
15.1 Introduction

15.2 Typical DSP System Block Diagram

	 15.2.1 Data Converters

	 15.2.2 DSP

15.3 Digital Signals

	 15.3.1 Sampling — Digitization in Time

	 15.3.2 Quantization — Digitization in
	    Amplitude

15.4 Digital Filters

	 15.4.1 FIR Filters

	 15.4.2 IIR Filters

	 15.4.3 Adaptive Filters

15.5 Miscellaneous DSP Algorithms

	 15.5.1 Sine Wave Generation

	 15.5.2 Tone Decoder

15.6 Analytic Signals and Modulation

	 15.6.1 I/Q Modulation and Demodulation

	 15.6.2 SSB Using I/Q Modulators and
	    Demodulators

15.7 Software-Defined Radios (SDR)

	 15.7.1 SDR Hardware

	 15.7.2 SDR Software

15.8 Notes and Bibliography

15.9 Glossary

Contents

DSP and Software Radio Design   15.1

DSP and Software
Radio Design

In recent years, digital signal
processing (DSP) technology has
progressed to the point where it is
an integral part of our radio equip-
ment. DSP is rapidly replacing
hardware circuits with software,
offering amateurs flexibility and
features only dreamed of in the
past. This chapter, by Alan Bloom,
N1AL, explores DSP and its use
in radio design. DSP projects and
additional background and sup-
port materials may be found on
the Handbook CD.

Chapter 15

15.1 Introduction
Digital signal processing (DSP) has been around a long time. The essential theory was

developed by mathematicians such as Newton, Gauss and Fourier in the 17th, 18th and 19th
centuries. It was not until the latter half of the 20th century, however, that digital computers
became available that could do the calculations fast enough to process signals in real time.
Today DSP is important in many fields, such as seismology, acoustics, radar, medical imaging,
nuclear engineering, audio and video processing, as well as speech and data communications.

In all those systems, the idea is to process a digitized signal so as to extract information
from it or to control its characteristics in some way. For example, an EKG monitor in a hos-
pital extracts the essential characteristics of the signal from the patient’s heart for display on
a screen. A digital communications receiver uses DSP to filter and demodulate the received
RF signal before sending it to the speaker or headphones. In some systems, the signal to be
processed may have more than one dimension. An example is image data, which requires
two-dimensional processing. Similarly, the controller for an electrically-steerable antenna
array uses multi-dimensional DSP techniques to determine the amplitude and phase of the
RF signal in each of the antenna elements. A CT scanner analyzes X-ray data in three dimen-
sions to determine the internal structures of a human body.

SOFTWARE-DEFINED RADIO
The concept of a software-defined radio (SDR) became popular in the 1990s. By then,

DSP technology had developed to the point that it was possible to implement almost all the
signal-processing functions of a transceiver using inexpensive programmable digital hardware.
The frequency, bandwidth, modulation, filtering and other characteristics can be changed
under software control, rather than being fixed by the hardware design as in a conventional
radio. Adding a new modulation type or a new improved filter design is a simple matter of
downloading new software. In addition, with the same hardware design, a single radio can
have several different modulation modes.

SDR is appealing to regulatory bodies such as the FCC because it makes possible a com-
munications system called cognitive radio in which multiple radio services can share the
same frequency spectrum.1 Each node in a wireless network is programmed to dynamically
change its transmission or reception characteristics to avoid interference with other users.
In this way, services that in the past enjoyed fixed frequency allocations but that only use
their channels a small percentage of the time can share their spectrum with other wireless
users with minimal interference.

DSP ADVANTAGES
Digital signal processing has the reputation of being more complicated than the analog

circuitry that it replaces. In reality, once the analog signal has been converted into the digital
domain, complicated functions can be implemented in software much more simply than would
be possible with analog components. For example, the traditional “phasing” method of gen-
erating an SSB signal without an expensive crystal filter requires various mixers, oscillators,
filters and a wide-band audio-frequency phase-shift network built with a network of high-
precision resistors and capacitors. To implement the same function in a DSP system requires
adding one additional subroutine to the software program — no additional hardware is needed.

• A collection of DSP
projects with supporting files

• A discussion of DSP calculations
with samples and files that accom-
pany the discussion

Chapter 15 —
CD-ROM Content

15.2   Chapter 15

There are many features that are straightfor-
ward with DSP techniques but would be dif-
ficult or impractical to implement with analog
circuitry. A few examples drawn just from
the communications field are imageless mix-
ing, noise reduction, OFDM modulation and
adaptive channel equalization. Digital signals
can have much more dynamic range than
analog signals, limited only by the number
of bits used to represent the signal. For ex-
ample, it is easy to add an extra 20 or 30 dB of
headroom to the intermediate signal process-
ing stages to ensure that there is no measur-
able degradation of the signal, something that
might be difficult or impossible with analog
circuitry. Replacing analog circuitry with soft-
ware algorithms eliminates the problems of
nonlinearity and drift of component values
with time and temperature. The programmable
nature of most DSP systems means you can
make the equivalent of circuit modifications
without having to unsolder any components.

DSP LIMITATIONS
Despite its many advantages, we don’t

mean to imply that DSP is best in all situa-
tions. High-power and very high-frequency
signals are still the domain of analog circuitry.
Where simplicity and low power consump-
tion are primary goals, a DSP solution may
not be the best choice. For example, a simple
CW receiver that draws a few milliamps from
the power supply can be built with two or
three analog ICs and a handful of discrete
components. In many high-performance
systems, the performance of the analog-to-
digital converter (ADC or A/D converter)
and digital-to-analog converter (DAC or D/A
converter) are the limiting factors. That is
why, even with the latest generation of af-
fordable ADC technology, it is still possible
to obtain better blocking dynamic range in
an HF receiver using a hybrid analog-digital
system rather than going all-digital by routing
the RF input directly to an ADC.

The plan of this chapter is first to discuss

the overall hardware and software structure of
a DSP system, including general information
on factors to be considered when designing
at the system level. Then we will cover the
basic theory of digital signals, with emphasis
on topics relevant to radio communications.
Following that is a section on digital filters
and another section that describes several
other miscellaneous DSP applications. The
concept of analytic signals (negative frequen-
cies and all that) is important for understand-
ing software-defined radios, so we cover that
before getting into SDRs themselves. The
final two sections, on SDR hardware and
software, use many of the concepts explained
in previous sections to show how a radio can
be built with most of the signal processing
done digitally. For the fullest understand-
ing of this chapter the reader should have a
basic familiarity of the topics covered in the
Electrical Fundamentals, Analog Basics
and Digital Basics chapters as well as some
high-school trigonometry.

15.2 Typical DSP System Block Diagram
A typical DSP system is conceptually very

simple. It consists of only three sections, as
illustrated in Fig 15.1. An ADC at the in-
put converts an analog signal into a series
of digital numbers that represent snapshots
of the signal at a series of equally spaced
sample times. The digital signal processor
itself does some kind of calculations on that
digital signal to generate a new stream of
numbers at its output. A DAC then converts
those numbers back into analog form.

Some DSP systems may not have all three
components. For example, a DSP-based au-
dio-frequency generator does not need an
ADC. Similarly, there is no need for a DAC
in a measurement system that monitors some
sensor output, processes the signal and stores
the result in a computer file or displays it on
a digital readout.

The term “DSP” is normally understood
to imply processing that occurs in real time,
at least in some sense. For example, an RF
or microwave signal analyzer might include
a DSP co-processor that processes chunks of
sampled data in batch mode for display a frac-
tion of a second later. However, a computer
program that analyzes historical sunspot data
or stock prices normally would not be called
“digital signal processing” even though the
types of calculations might be very similar.

15.2.1 Data Converters
In this chapter we will discuss only briefly

several aspects of ADC and DAC specifica-

tions and performance that directly affect
design decisions at the system level. The
Analog Basics chapter has additional details
that must be considered when doing an actual
circuit design.

The first requirement when selecting a
DAC or ADC is that it be able to handle the
required sample rate. For communications-
quality voice, a sample rate on the order of
8000 samples per second (8 ksps) should
be adequate. For high-quality music, sample
rates are typically an order of magnitude high-
er and for processing wideband RF signals,
you’ll need data converters with sample rates
in the megasamples per second (Msps) range.
In many systems the input and output sample
rates are different. For example, a software-
defined receiver might sample the input RF
signal at 100 Msps while the output audio
DAC is running at only 8 ksps.

The resolution of a data converter is ex-
pressed as the number of bits in the data
words. For example, an 8-bit ADC can only
represent the sampled analog signal as one
of 28 = 256 possible numbers. The small-
est signal that it can resolve is therefore 1⁄256

of full scale. Even with an ideal, error-free

Fig 15.1 — A generic
DSP system.

ADC, the quantization error is up to ±1⁄2 of
one least-significant bit (LSB) of the digital
word, or ±1⁄512 of full scale with 8-bit resolu-
tion. Similarly, a DAC can only generate the
analog signal to within ±1⁄2 LSB of the desired
value. Later in the chapter we will discuss
how to determine the required sample rate
and resolution for a given application.

Another important data converter speci-
fication is the spurious-free dynamic range
(SFDR). This is the ratio, normally expressed
in dB, between a (usually) full-scale sine
wave and the worst-case spurious signal.
While higher-resolution ADCs and DACs
tend to have better SFDR, that is not guar-
anteed. Devices that are intended for signal-
processing applications normally specify the
SFDR on the data sheet.

While sample rate, resolution and SFDR
are the principal selection criteria for data
converters in a DSP system, other parameters
such as signal-to-noise ratio, harmonic and
intermodulation distortion, full-power band-
width, and aperture delay jitter can also affect
performance. Of course, basic specifications
such as power requirements, interface type
(serial or parallel) and cost also determine a

DSP and Software Radio Design   15.3

device’s suitability for a particular applica-
tion. As with any electronic component, it is
very important to read and fully understand
the data sheet.

15.2.2 DSP
The term digital signal processor (DSP)

is commonly understood to mean a special-
purpose microprocessor with an architecture
that has been optimized for signal processing.
And indeed, in many systems the box labeled
“DSP” in Fig 15.1 is such a device. A micro
processor has the advantage of flexibility be-
cause it can easily be re-programmed. Even
with a single program, it can perform many
completely-different tasks at different points
in the code. On-chip hardware resources such
as multipliers and other computational units
are used efficiently because they are shared
among various processes.

That is also the Achilles’ heel of program-
mable DSPs. Any hardware resource that is
shared among various processes can be used
by only one process at a time. That can create
bottlenecks that limit the maximum computa-
tion speed. Some DSP chips include multiple
computational units or multiple cores (basi-
cally multiple copies of the entire proces-
sor) that can be used in parallel to speed up
processing.

DIGITAL SIGNAL PROCESSING
WITHOUT A “DSP”

Another way to speed up processing is to
move all or part of the computations from
the programmable DSP to an application-
specific integrated circuit (ASIC), which
has an architecture that has been optimized
to perform some specific DSP function. For
example, direct digital synthesis (DDS) fre-
quency synthesizer chips are available that
run at rates that would be impossible with a
microprocessor-type DSP.

You could also design your own applica-
tion-specific circuitry using a PC board full
of discrete logic devices. Nowadays, how-
ever, it is more common to do that with a
programmable-logic device (PLD). This is

an IC that includes many general-purpose
logic elements, but the connections between
the elements are undefined when the device
is manufactured. The user defines those con-
nections by programming the device to per-
form whatever function is required. PLDs
come in a wide variety of types, described
by an alphabet soup of acronyms.

Programmable-array logic (PAL), pro-
grammable logic array (PLA), and generic ar-
ray logic (GAL) devices are relatively simple
arrays of AND gates, OR gates, inverters and
latches. They are often used as “glue logic” to
replace the miscellaneous discrete logic ICs
that would otherwise be used to interface vari-
ous larger digital devices on a circuit board.
They are sometimes grouped under the general
category of small PLD (SPLD). A complex
PLD (CPLD) is similar but bigger, often con-
sisting of an array of PALs with programmable
interconnections between them.

A field-programmable gate array (FPGA)
is bigger yet, with up to millions of gates
per device. An FPGA includes an array of
complex logic blocks (CLB), each of which
includes some programmable logic, often
implemented with a RAM look-up table
(LUT), and output registers. Input/output
blocks (IOB) also contain registers and can be
configured as input, output, or bi-directional
interfaces to the IC pins. The interconnections
between blocks are much more flexible and
complicated than in CPLDs. Some FPGAs
also include higher-level circuit blocks such
as general-purpose RAM, dozens or hundreds
of hardware multipliers, and even entire on-
chip microprocessors.

Some of the more inexpensive PLDs are
one-time programmable (OTP), meaning you
have to throw the old device away if you
want to change the programming. Other de-
vices are re-programmable or even in-circuit
programmable (ICP) which allows changing
the internal circuit configuration after the
device has been soldered onto the PC board,
typically under the control of an on-board
microprocessor. That offers the best of both
worlds, with speed nearly as fast as an ASIC
but retaining many of the benefits of the repro-

grammability of a microprocessor-type DSP.
Most large FPGAs store their programming
in volatile memory, which is RAM that must
be re-loaded every time power is applied,
typically by a ROM located on the same cir-
cuit board. Some FPGAs have programmable
ROM on-chip.

Programming a PLD is quite different from
programming a microprocessor. A micropro-
cessor performs its operations sequentially
— only one operation can be performed at
a time. Writing a PLD program is more like
designing a circuit. Different parts of the
circuit can be doing different things at the
same time. Special hardware-description
languages (HDL) have been devised for pro-
gramming the more complicated parts such
as ASICs and FPGAs. The two most com-
mon industry-standard HDLs are Verilog and
VHDL. (The arguments about which is “best”
approach the religious fervor of the Windows
vs Linux wars!) There is also a version of the
C++ programming language called SystemC
that includes a series of libraries that extend
the language to include HDL functions. It
is popular with some designers because it
allows simulation and hardware description
using the same software tool.

Despite the speed advantage of FPGAs,
most amateurs use microprocessor-type de-
vices for their DSP designs, supplemented
with off-the-shelf ASICs where necessary.
The primary reason is that the design process
for an FPGA is quite complicated, involving
obtaining and learning to use several sophis-
ticated software tools. The steps involved in
programming an FPGA are:
1. Simulate the design at a high abstraction

level to prove the algorithms.
2. Generate the HDL code, either manually

or using some tool.
3. Simulate and test the HDL program.
4. Synthesize the gate-level netlist.
5. Verify the netlist.
6. Perform a timing analysis.
7. Modify the design if necessary to meet

timing constraints.
8. “Place and route” the chip design.
9. Program and test the part.

Table 15.1
PLD Manufacturers
Company	 Devices	 URL	 Notes
Achronix	 FPGA	 www.achronix.com	 High-speed FPGAs
Actel	 FPGA	 www.actel.com	 Mixed-signal flash-based FPGAs
Altera	 CPLD, FPGA, ASIC	 www.altera.com	 One of the two big FPGA vendors			
Atmel	 SPLD, CPLD, 	 www.atmel.com	 Fine-grain-reprogrammable FPGAs with AVR
	 FPGA, ASIC		 microprocessors on chip
Cypress Semiconductor	 SPLD, CPLD	 www.cypress.com				
Lattice Semiconductor	 SPLD, CPLD, FPGA	 www.latticesemi.com	 Leading supplier of flash-based nonvolatile FPGAs
SiliconBlue	 FPGA	 www.siliconbluetech.com	 Low-power FPGAs
Texas Instruments	 SPLD, ASIC	 www.ti.com	
Xilinx	 CPLD, FPGA	 www.xilinx.com	 One of the two big FPGA vendors

15.4   Chapter 15

Many of the software tools needed to per-
form those steps are quite expensive, although
some manufacturers do offer free proprietary
software for their own devices. Some prin-
cipal manufacturers are listed in Table 15.1.

MICROPROCESSOR-TYPE
DSP CHIPS

In contrast with designing an FPGA, pro-
gramming a DSP chip is relatively easy. C
compilers are available for most devices, so
you don’t have to learn assembly language.
Typically you include a connector on your
circuit board into which is plugged an in-circuit
programmer (ICP), which is connected to a
PC via a serial or USB cable. The software is
written and compiled on the PC and then down-
loaded to the DSP. The same hardware often
also includes an in-circuit debugger (ICD) so
that the program can be debugged on the actual
circuitry used in the design. The combination
of the editor, compiler, programmer, debug-
ger, simulator and related software is called
an integrated development environment (IDE).

Until recently you had to use an in-circuit
emulator (ICE), which is a device that plugs
into the circuit board in place of the micro-
processor. The ICE provides sophisticated
debugging tools that function while the emu-
lator runs the user’s software on the target
device at full speed. Nowadays, however, it is
more common to use the ICD function that is
built into many DSP chips and which provides
most of the functions of a full-fledged ICE. It
is much cheaper and does not require using a
socket for the microprocessor chip.

The architecture of a digital signal pro-
cessor shares some similarities to that of a
general-purpose microprocessor but also dif-
fers in important respects. For example, DSPs
generally don’t spend much of their lives
handling large computer files, so they tend
to have a smaller memory address space than
processors intended to be used in computers.
On the other hand, the memory they do have is
often built into the DSP chip itself to improve
speed and to reduce pin count by eliminating
the external address and data bus.

Most microprocessors use the traditional
Von Neumann architecture in which the pro-
gram and data are stored in the same memory
space. However, most DSPs use a Harvard
architecture, which means that data and pro-
gram are stored in separate memories. That
speeds up the processor because it can be
reading the next program instruction at the
same time as it is reading or writing data in
response to the previous instruction. Some
DSPs have two data memories so they can
read and/or write two data words at the same
time. Most devices actually use a modified
Harvard architecture by providing some (typ-
ically slower and less convenient) method
for the processor to read and write data to
program memory.

Fig 15.2 — Simplified block diagram of a dsPIC processor.

Probably the key difference between gen-
eral-purpose and digital-signal processors is
in the computational core, often called the
arithmetic logic unit (ALU). The ALU in
a traditional microprocessor only performs
integer addition, subtraction and bitwise logic
operations such as AND, OR, one-bit shifting
and so on. More-complicated calculations,
such as multiplication, division and opera-
tions with floating-point numbers, are done
in software routines that exercise the simple
resources of the ALU multiple times to gener-
ate the more-complicated results.

In contrast, a DSP has special hardware
to perform many of these operations much
faster. For example, the multiplier-accumula-
tor (MAC) multiplies two numbers and adds

(accumulates) the product with the previous
results in a single step. Many common DSP
algorithms involve the sum of a large num-
ber of products, so nearly all DSPs include
this function. Fig 15.2 is a simplified block
diagram of the dsPIC series from Microchip.
Its architecture is basically that of a general-
purpose microcontroller to which has been
added a DSP engine, which includes a MAC,
a barrel shifter and other DSP features. It does
use a modified Harvard architecture with two
data memories that can be simultaneously
accessed.

A floating-point number is the binary
equivalent of scientific notation. Recall that
the decimal integer 123000 is expressed as
1.23 × 105 in scientific notation. It is common

DSP and Software Radio Design   15.5

practice to place the decimal point after the
first non-zero digit and indicate how many
digits the decimal point must be moved by the
exponent of ten, 5 in this case. The 1.23 part is
called the mantissa. In a computer, base-2 bi-
nary numbers are used in place of the base-10
decimal numbers used in scientific notation.
The binary point (equivalent to the decimal
point in a decimal number) is assumed to be to
the left of the first non-zero bit. For example
the binary number 00110100 when converted
to a 16-bit floating point number would have
an 11-bit mantissa of 11010000000 (with
the binary point assumed to be to the left of
the first “1”) and a 5-bit exponent of 00110
(decimal +6).

A floating point number can represent a
signal with much more dynamic range than
an integer number with the same number of
bits. For example, a 16-bit signed integer can
vary from –32768 to +32767. The difference
between the smallest (1) and largest signal
that can be represented is 20 log(65535) =
96 dB. If the 16 bits are divided into an 11-
bit mantissa and 5-bit exponent, the avail-
able range is 20 log(2048) = 66 dB from the
mantissa and 20 log(232) = 193 dB from the
exponent for a total of 259 dB. The disadvan-
tage is that the mantissa has less resolution,
potentially increasing noise and distortion.
Normally floating-point numbers are at least
32 bits wide to mitigate that effect.

