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DSP and Software  
Radio Design

In recent years, digital signal 
processing (DSP) technology has 
progressed to the point where it is 
an integral part of our radio equip-
ment. DSP is rapidly replacing 
hardware circuits with software, 
offering amateurs flexibility and 
features only dreamed of in the 
past. This chapter, by Alan Bloom, 
N1AL, explores DSP and its use 
in radio design. DSP projects and 
additional background and sup-
port materials may be found on 
the Handbook CD.

Chapter 15

15.1 Introduction
Digital signal processing (DSP) has been around a long time. The essential theory was 

developed by mathematicians such as Newton, Gauss and Fourier in the 17th, 18th and 19th 
centuries. It was not until the latter half of the 20th century, however, that digital computers 
became available that could do the calculations fast enough to process signals in real time. 
Today DSP is important in many fields, such as seismology, acoustics, radar, medical imaging, 
nuclear engineering, audio and video processing, as well as speech and data communications.

In all those systems, the idea is to process a digitized signal so as to extract information 
from it or to control its characteristics in some way. For example, an EKG monitor in a hos-
pital extracts the essential characteristics of the signal from the patient’s heart for display on 
a screen. A digital communications receiver uses DSP to filter and demodulate the received 
RF signal before sending it to the speaker or headphones. In some systems, the signal to be 
processed may have more than one dimension. An example is image data, which requires 
two-dimensional processing. Similarly, the controller for an electrically-steerable antenna 
array uses multi-dimensional DSP techniques to determine the amplitude and phase of the 
RF signal in each of the antenna elements. A CT scanner analyzes X-ray data in three dimen-
sions to determine the internal structures of a human body.

SOFTWARE-DEFINED RADIO
The concept of a software-defined radio (SDR) became popular in the 1990s. By then, 

DSP technology had developed to the point that it was possible to implement almost all the 
signal-processing functions of a transceiver using inexpensive programmable digital hardware. 
The frequency, bandwidth, modulation, filtering and other characteristics can be changed 
under software control, rather than being fixed by the hardware design as in a conventional 
radio. Adding a new modulation type or a new improved filter design is a simple matter of 
downloading new software. In addition, with the same hardware design, a single radio can 
have several different modulation modes.

SDR is appealing to regulatory bodies such as the FCC because it makes possible a com-
munications system called cognitive radio in which multiple radio services can share the 
same frequency spectrum.1 Each node in a wireless network is programmed to dynamically 
change its transmission or reception characteristics to avoid interference with other users. 
In this way, services that in the past enjoyed fixed frequency allocations but that only use 
their channels a small percentage of the time can share their spectrum with other wireless 
users with minimal interference.

DSP ADVANTAGES
Digital signal processing has the reputation of being more complicated than the analog 

circuitry that it replaces. In reality, once the analog signal has been converted into the digital 
domain, complicated functions can be implemented in software much more simply than would 
be possible with analog components. For example, the traditional “phasing” method of gen-
erating an SSB signal without an expensive crystal filter requires various mixers, oscillators, 
filters and a wide-band audio-frequency phase-shift network built with a network of high-
precision resistors and capacitors. To implement the same function in a DSP system requires 
adding one additional subroutine to the software program — no additional hardware is needed.

• A collection of DSP  
projects with supporting files

• A discussion of DSP calculations 
with samples and files that accom-
pany the discussion

Chapter 15 —  
CD-ROM Content
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There are many features that are straightfor-
ward with DSP techniques but would be dif-
ficult or impractical to implement with analog 
circuitry. A few examples drawn just from  
the communications field are imageless mix-
ing, noise reduction, OFDM modulation and 
adaptive channel equalization. Digital signals 
can have much more dynamic range than 
analog signals, limited only by the number 
of bits used to represent the signal. For ex-
ample, it is easy to add an extra 20 or 30 dB of 
headroom to the intermediate signal process-
ing stages to ensure that there is no measur-
able degradation of the signal, something that 
might be difficult or impossible with analog 
circuitry. Replacing analog circuitry with soft-
ware algorithms eliminates the problems of 
nonlinearity and drift of component values 
with time and temperature. The programmable 
nature of most DSP systems means you can 
make the equivalent of circuit modifications 
without having to unsolder any components.

DSP LIMITATIONS
Despite its many advantages, we don’t 

mean to imply that DSP is best in all situa-
tions. High-power and very high-frequency 
signals are still the domain of analog circuitry. 
Where simplicity and low power consump-
tion are primary goals, a DSP solution may 
not be the best choice. For example, a simple 
CW receiver that draws a few milliamps from 
the power supply can be built with two or 
three analog ICs and a handful of discrete 
components. In many high-performance 
systems, the performance of the analog-to-
digital converter (ADC or A/D converter) 
and digital-to-analog converter (DAC or D/A 
converter) are the limiting factors. That is 
why, even with the latest generation of af-
fordable ADC technology, it is still possible 
to obtain better blocking dynamic range in 
an HF receiver using a hybrid analog-digital 
system rather than going all-digital by routing 
the RF input directly to an ADC.

