
16.36 Chapter 16

Appendix: DSP Projects
Project A: Decimation
Project B: FIR Filter Design Variations
Project C: Analytic Filter-Pair Generation
Project D: Newton’s Method for Square Roots in QuickBasic 4.5
Project E: A Fast Square-Root Algorithm Using a Small Look-Up Table in Assembly Language
Project F: A High-Performance DDS
Project G: A Fast Binary Multiplier in High-Speed CMOS Logic

PROJECT A: DECIMATION

This project illustrates the concept of
decimation using Alkin’s PC-DSP pro-
gram, included with the book of that name
listed in the Bibliography. First, generate
40 samples of the sinusoid y(n) = sin(n/4),
where 0 < n < 39. This sequence may be

Fig 16.A1—A 40-sample sine wave. Fig 16.A2—Decimated, 20-sample sine wave.

generated using the “Sine” function of the
“Generate” sub-menu under the “Data”
menu, with parameters Var1 = SIN, A = 1,
B = 0.25, C = 0 and #Samples = 40. Press
F2 to display the data, which should match
Fig 16.A1.

Next, decimate the sequence by a factor
of 2 using the “Decimate” function found in
the “Process” sub-menu under the “Data”
menu. Use parameters Var1 = SIN2, Var2 =
SIN, Factor = 2. Display the new sequence
by pressing F2. It should match Fig 16.A2.

PROJECT B: FIR FILTER DESIGN VARIATIONS

An FIR filter’s ultimate attenuation and
its transition BW are largely determined
by the filter’s length: the number of taps
used in its design. Fourier and other de-
sign methods do not always readily opti-
mize the trade-off among transition BW,
ultimate attenuation and ripple. One way
to achieve better ultimate attenuation at
the expense of passband ripple is to con-
volve the impulse responses of two short
filters to obtain a longer filter. The two
impulse-response sequences are processed
by precisely the same convolution sum that
is used to compute FIR filter outputs (Eq 3
in the main text).

A filter obtained by convolving two fil-
ters of length L has length 2L –1. In one
example, two LPFs of length 31 may be
convolved to produce a filter of length 61.
The resulting frequency response, plotted
against that of a LPF designed with Fou-
rier methods for an identical length of 61
taps, would show that the ultimate attenu-
ation of the convolved filter is 20 dB or 10
times greater than that of the plain, Fou-
rier-designed filter. Also, the convolved
filter would have a greater passband ripple
and a narrower transition region. Quite
often, filters that were designed using dif-
ferent window functions may be con-

volved to get some of the benefits of each
in the final filter.

A look back at Fig 16.29 reveals that
different window functions achieve differ-
ent transition BWs and values of ultimate
attenuation. The rectangular window at-
tains a narrow transition BW, but a poor
ultimate attenuation; the Blackman win-
dow, on the other hand, has nearly optimal
ultimate attenuation and a moderate tran-
sition BW. Let’s see what happens when
we convolve the impulse responses of fil-
ters designed using each method. We will
constrain ourselves to filters with odd
numbers of taps so that the convolved

ch16.pmd 8/3/2007, 9:26 AM36

DSP and Software Radio Design 16.37

Fig 16.B1—LPF frequency response, rectangular window (A). LPF frequency
response, Blackman window (B). LPF frequency response, convolution of filters
shown in A and B (C).

impulse response will also have an odd
number of taps.

Using your favorite filter-design soft-
ware, first design a LPF by the Fourier
method with a length of 31, using a rectan-
gular window, and a cut-off frequency
(–6 dB point) of 0.25fs. Its frequency re-
sponse is shown in Fig 16.B1A. We pro-
duce a second filter having the same
cut-off frequency of 0.25fs using a
Blackman window, whose response is
shown in Fig 16.B1B. The response of the
filter formed by the convolution of the two
filters is shown in Fig 16.B1C, along with
that of a standard Fourier-designed LPF.
The final filter has length 61 taps. Notice
that the filter obtains the benefits of the
rectangular window’s sharp transition re-
gion and those of the Blackman window’s
good ultimate attenuation.

A second advantage may be garnered by
convolving two different filters in that
their responses may be governed sepa-
rately, while producing desired changes in
frequency (or phase) response. A good ex-
ample of this arises when it is desired to
alter the audio response of an SSB trans-
mitter (or receiver), but keep the ultimate
attenuation characteristics the same. A
long BPF with excellent transition proper-
ties may be convolved with a much shorter
filter that is manipulated to provide the
desired passband response.