Some DSPs can process floating-point
numbers directly in hardware. Fixed-point
DSPs can also handle floating-point num-

Table 15.2
Manufacturers of Embedded DSPs
Company	 Family	 Data	 Speed	 Nr.of	 ROM	 RAM	 Notes
		 Bits	 MMACs	 Cores	 (bytes)	 (bytes)	
Analog Devices	 ADSP-21xx	 16	 75-160	 1	 12k-144k	 8k-112k	 Easy assembly
www.analog.com							  language
	 SHARC	 32/40 fp	 300-900	 1	 2-4M	 0.5-5M	 Runs fixed or
							  floating point
	 Blackfin	 16/32	 400-2400	 1-2	 External	 53k-328k	 Many on-chip
							 peripherals
							
Cirrus Logic	 CS48xxxx	 32	 150	 1		 96k	 Audio applications
www.cirrus.com	 CS49xxxx	 32	 300	 2	 512k	 296k-328k	 Audio applications	 		
				
	 						
Freescale	 DSP568xx	 16	 32-120	 1	 2k-576k	 2k-128k	 Also a microcontroller
www.freescale.com	 DSP563xx	 24	 80-275	 1	 External	 576k	
	 StarCore	 16	 1000-48,000	 1-6	 External	 0-1436k	
							
Microchip	 dsPIC	 16	 30-70	 1	 6k-256k	 256-32k	 Also a microcontroller
www.microchip.com	 						 Free IDE software
	 						
Texas Instruments	 C5000	 16	 50-600	 1	 8k-256k	 0-1280k	
www.ti.com	 C6000	 16/64 fp	 300-24,000	 1-3	 0-384k	 32k-3072	 Fixed or floating point ver.
	 						
Zilog	 Z89xxx	 16	 20	 1	 4k-8k	 512	
www.zilog.com

bers, but it must be done in software. The
additional dynamic range afforded by
floating-point processing is normally not
needed for radio communications signals
since the dynamic range of radio signals is
typically less than can be handled by the
16-bit data words used by most integer
DSPs. Using integer arithmetic saves the
additional cost of a floating-point processor
or the additional computational overhead of
floating-point calculations on a fixed-point
device. However, it requires careful atten-
tion to detail on the part of the programmer
to make sure the signal can never exceed
the maximum integer value or get so weak
that the signal-to-noise ratio is degraded. If
cost or computation time is not an issue, it
is much easier to program in floating point
since dynamic range issues can be ignored
for most computations.

The term pipeline refers to the ability of a
microprocessor to perform portions of several
instructions at the same time. The sequence of
operations required to perform an instruction
is broken down into steps. Since each step is
performed by a different chunk of hardware,
different chunks can be working on different
instructions at the same time. Most DSPs have
at least a simple form of pipelining in which
the next instruction is being fetched while
the previous instruction is being executed.
Some DSPs can do a multiply-accumulate
while the next two multiplicands are being
read from memory and the previous accumu-
lated result is being stored so that the entire

operation can occur in a single clock cycle.
MACs per second is a common figure of merit
for measuring DSP speed. For conventional
microprocessors, a more common figure of
merit is millions of instructions per second
(MIPS) or floating-point operations per sec-
ond (FLOPS).

Many DSPs have a sophisticated address
generation unit that can automatically incre-
ment one or more data memory pointers so
that repetitive calculations can step through
memory without the processor having to cal-
culate the addresses. Zero-overhead looping
is the ability to automatically jump the ad-
dress pointer back to the beginning of the
array when it reaches the end. That saves
several microprocessor instructions per loop
that normally would be required to check the
current address and jump when it reaches a
predetermined value.

While most DSPs do not include a full
hardware divider, some do include special
instructions and hardware to speed up divi-
sion calculations. A barrel shifter is another
common DSP feature. It allows shifting a
data word a specified number of bits in a
single clock cycle. Direct memory access
(DMA) refers to special hardware that can
automatically transfer data between memory
and various peripheral devices or ports with-
out processor overhead.

DSP IN EMBEDDED SYSTEMS
An embedded system is a device that is not

a computer but nevertheless has a micropro-

15.6   Chapter 15

cessor or DSP chip embedded somewhere
in its circuitry. Examples are microwave
ovens, automobiles, mobile telephones and
software-defined radios. DSPs intended for
embedded systems often include a wide array
of on-chip peripherals such as various kinds
of timers, multiple hardware interrupts, se-
rial ports of various types, a real-time clock,
pulse-width modulators, optical encoder in-
terfaces, A/D and D/A converters and lots of
general-purpose digital I/O pins. Some DSPs
not only include lots of peripherals but in ad-
dition have architectures that are well-suited
for general-purpose control applications as
well as digital signal processing.

Table 15.2 lists some manufacturers of
DSP chips targeted to embedded systems. It
should be mentioned that microprocessors
intended for personal computers made by
Intel and AMD also include extensive DSP
capability. However, they are large, compli-
cated, power-hungry ICs that are not often
used in embedded applications.

When selecting a DSP device for a new de-
sign, often the available development environ-
ment is more important than the characteristics
of the device itself. Microchip’s dsPIC family
of DSPs was chosen for the examples in this
chapter because their integrated development
environment is extensive and easy to use and
the IDE software is available for free down-
load from their Web site.2 The processor in-
struction set is a superset of the PIC24 family of
general-purpose microcontrollers, with which
many hams are already familiar. The company
offers a line of low-cost evaluation boards and
starter kits as well as an inexpensive in-circuit
debugger, the ICD 3. The free IDE software

includes a simulator that can run dsPIC
software on a PC (at a much slower rate,
of course), so that you can experiment with
DSP algorithms before buying any hardware.

The Microchip DSP family is limited to
70 million instructions per second. In a sys-
tem with, say, a 70 kHz sample rate, 1000
instructions per sample are available which
should be plenty if the calculations are not
too complex. However if the sample rate is
1 MHz, then you get only 70 instructions per
sample, which likely would be insufficient.

If more horsepower is required, you’ll need
to select a processor from a different manu-
facturer. Look for one with a well-integrated
suite of development software that is power-
ful and easy to use. Also check out the cost and
availability of development hardware such as
evaluation kits, programmers and debuggers.
Once those requirements are met, then you
can move on to selecting a specific device
with the performance and features required
for your application. It can be helpful at the
beginning of a project to first write some of
the key software routines and test them on
a simulator to estimate execution times, in
order to determine how powerful a proces-
sor is needed.

When estimating execution time, don’t
forget to include the effect of interrupts. Most
DSP systems require real-time response and
make extensive use of interrupts to ensure
that certain events happen at the correct
times. Although this is hidden from the pro-
grammer’s view when programming in C,
the interrupt service routines contain quite
a bit of overhead each time they are called
(to save the processor state when responding

and to recall the state just before returning
from the interrupt). Sometimes an interrupt
may be called more often than you expect,
which can eat up processor cycles and so
increase the execution time of other unre-
lated routines.

In the past, may embedded systems were
written in assembly language so save mem-
ory and increase processing speed. Many
early microprocessors and DSPs did not
have enough memory to support a high-level
language. Today, most processors have suf-
ficient memory and processing speed to sup-
port a C kernel and library without difficulty.
For anything but the simplest of programs,
it is not only faster and easier to develop
software in C but it is easier to support and
maintain as well, especially if people other
than the original programmer might become
involved. Far more people know the C pro-
gramming language than any particular pro-
cessor’s assembly language. It is true that the
version of C used on a DSP chip is usually
modified from standard ANSI C to support
specific hardware features, but it would still
be far easier to learn for a programmer fa-
miliar with writing C code on a PC or on a
different DSP.

A common technique is first to write the
entire application in C. Then, if execution
time is not acceptable, analyze the system
to determine in which software routines the
bottlenecks are occurring. Those routines can
then be re-written in assembly language. Hav-
ing an already-working version written in C
(even if too slow) can be helpful in testing
and troubleshooting the equivalent assembly
language.

15.3 Digital Signals
Digital signals differ from analog signals

in two ways. One is that they are digitized in
time, a process called sampling. The other is
that they are digitized in amplitude, a process
called quantization. Sampling and quantiza-
tion affect the digitized signal in different
ways so the following sections will consider
their effects separately.

15.3.1 Sampling —
Digitization in Time

Sampling is the process of measuring a sig-
nal at discrete points of time and recording the
measured values. An example from history is
recording the number of sunspots. If an ob-

server goes out at noon every day and writes
down the number of observed sunspots, then
that data can be used to plot sunspot number
versus time. In this case, we say the sample
rate is one sample per day. The data can then
be analyzed in various ways to determine
short and long-term trends. After recording
only a few months of data it will quickly
become apparent that sunspot number has a
marked periodicity — the numbers tend to
repeat every 27 days (which happens to be the
rotation rate of the sun as seen from earth).

What if, instead of taking a reading once
a day, the readings were taken only once per
month? With a 30-day sample period, the
27-day periodicity would likely be impos-

sible to see. Clearly, the sample rate must be
at least some minimum value to accurately
represent the measured signal. Based on ear-
lier work by Harry Nyquist, Claude Shannon
proved in 1948 that in order to sample a signal
without loss of information, the sample rate
must be greater than the Nyquist rate, which
is two times the bandwidth of the signal. In
other words, the bandwidth must be less than
the Nyquist frequency, which is one-half the
sample rate. This is known as the Nyquist
sampling criterion.

That simple rule has some profound impli-
cations. If all the frequency components of
a signal are contained within a bandwidth of
B Hz, then sampling at a rate greater than 2B

DSP and Software Radio Design   15.7

samples per second is sufficient to represent
the signal with 100% accuracy and with no
loss of information. It is theoretically pos-
sible to convert the samples back to an analog
signal that is exactly identical to the original.

Of course, a real-world digital system mea-
sures those samples with only a finite number
of bits of resolution, with consequences that
we will investigate in the section on quantiza-
tion that follows. In addition, sampling theory
assumes that there is absolutely no signal en-
ergy outside the specified bandwidth; in other
words the stopband attenuation is infinity dB.
Any residual signal in the stop-band shows up
as distortion or noise in the sampled signal.

To simplify the discussion, let’s think about
sampling a signal of a single frequency (a sine
wave). Fig 15.3 illustrates what happens if the
sample rate is too low. As shown, the sample
rate is approximately 7⁄8 the sine-wave fre-
quency. You can see that the sampled signal
has a period about 8 times greater than the
period of the sine wave, or 1⁄8 the frequency.
The samples are the same as if the analog
signal had been a sine wave of 1⁄8 the actual
frequency.

That is an example of a general principle.
If the sample rate is too low, the sampled
signal will be aliased to a frequency equal to
the difference between the actual frequency
of the analog signal and the sample rate. In
the above example, the alias frequency fo is

() ()o sig s sig sig
7 1

8 8f f f 1 f f= − = − =

where fsig is the frequency of the signal before
sampling and fs is the sample rate.

If the analog signal’s frequency is even
higher, then it aliases relative to whichev-
er harmonic of the sample rate is closest.
Fig 15.4C shows all the signal frequencies
that alias to a frequency of fo, calculated from
the equation

o sig sf f Nf= −

where N is the harmonic number. One way
to think of it is that a sampler is a harmonic
mixer. The sampled signal (equivalent to the
mixer output) contains the sum and difference
frequencies of the input signal and all the
harmonics of the sample frequency.

To avoid aliasing, most systems use an
anti-aliasing filter before the sampler, as
shown in Fig 15.5. For a baseband signal
(one that extends to zero Hz), the anti-aliasing
filter is a low-pass filter whose stopband ex-
tends from the Nyquist frequency to infinity.
Of course, practical filters do not transition in-
stantaneously from the passband to the stop-
band, so the bandwidth of the passband must
be somewhat less than half the sample rate.

It is actually possible to accurately sample
signals above the Nyquist frequency so long

Fig 15.3 — Undersampled sine wave (A). Samples aliased to a lower frequency (B).

Fig 15.4 — Spectrum of an analog sine wave (A). The spectrum of the sampling
function, including all harmonics (B). The spectrum of the sampled sine wave (C).

15.8   Chapter 15

as their bandwidth does not violate the Ny-
quist criterion, a process called undersam-
pling or harmonic sampling. Imagine an LSB
signal at 455 kHz with a bandwidth of 3 kHz
that is being sampled at a 48 kHz rate. The
455 kHz signal mixes with the ninth harmonic
of the sample rate at 432 kHz, resulting in a
sampled signal with its suppressed carrier
at 455 – 432 = 23 kHz and extending 3 kHz
below that to 20 kHz. So long as the incom-
ing signal has no significant energy below
432 kHz or above 456 kHz [432 + (48/2)]
kHz no unwanted aliasing occurs.

With harmonic sampling, the anti-alias
filter must be a band-pass type. In the previ-
ous example, you’d probably need to use a
crystal or mechanical filter in order to have
a sufficiently sharp transition from the top
edge of the passband slightly below 455 kHz
to the stopband edge at 456 kHz.

Fig 15.3 shows each sample being held at a
constant value for the duration of one sample
period. However, sampling theory actually
assumes that the sample is only valid at the
instant the signal is sampled; it is zero or
undefined at all other times. A series of such
infinitely-narrow impulses has harmonics all
the way to infinite frequency. Each harmonic
has the same amplitude and is modulated by
the signal being sampled. See Fig 15.6. When
a digitized signal is converted back to analog
form, unwanted harmonics must be filtered
out by a reconstruction filter as shown in Fig
15.5. This is similar to the anti-aliasing filter
used at the input in that its bandwidth should

Fig 15.5 — A more complete block diagram of a DSP system.

Fig 15.6 — An ideal sampled signal repeats the spectrum of the analog signal at all
harmonics of the sample rate, fs.

be no greater than one-half the sample rate. It
is a low-pass filter for a baseband signal and
a band-pass filter for an undersampled signal.

Most DACs actually do hold each sample
value for the entire sample period. This is
called zero-order hold and results in a fre-
quency response in the shape of a sinc func-
tion

() ()sin f
sinc f

f
π

=
π

where f is normalized to the sample rate,
f = frequency / sample rate.

The graph of the sinc function in Fig 15.7
shows both positive and negative frequencies
for reasons explained in the Analytic Signals
section. Note that the logarithmic frequency
response has notches at the sample rate and
all of its harmonics. If the signal bandwidth
is much less than the Nyquist frequency, then
most of the signal at the harmonics falls near
the notch frequencies, easing the task of the
reconstruction filter. If the signal bandwidth
is small enough (sample rate is high enough),
the harmonics are almost completely notched
out and a reconstruction filter may not even
be required.

The sin(πf)/πf frequency response also af-
fects the passband. For example if the pass-
band extends to sample rate / 4 (f = 0.25),
then the response is

()sin 0.25
20 log 0.9 dB

0.25
π ⋅

= −
π ⋅

at the top edge of the passband. At the Nyquist
frequency, (f = 0.5), the error is 3.9 dB. If the
signal bandwidth is a large proportion of the
Nyquist frequency, then some kind of digital
or analog compensation filter may be required
to correct for the high-frequency rolloff.

DECIMATION AND INTERPOLATION
The term decimation simply means reduc-

ing the sample rate. For example to deci-
mate by two, simply eliminate every second
sample. That works fine as long as the signal
bandwidth satisfies the Nyquist criterion at
the lower, output sample rate. If the analog
anti-aliasing filter is not narrow enough, then
a digital anti-aliasing filter in the DSP can be
used to reduce the bandwidth to the necessary
value. This must be done before decimation
to satisfy the Nyquist criterion.

If you need to decimate by a large amount,
then the digital anti-aliasing filter must have a
very small bandwidth compared to the sample
rate. As we will see later, a digital filter with
a small bandwidth is computationally inten-
sive. For this reason, large decimation factors
are normally accomplished in multiple steps,
as shown in Fig 15.8A. The first decima-
tion is by a small factor, typically 2, so that
the first anti-alias filter can be as simple as

Fig 15.7 — The sinc function, where the
horizontal axis is frequency normalized
to the sample rate. At the bottom is the
same function in decibels.

DSP and Software Radio Design   15.9

possible. The second decimation stage then
does not have to decimate by such a large
factor, simplifying its task. In addition, since
it is running at only half the input sample
rate it has more time to do its calculations.
Generally it is most efficient to decimate by
the smallest factor in the first stage, a larger
factor in the second, and the largest factors
in the third and any subsequent stages. The
larger the total decimation factor, the greater
the number of stages is appropriate but more
than three stages is uncommon.

Interpolation means increasing the sample
rate. One way to do that is simply to insert ad-
ditional zero-value samples, a process called
zero-stuffing. For example, to interpolate by a
factor of three, insert two zero-value samples
after each input sample. That works, but may
not give the results you expect. Recall that
a sampled signal has additional copies of
the baseband signal at all harmonics of the
sample rate. All of those harmonics remain in
the resampled signal, even though the sample
rate is now higher. To eliminate them, the
signal must be filtered after interpolation.
After filtering, there is signal only at baseband
and around the harmonics of the interpolated
(higher-frequency) sample rate. It’s as if the
analog signal had been sampled at the higher
rate to begin with.

Just as with decimation, interpolation by a
large factor is best done in stages, as shown in
Fig 15.8B. In this case, the stage running at
the lowest sample rate (again the first stage)
is the one with the lowest interpolation factor.

Zero-stuffing followed by filtering is not
the only way to interpolate. Really what
you are trying to do is to fill in between the
lower-rate samples with additional samples
that “connect the dots” in as smooth a man-
ner as possible. It can be shown that that
is mathematically equivalent to zero-stuff-
ing and filtering. For example, if instead of
inserting zero-value samples you instead

Fig 15.8 — Decimation (A) and interpolation (B). The arrow’s direction indicates
decimation (down) or interpolation (up) and the number is the factor.

simply repeat the last input sample, you have
a situation similar to the zero-order hold
of a DAC output. It is equivalent to zero-
stuffing followed by a low-pass filter with a
frequency response of sin(πf)/πf. If you do
a straight-line interpolation between input
samples (a “first-order” interpolation), it turns
out that it is equivalent to a low pass filter with
a frequency response of [sin(πf)/πf]2, which
has a sharper cutoff and better stop-band
rejection than a zero-order interpolation.
Higher-order interpolations have smoother
responses in the time domain which trans-
late to better filter responses in the frequency
domain.

So far we have only covered decimation
and interpolation by integer factors. It is also
possible to change the sample rate by a non-
integer factor, which is called resampling or
multi-rate conversion. For example, if you
want to increase the sample rate by a factor of
4⁄3, simply interpolate by 4 and then decimate
by 3. That method can become impractical for
some resample ratios. For example, to convert
an audio file recorded from a computer sound
card at 48 kHz to the 44.1 kHz required by a
compact disc, the resample ratio is 44,100 /
48,000 = 147 / 160. After interpolation by
147, the 44.1 kHz input file is sampled at
6.4827 MHz, which would result in excessive
processing overhead.

In addition, the interpolation/decimation
method only works for resample ratios that
are rational numbers (the ratio of two inte-
gers). To resample by an irrational number, a
different method is required. The technique is
as follows. For each output sample, first deter-
mine the two nearest input samples. Calculate
the coefficients of the Nth-order equation that
describes the trajectory between the two input
samples. Knowing the trajectory between the
input samples and the output sample’s relative
position between them, the value of the output
sample can be calculated from the equation.

15.3.2 Quantization —
Digitization in Amplitude

While sampling (digitization in time) theo-
retically causes no loss of signal informa-
tion, quantization (digitization in amplitude)
always does. For example, an 8-bit signed
number can represent a signal as a value from
–128 to +127. For each sample, the A/D con-
verter assigns whichever number in that range
is closest to the analog signal at that instant.
If a particular sample has a value of 10, there
is no way to tell if the original signal was 9.5,
10.5 or somewhere in between. That informa-
tion has been lost forever.