The plan of this chapter is first to discuss 

the overall hardware and software structure of 
a DSP system, including general information 
on factors to be considered when designing 
at the system level. Then we will cover the 
basic theory of digital signals, with emphasis 
on topics relevant to radio communications. 
Following that is a section on digital filters 
and another section that describes several 
other miscellaneous DSP applications. The 
concept of analytic signals (negative frequen-
cies and all that) is important for understand-
ing software-defined radios, so we cover that 
before getting into SDRs themselves. The 
final two sections, on SDR hardware and 
software, use many of the concepts explained 
in previous sections to show how a radio can 
be built with most of the signal processing 
done digitally. For the fullest understand-
ing of this chapter the reader should have a 
basic familiarity of the topics covered in the 
Electrical Fundamentals, Analog Basics 
and Digital Basics chapters as well as some 
high-school trigonometry.

15.2 Typical DSP System Block Diagram
A typical DSP system is conceptually very 

simple. It consists of only three sections, as 
illustrated in Fig 15.1. An ADC at the in-
put converts an analog signal into a series 
of digital numbers that represent snapshots 
of the signal at a series of equally spaced 
sample times. The digital signal processor 
itself does some kind of calculations on that 
digital signal to generate a new stream of 
numbers at its output. A DAC then converts 
those numbers back into analog form.

Some DSP systems may not have all three 
components. For example, a DSP-based au-
dio-frequency generator does not need an 
ADC. Similarly, there is no need for a DAC 
in a measurement system that monitors some 
sensor output, processes the signal and stores 
the result in a computer file or displays it on 
a digital readout.

The term “DSP” is normally understood 
to imply processing that occurs in real time, 
at least in some sense. For example, an RF 
or microwave signal analyzer might include 
a DSP co-processor that processes chunks of 
sampled data in batch mode for display a frac-
tion of a second later. However, a computer 
program that analyzes historical sunspot data 
or stock prices normally would not be called 
“digital signal processing” even though the 
types of calculations might be very similar.

15.2.1 Data Converters
In this chapter we will discuss only briefly 

several aspects of ADC and DAC specifica-

tions and performance that directly affect 
design decisions at the system level. The 
Analog Basics chapter has additional details 
that must be considered when doing an actual 
circuit design.

The first requirement when selecting a 
DAC or ADC is that it be able to handle the 
required sample rate. For communications-
quality voice, a sample rate on the order of 
8000 samples per second (8 ksps) should 
be adequate. For high-quality music, sample 
rates are typically an order of magnitude high-
er and for processing wideband RF signals, 
you’ll need data converters with sample rates 
in the megasamples per second (Msps) range. 
In many systems the input and output sample 
rates are different. For example, a software-
defined receiver might sample the input RF 
signal at 100 Msps while the output audio 
DAC is running at only 8 ksps.

The resolution of a data converter is ex-
pressed as the number of bits in the data 
words. For example, an 8-bit ADC can only 
represent the sampled analog signal as one 
of 28 = 256 possible numbers. The small-
est signal that it can resolve is therefore 1⁄256 

of full scale. Even with an ideal, error-free 

Fig 15.1 — A generic 
DSP system.

ADC, the quantization error is up to ±1⁄2 of 
one least-significant bit (LSB) of the digital 
word, or ±1⁄512 of full scale with 8-bit resolu-
tion. Similarly, a DAC can only generate the 
analog signal to within ±1⁄2 LSB of the desired 
value. Later in the chapter we will discuss 
how to determine the required sample rate 
and resolution for a given application.

Another important data converter speci-
fication is the spurious-free dynamic range 
(SFDR). This is the ratio, normally expressed 
in dB, between a (usually) full-scale sine 
wave and the worst-case spurious signal. 
While higher-resolution ADCs and DACs 
tend to have better SFDR, that is not guar-
anteed. Devices that are intended for signal-
processing applications normally specify the 
SFDR on the data sheet.

While sample rate, resolution and SFDR 
are the principal selection criteria for data 
converters in a DSP system, other parameters 
such as signal-to-noise ratio, harmonic and 
intermodulation distortion, full-power band-
width, and aperture delay jitter can also affect 
performance. Of course, basic specifications 
such as power requirements, interface type 
(serial or parallel) and cost also determine a 
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device’s suitability for a particular applica-
tion. As with any electronic component, it is 
very important to read and fully understand 
the data sheet.

15.2.2 DSP
The term digital signal processor (DSP) 

is commonly understood to mean a special-
purpose microprocessor with an architecture 
that has been optimized for signal processing. 
And indeed, in many systems the box labeled 
“DSP” in Fig 15.1 is such a device. A micro
processor has the advantage of flexibility be-
cause it can easily be re-programmed. Even 
with a single program, it can perform many 
completely-different tasks at different points 
in the code. On-chip hardware resources such 
as multipliers and other computational units 
are used efficiently because they are shared 
among various processes.

That is also the Achilles’ heel of program-
mable DSPs. Any hardware resource that is 
shared among various processes can be used 
by only one process at a time. That can create 
bottlenecks that limit the maximum computa-
tion speed. Some DSP chips include multiple 
computational units or multiple cores (basi-
cally multiple copies of the entire proces-
sor) that can be used in parallel to speed up 
processing.

