 \ \mu V$ $113.1 \ \mu V$ -27.96 32.0×10^{-12} $80.0 \ \mu V$ $226.3 \ \mu V$ -21.94 128.0×10^{-12} $100.0 \ \mu V$ $282.8 \ \mu V$ -20.0 200.0×10^{-12} $200.0 \ \mu V$ $565.7 \ \mu V$ -13.98 800.0×10^{-12} $400.0 \ \mu V$ $1.131 \ m V$ -7.959 3.2×10^{-9} $800.0 \ \mu V$ $2.263 \ m V$ -1.938 12.8×10^{-9} $1.0 \ m V$ $2.263 \ m V$ 0.0 20.0×10^{-9} $2.0 \ m V$ $5.657 \ m V$ 6.02 80.0×10^{-9} $4.0 \ m V$ $11.31 \ m V$ 12.04 320×10^{-9} $8.0 \ m V$ $22.63 \ m V$ 18.06 $1.28 \ \mu W$ $10.0 \ m V$ $22.63 \ m V$ 20.00 $1.2.0 \ \mu W$ $20.0 \ m V$ $56.57 \ m V$ 26.02 $8.0 \ \mu W$ $20.0 \ m V$ $56.57 \ m V$ 26.02 $8.0 \ \mu W$ $20.0 \ m V$ $226.3 \ m V$ 38.06 $128.0 \ \mu W$ $20.0 \ m V$ $226.3 \ m V$ 40.0 $200.0 \ \mu W$ $20.0 \ m V$ $226.3 \ m V$ 46.02 $800.0 \ \mu W$ $20.0 \ m V$ $226.3 \ m V$ 40.0 $20.0 \ \mu W$ $20.0 \ m V$ $52.57 \ m V$ 66.02 $80.0 \ m W$ $20.0 \ m V$ $2.263 \ V$ 58.06 $12.80 \ m W$ $10.0 \ m V$ $22.828 \ V$ 60.0 $20.0 \ m W$ $40.0 \ m V$ $11.31 \ V$ 72.04 $32.0 \ m W$ $40.0 \ M$ $22.63 \ $	-88.93
$40.0 \ \mu V$ $113.1 \ \mu V$ -27.96 32.0×10^{-12} $80.0 \ \mu V$ $226.3 \ \mu V$ -21.94 128.0×10^{-12} $100.0 \ \mu V$ $282.8 \ \mu V$ -20.0 200.0×10^{-12} $200.0 \ \mu V$ $565.7 \ \mu V$ -13.98 800.0×10^{-12} $200.0 \ \mu V$ $1.131 \ m V$ -7.959 3.2×10^{-9} $800.0 \ \mu V$ $2.263 \ m V$ -1.938 12.8×10^{-9} $1.0 \ m V$ $2.828 \ m V$ 0.0 20.0×10^{-9} $2.0 \ m V$ $5.657 \ m V$ 6.02 80.0×10^{-9} $4.0 \ m V$ $11.31 \ m V$ 12.04 320×10^{-9} $8.0 \ m V$ $22.63 \ m V$ 18.06 $1.28 \ \mu W$ $10.0 \ m V$ $28.28 \ m V$ 20.00 $12.0 \ \mu W$ $20.0 \ m V$ $5657 \ m V$ 26.02 $8.0 \ \mu W$ $20.0 \ m V$ $5657 \ m V$ 26.02 $8.0 \ \mu W$ $20.0 \ m V$ $5657 \ m V$ 26.02 $80.0 \ \mu W$ $20.0 \ m V$ $5657 \ m V$ 46.02 $800.0 \ \mu W$ $20.0 \ m V$ $5657 \ m V$ 46.02 $800.0 \ \mu W$ $20.0 \ m V$ $5657 \ m V$ 46.02 $80.0 \ \mu W$ $20.0 \ m V$ $5.657 \ V$ 46.02 $80.0 \ \mu W$ $20.0 \ m V$ $5.657 \ V$ 66.02 $80.0 \ m W$ $40.0 \ m V$ $1.131 \ V$ 52.04 $3.2 \ m W$ $800.0 \ m V$ $2.263 \ V$ 58.06 $12.80 \ m W$ $10.0 \ V$ $2.828 \ V$ 80.0 $2.0 \ W$ $20.0 \ V$ $5.657 \ V$ 86.02 <td>- 86.99</td>	- 86.99
$80.0 \ \mu V$ $226.3 \ \mu V$ -21.94 128.0×10^{-12} $100.0 \ \mu V$ $282.8 \ \mu V$ -20.0 200.0×10^{-12} $200.0 \ \mu V$ $565.7 \ \mu V$ -13.98 800.0×10^{-12} $400.0 \ \mu V$ $1.131 \ m V$ -7.959 3.2×10^{-9} $400.0 \ \mu V$ $2.263 \ m V$ -1.938 12.8×10^{-9} $1.0 \ m V$ $2.828 \ m V$ 0.0 20.0×10^{-9} $2.0 \ m V$ $5.657 \ m V$ 6.02 80.0×10^{-9} $4.0 \ m V$ $11.31 \ m V$ 12.04 320×10^{-9} $8.0 \ m V$ $22.63 \ m V$ 18.06 $1.28 \ \mu W$ $10.0 \ m V$ $28.28 \ m V$ 20.00 $1.2.0 \ \mu W$ $20.0 \ m V$ $56.57 \ m V$ 26.02 $8.0 \ \mu W$ $20.0 \ m V$ $56.57 \ m V$ 26.02 $8.0 \ \mu W$ $20.0 \ m V$ $56.57 \ m V$ 26.02 $8.0 \ \mu W$ $20.0 \ m V$ $56.57 \ m V$ 26.02 $8.0 \ \mu W$ $20.0 \ m V$ $26.3 \ m V$ $32.0 \ \mu W$ $20.0 \ m V$ $26.3 \ m V$ 40.0 $20.00 \ \mu W$ $20.0 \ m V$ $26.3 \ m V$ 46.02 $80.00 \ \mu W$ $20.0 \ m V$ $5.657 \ m V$ 46.02 $80.00 \ \mu W$ $20.0 \ m V$ $2.263 \ V$ 58.06 $12.80 \ m W$ $40.0 \ m V$ $2.263 \ V$ 58.06 $12.80 \ m W$ $40.0 \ m V$ $22.63 \ V$ 78.06 $1.28 \ W$ $1.0 \ V$ $28.28 \ V$ 80.0 $2.0 \ W$ $20. \ V$ $5.657 \ V$ 86.02 $8.0 \ W$ <	-80.97
$100.0 \mu V$ $282.8 \mu V$ -20.0 200.0×10^{-12} $200.0 \mu V$ $565.7 \mu V$ -13.98 800.0×10^{-12} $400.0 \mu V$ $1.131 m V$ -7.959 3.2×10^{-9} $800.0 \mu V$ $2.263 m V$ -1.938 12.8×10^{-9} $1.0 m V$ $2.828 m V$ 0.0 20.0×10^{-9} $2.0 m V$ $5.657 m V$ 6.02 80.0×10^{-9} $4.0 m V$ $11.31 m V$ 12.04 320×10^{-9} $8.0 m V$ $22.63 m V$ 18.06 $1.28 \mu W$ $10.0 m V$ $28.28 m V$ 20.00 $1.2.0 \mu W$ $20.0 m V$ $56.57 m V$ 26.02 $8.0 \mu W$ $40.0 m V$ $113.1 m V$ 32.04 $32.0 \mu W$ $20.0 m V$ $56.57 m V$ 46.02 $800.0 \mu W$ $20.0 m V$ $565.7 m V$ 46.02 $800.0 \mu W$ $200.0 m V$ $565.7 m V$ 46.02 $800.0 \mu W$ $200.0 m V$ $565.7 m V$ 46.02 $800.0 \mu W$ $200.0 m V$ $565.7 m V$ 46.02 $800.0 \mu W$ $223.6 m V$ $632.4 m V$ 46.99 $1.0 m W$ $400.0 m V$ $1.131 V$ 52.04 $32.m W$ $800.0 m V$ $2.263 V$ 58.06 $12.80 m W$ $1.0 V$ $2.828 V$ 60.0 $20.0 m W$ $2.0 V$ $5.657 V$ 66.02 $80.0 m W$ $4.0 V$ $11.31 V$ 72.04 $320.0 m W$ $8.0 V$ $22.63 V$ 78.06 $1.28 W$ $10.0 V$ $282.8 V$ 80.0 $2.0 W$ $80.0 V$	-74.95
200.0 μ V565.7 μ V-13.98800.0 \star 10 ⁻¹² 400.0 μ V1.131 mV-7.959 3.2×10^{-9} 800.0 μ V2.263 mV-1.93812.8 $\times 10^{-9}$ 1.0 mV2.828 mV0.020.0 $\times 10^{-9}$ 2.0 mV5.657 mV6.0280.0 $\times 10^{-9}$ 4.0 mV11.31 mV12.04 320×10^{-9} 8.0 mV22.63 mV18.061.28 μ W10.0 mV28.28 mV20.001 2.0 μ W20.0 mV56.57 mV26.028.0 μ W20.0 mV56.57 mV26.028.0 μ W40.0 mV113.1 mV32.0432.0 μ W80.0 mV226.3 mV38.06128.0 μ W100.0 mV282.8 mV40.0200.0 μ W200.0 mV565.7 mV46.02800.0 μ W200.0 mV262.3 mV40.0200.0 μ W200.0 mV263.4 mV46.991.0 mW400.0 mV1.131 V52.043.2 mW800.0 mV2.828 V60.020.0 mW2.0 V5.657 V66.0280.0 mW4.0 V11.31 V72.04320.0 mW4.0 V11.31 V72.04320.0 mW4.0 V113.1 V92.0432.0 W80.0 V22.63 V78.061.28 W10.0 V28.28 V80.02.0 W80.0 V22.63 V98.06128.0 W10.0 V28.28 V80.02.0 W20.0 V56.57 V86.028.0 W20.0 V56.57 V86.02	-68.93
$400.0 \mu V$ 1.131 mV -7.959 3.2×10^{-9} $800.0 \mu V$ $2.263 mV$ -1.938 12.8×10^{-9} $1.0 mV$ $2.828 mV$ 0.0 20.0×10^{-9} $2.0 mV$ $5.657 mV$ 6.02 80.0×10^{-9} $4.0 mV$ $11.31 mV$ 12.04 320×10^{-9} $8.0 mV$ $22.63 mV$ 18.06 $1.28 \mu W$ $10.0 mV$ $28.28 mV$ 20.00 $1.2.0 \mu W$ $20.0 mV$ $56.57 mV$ 26.02 $8.0 \mu W$ $40.0 mV$ $113.1 mV$ 32.04 $32.0 \mu W$ $40.0 mV$ $226.3 mV$ 38.06 $128.0 \mu W$ $100.0 mV$ $282.8 mV$ 40.0 $200.0 \mu W$ $200.0 mV$ $565.7 mV$ 46.02 $800.0 \mu W$ $200.0 mV$ $565.7 mV$ 46.02 $800.0 \mu W$ $23.6 mV$ $632.4 mV$ 46.99 $1.0 mW$ $400.0 mV$ $2.263 V$ 58.06 $12.80 mW$ $1.0 V$ $2.828 V$ 60.0 $20.0 mW$ $2.0 V$ $5.657 V$ 66.02 $80.0 mW$ $1.0 V$ $2.828 V$ 80.0 $2.0 W$ $8.0 V$ $22.63 V$ 78.06 $1.28 W$ $10.0 V$ $28.28 V$ 80.0 $2.0 W$ $80.0 V$ $226.3 V$ 98.06 $128.0 W$ $10.0 V$ $28.28 V$ 100.0 $20.0 W$ $20.0 V$ $56.57 V$ 86.02 $8.0 W$ $10.0 V$ $28.28 V$ 100.0 $20.0 W$ $20.0 V$ $56.57 V$ 86.02 $8.0 W$ $10.0 V$ 282.8	-66.99
$800.0 \mu V$ $2.263 mV$ -1.938 12.8×10^{-9} $1.0 mV$ $2.828 mV$ 0.0 20.0×10^{-9} $2.0 mV$ $5.657 mV$ 6.02 80.0×10^{-9} $4.0 mV$ $11.31 mV$ 12.04 320×10^{-9} $8.0 mV$ $22.63 mV$ 18.06 $1.28 \mu W$ $10.0 mV$ $28.28 mV$ 20.00 $12.0 \mu W$ $20.0 mV$ $56.57 mV$ 26.02 $8.0 \mu W$ $20.0 mV$ $56.57 mV$ 26.02 $8.0 \mu W$ $40.0 mV$ $113.1 mV$ 32.04 $32.0 \mu W$ $80.0 mV$ $226.3 mV$ 38.06 $128.0 \mu W$ $200.0 mV$ $565.7 mV$ 46.02 $800.0 \mu W$ $200.0 mV$ $565.7 mV$ 46.02 $800.0 \mu W$ $200.0 mV$ $565.7 mV$ 46.02 $800.0 \mu W$ $20.0 mV$ $565.7 mV$ 46.02 $800.0 \mu W$ $223.6 mV$ $632.4 mV$ 45.99 $1.0 mW$ $400.0 mV$ $1.131 V$ 52.04 $3.2 mW$ $800.0 mV$ $2.263 V$ 58.06 $12.80 mW$ $1.0 V$ $2.828 V$ 60.0 $20.0 mW$ $2.0 V$ $5.657 V$ 66.02 $80.0 mW$ $40.0 V$ $11.31 V$ 72.04 $320.0 mW$ $8.0 V$ $22.63 V$ 78.06 $1.28 W$ $10.0 V$ $28.28 V$ 80.0 $2.0 W$ $8.0 V$ $22.63 V$ 98.06 $128.0 W$ $10.0 V$ $282.8 V$ 100.0 $200.0 W$ $20.0 V$ $565.7 V$ 106.0 $800.0 W$ $20.0 V$ <	-60.97
1.0 mV 2.828 mV 0.0 20.0×10^{-9} 2.0 mV 5.657 mV 6.02 80.0×10^{-9} 4.0 mV 11.31 mV 12.04 320×10^{-9} 8.0 mV 22.63 mV 18.06 $1.28 \mu W$ 10.0 mV 28.28 mV 20.00 $12.0 \mu W$ 20.0 mV 56.57 mV 26.02 $8.0 \mu W$ 40.0 mV 113.1 mV 32.04 $32.0 \mu W$ 80.0 mV 226.3 mV 38.06 $128.0 \mu W$ 100.0 mV 282.8 mV 40.0 $200.0 \mu W$ 200.0 mV 565.7 mV 46.02 $800.0 \mu W$ 223.6 mV 632.4 mV 46.99 1.0 mW 400.0 mV 1.131 V 52.04 3.2 mW 800.0 mV 2.263 V 58.06 12.80 mW 1.0 V 2.828 V 60.0 20.0 mW 2.0 V 5.657 V 66.02 80.0 mW 4.0 V 11.31 V 72.04 320.0 mW 4.0 V 11.31 V 72.04 32.0 W 4.0 V 21.31 V 92.04 32.0 W 40.0 V 226.3 V 80.0 C 8.0 W 40.0 V 226.3 V 98.06 128.0 W 10.0 V 282.8 V $100.0 $ 200.0 W 20.0 V 565.7 V 106.0 800.0 W 22.0 V 56.57 V	-54.95