When quantizing a complex signal such as
speech, this error shows up as noise, called
quantization noise. See Fig 15.9. The error is
random — it is equally likely to be anywhere
in the range of –1/2 to +1/2 of a single step
of the ADC. We say that the maximum error
is one-half of one least-significant bit (LSB).
It can be shown mathematically that a series
of uniformly-distributed random numbers be-
tween +0.5 LSB and –0.5 LSB has an RMS
value of

LSB
12

which is –10.79 dB less than one LSB. Each
time you add one bit to the data word, the
number of LSBs in the range doubles, which
means each LSB gets two times smaller
reducing the noise by 6.02 dB. A full-scale
sine wave has an RMS power –3.01 dB
from a full-scale dc voltage. Combining that
information results in the following equation
for signal-to-noise ratio in decibels for a data
word of width b bits:

SNR 1.76 6.02b dB= +

For example, with 8-bit data, SNR =
49.9 dB. An ideal 16-bit ADC would achieve
a 98.1 dB signal-to-noise ratio. Of course,
real-world devices are never perfect so actual
performance would be somewhat less.

One critical point that is sometimes over-
looked is that quantization noise is spread
over the entire bandwidth from zero Hz to
the sample rate. If you are digitizing a 3 kHz
audio channel with a 48 ksps sampler, only
a fraction of the noise power is within the
channel. For that reason, the effective signal-
to-noise ratio depends not only on the number
of bits but also the sample rate, fs, and the
signal bandwidth, B:

s
eff

f
SNR SNR 10log dB

2B
 = +  
 

The reason for the factor of two in the de-
nominator is that the bandwidth of a positive-
frequency scalar signal should be compared
to the Nyquist bandwidth, fs/2. When filtering

15.10   Chapter 15

a complex signal (one that contains I and Q
parts), the 2B in the denominator should be
replaced by B.

When choosing an A/D converter don’t
forget that the effective SNR depends on the
sample rate. As an example, let’s compare
an Analog Devices AD9235 12-bit, 65 Msps
ADC to an AD7653, which is a 16-bit 100 ksps
ADC from the same manufacturer. Assume
a 10 kHz signal bandwidth.

An ideal 12-bit ADC has a SNR of 1.76 +
6.02 × 12 = 74.0 dB. The AD9235’s perfor-
mance is not far from the ideal; its SNR is speci-
fied at 70.5 dB at its 65 Msps maximum sample
rate. In a 10 kHz bandwidth, the effective SNR
is 70.5 + 10 log (65,000/20) = 105.6 dB.

Fig 15.9 — Quantization error of a random noise signal that has been band-limited to
1 kHz to simulate an audio signal. (A) The sampler resolution is 8 bits and the sample
rate is 10 kHz. Sample values are indicated by circles. Also shown is the quantization
error, in units of LSB. Below is the frequency spectrum of the signal before and after
quantization. (B)

An ideal 16-bit ADC has an SNR of
98.1 dB. The AD7653 is specified at 86 dB.
The effective SNR is 86 + 10log(100/20) =
93 dB.

So the 12-bit ADC with 70.5 dB SNR is
actually 12.6 dB better than the 16-bit de-
vice with 86 dB SNR! Even an ideal 16-bit,
100 ksps ADC would only have an effective
SNR of 98.1 + 10log(100/20) = 105.1 dB, still
worse than the actual performance of the
AD9235 when measured with the same band-
width. Note that to actually realize 105.6 dB
of dynamic range the signal from the ADC
would need to be filtered to a 10 kHz bandwidth
while increasing the bits of data resolution.

Oversampling is the name given to the

technique of using a higher-than-necessary
sample rate in order to achieve an improved
S/N ratio. Don’t forget that when the high-
sample-rate signal is decimated the data
words must have enough bits to support the
higher dynamic range at the lower sample
rate. As a rule of thumb, the quantization
noise should be at least 10 dB less than the
signal noise in order not to significantly de-
grade the SNR. In the AD9235 example,
assuming a 100 kHz output sample rate,
about 18 bits would be required: 1.76 + 6.02
× 18 + 10log(100/20) = 117.1 dB, which is
11.5 dB better than the 105.6 dB dynamic
range of the ADC in a 10 kHz bandwidth.

Most ADCs and DACs used in high-fidelity
audio systems use an extreme form of overs-
ampling, where the internal converter may
oversample by a rate of 128 or 256 times, but
with very low resolution (in some cases just
a 1-bit ADC!). In addition, such converters
use a technique called noise shaping to push
most of the quantization noise to frequencies
near the sample rate, and reduce it in the audio
spectrum. The noise is then removed in the
decimation filter.

Although quantization error manifests
itself as noise when digitizing a complex
non-periodic signal, it can show up as dis-
crete spurious frequencies when digitizing a
periodic signal. Fig 15.10 illustrates a 1 kHz
sine wave sampled with 8-bit resolution at a
9.5 kHz rate. On average there are 9.5
samples per cycle of the sine wave so that
the sampling error repeats every second
cycle. That 500-Hz periodicity in the error
signal causes a spurious signal at 500 Hz
and harmonics. As the signal frequency is
changed, the spurs move around in a com-
plicated manner that depends on the ratio
of sample rate to signal frequency. In real-
world ADCs, nonlinearities in the transfer
function can also create spurious signals that
vary unpredictably as a function of the signal
ampli-tude, especially at low signal levels.

In many applications, broadband noise is
preferable to spurious signals on discrete fre-
quencies. The solution is to add dithering. Es-
sentially this involves adding a small amount
of noise, typically on the order of an LSB or
two, in order to randomize the quantization
error. Some DACs have dithering capability
built in to improve the SFDR, even though
it does degrade the SNR slightly. Dithering
is also useful in cases where the input signal
to an ADC is smaller than one LSB. Even
though the signal would be well above the
noise level after narrow-band filtering, it can-
not be detected if the ADC input is always
below one LSB. In many systems there is
sufficient noise at the input, both from input
amplifiers as well as from the ADC itself, to
cause natural dithering.

DSP and Software Radio Design   15.11

15.4 Digital Filters

Fig 15.10 — Quantization
error of a 1 kHz sine
wave sampled at
9.5 kHz with 8-bit
resolution (A). Sample
values are indicated by
circles. Also shown is
the quantization error, in
units of LSB. Below is
the frequency spectrum,
showing the spurious
frequencies caused by
the quantization. (B)

As radio amateurs, most of us are well-
acquainted with the concept of frequency.
We know, for example, that a pure sine wave
consists of a single frequency, which is in-
versely proportional to the wavelength. If the
sine wave is distorted, additional harmonic
frequencies appear at integer multiples of the
fundamental. For example, a square wave
consists of sine waves at the fundamental fre-
quency and all the odd harmonics. In general,
any periodic waveform can be decomposed
into a combination of sine waves at various
phase angles with frequencies that are in-
teger multiples of the repetition rate of the
waveform.

Even a non-periodic waveform can be de-
composed into sine waves, although in this
case they are not harmonically-related. For
example a single pulse of width τ seconds has

a frequency spectrum proportional to sinc(fτ)
= sin(πfτ)/(πfτ). You can think of this as an
infinite number of sine waves spaced infi-
nitely closely together with amplitudes that
trace out that spectral shape. It is interesting
to note that if τ is decreased, the value of f
must increase by the same factor for any given
value of sin(πfτ)/(πfτ). In other words, the
narrower the pulse the wider the spectrum.
Of course that applies to sine waves and other
periodic waveforms as well — the smaller
the wavelength the higher the frequency. In
general, anything that makes the signal “skin-
nier” in the time domain makes it “fatter” in
the frequency domain and vice versa.

As the pulse becomes narrower and nar-
rower, the frequency spectrum spreads out
more and more. In the limit, if the pulse is
made infinitely narrow, the spectrum becomes

flat from zero hertz to infinity. An infinitely-
narrow pulse is called an impulse and is a very
useful concept because of its flat frequency
spectrum. If you feed an impulse into the input
of a filter, the signal that comes out, the impulse
response, has a frequency spectrum equal to
the frequency response of the filter. One way
to design a filter is to determine the impulse
response that corresponds to the desired fre-
quency spectrum and then design the filter to
have that impulse response. That method is
ideally suited for designing FIR filters.

15.4.1 FIR Filters
A finite impulse response (FIR) filter is a

filter whose impulse response is finite, ending
in some fixed time. Note that analog filters
have an infinite impulse response — the out-

15.12   Chapter 15

put theoretically rings forever. Even a simple
R-C low-pass filter’s output dies exponential-
ly toward zero but theoretically never quite
reaches it. In contrast, an FIR filter’s impulse
response becomes exactly zero at some time af-
ter receiving the impulse and stays zero forever
(or at least until another impulse comes along).

Given that you have somehow figured out
the desired impulse response, how would you
design a digital filter to have that response?
The obvious method would be to pre-calculate
a table of impulse response values, sampled
at the sample rate. These are called the filter
coefficients. When an impulse of a certain am-
plitude is received, you multiply that amplitude
by the first entry in the coefficient table and
send the result to the output. At the next sample
time, multiply the impulse by the second entry,
and so on until you have used up all the entries
in the table.

A circuit to do that is shown in Fig 15.11.
The input signal is stored in a shift register.
Each block labeled “Delay” represents a delay
of one sample time. At each sample time, the
signal is shifted one register to the right. Each
register feeds a multiplier and the other input
to the multiplier comes from one of the coef-
ficient table entries. All the multiplier outputs
are added together. Since the input is assumed
to be a single impulse, at any given time all the
shift registers contain zero except one, which
is multiplied by the appropriate table entry and
sent to the output.

We’ve just designed an FIR filter! By using
a shift register with a separate multiplier for
each tap, the filter works for continuous signals
as well as for impulses. Since this is a linear
system, the continuing signal is affected by
the filter the same as an individual impulse.

It should be obvious from the diagram how
to implement an FIR filter in software. You set
up two buffers in memory, one for the filter
coefficients and one for the data. The length
of each buffer is the number of filter taps. (A
tap is the combination of one filter coefficient,
one shift register and one multiplier/accumula-
tor.) Each time a new data value is received, it
is stored in the next available position in the
data buffer and the accumulator is set to zero.
Next, a software loop is executed a number
of times equal to the number of taps. Dur-
ing each loop, pointers to the two buffers are
incremented, the next coefficient is multiplied
by the next data value and the result is added
to the current accumulator value. After the last
loop, the accumulator contents are the output
value. Normally the buffers are implemented
as circular buffers — when the address pointer
gets to the end it is reset back to the beginning.

Now you can see why a hardware multiplier-
accumulator (MAC) is such an important fea-
ture of a DSP chip. Each tap of the FIR filter
involves one multiplication and one addition.
With a 1000-tap FIR filter, 1000 multiplica-
tions and 1000 additions must be performed

during each sample time. Being able to do
each MAC in a single clock cycle saves a lot
of processing time.

An FIR filter is a hardware or software
implementation of the mathematical opera-
tion called convolution. We say that the filter
convolves the input signal with the impulse
response of the filter. It turns out that convo-
lution in the time domain is mathematically
equivalent to multiplication in the frequency
domain. That means that the frequency spec-
trum of the output equals the frequency spec-
trum of the input times the frequency spectrum
of the filter. Expressed in decibels, the output
spectrum equals the input spectrum plus the
filter frequency response, all in dB. If at some
frequency the input signal is +3 dB and the
filter is –10 dB compared to some reference,
then the output signal will be 3 – 10 = –7 dB
at that frequency.

An FIR filter whose bandwidth is very small
compared to the sample rate requires a long
impulse response with lot of taps. This is an-
other consequence of the “skinny” versus “fat”
relationship between the frequency and time
domains. If the filter is narrow in the frequency
domain, then its impulse response is wide.
Actually, if you want the frequency response
to go all the way to zero (minus infinity dB)
throughout the stop band, then the impulse
response theoretically becomes infinitely
wide. Since we’re designing a finite impulse
response filter we have to truncate the impulse
response at some point to get it to fit in the
coefficient table. When you do that, however,
you no longer have infinite attenuation in the
stopband. The more heavily you truncate (the
narrower the impulse response) the worse the
stopband attenuation and the more ripple you
get in the passband. Assuming optimum design
techniques for selecting coefficients, you can
estimate the minimum length L of the impulse
response from the following equation:

()1 2

T

s

10 log 15
L 1 taps

f14
f

δ δ −
= −

 
 
 

where
δ1 and δ2 = the passband and stopband

ripple expressed as a fraction
fT = the transition bandwidth (frequency

difference between passband and stop-
band edges)

fs = the sample rate.

For example, for a low-pass filter with a
passband that extends up to 3 kHz, a stopband
that starts at 4 kHz (fT = 4 – 3 = 1 kHz), fs =
10 kHz sample rate, ±0.1 dB passband ripple
(δ1 = 100.1/20 – 1 = 0.0116), and 60 dB stop-
band rejection (δ2 = 10–60/20 = 0.001), we get

()10 log 0.0116 0.001 15
L 1

114
10

49.4 151 47 taps
1.4

× −
= −


 
 

− −
= − =

Overflow is a potential problem when do-
ing the calculations for an FIR filter. Multi-
plying two N-bit numbers results in a product
with 2N bits, so space must be provided in the
accumulator to accommodate that. Although
the final result normally will be scaled and
truncated back to N bits, it is best to carry
through all the intermediate results with full
resolution in order not to lose any dynamic
range. In addition, the sum of all the taps can
be a number with more than 2N bits. For ex-
ample, if the filter width is 256 taps, then if all
coefficients and data are at full scale, the final
result could theoretically be 256 times larger,
requiring an extra 8 bits in the accumula-
tor. We say “theoretically” because normally
most of the filter coefficients are much less
than full scale and it is highly unlikely that all
256 data values would ever simultaneously
be full-scale values of the correct polarity to
cause overflow. The dsPIC processors use
16-bit multipliers with 32-bit results and a
40-bit accumulator, which should handle any
reasonable circumstances.

After all taps have been calculated, the final

Fig 15.11 — A 4-tap FIR filter. The bn values are the filter coefficients.

DSP and Software Radio Design   15.13

result must be retrieved from the accumulator.
Since the accumulator has much more resolu-
tion than the processor’s data words, normally
the result is truncated and scaled to fit. It
is up to the circuit designer or programmer
to scale by the correct value to avoid over-
flow. The worst case is when each data value
in the shift register is full-scale — positive
when it is multiplying a positive coefficient
and negative for negative coefficients. That
way, all taps add to the maximum value. To
calculate the worst-case accumulator ampli-
tude, simply add the absolute values of all the
coefficients. However, that normally gives
an unrealistically pessimistic value because
statistically it is extremely unlikely that such
a high peak will ever be reached. For a low-
pass filter, a better estimate is to calculate the
gain for a dc signal and add a few percent
safety margin. The dc gain is just the sum of
all the coefficients (not the absolute values).
For a band-pass filter, add the sum of all the
coefficients multiplied by a sine wave at the
center frequency.

CALCULATING FIR FILTER
COEFFICIENTS

So far we have ignored the question of how
to determine the filter coefficients. For an
ideal “brick-wall” low-pass filter, the answer
turns out to be pretty simple. A “brick-wall”
low-pass filter is one that has a constant re-
sponse from zero hertz up to the cutoff fre-
quency and zero response above. Its impulse
response is proportional to the sinc function:

() ()
o

sin 2 Bn
C(n) C sinc 2Bn

2 Bn
π

= =
π

where C(n) are the filter coefficients, n is
the sample number with n = 0 at the center of
the impulse response, Co is a constant, and B
is the single-sided bandwidth normalized to
the sample rate, B = bandwidth / sample rate.

It is interesting that this has the same form
as the frequency response of a pulse, as was
shown in Fig 15.7. That is because a brick-
wall response in the frequency domain has
the same shape as a pulse in the time domain.
A pulse in one domain transforms to a sinc
function in the other. This is an example of
the general principle that the transformation
between time and frequency domains is sym-
metrical. We will discuss this more later, in
the section on Fourier transforms.

Normally, the filter coefficients are set up
with the peak of the sinc function, sinc(0),
at the center of the coefficient table so that
there is an equal amount of “tail” on both
sides. That points up the principle problem
with this method of determining filter co-
efficients. Theoretically, the sinc function
extends from minus infinity to plus infinity.
Abruptly terminating the tails causes the fre-
quency response to differ from an ideal brick-
wall filter. There is ripple in the passband and

Table 15.3
Routine for dsPIC Processor to Calculate Filter Coefficients

// Calculate FIR filter coefficients
// using the windowed-sinc method
void set_coef (
 double sample_rate;
 double bandwidth;)
{
extern int c[FIR_LEN]; // Coefficient array
int i; // Coefficient index
double ph; // Phase in radians
double coef; // Filter coefficient
int coef_int; // Digitized coefficient
double bw_ratio; // Normalized bandwidth

bw_ratio = 2 * bandwidth / sample_rate;
for (i = 0; i < (FIR_LEN/2); i++) {
 // Brick-wall filter:
 ph = PI * (i + 0.5) * bw_ratio;
 coef = sin(ph) / ph;
 // Hann window:
 ph = PI * (i + 0.5) / (FIR_LEN/2);
 coef *= (1 + cos(ph)) / 2;
 // Convert from floating point to int:
 coef *= 1 << (COEF_WIDTH - 1);
 coef_int = (int)coef;
 // Symmetrical impulse response:
 c[i + FIR_LEN/2] = coef_int;
 c[FIR_LEN/2 - 1 - i] = coef_int;
 }
}

non-zero response in the stopband, as shown
in the graph in the upper right of Fig 15.12.
This is mainly caused by the abruptness of
the truncation. In effect, all the coefficients
outside the limits of the coefficient table have
been set to zero. The passband and stopband
response can be improved by tapering the
edges of the impulse response instead of
abruptly transitioning to zero.

The process of tapering the edges of the
impulse response is called windowing. The
impulse response is multiplied by a window,
a series of coefficients that smoothly taper to
zero at the edges. For example, a rectangular
window is equivalent to no window at all.
Many different window shapes have been
developed over the years — at one time it
seemed that every doctoral candidate in the
field of signal processing did their disserta-
tion on some new window. Each window
has its advantages and disadvantages. A win-
dow that transitions slowly and smoothly to
zero has excellent passband and stopband
response but a wide transition band. A win-
dow that has a wider center portion and then
transitions more abruptly to zero at the edges
has a narrower transition band but poorer
passband and stopband response. The equa-
tions for the windows in Fig 15.12 are in-

cluded in a sidebar.
The routine shown in Table 15.3 is writ-

ten for a dsPIC processor so it can be used
to calculate filter coefficients “on the fly” as
the operator adjusts a bandwidth control. The
same code should also work using a generic C
compiler on a PC so the coefficients could be
downloaded into an FIR filter implemented
in hardware.

The windowed-sinc method works pretty
well for a simple low-pass filter, but what if
some more-complicated spectral shape is de-
sired? The same general design approach still
applies. You determine the desired spectral
shape, transform it to the time domain using
an inverse Fourier transform, and apply a
window. There is lots of (often free) software
available that can calculate the fast Fourier
transform (FFT) and inverse fast Fourier
transform (IFFT). So the technique is to gen-
erate the desired spectral shape, transform to
the time domain with the IFFT, and multiply
the resulting impulse response by the desired
window. Then you can transform back to the
frequency domain with the FFT to see how the
window affected the result. If the result is not
satisfactory, you can either choose a different
window or modify the original spectral shape
and go through the process again.

15.14   Chapter 15

Fig 15.12 — Various window functions and their Fourier transforms.

DSP and Software Radio Design   15.15

Equations for
Window Functions

For each window function, the center
of the response is considered to be at
time t = 0 and the width of the impulse
is L. Each window is 1.0 when t = 0
and 0.0 when the | t | > L/2.

Rectangular:

=w(t) 1.0

Triangular (Bartlett):

− 
=   

 

L / 2 t
w(t) 2

L

Blackman:

π = +  
 

π +  
 

2 t
w(t) 0.42 0.5cos

L

4 t
0.08cos

L

Hamming:

2 t
w(t) 0.54 0.46cos

L
π = +  

 

Hanning (Hann):
2 t

w(t) 0.5 0.5cos
L
π = +  

 

Windowing methods are useful because
they are simple to program and the result-
ing software routines execute quickly. For
example, you can include a bandwidth knob
on your DSP filter and calculate filter coef-
ficients “on the fly” as the user turns the knob.
However, while the filter performance that re-
sults is pretty good, it is not “optimum” in the
sense that it does not have minimum passband
ripple and maximum stopband attenuation
for a given number of filter coefficients. For
that, you need what is known as an equal-
ripple, or Chebyshev filter. The calculations
to determine Chebyshev filter coefficients
are more complicated and time-consuming.
For that reason, the coefficients are normally
calculated in advance on a PC and stored in
DSP program memory for retrieval as needed.