DIGITAL SIGNAL PROCESSING 
WITHOUT A “DSP”

Another way to speed up processing is to 
move all or part of the computations from 
the programmable DSP to an application-
specific integrated circuit (ASIC), which 
has an architecture that has been optimized 
to perform some specific DSP function. For 
example, direct digital synthesis (DDS) fre-
quency synthesizer chips are available that 
run at rates that would be impossible with a 
microprocessor-type DSP.

You could also design your own applica-
tion-specific circuitry using a PC board full 
of discrete logic devices. Nowadays, how-
ever, it is more common to do that with a 
programmable-logic device (PLD). This is 

an IC that includes many general-purpose 
logic elements, but the connections between 
the elements are undefined when the device 
is manufactured. The user defines those con-
nections by programming the device to per-
form whatever function is required. PLDs 
come in a wide variety of types, described 
by an alphabet soup of acronyms.

Programmable-array logic (PAL), pro-
grammable logic array (PLA), and generic ar-
ray logic (GAL) devices are relatively simple 
arrays of AND gates, OR gates, inverters and 
latches. They are often used as “glue logic” to 
replace the miscellaneous discrete logic ICs 
that would otherwise be used to interface vari-
ous larger digital devices on a circuit board. 
They are sometimes grouped under the general 
category of small PLD (SPLD). A complex 
PLD (CPLD) is similar but bigger, often con-
sisting of an array of PALs with programmable 
interconnections between them.

A field-programmable gate array (FPGA) 
is bigger yet, with up to millions of gates 
per device. An FPGA includes an array of 
complex logic blocks (CLB), each of which 
includes some programmable logic, often 
implemented with a RAM look-up table 
(LUT), and output registers. Input/output 
blocks (IOB) also contain registers and can be 
configured as input, output, or bi-directional 
interfaces to the IC pins. The interconnections 
between blocks are much more flexible and 
complicated than in CPLDs. Some FPGAs 
also include higher-level circuit blocks such 
as general-purpose RAM, dozens or hundreds 
of hardware multipliers, and even entire on-
chip microprocessors.

Some of the more inexpensive PLDs are 
one-time programmable (OTP), meaning you 
have to throw the old device away if you 
want to change the programming. Other de-
vices are re-programmable or even in-circuit 
programmable (ICP) which allows changing 
the internal circuit configuration after the 
device has been soldered onto the PC board, 
typically under the control of an on-board 
microprocessor. That offers the best of both 
worlds, with speed nearly as fast as an ASIC 
but retaining many of the benefits of the repro-

grammability of a microprocessor-type DSP. 
Most large FPGAs store their programming 
in volatile memory, which is RAM that must 
be re-loaded every time power is applied, 
typically by a ROM located on the same cir-
cuit board. Some FPGAs have programmable 
ROM on-chip.

Programming a PLD is quite different from 
programming a microprocessor. A micropro-
cessor performs its operations sequentially 
— only one operation can be performed at 
a time. Writing a PLD program is more like 
designing a circuit. Different parts of the 
circuit can be doing different things at the 
same time. Special hardware-description 
languages (HDL) have been devised for pro-
gramming the more complicated parts such 
as ASICs and FPGAs. The two most com-
mon industry-standard HDLs are Verilog and 
VHDL. (The arguments about which is “best” 
approach the religious fervor of the Windows 
vs Linux wars!) There is also a version of the 
C++ programming language called SystemC 
that includes a series of libraries that extend 
the language to include HDL functions. It 
is popular with some designers because it 
allows simulation and hardware description 
using the same software tool.

Despite the speed advantage of FPGAs, 
most amateurs use microprocessor-type de-
vices for their DSP designs, supplemented 
with off-the-shelf ASICs where necessary. 
The primary reason is that the design process 
for an FPGA is quite complicated, involving 
obtaining and learning to use several sophis-
ticated software tools. The steps involved in 
programming an FPGA are:
1. Simulate the design at a high abstraction 

level to prove the algorithms.
2. Generate the HDL code, either manually 

or using some tool.
3. Simulate and test the HDL program.
4. Synthesize the gate-level netlist.
5. Verify the netlist.
6. Perform a timing analysis.
7. Modify the design if necessary to meet 

timing constraints.
8. “Place and route” the chip design.
9. Program and test the part.

Table 15.1
PLD Manufacturers
Company	 Devices	 URL	 Notes
Achronix	 FPGA	 www.achronix.com	 High-speed FPGAs
Actel	 FPGA	 www.actel.com	 Mixed-signal flash-based FPGAs
Altera	 CPLD, FPGA, ASIC	 www.altera.com	 One of the two big FPGA vendors			 
Atmel	 SPLD, CPLD, 	 www.atmel.com	 Fine-grain-reprogrammable FPGAs with AVR
	 FPGA, ASIC		    microprocessors on chip 
Cypress Semiconductor	 SPLD, CPLD	 www.cypress.com				  
Lattice Semiconductor	 SPLD, CPLD, FPGA	 www.latticesemi.com	 Leading supplier of flash-based nonvolatile FPGAs
SiliconBlue	 FPGA	 www.siliconbluetech.com	 Low-power FPGAs
Texas Instruments	 SPLD, ASIC	 www.ti.com	
Xilinx	 CPLD, FPGA	 www.xilinx.com	 One of the two big FPGA vendors
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Many of the software tools needed to per-
form those steps are quite expensive, although 
some manufacturers do offer free proprietary 
software for their own devices. Some prin-
cipal manufacturers are listed in Table 15.1.