2.0 mV 5.657 mV 6.02 80.0×10^{-9} 4.0 mV 11.31 mV 12.04 320×10^{-9} 8.0 mV 22.63 mV 18.06 $1.28 \mu W$ 10.0 mV 28.28 mV 20.00 $12.0 \mu W$ 20.0 mV 56.57 mV 26.02 $8.0 \mu W$ 40.0 mV 113.1 mV 32.04 $32.0 \mu W$ 80.0 mV 226.3 mV 38.06 $128.0 \mu W$ 100.0 mV 282.8 mV 40.0 $200.0 \mu W$ 200.0 mV 565.7 mV 46.02 $800.0 \mu W$ 223.6 mV 632.4 mV 46.99 1.0 mW 400.0 mV 1.131 V 52.04 3.2 mW 800.0 mV 2.263 V 58.06 12.80 mW 1.0 V 2.828 V 60.0 20.0 mW 2.0 V 5.657 V 66.02 80.0 mW 4.0 V 11.31 V 72.04 320.0 mW 4.0 V 21.31 V 72.04 32.0 W 8.0 V 22.63 V 78.06 1.28 W 10.0 V 28.28 V 80.0 2.0 W 80.0 V 226.3 V 98.06 128.0 W 10.0 V 226.3 V 98.06 128.0 W 10.0 V 226.3 V 98.06 128.0 W 10.0 V 228.8 V 100.0 200.0 W 20.0 V 565.7 V 106.0 </td <td>-48.93</td>	-48.93
4.0 mV 11.31 mV 12.04 320×10^{-9} 8.0 mV 22.63 mV 18.06 1.28μ W 10.0 mV 28.28 mV 20.00 12.0μ W 20.0 mV 56.57 mV 26.02 8.0μ W 40.0 mV 113.1 mV 32.04 32.0μ W 80.0 mV 226.3 mV 38.06 128.0μ W 100.0 mV 228.8 mV 40.0 200.0μ W 200.0 mV 565.7 mV 46.02 800.0μ W 200.0 mV 565.7 mV 46.02 800.0μ W 223.6 mV 632.4 mV 46.99 1.0 mW 400.0 mV 1.131 V 52.04 3.2 mW 800.0 mV 2.263 V 58.06 12.80 mW 1.0 V 2.828 V 60.0 20.0 mW 4.0 V 11.31 V 72.04 320.0 mW 4.0 V 11.31 V 72.04 320.0 mW 8.0 V 22.63 V 78.06 1.28 W 10.0 V 28.28 V 80.0 2.0 W 20.0 V 56.57 V 86.02 8.0 W 40.0 V 113.1 V 92.04 32.0 W 40.0 V 226.3 V 98.06 128.0 W 100.0 V 282.8 V 100.0 200.0 W 20.0 V 565.7 V 106.0 800.0 W 22.6 V 632.4 V 107.0 1	-46.99
8.0 mV 22.63 mV 18.06 $1.28 \mu W$ 10.0 mV 28.28 mV 20.00 $1.2.0 \mu W$ 20.0 mV 56.57 mV 26.02 $8.0 \mu W$ 40.0 mV 113.1 mV 32.04 $32.0 \mu W$ 80.0 mV 226.3 mV 38.06 $128.0 \mu W$ 100.0 mV 226.3 mV 40.0 $200.0 \mu W$ 200.0 mV 265.7 mV 46.02 $800.0 \mu W$ 223.6 mV 632.4 mV 46.99 1.0 mW 400.0 mV 1.131 V 52.04 3.2 mW 800.0 mV 2.263 V 58.06 12.80 mW 1.0 V 2.828 V 60.0 20.0 mW 2.0 V 5.657 V 66.02 80.0 mW 4.0 V 11.31 V 72.04 320.0 mW 8.0 V 22.63 V 78.06 1.28 W 10.0 V 28.28 V 80.0 2.0 W 40.0 V 113.1 V 92.04 32.0 W 40.0 V 113.1 V 92.04 32.0 W 40.0 V 226.3 V 98.06 128.0 W 10.0 V 282.8 V 100.0 200.0 W 20.0 V 565.7 V 106.0 800.0 W 22.6 V 632.4 V 107.0 $1,000.0 \text{ W}$ 20.0 V 565.7 V 106.0 800.0 W 22.6 V 632.4 V 107.0	-40.97
10.0 mV 28.28 mV 20.00 12.0μ W 20.0 mV 56.57 mV 26.02 8.0μ W 40.0 mV 113.1 mV 32.04 32.0μ W 80.0 mV 226.3 mV 38.06 128.0μ W 100.0 mV 282.8 mV 40.0 200.0μ W 200.0 mV 565.7 mV 46.02 800.0μ W 223.6 mV 632.4 mV 46.99 1.0 mW 400.0 mV 1.131 V 52.04 3.2 mW 800.0 mV 2.263 V 58.06 12.80 mW 1.0 V 2.828 V 60.0 20.0 mW 2.0 V 5.657 V 66.02 80.0 mW 4.0 V 11.31 V 72.04 320.0 mW 8.0 V 22.63 V 78.06 1.28 W 10.0 V 28.28 V 80.0 2.0 W 20.0 V 56.57 V 86.02 8.0 W 40.0 V 113.1 V 92.04 32.0 W 80.0 V 226.3 V 98.06 128.0 W 100.0 V 282.8 V 100.0 200.0 W 200.0 V 565.7 V 106.0 800.0 W 223.6 V 632.4 V 107.0 $1,000.0 \text{ W}$ 223.6 V 632.4 V 107.0 $1,000.0 \text{ W}$	-34.95
20.0 mV 56.57 mV 26.02 8.0μ W 40.0 mV 113.1 mV 32.04 32.0μ W 80.0 mV 226.3 mV 38.06 128.0μ W 100.0 mV 282.8 mV 40.0 200.0μ W 200.0 mV 565.7 mV 46.02 800.0μ W 223.6 mV 632.4 mV 46.99 1.0 mW 400.0 mV 1.131 V 52.04 3.2 mW 800.0 mV 2.263 V 58.06 12.80 mW 1.0 V 2.263 V 58.06 12.80 mW 1.0 V 2.263 V 58.06 20.0 mW 2.0 V 5.657 V 66.02 80.0 mW 4.0 V 11.31 V 72.04 320.0 mW 8.0 V 22.63 V 78.06 1.28 W 10.0 V 28.28 V 80.0 2.0 W 20.0 V 56.57 V 86.02 8.0 W 40.0 V 113.1 V 92.04 32.0 W 80.0 V 226.3 V 98.06 128.0 W 100.0 V 282.8 V 100.0 200.0 W 200.0 V 565.7 V 106.0 800.0 W 223.6 V 632.4 V 107.0 $1,000.0 \text{ W}$ 400.0 V $1,131.0 \text{ V}$ 112.0 $3,200.0 \text{ W}$	-28.93
40.0 mV 113.1 mV 32.04 $32.0 \mu W$ 80.0 mV 226.3 mV 38.06 $128.0 \mu W$ 100.0 mV 282.8 mV 40.0 $200.0 \mu W$ 200.0 mV 565.7 mV 46.02 $800.0 \mu W$ 223.6 mV 632.4 mV 46.99 1.0 mW 400.0 mV 1.131 V 52.04 3.2 mW 800.0 mV 2.263 V 58.06 12.80 mW 1.0 V 2.828 V 60.0 20.0 mW 2.0 V 5.657 V 66.02 80.0 mW 4.0 V 11.31 V 72.04 320.0 mW 8.0 V 22.63 V 78.06 1.28 W 10.0 V 28.28 V 80.0 2.0 W 20.0 V 56.57 V 86.02 8.0 W 40.0 V 113.1 V 92.04 32.0 W 80.0 V 226.3 V 98.06 128.0 W 100.0 V 282.8 V 100.0 200.0 W 200.0 V 565.7 V 106.0 800.0 W 223.6 V 632.4 V 107.0 $1,000.0 \text{ W}$ 400.0 V $1,131.0 \text{ V}$ 112.0 $3,200.0 \text{ W}$	-26.99
80.0 mV 226.3 mV 38.06 $128.0 \mu W$ 100.0 mV 282.8 mV 40.0 $200.0 \mu W$ 200.0 mV 565.7 mV 46.02 $800.0 \mu W$ 223.6 mV 632.4 mV 46.99 1.0 mW 400.0 mV 1.131 V 52.04 3.2 mW 800.0 mV 2.263 V 58.06 12.80 mW 1.0 V 2.828 V 60.0 20.0 mW 2.0 V 5.657 V 66.02 80.0 mW 4.0 V 11.31 V 72.04 320.0 mW 8.0 V 22.63 V 78.06 1.28 W 10.0 V 28.28 V 80.0 2.0 W 20.0 V 56.57 V 86.02 8.0 W 40.0 V 113.1 V 92.04 32.0 W 80.0 V 226.3 V 98.06 128.0 W 100.0 V 282.8 V 100.0 200.0 W 200.0 V 565.7 V 106.0 800.0 W 223.6 V 632.4 V 107.0 $1,000.0 \text{ W}$ 400.0 V $1,131.0 \text{ V}$ 112.0 $3,200.0 \text{ W}$	-20.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-14.95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-8.93
223.6 mV 632.4 mV 46.99 1.0 mW 400.0 mV 1.131 V 52.04 3.2 mW 800.0 mV 2.263 V 58.06 12.80 mW 1.0 V 2.828 V 60.0 20.0 mW 2.0 V 5.657 V 66.02 80.0 mW 4.0 V 11.31 V 72.04 320.0 mW 8.0 V 22.63 V 78.06 1.28 W 10.0 V 28.28 V 80.0 2.0 W 20.0 V 56.57 V 86.02 8.0 W 20.0 V 56.57 V 86.02 8.0 W 20.0 V 56.57 V 86.02 8.0 W 40.0 V 113.1 V 92.04 32.0 W 80.0 V 226.3 V 98.06 128.0 W 100.0 V 282.8 V 100.0 200.0 W 200.0 V 565.7 V 106.0 800.0 W 223.6 V 632.4 V 107.0 1,000.0 W 400.0 V 1,131.0 V 112.0 3,200.0 W	-6.99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.97
800.0 mV 2.263 V 58.06 12.80 mW 1.0 V 2.828 V 60.0 20.0 mW 2.0 V 5.657 V 66.02 80.0 mW 4.0 V 11.31 V 72.04 320.0 mW 8.0 V 22.63 V 78.06 1.28 W 10.0 V 28.28 V 80.0 2.0 W 20.0 V 56.57 V 86.02 8.0 W 40.0 V 113.1 V 92.04 32.0 W 80.0 V 226.3 V 98.06 128.0 W 100.0 V 282.8 V 100.0 200.0 W 200.0 V 565.7 V 106.0 800.0 W 223.6 V 632.4 V 107.0 1,000.0 W 400.0 V 1,131.0 V 112.0 3,200.0 W	0
1.0 V2.828 V60.020.0 mW2.0 V5.657 V66.0280.0 mW4.0 V11.31 V72.04320.0 mW8.0 V22.63 V78.061.28 W10.0 V28.28 V80.02.0 W20.0 V56.57 V86.028.0 W40.0 V113.1 V92.0432.0 W80.0 V226.3 V98.06128.0 W100.0 V282.8 V100.0200.0 W200.0 V565.7 V106.0800.0 W223.6 V632.4 V107.01,000.0 W400.0 V1,131.0 V112.03,200.0 W	5.05
2.0 V5.657 V66.0280.0 mW4.0 V11.31 V72.04320.0 mW8.0 V22.63 V78.061.28 W10.0 V28.28 V80.02.0 W20.0 V56.57 V86.028.0 W40.0 V113.1 V92.0432.0 W80.0 V226.3 V98.06128.0 W100.0 V282.8 V100.0200.0 W200.0 V565.7 V106.0800.0 W223.6 V632.4 V107.01,000.0 W400.0 V1,131.0 V112.03,200.0 W	11.07
4.0 V11.31 V72.04320.0 mW8.0 V22.63 V78.061.28 W10.0 V28.28 V80.02.0 W20.0 V56.57 V86.028.0 W40.0 V113.1 V92.0432.0 W80.0 V226.3 V98.06128.0 W100.0 V282.8 V100.0200.0 W200.0 V565.7 V106.0800.0 W223.6 V632.4 V107.01,000.0 W400.0 V1,131.0 V112.03,200.0 W	13.01
8.0 V 22.63 V 78.06 1.28 W 10.0 V 28.28 V 80.0 2.0 W 20.0 V 56.57 V 86.02 8.0 W 40.0 V 113.1 V 92.04 32.0 W 80.0 V 226.3 V 98.06 128.0 W 100.0 V 282.8 V 100.0 200.0 W 200.0 V 565.7 V 106.0 800.0 W 223.6 V 632.4 V 107.0 1,000.0 W 400.0 V 1,131.0 V 112.0 3,200.0 W	19.03
10.0 V28.28 V80.02.0 W20.0 V56.57 V86.028.0 W40.0 V113.1 V92.0432.0 W80.0 V226.3 V98.06128.0 W100.0 V282.8 V100.0200.0 W200.0 V565.7 V106.0800.0 W223.6 V632.4 V107.01,000.0 W400.0 V1,131.0 V112.03,200.0 W	25.05
20.0 V56.57 V86.028.0 W40.0 V113.1 V92.0432.0 W80.0 V226.3 V98.06128.0 W100.0 V282.8 V100.0200.0 W200.0 V565.7 V106.0800.0 W223.6 V632.4 V107.01,000.0 W400.0 V1,131.0 V112.03,200.0 W	31.07
40.0 V113.1 V92.0432.0 W80.0 V226.3 V98.06128.0 W100.0 V282.8 V100.0200.0 W200.0 V565.7 V106.0800.0 W223.6 V632.4 V107.01,000.0 W400.0 V1,131.0 V112.03,200.0 W	33.01
80.0 V 226.3 V 98.06 128.0 W 100.0 V 282.8 V 100.0 200.0 W 200.0 V 565.7 V 106.0 800.0 W 223.6 V 632.4 V 107.0 1,000.0 W 400.0 V 1,131.0 V 112.0 3,200.0 W	39.03
100.0 V282.8 V100.0200.0 W200.0 V565.7 V106.0800.0 W223.6 V632.4 V107.01,000.0 W400.0 V1,131.0 V112.03,200.0 W	45.05
200.0 V 565.7 V 106.0 800.0 W 223.6 V 632.4 V 107.0 1,000.0 W 400.0 V 1,131.0 V 112.0 3,200.0 W	51.07
223.6 V632.4 V107.01,000.0 W400.0 V1,131.0 V112.03,200.0 W	53.01
400.0 V 1,131.0 V 112.0 3,200.0 W	59.03
	60.0
800 0 V 2263 0 V 118 1 12 800 0 W	65.05
	71.07
1000.0 V 2,828.0 V 120.0 20,000 W	73.01
2000.0 V 5,657.0 V 126.0 80,000 W	79.03
4000.0 V 11,310.0 V 132.0 320,000 W	85.05
8000.0 V 22,630.0 V 138.1 1.28 MW	91.07
0,000.0 V 28,280.0 V 140.0 2.0 MW	93.01