FIR filters used in Amateur Radio trans-
ceivers must usually have at least 60 dB
ultimate attenuation. This generally re-
quires at least 63 taps. As our second FIR
filter variation, let’s consider a case
wherein we want to customize an IF-DSP
transmitter’s frequency response without
impacting opposite-sideband rejection.
We will use a 99-tap BPF in each leg of a
Hilbert transformer (as part of an SSB
modulator) whose response is convolved
with that of a 31-tap filter describing the
variation in frequency response we want.
The 99-tap fixed filter has the frequency
response shown in Fig 16.B2A. The 31-
tap filter has been designed using Fourier
methods to have a 6 dB/octave rise in its
frequency response, as shown in Fig
16.B2B.

The frequency response of the convolu-
tion of the two filters’ impulse responses
is shown in Fig 16.B2C. It is important to
note that the net response is that of the
product of the two filters’ frequency re-
sponses; that is, if H1(ω) and H2(ω) are
the two frequency response functions, the
final response is simply:

) ω(H) ω(H) ω(H 21composite = (B1)

ch16.pmd 8/3/2007, 9:26 AM37

16.38 Chapter 16

Fig 16.B2—BPF for SSB use, L = 99 (A).
LPF having rising frequency response,
L = 31 (B). Frequency response of
convolution of filters shown in A and B
(C).

ch16.pmd 8/3/2007, 9:26 AM38

DSP and Software Radio Design 16.39

PROJECT C: ANALYTIC FILTER PAIR GENERATION

Frequency-translation properties of
complex multiplication work just as well
on the responses of filters as they do on
real signals. In this project, we will ex-
plore just how these properties are applied
to the generation of analytic filter pairs.
Analytic filter pairs are used to produce

complex signals from real signals for the
purposes of modulation, demodulation,
and other processing algorithms.

An analytic filter pair consists of two
filters (usually BPFs) whose frequency
responses are identical, but whose phase
responses differ at every frequency by 90°.
These filters are used in legs of a Hilbert
transformer, as shown in Fig 16.C1. The
creation of these filters begins with the de-
sign of a LPF prototype having the desired
passband, transition-band, and stopband
characteristics. Such a prototype filter, as
might suffice for an SSB receiver, would
have a frequency response such as that
shown in Fig 16.C2A.

The filter’s impulse response (L = 63) is
then multiplied by a sine-wave sequence
(also L = 63) whose frequency represents
the amount of upward translation applied
to the LPF’s frequency response. If the
sine wave is high enough in frequency, the

resulting impulse response is a BPF filter
centered on ω0, the sine wave’s frequency.
See Fig 16.C2B. Likewise, the prototype
LPF’s impulse response is multiplied by a
cosine-wave sequence to produce a filter
having the same frequency response as that
of the sine-wave filter, but with a phase
response differing by 90°. Sample-by-
sample multiplication occurs according to
Eq 21 in the main text.

When an analytic filter pair is used in a
demodulator, IF shift may be included by
varying the frequency of w0. In combina-
tion with various filter BWs, IF shift is
useful in avoiding interference by modify-
ing a receiver’s frequency response. Fur-
ther modification may be obtained by
convolving each filter in the analytic pair
with a filter having the desired character-
istic. The phase relation between the fil-
ters in the pair will not be altered by the
convolution.

Fig 16.C1—Hilbert transformer using
an analytic filter pair.

Fig 16.C2—LPF prototype frequency response (A). BPF frequency response of processed impulse response (B).

PROJECT D: NEWTON’S METHOD FOR SQUARE ROOTS IN QUICKBASIC 4.5

In this example of Newton’s method, a
generic BASIC program is given that com-
putes the root of a 32-bit integer to within an
error margin, DERROR. The root of a 32-bit
integer is naturally a 16-bit integer. Emphasis
is placed in what follows on speed of execu-
tion and accuracy as influenced by truncation
and rounding. 32-bit integer variables are
defined DEFLONG, 16-bit integers are
DEFINT. Integer math in QuickBasic is much
faster than floating-point math.

As described in the AM Demodulation
section in the main text, Newton’s method
iteratively converges on a result. Experi-
ence has shown that three to six iterations
are necessary to obtain best accuracy for a
16-bit result, but here we execute as many
iterations as necessary to obtain accuracy
DERROR, initially defined to be one least-
significant bit or 1/(215) ≈ 30 × 10-6. Note
that if DERROR is small or zero, conver-
gence may never be reached because of

quantization noise. A loop counter, K, is
established to count iterations. The pro-
gram displays on the computer screen the
argument, its root and the iteration count.
Users may readily modify the program to
use random numbers as arguments to time
the number of roots per second it calculates.

The program is included in the 2002
ARRL Handbook companion software. The
software is available for free download
from ARRLWeb at: www.arrl.org/notes.