MICROPROCESSOR-TYPE  
DSP CHIPS

In contrast with designing an FPGA, pro-
gramming a DSP chip is relatively easy. C 
compilers are available for most devices, so 
you don’t have to learn assembly language. 
Typically you include a connector on your 
circuit board into which is plugged an in-circuit 
programmer (ICP), which is connected to a 
PC via a serial or USB cable. The software is 
written and compiled on the PC and then down-
loaded to the DSP. The same hardware often 
also includes an in-circuit debugger (ICD) so 
that the program can be debugged on the actual 
circuitry used in the design. The combination 
of the editor, compiler, programmer, debug-
ger, simulator and related software is called 
an integrated development environment (IDE).

Until recently you had to use an in-circuit 
emulator (ICE), which is a device that plugs 
into the circuit board in place of the micro-
processor. The ICE provides sophisticated 
debugging tools that function while the emu-
lator runs the user’s software on the target 
device at full speed. Nowadays, however, it is 
more common to use the ICD function that is 
built into many DSP chips and which provides 
most of the functions of a full-fledged ICE. It 
is much cheaper and does not require using a 
socket for the microprocessor chip.

The architecture of a digital signal pro-
cessor shares some similarities to that of a 
general-purpose microprocessor but also dif-
fers in important respects. For example, DSPs 
generally don’t spend much of their lives 
handling large computer files, so they tend 
to have a smaller memory address space than 
processors intended to be used in computers. 
On the other hand, the memory they do have is 
often built into the DSP chip itself to improve 
speed and to reduce pin count by eliminating 
the external address and data bus.

Most microprocessors use the traditional 
Von Neumann architecture in which the pro-
gram and data are stored in the same memory 
space. However, most DSPs use a Harvard 
architecture, which means that data and pro-
gram are stored in separate memories. That 
speeds up the processor because it can be 
reading the next program instruction at the 
same time as it is reading or writing data in 
response to the previous instruction. Some 
DSPs have two data memories so they can 
read and/or write two data words at the same 
time. Most devices actually use a modified 
Harvard architecture by providing some (typ-
ically slower and less convenient) method 
for the processor to read and write data to 
program memory.

Fig 15.2 — Simplified block diagram of a dsPIC processor.

Probably the key difference between gen-
eral-purpose and digital-signal processors is 
in the computational core, often called the 
arithmetic logic unit (ALU). The ALU in 
a traditional microprocessor only performs 
integer addition, subtraction and bitwise logic 
operations such as AND, OR, one-bit shifting 
and so on. More-complicated calculations, 
such as multiplication, division and opera-
tions with floating-point numbers, are done 
in software routines that exercise the simple 
resources of the ALU multiple times to gener-
ate the more-complicated results.

In contrast, a DSP has special hardware 
to perform many of these operations much 
faster. For example, the multiplier-accumula-
tor (MAC) multiplies two numbers and adds 

(accumulates) the product with the previous 
results in a single step. Many common DSP 
algorithms involve the sum of a large num-
ber of products, so nearly all DSPs include 
this function. Fig 15.2 is a simplified block 
diagram of the dsPIC series from Microchip. 
Its architecture is basically that of a general-
purpose microcontroller to which has been 
added a DSP engine, which includes a MAC, 
a barrel shifter and other DSP features. It does 
use a modified Harvard architecture with two 
data memories that can be simultaneously 
accessed.

A floating-point number is the binary 
equivalent of scientific notation. Recall that 
the decimal integer 123000 is expressed as 
1.23 × 105 in scientific notation. It is common 
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practice to place the decimal point after the 
first non-zero digit and indicate how many 
digits the decimal point must be moved by the 
exponent of ten, 5 in this case. The 1.23 part is 
called the mantissa. In a computer, base-2 bi-
nary numbers are used in place of the base-10 
decimal numbers used in scientific notation. 
The binary point (equivalent to the decimal 
point in a decimal number) is assumed to be to 
the left of the first non-zero bit. For example 
the binary number 00110100 when converted 
to a 16-bit floating point number would have 
an 11-bit mantissa of 11010000000 (with 
the binary point assumed to be to the left of 
the first “1”) and a 5-bit exponent of 00110 
(decimal +6).

A floating point number can represent a 
signal with much more dynamic range than 
an integer number with the same number of 
bits. For example, a 16-bit signed integer can 
vary from –32768 to +32767. The difference 
between the smallest (1) and largest signal 
that can be represented is 20 log(65535) = 
96 dB. If the 16 bits are divided into an 11-
bit mantissa and 5-bit exponent, the avail-
able range is 20 log(2048) = 66 dB from the 
mantissa and 20 log(232) = 193 dB from the 
exponent for a total of 259 dB. The disadvan-
tage is that the mantissa has less resolution, 
potentially increasing noise and distortion. 
Normally floating-point numbers are at least 
32 bits wide to mitigate that effect.