Voltage, $V_{p-p} = V_{RMS} \times 2\sqrt{2}$


 $Voltage, dBmV = 20 \times log_{10} \left[\frac{V_{RMS}}{0.001V} \right] or 20 \times log_{10} \left[mV_{RMS} \right]$

Power, watts = $\left[\frac{V_{RMS}^{2}}{50 \Omega}\right]$

Power, $dBm = 10 \times log_{10}$	Power (watts	$\frac{1}{10}$ or 10 × log ₁₀ [mW _{BMS}]
010	0.001W	


	Table 7.48 Large Machine-Wound Coil Specifications			Table 7.50 Small Machine-Wound Coil Specifications		
Coil Dia, Inches	Turns Per Inch	Inductance in μH	Coil Dia, Inches	Turns Per Inch	Inductance in μH	
1 ¹ / ₄	4	2.75	1/2 (A)	4	0.18	
1 /4	6	6.3	, = (, ,	4 6 8	0.40	
	8	11.2		8	0.72	
	10	17.5		10	1.12	
	16	42.5		16	2.8	
	10	42.0		32	12	
1 ¹ / ₂	4	3.9				
1 /2	6	8.8	⁵ /8 (A)	4	0.28	
	8	15.6	, o (, i)	6	0.62	
	10	24.5		8	1.1	
	16	63		10	1.7	
	10	00		16	4.4	
1 ³ / ₄	4	5.2		32	18	
1 /4	6	11.8		02	10	
	8	21	³ / ₄ (B)	4	0.6	
	10	33	(+ (D)	6	1.35	
	16	85		8	2.4	
	10			10	3.8	
2	4	6.6		16	9.9	
-	6	15		32	40	
	8	26.5				
	10	42	1 (B)	4	1.0	
	16	108	. (=)	6	2.3	
	10	100		8	4.2	
2 ¹ / ₂	4	10.2		10	6.6	
- /2	6	23		16	16.9	
	8	41		32	68	
	10	64		-		
	10	0.1				
3	4	14				
-	6	31.5				
	8	56				
	10	89				

Inductance Factor for Large Machine-Wound Coils

Factor to be applied to the inductance of large coils for coil lengths up to 5 inches.

Table 7.51 Inductance Factor for Small Machine-Wound Coils

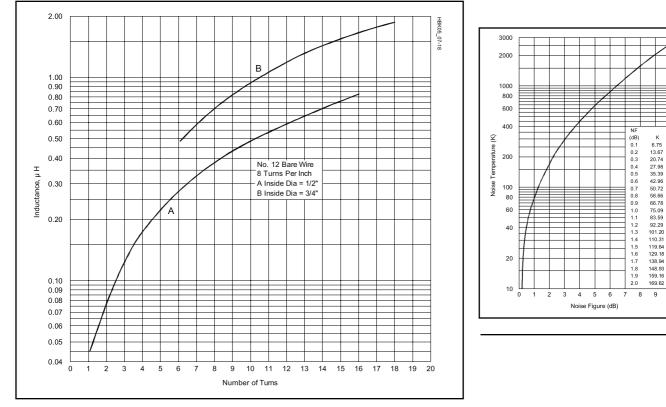

Factor to be applied to the inductance of small coils as a function of coil length. Use curve A for coils marked A, and curve B for coils marked B.

Table 7.52Measured Inductance for #12 Wire Windings

Table 7.53Relationship Between Noise Figureand Noise Temperature

HBK05_07-19

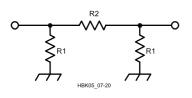
10

Values are for inductors with half-inch leads and wound with eight turns per inch.

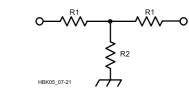
Table 7.54 Antenna Wire Strength

American	Recommended	Tension ¹ (pounds)	Weight (pound	ds per 1000 feet)
Wire Gauge	Copper-clad steel ²	Hard-drawn copper	Copper-clad steel ²	Hard-drawn copper
4	495	214	115.8	126
6	310	130	72.9	79.5
8	195	84	45.5	50
10	120	52	28.8	31.4
12	75	32	18.1	19.8
14	50	20	11.4	12.4
16	31	13	7.1	7.8
18	19	8	4.5	4.9
20	12	5	2.8	3.1

¹Approximately one-tenth the breaking load. Might be increased 50% if end supports are firm and there is no danger of ice loading. ²"Copperweld," 40% copper.


Table 7.55Standard vs American Wire Gauge

		-	
SWG	Diam (in.)	Nearest AWG	
12	0.104	10	
14	0.08	12	
16	0.064	14	
18	0.048	16	
20	0.036	19	
22	0.028	21	
24	0.022	23	
26	0.018	25	
28	0.0148	27	
30	0.0124	28	
32	0.0108	29	
34	0.0092	31	
36	0.0076	32	
38	0.006	34	
40	0.0048	36	
42	0.004	38	
44	0.0032	40	
46	0.0024	—	


Table 7.56 Pi-Network Resistive Attenuators (50 Ω)

	D1 (Ohma)	DO(Ohma)
dB Atten.	R1 (Ohms)	R2 (Ohms)
1.0	870	5.77
2.0	436	11.6
3.0	292	17.6
4.0	221	23.8
5.0 6.0	178	30.4 37.4
8.0 7.0	150 131	44.8
8.0	116	52.8
9.0	105	61.6
10.0	96.2	71.2
11.0	89.2	81.7
12.0	83.5	93.2
13.0	78.8	106
14.0	74.9	120
15.0	71.6	136
16.0	68.8	154
17.0	66.4	173
18.0	64.4	195
19.0	62.6	220
20.0	61.1	248
21.0	59.8	278
22.0	58.6	313
23.0	57.6	352
24.0	56.7	395
25.0	56.0	443
30.0	53.2	790
35.0	51.8	1405
40.0	51.0	2500
45.0	50.5	4446
50.0	50.3	7906
55.0 60.0	50.2 50.1	14,058
00.0	50.1	25,000

Note: A PC board kit for the Low-Power Step Attenuator (Sep 1982 *QST*) is available from FAR Circuits. Project details are in the Handbook **template package STEP ATTENUATOR.**

Table 7.57						
T-Network Resistive Attenuators (50 Ω)						
dB Atten. R1 (Ohms) R2 (Ohn	ıs)					
1.0 2.88 433						
2.0 5.73 215						
3.0 8.55 142						
4.0 11.3 105						
5.0 14.0 82.2						
6.0 16.6 66.9						
7.0 19.1 55.8						
8.0 21.5 47.3						
9.0 23.8 40.6						
10.0 26.0 35.1						
11.0 28.0 30.6						
12.0 30.0 26.8						
13.0 31.7 23.5						
14.0 33.3 20.8						
15.0 35.0 18.4						
16.0 36.3 16.2						
17.0 37.6 14.4						
18.0 38.8 12.8 10.0 10.0 11.4						
19.0 40.0 11.4						
20.0 41.0 10.0						
21.041.89.022.042.68.0						
22.0 42.6 8.0 23.0 43.4 7.1						
23.0 43.4 7.1 24.0 44.0 6.3						
24.0 44.0 0.3 25.0 44.7 5.6						
30.0 47.0 3.2						
35.0 48.2 1.8						
40.0 49.0 1.0						
45.0 49.4 0.56						
50.0 49.7 0.32						
55.0 49.8 0.18						

49.9

0.10

Table 7.58

60.0

Impedance of Various Two-Conductor Lines

	—— Twists per Inch ——				
Wire Size	2.5	5	7.5	10	12.5
no. 20	43	39	35		
no. 22	46	41	39	37	32
no. 24	60	45	44	43	41
no. 26	65	57	54	48	47
no. 28	74	53	51	49	47
no. 30			49	46	47

Measured in ohms at 14.0 MHz.

This illustrates the impedance of various two-conductor lines as a function of the wire size and number of twists per inch.

Table 7.59 Attenuation per Foot for Lines

	·	Twists p	er Inch		
Wire Size	2.5	5	7.5	10	12.5
no. 20 no. 22 no. 24	0.11 0.11 0.11	0.11 0.12 0.12	0.12 0.12 0.12	0.12 0.13	0.12 0.13
no. 26 no. 28 no. 30	0.11 0.11	0.13 0.13	0.12 0.13 0.13 0.25	0.13 0.16 0.27	0.13 0.16 0.27

Measured in decibels at 14.0 MHz.

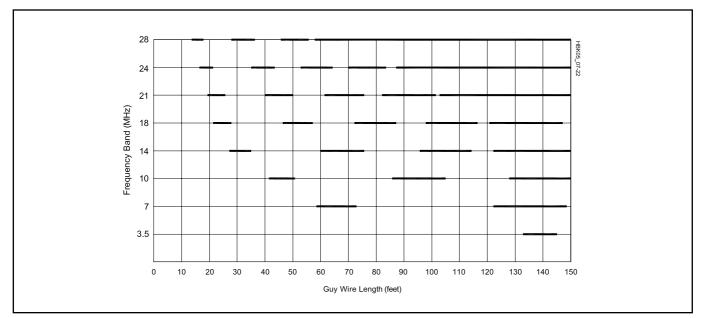

Attenuation in dB per foot for the same lines as shown above.