Engineers have not had much success in
devising a mathematical algorithm to calcu-
late the Chebyshev coefficients directly, but
in 1972 Thomas Parks and James McClellan
figured out a method to do it iteratively. The
Parks-McClellan algorithm is supported in
most modern filter-design software, includ-

Fig 15.13 — A 6-tap FIR filter. Because the coefficients are symmetrical, the
symmetrical taps may be combined before multiplication.

ing a number of programs available for free
download on the Web. Typically you enter
the sample rate, the passband and stopband
frequency ranges, the passband ripple and
the stopband attenuation. The software then
determines the required number of filter coef-
ficients, calculates them and displays a plot of
the resulting filter frequency response.

Filter design software typically presents
the filter coefficients as floating-point num-
bers to the full accuracy of the computer. You
will need to scale the values and truncate
the resolution to the word size of your filter
implementation. Truncation of filter coeffi-
cients affects the frequency response of the
filter but does not add noise in the same man-
ner as truncating the signal data.

As you look at impulse responses for vari-
ous FIR filters calculated by various methods
you soon realize that most of them are sym-
metrical. If the center of the impulse response
is considered to be at time zero, then the
value at time t equals the value at time –t
for all t. If you know in advance that the
filter coefficients are symmetrical, you can
take advantage of that in the filter design.
By re-arranging the adders and multipliers,
the number of multipliers can be reduced by
a factor of two, as shown in Fig 15.13. This
trick is less useful in a software implementa-
tion of an FIR filter because the number of
additions is the same and many DSPs take
the same amount of time to do an addition
as a multiply-accumulate.

In addition to the computational benefit,
a symmetrical impulse response also has the

advantage that it is linear phase. The time de-
lay through such a filter is one-half the length
of the filter for all frequencies. For example,
for a 1000-tap filter running at 10 kHz the
delay is 500/10,000 = 0.05 second. Since
the time delay is constant for all frequencies,
the phase delay is directly proportional to the
frequency. For example, if the phase delay at
20 Hz is one cycle (0.05 second) it is ten
cycles at 200 Hz (still 0.05 second). Linear
phase delay is important with digital modu-
lation signals to avoid distortion and inter-
symbol interference. It is also desirable with
analog modulation where it can result in more
natural-sounding audio. All analog filters are
non-linear-phase; the phase distortion tends
to be worse the more abrupt the transition
between passband and stopband. That is why
an SSB signal sounds unnatural after being
filtered by a crystal filter with a small shape
factor even though the passband ripple may
be small and distortion minimal.

A band-pass filter can be constructed from
a low-pass filter simply by multiplying the
impulse response by a sine wave at the desired
center frequency. This can be done before or
after windowing. The linear-phase property
is retained but with reference to the center
frequency of the filter, that is, the phase shift
is proportional to the difference in frequency
from the center frequency. The frequency
response is a double-sided version of the low-
pass response with the zero-hertz point of
the low-pass filter shifted to the frequency
of the sine wave.

15.16   Chapter 15

15.4.2 IIR Filters
An infinite impulse response (IIR) filter is

a filter whose impulse response is infinite.
After an impulse is applied to the input, theo-
retically the output never goes to zero and
stays there. In practice, of course, the signal
eventually does decay until it is below the
noise level (analog filter) or less than one
LSB (digital filter).

Unlike a symmetrical FIR filter, an IIR
filter is not generally linear-phase. The delay
through the filter is not the same for all fre-
quencies. Also, IIR filters tend to be harder
to design than FIR filters. On the other hand,
many fewer adders and multipliers are typi-
cally required to achieve the same passband
and stop band ripple in a given filter, so IIR
filters are often used where computations
must be minimized.

All analog filters have an infinite impulse
response. For a digital filter to be IIR it must
have feedback. That means a delayed copy
of some internal computation is applied to
an earlier stage in the computation. A simple
but useful example of an IIR filter is the ex-
ponential decay circuit in Fig 15.14. In the
absence of a signal at the input, the output on
the next clock cycle is always (1–δ) times the
current output. The time constant (the time
for the output to die to 1/e = 36.8% of the
initial value) is very nearly

s
1 1f

2
 τ = − δ 

where fs is the sample rate. The circuit is the
digital equivalent of a capacitor with a resistor
in parallel and might be useful for example
in a digital automatic gain control circuit.

One issue with IIR filters is resolution.
Because of the feedback, the number of bits
of resolution required for intermediate com-
putations can be much greater than at the input
or output. In the previous example, δ is very
small for very long time constants. When the
value in the register falls below a certain level
the multiplication by (1–δ) will no longer be
accurate unless the bit width is increased. In
practice, the increased resolution required
with IIR filters often cancels out part of the
savings in the number of circuit elements.

Another issue with IIR filters is stability.

Fig 15.14 — An exponential decay circuit.
Fig 15.15 — An IIR filter with three feed-forward taps and two feed-back taps. Direct
form I (A) and the equivalent direct form II (B).

Because of the feedback it is possible for
the filter to oscillate if care is not taken in
the design. Stability can also be affected by
non-linearity at low signal levels. A circuit
that is stable with large signals may oscillate
with small signals due to the round-off error
in certain calculations, which causes faint
tones to appear when strong signals are not
present. This is known as an unstable limit
cycle. These issues are part of the reason
that IIR filters have a reputation for being
hard to design.

Design techniques for IIR filters mostly
involve first designing an analog filter us-
ing any of the standard techniques and then
transforming the design from the analog to
the digital domain. The impulse-invariant
method attempts to duplicate the filter re-
sponse directly by making the digital impulse
response equal the impulse response of the

equivalent analog filter. It works fairly well
for low-pass filters with bandwidths much
less than the sample rate. Its problem is that
it tries to duplicate the frequency response all
the way to infinity hertz, but that violates the
Nyquist criterion resulting in a folding back
of the high-frequency response down into low
frequencies. It is similar to the aliasing that
occurs in a DSP system when the input signal
to be sampled is not band-limited below the
Nyquist frequency.

The bilinear transform method gets around
that problem by distorting the frequency axis
such that infinity hertz in the analog domain
becomes sample rate / 2 in the digital domain.
Low frequencies are fairly accurate, but high
frequencies are squeezed together more and
more the closer you get to the Nyquist fre-
quency. It avoids the aliasing problem at the
expense of a change in the spectrum shape,

DSP and Software Radio Design   15.17

especially at the high-frequency end. For
example, when designing a low-pass filter
it may be necessary to change the cutoff fre-
quency to compensate. Again, the method
works best for filters with passband frequen-
cies much less than the sample rate.

In general, the output of an IIR filter is a
combination of the current and previous input
values (feed-forward) and previous output
values (feed-back). Fig 15.15A shows the
so-called direct form I of an IIR filter. The
bi coefficients represent feed-forward and
the ai coefficients feed-back. For example
the previous value of the y output is mul-
tiplied by a1, the second previous value is
multiplied by a2, and so on. Because the filter
is linear, it doesn’t matter whether the feed
forward or feed back stage is performed first.
By reversing the order, the number of shift
registers is reduced as in Fig 15.15B. There
are other equivalent topologies as well. The
mathematics for generating the ai and bi co-
efficients for both the impulse-invariant and
bilinear transform methods is fairly involved,
but fortunately some filter design programs
can handle IIR as well as FIR filters.

15.4.3 Adaptive Filters
An adaptive filter is one that automatically

adjusts its filter coefficients under the control
of some algorithm. This is often done in situ-
ations where the filter characteristics are not
known in advance. For example, an adaptive
channel equalizer corrects for the non-flat-
ness in the amplitude and phase spectrum of
a communications channel due to multipath
propagation. Typically, the transmitting sta-

Fig 15.16 — An adaptive filter.

tion periodically sends a known sequence of
data, known as a training sequence, which is
used by the receiver to determine the channel
characteristics and adjust its filter coefficients
accordingly.

Another example is an automatic notch fil-
ter. An algorithm determines the frequency of
an interfering tone and automatically adjusts
the notch frequency to remove the tone. Noise
cancellation is another application. It can be
thought of as the opposite of a notch filter. In
this case, all the sine-wave tones in the input
signal are considered to be desired and the
filter coefficients are configured to enhance
them. That method works not only for CW
signals but for voice as well since the human
voice consists largely of discrete frequencies.

A generic block diagram of an adaptive
filter is shown in Fig 15.16. The variable
filter is typically an FIR type with coefficients
calculated by the update algorithm. By some
means, an estimate of the desired, unimpaired
signal, d, is generated and compared to the
filter output y. The difference between y and

d is the error, e, which is used by the update
algorithm to modify the filter coefficients to
improve the accuracy of y. The algorithm is
capable of acting as a noise-reduction filter
and a notch filter simultaneously. Assuming
d is in the form of a pure tone (sine wave),
the tone is simultaneously optimized in the y
output and minimized in the e output.

A common algorithm for minimizing the
error signal is called least mean squares
(LMS). The LMS algorithm includes a per-
formance parameter, µ, which can be adjusted
between 0 and 1 to control the tradeoff be-
tween adjustment speed and accuracy. A
value near 1 results in fast convergence but
the convergence is not very accurate. For bet-
ter accuracy at the cost of slower adjustment,
lower the value of µ. Some implementations
adjust µ on the fly, using a large value at first to
get faster lock-in when the error is large then
a smaller value after convergence to reduce
the error. That works as long as the signal
characteristics are not changing too rapidly.

15.5 Miscellaneous DSP Algorithms
15.5.1 Sine Wave Generation

There are a number of techniques avail-
able for building a digital sine-wave genera-
tor, either in hardware or in software. One
obvious idea is to make a digital oscillator,
analogous to a conventional analog oscilla-
tor. Simply design a band-pass filter at the
desired frequency and include positive feed-
back around it with a loop gain of unity. The
problem is that, because of round-off error in
the digital calculations, it is difficult to get
the loop gain to be exactly 1.0. If it is slightly
less, then the oscillation will eventually die
out. If it is slightly greater, then the oscil-
lation will gradually increase in amplitude
until it exceeds the maximum signal that the
digital circuitry can handle. There are two
techniques to handle this problem. One idea
is to include an automatic gain-control circuit

to detect the amplitude, low-pass filter it and
feed the result to a multiplier in the feedback
path to control the gain. Another idea is to
intentionally set the loop gain slightly greater
than 1.0 and include a clipping stage in the
feedback path that limits the peak amplitude
in a controlled manner.

With both of those techniques there is a
tradeoff between distortion and start-up time.
It can take many oscillation cycles for the
amplitude to stabilize. If the loop gain is in-
creased or the AGC time constant is reduced
to improve the start-up time, worse distortion
results.

Probably the most common technique for
generating sine waves is the numerically-
controlled oscillator (NCO), or direct digital
synthesizer (DDS) as shown in Fig 15.17.

At each clock cycle, the phase accumulator
increments the phase by an amount equal to
360° times f / fs, where f is the sine-wave
frequency and fs is the sample rate. The cur-
rent phase value is used as a pointer to the
proper address in a sine-wave lookup table.
As the phase increases, the pointer moves
through the look-up table, tracing out the
sine-wave amplitude. Different frequencies
can be obtained by changing the step size in
the phase accumulator.

The lookup table size is a factor of two and
the accumulator output is scaled such that
the maximum count, corresponding to 360°,
accesses the final entry in the table. When
the phase passes 360° it automatically jumps
back to zero as required. For good frequency
resolution, the word size of the phase accu-

15.18   Chapter 15

Fourier Transform
The Fourier transform is the software

equivalent of a hardware spectrum
analyzer. It takes in a signal in the time
domain and outputs a signal in the fre-
quency domain that shows the spectral
content of the input signal. The Fourier
transform works on both periodic and
non-periodic signals, but since the
periodic case is easier to explain we will
start with that.

A periodic signal is one that repeats
every τ seconds, where τ is the period.
That means that the signal can consist
only of frequencies whose sinusoidal
waveforms have an integer number of
cycles in τ seconds. In other words, the
signal is made up of sinusoids that are
at the frequency 1/τ and its harmon-
ics. Fourier’s idea was that you can
determine if a frequency is present by
multiplying the waveform by a sinusoid
of that frequency and integrating the
result. The result of the integration
yields the amplitude of that harmonic.
If the integration yields zero, then that
frequency is not present.

To see how that works, look at
Fig 15-A1. For the purpose of discus-
sion, assume the signal to be tested
consists of a single tone at the second
harmonic as shown at (A). The first test
frequency is the fundamental, shown at
(B). When you multiply the two together
you get the waveform at (C). Integrat-
ing that signal gives its average value,
which is zero. However if you multiply
the test signal by a sine wave at the
second harmonic (D), the resulting
waveform (E) has a large dc offset so
the integration yields a large non-zero
value. It turns out that all harmonics
other than the second yield a zero
result. That is, the second harmonic is
orthogonal to all the others.

If the test waveform included more
than one frequency, each of those
frequencies would yield a non-zero
result when tested with the equivalent-
frequency sine wave. The presence of
additional frequencies does not disturb
the tests for other frequencies since
they are all orthogonal with each other.

You may have noticed that this
method only works if the test sine wave
is in phase with the one in the signal. If
they are 90° out of phase, the integra-
tion yields zero. The Fourier transform
therefore multiplies the signal by both
a sine wave and a cosine wave at each
frequency. The results of the two tests
then yield both the amplitude and phase
of that frequency component of the
signal using the equations

2 2A a b= +

and

b
arctan

a
 ϕ =  
 

where A is the amplitude, ϕ is the
phase, a is the cosine amplitude and b
is the sine amplitude.

If one period of the signal contains,
say, 256 samples, then testing a single
frequency requires multiplying the signal
by the sine wave and by the cosine wave
256 times and adding the results 256
times as well, for a total of 512 multi-
plications and additions. There are 128
frequencies that must be tested, since
the 128th harmonic is at the Nyquist fre-
quency. The total number of calculations
is therefore 512 × 128 = 2562 multiplica-
tions and additions. That is a general
result. For any sample size, n, calculat-
ing the digital Fourier transform requires
n2 multiply-accumulates.

The FFT

The number of calculations grows
rapidly with sample size. Calculating
the Fourier transform on 1024 samples
requires over a million multiply-ac-
cumulates. However, you may notice
that there is some redundancy in the
calculations. When testing the second
harmonic, for example, each of the two
cycles of the test sine wave is identical.
It would be possible to pre-add signal
data from the first and second halves
of the sequence and then just multiply
once by a single cycle of the test sine
wave. Also, the first quarter cycle of a
sine wave is just a mirror-image of the
second quarter cycle and the first half is
just the negative of the second half.

In 1965, J. W. Cooley and John W.
Tukey published an algorithm that takes
advantage of all the symmetries inher-
ent in the Fourier transform to speed
up the calculations. The Cooley-Tukey
algorithm, usually just called the fast
Fourier transform (FFT), makes the
number of calculations proportional to
nlog2(n) instead of n2. For a 1024-point
FFT, the calculation time is proportional
to 1024log2(1024) = 10,240 instead
of 10242 = 1,048,576, more than a
100-times improvement.

You’ll notice that sample sizes are
usually a power of two, such as 27 =
128, 28 = 256 and 29 = 512. That is
because the FFT algorithm is most
efficient with sequences of such sizes.
The algorithm uses a process called

radix-2 decimation in time, that is, it
first breaks the data into two chunks of
equal size, then breaks each of those
chunks into two still-smaller chunks of
equal size, and so on. It is possible to
squeeze even a little more efficiency
out of the algorithm with a radix-4 FFT
which is based on decimation by four
instead of by two. That is why you often
see sample sizes that are powers of
four, such as 43 = 64, 44 = 256 and 45 =
1024. Other variations on the algorithm
include decimation in frequency rather
than time, mixed-radix FFTs that use
different decimation factors at different
stages in the calculation, and in-place
calculation that puts the results into
the same storage buffer as the input
data, saving memory. The latter method
causes the order of the output data
to be scrambled by bit-reversing the
address words. For example, address
01010000 becomes 00001010.

Non-periodic signals

So far we have assumed that the
signal to be transformed is periodic, so
that there is an integer number of cycles
of each sine wave harmonic in the
sequence. With a non-periodic signal,
that is not necessarily so. The various
frequencies in the signal are not exact
harmonics of 1/τ and are no longer

Fig 15-A1 — Signal to be tested for
frequency content (A). Fundamental
test frequency (B). Product of signal
and fundamental (C). Second harmonic
test frequency (D). Product of signal
and second harmonic (E).

DSP and Software Radio Design   15.19

mulator, 32 in this example, is normally much
greater than the address width of the look-up
table, p. The less-significant accumulator bits
are not used in the address. For example, with
a 100 MHz clock rate and a 32-bit phase ac-
cumulator the frequency resolution is 100 ×
106 / 232 = 0.023 Hz.

The address width of the look-up table
determines the number of table entries and
thus the phase accuracy of the samples. The
table size can be reduced by a factor of four
by including only the first quarter-cycle of
the sine wave in the table. The other three
quadrants can be covered by modifying
the look-up address appropriately and by
negating the output when required under
the control of some additional logic. For
example, the method to transform quadrant
three to quadrant one is illustrated in Fig
15.18. Another technique to improve wave-
form accuracy without increasing table
size is to interpolate between the entries.
Instead of using the look-up table output
directly, the output value is calculated by
interpolating between the two nearest table
entries using either a straight-line interpola-
tion as shown in Fig 15.19 or a higher-order
curve fit.

Taking that last idea to an extreme, it is
possible to generate a good approximation
to one quadrant of a sine wave using a fifth-
order interpolation between the zero and 90°
points. Assuming that the phase x has been
scaled so that x = 1.0 corresponds to 90°, the
sine formula is

2 3 4 5sin(x) Ax Bx Cx Dx Ex= + + + +

where the coefficients are A = 3.140625, B =
0.02026367, C = -5.325196, D = 0.5446778
and E = 1.800293.

With those coefficients, which come from
an old Analog Devices DSP manual, all
the harmonics of the sine wave are more
than 100 dB below the carrier.3 With a 16-bit
integer DSP the performance would be limi
ted only by the roundoff error. The formula
can be reformulated as

sin(x) (A (B (C (D Ex)x)x)x)x= + + + +

which reduces the number of multipli-
cations required from 15 to 5, as shown in
Fig 15.20.

15.5.2 Tone Decoder
Tone decoders have a number of applica-

tions in Amateur Radio. A Morse code reader
might use a tone decoder to determine the on
and off states of the incoming CW signal.
A sub-audible tone detector in a VHF FM
receiver is another application. A DTMF de-
coder needs to detect two tones simultane-

Fig 15-A2 — Illustrating the
use of windowing to minimize
spectral leakage, the figures
show (A) a cosine waveform not
at a harmonic frequency, (B) the
resulting unwindowed power
spectrum, (C) the same cosine
waveform with a Hamming
window, and (D) the much
narrower power spectrum of the
windowed waveform.

orthogonal to the test frequencies.
The result is spectral leakage; a
single frequency in the signal may
give a non-zero result when tested
at a number of different harmonic
frequencies. In Fig 15-A2, (B) illus-
trates the FFT of a single sine wave
at a non-harmonic frequency. You
can see that the spurious response
extends quite far from the actual
frequency.

Those far-out spurious responses
are primarily caused by the abrupt
termination of the signal at the edg-
es of the sequence. The spectrum
can be cleaned up considerably by
tapering the edges with a window,
in a manner similar to windowing
FIR filter coefficients as previously
described. In fact, the same win-
dows work for both. Fig 15-A2 part
C illustrates the result of applying a
Hamming window to the signal in (A)
and the resulting improved spec-
trum is shown at (D). Just as with
FIR filters, different windows excel
in different areas. Windows with
a gradual transition to zero at the
edges do a better job of suppress-
ing spurious responses but smear
adjacent spectral lines, analogous to
using a wider resolution bandwidth
in an analog spectrum analyzer.
Windows with a fatter center section
and a more abrupt transition to zero
at the edges have less smearing but
worse spurious responses.