Some DSPs can process floating-point 
numbers directly in hardware. Fixed-point 
DSPs can also handle floating-point num-

Table 15.2
Manufacturers of Embedded DSPs
Company	 Family	 Data	 Speed	 Nr.of	 ROM	 RAM	 Notes
		  Bits	 MMACs	 Cores	 (bytes)	 (bytes)	
Analog Devices	 ADSP-21xx	 16	 75-160	 1	 12k-144k	 8k-112k	 Easy assembly 
www.analog.com							         language
	 SHARC	 32/40 fp	 300-900	 1	 2-4M	 0.5-5M	 Runs fixed or 
							         floating point
	 Blackfin	 16/32	 400-2400	 1-2	 External	 53k-328k	 Many on-chip 
							       peripherals
							     
Cirrus Logic	 CS48xxxx	 32	 150	 1		  96k	 Audio applications
www.cirrus.com	 CS49xxxx	 32	 300	 2	 512k	 296k-328k	 Audio applications	 		
				  
	 						    
Freescale	 DSP568xx	 16	 32-120	 1	 2k-576k	 2k-128k	 Also a microcontroller
www.freescale.com	 DSP563xx	 24	 80-275	 1	 External	 576k	
	 StarCore	 16	 1000-48,000	 1-6	 External	 0-1436k	
							     
Microchip	 dsPIC	 16	 30-70	 1	 6k-256k	 256-32k	 Also a microcontroller
www.microchip.com	 						      Free IDE software
	 						    
Texas Instruments	 C5000	 16	 50-600	 1	 8k-256k	 0-1280k	
www.ti.com	 C6000	 16/64 fp	 300-24,000	 1-3	 0-384k	 32k-3072	 Fixed or floating point ver.
	 						    
Zilog	 Z89xxx	 16	 20	 1	 4k-8k	 512	
www.zilog.com

bers, but it must be done in software. The 
additional dynamic range afforded by 
floating-point processing is normally not 
needed for radio communications signals 
since the dynamic range of radio signals is 
typically less than can be handled by the 
16-bit data words used by most integer 
DSPs. Using integer arithmetic saves the 
additional cost of a floating-point processor 
or the additional computational overhead of 
floating-point calculations on a fixed-point 
device. However, it requires careful atten-
tion to detail on the part of the programmer 
to make sure the signal can never exceed 
the maximum integer value or get so weak 
that the signal-to-noise ratio is degraded. If 
cost or computation time is not an issue, it 
is much easier to program in floating point 
since dynamic range issues can be ignored 
for most computations.

The term pipeline refers to the ability of a 
microprocessor to perform portions of several 
instructions at the same time. The sequence of 
operations required to perform an instruction 
is broken down into steps. Since each step is 
performed by a different chunk of hardware, 
different chunks can be working on different 
instructions at the same time. Most DSPs have 
at least a simple form of pipelining in which 
the next instruction is being fetched while 
the previous instruction is being executed. 
Some DSPs can do a multiply-accumulate 
while the next two multiplicands are being 
read from memory and the previous accumu-
lated result is being stored so that the entire 

operation can occur in a single clock cycle. 
MACs per second is a common figure of merit 
for measuring DSP speed. For conventional 
microprocessors, a more common figure of 
merit is millions of instructions per second 
(MIPS) or floating-point operations per sec-
ond (FLOPS).

Many DSPs have a sophisticated address 
generation unit that can automatically incre-
ment one or more data memory pointers so 
that repetitive calculations can step through 
memory without the processor having to cal-
culate the addresses. Zero-overhead looping 
is the ability to automatically jump the ad-
dress pointer back to the beginning of the 
array when it reaches the end. That saves 
several microprocessor instructions per loop 
that normally would be required to check the 
current address and jump when it reaches a 
predetermined value.

While most DSPs do not include a full 
hardware divider, some do include special 
instructions and hardware to speed up divi-
sion calculations. A barrel shifter is another 
common DSP feature. It allows shifting a 
data word a specified number of bits in a 
single clock cycle. Direct memory access 
(DMA) refers to special hardware that can 
automatically transfer data between memory 
and various peripheral devices or ports with-
out processor overhead.

DSP IN EMBEDDED SYSTEMS
An embedded system is a device that is not 

a computer but nevertheless has a micropro-
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cessor or DSP chip embedded somewhere 
in its circuitry. Examples are microwave 
ovens, automobiles, mobile telephones and 
software-defined radios. DSPs intended for 
embedded systems often include a wide array 
of on-chip peripherals such as various kinds 
of timers, multiple hardware interrupts, se-
rial ports of various types, a real-time clock, 
pulse-width modulators, optical encoder in-
terfaces, A/D and D/A converters and lots of 
general-purpose digital I/O pins. Some DSPs 
not only include lots of peripherals but in ad-
dition have architectures that are well-suited 
for general-purpose control applications as 
well as digital signal processing.

Table 15.2 lists some manufacturers of 
DSP chips targeted to embedded systems. It 
should be mentioned that microprocessors 
intended for personal computers made by 
Intel and AMD also include extensive DSP 
capability. However, they are large, compli-
cated, power-hungry ICs that are not often 
used in embedded applications.