Table 7.60

Equivalent Values of Reflection Coefficient, Attenuation, SWR and Return Loss

Reflection Coefficient (%)	Attenuation (dB)	Max SWR	Return Loss, dB	Reflection Coefficient (%)	Attenuation (dB)	Max SWR	Return Loss, dB
1.000	0.000434	1.020	40.00	44.000	0.9345	2.571	7.13
1.517	0.001000	1.031	36.38	45.351	1.0000	2.660	6.87
2.000	0.001738	1.041	33.98	48.000	1.1374	2.846	6.38
3.000	0.003910	1.062	30.46	50.000	1.2494	3.000	6.02
4.000	0.006954	1.083	27.96	52.000	1.3692	3.167	5.68
4.796	0.01000	1.101	26.38	54.042	1.5000	3.352	5.35
5.000	0.01087	1.105	26.02	56.234	1.6509	3.570	5.00
6.000	0.01566	1.128	24.44	58.000	1.7809	3.762	4.73
7.000	0.02133	1.151	23.10	60.000	1.9382	4.000	4.44
7.576	0.02500	1.164	22.41	60.749	2.0000	4.095	4.33
8.000	0.02788	1.174	21.94	63.000	2.1961	4.405	4.01
9.000	0.03532	1.198	20.92	66.156	2.5000	4.909	3.59
10.000	0.04365	1.222	20.00	66.667	2.5528	5.000	3.52
10.699	0.05000	1.240	19.41	70.627	3.0000	5.809	3.02
11.000	0.05287	1.247	19.17	70.711	3.0103	5.829	3.01
12.000	0.06299	1.273	18.42	/ 0.1 11	0.0100	0.020	0.01
13.085	0.07500	1.301	17.66				
14.000	0.08597	1.326	17.08	SWR – 1			
15.000	0.09883	1.353	16.48	$\rho = \frac{1}{SWR + 1}$			
15.087	0.10000	1.355	16.43		(
16.000	0.1126	1.381	15.92	where $\rho = 0.01 \times (re)$	fiection coefficient i	n %)	
17.783	0.1396	1.433	15.00	DI			
18.000	0.1430	1.439	14.89	<u>–RL</u>			
19.000	0.1597	1.469	14.42	$\rho = 10^{20}$			
20.000	0.1773	1.500	13.98				
22.000	0.2155	1.564	13.15	where RL = return lo	ss (aB)		
23.652	0.2500	1.620	12.52				
24.000	0.2577	1.632	12.40	$\rho = \sqrt{1 - (0.1^{X})}$			
25.000	0.2803	1.667	12.04	,	A - attanuation (dB	1	
26.000	0.3040	1.703	11.70	where $X = A/10$ and	A = attenuation (ub))	
27.000	0.3287	1.740	11.37	1+0			
28.000	0.3546	1.778	11.06	SWR = $\frac{1+\rho}{1-\rho}$			
30.000	0.4096	1.857	10.46	1-ρ			
31.623	0.4576	1.925	10.00	Return loss (dB) = -8	3.68589 ln (a)		
32.977	0.5000	1.984	9.64	where In is the natura		se e)	
33.333	0.5115	2.000	9.54				
34.000	0.5335	2.030	9.37	Attenuation (dB) = -4	$1.31205 \ln(1.2)$		
35.000	0.5675	2.077	9.12			aa a)	
36.000	0.6028	2.125	8.87	where In is the natura	al log (log to the ba	se e)	
37.000	0.6394	2.175	8.64				
38.000	0.6773	2.226	8.40				
39.825	0.75000	2.324	8.00				
40.000	0.7572	2.333	7.96				
42.000	0.8428	2.448	7.54				
42.857	0.8814	2.500	7.36				

Table 7.61 Guy Wire Lengths to Avoid

The black bars indicate ungrounded guy wire lengths to avoid for the eight HF amateur bands. This chart is based on resonance within 10% of any frequency in the band. Grounded wires will exhibit resonance at odd multiples of a quarter wavelength. *(Jerry Hall, K1TD)*

Table 7.62Morse Code Character Set1

A B C	didah dahdididit dahdidahdit	•	Period [.]: Comma [,]: Question mark or	didahdidahdidah dahdahdididahdah	• - • - • - ••	AAA MIM
D	dahdidahdit dahdidit	- • - •	request for repetition [?]:	dididahdahdidit	•• ••	IMI
E	dit	- ••	Error:	dididididididit	••••••	НH
F	dididahdit	•	Hyphen or dash [-]:	dahdididididah	- •••• -	DU
		•• - •	Double dash [=]	dahdidididah	- ••• -	BT
G	dahdahdit	•	Colon [:]:	dahdahdahdididit	•••	OS
Н	dididit	••••	Semicolon [;]:	dahdidahdidahdit	-•-•-•	
<u> </u>	didit dida bala bala b	••	Left parenthesis [(]:	dahdidahdahdit	-••	KN
J	didahdahdah	•	Right parenthesis [)]:	dahdidahdahddidah		
K	dahdidah	- •-	Fraction bar [/]:	dahdididahdit didahdididahdit	- •• - •	DN AF
L	didahdidit	• - ••	Quotation marks ["]: Dollar sign [\$]:	didididahdididah	• - • • - •	SX
М	dahdah		Apostrophe [']:	didahdahdahdahdit		• WG
N	dahdit	-•	Paragraph [¶]:	didahdidahdidit	• - • - ••	
0	dahdahdah		Underline [_]:	dididahdahdidah	•• • -	ĪQ
Р	didahdahdit	• •	Starting signal:	dahdidahdidah	$- \bullet - \bullet -$	KA
Q	dahdahdidah	•-	Wait:	didahdididit	• - •••	AS
R	didahdit	$\bullet - \bullet$	End of message or cross [+]:	didahdidahdit	$\bullet-\bullet-\bullet$	AR
S	dididit	•••	Invitation to transmit [K]:	dahdidah	-•-	<u>K</u>
Т	dah	-	End of work:	dididahdidah	••• - • -	SK
U	dididah	•• -	Understood:	dididahdit	••• - •	SN
V	dididah	••• -	Notes:			
W	didahdah	•	1. Not all Morse characters shown ar	e used in FCC code te	sts. License app	licants are
Х	dahdididah	- •• -	responsible for knowing, and may be			
Y	dahdidahdah	- •	period, the comma, the question mar			
Z	dahdahdidit	••				
			2. The following letters are used in		speranto charac	cters:
1	didahdahdahdah	•	certain European languages which us	e A C da	ahdidahdidit	
2	dididahdahdah	••	the Latin alphabet:			- • - ••
3	dididahdah	•••	Â, A didahdidah $\bullet - \bullet -$ Á, Å, À, Â didahdahdidah $\bullet \bullet$	_ Ś di	dididahdit	••• – •
4	didididah	•••• -		—	anardantan	
5	didididit	••••	Ç, Ć dahdidahdidit – • – •• É, È, Ę dididahdidit •• – ••	• Ĵ di	dahdahdahdit	••
6	dahdidididit	- ••••	È, È, Ę dididahdidit •• – ••	Λ		
7	dahdahdididit	•••	È didahdididah • – • • –		ahdidahdahdit	$-\bullet \bullet$
8	dahdahdahdidit	•	Ê dahdididahdit – •• – • Ö, Ô, Ó dahdahdahdit – – –•	A		
9	dahdahdahdahdit	•	~		didahdah	••
0	dahdahdahdahdah			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ahdahdidahdit	
			,	G ua		
			Z dahdahdididah – –••			
			CH, Ş dahdahdahdah – – –	_		
			4. Signals used in other radio service Interrogatory dididahdidah	es:	INT	
			Interrogatory dididahdidah Emergency silence dididididahdal		HM	
			Executive follows dididahdididah			
				lahdididit ●●● – – – ●●●		
				lidahdidit – •• – •• – •		
			iteray of ulstress uandididation		•	

Morse Abbreviated Numbers

Nume	eral	Long Numb	per	Abbreviated Number	Equivalent Character
1	didahdahdahdah	•	didah	• -	Α
2	dididahdahdah	••	dididah	•• -	U
3	dididahdah	•••	didididah	••• -	V
4	didididah	•••• -	didididah	•••• -	4
5	didididit	••••	didididit	••••• or •	5 or E
6	dahdididit	- ••••	dahdididiti	- ••••	6
7	dahdahdididit	•••	dahdididit	- •••	В
8	dahdahdahdidit	•	dahdidit	- ••	D
9	dahdahdahdahdit	•	dahdit	-•	N
0	dahdahdahdahdah		dah	-	Т

Note: These abbreviated numbers are not legal for use in call signs. They should be used only where there is agreement between operators and when no confusion will result.

Table 7.63Morse Abbeviated ("Cut") Numbers

worse Abbeviated (Cut	Morse Abbeviated (Cut) Numbers							
Numeral	Long Number	r	Abbreviated Number	Equivalent Character				
1 didahdahdah	•	didah	• _	А				
2 dididahdahdah	• •	dididah	••-	U				
3 didididahdah	•••	didididah	•••-	V				
4 didididah	••••-	didididah	••••-	4				
5 dididididit	••••	didididit	•••• or •	5 or E				
6 dahdidididit	_ • • • •	dahdidididit	_ • • • •	6				
7 dahdahdididit	••	dahdididit	-•••	В				
8 dahdahdahdidit	•	dahdidit	- • •	D				
9 dahdahdahdit	•	dahdit	-•	Ν				
0 dahdahdahdah		dah	-	Т				

Note: These abbreviated numbers are not legal for use in call signs. They should be used only where there is agreement between operators and when no confusion will result.

he ASCII Co					•	•					ACK acknowledge BEL bell
		6	0	0	0	0	1	1	1	1	BS backspace
lit		5	0	0	1	1	0	0	1	1	CAN cancel
lumber		4	0	1	0	1	0	1	0	1	CR carriage return DC1 device control 1
	Hex	1st	0	1	2	3	4	5	6	7	DC1 device control 1 DC2 device control 2
2 1 0	2nd		•	-	-	•	-	•	•		DC3 device control 2
-							_	_			DC4 device control 4
0 0 0	0		NUL	DLE	SP	0	@	Р	"	р	DEL (delete)
0 0 1	1		SOH	DC1	!	1	Α	Q	а	q	DLE data link escape
0 1 0	2		STX	DC2	"	2	В	R	b	r	ENQ enquiry
0 1 1	3		ETX	DC3	#	3	C	S	c	S	EM end of medium
1 0 0	4		EOT	DC4	\$	4	D	Т	d	t	EOT end of transmission
1 0 1	5		ENQ	NAK	%	5	Е	U	е	u	ESC escape
1 1 0	6		ACK	SYN	&	6	F	V	f	v	ETB end of block
1 1 1	7		BEL	ETB	"	7	G	W	g	w	ETX end of text
0 0 0	8		BS	CAN	(8	Н	Х	h	х	FF form feed
0 0 1	9		HT	EM)	9	I	Y	i	У	FS file separator
0 1 0	А		LF	SUB	*	:	J	Z	i	Z	GS group separator
0 1 1	В		VT	ESC	+	;	ĸ	[k	{	HT horizontal tab
1 0 0	С		FF	FS		<	L	Ň	1	Ì	LF line feed NAK negative acknowledg
1 0 1	D		CR	GS	-	=	М	1	m	Ś	
1 1 0	Ē		SO	RS		>	N	× 1	n	, ~	
1 1 1	F		SI	US	;	?	Ö		0	DEL	
	1		01	05	'	•	0		0	DLL	SI shift in SO shift out
											SOH start of heading
											SP space STX start of text
otes											STX start of text SUB substitute
"1" = mark, "0"	' = snac	A									
Bit 6 is the mo	•		t (MSB)	Rit A is th	اموما م	-ciani	ficant	hit (I S	B)		
	Jac-Sigili				e ieasi	Jaigill	noant		וט.		US unit separator

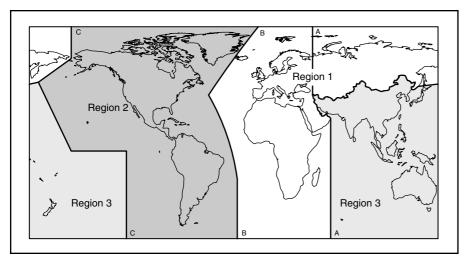
Voluntary HF Band Plans

The following frequencies are generally recognized for certain modes or activities (all frequencies are in MHz).

Nothing in the rules recognizes a net's, group's or any individual's special privilege to any specific frequency. Section 97.101(b) of the Rules states that "Each station licensee and each control operator must cooperate in selecting transmitting channels and in making the most effective use of the amateur service frequencies. No frequency will be assigned for the exclusive use of any station." No one "owns" a frequency.

It's good practice—and plain old common sense—for any operator, regardless of mode, to check to see if the frequency is in use prior to engaging operation. If you are there first, other operators should make an effort to protect you from interference to the extent possible given that 100% inter-ference-free operation is an unrealistic expectation in today's congested bands.