PROJECT E: A FAST SQUARE-ROOT ALGORITHM USING A SMALL LOOP-UP TABLE
This project is a machine-language ex-

ample of a fast square-root algorithm. The
target processor in this case is the
Motorola MC68HC16Z1, a 16-bit, fixed-

point DSP. The method is depicted in
Fig 16.16 in the main text. Like the pre-
vious project, this is included in the
2002 ARRL Handbook companion soft-

ware. The software is available for free
download from ARRLWeb at www.arrl.
org/notes.

ch16.pmd 8/3/2007, 9:26 AM39

16.40 Chapter 16

ch16.pmd 8/3/2007, 9:26 AM40

DSP and Software Radio Design 16.41

Fig 16.F1—High-performance DDS schematic diagram.

PROJECT F: A HIGH-PERFORMANCE DDS
A DDS is described below that is used

as a reference for a PLL. See Fig 16.F1.
This DDS is designed to cover a small
range of frequencies near 1 MHz. A crys-
tal-oscillator clock at 19.2 MHz is applied
to both the DDS, a Harris/Intersil
HSP45106, and the DAC, a Harris/Intersil
HI5780. Making the DDS output fre-
quency a small fraction of the clock fre-
quency makes it relatively easy to obtain
excellent spurious performance. PM spurs
are limited to –90 dBc and AM spurs to
about –60 dBc. If the output is not squared
at the input to a PLL chip, an external
Schmitt-trigger squaring stage may be

added, eliminating virtually all the AM
spurs prior to the LPF.

The LPF at the output of the circuit is
a 4-section elliptical type. Design im-
pedance is 100 Ω. This filter cuts out
many high-frequency spurs and stops
clock feed-through. The DAC’s 10 input
lines are fed from the 10 most-significant
bits of one of the DDS’s outputs. The
HSP45106 has two 16-bit outputs (sine
and cosine) to accommodate the needs of
complex-mixer designs, but only one is
being used here.

The DDS chip itself is programmed
using a 16-bit parallel interface. This is

transformed into a serial interface by shift
registers U5 and U6, divider U3 and
counter U4. Each time the frequency is
changed, an internal 32-bit phase-incre-
ment accumulator must be updated. The
phase increment is just fout/fclk, expressed
as a 32-bit, unsigned fraction. This value
is written into the chip in two 16-bit seg-
ments, most-significant bit of the most-
significant word first.

During serial programming, a data bit is
placed on the DATA line by the host mi-
croprocessor; the clock line is toggled
high, then low to shift the bit into the shift
registers. After the first 16 bits have been
shifted, they are written into the DDS by
toggling the ENABLE line. Counter U4
supplies the necessary write pulse with
appropriate timing. The remaining 16 bits
are then shifted and written to the chip,
completing the operation.

An example of the output spectrum of this
circuit is shown in Fig 16.F2. Components
are surface-mount types and care must be
exercised during construction. See Ulbing’s
article in the Bibliography for information
on surface-mount soldering techniques.

Fig 16.F2—Typical output spectrum of
DDS.

ch16.pmd 8/3/2007, 9:26 AM41

16.42 Chapter 16

Fig 16.G1—A 4-bit adder schematic diagram.

PROJECT G: A FAST BINARY MULTIPLIER IN HIGH-SPEED CMOS LOGIC
In this project, a fast 4-bit binary multi-

plier is described that may be constructed
from ‘HC-series logic gates or program-
med into an FPGA. Two variations are
explored: one without pipelining, and one
with pipelining. Pipelining is employed
where the propagation delays of gates limit
throughput.

As seen in Fig 16.45 in the main text,
a 4-bit multiplication may be broken
into several 4-bit additions. In our circuit,
4-bit adders are used to add rows of bits in
the summation, each one producing a
single output bit. The diagram of a fast,
4-bit adder with look-ahead carry is shown
in Fig 16.G1.

In this multiplier, 4-bit adders are used
to add adjacent rows of bits in the tradi-
tional way. A multiplier connected this
way is shown in Fig 16.G2. Not all bits in
each addend have mates in the other, so
4-bit adders suffice. In the case where
execution speed exceeds the reciprocal of
the total propagation delay, pipelining
must be employed to avoid error.

To use pipelining, we place storage
registers between the stages of addition
and one interim result is held by each stage
at each clock time. See Fig 16.G3. The
result is the same, but appears only after a
latency of three clock times. When maxi-
mum gate delays are well known, this
approach also yields more predictable
performance because the latency is inde-
pendent of the input data.

ch16.pmd 8/3/2007, 9:26 AM42

DSP and Software Radio Design 16.43

Fig 16.G2—Complete 4-bit multiplier, no pipelining.

ch16.pmd 8/3/2007, 9:26 AM43

16.44 Chapter 16

Fig 16.G3—Complete 4-bit multiplier with pipelining.

ch16.pmd 8/3/2007, 9:26 AM44