While it is interesting and instruc-
tional to write your own FFT from
scratch, most programmers don’t
bother to try to re-invent the wheel.
Many implementations have been
published on the Web and in books
and articles. Most of the software
development systems offered by
DSP vendors include an FFT library
routine, which runs faster than any-
thing you are likely to come up with
on your own.

15.20   Chapter 15

ously to determine which of the Touch-Tone
keys has been pressed.

An FFT is one type of tone decoder. A
1024-point FFT simultaneously decodes 512
frequencies up to one-half the sample rate
using a very efficient algorithm. You can con-
trol the detection bandwidth by choosing the
number of points in the FFT; the spacing of
the frequency samples is just the sample rate
divided by the number of FFT points. How-
ever, in many applications you don’t need
that much resolution. For example, a DTMF
signal consists of two tones, each of which
can be one of four frequencies, for a total of
8 possible frequencies. Instead of performing
a complete FFT, you can simply convolve
sinusoidal waves of each of those 8 frequen-
cies with the sequence of incoming samples
to detect energy at those 8 frequencies. This
will take less computation than a full FFT
whenever the number of test frequencies is
less than the base-2 logarithm of the number
of points in the sequence. Since log2(1024)
is 10, decoding 8 frequencies separately
would be more efficient than a 1024-point
FFT. Spectral leakage is just as much of a
problem with this method as with an FFT,
so you still need to window the sequence of
samples before performing the convolution.

If only a single frequency needs to be de-
tected it might make more sense to mimic
analog techniques and use a band-pass digital
filter followed by an amplitude detector. That
would have the advantage that the passband
and stopband characteristics of the filter could
be much more precisely controlled than with
an FFT. In addition, the output is updated
continuously instead of in “batch mode” af-
ter each batch of samples is collected and
processed.

Fig 15.17 — DDS block diagram.

Fig 15.18 — The values of sin(x) between 180 and 270° are the same as those between
0 and 90°, after the curve has been flipped vertically and shifted 180°.

Fig 15.19 — An approximation of a sine wave using a straight-line interpolation
between lookup table entries.

Fig 15.20 — Method to calculate a fifth-order interpolation between lookup table
entries.

DSP and Software Radio Design   15.21

15.6 Analytic Signals and Modulation
In the area of modulation, the topic that

seems to give people the most trouble is the
concept of negative frequency. What in the
world is meant by that? Consider a single-
frequency signal oscillating at ω radians per
second. (Recall that ω = 2πf, where f is fre-
quency in Hz.) Let’s represent the signal by
a cosine wave with a peak amplitude of 1.0,
x(t) = cos(ωt), where t is time. Changing the
sign of the frequency is equivalent to run-
ning time backwards because (–ω)t = ω(–t).
By examining Fig 15.21A you can see that,
because a cosine wave is symmetrical about
the time t = 0 point, a negative frequency
results in exactly the same signal. That is, as
you may remember from high-school trigo-
nometry, cos(–ωt) = cos(ωt). If, for example,
you add a positive-frequency cosine wave to
its negative-frequency twin, you get the same
signal with twice the amplitude.

That assumes that the phase of the signal
is such that it reaches a peak at t = 0. What
if instead we had a sine wave, which is zero
at t = 0? From Fig 15.21B you can see that
running time backwards results in a reversal
of polarity, sin(–ωt) = –sin(ωt). If you add
positive and negative-frequency sine waves
of the same frequency and amplitude, they
cancel, resulting in zero net signal.

A sinusoidal wave of any arbitrary ampli-
tude and phase may be represented by the
weighted sum of a sine and cosine wave:

x(t) I cos(t) Qsin(t)= ω + ω

For computational purposes, it is conve-
nient to consider the in-phase (I) and quadra-
ture (Q) components separately. Since the I
and Q components are 90° out of phase in

Fig 15.23 — A real frequency is the sum of
a positive and negative analytic frequency.

Fig 15.22 — In-phase (I) and quadrature
(Q) portions of a signal.

Fig 15.21 — Cosine wave (A) and sine
wave (B).

the time domain, they are often plotted on a
polar graph at a 90° angle from each other.
See Fig 15.22. For example if Q = 0, then
as time increases the signal oscillates along
the I (horizontal) axis, tracing out the path
back and forth between I = +1 and I = –1 in
a sinusoidal fashion. Conversely, if I = 0, then
the signal oscillates along the Q axis.

What if both I and Q are non-zero, for ex-
ample I = Q = 1? Recall that the cosine and
sine are 90° out of phase. When t = 0, cos(ωt)
= 1 and sin (ωt) = 0. A quarter cycle later,
cos(ωt) = 0 and sin (ωt) = 1. Comparing Fig
15.22 with Fig 15.21 it should not be hard to
convince yourself that the signal is tracing out
a circle in the counter-clockwise direction.

What about negative frequency? Again,
it should not be hard to convince yourself
that changing ω to –ω results in a signal that
circles the origin in the clockwise direction.
If you combine equal-amplitude signals of
opposite frequency, the sine portions cancel
out and you are left with a simple cosine wave
of twice the amplitude:

[]
[]

x(t) cos(t) sin(t)

cos(t) sin(t)
2cos(t)

= ω + ω

+ −ω + −ω

= ω

You can see that graphically in Fig 15.23.
Imagine the two vectors rotating in oppo-
site directions. If you mentally add them by
placing the tail of one vector on the head of
the other, as shown by the dotted line, the
result always lies on the I axis and oscillates
between +2 and –2.

That is why we say that a single scalar
sinusoidal signal, cos(ωt), actually contains
two frequencies, +ω and –ω. It also offers a
logical explanation of why a mixer or modu-
lator produces the sum and difference of the

frequencies of the two inputs. For example, an
AM modulator produces sidebands at the car-
rier frequency plus and minus the modulating
frequency precisely because those positive
and negative frequencies are actually already
present in the modulating signal.

For many purposes, it is useful to sepa-
rate the portion of the signal that specifies
the amplitude and phase (I and Q) from the
oscillating part (sin(ωt) and cos(ωt)). For
mathematical convenience, the I/Q part is
represented by a complex number, x = I + jQ.
The oscillating part is also a complex number
e–jwt = cos(ωt) – jsin(ωt). (Don’t worry if you
don’t know where that equation comes from
— concentrate on the part to the right of the
equals sign.4) In the equations, j = 1− . Of
course, –1 does not have a real square root
(any real number multiplied by itself is posi-
tive) so j, or any real number multiplied by
j, is called an imaginary number. A number
with both real and imaginary parts is called
a complex number. The total analytic signal
is a complex number equal to

()()j tx(t) xe I jQ cos(t) jsin(t)− ω= = + ω − ω

In the above equation, the cos(ωt) – sin(ωt)
portion generally represents an RF carrier,
with ω being the carrier frequency (a posi-
tive or negative value). The I + jQ part is the
modulation. The scalar value of a modulated
signal (what you would measure with an os-
cilloscope) is just the real part of the analytic
signal. Using the fact that j2 = –1,

[] ()()Re x(t) Re I jQ cos(t) jsin(t) = + ω − ω 

[]
()
()

I cos(t) Qsin(t)
Re x(t) Re

j Qcos(t) Isin(t)

 ω + ω
=  

+ ω − ω  

15.22   Chapter 15

[]Re x(t) I cos(t) Qsin(t)= ω + ω

Note that if the modulation (I and Q) var-
ies with time, the above equation assumes
that the modulated signal does not overlap
zero Hz. That is, I and Q have no frequency
components greater than ω.

Normally the I/Q diagram shows only I and
Q (the modulation) and not the oscillating
part. We call such a representation a phasor
diagram. The I/Q vector represents the differ-
ence in phase and amplitude of the RF signal
compared to the unmodulated carrier. For
example, if the I/Q vector is at 90°, that means
the carrier has been phase-shifted by 90° from
what it otherwise would have been. If the I/Q
vector is rotating counter-clockwise 10 times
per second, then the carrier frequency has
been increased by 10 Hz.

It is worth noting that the modulation
can be specified either by the in-phase and
quadrature (I and Q) values as shown or al-
ternatively by the amplitude and phase. The
amplitude is the length of the I/Q vector in
the phasor diagram,

2 2A I Q= +

The phase is the angle of the vector with
respect to the +I axis,

Qarctan
I

 ϕ =   
An alternative expression for the modulated
analytic signal using amplitude and phase is

[]
j(t)x(t) Ae

A cos(t) jsin(t)

− ϕ+ω=

= ϕ + ω + ϕ + ω

and for the scalar signal

Re[x(t)] Acos(t)= ϕ + ω

One final comment. So far we have been

looking at signals that consist of a single si-
nusoidal frequency. In any linear system, any-
thing that is true for a single frequency is also
true for a combination of many frequencies.
Each frequency is affected by the system as
though the others were not present. Since any
complicated signal can be broken down into
a (perhaps large) number of single-frequency
sinusoids, all our previous conclusions apply
to multi-frequency signals as well.

15.6.1 I/Q Modulation and
Demodulation

An I/Q modulator is just a device that con-
trols the amplitude and phase of an RF signal
directly from the in-phase (I) and quadrature
(Q) components. See Fig 15.24A. An I/Q
demodulator is basically the same circuit in
reverse. It puts out I and Q signals that repre-
sent the in-phase and quadrature components
of the incoming RF signal. See Fig 15.24B.
Assuming the demodulator’s local oscillator
is on the same frequency and is in phase with
the carrier of the signal being received then
the I/Q output of the receiver’s demodulator
is theoretically identical to the I/Q input at
the transmitter end.

I/Q modulators and demodulators can
be built with analog components. The LO
could be a transistor oscillator and the 90°
phase-shift network could be implemented
with coils and capacitors. The circles with
the multiplication symbol would be double-
balanced mixers. Not shown in the diagram
are trim adjustments to balance the amplitude
between the I and Q channels and to adjust
the phase shift as close as possible to 90°.

No analog circuit is perfect, however. If
the 90° phase-shift network is not exactly
90° or the amplitudes of the I and Q chan-
nels are not perfectly balanced, you don’t
get perfect opposite-sideband rejection. The
modulator output includes a little bit of signal

Fig 15.24 — I/Q modulator (A) and demodulator (B).

on the unwanted sideband and the I/Q signal
from the demodulator includes a small signal
rotating in the wrong direction. If there is
a small dc offset in the amplifiers feeding
the modulator’s I/Q inputs, that shows up as
carrier feedthrough. On receive, a dc offset
makes the demodulator think there is a small
signal at a constant amplitude and phase angle
that is always there even when no actual sig-
nal is being received. Nor is analog circuitry
distortion-free, especially the mixers. Inter-
modulation distortion shows up as out-of-
channel “splatter” on transmit and unwanted
out-of channel responses on receive.

All those problems can be avoided by go-
ing digital. If the analog I/Q inputs to the
modulator are converted to streams of digital
numbers with a pair of ADCs, then the mixers,
oscillator, phase-shift network and summer
can all be digital. In many systems, the I and
Q signals are also generated digitally, so that
the digital output signal has perfect unwanted
sideband rejection, no carrier feedthrough
and no distortion within the dynamic range
afforded by the number of bits in the data
words. A similar argument holds for a digital
demodulator. If the incoming RF signal is first
digitized with an ADC, then the demodu-
lation can be done digitally without any of
the artifacts caused by imperfections in the
analog circuitry.

You can think of an I/Q modulator as a
device that converts the analytic signal I + jQ
into a scalar signal at some RF frequency. The
spectrum of the I/Q signal, both positive and
negative frequencies, is translated upward in
frequency so that it is centered on the carrier
frequency. Thinking in terms of the phasor
diagram, any components of the I/Q signal
that are rotating counter-clockwise appear
above the carrier frequency and clockwise
components appear below.

15.6.2 SSB Using
I/Q Modulators and
Demodulators

As an example of how this works, let’s
walk through the process of generating an
upper-sideband signal using an I/Q modula-
tor. See Fig 15.25. We’ll first describe the
mathematics in the following paragraph and
then give the equivalent explanation using
the phasor diagram.

The modulating signal is a sine wave at a
frequency of ωm radians per second (ωm / 2π
cycles per second). Because ωm is a positive
frequency the signals applied to the I/Q inputs
are I(t) = cos(ωmt) and Q(t) = sin(ωmt). As-
sume the modulating frequency ωm is much
less than the RF frequency ω. The analytic
signal is

[]
[]

m mx(t) cos(t) jsin(t)

cos(t) jsin(t)

= ω + ω

× ω − ω

DSP and Software Radio Design   15.23

so that the real, scalar signal that appears at
the modulator output is

[] m

m

Re x(t) cos(t)cos(t)
sin(t)sin(t)

= ω ω

+ ω ω

At the moment when t = 0, then cos(ωmt)
= 1 and sin(ωmt) = 0, so the real signal is
just cos(ωt), the RF signal with zero phase.
One quarter of a modulation cycle later ωmt
= π/2, so cos(ωmt) = 0 and sin(ωmt) = 1, and
the real signal is now sin(ωt), the RF signal
with a phase of +π/2, or +90°. Every quarter
cycle of the modulating signal, the RF phase,
increases by 90°. That means that the RF
phase increases by one full cycle for every
cycle of the modulation, which is another way
of saying the frequency has shifted by ωm.
We have an upper sideband at a frequency
of ω + ωm.

On the phasor diagram, the I/Q signal is
rotating counterclockwise at a frequency of
ωm radians per second. As it rotates it is in-
creasing the phase of the RF signal at the same
rate, which causes the frequency to increase
by ωm radians per second. To cause the phasor
to rotate in the opposite direction, you could
change the polarity of either I or Q or you
could swap the I and Q inputs. In that case
you would have a lower sideband.

For that to work, the baseband signals ap-
plied to the I and Q inputs must be 90° out
of phase. That’s not hard to do for a single
sine wave, but to generate a voice SSB signal,
all frequencies in the audio range must be
simultaneously phase-shifted by 90° without
changing their amplitudes. To do that with
analog components requires a broadband
phase-shift network consisting of an array
of precision resistors and capacitors and a
number of operational amplifiers.

Fig 15.25 — Generating a USB signal with an I/Q modulator.

Fig 15.26 — Generating a non-sinusoidal USB signal with an I/Q modulator.

THE HILBERT TRANSFORMER
To do that with DSP requires a Hilbert

transformer, an FIR filter with a constant
90° phase shift at all frequencies. Recall that
a symmetrical FIR filter has a constant delay
at all frequencies. That means that the phase
shift is not constant — it increases linearly
with frequency. It turns out that with an anti-
symmetrical filter, in which the top half of
the coefficients are the negative of the mirror
image of the lower half, the phase shift is 90°
at all frequencies, which is exactly what we
need to generate an SSB signal.

The Hilbert transformer is connected in
series with either the I or Q input, depending
on whether USB or LSB is desired. Just as
with any FIR filter, a Hilbert transformer has a
delay equal to half its length, so an equal delay
must be included in the other I/Q channel as
shown in Fig 15.26. It is possible to combine

the Hilbert transformer with the normal FIR
filter that may be needed anyway to filter the
baseband signal. The other I/Q channel then
simply uses a similar filter with the same
delay but without the 90° phase shift.

Because the RF output of the modulator is
normally at a much higher frequency than the
audio signal, it is customary to use a higher
sample rate for the output signal than for
the input. The FIR filters can still run at the
lower rate to save processing time, and their
output is then upsampled to a higher rate
with an interpolator. It is convenient to use an
output sample rate that is exactly four times
the carrier frequency because each sample
advances the RF phase by exactly 90°. The
sequence of values for the sine wave is 0, 1,
0 and –1. To generate the 90° phase shift for
the cosine wave, simply start the sequence at
the second sample: 1, 0, –1, 0. The complete
block diagram is shown in Fig 15.27.

A Hilbert transformer may also be used in
an SSB demodulator at the receiver end of
the communications system. It is basically
the same block diagram drawn backwards,
as illustrated in Fig 15.28.

Amateurs who have been in the hobby
for many years may recognize this as the
“phasing method” of SSB generation. It was
popular when SSB first became common on
the amateur bands back in the 1950s because
suitable crystal filters were expensive or dif-
ficult to obtain.5 The phasing method had the
reputation of producing signals with excel-
lent-quality audio, no doubt due to the lack of
the phase distortion caused by crystal filters.

It is important to note that an ideal Hilbert
transformer is impossible to construct be-
cause it theoretically has an infinitely-long
impulse response. However, with a suffi-
ciently-long impulse response, the accuracy
is much better than an analog phase-shift
network. Just as with an analog network, the

15.24   Chapter 15

frequency passband must be limited both at
the low end as well as the high end. That is,
the audio must be band-pass filtered before
the 90° phase shift. Actually, the filtering
and phase shifting can be combined into one
operation using the following method.

First design a low-pass FIR filter with a
bandwidth one-half the desired audio band-
width. For example, if the desired passband is
300 to 2700 Hz, the low-pass filter bandwidth
should be (2700 – 300)/2 = 1200 Hz. Then mul-
tiply the impulse response coefficients with a
sine wave of a frequency equal to the center
frequency of the desired passband, (2700 +
300)/2 = 1500 Hz in this case. That results in

Fig 15.27 — Block diagram of a digital SSB modulator.

Fig 15.28 — Block diagram of a digital SSB demodulator.

a band-pass filter with the desired 300 – 2700
Hz response. By using sine waves 90° out of
phase for the I and Q channels, you end up with
two band-pass filters with the same amplitude
response and delay but a 90° phase difference
at all frequencies. Multiply by a cosine for
zero phase and by a sine for a 90° phase shift.

Old timers may notice that this bears a
striking resemblance to the Weaver method,
the so-called “third method” of SSB genera-
tion, that was used back in the late 1950s to
eliminate the need for a wide-band audio
phase-shift network.6,7 It is almost as if there
is no such thing as truly new technology, just
old ideas coming back with new terminology!

Analog modulators and demodulators using
the phasing and Weaver methods are covered
in the Transmitters and Transceivers and
Mixers, Modulators and Demodulators
chapters.

USES FOR I/Q MODULATORS AND
DEMODULATORS

While I/Q modulators and demodulators
can be used for analog modes such as SSB,
they really shine when used with digital
modulation modes. The Modulation chap-
ter shows how the modulation states of the
various digital formats map to positions in the
phasor diagram, what is called a constellation

DSP and Software Radio Design   15.25

to downconvert an RF signal to IF with zero
image response. Analog imageless mixers are
covered in the Receivers chapter. They are
sometimes used in microwave receivers and
transmitters where it is difficult to build filters
narrow enough to reject the image response,
but they typically only achieve image rejection
in the 20-30 dB range. With a digital imageless
mixer, the image rejection is “perfect” within
the dynamic range of the bit resolution.

diagram. The transmitter can generate the
correct modulation states simply by placing
the correct values on the I and Q inputs to the
I/Q modulator. In the receiver, the filtered I
and Q values are sampled at the symbol de-
cision times to determine which modulation
state they most closely match.

I/Q modulators and demodulators can also
be used as so-called imageless mixers. A nor-
mal mixer with inputs at f1 and f2 produces
outputs at f1, f2, f1 + f2, and f1 - f2. A balanced

mixer eliminates the f1 and f2 terms but both
the sum and difference terms remain, even
though normally only one is desired. By feed-
ing an RF instead of AF signal into the input
of an SSB modulator, we can choose the sum
or difference frequency in the same way as
choosing the upper or lower sideband. If the
input signal is a sine wave, the Hilbert trans-
former can be replaced by a simple 90° phase
shifter. Similarly, a mixer with the same ar-
chitecture as an SSB demodulator can be used

15.7 Software-Defined Radios (SDR)
There has been much, sometimes heated,

discussion about the precise definition of
a software-defined radio (SDR). Most feel
that, at minimum, an SDR must implement
in software at least some of the functions
that are normally done in hardware. Others
feel that a radio doesn’t count as an SDR
unless nearly all the signal-processing func-
tions, from the input mixer to the audio output
(for the receiver) and from the microphone
ADC to the power amplifier input (for the
transmitter), are done in software. Others add
the requirement that the software must be re-
configurable by downloading new code, pref-
erably open-source. For our purposes we will
use a rather loose definition and consider any
signal-processing function done in software
to fall under the general category of SDR.