1.800-1.810	Digital Modes	14.285	QRP SSB calling frequency
1.810	CW QRP	14.286	AM calling frequency
1.800-2.000	CW		
1.843-2.000	SSB, SSTV and other wideband modes	18.100-18.105	Data
1.910	SSB QRP	18.105-18.110	Automatically controlled data stations
1.995-2.000	Experimental		······
1.999-2.000	Beacons	21.060	QRP CW calling frequency
1.000 2.000	Doubonio	21.070-21.090	Data
3.500-3.510	CW DX	21.090-21.100	Automatically controlled data stations
3.590	RTTY DX	21.030-21.100	SSTV
3.580-3.620	Data	21.340	QRP SSB calling frequency
		21.303	QRF 55B calling liequency
3.620-3.635	Automatically controlled data stations	04 000 04 005	Data
3.790-3.800	DX window	24.920-24.925	Data
3.845	SSTV	24.925-24.930	Automatically controlled data stations
3.885	AM calling frequency		
3.985	QRP SSB calling frequency	28.060	QRP CW calling frequency
		28.070-28.120	Data
7.040	RTTY DX	28.120-28.189	Automatically controlled data stations
	QRP CW calling frequency	28.190-28.225	Beacons
7.075-7.100	Phone in KH/KL/KP <i>only</i>	28.385	QRP SSB calling frequency
7.080-7.100	Data	28.680	SSTV
7.100-7.105	Automatically controlled data stations		
7.171	SSTV	29.000-29.200	AM
7.290	AM calling frequency	29.300-29.510	Satellite downlinks
	5 T ,	29.520-29.580	Repeater inputs
10.106	QRP CW calling frequency	29.600	FM simplex
10.130-10.140	Data	29.620-29.680	Repeater outputs
10.140-10.150	Automatically controlled data stations	_0.0_0 _0.000	
		Notes	
14.060	QRP CW calling frequency	ARRL band plans for fr	equencies above 28.300 MHz are shown in The
14.070-14.095	Data	ARRL Repeater Direc	
14.095-14.0995	Automatically controlled data stations	·	QST
14.100	IBP/NCDXF beacons		
14.1005-14.112	Automatically controlled data stations		
14.1003-14.112	Automatically controlled data stations		


Table 7.66

14.230

SSTV

VHF/UHF/EHF	Calling Frequencies	1296	1294.500 National FM simplex frequency			
Band (MHz)	Calling Frequency		1296.100 CW/S	28		
50	50.125 SSB 50.620 digital (packet) 52.525 National FM simplex frequency	2304	2304.4 2305.2 FM simp	lex frequency		
		10000	10368.1 Narrow	-band		
144	144.010 EME 144.100, 144.110 CW	VHF/UHF Activity Nights				
	144.200 SSB	Some areas do not have enough VHF/UHF activity to supp				
	146.520 National FM simplex frequency	contacts at all times. This schedule is intended to help VHF/UHF operators make contact. This is only a starting point; check with				
222	222.100 CW/SSB	others in your area to see if local hams have a different				
	223.500 National FM simplex frequency	ule.				
432	432.010 EME	Band (MHz)	Day	Local Time		
	432.100 CW/SSB	50	Sunday	6 PM		
	446.000 National FM simplex frequency	144	Monday	7 PM		
902	902.100 CW/SSB 903.1 Alternate CW, SSB 906.500 National FM simplex frequency	222 432 902 1296	Tuesday Wednesday Friday Thursday	8 PM 9 PM 9 PM 10 PM		

Table 7.67 ITU Regions

The International Telecommunication Union divides the world into three regions. Geographic details appear in *The FCC Rule Book.*

Table 7.68

Allocation of International Call Signs

Allocation c	of International Call Signs				
AAA-ALZ	United States of America	EKA-EKZ	Armenia	H4A-H4Z	Solomon Islands
AMA-AOZ	Spain	ELA-ELZ	Liberia	H6A-H7Z	Nicaragua
APA-ASZ	Pakistan	EMA-EOZ	Ukraine	H8A-H9Z	Panama
ATA-AWZ	India	EPA-EQZ	Iran	IAA-IZZ	Italy
AXA-AXZ	Australia			JAA-JSZ	Japan
AYA-AZZ	Argentina	ERA-ERZ	Moldova	JTA-JVZ	Mongolia
A2A-A2Z	Botswana	ESA-ESZ	Estonia	JWA-JXZ	Norway
A3A-A3Z	Tonga	ETA-ETZ	Ethiopia	JYA-JYZ	Jordan
A4A-A4Z	Oman	EUA-EWZ	Belarus	JZA-JZZ	Indonesia
A5A-A5Z	Bhutan	EXA-EXZ	Kyrgyzstan	J2A-J2Z	Djibouti
A6A-A6Z	United Arab Emirates	EYA-EYZ	Tajikistan	J3A-J3Z	Grenada
A7A-A7Z	Qatar	EZA-EZZ	Turkmenistan	J4A-J4Z	Greece
A8A-A8Z	Liberia	E2A-E2Z	Thailand	J5A-J5Z	Guinea-Bissau
A9A-A9Z	Bahrain	E3A-E3Z	Eritrea	J6A-J6Z	Saint Lucia
BAA-BZZ	China (People's Republic of)	†E4A-E4Z	Palestinian Authority	J7A-J7Z	Dominica
CAA-CEZ	Chile	FAA-FZZ	France		
CFA-CKZ	Canada	GAA-GZZ	United Kingdom of Great	J8A-J8Z	St. Vincent and the
CLA-CMZ	Cuba	GAA-GZZ	Britain and Northern Ireland		Grenadines
CNA-CNZ	Morocco	HAA-HAZ	Hungary	KAA-KZZ	United States of America
COA-COZ	Cuba	HBA-HBZ	Switzerland	LAA-LNZ	Norway
CPA-CPZ	Bolivia	HCA-HDZ	Ecuador	LOA-LWZ LXA-LXZ	Argentina
CQA-CUZ	Portugal	HEA-HEZ	Switzerland		Luxembourg
CVA-CXZ	Uruguay	HFA-HFZ	Poland	LYA-LYZ	Lithuania
CYA-CZZ C2A-C2Z	Canada	HGA-HGZ	Hungary	LZA-LZZ	Bulgaria
C3A-C3Z	Nauru Andorra	HHA-HHZ	Haiti	L2A-L9Z	Argentina
C4A-C4Z		HIA-HIZ	Dominican Republic	MAA-MZZ	United Kingdom of Great
C5A-C5Z	Cyprus Gambia	HJA-HKZ	Colombia		Britain and Northern Ireland
C6A-C6Z	Bahamas	HLA-HLZ	Republic of Korea	NAA-NZZ	United States of America
* C7A-C7Z	World Meteorological	HMA-HMZ	Democratic People's	OAA-OCZ ODA-ODZ	Peru Lebanon
014 012	Organization		Republic of Korea	OEA-OEZ	Austria
C8A-C9Z	Mozambique	HNA-HNZ	Iraq	OFA-OJZ	Finland
DAA-DRZ	Germany	HOA-HPZ	Panama	OKA-OLZ	Czech Republic
DSA-DTZ	Republic of Korea	HQA-HRZ	Honduras	OMA-OMZ	Slovak Republic
DUA-DZZ	Philippines	HSA-HSZ	Thailand	ONA-OTZ	Belgium
D2A-D3Z	Angola	HTA-HTZ	Nicaragua	OUA-OZZ	Denmark
D4A-D4Z	Cape Verde	HUA-HUZ	El Salvador	PAA-PIZ	Netherlands
D5A-D5Z	Liberia	HVA-HVZ	Vatican City State	PJA-PJZ	Netherlands Antilles
D6A-D6Z	Comoros	HWA-HYZ	France	PKA-POZ	Indonesia
D7A-D9Z	Republic of Korea	HZA-HZZ	Saudi Arabia	PPA-PYZ	Brazil
EAA-EHZ	Spain	H2A-H2Z	Cyprus	PZA-PZZ	Suriname
	Ireland	H3A-H3Z	Panama	P2A-P2Z	Papua New Guinea
EIA-EJZ	Ireland				

P3A-P3Z	Cyprus	XAA-XIZ	Mexico	5AA-5AZ	Libya
P4A-P4Z	Aruba	XJA-XOZ	Canada	5BA-5BZ	Cyprus
P5A-P9Z	Democratic People's	XPA-XPZ	Denmark	5CA-5GZ	Morocco
	Republic of Korea	XQA-XRZ	Chile	5HA-5IZ	Tanzania
RAA-RZZ	Russian Federation	XSA-XSZ	China	5JA-5KZ	Colombia
SAA-SMZ	Sweden	XTA-XTZ	Burkina Faso	5LA-5MZ	Liberia
SNA-SRZ	Poland	XUA-XUZ	Cambodia	5NA-5OZ	Nigeria
SSA-SSM	Egypt	XVA-XVZ	Viet Nam	5PA-5QZ	Denmark
SSN-STZ	Sudan	XWA-XWZ	Laos	5RA-5SZ	Madagascar
SUA-SUZ	Egypt	XXA-XXZ	Portugal	5TA-5TZ	Mauritania
SVA-SZZ	Greece	XYA-XZZ	Myanmar	5UA-5UZ	Niger
S2A-S3Z	Bangladesh	YAA-YAZ	Afghanistan	5VA-5VZ	Togo
S5A-S5Z	Slovenia	YBA-YHZ	Indonesia	5WA-5WZ	Western Samoa
S6A-S6Z	Singapore	YIA-YIZ	Iraq	5XA-5XZ	Uganda
S7A-S7Z	Sevchelles	YJA-YJZ	Vanuatu	5YA-5ZZ	Kenya
S8A-S8Z	South Africa	YKA-YKZ	Syria	6AA-6BZ	Egypt
S9A-S9Z	Sao Tome and Principe	YLA-YLZ	Latvia	6CA-6CZ	
TAA-TCZ	Turkey	YMA-YMZ	Turkey		Syria
TDA-TDZ	Guatemala	YNA-YNZ	Nicaragua	6DA-6JZ	Mexico
TEA-TEZ	Costa Rica	YOA-YRZ	Romania	6KA-6NZ	Republic of Korea
TFA-TFZ	Iceland	YSA-YSZ	El Salvador	60A-60Z	Somalia
TGA-TGZ	Guatemala	YTA-YUZ	Yugoslavia	6PA-6SZ	Pakistan
THA-THZ	France	YVA-YYZ	Venezuela	6TA-6UZ	Sudan
TIA-TIZ	Costa Rica	YZA-YZZ	Yugoslavia	6VA-6WZ	Senegal
TJA-TJZ	Cameroon	Y2A-Y9Z	Germany	6XA-6XZ	Madagascar
TKA-TKZ	France	ZAA-ZAZ	Albania	6YA-6YZ	Jamaica
TLA-TLZ	Central Africa	ZBA-ZJZ	United Kingdom of Great	6ZA-6ZZ	Liberia
TMA-TMZ	France		Britain and Northern Ireland	7AA-7IZ	Indonesia
TNA-TNZ	Congo (Republic of the)	ZKA-ZMZ	New Zealand	7JA-7NZ	Japan
TOA-TQZ	France	ZNA-ZOZ	United Kingdom of Great	70A-70Z	Yemen
TRA-TRZ	Gabon		Britain and Northern Ireland	7PA-7PZ	Lesotho
TSA-TSZ	Tunisia	ZPA-ZPZ	Paraguay	7QA-7QZ	Malawi
TTA-TTZ	Chad	ZQA-ZQZ	United Kingdom of Great	7RA-7RZ	Algeria
TUA-TUZ	Ivory Coast		Britain and Northern Ireland	7SA-7SZ	Sweden
TVA-TXZ	France	ZRA-ZUZ	South Africa	7TA-7YZ	Algeria Soudi Arobio
TYA-TYZ	Benin	ZVA-ZZZ	Brazil	7ZA-7ZZ	Saudi Arabia
TZA-TZZ	Mali	Z2A-Z2Z	Zimbabwe	8AA-8IZ	Indonesia
T2A-T2Z	Tuvalu	Z3A-Z3Z	Macedonia (Former	8JA-8NZ	Japan Botswana
T3A-T3Z	Kiribati		Yugoslav Republic)	80A-80Z 8PA-8PZ	Barbados
T4A-T4Z	Cuba	2AA-2ZZ	United Kingdom of Great	8QA-8QZ	Maldives
T5A-T5Z	Somalia		Britain and Northern Ireland	8RA-8RZ	Guyana
T6A-T6Z	Afghanistan	3AA-3AZ	Monaco	8SA-8SZ	Sweden
T7A-T7Z	San Marino	3BA-3BZ	Mauritius	8TA-8YZ	India
T8A-T8Z	Palau	3CA-3CZ	Equatorial Guinea	8ZA-8ZZ	Saudi Arabia
T9A-T9Z	Bosnia and Herzegovina	3DA-3DM	Swaziland	9AA-9AZ	Croatia
UAA-UIZ	Russian Federation	3DN-3DZ	Fiji		
UJA-UMZ	Uzbekistan	3EA-3FZ	Panama	9BA-9DZ	Iran Ethiopia
UNA-UQZ	Kazakhstan	3GA-3GZ	Chile	9EA-9FZ	Ethiopia
URA-UZZ	Ukraine	3HA-3UZ	China	9GA-9GZ 9HA-9HZ	Ghana
VAA-VGZ	Canada	3VA-3VZ	Tunisia	9IA-9JZ	Malta Zambia
VHA-VNZ	Australia	3WA-3WZ	Viet Nam		
VOA-VOZ	Canada	3XA-3XZ	Guinea	9KA-9KZ	Kuwait
VPA-VQZ	United Kingdom of Great	3YA-3YZ	Norway	9LA-9LZ	Sierra Leone
	Britain and Northern Ireland	3ZA-3ZZ	Poland	9MA-9MZ	Malaysia
VRA-VRZ	China (People's Republic	4AA-4CZ	Mexico	9NA-9NZ	Nepal
	of)—Hong Kong	4DA-4IZ	Philippines	90A-9TZ	Democratic Republic of the
VSA-VSZ	United Kingdom of Great	4JA-4KZ	Azerbaijani Republic		Congo
	Britain and Northern Ireland	4LA-4LZ	Georgia	9UA-9UZ	Burundi
VTA-VWZ	India	4MA-4MZ	Venezuela	9VA-9VZ	Singapore
VXA-VYZ	Canada	4NA-4OZ	Yugoslavia	9WA-9WZ	Malaysia
VZA-VZZ	Australia	4PA-4SZ	Sri Lanka	9XA-9XZ	Rwanda
V2A-V2Z	Antigua and Barbuda	4TA-4TZ	Peru	9YZ-9ZZ	Trinidad and Tobago
V3A-V3Z	Belize	* 4UA-4UZ	United Nations		
V4A-V4Z	Saint Kitts and Nevis	4VA-4VZ	Haiti	Notes:	
V5A-V5Z	Namibia	* 4WA-4WZ	United Nations	*Series allocat	ed to an international
V6A-V6Z	Micronesia Maraball Jalanda	4XA-4XZ	Israel	organization	
	Marshall Islands	* 4YA-4YZ	International Civil Aviation		o Resolution 99 (Minneapolis,
V8A-V8Z WAA-WZZ	Brunei United States of America		Organization	1998) of the	Plenipotentiary Conference
VVAA-VVZZ	United States of America	4ZA-4ZZ	Israel		

Table 7.69 FCC-Allocated Prefixes for Areas Outside the Continental US

Prefix AH1, KH1, NH1, WH1 AH2, KH2, NH2, WH2 AH3, KH3, NH3, WH3 AH4, KH4, NH4, WH4 AH5K, KH5K, NH5K, WH5K AH5, KH5, NH5, WH5 (except K suffix) AH6-7, KH6-7, NH6-7, WH6-7 AH7K, KH7K, NH7K, WH7K AH8, KH8, NH8, WH8 AH9, KH9, NH9, WH9 AHØ, KHØ, NHØ, WHØ AL, KL, NL, WL KP1, NP1, WP1 KP2, NP2, WP2 KP3-4, NP3-4, WP3-4 KP5, NP5, WP5

I ocation Baker. Howland Is Guam Johnston I Midway I Kingman Reef Palmyra, Jarvis Is Hawaii Kure I American Samoa Wake, Wilkes, Peale Is Northern Mariana Is Alaska Navassa Virain Is Puerto Rico Desecheo

Table 7.70

DX Operating Code

For W/VE Amateurs

Some DXers have caused considerable confusion and interference in their efforts to work DX stations. The points below, if observed by all W/VE amateurs, will help make DX more enjoyable for all.