When selecting a DSP device for a new de-
sign, often the available development environ-
ment is more important than the characteristics 
of the device itself. Microchip’s dsPIC family 
of DSPs was chosen for the examples in this 
chapter because their integrated development 
environment is extensive and easy to use and 
the IDE software is available for free down-
load from their Web site.2 The processor in-
struction set is a superset of the PIC24 family of 
general-purpose microcontrollers, with which 
many hams are already familiar. The company  
offers a line of low-cost evaluation boards and 
starter kits as well as an inexpensive in-circuit 
debugger, the ICD 3. The free IDE software 

includes a simulator that can run dsPIC 
software on a PC (at a much slower rate, 
of course), so that you can experiment with 
DSP algorithms before buying any hardware.

The Microchip DSP family is limited to 
70 million instructions per second. In a sys-
tem with, say, a 70 kHz sample rate, 1000 
instructions per sample are available which 
should be plenty if the calculations are not 
too complex. However if the sample rate is 
1 MHz, then you get only 70 instructions per 
sample, which likely would be insufficient.

If more horsepower is required, you’ll need 
to select a processor from a different manu-
facturer. Look for one with a well-integrated 
suite of development software that is power-
ful and easy to use. Also check out the cost and 
availability of development hardware such as 
evaluation kits, programmers and debuggers. 
Once those requirements are met, then you 
can move on to selecting a specific device 
with the performance and features required 
for your application. It can be helpful at the 
beginning of a project to first write some of 
the key software routines and test them on 
a simulator to estimate execution times, in 
order to determine how powerful a proces-
sor is needed.

When estimating execution time, don’t 
forget to include the effect of interrupts. Most 
DSP systems require real-time response and 
make extensive use of interrupts to ensure 
that certain events happen at the correct 
times. Although this is hidden from the pro-
grammer’s view when programming in C,  
the interrupt service routines contain quite 
a bit of overhead each time they are called 
(to save the processor state when responding  

and to recall the state just before returning 
from the interrupt). Sometimes an interrupt 
may be called more often than you expect, 
which can eat up processor cycles and so 
increase the execution time of other unre-
lated routines.

In the past, may embedded systems were 
written in assembly language so save mem-
ory and increase processing speed. Many 
early microprocessors and DSPs did not 
have enough memory to support a high-level 
language. Today, most processors have suf-
ficient memory and processing speed to sup-
port a C kernel and library without difficulty. 
For anything but the simplest of programs, 
it is not only faster and easier to develop 
software in C but it is easier to support and 
maintain as well, especially if people other 
than the original programmer might become 
involved. Far more people know the C pro-
gramming language than any particular pro-
cessor’s assembly language. It is true that the 
version of C used on a DSP chip is usually 
modified from standard ANSI C to support 
specific hardware features, but it would still 
be far easier to learn for a programmer fa-
miliar with writing C code on a PC or on a 
different DSP.

A common technique is first to write the 
entire application in C. Then, if execution 
time is not acceptable, analyze the system 
to determine in which software routines the 
bottlenecks are occurring. Those routines can 
then be re-written in assembly language. Hav-
ing an already-working version written in C 
(even if too slow) can be helpful in testing 
and troubleshooting the equivalent assembly 
language.

15.3 Digital Signals
Digital signals differ from analog signals 

in two ways. One is that they are digitized in 
time, a process called sampling. The other is 
that they are digitized in amplitude, a process 
called quantization. Sampling and quantiza-
tion affect the digitized signal in different 
ways so the following sections will consider 
their effects separately.

15.3.1 Sampling — 
Digitization in Time

Sampling is the process of measuring a sig-
nal at discrete points of time and recording the 
measured values. An example from history is 
recording the number of sunspots. If an ob-

server goes out at noon every day and writes 
down the number of observed sunspots, then 
that data can be used to plot sunspot number 
versus time. In this case, we say the sample 
rate is one sample per day. The data can then 
be analyzed in various ways to determine 
short and long-term trends. After recording 
only a few months of data it will quickly 
become apparent that sunspot number has a 
marked periodicity — the numbers tend to 
repeat every 27 days (which happens to be the 
rotation rate of the sun as seen from earth).

What if, instead of taking a reading once 
a day, the readings were taken only once per 
month? With a 30-day sample period, the 
27-day periodicity would likely be impos-

sible to see. Clearly, the sample rate must be 
at least some minimum value to accurately 
represent the measured signal. Based on ear-
lier work by Harry Nyquist, Claude Shannon 
proved in 1948 that in order to sample a signal 
without loss of information, the sample rate 
must be greater than the Nyquist rate, which 
is two times the bandwidth of the signal. In 
other words, the bandwidth must be less than 
the Nyquist frequency, which is one-half the 
sample rate. This is known as the Nyquist 
sampling criterion.

That simple rule has some profound impli-
cations. If all the frequency components of 
a signal are contained within a bandwidth of  
B Hz, then sampling at a rate greater than 2B 



DSP and Software Radio Design    15.7

samples per second is sufficient to represent 
the signal with 100% accuracy and with no 
loss of information. It is theoretically pos-
sible to convert the samples back to an analog 
signal that is exactly identical to the original.