Some SDRs use a personal computer to do
the computational heavy lifting and external
hardware to convert the transmitted and re-
ceived RF signals to lower-frequency signals
that the computer’s sound card can handle.
Some SDRs avoid the use of the sound card by
including their own audio codec and transfer-
ring the data to the PC via a USB port. Modern
PCs provide a lot of computational power for
the buck and are getting cheaper and more
powerful all the time. They also come with a
large color display, a keyboard for easy data
entry, and a large memory and hard disk,
which allows running logging programs and
other software while simultaneously doing
the signal processing required by the SDR.

Other SDRs look more like conventional

analog radios with everything contained in
one box, which makes for a neater, more
compact installation. The signal processing
is done with one or more embedded DSPs.
For those who prefer a knob and button user
interface, this is much preferred to having to
use a mouse. Especially for contesting and
competitive DXing, it is much faster to have
a separate control for each critical function
rather than having to select from pull-down
menus. In addition SDRs of this type often
have some performance advantages over PC-
based SDRs, as we shall see.

Either method offers all the most-impor-
tant advantages of applying DSP techniques
to signal processing. The channel filter can
have a much better shape factor (the ratio
between the width of the passband and the
frequency difference of the stopband edges).
FIR filters are linear phase and have less ring-
ing than analog filters of the same bandwidth
and shape factor. Once the signal is in the
digital domain all the fancy digital signal
processing algorithms can be applied such
as automatic notch filters, adaptive channel
equalization, noise reduction, noise blank-
ing, and feed-forward automatic gain control.
Correcting bugs, improving performance or
adding new features is as simple as download-
ing new software.

15.7.1 SDR Hardware
The transition between analog and digital

Fig 15.29 — An outboard DSP processor.

signals can occur at any of several places in
the signal chain between the antenna and the
human interface. Back in 1992, Dave Hersh-
berger W9GR designed an audio-frequency
DSP filter based on the TMS320C10, one of
the earliest practical DSP chips available.8
This was an external unit that plugged into
the headphone jack of a receiver and included
FIR filters with various bandwidths, an au-
tomatic multi-frequency notch filter, and an
adaptive noise filter. The advantage of doing
the DSP at AF is that it can easily be added to
an unmodified analog radio as in Fig 15.29.
It is the technique used today to implement
many digital modulation modes using the
sound card of a PC connected to the audio in-
put and output of a conventional transceiver.

A related technique is to downconvert a
slice of the radio spectrum to baseband audio
using a technique similar to the direct-conver-
sion receivers popular with simple low-power
CW transceivers. This idea was pioneered by
Gerald Youngblood, AC5OG (now K5SDR),
with the SDR-1000 transceiver, which he de-
scribed in a series of QEX articles in 2002-
2003.9 The receiver block diagram is shown
in Fig 15.30. It uses a unique I/Q demodulator
designed by Dan Tayloe, N7VE, to convert
the RF frequency directly to baseband I and
Q signals, which are fed to the stereo input
of a PC’s sound card, represented by the low-
pass filters and A/D converters in the figure.10
Software in the PC does all the signal process-
ing and demodulation. The transmitter is the

Fig 15.30 — Block diagram of K5SDR’s direct-conversion software-
defined receiver.

15.26   Chapter 15

same block diagram in reverse, with an I/Q
modulator converting an I/Q signal from the
sound card up to the RF frequency where it is
filtered and amplified to the final power level.

The sound card method manages to
achieve reasonable performance with simple
inexpensive hardware. Once the signal is digi-
tized by the A/D converters in the sound card,
the powerful DSP capability of the PC can
do amazing things with it. The software for
the SDR-1000 is open-source and available
for free download on the Web.11 In addition
to implementing conventional transceiver
functions such as several types of detector,
variable-bandwidth filters, software AGC, an
S-meter and speech compression, the soft-
ware includes some extra goodies such as an
automatic notch filter, noise reduction, and a
panadapter spectrum display.

The simple hardware does impose some
performance limitations. Because of imper-
fections in the analog downconverter, un-
wanted-sideband rejection is not perfect. This
is called “image rejection” in the SDR-1000
literature. On the panadapter display, strong
signals show up weakly on the opposite side
of the display, equally-spaced from the cen-
ter. Dc offset in the analog circuitry causes a
spurious signal to appear at the center of the
bandwidth. To prevent an unwanted tone from
appearing in the audio output, the software
demodulator is tuned slightly off frequency,
but that means interference at the image fre-
quency can cause problems because of the im-
perfect image rejection. The dynamic range
depends on the sound card performance as
well as the RF hardware. Some newer SDRs
include an integrated audio codec optimized
for the application so that the PC’s sound
card is not needed.

Among the integrated, one-box, software-
defined radios, the most common place to
perform the analog-digital transition is at an
intermediate frequency. In the receiver, plac-
ing the ADC after a crystal IF filter improves
the blocking dynamic range (BDR) for in-
terfering signals that fall outside the crystal
filter bandwidth. BDR is the ratio, expressed
in dB, between the noise level (normally as-
suming a 500 Hz bandwidth) and an interfer-
ing signal strong enough to cause 1 dB gain
reduction of the desired signal. With careful
design, a receiver with such an architecture
can achieve up to about 140 dB of BDR.
The third-order dynamic range is similar to
what can be achieved with a conventional
analog architecture since the circuitry up to
the crystal filter is the same.

Another advantage of the IF-based ap-
proach compared to sampling right at the
final RF frequency is that the ADC does not
have to run at such a high sample rate. In fact,
because the crystal filter acts as a high-perfor-
mance, narrow-bandwidth anti-aliasing filter,
undersampling is possible. With bandwidths F

ig
 1

5.
31

 —
 A

n
 S

D
R

 t
ra

n
sc

ei
ve

r
th

at
 s

am
p

le
s

d
ir

ec
tl

y
at

 t
h

e
R

F
 f

re
q

u
en

cy
.

DSP and Software Radio Design   15.27

F
ig

 1
5.

31
 —

 A
n

 S
D

R
 t

ra
n

sc
ei

ve
r

th
at

 s
am

p
le

s
d

ir
ec

tl
y

at
 t

h
e

R
F

 f
re

q
u

en
cy

.

of a few kHz or less, sample rates in the 10s
of kHz can be used even though the center
frequency of the IF signal is much higher, so
long as the ADC’s sample-and-hold circuit
has sufficient bandwidth. Another common
approach is to add a conventional analog
mixer after the crystal filter to heterodyne
the signal down to a second, much lower IF
in the 10-20 kHz range, which is then sampled
by an inexpensive, low-sample-rate ADC in
the normal fashion. IF-based SDRs tend to
have the highest overall performance at the
expense of additional complexity.

SAMPLING AT RF
The ultimate SDR architecture is to transi-

tion between the analog and digital domains
right at the frequency to be transmitted or
received. In the receiver, the only remaining
analog components in the signal chain are a
wide-band anti-aliasing filter and an ampli-
fier to improve the noise figure of the ADC.
See Fig 15.31. The local oscillator, mixer,
IF filters, AGC, demodulators and other cir-
cuitry are all replaced by digital hardware
and software. It has only been fairly recently
that low-cost high-speed ADCs have become
available with specifications good enough
to allow reasonable performance in a com-
munications receiver. Today it is possible
to achieve blocking dynamic range in the
low 120s of dB. That is not as good as the
best analog radios but is comparable to some
medium-priced models currently available on
the Amateur Radio market.

Third-order dynamic range is not a mean-
ingful specification for this type of radio
because it assumes that distortion products
increase 3 dB for each 1 dB increase in sig-
nal level, which is not true for an ADC. The
level of the distortion products in an ADC
tends to be more-or-less independent of sig-

Fig 15.33 — DSP-based feedback type of AGC showing a combination of analog and digital gain-control points.

Fig 15.32 — The Analog Devices AD6620 is a digital downconverter (DDC) IC.
The CIC filters and FIR filter are all decimating types.

nal level until the signal peak exceeds full
scale, at which point the distortion spikes up
dramatically. Compared to a conventional
analog mixer, ADCs tend to give very good
results with a two-tone test but don’t do as
well when simultaneously handling a large
number of signals, which results in a high
peak-to-average ratio. It is important to read
the data sheet carefully and note the test con-
ditions for the distortion measurements.

There are definite advantages to sampling
at RF. For one thing, it saves a lot of analog
circuitry. Even if the ADC is fairly expen-
sive the radio may be end up being cheaper
because of the reduced component count.
Performance is improved in some areas. For
example, image rejection is no longer a worry,
as long as the anti-aliasing filter is doing its
job. The dynamic range theoretically does not
depend on signal spacing — close-in dynamic
range is often better than with a conventional
architecture that uses a wide roofing filter.
With no crystal filters in the signal chain,
the entire system is completely linear-phase
which can improve the quality of both analog

and digital signals after demodulation.
The biggest challenge with RF sampling

is what to do with the torrent of high-speed
data coming out of the receiver ADC and how
to generate transmit data fast enough to keep
up with the DAC. To cover the 0-30 MHz
HF range without aliasing requires a sam-
ple rate of at least 65 or 70 MHz. That is
much faster than a typical microprocessor-
type DSP can handle. The local oscillator,
mixer and decimator or interpolator must be
implemented in digital hardware so that the
DSP can send and receive data at a more-
reasonable sample rate. Analog Devices
makes a series of digital downconverters
(DDC) which perform those functions and
output a lower-sample-rate digital I/Q signal
to the DSP.12 See Fig 15.32. It would also be
possible to implement your own DDC in an
FPGA. The same company also makes digital
upconverters (DUC) that do the same conver-
sion in reverse for the transmitter. Some of
their DUCs even include the capability to
encode several digital modulation formats
such as GMSK, QPSK and π/4 DQPSK.

15.28   Chapter 15

DIGITAL AGC
In the transmitter portion of a software-

defined radio, dynamic range is generally
not a problem because the transmitted signal
always has approximately the same power
level. Even if power control is implemented
digitally, a 1-100 W adjustment range only
adds 20 dB to the dynamic range. The re-
ceiver is another story. Assuming 6 dB per
S-unit, the difference between S1 and 60 dB
over S9 is 108 dB. Considering peak power
rather than average, the actual range is much
greater than that. While AGC implemented
in software can be quite effective in regulat-
ing the signal level at the speaker output, it
does nothing to prevent the ADC from being
overloaded on signal peaks. For that, some
kind of hardware AGC is needed in the signal
path ahead of the A/D converter. This device
could be a switched attenuator or variable-
gain amplifier as illustrated in Fig 15.33. It
normally runs at full gain and only attenuates
the incoming signal when very strong peak
signal levels are encountered. It could be to-
tally self-contained with its own threshold
detector or it can be controlled as shown by
the DSP, which activates the hardware AGC
whenever it detects ADC overflow.

One issue with most AGC systems is re-
sponse time. The level detector is normally
placed after the gain-control stage. Because
of delays in the feedback loop, by the time the
AGC circuit detects an over-range condition it
is already too late to reduce the gain without
overshoot. One of the advantages of digital
AGC is that it is easy to use feed-forward
rather than feed-back control. In Fig 15.34,
the gain control stage is placed after the level
detector. A small delay is included in the
signal path so that the AGC circuit can reduce
the gain just before the large signal arrives at
the gain multiplier. With proper design, that
totally eliminates overshoot and makes for a
very smooth-operating AGC.

Fig 15.34 — DSP-based AGC with analog feedback and digital feed forward control.

THE LOCAL OSCILLATOR
With direct-RF sampling, the digital lo-

cal oscillator is normally implemented
with a direct digital synthesizer, operating
totally in digital hardware. DDS operation
was explained previously in the sine-wave
generation section. A separate DDS chip
with a built-in DAC is sometimes used in
IF-sampled SDRs as well as in some analog
radios. One advantage that a DDS oscillator
has over a phase-locked loop (PLL) synthe-
sizer is very fast frequency changing. That
can be important in transceivers that use the
same local oscillator for both the receiver and
transmitter. If the transmitter and receiver are
tuned to different frequencies, each time the
rig is keyed the LO frequency must settle at
its new value before a signal is transmitted.

The phase noise of the DDS clock is just
as important as the phase noise of the local
oscillator in a conventional radio. Phase noise
shows up as broadband noise that gradually
diminishes the farther you get from the os-
cillator frequency. In a receiver, phase noise
causes a phenomenon called reciprocal

Fig 15.35 — A hybrid DDS/PLL
synthesizer.

mixing, in which a strong off-channel signal
mixes with off-channel phase noise to cause
a noise-modulated spurious signal to appear
in the receiver passband. In many receivers,
dynamic range measurements are phase-
noise-limited because the spurious response
due to reciprocal mixing is louder than the
distortion products. One way to reduce the
phase noise from the DDS is to use a conven-
tional PLL synthesizer to generate a signal
with large frequency steps and combine it
with a DDS synthesizer to obtain the fine-
grained frequency resolution, as suggested
in Fig 15.35. In this way, you get the phase
noise of the DDS and PLL within the loop
bandwidth of the PLL and the phase noise of
the VCO outside that bandwidth.

One advantage a PLL has over a DDS oscil-
lator is lower spurious signal levels. A DDS
with a wideband spurious-free dynamic range
(SFDR) specification of 60 dB would be bet-
ter than most, but that could cause spurious
responses in the receiver only 60 dB down.
The hybrid PLL/DDS technique can suppress
these spurs as well.

15.7.2 SDR Software
When designing DSP software, it is some-

times surprising how much of your intuition
about analog circuits and systems transfers
directly over to the field of digital signal
processing. The main difference is that you
need to forget much of what you have learned
about the imperfections of analog circuitry.
For example, a multiplier is the DSP equiva-
lent of an ideal double-balanced mixer. The
multiplier output contains frequencies only
at the sum and difference of the two input
signals. There is no intermodulation distor-
tion to create spurious frequencies.

Multiplication by a constant is equivalent
to an amplifier or attenuator, but with no dc
offset and with a very precisely-set gain that

DSP and Software Radio Design   15.29

Fig 15.37 — A digital AM modulator.

does not drift with time or temperature. A
distortionless AM “diode” detector is just a
software routine that forces the signal to zero
whenever it is negative. To build an ideal full-
wave diode detector, just take the absolute
value of the signal.

When you design an analog circuit you
have to take into account all the things that
don’t appear on the schematic. For example
your crystal filter may show a beautiful fre-
quency response in your filter design pro-
gram, but in the actual circuit the passband
is skewed because of the input impedance of
the post-amplifier and the stopband response
is degraded by signals leaking around the
filter due to the PC board layout. With soft-
ware, what you see in the simulation is what
you get (assuming you did the calculations
correctly!)

SOFTWARE ARCHITECTURE
Incoming data to the DSP from A/D con-

verters or other devices is normally handled
in an interrupt service routine (ISR) that is
called automatically whenever new data is
ready. The AM and AGC detection code in
Table 15.5 could be included right in the ISR,
but it is almost always better to limit the ISR
function to the minimum necessary to service

Table 15.4
Interrupt Service Routine

void __attribute__((auto_psv, interrupt)) _DCIInterrupt(void)
{
extern int i, q, data_flag;

// Clear interrupt flag:
IFS3bits.DCIIF = 0;
// Input data is 2’s complement:
i = RXBUF0;
q = RXBUF1;
data_flag = 1;
return;
}

the hardware that calls the interrupt and do
all the signal processing elsewhere. For ex-
ample, Table 15.4 shows an ISR that inputs
16-bit I and Q data coming in on the dsPIC
serial data communications interface (DCI).
The first line is a secret incantation that de-
fines this function to be the interrupt service
routine for the DCI interface.

As you can see, there is minimal function-
ality in the ISR itself. All the heavy com-
putational lifting is done in processes that
run in the background and are interrupted
periodically when new data is available. The
data_flag variable is a semaphore to signal
the signal-processing routine that new data is
ready. Fig 15.36 illustrates the basic program
architecture of some DSP projects for the An-
alog Devices EZ-Kit Lite DSP development
board described in the ARRL publication
Experimental Methods in RF Design. That
book, by the way, is an excellent source for
practical “how-to” information on designing
DSP projects.

SOFTWARE MODULATORS AND
DEMODULATORS

In this chapter we’ve already covered many
of the algorithms needed for a software-
defined radio. For example, we know how
to make I/Q modulators and demodulators
and use them to build an SSB modulator and
detector. Let’s say we want our software-
defined transceiver to operate on AM voice
as well. How do you make an AM modulator
and demodulator?

The modulator is easy. Simply add a con-
stant value, representing the carrier, to the
audio signal and multiply the result by a sine
wave at the carrier frequency, as shown in
Fig 15.37.

Demodulation is almost as easy. We could
just simulate a full-wave rectifier by taking
the absolute value of the signal, as mentioned
previously, and low-pass filter the result to
remove the RF energy. If the signal to be
demodulated is complex, with I and Q com-

Fig 15.36 — Main program flow of a
typical DSP program.

Fig 15.38 — A digital quadrature
detector.

ponents, then instead of absolute value we
take the magnitude

2 2A I Q= +

The dc bias can be removed by adding a
“series blocking capacitor” — a high-pass
filter with a suitable cut-off frequency.

A little more elegant way to do it would
be to include the AM detector as part of the
AGC loop. In the C code snippet shown in
Table 15.5, the variable “carrier” is the aver-
age AM carrier level. It is passed to another
subroutine to control the gain.

Note that no “series capacitor” is needed
since the audio signal is computed by sub-
tracting the average historical value, carrier,
from the magnitude of the current I/Q sig-
nal, am. A small fraction of its value is
added to the historical value so that the AGC
tracks the average AM carrier level. AGC
speed is controlled by that fraction. Dividing

by 210 = 1024 gives a time con-
stant of about 1024 clock cycles.

Another type of detector we
haven’t discussed yet is for fre-
quency modulation. For a scalar
signal, the quadrature detector
shown in Fig 15.38 is one elegant
solution. This is the same circuit
whose analog equivalent is used
today in millions of FM receivers
around the world. In the digital
implementation, the delay block
is a FIFO buffer constructed from
a series of shift registers. Multi-
plying the signal by a delayed
version of itself gives an output
with a cosinusoidal response
versus frequency. The response
crosses zero whenever the carrier

15.30   Chapter 15

Table 15.5
AM Detector

static long int carrier;
long int am;
int i, q, signal;

/* Code that generates i and q omitted */
am = (long int)sqrt((long int)i*i + (long int)q*q);
signal = am - carrier;
// Divide signal by 2^10:
carrier += signal >> 10;
// Audio output to DAC via SPI bus:
SPI1BUF = signal;

frequency is f = N/(4τ), where N is an odd
integer and the delay in seconds is t=n/fs,
where n is the number of samples of delay
and fs is the sample frquency. As the carrier
deviates above and below the zero-crossing
frequency the output varies above and below
zero, just what we want for an FM detector.

For an I/Q signal, probably the most
straightforward FM detector is a phase de-
tector followed by a differentiator to remove
the 6 dB per octave rolloff caused by the phase
detector. The phase is just

Qarctan
I

 ϕ =  
 

You have to be a little careful since there is
a 180° phase ambiguity in the arctangent
function. For example,

1 1arctan arctan
1 1

−   =   −   
Software will have to check which quadrant
of the phasor diagram the I/Q signal is in
and add 180° when necessary. If there is
no arctan function in the library, one can be
constructed using a look-up table. Frequency
is the derivative of the phase. A differentiator
is nothing more than a subtractor that takes
the difference between successive samples.

n n 1

s
f

2 f
−ϕ − ϕ

=
π

where n is the sample number and fs is the
sample rate. It is important to make sure that
the difference equation functions properly
around 360°. If the phase variable is scaled
so that 360° equals the difference between the

highest and lowest representable numbers,
then standard two’s complement subtraction
should roll over to the right value at the 360°
/ 0° transition. Another thing to watch out for
is that the derivative of the phase may be a
rather small signal, so it might be necessary to
carry through all the calculations using long
integers or floating point numbers.