1) Call DX only after he calls CQ, QRZ? or signs \overline{SK} , or voice equivalents thereof. Make your calls short.

2) Do not call a DX station:

a) On the frequency of the station he is calling until you are sure the QSO is over (\overline{SK}) .

- b) Because you hear someone else calling him.
- c) When he signs KN, AR or CL.
- d) Exactly on his frequency.

e) After he calls a directional CQ, unless of course you are in the right direction or area.

3) Keep within frequency band limits. Some DX stations can get away with working outside, but you cannot.

4) Observe calling instructions given by DX stations.
Example: 15U means "call 15 kHz up from my frequency."
15D means down, etc.

5) Give honest reports. Many DX stations depend on W/VE reports for adjustment of station and equipment.

6) Keep your signal clean. Key clicks, ripple, feedback or splatter gives you a bad reputation and may get you a citation from the FCC.

7) *Listen* and call the station you want. Calling CQ DX is not the best assurance that the rare DX will reply.

8) When there are several W or VE stations waiting, avoid asking DX to "listen for a friend." Also avoid engaging him in a ragchew against his wishes.

For Overseas Amateurs

To all overseas amateur stations:

In their eagerness to work you, many W and VE amateurs resort to practices that cause confusion and QRM. Most of this is good-intentioned but ill-advised; some of it is intentional and selfish. The key to the cessation of unethical DX operating practices is in your hands. We believe that your adoption of certain operating habits will increase your enjoyment of Amateur Radio and that of amateurs on this side who are eager to work you. We recommend your adoption of the following principles:

1) Do not answer calls on your own frequency.

2) Answer calls from W/VE stations only when their signals are of good quality.

3) Refuse to answer calls from other stations when you are already in contact with someone, and do not acknowledge calls from amateurs who indicate they wish to be "next."
4) Give *everybody* a break. When many W/VE amateurs are patiently and quietly waiting to work you, avoid comply-

ing with requests to "listen for a friend." 5) Tell listeners where to call you by indicating how many kilohertz up (U) or down (D) from your frequency you are listening.

6) Use the ARRL-recommended ending signals, especially KN to indicate to impatient listeners the status of the QSO. KN means "Go ahead (specific station); all others keep out."

7) Let it be known that you avoid working amateurs who are constant violators of these principles.

Pacific	Mtn	Central	East	Mon	Tue	Wed	Thu	Fri
6 AM	7 AM	8 AM	9 AM		Fast	Slow	Fast	Slow
					Code	Code	Code	Code
7 AM -	8 AM -	9 AM -	10 AM -		Visitin	g Opera	tor Tin	ne
1 PM	2 PM	3 PM	4 PM	(12 PM - 1 PM closed for lunch)				
1 PM	2 PM	3 PM	4 PM	Fast	Slow	Fast	Slow	Fast
				Code	Code	Code	Code	Code
2 PM	3 PM	4 PM	5 PM	Code Bulletin				
3 PM	4 PM	5 PM	6 PM	Teleprinter Bulletin				
4 PM	5 PM	6 PM	7 PM	Slow	Fast	Slow	Fast	Slow
				Code	Code	Code	Code	Code
5 PM	6 PM	7 PM	8 PM			Code]	Bulletin	
6 PM	7 PM	8 PM	9 PM		7	Feleprin	ter Bulle	etin
6:45 PM	7:45 PM	8:45 PM	9:45 PM	Voice Bulletin				
7 PM	8 PM	9 PM	10 PM	Fast	Slow	Fast	Slow	Fast
				Code	Code	Code	Code	Code
8 PM	9 PM	10 PM	11 PM	Code Bulletin				

W1AW SCHEDULE

W1AW's schedule is at the same local time throughout the year. The schedule according to your local time will change if your local time does not have seasonal adjustments that are made at the same time as North American time changes between standard time and daylight time. From the first Sunday in April to the last Sunday in October, UTC = Eastern Time + 4 hours. For the rest of the year, UTC = Eastern Time + 5 hours.

Morse code transmissions:

Frequencies are 1.818, 3.5815, 7.0475, 14.0475, 18.0975, 21.0675, 28.0675 and 147.555 MHz.

Slow Code = practice sent at 5, 71/2, 10, 13 and 15 wpm.

Fast Code = practice sent at 35, 30, 25, 20, 15, 13 and 10 wpm.

Code practice text is from the pages of *QST*. The source is given at the beginning of each practice session and alternate speeds within each session. For example, "Text is from June 2003 *QST*, pages 9 and 81," indicates that the plain text is from the article on page 9 and mixed number/letter groups are from page 81.

Code bulletins are sent at 18 wpm.

W1AW qualifying runs are sent on the same frequencies as the Morse code transmissions. West Coast qualifying runs are transmitted on approximately 3.590 MHz by K6YR. At the beginning of each code practice session, the schedule for the next qualifying run is presented. Underline one minute of the highest speed you copied, certify that your copy was made without aid, and send it to ARRL for grading. Please include your name, call sign (if any) and complete mailing address. The fee structure is \$10 for a certificate and \$7.50 for endorsements.

Teleprinter transmissions:

Frequencies are 3.625, 7.095, 14.095, 18.1025, 21.095, 28.095 and 147.555 MHz.

Bulletins are sent at 45.45-baud Baudot and 100-baud AMTOR, FEC Mode B. 110-baud ASCII will be sent only as time allows.

On Tuesdays and Fridays at 6:30 PM Eastern Time, Keplerian elements for many amateur -satellites are sent on the regular teleprinter frequencies.

Voice transmissions:

Frequencies are 1.855, 3.99, 7.29, 14.29, 18.16, 21.39, 28.59 and 147.555 MHz.

Miscellanea:

On Fridays, UTC, a DX bulletin replaces the regular bulletins.

W1AW is open to visitors from 10 AM until noon and from 1 PM until 3:45 PM on Monday through Friday. FCC-licensed amateurs may operate the station during that time. Be sure to bring your current FCC amateur license or a photocopy. In a communication emergency, monitor W1AW for special bulletins as follows: voice on the hour, teleprinter at 15 minutes past the hour, and CW on the half hour.

Headquarters and W1AW are closed on New Year's Day, President's Day, Good Friday, Memorial Day, Independence Day, Labor Day, Thanksgiving and the following Friday, and Christmas Day and the following day.

ARRL Procedural Signals (Prosigns)

In general, the CW prosigns are used on all data modes as well, although word abbreviations may be spelled out. That is, "CLEAR" might be used rather than "CL" on radioteletype. Additional radioteletype conventions appear at the end of the table.

Situation	CW	Voice
check for a clear frequency	QRL?	Is the frequency in use?
seek contact with any station	CQ AR	CQ
after call to specific named station or to indicate end of message	AR	over, end of message
invite any station to transmit	K	go
invite a specific named station to transmit	KN	go only
invite receiving station to transmit	BK	back to you
all received correctly	<u>R</u>	received
please stand by	AS SK	wait, stand by
end of contact (sent before call sign)	SK	clear
going off the air	CL	closing station

Additional RTTY prosigns

SK QRZ—Ending contact, but listening on frequency.

SK KN—Ending contact, but listening for one last transmission from the other station.

SK SZ—Signing off and listening on the frequency for any other calls.

Table 7.73

Q Signals

These Q signals most often need to be expressed with brevity and clarity in amateur work. (Q abbreviations take the form of questions only when each is sent followed by a question mark.) QRA What is the name of your station? The name of your

- QRA What is the name of your station? The name of your station is _____.
- QRG Will you tell me my exact frequency (or that of _____)? Your exact frequency (or that of _____) is _____ kHz.
- QRH Does my frequency vary? Your frequency varies.
- QRI How is the tone of my transmission? The tone of your transmission is _____ (1. Good; 2. Variable; 3. Bad).
- QRJ Are you receiving me badly? I cannot receive you. Your signals are too weak.
- QRK What is the intelligibility of my signals (or those of _____)? The intelligibility of your signals (or those of _____) is _____ (1. Bad; 2. Poor; 3. Fair; 4. Good; 5. Excellent).
- QRL Are you busy? I am busy (or I am busy with ____) Please do not interfere.
- QRM Is my transmission being interfered with? Your transmission is being interfered with (1. Nil; 2. Slightly; 3. Moderately; 4. Severely; 5. Extremely.)
- QRN Are you troubled by static? I am troubled by static _____ (1-5 as under QRM).
- QRO Shall I increase power? Increase power.
- QRP Shall I decrease power? Decrease power.
- QRQ Shall I send faster? Send faster (_____ WPM).
- QRS Shall I send more slowly? Send more slowly (_____ WPM).
- QRT Shall I stop sending? Stop sending.
- QRU Have you anything for me? I have nothing for you.
- QRV Are you ready? I am ready.
- QRW
 Shall I inform _____ that you are calling on _____ kHz?

 Please inform _____ that I am calling on _____ kHz.

 QRX
 When will you call me again? I will call you again at
- QRY What is my turn? Your turn is numbered _____
- QRZ Who is calling me? You are being called by _____ (on
- _____ kHz).

- QSA What is the strength of my signals (or those of ____)? The strength of your signals (or those of ____) is _____ (1. Scarcely perceptible; 2. Weak; 3. Fairly good; 4. Good; 5. Very good).
- QSB Are my signals fading? Your signals are fading.
- QSD Is my keying defective? Your keying is defective.
- QSG Shall I send _____ messages at a time? Send _____ messages at a time.
- QSK Can you hear me between your signals and if so can I break in on your transmission? I can hear you between my signals; break in on my transmission.
- QSL Can you acknowledge receipt? I am acknowledging receipt.
- QSM Shall I repeat the last message which I sent you, or some previous message? Repeat the last message which you sent me [or message(s) number(s) _____].
- QSN Did you hear me (or ____) on ____ kHz? I did hear you (or ____) on ____ kHz.
- QSO Can you communicate with _____ direct or by relay? I can communicate with _____ direct (or by relay through _____).
- QSP Will you relay to ____? I will relay to ____
- QST General call preceding a message addressed to all amateurs and ARRL members. This is in effect "CQ ARRL."
- QSV Shall I send a series of Vs on this frequency (or on _____ kHz)? Send a series of Vs on this frequency (or on _____ kHz).
- QSW Will you send on this frequency (or on _____ kHz)? I am going to send on this frequency (or on ____ kHz).
- QSX Will you listen to _____ on _____ kHz? I am listening to _____ on _____ kHz.
- QSY Shall I change to transmission on another frequency? Change to transmission on another frequency (or on _____ kHz).

QSZ	Shall I send each word or group more than once? Send	QNL	Your net frequend	
	each word or group twice (or times).	QNM*	You are QRMing	
QTA	Shall I cancel message number? Cancel message number	QNN	Net control station control?	
QTB	Do you agree with my counting of words? I do not	QNO	Station is leaving	
	agree with your counting of words. I will repeat the first letter or digit of each word or group.	QNP	Unable to copy yo	
QTC	How many messages have you to send? I have messages for you (or for).	QNQ*	Move frequency to handling traffic. T	
QTH	What is your location? My location is	QNR*	Answer an	
QTR	What is the correct time? The correct time is	QNS	Following Stations Request list of sta	
QTV	Shall I stand guard for you? Stand guard for me.	QNT	l request permiss	
QTX	Will you keep your station open for further communica-	QNU*	The net has traffic	
<u></u>	tion with me? Keep your station open for me.	QNV*	Establish contact	
QUA	Have you news of? I have news of	QINV	successful, move	
ARRL (QN Signals		·	
QNA*	Answer in prearranged order.	QNW	How do I route m	
QNB	Act as relay between and	QNX	You are excused	
QNC	All net stations copy. I have a message for all net stations.	QNY*	Shift to another fr traffic with	
QND*	Net is Directed (Controlled by net control station.)	QNZ	Zero beat your sig	
QNE*	Entire net stand by.	*For us	e only by the Net	
QNF	Net is Free (not controlled).	Notes of	on Use of QN Signa	
QNG	Take over as net control station	These (QN signals are spec	
QNH	Your net frequency is High.	CW nets <i>only</i> . They are no tion. Other meanings that r		
QNI	Net stations report in. I am reporting into the net. (Follow with a list of traffic or QRU.)			
QNJ	Can you copy me?		the meaning may b	
QNK*	Transmit messages for to .			

cy is Low.

the net. Stand by.

