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of the line acts as though it were still more
transmission line of the same characteris-
tic impedance. In a matched transmission
line, energy travels outward along the line
from the source until it reaches the load,
where it is completely absorbed.

Mismatched Lines
Assume now that the line in Fig 21.3B

is terminated in an impedance Za which is
not equal to Z0 of the transmission line.
The line is now a mismatched line. RF
energy reaching the end of a mismatched
line will not be fully absorbed by the load
impedance. Instead, part of the energy will
be reflected back toward the source. The
amount of reflected versus absorbed
energy depends on the degree of mismatch
between the characteristic impedance of
the line and the load impedance connected
to its end.

The reason why energy is reflected at a
discontinuity of impedance on a transmis-
sion line can best be understood by exam-
ining some limiting cases. First, consider
the rather extreme case where the line is
shorted at its end. Energy flowing to the
load will encounter the short at the end,
and the voltage at that point will go to zero,
while the current will rise to a maximum.
Since the current can’t develop any power

Reflections on the Smith
Chart

Although most radio amateurs have
seen the Smith Chart, it is often
regarded with trepidation. It is sup-
posed to be complicated and subtle.
However, the chart is extremely useful
in circuit analysis, especially when
transmission lines are involved. The
Smith Chart is not limited to transmis-
sion-line and antenna problems.

The basis for the chart is Eq 4 in the
main text relating reflection coefficient
to a terminating impedance. Eq 4 is
repeated here:
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where Z0 is the characteristic imped-
ance of the chart, and Z = R + j X is a
complex terminating impedance. Z
might be the feed-point impedance of
an antenna connected to a Z0 trans-
mission line.

It is useful to define a normalized
impedance z = Z/Z0. The normalized
resistance and reactance become r =
R/Z0 and x = X/Z0. Inserting these into
Eq 1 yields:
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where r and z are both complex, each
having a magnitude and a phase
when expressed in polar coordinates,
or a real and an imaginary part in XY
coordinates.

Eq 1 and 2 have some interesting

Fig A—Plot of polar reflection
coefficient. Circles represent contours
of constant ρρρρρ. The starting “feed point”
value, 0.5 at +45°, represents an
antenna impedance of 69.1 + j 65.1 ΩΩΩΩΩ
with Z0 = 50 ΩΩΩΩΩ. The arc represents a
15-ft section of 50-ΩΩΩΩΩ, VF 0.66 trans-
mission line at 7 MHz, yielding a shack
ρρρρρ of 0.5 at –71.3°. The shack z is
calculated as 40.3 – j 50.9 ΩΩΩΩΩ.

in a dead short, it will all be reflected back
toward the source generator.

If the short at the end of the line is
replaced with an open circuit, the opposite
will happen. Here the voltage will rise to
maximum, and the current will by defini-
tion go to zero. The phase will reverse,
and all energy will be reflected back
towards the source. By the way, if this
sounds to you like what happens at the end
of a half-wave dipole antenna, you are
quite correct. However, in the case of
an antenna, energy traveling along the
antenna is lost by radiation on purpose,
whereas a good transmission line will lose
little energy to radiation because of field
cancellation between the two conductors.

For load impedances falling between
the extremes of short- and open-circuit,
the phase and amplitude of the reflected
wave will vary. The amount of energy
reflected and the amount of energy
absorbed in the load will depend on the
difference between the characteristic
impedance of the line and the impedance
of the load at its end.

Now, what actually happens to the
energy reflected back down the line? This
energy will encounter another impedance
discontinuity, this time at the generator.
Reflected energy flows back and forth
between the mismatches at the source
and load. After a few such journeys, the
reflected wave diminishes to nothing,
partly as a result of finite losses in the line,
but mainly because of absorption at the
load. In fact, if the load is an antenna, such
absorption at the load is desirable, since
the energy is actually radiated by the an-
tenna.

If a continuous RF voltage is applied to
the terminals of a transmission line, the
voltage at any point along the line will
consist of a vector sum of voltages, the
composite of waves traveling toward the
load and waves traveling back toward the
source generator. The sum of the waves
traveling toward the load is called the for-
ward or incident wave, while the sum of
the waves traveling toward the generator
is called the reflected wave.