OTHER SOFTWARE FUNCTIONS
A carrier-locked loop is a circuit that auto-

matically tunes a receiver so that it is centered
on the carrier of the incoming signal. One
way to achieve that is to make the receiver
local oscillator controllable by a frequency
detector. For example if the local oscillator
(LO) in the receiver were an analog voltage-
controlled oscillator (VCO), the output of
the FM detector described above could be
applied to a DAC that generates an error volt-
age to pull the VCO on frequency. If the LO
were an NCO or other digitally-controlled
synthesizer, then the error signal could be
used to control the frequency digitally. An
even more elegant way to do it is to leave the
LO alone and tune the frequency of the I/Q
signal directly. Conceptually, you determine
the amplitude

2 2A I Q= +

and phase

Qarctan
I

 ϕ =  
 

of the signal, add or subtract the phase
error from φ to keep its average value from
changing and then convert back to I = Acos(φ)

and Q = Asin(φ) again for further processing.
This is easy to do with a signal that does not
change phase, such as AM phone. For an FM
or PM signal, considerable averaging must be
done of the error signal so that it represents
the average phase of the carrier rather than
the instantaneous phase of the modulation.
Speech processing is a function that lends
itself well to digital signal processing. The
human voice has a high peak-to-average
power ratio, typically on the order 15 dB. That
means, that without processing, a 100-W PEP
SSB transmitter is only putting out about 3 W
average! Most SSB transmitters do have an
automatic level control (ALC) circuit that can
reduce the peak-to-average ratio by 3-6 dB,
but that still means your 100-W transmitter is
only putting out 6-12 W on average.

The problem is that if the ALC setting is
too aggressive, considerable distortion of the
audio can result. A transmitter’s ALC circuit
operates much like the AGC in a receiver. It
can do a fair job of keeping the peak power
from overdriving the amplifier but it can do
little to reduce the short-term power varia-
tions between speech syllables. With digital
processing, it is fairly easy to use feed forward
gain control rather than feed back, in a man-
ner similar to the AGC system illustrated in
Fig 15.34.

The gold standard of speech processing of
SSB signals is RF clipping. By clipping at
radio frequency instead of at audio, many of
the distortion products fall outside the pass-
band where they can be filtered out, by a
crystal filter in an analog radio or by a digital
band-pass filter in an SDR. “RF” clipping
doesn’t actually have to be done at a high RF
frequency. An IF of a few kHz is sufficient,
so long as the center frequency is greater than
about twice the audio bandwidth. That can all
be done in software and then the signal can be
converted back to baseband audio if desired.

Developing DSP software is a wonderful
homebrew activity for the Radio Amateur.
As electronic devices have become smaller
and smaller and more and more sophisti-
cated it has become harder and harder to get
a soldering iron on the tiny pins of surface-
mount ICs. Software development allows
hobbyists to experiment to their heart’s con-
tent with no danger that an expensive piece of
electronics will be destroyed by one moment
of clumsiness. With nothing more than a PC
and some free software, the enthusiast can
while away hours exploring the fascinating
world of digital signal processing and soft-
ware radios.

DSP and Software Radio Design   15.31

15.8 Glossary
Adaptive filter — A filter whose

coefficients can be changed
automatically.

Analog-to-digital converter (ADC) — A
device that samples an analog signal and
outputs a digital number representing the
amplitude of the signal.

Analytic signal — A representation of
the phase and amplitude of a signal
(often in the form of the in-phase
and quadrature components), without
explicitly including the oscillating part
(the carrier).

Anti-aliasing filter — A band-limiting
filter placed before a sampler to make
sure the incoming signal obeys the
Nyquist criterion.

Anti-symmetrical — A function that is
anti-symmetrical about point x=0 has the
property that f(x) = –f(–x).

Application-specific integrated circuit
(ASIC) — A non-programmable IC that
is designed for a particular application.

Arithmetic logic unit (ALU) — The
portion of a microprocessor that
performs basic arithmetic and logical
operations.

Automatic gain control (AGC) — The
circuit in a receiver that keeps the signal
level approximately constant.

Automatic level control (ALC) — The
circuit in a transmitter that keeps
the peak signal level approximately
constant.

Barrel shifter — A circuit in a
microprocessor that can bit-shift a
number by multiple bits at one time.

Baseband — The low-frequency portion
of a signal. This is typically the
modulation.

Bilinear transform — A design technique
for IIR filters in which the frequency
axis is transformed to prevent the filter
bandwidth from violating the Nyquist
criterion.

Binary point — The symbol that separates
the integer part from the fractional part
of a binary number.

Blocking dynamic range (BDR) — The
difference between the noise level
(usually in a 500-Hz bandwidth) and the
signal level that causes a 1 dB reduction
in the level of a weaker signal.

Carrier-locked loop — A feedback control
loop to automatically tune a receiver
or demodulator to the frequency of a
received carrier.

Chebyshev filter — A filter with equal
ripple in the passband, stopband or both.

Circular buffers — A buffer in which the
final entry is considered to be adjacent
to the first.

Cognitive radio — A radio system in
which a wireless node automatically
changes its transmission or reception
parameters to avoid interference with
other nodes.

Complex number — A number that
contains real and imaginary parts.

Complex PLD (CPLD) — A
programmable logic device that is more
complex than a small PLD, such as a
PAL, but with a similar architecture.

Constellation diagram — A phasor
diagram showing the locations of all the
modulation states of a digital modulation
type.

Convolution — A mathematical operation
that modifies a sequence of numbers
with another sequence of numbers so
as to produce a third sequence with a
different frequency spectrum or other
desired characteristic. An FIR filter is a
convolution engine.

Cooley-Tukey algorithm — Another name
for the fast Fourier transform.

Decimation — Reduction of sample rate
by an integer factor.

Decimation in time — The division of a
sequence of numbers into successively
smaller sub-sequences in order to
facilitate calculations such as the Fourier
transform.

Digital downconverter (DDC) — A device
that translates a band of frequencies to
baseband, typically at a lower sample
rate.

Digital signal processing — The
processing of sequences of digital
numbers that represent signals.

Digital signal processor (DSP) — A
device to do digital signal processing.
The term normally is understood to refer
to a microprocessor-type device with
special capabilities for signal processing.

Digital-to-analog converter (DAC) — A
device that converts digital numbers
to an analog signal with an amplitude
proportional to the digital numbers.

Digital upconverters (DUC) — A device
that frequency-translates a baseband
signal to a higher frequency, typically at
a higher sample rate.

Direct digital synthesis (DDS) — The
generation of a periodic waveform by
directly calculating the values of the
waveform samples.

Direct form — A circuit topology for an
IIR filter that corresponds directly to the
standard filter equation.

Direct memory access (DMA) — The
ability of a microprocessor chip to
transfer data between memory and some
other device without the necessity to

execute any processor instructions.
Dithering — Randomly varying the

amplitude or phase of a signal in order to
overcome quantization effects.

Embedded system — A system that
includes a microprocessor for purposes
other than general-purpose computing.

Equal-ripple filter — A filter in which
the variation in passband or stopband
response is constant across the band.

Exponent — The number of digits that the
radix point must be moved to represent
a number.

Fast Fourier transform (FFT) — An
algorithm that can calculate the discrete
Fourier transform with an execution
time proportional to nlog(n), instead of
n2 as is required by the straight-forward
application of the Fourier transform
equation.

Field-programmable gate array (FPGA)
— An IC that contains a large array of
complex logic blocks whose function
and connections can be re-programmed
in the field.

Filter coefficient — One of a series of
numbers that define the transfer function
of a filter.

Finite impulse response (FIR) — An
impulse response that is zero for all time
that is greater than some finite amount
from the time of the impulse.

Floating-point — Refers to a number
whose value is represented by a mantissa
and an exponent.

Fourier transform — A mathematical
operation that derives the frequency
spectrum of a time-domain signal.

Hardware-description languages (HDL)
— A computer language to specify the
circuitry of a digital device or system.

Harmonic sampling — The use of a
sample rate that is less than twice the
highest frequency of the signal to be
sampled. The sample rate must be
greater than two times the bandwidth of
the signal.

Harvard architecture — A computer
architecture in which the program and
data are stored in separate memories.

Hilbert transformer — A filter that creates
a constant 90° phase difference over a
band of frequencies.

Imageless mixer — A mixer in which
the output contains only the sum or
difference of the two input frequencies,
but not both.

Imaginary number — A real number
multiplied by the square root of minus
one.

Impulse — A pulse of finite energy with a
width that approaches zero.

15.32   Chapter 15

Impulse-invariant — A design technique
for IIR filters in which the impulse
response is the same as the impulse
response of a certain analog filter.

Impulse response — The response versus
time of a filter to an impulse.

In-circuit emulator (ICE) — A device
that emulates the operation of a
microprocessor while providing
debugging tools to the operator. The ICE
normally plugs into an IC socket that
normally holds the microprocessor.

In-circuit debugger (ICD) — A device
that uses debugging features built into
the microprocessor so that it can be
tested while in the circuit.

In-circuit programmable (ICP) —
A programmable IC that can be
programmed while it is connected to the
application circuit.

In-circuit programmer (ICP) — A
device to facilitate programming of
programmable ICs while they are
connected to the application circuit.

In-phase (I) — The portion of a radio
signal that is in phase with a reference
carrier.

Infinite impulse response (IIR) — An
impulse response that theoretically never
goes to zero and stays there.

Integrated development environment
(IDE) — An integrated collection
of software and hardware tools for
developing a microprocessor project.

I/Q demodulator — A device to derive the
in-phase and quadrature portions of an
oscillating signal.

I/Q modulator — A device to generate an
oscillating signal with specified in-phase
and quadrature parts.

Interpolation — Increasing the sample rate
by an integer factor.

Interrupt service routine (ISR) — A
software subroutine that is called
automatically when the main routine is
interrupted by some event.

Least mean squares (LMS) — An
algorithm for adaptive filters that
minimizes the mean square error of a
signal.

Least-significant bit (LSB) — When used
as a measurement unit, the size of the
smallest step of a digital number.

Limit cycle — A non-linear oscillation in
an IIR filter.

Linear phase — Refers to a system
in which the delay is constant at all
frequencies, which means that the phase
is linear with frequency.

Mantissa — The decimal or binary part of
a logarithm or floating-point number.

Multiplier-accumulator (MAC) — A
device that can multiply two numbers
and add the result to a previous result all
in one operation.

Multi-rate — Refers to a system with more
than one sample rate.

Numerically-controlled oscillator (NCO)
— An oscillator that synthesizes the
output frequency from a fixed timebase.
A DDS oscillator.

Nyquist criterion — The requirement that
the sample rate must be at least twice the
bandwidth of the signal.

Nyquist frequency — One half the sample
rate.

Nyquist rate — Twice the signal
bandwidth.

One-time programmable (OTP) — A
programmable device that may not be
re-programmed.

Orthogonal — Perpendicular. In analogy
with the mathematics of perpendicular
geometrical vectors, the term is used in
communications to refer to two signals
that produce zero when convolved.

Oversampling — Use of a sample rate
higher than required by the Nyquist
criterion in order to improve the signal-
to-noise ratio.

Parks-McClellan algorithm — An
optimized design technique for equal-
ripple filters.

Phasor diagram — A polar plot of
the magnitude of the in-phase and
quadrature components of a signal.

Pipeline — An arrangement of
computational units in a microprocessor
or other digital device so that different
units can be working on different
instructions or signal samples at the
same time.

Programmable-array logic (PAL) — A
type of small PLD that consists of an
array of AND gates, OR gates, inverters
and latches.

Programmable-logic device (PLD) —
A device with many logic elements
whose connections are not defined at
manufacturer but must be programmed.

Quadrature (Q) — The portion of a radio
signal that is 90° out of phase with a
reference carrier.

Quadrature detector — An FM detector
that multiplies the signal by a delayed
version of the same signal.

Quantization — The representation of a
continuous analog signal by a number
with a finite number of bits.

Quantization error — The difference in
amplitude between an analog signal and
its digital samples.

Quantization noise — Noise caused by
random quantization error.

Radix − The base of a number system.
Binary is radix 2 and decimal is radix
10.

Radix point — The symbol that separates
the integer part from the fractional part
of a number.

Reciprocal mixing — A spurious response
in a receiver to an off-channel signal
caused by local oscillator phase noise
at the same frequency offset as the
interference.

Reconstruction filter — A filter located
after a digital-to-analog conversion or
interpolation to filter out sampling spurs.

Resampling — Changing the sample rate
by a non-integer ratio.

Resolution — The number of bits required
to represent a digital number from its
smallest to its largest value.

Sample rate — The rate at which samples
are generated, processed or output from
a system.

Sampling — The process of measuring
and recording a signal at discrete points
of time.

Software-defined radio (SDR) — A
transmitter and/or receiver whose
principal signal processing functions are
defined by software.

Spectral leakage — In a Fourier transform,
the indication of frequencies that are
not actually present in the signal due to
inadequate windowing.

Tap — One processing block, consisting
of a coefficient memory, signal register,
multiplier and adder, of an FIR filter.

Training sequence — A sequence of one
or more known symbols transmitted for
the purpose of training the adaptive filter
in a receiver.

Undersampling — Harmonic sampling.
Volatile memory — A memory that

requires the presence of power supply
voltage for data retention.

Von Neumann architecture — A computer
architecture that includes a processing
unit and a single separate read/write
memory to hold both program and data.

Windowing — Tapering the edges of a
data sequence so that the samples do not
transition abruptly to zero. This avoids
passband and stopband ripple in an FIR
filter and spectral leakage in a Fourier
transform.

Zero-order hold — Holding of a data value
for the entire sample period.

Zero-overhead looping — The ability of
a microprocessor to automatically jump
from the end of a memory block back
to the beginning without additional
instructions.

Zero-stuffing — Interpolation by inserting
zero-valued samples in between the
original samples.

DSP and Software Radio Design   15.33

 15.9 References and Bibliography
REFERENCES

1.The FCC report and order authorizing
software-defined radios in the
commercial service is available at
www.fcc.gov/Bureaus/Engineering_
Technology/Orders/2001/fcc01264.pdf.

2.The Microchip IDE software can be
downloaded free at www.microchip.
com.

3.Mar, chapter 4. [See bibliography]
4.This is Euler’s famous formula, ejx =

cos(x) + jsin(x), named after Leonhard
Euler, an 18th-century mathematician.
The factor e ≈ 2.718 is the base of the
natural logarithm and j = 1− is the
imaginary unit.

5.Blanchard, R., W6UYG, “Sugar-Coated
Single Sideband,” QST, Oct 1952,
p 38ff.

6.Weaver, D.K., Jr, “A Third Method of
Generation and Detection of Single-
Sideband Signals” Proc. IRE, Dec. 1956.

7.Wright, Jr., H., W1PNB, “The Third
Method of S.S.B.,” QST, Sep 1957,
pp 11-15.

8.Hershberger, D., W9GR, “Low-Cost
Digital Signal Processing for the Radio
Amateur,” QST, Sep 1992, pp 43-51.

9.Youngblood. (See the Articles section
below.)

10.Tayloe, D., N7VE, “Notes on ‘Ideal’
Commutating Mixers (Nov/Dec 1999)”
Letters to the Editor, QEX, Mar 2001,
p 61.

11.PowerSDR software is available on the
Flex Radio Web site, www.flex-radio.
com.

12.Analog Devices has lots of good free
tutorial literature available for download
on their Web site, www.analog.com.

BIBLIOGRAPHY
(Key: D = disk included, A = disk

available, F = filter design software)

DSP Software Tools
Alkin, O., PC-DSP, Prentice Hall,

Englewood Cliffs, NJ, 1990 (DF).
Kamas, A. and Lee, E., Digital Signal

Processing Experiments, Prentice Hall,
Englewood Cliffs, NJ, 1989 (DF).

Momentum Data Systems, Inc., QEDesign,
Costa Mesa, CA, 1990 (DF).

Stearns, S. D. and David, R. A., Signal
Processing Algorithms in FORTRAN
and C, Prentice Hall, Englewood Cliffs,
NJ, 1993 (DF).

Textbooks
Frerking, M. E., Digital Signal Processing

in Communication Systems, Van Nostrand
Reinhold, New York, NY, 1994.

Hayward, Wes, W7ZOI et al, Experimental
Methods in RF Design, chapter 10 “DSP
Components” and chapter 11 “DSP
Applications in Communications,”
ARRL, 2009 (D).

Ifeachor, E. and Jervis, B., Digital Signal
Processing: A Practical Approach,
Addison-Wesley, 1993 (AF).

Madisetti, V. K. and Williams, D. B.,
Editors, The Digital Signal Processing
Handbook, CRC Press, Boca Raton, FL,
1998 (D).

Mar, Amy (Editor), Digital Signal
Processing Applications Using the
ADSP-2100 Family, Volume I, Prentice
Hall 1990. While oriented to the ADSP-
2100, there is much good general
information on DSP algorithms. Both
volume I and II are available for free
download on the Analog Devices Web
site, www.analog.com.

Oppenheim, A. V. and Schafer, R. W.,
Digital Signal Processing, Prentice Hall,
Englewood Cliffs, NJ, 1975.

Parks, T. W. and Burrus, C.S., Digital
Filter Design, John Wiley and Sons,
New York, NY, 1987.

Proakis, J. G. and Manolakis, D., Digital
Signal Processing, Macmillan, New
York, NY, 1988.

Proakis, J. G., Rader, C. M., et. al.,
Advanced Digital Signal Processing,
Macmillan, New York, NY, 1992.

Rabiner, L. R. and Schafer, R. W., Digital
Processing of Speech Signals, Prentice
Hall, Englewood Cliffs, NJ, 1978.

Rabiner, L. R. and Gold, B., Theory and
Application of Digital Signal Processing,
Prentice Hall, Englewood Cliffs, NJ,
1975.

Sabin, W. E. and Schoenike, E. O., Eds.,
HF Radio Systems and Circuits, rev. 2nd
ed., Noble Publishing Corp, Norcross,
GA, 1998.

Smith, D., Digital Signal Processing
Technology: Essentials of the
Communications Revolution, ARRL,
2001.

Widrow, B. and Stearns, S. D., Adaptive
Signal Processing, Prentice Hall,
Englewood Cliffs, NJ, 1985.

Zverev, A. I., Handbook of Filter Synthesis,
John Wiley and Sons, New York, NY,
1967.

Articles
Albert, J. and Torgrim, W., “Developing

Software for DSP,” QEX, Mar 1994,
pp 3-6.

Ahlstrom, J., N2ADR, “An All-Digital
SSB Exciter for HF,” QEX, May/Jun
2008, pp 3-10.

Ahlstrom, J., N2ADR, “An All-Digital
Transceiver for HF,” QEX, Jan/Feb 2011,
pp 3-8.

Anderson, P. T., “A Simple SSB Receiver
Using a Digital Down-Converter,” QEX,
Mar, 1994, pp 17-23.

Anderson, P. T., “A Faster and Better ADC
for the DDC-Based Receiver,” QEX,
Sep/Oct 1998, pp 30-32.

Applebaum, S. P., “Adaptive arrays,” IEEE
Transactions Antennas and Propagation,
Vol. PGAP-24, pp 585-598, September,
1976.

Åsbrink, L., “Linrad: New Possibilities
for the Communications Experimenter,”
QEX, Part 1, Nov/Dec 2002; Part 2,
Jan/Feb 2003; Part 3 May/Jun 2003.

Ash, J. et al., “DSP Voice Frequency
Compandor for Use in RF
Communications,” QEX, Jul 1994, pp
5-10.

Bloom, J., “Measuring SINAD Using
DSP,” QEX, Jun 1993, pp 9-18.

Bloom, J., “Negative Frequencies and
Complex Signals,” QEX, Sep 1994.

Bloom, J., “Correlation of Sampled
Signals,” QEX, Feb 1996.

Brannon, B., “Basics of Digital Receiver
Design,” QEX, Sep/Oct 1999, pp 36-44.

Cahn, H., “Direct Digital Synthesis — An
Intuitive Introduction,” QST, Aug 1994,
pp 30-32.

Cercas, F. A. B., Tomlinson, M. and
Albuquerque, A. A., “Designing With
Digital Frequency Synthesizers,”
Proceedings of RF Expo East, 1990.

de Carle, B., “A Receiver Spectral Display
Using DSP,” QST Jan 1992, pp 23-29.