- n is _____. What station has net
- the net.

ou. Unable to copy __

- o _____ and wait for _____ to finish hen send him traffic for ___
- d Receive traffic.
- s are in the net.* (follow with list.) ations in the net.
- ion to leave the net for _____ minutes.
- c for you. Stand by.
- with _____ on this frequency. If to _____ and send him traffic for
- essages for ____?
- from the net.*
- equency (or to ____ kHz) to clear
- gnal with mine.

Control Station.

als

cial ARRL signals for use in amateur t for use in casual amateur conversanay be used in other services do not als on phone nets. Say it with words. lowed by a question mark, even e interrogatory.

Table 7.74 The RST System

Readability

- 1-Unreadable.
- 2-Barely readable, occasional words distinguishable.
- 3-Readable with considerable difficulty.
- 4-Readable with practically no difficulty.
- 5-Perfectly readable.

Signal Strength

- 1-Faint signals, barely perceptible.
- 2-Very weak signals.
- 3-Weak signals.
- 4-Fair signals.
- 5-Fairly good signals.
- 6-Good signals.
- 7-Moderately strong signals.
- 8-Strong signals.
- 9-Extremely strong signals.

Tone

- 1-Sixty-cycle ac or less, very rough and broad.
- 2-Very rough ac, very harsh and broad.
- 3-Rough ac tone, rectified but not filtered.
- 4-Rough note, some trace of filtering.
- 5-Filtered rectified ac but strongly ripple-modulated.
- 6—Filtered tone, definite trace of ripple modulation.
- 7-Near pure tone, trace of ripple modulation.
- 8-Near perfect tone, slight trace of modulation.

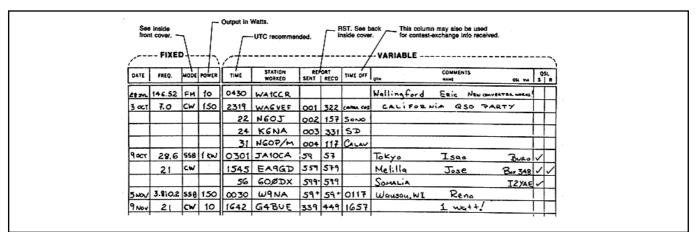
9-Perfect tone, no trace of ripple of modulation of any kind. If the signal has the characteristic steadiness of crystal control, add the letter X to the RST report. If there is a chirp, add the letter C. Similarly for a click, add K. (See FCC Regulations §97.307, Emissions Standards.) The above reporting system is used on both CW and voice; leave out the "tone" report on voice.

Table 7.75 CW Abbreviations

	, viutions				
AA	All after	GUD	Good	SIG	Signature; signal
AB	All before	HI	The telegraphic laugh; high	SINE	Operator's personal initials or
AB	About	HR	Here, hear		nickname
ADR	Address	HV	Have	SKED	Schedule
AGN	Again	HW	How	SRI	Sorry
ANT	Antenna	LID	A poor operator	SSB	Single sideband
BCI	Broadcast interference	MA, MILS	Milliamperes	SVC	Service; prefix to service
BCL	Broadcast listener	MSG	Message; prefix to radiogram		message
BK	Break; break me; break in	Ν	No	Т	Zero
BN	All between; been	NCS	Net control station	TFC	Traffic
BUG	Semi-automatic key	ND	Nothing doing	TMW	Tomorrow
B4	Before	NIL	Nothing; I have nothing for	TNX-TKS	Thanks
С	Yes		you	ТТ	That
CFM	Confirm; I confirm	NM	No more	TU	Thank you
CK	Check	NR	Number	TVI	Television interference
CL	I am closing my station; call	NW	Now; I resume transmission	ТХ	Transmitter
CLD-CLG	Called; calling	OB	Old boy	ТХТ	Text
CQ	Calling any station	OC	Old chap	UR-URS	Your; you're; yours
CUD	Could	OM	Old man	VFO	Variable-frequency oscillator
CUL	See you later	OP-OPR	Operator	VY	Very
CW	Continuous wave (i.e.,	ОТ	Old timer; old top	WA	Word after
• • •	radiotelegraph)	PBL	Preamble	WB	Word before
DE	From	PSE	Please	WD-WDS	Word; words
DLD-DLVD		PWR	Power	WKD-WKG	Worked; working
DED-DEVD		PX	Press	WL	Well; will
DR DX	Dear	R	Received as transmitted; are	WUD	Would
	Distance, foreign countries	RCD	Received	WX	Weather
ES	And, &	RCVR (RX)		XCVR	Transceiver
FB	Fine business, excellent	REF	Refer to; referring to;	XMTR (TX)	Transmitter
FM	Frequency modulation	110	reference	XTAL	Crystal
GA	Go ahead (or resume	RFI	Radio Frequency Interference	XYL (YF)	Wife
0.0	sending)			YL	Young lady
GB	Good-by	RIG	Station equipment	73	Best regards
GBA	Give better address	RPT	Repeat; I repeat; report	88	Love and Kisses
GE	Good evening	RTTY	Radioteletype		breviations help to cut down
GG	Going	RX	Receiver		y transmission, make it a rule
GM	Good morning	SASE	Self-addressed, stamped		eviate unnecessarily when
GN	Good night		envelope	•	operator of unknown experi-
GND	Ground	SED	Said	ence.	

Table 7.76

ITU Recommended Phonetics


- A Alfa (AL FAH)
- В - Bravo (BRAH VOH)
- C Charlie (CHAR LEE OR SHAR LEE)
- Delta (DELL TAH)
 Echo (ECK OH) D
- Е
- F Foxtrot (FOKS TROT)
- G Golf (GÒLF)
- H Hotel (HOH TELL)
- India (IN DEE AH) L
- Juliet (JEW LEE ÉTT) J
- K Kilo (**KEY** LOH)
- L Lima (**LEE** MAH) M Mike (MIKE)
- N November (NO**VEM**BER)O Oscar (**OSS**CAH)
- P Papa (PAH PAH)

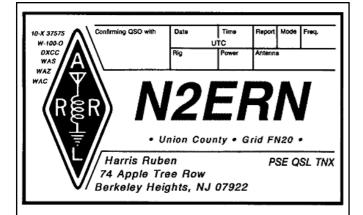
- Q Quebec (KEH **BECK**)
- R Romeo (ROW ME OH)
- S Sierra (SEE AIR RAH) T Tango (**TANG** GO)
- U Uniform (YOU NEE FORM or OO NEE FORM) V Victor (VIK TAH)

- W Whiskey (WISS KEY) X X-Ray (ECKS RAY) Y Yankee (YANG KEY)
- Z Zulu (**ZOO** LOO)

Note: The Boldfaced syllables are emphasized. The pronunciations shown in the table were designed for speakers from all international languages. The pronunciations given for "Oscar" and "Victor" may seem awkward to English-speaking people in the U.S.

Table 7.77 ARRL Log

The ARRL Log is adaptable for all types of operating—ragchewing, contesting, DXing. References are to pages in the ARRL Log.


Table 7.78 ARRL Operating Awards

Award Worked All States (WAS) Worked All Continents (WAC) DX Century Club (DXCC) VHF/UHF Century Club (VUCC) A-1 Operator Club Code Proficiency ARRL Membership

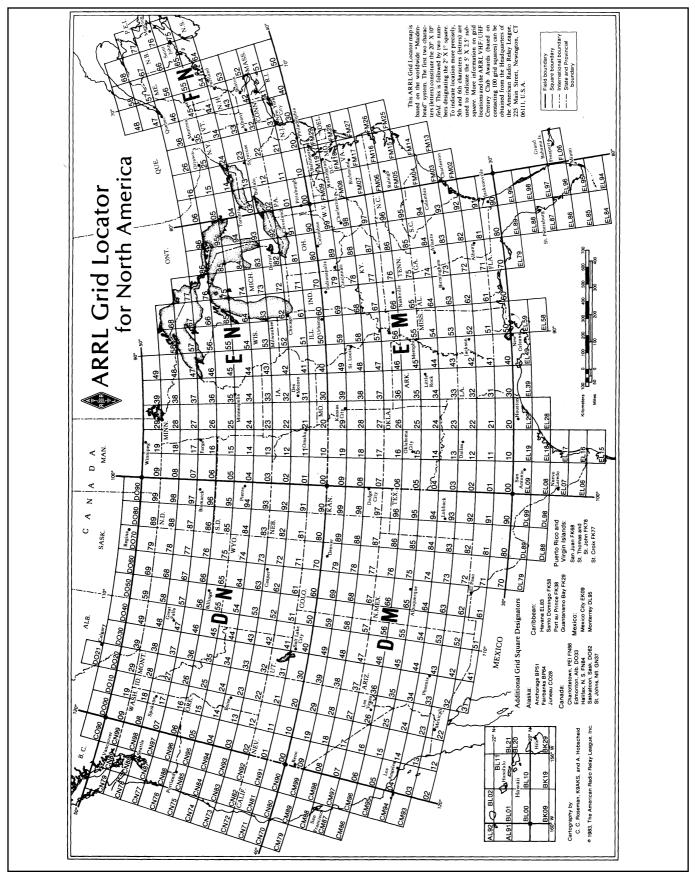
Qualification

QSLs from all 50 US states QSLs from all six continents QSLs from at least 100 different countries QSLs from many grid squares Recommendation by two A-1 operators One minute of perfect copy from W1AW qualifying run ARRL membership for 25, 40, 50, 60 or 70 years

Table 7.79 ARRL Membership QSL Card

The ARRL membership QSL card. This example is from Harris Ruben, N2ERN, who designed the card. Your card would reflect your own call sign and address; awards and VUCC grid-square are optional. ARRL does not print or sell the cards. Inquire with printers who advertise in the *QST* Ham Ads.

Table 7.80 Mode Abbreviations for QSL Cards


Abbreviation	Explanation
CW	Telegraphy
DATA	Telemetry, telecommand and computer
	communications (includes packet radio)
IMAGE	Facsimile and television
MCW	Tone-modulated telegraphy
PHONE	Speech and other sound
PULSE	Modulated main carrier
RTTY	Direct-printing telegraphy (includes AMTOR)
SS	Spread Spectrum
TEST	Emissions containing no information

Note: For additional information on emission types refer to latest edition of *The FCC Rule Book*.

A map showing US states, Canadian provinces and ARRL/RAC Sections.

Table 7.82ARRL Grid Locator Map for North AmericaThis and a World Grid Locator Map are available from ARRL.

Table 7.83 Amateur Message Form

Every formal radiogram message originated and handled should contain the following component parts in the order given.

I PREAMBLE

- a. Number (begin with 1 each month or year)
- b. Precedence (R, W, P or EMERGENCY)
- c. Handling Instructions (optional, see text)
- d. Station of Origin (first amateur handler)
- e. Check (number of words/groups in text only)
- *f.* Place of Origin (not necessarily location of station of origin)
- g. Time Filed (optional with originating station)
- h. Date (must agree with date of time filed)

II ADDRESS (as complete as possible, include zip code and telephone number)

III TEXT (limit to 25 words of less, if possible)

IV SIGNATURE

CW MESSAGE EXAMPLE

I NR 1 R HXG W1AW 8 NEWINGTON CT 1830Z JULY 1

h

- abc def g
- II DONALD SMITH AA 160 EAST SIXTH AVE AA NORTH RIVER CITY MO 00789 AA 733 4868 BT

III HAPPY BIRTHDAY X SEE YOU SOON X LOVE BT

IV DIANA AR

Note that X, when used in the text as punctuation, counts as a word.

CW: The prosign \overline{AA} separates the parts of the message. \overline{BT} separates the address from the text the text from the signature. \overline{AR} marks the end of message; this is followed by B if there is another message to follow, by N if this is the only or last message. It is customary to copy the preamble, parts of the address, text and signature on separate lines.

RTTY: Same as CW procedure above, except (1) use extra space between parts of address, instead of \overline{AA} ; (2) omit CW procedure sign \overline{BT} to separate text from address and signature, using line spaces instead; (3) add a CFM line under the signature, consisting of all names, numerals and unusual words in the message in the order transmitted.

PACKET/AMTOR BBS: Same format as shown in the CW message example above, except that the \overline{AA} and \overline{AR} prosigns may be omitted. Most AMTOR and Packet BBS software in use today allow formal message traffic to be sent with the "ST" command. Always avoid the use of spectrum-wasting multiple line feeds and indentations.

PHONE: Use prowords instead of prosigns, but it is not necessary to name each part of the message as you send it. For example, the above message would be sent on phone as follows: "Number one routine HX

Golf W1AW eight Newington Connecticut one eight three zero zulu July one Donald Smith *Figures* one six four East Sixth Avenue North River City Missouri zero zero seven eight nine *Telephone* seven three three four nine six eight *Break* Happy Birthday X-ray see you soon X-ray love *Break* Diana *End of Message Over*. "End of Message" is followed by "More" if there is another message to follow, "No More" if it is the only or last message. Speak clearly using VOX (or pause frequently on push-to-talk) so that the receiving station can get his fills. Spell phonetically all difficult or unusual words—do *not* spell out common words. Do not use CW abbreviations or Q-signals in phone traffic handling.

PRECEDENCES

The precedence will fill the message number. For example, on CW 207 R or 207 EMERGENCY. On phone, "Two Zero Seven Routine (or Emergency)."