Of course, a real-world digital system mea-
sures those samples with only a finite number 
of bits of resolution, with consequences that 
we will investigate in the section on quantiza-
tion that follows. In addition, sampling theory 
assumes that there is absolutely no signal en-
ergy outside the specified bandwidth; in other 
words the stopband attenuation is infinity dB. 
Any residual signal in the stop-band shows up 
as distortion or noise in the sampled signal.

To simplify the discussion, let’s think about 
sampling a signal of a single frequency (a sine 
wave). Fig 15.3 illustrates what happens if the 
sample rate is too low. As shown, the sample 
rate is approximately 7⁄8 the sine-wave fre-
quency. You can see that the sampled signal 
has a period about 8 times greater than the 
period of the sine wave, or 1⁄8 the frequency. 
The samples are the same as if the analog 
signal had been a sine wave of 1⁄8 the actual 
frequency.

That is an example of a general principle. 
If the sample rate is too low, the sampled 
signal will be aliased to a frequency equal to 
the difference between the actual frequency 
of the analog signal and the sample rate. In 
the above example, the alias frequency fo is

( ) ( )o sig s sig sig
7 1

8 8f f f 1 f f= − = − =

where fsig is the frequency of the signal before 
sampling and fs is the sample rate.

If the analog signal’s frequency is even 
higher, then it aliases relative to whichev-
er harmonic of the sample rate is closest.  
Fig 15.4C shows all the signal frequencies 
that alias to a frequency of fo, calculated from 
the equation

o sig sf f Nf= −

where N is the harmonic number. One way 
to think of it is that a sampler is a harmonic 
mixer. The sampled signal (equivalent to the 
mixer output) contains the sum and difference 
frequencies of the input signal and all the 
harmonics of the sample frequency.

To avoid aliasing, most systems use an 
anti-aliasing filter before the sampler, as 
shown in Fig 15.5. For a baseband signal 
(one that extends to zero Hz), the anti-aliasing 
filter is a low-pass filter whose stopband ex-
tends from the Nyquist frequency to infinity. 
Of course, practical filters do not transition in-
stantaneously from the passband to the stop-
band, so the bandwidth of the passband must 
be somewhat less than half the sample rate.

It is actually possible to accurately sample 
signals above the Nyquist frequency so long 

Fig 15.3 — Undersampled sine wave (A). Samples aliased to a lower frequency (B).

Fig 15.4 — Spectrum of an analog sine wave (A). The spectrum of the sampling 
function, including all harmonics (B). The spectrum of the sampled sine wave (C).
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as their bandwidth does not violate the Ny-
quist criterion, a process called undersam-
pling or harmonic sampling. Imagine an LSB 
signal at 455 kHz with a bandwidth of 3 kHz 
that is being sampled at a 48 kHz rate. The 
455 kHz signal mixes with the ninth harmonic 
of the sample rate at 432 kHz, resulting in a 
sampled signal with its suppressed carrier 
at 455 – 432 = 23 kHz and extending 3 kHz 
below that to 20 kHz. So long as the incom-
ing signal has no significant energy below  
432 kHz or above 456 kHz [432 + (48/2)] 
kHz no unwanted aliasing occurs.

With harmonic sampling, the anti-alias 
filter must be a band-pass type. In the previ-
ous example, you’d probably need to use a 
crystal or mechanical filter in order to have 
a sufficiently sharp transition from the top 
edge of the passband slightly below 455 kHz 
to the stopband edge at 456 kHz.

Fig 15.3 shows each sample being held at a 
constant value for the duration of one sample 
period. However, sampling theory actually 
assumes that the sample is only valid at the 
instant the signal is sampled; it is zero or 
undefined at all other times. A series of such 
infinitely-narrow impulses has harmonics all 
the way to infinite frequency. Each harmonic 
has the same amplitude and is modulated by 
the signal being sampled. See Fig 15.6. When 
a digitized signal is converted back to analog 
form, unwanted harmonics must be filtered 
out by a reconstruction filter as shown in Fig 
15.5. This is similar to the anti-aliasing filter 
used at the input in that its bandwidth should 

Fig 15.5 — A more complete block diagram of a DSP system.

Fig 15.6 — An ideal sampled signal repeats the spectrum of the analog signal at all 
harmonics of the sample rate, fs.

be no greater than one-half the sample rate. It 
is a low-pass filter for a baseband signal and 
a band-pass filter for an undersampled signal.

Most DACs actually do hold each sample 
value for the entire sample period. This is 
called zero-order hold and results in a fre-
quency response in the shape of a sinc func-
tion

( ) ( )sin f
sinc f

f
π

=
π

where f is normalized to the sample rate,  
f = frequency / sample rate.

The graph of the sinc function in Fig 15.7 
shows both positive and negative frequencies 
for reasons explained in the Analytic Signals 
section. Note that the logarithmic frequency 
response has notches at the sample rate and 
all of its harmonics. If the signal bandwidth 
is much less than the Nyquist frequency, then 
most of the signal at the harmonics falls near 
the notch frequencies, easing the task of the 
reconstruction filter. If the signal bandwidth 
is small enough (sample rate is high enough), 
the harmonics are almost completely notched 
out and a reconstruction filter may not even 
be required.