Reflection Coefficient and SWR
In a mismatched transmission line, the

ratio of the voltage in the reflected wave at
any one point on the line to the voltage in
the forward wave at that same point is
defined as the voltage reflection coeffi-
cient. This has the same value as the
current reflection coefficient. The reflec-
tion coefficient is a complex quantity (that
is, having both amplitude and phase) and
is generally designated by the Greek letter
ρ (rho), or sometimes in the professional
literature as Γ (Gamma). The relationship

Fig 21.3—At A the coaxial transmission
line is terminated with resistance equal
to its Z0. All power is absorbed in the
load. At B, coaxial line is shown
terminated in an impedance consisting
of a resistance and a capacitive
reactance. This is a mismatched line,
and a reflected wave will be returned
back down the line toward the
generator. The reflected wave reacts
with the forward wave to produce a
standing wave on the line. The amount
of reflection depends on the difference
between the load impedance and the
characteristic impedance of the
transmission line.
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Neglecting loss effects, a transmis-
sion line of electrical length θ will
transform a normalized impedance
represented by ρ to another with the
same magnitude and a new angle
that differs from the original by –2θ.
This rotation is clockwise.
Clearly, the reflection coefficient is

more than an intermediate step in a
mathematical development. It is a
useful, alternative description of
complex impedance. However, our
interest is still focused on impedance;
we want to know, for example, what
the final z is after transformation with
a transmission line. This is the
problem that Phillip Smith solved in
creating the Smith Chart. Smith
observed that the unit circle, a graph
of reflection coefficient, could be
labeled with lines representing
normalized impedance. A Smith Chart
is shown in Fig B. All of the lines on
the chart are complete or partial
circles representing a line of constant
normalized resistance and reactance.

How might we use the Smith Chart?
A classic application relates antenna
feed-point impedance to the imped-
ance seen at the end of the “shack”
end of the line. Assume that the
antenna impedance is known, Za = Ra
+ j Xa. This complex value is con-
verted to normalized impedance by

and useful properties, characteristics
that make them physically significant:
• Even though the components of z

(and Z) may take on values that are
very large, the reflection coefficient
ρ, is restricted to always having a
magnitude between zero and one if
z has a real part, r, that is positive.

• If all possible values for ρ are
examined and plotted in polar
coordinates, they will lie within a
circle with a radius of one. This is
termed the unit circle. A plot is
shown in Fig A.

• An impedance that is perfectly
matched to Z0, the characteristic
value for the chart, will produce a ρ
at the center of the unit circle.

• Real Z values, ones that have no
reactance, “map” onto a horizontal
line that divides the top from the
bottom of the unit circle. By conven-
tion, a polar variable with an angle
of zero is on the x axis, to the right
of the origin.

• Impedances with a reactive part
produce ρ values away from the
dividing line. Inductive impedances
with the imaginary part greater than
zero appear in the upper half of the
chart, while capacitive impedances
appear in the lower half.

• Perhaps the most interesting and
exciting property of the reflection
coefficient is the way it describes
the impedance-transforming
properties of a transmission line,
presented in closed mathematical
form in the main text as Eq 11.

dividing Ra and Xa by Z0 to yield ra +
j xa, and is plotted on the chart. A
compass is then used to draw an arc
of a circle centered at the origin of the
chart. The arc starts at the normalized
antenna impedance and proceeds in a
clockwise direction for 2θ°, where θ is
the electrical degrees, derived from
the physical length and velocity factor
of the transmission line. The end of
the arc represents the normalized
impedance at the end of the line in the
shack; it is denormalized by multiply-
ing the real and imaginary parts by Z0.

Antenna feed-point Z can also be
inferred from an impedance measure-
ment at the shack end of the line. A
similar procedure is followed. The
only difference is that rotation is now
in a counterclockwise direction. The
Smith Chart is much more powerful
than depicted in this brief summary. A
detailed treatment is given by Phillip
H. Smith in his classic book: Elec-
tronic Applications of the Smith Chart
(McGraw-Hill, 1969). I also recom-
mend his article “Transmission Line
Calculator” in Jan 1939 Electronics.
Joseph White presented a wonderful
summary of the chart in a short but
outstanding paper: “The Smith Chart:
An Endangered Species?” Nov 1979
Microwave Journal. —Wes Hayward,
W7ZOI

Fig C—The Smith Chart shown in Fig B was computer
generated. A much more detailed plot is presented here; this
is the chart form used by Smith, suitable for graphic
applications. This chart is used with the permission of
Analog Instruments.

Fig B—This plot shows a Smith Chart. The circles now
represent contours of constant normalized resistance or
reactance. Note the arc with the markers: This illustrates the
same antenna and line used in the previous figure. The plot
is the same on the two charts; only the scale details have
changed.
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