Reflections on the Smith
Chart

Although most radio amateurs have
seen the Smith Chart, it is often
regarded with trepidation. It is sup-
posed to be complicated and subtle.
However, the chart is extremely useful
in circuit analysis, especially when
transmission lines are involved. The
Smith Chart is not limited to transmis-
sion-line and antenna problems.

The basis for the chart is Eq 4 in the
main text relating reflection coefficient
to a terminating impedance. Eq 4 is
repeated here:

_Z-2,
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where Z; is the characteristic imped-
ance of the chart,and Z=R + jXis a
complex terminating impedance. Z
might be the feed-point impedance of
an antenna connected to a Z, trans-
mission line.

It is useful to define a normalized
impedance z = Z/Z,. The normalized
resistance and reactance become r =
R/Zy and x = X/Z,. Inserting these into
Eq 1 yields:
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where r and z are both complex, each
having a magnitude and a phase
when expressed in polar coordinates,
or a real and an imaginary part in XY
coordinates.

Eq 1 and 2 have some interesting
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Fig A—Plot of polar reflection
coefficient. Circles represent contours
of constant p. The starting “feed point”
value, 0.5 at +45°, represents an
antenna impedance of 69.1 + j 65.1 Q
with Z, = 50 Q. The arc represents a
15-ft section of 50-Q, VF 0.66 trans-
mission line at 7 MHz, yielding a shack
p of 0.5 at —71.3°. The shack z is
calculated as 40.3 - j50.9 Q.
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Fig B—This plot shows a Smith Chart. The circles now
represent contours of constant normalized resistance or
reactance. Note the arc with the markers: This illustrates the
same antenna and line used in the previous figure. The plot
is the same on the two charts; only the scale details have

changed.

and useful properties, characteristics

that make them physically significant:

e Even though the components of z
(and Z) may take on values that are
very large, the reflection coefficient
p, is restricted to always having a
magnitude between zero and one if
z has a real part, r, that is positive.

 If all possible values for p are
examined and plotted in polar
coordinates, they will lie within a
circle with a radius of one. This is
termed the unit circle. A plot is
shown in Fig A.

* An impedance that is perfectly
matched to Z,, the characteristic
value for the chart, will produce a p
at the center of the unit circle.

* Real Z values, ones that have no
reactance, “map” onto a horizontal
line that divides the top from the
bottom of the unit circle. By conven-
tion, a polar variable with an angle
of zero is on the x axis, to the right
of the origin.

* Impedances with a reactive part
produce p values away from the
dividing line. Inductive impedances
with the imaginary part greater than
zero appear in the upper half of the
chart, while capacitive impedances
appear in the lower half.

* Perhaps the most interesting and
exciting property of the reflection
coefficient is the way it describes
the impedance-transforming
properties of a transmission line,
presented in closed mathematical
form in the main text as Eq 11.
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Analog Instruments.

Neglecting loss effects, a transmis-
sion line of electrical length 6 will
transform a normalized impedance
represented by p to another with the
same magnitude and a new angle
that differs from the original by —26.
This rotation is clockwise.

Clearly, the reflection coefficient is
more than an intermediate step in a
mathematical development. It is a
useful, alternative description of
complex impedance. However, our
interest is still focused on impedance;
we want to know, for example, what
the final z is after transformation with
a transmission line. This is the
problem that Phillip Smith solved in
creating the Smith Chart. Smith
observed that the unit circle, a graph
of reflection coefficient, could be
labeled with lines representing
normalized impedance. A Smith Chart
is shown in Fig B. All of the lines on
the chart are complete or partial
circles representing a line of constant
normalized resistance and reactance.

How might we use the Smith Chart?
A classic application relates antenna
feed-point impedance to the imped-
ance seen at the end of the “shack”
end of the line. Assume that the
antenna impedance is known, Z, = R,
+ j X,. This complex value is con-
verted to normalized impedance by

Fig C—The Smith Chart shown in Fig B was computer
generated. A much more detailed plot is presented here; this
is the chart form used by Smith, suitable for graphic
applications. This chart is used with the permission of

dividing R, and X, by Z, to yield r, +
J X5, and is plotted on the chart. A
compass is then used to draw an arc
of a circle centered at the origin of the
chart. The arc starts at the normalized
antenna impedance and proceeds in a
clockwise direction for 26°, where 0 is
the electrical degrees, derived from
the physical length and velocity factor
of the transmission line. The end of
the arc represents the normalized
impedance at the end of the line in the
shack; it is denormalized by multiply-
ing the real and imaginary parts by Z,.
Antenna feed-point Z can also be
inferred from an impedance measure-
ment at the shack end of the line. A
similar procedure is followed. The
only difference is that rotation is now
in a counterclockwise direction. The
Smith Chart is much more powerful
than depicted in this brief summary. A
detailed treatment is given by Phillip
H. Smith in his classic book: Elec-
tronic Applications of the Smith Chart
(McGraw-Hill, 1969). | also recom-
mend his article “Transmission Line
Calculator” in Jan 1939 Electronics.
Joseph White presented a wonderful
summary of the chart in a short but
outstanding paper: “The Smith Chart:
An Endangered Species?” Nov 1979
Microwave Journal. —Wes Hayward,
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