EMERGENCY—Any message having life and death urgency to any person or group of persons, which is transmitted by Amateur Radio in the absence of regular commercial facilities. This includes official messages of welfare agencies during emergencies requesting supplies, materials or instructions vital to relief of stricken populace in emergency areas. During normal times, it will be *very rare*. On CW, RTTY and other digital modes this designation will always be spelled out. When in doubt, *do not* use it.

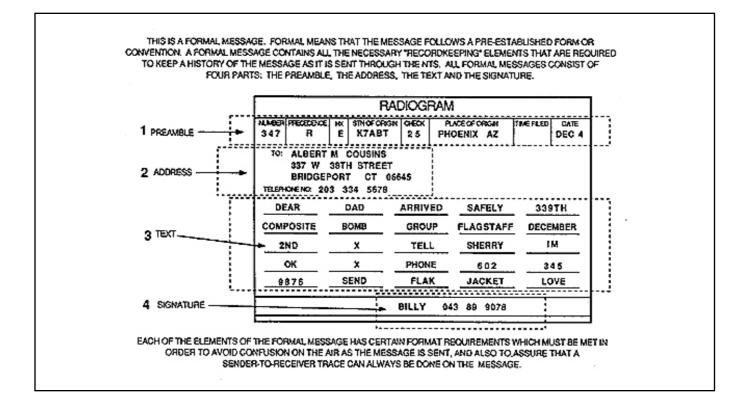
PRIORITY—Important messages having a specific time limit. Official messages not covered in the Emergency category. Press dispatches and other emergency-related traffic not of the utmost urgency. Notification of death or injury in a disaster area, personal or official. Use the abbreviation P on CW.

WELFARE—A message that is either (a) an inquiry as to the health and welfare of an individual in the disaster area (b) an advisory or reply from the disaster area that indicates that all is well should carry this precedence, which is abbreviated W on CW. These messages are handled *after* Emergency and Priority traffic but before Routine.

ROUTINE—Most traffic normal times will bear this designation. In disaster situations, traffic labeled Routine (R on CW) should be handled *last*, or not at all when circuits are busy with Emergency, Priority or Welfare traffic.

Handling Instructions (Optional)

HXA—(Followed by number.) Collect landline delivery authorized by addressee withinmiles. (If no number, authorization is unlimited.) **HXB**—(Followed by number.) Cancel message if not delivered withinhours of filing time; service originating station.


HXC—Report date and time of delivery (TOD) to originating station. **HXD**—Report to originating station the identify of station from which received, plus date and time. Report identity of station to which relayed, plus date and time, or if delivered report date, time and method of delivery.

HXE—Delivering station get reply from addressee, originate message back.

HXF—(Followed by number.) Hold delivery until.....(date). **HXG**—Delivery by mail or landline toll call not required. If toll or other expense involved, cancel message and service originating station.

For further information on traffic handling, consult the *Public Service Communications Manual* or *The ARRL Operating Manual*, both published by the ARRL.

Table 7.84A Simple NTS Formal Message

Table 7.85

Handling Instructions

- HXA—(Followed by number.) Collect landline delivery authorized by addressee within _____ miles. (If no number, authorization is unlimited.)
- HXB—(Followed by number.) Cancel messages if not delivered within _____ hours of filing time; service originating station.
- HXC—Report date and time of delivery (TOD) to originating station.
- HXD—Report to originating station the identity of station from which received, plus date and time. Report identity of station to which relayed, plus date and time, or if delivered report date, time and method of delivery.
- HXE—Delivering station get reply from addressee, originate message back.

HXF—(Followed by number.) Hold delivery until _____ (date). HXG—Delivery by mail or landline toll call not required. If toll or other expense involved, cancel message and service originating station.

An HX prosign (when used) will be inserted in the message preamble before the station of origin, thus: NR 207 R HXA50 W1AW 12...(etc). If more than one HX prosign is used they can be combined if no numbers are to be inserted; otherwise the HX should be repeated, thus: NR 207 R HXAC W1AW... (etc), but: NR 207 R HXA50 HXC W1AW... (etc). On phone, use phonetics for the letter or letters following the HX, to ensure accuracy.

ARL Numbered Radiograms

The letters ARL are inserted in the preamble in the check and in the text before spelled out numbers, which represent texts from this list. Note that some ARL texts include insertion of numerals. *Example*: NR 1 R W1AW ARL 5 NEWINGTON CONN DEC 25 DONALD R SMITH AA 164 EAST SIXTH AVE AA NORTH RIVER CITY MO AA PHONE 733 3968 BT ARL FIFTY ARL SIXTY ONE BT DIANA AR.

Group One—For po	ssible "Relief Emergency" Use					
ONE	Everyone safe here. Please don't worry.	TWENTY SIX	Help and care for evacuation of sick and			
TWO	Coming home as soon as possible.		injured from this location needed at once.			
THREE	Am in hospital. Receiving excellent care and recovering fine.		nessages originating from official sources ture of the originating official.			
FOUR	Only slight property damage here. Do not be concerned about disaster reports.	Group Two—Routine messages				
FIVE	Am moving to new location. Send no further mail or communication. Will inform	FORTY SIX	Greetings on your birthday and best wishes for many more to come.			
	you of new address when relocated.	FIFTY	Greetings by Amateur Radio.			
SIX	Will contact you as soon as possible.	FIFTY ONE	Greetings by Amateur Radio. This			
SEVEN	Please reply by Amateur Radio through the amateur delivering this message. This is a free public service.		message is sent as a free public service by ham radio operators here at Am having a wonderful time.			
EIGHT	Need additional mobile or portable equipment for immediate emer-	FIFTY TWO	Really enjoyed being with you. Looking forward to getting together again.			
NINE	gency use. Additional radio operators	FIFTY THREE	Received your It's appreciated; many thanks.			
	needed to assist with emergency at this	FIFTY FOUR	Many thanks for your good wishes.			
TEN	location. Please contact Advise to standby	FIFTY FIVE	Good news is always welcome. Very delighted to hear about yours.			
	and provide further emergency information, instructions or assistance.	FIFTY SIX	Congratulations on your, a most worthy and deserved achievement.			
ELEVEN	Establish Amateur Radio emergency communications with on	FIFTY SEVEN	Wish we could be together.			
	MHz.	FIFTY EIGHT	Have a wonderful time. Let us know when you return.			
TWELVE	Anxious to hear from you. No word in some time. Please contact me as soon as possible.	FIFTY NINE	Congratulations on the new arrival. Hope mother and child are well.			
THIRTEEN	Medical emergency situation exists here.	*SIXTY	Wishing you the best of everything on			
FOURTEEN	Situation here becoming critical. Losses and damage from increasing.	SIXTY ONE	 Wishing you a very merry Christmas and a			
FIFTEEN	Please advise your condition and what help is needed.	*SIXTY TWO	happy New Year. Greetings and best wishes to you for a			
SIXTEEN	Property damage very severe in this area.	SIXTY THREE	pleasant holiday season. Victory or defeat, our best wishes are with			
SEVENTEEN	REACT communications services also available. Establish REACT communica-		you. Hope you win.			
	tions with on channel	SIXTY FOUR	Arrived safely at			
EIGHTEEN	Please contact me as soon as possible at	SIXTY FIVE	Arriving on Please arrange to meet me there.			
NINETEEN	Request health and welfare report on (State name, address and	SIXTY SIX	DX QSLs are on hand for you at the QSL Bureau. Send self-			
	telephone number.)	SIXTY SEVEN	addressed envelopes.			
TWENTY	Temporarily stranded. Will need some assistance. Please contact me at		Your message number undeliver- able because of Please advise.			
TWENTY ONE	Search and Rescue assistance is needed by local authorities here. Advise availabil-		Sorry to hear you are ill. Best wishes for a speedy recovery.			
	ity.	SIXTY NINE	Welcome to the We are glad to have you with us and hope you will enjoy			
TWENTY TWO	Need accurate information on the extent and type of conditions now existing at your location. Please furnish this information and ranky without dology	* Can be used for all	the fun and fellowship of the organization.			
TWENTY THREE	and reply without delay. Report at once the accessibility and best way to reach your location.		should be spelled out at all times.			
TWENTY FOUR	Evacuation of residents from this area					
TWENTY FIVE	urgently needed. Advise plans for help. Furnish as soon as possible the weather					
····	conditions at your location.					

conditions at your location.

How to be the Kind of Net Operator the Net Control Station (NCS) Loves

As a net operator, you have a duty to be self-disciplined. A net is only as good as its worst operator. You can be an exemplary net operator by following a few easy guidelines. 1) *Zero beat the NCS*. The NCS doesn't have time to chase all over the band for you. Make sure you're on frequency, and you will never be known at the annual net picnic as "old soand-so who's always off frequency."

 Don't be late. There's no such thing as "fashionably late" on a net. Liaison stations are on a tight timetable. Don't hold them up by checking in 10 minutes late with three pieces of traffic.
 Speak only when spoken to by the NCS. Unless it is a bona fide emergency situation, you don't need to "help" the NCS unless asked. If you need to contact the NCS, make it brief. Resist the urge to help clear the frequency for the NCS or to "advise" the NCS. The NCS, not you, is boss.

4) Unless otherwise instructed by the NCS, transmit only to

the NCS. Side comments to another station in the net are out of order.

5) *Stay until you are excused.* If the NCS calls you and you don't respond because you're getting a "cold one" from the fridge, the NCS may assume you've left the net, and net business may be stymied. If you need to leave the net prematurely, contact the NCS and simply ask to be excused (QNX PSE ON CW).

6) Be brief when transmitting to the NCS. A simple "yes" (C) or "no" (N) will usually suffice. Shaggy dog tales only waste valuable net time.

7) *Know how the net runs.* The NCS doesn't have time to explain procedure to you. After you have been on the net for a while, you should already know these things.

Table 7.88

Checking Your Message

Traffic handlers don't have to dine out to fight over the check! Even good ops find much confusion when counting up the text of a message. You can eliminate some of this confusion by remembering these basic rules:

1) Punctuation ("X-rays," "Querys") count separately as a word.

2) Mixed letter-number groups (1700Z, for instance) count as one word.

3) Initial or number groups count as one word if sent together, two if sent separately.

4) The signature does not count as part of the text, but any closing lines, such as "Love" or "Best wishes" do.

Here are some examples:

- Charles J McClain—3 words
- W B Stewart-3 words
- St Louis-2 words
- 3 PM-2 words

- SASE-1 word
- ARL FORTY SIX-3 words
- 2N1601-1 word
- Seventy-three-2 words
- 73—1 word

Telephone numbers count as 3 words (area code, prefix, number), and ZIP codes count as one, ZIP + 4 codes count as two words. Canadian postal codes count as two words (first three characters, last three characters.)

Although, it is improper to change the text of a message, you may change the check. Always do this by following the original check with a slash bar, then the corrected check. On phone, use the words "corrected to."

Table 7.89Tips on Handling NTS Traffic by Packet Radio

Listing Messages

• After logging on to your local NTS-supported bulletin board, type the command LT, meaning List Traffic. The BBS will sort and display an index of all NTSXX traffic awaiting delivery.

Receiving Messages

• To take a message off the Bulletin Board for telephone delivery to the third party, or for relay to a NTS Local or Section Net, type the R command, meaning Read Traffic, and the message number. R 188 will cause the BBS to find the BBS message number 188. This RADIOGRAM will look like any other, with preamble, address, text and signature; only some additional packet-related message header information is added. This information includes the routing path of the message for auditing purposes; e.g., to discern any excessive delays in the system.

• After the message is saved to the printer or disk, the message should be KILLED by using the KT command, meaning Kill Traffic, and the message number. In the above case, at the BBS prompt, type KT 188. This prevents the message from being delivered twice. Some of the newer BBS software requires use of K rather than KT.

• At the time the message is killed, many BBSs will automatically send a message back to the station in the FROM field with information on who took the traffic, and when it was taken!

Delivering or Relaying A Message

• A downloaded RADIOGRAM should, of course, be handled expeditiously in the traditional way: telephone delivery, or relay to another net.

Sending Messages

• To send a RADIOGRAM, use the ST command meaning Send Traffic. The BBS will prompt you for the NTS routing

(0611@NTSCT, for example), the message title which should contain the city in the address of the RADIOGRAM (QTC 1 Dayton), and the text of the message in RADIOGRAM format. The BBS, usually within the hour, will check its outgoing mailpouch, find the NTSCT message and automatically forward it to the next packet station in line to the NTSCT node. Note: Some states have more than one ARRL Section. If you do not know the destination ARRL Section ("Is San Angelo in the ARRL North, South or West Texas Section?"), then simply use the state designator NTSTX.

*Note: While NTS/packet radio message forwarding is evolving rapidly, there are still some gaps. When uploading an NTS message destined for a distant state, use handling instruction "HXC" to ask the delivering station to report back to you the date and time of delivery.

We Want You!

Local and Section BBSs need to be checked daily for NTS traffic. SYSOPs and STMs can't do it alone. They need your help to clear NTS RADIOGRAMs every day, seven days a week, for delivery and relay. If you are a traffic handler/packeteer, contact your Section Traffic Manager or Section Manager for information on existing NTS/packet procedures in your Section.

If you are a packeteer, and know nothing of NTS traffic handling, contact ARRL HQ, your Section Manager or Section Traffic Manager for information on how you can put your packet radio gear to use in serving the public in routine times, but especially in time of emergency!

And, if you enjoy phone/CW traffic handling, but aren't on packet yet, discover the incredible speed and accuracy of packet radio traffic handling. You probably already have a small computer and 2-meter rig; all you need is a packet radio "black box" to connect between your 2-meter rig and computer. For more information on packet radio, see *Practical Packet Radio*, published by the ARRL.