Dick, R., “Tune SSB Automatically,” QEX,
Jan/Feb 1999, pp 9-18.

Dobranski, L., “The Need for Applications
Programming Interfaces (APIs) in
Amateur Radio,” QEX, Jan/Feb 1999,
pp 19-21.

Emerson, D., “Digital Processing of Weak
Signals Buried in Noise,” QEX, Jan
1994, pp 17-25.

Forrer, J., “Programming a DSP Sound
Card for Amateur Radio,” QEX, Aug
1994.

Forrer, J., KC7WW, “A DSP-Based Audio
Signal Processor,” QEX, Sep 1996.

Forrer, J., KC7WW, “Using the Motorola
DSP56002EVM for Amateur Radio DSP
Projects,” QEX, Aug 1995.

Gradijan, S., WB5KIA, “Build a Super
Transceiver — Software for Software
Controllable Radios,” QEX, Sept/Oct
2004, pp 30-34.

Green, R., “The Bedford Receiver:
A New Approach,” QEX, Sep/Oct, 1999,
pp 9-23.

15.34   Chapter 15

Hale, B., “An Introduction to Digital Signal
Processing,” QST, Sep 1992, pp 43-51.

Hershberger, D., W9GR, “DSP — An
Intuitive Approach,” QST, Feb 1996.

Hightower, M., KF6SJ, “Simple SDR
Receiver,” QEX, Mar/Apr 2012, pp 3-8.

Hill, C., W5BAA, “SDR2GO: A DSP
Odyssey,” QEX, Mar/Apr 2011,
pp 36-43.

Kossor, M., “A Digital Commutating
Filter,” QEX, May/Jun 1999, pp 3-8.

Larkin, B., W7PUA, “The DSP-10: An
All-Mode 2-Meter Transceiver Using a
DSP IF and PC-Controlled Front Panel,
Part 1,” QST, Sep 1999, pp 33-41.

Larkin, B., W7PUA, “The DSP-10: An
All-Mode 2-Meter Transceiver Using a
DSP IF and PC-Controlled Front Panel,
Part 2,” QST, Oct 1999, pp 34-40.

Larkin, B., W7PUA, “The DSP-10: An
All-Mode 2-Meter Transceiver Using a
DSP IF and PC-Controlled Front Panel,
Part 3,” QST, Nov 1999, pp 42-45.

Mack, Ray, W5IFS, “SDR: Simplified,”
QEX, columns beginning Nov 2009.

Morrison, F., “The Magic of Digital
Filters,” QEX, Feb 1993, pp 3-8.

Nickels, R., W9RAN, “Cheap and Easy
SDR,” QST, Jan 2013, pp 30-35.

Olsen, R., “Digital Signal Processing for
the Experimenter,” QST, Nov 1994,
pp 22-27.

Reyer, S. and Herschberger, D., “Using
the LMS Algorithm for QRM and QRN
Reduction,” QEX, Sep 1992, pp 3-8.

Rohde, D., “A Low-Distortion Receiver
Front End for Direct-Conversion and
DSP Receivers,” QEX, Mar/Apr 1999,
pp 30-33.

Runge, C., Z. Math. Physik, Vol 48, 1903;
also Vol 53, 1905.

Scarlett, J., “A High-Performance Digital
Transceiver Design,” QEX, Part 1,
Jul/Aug 2002; Part 2, Mar/Apr 2003.

Smith, D., “Introduction to Adaptive
Beamforming,” QEX, Nov/Dec 2000.

Smith, D., “Signals, Samples and Stuff: A
DSP Tutorial, Parts 1-4,” QEX, Mar/Apr-
Sep/Oct, 1998.

Stephensen, J., KD6OZH, Software
Defined Radios for Digital
Communications,” QEX, Nov/Dec 2004,
pp 23-35. [Open-source platform]

Veatch, J., WA2EUJ, “The DSP-610
Transceiver,” QST, Aug 2012, pp 30-32.

Ward, R., “Basic Digital Filters,” QEX,
Aug 1993, pp 7-8.

Wiseman, J., KE3QG, “A Complete DSP
Design Example Using FIR Filters,”
QEX, Jul 1996.

Youngblood, G., “A Software-Defined
Radio for the Masses,” QEX; Part 1,
Jul/Aug 2002; Part 2, Sep/Oct 2002;
Part 3, Nov/Dec 2002; Part 4, Mar/Apr
2003.

SDR and DSP Receiver Testing
Hakanson, E., “Understanding SDRs and

their RF Test Requirements,” Anritsu
Application Note. Available online
from www.us.anritsu.com/downloads/
files/11410-00403.pdf.

Kundert, K. “Accurate and Rapid
Measurement of IP2 and IP3,”
Designer’s Guide Consulting, 2002-
2006. Available online from www.
designers-guide.org/Analysis/
intercept-point.pdf.

MacLeod, J.R.; Beach, M.A.; Warr, P.A.;
Nesimoglu, T., “Software Defined Radio
Receiver Test-Bed,” IEEE Vehicular Tech
Conf, Fall 2001, VTS 54th, Vol 3,
pp 565-1569. Available online from
http://ieeexplore.ieee.org/Xplore/login.
jsp?url=/iel5/7588/20685/00956461.pdf.

R. Sierra, Rhode & Schwarz, “Challenges
In Testing Software Defined Radios,”
SDR Forum Sandiego Workshop, 2007.

Sirmans, D. and Urell, B., “Digital
Receiver Test Results,” Next Generation
Weather Radar Program. Available
online from www.roc.noaa.gov/eng/
docs/digital%20receiver%20test%20
results.pdf.

“Testing and Troubleshooting Digital RF
Communications Receiver Designs,”
Agilent Technologies Application Note
1314. Available online from http://
cp.literature.agilent.com/litweb/
pdf/5968-3579E.pdf.

DSP and Software Radio Design   15.35

	2014 ARRL Handbook CD-ROM
	Introduction to the CD ROM Edition
	Using this CD ROM
	Full Text Searching

	Front Matter
	Table of Contents

	Foreword

	The Amateurs Code

	Schematic Symbols

	Guide to ARRL Member Services

	About the ARRL

	US Amateur Radio Bands

	ARRL Handbook CD-ROM Contents

	The ARRL Radio Amateur's Handbook--From Its Beginning

	Chapter 1--What is Amateur (Ham) Radio
	Contents

	1.1 Do-It-Yourself Wireless

	1.2 Joining the Ham Radio Community

	1.3 Your Ham Radio Station

	1.4 Getting on the Air

	1.5 Your Ham Radio "Lifestyle"

	1.6 Public Service

	1.7 Ham Radio in the Classroom

	1.8 Resources

	1.9 Glossary

	Chapter 2--Electrical Fundamentals

	Contents

	2.1 Electricity
	2.2 Resistance and Conductance
	2.3 Basic Circuit Principles

	2.4 Power and Energy

	2.5 Circuit Control Components

	2.6 AC Theory and Waveforms

	2.7 Capacitance and Capacitors

	2.8 Inductance and Inductors

	2.9 Working with Reactance

	2.10 Impedance

	2.11 Quality Factor (Q) of Components

	2.12 Practical Inductors

	2.13 Resonant Circuits

	2.14 Transformers

	2.15 Heat Management

	2.16 References and Bibliography

	Chapter 3--Analog Basics

	Contents

	3.1 Analog Signal Processing

	3.2 Analog Devices
	3.3 Practical Semiconductors

	3.4 Analog Systems

	3.5 Amplifiers

	3.6 Operational Amplifiers

	3.7 Analog-Digital Conversion

	3.8 Miscellaneous Analog ICs

	3.9 Analog Glossary

	3.10 References and Bibliography

	Chapter 4--Digital Basics

	Contents

	4.1 Digital vs Analog

	4.2 Number Systems

	4.3 Physical Representation of Binary States

	4.4 Combinational Logic
	4.5 Sequential Logic
	4.6 Digital Integrated Circuits
	4.7 Analog-Digital Interfacing
	4.8 Microcontroller Overview

	4.9 Personal Computer Interfaces

	4.10 Glossary of Digital Electronics Terms

	4.11 References and Bibliography

	Chapter 5--RF Techniques
	Contents

	5.1 Introduction

	5.2 Lumped-Element versus Distributed Characteristics

	5.3 Effects of Parasitic Characteristics

	5.4 Semiconductor Circuits at RF�
	5.5 Ferrite Materials

	5.6 Impedance Matching Networks

	5.7 RF Transformers

	5.8 Noise

	5.9 Two-Port Networks

	5.10 RF Techniques Glossary

	5.11 References and Bibliography

	Chapter 6--Computer-Aided Circuit Design

	Contents

	6.1 Circuit Simulation Overview

	6.2 Simulation Basics

	6.3 Limitations of Simulation at RF

	6.4 CAD for PCB Design

	6.5 References and Bibliography

	Chapter 7--Power Sources

	Contents

	7.1 Power Processing

	7.2 AC-AC Power Conversion

	7.3 Power Transformers

	7.4 AC-DC Power Conversion

	7.5 Voltage Multipliers

	7.6 Current Multipliers

	7.7 Rectifier Types

	7.8 Power Filtering

	7.9 Power Supply Regulation

	7.10 "Crowbar" Protective Circuits

	7.11 DC-DC Switchmode Power Conversion

	7.12 High-Voltage Techniques

	7.13 Batteries

	7.14 Glossary of Power Source Terms

	7.15 References and Bibliography

	7.16 Power Source Projects

	Chapter 8--Modulation

	Contents

	8.1 Introduction

	8.2 Analog Modulation

	8.3 Digital Modulation

	8.4 Image Modulation

	8.5 Modulation Impairments
	8.6 Modulation Glossary

	8.7 References and Further Reading

	Chapter 9--Oscillators and Synthesizers
	Contents

	9.1 How Oscillators Work

	9.2 Phase Noise

	9.3 Oscillator Circuits and Construction

	9.4 Building an Oscillator

	9.5 Crystal Oscillators

	9.6 Oscillators at UHF and Above

	9.7 Frequency Synthesizers

	9.8 Glossary of Oscillator and Synthesizer terms

	9.9 References and Bibliography

	Chapter 10--Mixers, Modulators and Demodulators

	Contents

	10.1 The Mechanism of Mixers and Mixing

	10.2 Mixers and Amplitude Modulation

	10.3 Mixers and Angle Modulation

	10.4 Putting Mixers, Modulators and Demodulators to Work

	10.5 A Survey of Common Mixer Types

	10.6 References and Bibliography

	Chapter 11--RF and AF Filters

	Contents

	11.1 Introduction

	11.2 Filter Basics

	11.3 Lumped-Element Filters

	11.4 Filter Design Examples

	11.5 Active Audio Filters

	11.6 Quartz Crystal Filters

	11.7 SAW Filters

	11.8 Transmission Line Filters

	11.9 Helical Resonators

	11.10 Use of Filters at VHF and UHF

	11.11 Filter Projects

	11.12 Filter Glossary

	11.13 References and Bibliography

	Chapter 12--Receivers

	Contents

	12.1 Characterizing Receivers

	12.2 Basics of Heterodyne Receivers

	12.3 The Superheterodyne Receiver

	12.4 Supherhet Receiver Design Detail

	12.5 Control and Processing Outside the Primary Signal Path

	12.6 Pulse Noise Reduction

	12.7 VHF and UHF Receivers
	12.8 UHF and Microwave Techniques

	12.9 References and Bibliography

	Chapter 13--Transmitters and Transceivers

	Contents

	13.1 Transmitter Modulation Types and Methods

	13.2 VHF Signal Sources

	13.3 Increasing Transmitter Power

	13.4 Transceiver Construction and Control

	13.5 Transceiver Projects

	13.6 References and Bibliography

	Chapter 14--Telemetry and Navigation

	Contents

	14.1 Sensors

	14.2 Navigation Data and Telemetry

	14.3 Platform Design

	14.4 References and Bibliography

	Chapter 15--DSP and Software Radio Design

	Contents

	15.1 Introduction

	15.2 Typical DSP System Block Diagram

	15.3 Digital Signals

	15.4 Digital Filters

	15.5 Miscellaneous DSP Algorithms

	15.6 Analytic Signals and Modulation

	15.7 Software-Defined Radios (SDR)

	15.8 Notes and Bibliography

	15.9 Glossary

	Chapter 16--Digital Modes

	Contents

	16.1 Digital "Modes"

	16.2 Unstructured Digital Modes

	16.3 Fuzzy Modes

	16.4 Structured Digital Modes

	16.5 Networking Modes

	16.6 Digital Mode Table

	16.7 Glossary

	16.8 References and Bibliography

	Chapter 17--RF Power Amplifiers

	Contents

	17.1 High Power, Who Needs It?

	17.2 Types of Power Amplifiers

	17.3 Vacuum Tube Basics

	17.4 Tank Circuits

	17.5 Transmitting Tube Ratings

	17.6 Sounds of Operating Voltages

	17.7 Tube Amplifier Cooling

	17.8 Vacuum Tube Amplifier Stabilization

	17.9 MOSFET Design for RF Amplifiers

	17.10 Solid State RF Amplifiers

	17.11 Solid State Amplifier Projects

	17.12 Tube Amplifier Projects

	17.13 References and Bibliography

	Chapter 18--Repeaters

	Contents

	18.1 A Brief History

	18.2 Repeater Overview

	18.3 FM Voice Repeaters

	18.4D-STAR Repeater Systems

	18.5 P25, DMR and Digital Voice
	18.6 Glossary of FM and Repeater Terminology
	18.7 References and Bibliography

	Chapter 19--Propagation of Radio Signals
	Contents

	19.1 Fundamentals of Radio Waves

	19.2 Sky-Wave Propagation and the Sun

	19.3 MUF Predictions

	19.4 Propagation in the Troposphere

	19.5 VHF/UHF Mobile Propagation

	19.6 Propagation for Space Communications

	19.7 Noise and Propagation

	19.8 Propagation Below the AM Broadcast Band

	19.9 Glossary of Radio Propagation Terms

	19.10 References and Bibliography

	Chapter 20--Transmission Lines

	Contents

	20.1 Transmission Line Basics

	20.2 Choosing a Transmission Line

	20.3 The Transmission Line as Impedance Transformer

	20.4 Matching Impedances in the Antenna System

	20.5 Baluns and Transmission-Line Transformers

	20.6 Waveguides

	20.7 Glossary of Transmission Line Terms

	20.8 References and Bibliography

	Chapter 21--Antennas

	Contents

	21.1 Antenna Basics

	21.2 Dipoles and the Half-Wave Antenna

	21.3 Vertical (Ground-Plane) Antennas

	21.4 T and Inverted-L Antennas
	21.5 Slopers and Vertical Dipoles

	21.6 Yagi Antennas

	21.7 Quad and Loop Antennas

	21.8 HF Mobile Antennas

	21.9 VHF/UHF Mobile Antennas

	21.10 VHF/UHF Antennas

	21.11 VHF/UHF Yagis

	21.12 Radio Direction
Finding Antennas
	21.13 Glossary

	21.14 References and Bibliography

	Chapter 22--Component Data and References

	Contents

	22.1 Component Data

	22.2 Resistors

	22.3 Capacitors

	22.4 Inductors

	22.5 Transformers

	22.6 Semiconductors

	22.7 Tubes, Wires, Materials, Attenuators, Miscellaneous

	22.8 Computer Connectors

	22.9 RF Connectors and Transmission Lines

	22.10 Reference Tables

	Chapter 23--Construction Techniques

	Contents

	23.1 Electronic Shop Safety

	23.2 Tools and Their Use

	22.3 Soldering Tools and Techniques

	23.4 Surface Mount Technology (SMT)

	23.5 Constructing Electronic Circuits

	23.6 Microwave Construction

	23.7 Mechanical Fabrication

	Chapter 24--Station Accessories

	Contents

	24.1 A 100-W Compact Z-Match Antenna Tuner

	24.2 A Microprocessor Controlled SWR Monitor

	24.3 A 160- and 80-Meter Matching Network for Your 43-Foot Vertical

	24.4 Switching the Matching Network for Your 43-Foot Vertical

	24.5 An External Automatic Antenna Switch for Use with Yaesu or ICOM Radios
l
	24.6 A Low-Cost Remote Antenna Switch

	24.7 Audible Antenna Bridge

	24.8 A Trio of Transceiver/Computer Interfaces

	24.9 A simple Serial Interface

	24.10 USB Interfaces For Your Ham Gear

	24.11 The Universal Keying Adapter

	24.12 The TiCK-4--A Tiny CMOS Keyer

	24.13 Adapting Aviation Headsets to Ham Radios

	24.14 An Audio Intelligibility Enhancer

	24.15 An Audio Interface Unit for Field Day and Contesting

	24.16 Two QSK Controllers for Amplifiers

	Chapter 25--Test Equipment and Measurements

	Contents

	25.1 Introduction

	25.2 DC Measurements

	25.3 AC Measurments

	25.4 RF Measurements

	25.5 Receiver Measurements

	25.6 Transmitter Measurements

	25.7 Miscellaneous Measurements

	25.8 Construction Projects

	25.9 References and Further Reading

	25.10 Test and Measurement Glossary

	Chapter 26--Troubleshooting and Maintenance

	Contents

	26.1 Test Equipment

	26.2 Components

	26.3 Getting Started

	26.4 Inside the Equipment

	26.5 Testing at the Circuit Level

	26.6 After the Repairs

	26.7 Professional Repairs

	26.8 Typical Symptoms and Faults

	26.9 Rado Troubleshooting Hints

	26.10 Antenna Systems

	26.11 Repair and Restoration of Vintage Equipment

	26.12 References and Bibliography

	Chapter 27--RF Interference

	Contents

	27.1 Managing Radio Frequency Interference

	27.2 FCC Rules and Regulations

	27.3 Elements of RFI

	27.4 Identifying the Type of RFI Source

	27.5 Locating Sources of RFI

	27.6 Power-Line Noise

	27.7 Elements of RFI Control

	27.8 Troubleshooting RFI

	27.9 Automotive RFI

	27.10 RFI Projects

	27.11 RFI Glossary

	27.12 References and Bibliography

	Chapter 28--Safety

	Contents

	28.1 Electrical Safety

	28.2 Antenna and Tower Safety

	28.3 RF Safety

	Chapter 29--Assembling a Station

	Contents

	29.1 Fixed Stations

	29.2 Mobile Installations

	29.3 Portable Installations

	29.4 Remote Stations

	29.5 References and Bibliography

	Space Communications

	Contents

	1 Amateur Satellite History

	2 Satellite Transponders

	3 Satellite Tracking

	4 Satellite Ground Station Antennas

	5 Satellite Ground Station Equipment

	6 Satellite Antenna Projects

	7 Satellite References and Bibliography

	8 Earth-Moon-Earth (EME) Communication

	9 EME Propgagation

	10 Fundamental Limits

	11 Building an EME Station

	12 Getting Started

	13 EME Notes and References

	14 Glossary of Space Communicaitons Terminology

	Digital Communications

	Contents

	1 Sound Card Modes

	2 Packet Radio

	3 The Automatic Packet/Position Reporting System (APRS)

	4 PACTOR
	5 High Speed Multimedia (HSMM)

	6 Automatic Link Establishment (ALE)

	7 D-STAR

	8 APCO-25

	9 HF Digital Voice

	10 EchoLink, IRLP and WIRES-II

	11 Glossary of Digital Communication Terms

	12 Blbliography and References

	Image Communications
	Contents

	1 Fast-Scan Amateur Television Overview

	2 Amateur TV Systems

	3 ATV Applications

	4 Video Sources
	5 Glossary of ATV Terms

	6 ATV Bibliography and References

	7 Slow-Scan Televison (SSTV) Overview

	8 SSTV Basics

	9 Analog SSTV

	10 Digital SSTV

	11 Glossary of SSTV Terms

	12 SSTV Bibliography and References

	2014 HF Transceiver Survey

	Advertising

	Index

	About the Included CD-ROM�
	Cover I

	Cover II

	Cover III

	Cover IV

	2014 Handbook Supplemental Files

	2014 Handbook Companion Software