The sin(πf)/πf frequency response also af-
fects the passband. For example if the pass-
band extends to sample rate / 4 (f = 0.25), 
then the response is

( )sin 0.25
20 log 0.9 dB

0.25
π ⋅

= −
π ⋅

at the top edge of the passband. At the Nyquist 
frequency, (f = 0.5), the error is 3.9 dB. If the 
signal bandwidth is a large proportion of the 
Nyquist frequency, then some kind of digital 
or analog compensation filter may be required 
to correct for the high-frequency rolloff.

DECIMATION AND INTERPOLATION
The term decimation simply means reduc-

ing the sample rate. For example to deci-
mate by two, simply eliminate every second 
sample. That works fine as long as the signal 
bandwidth satisfies the Nyquist criterion at 
the lower, output sample rate. If the analog 
anti-aliasing filter is not narrow enough, then 
a digital anti-aliasing filter in the DSP can be 
used to reduce the bandwidth to the necessary 
value. This must be done before decimation 
to satisfy the Nyquist criterion.

If you need to decimate by a large amount, 
then the digital anti-aliasing filter must have a 
very small bandwidth compared to the sample 
rate. As we will see later, a digital filter with 
a small bandwidth is computationally inten-
sive. For this reason, large decimation factors 
are normally accomplished in multiple steps, 
as shown in Fig 15.8A. The first decima-
tion is by a small factor, typically 2, so that 
the first anti-alias filter can be as simple as 

Fig 15.7 — The sinc function, where the 
horizontal axis is frequency normalized 
to the sample rate. At the bottom is the 
same function in decibels.
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possible. The second decimation stage then 
does not have to decimate by such a large 
factor, simplifying its task. In addition, since 
it is running at only half the input sample 
rate it has more time to do its calculations. 
Generally it is most efficient to decimate by 
the smallest factor in the first stage, a larger 
factor in the second, and the largest factors 
in the third and any subsequent stages. The 
larger the total decimation factor, the greater 
the number of stages is appropriate but more 
than three stages is uncommon.

Interpolation means increasing the sample 
rate. One way to do that is simply to insert ad-
ditional zero-value samples, a process called 
zero-stuffing. For example, to interpolate by a 
factor of three, insert two zero-value samples 
after each input sample. That works, but may 
not give the results you expect. Recall that 
a sampled signal has additional copies of 
the baseband signal at all harmonics of the 
sample rate. All of those harmonics remain in 
the resampled signal, even though the sample 
rate is now higher. To eliminate them, the 
signal must be filtered after interpolation. 
After filtering, there is signal only at baseband 
and around the harmonics of the interpolated 
(higher-frequency) sample rate. It’s as if the 
analog signal had been sampled at the higher 
rate to begin with.

Just as with decimation, interpolation by a 
large factor is best done in stages, as shown in 
Fig 15.8B. In this case, the stage running at  
the lowest sample rate (again the first stage) 
is the one with the lowest interpolation factor.

Zero-stuffing followed by filtering is not 
the only way to interpolate. Really what 
you are trying to do is to fill in between the 
lower-rate samples with additional samples 
that “connect the dots” in as smooth a man-
ner as possible. It can be shown that that 
is mathematically equivalent to zero-stuff-
ing and filtering. For example, if instead of 
inserting zero-value samples you instead  

Fig 15.8 — Decimation (A) and interpolation (B). The arrow’s direction indicates 
decimation (down) or interpolation (up) and the number is the factor.

simply repeat the last input sample, you have 
a situation similar to the zero-order hold  
of a DAC output. It is equivalent to zero-
stuffing followed by a low-pass filter with a 
frequency response of sin(πf)/πf. If you do 
a straight-line interpolation between input 
samples (a “first-order” interpolation), it turns 
out that it is equivalent to a low pass filter with 
a frequency response of [sin(πf)/πf]2, which  
has a sharper cutoff and better stop-band  
rejection than a zero-order interpolation. 
Higher-order interpolations have smoother 
responses in the time domain which trans-
late to better filter responses in the frequency 
domain.

So far we have only covered decimation 
and interpolation by integer factors. It is also 
possible to change the sample rate by a non-
integer factor, which is called resampling or 
multi-rate conversion. For example, if you 
want to increase the sample rate by a factor of 
4⁄3, simply interpolate by 4 and then decimate 
by 3. That method can become impractical for 
some resample ratios. For example, to convert 
an audio file recorded from a computer sound 
card at 48 kHz to the 44.1 kHz required by a 
compact disc, the resample ratio is 44,100 /  
48,000 = 147 / 160. After interpolation by 
147, the 44.1 kHz input file is sampled at 
6.4827 MHz, which would result in excessive 
processing overhead.

In addition, the interpolation/decimation 
method only works for resample ratios that 
are rational numbers (the ratio of two inte-
gers). To resample by an irrational number, a 
different method is required. The technique is 
as follows. For each output sample, first deter-
mine the two nearest input samples. Calculate 
the coefficients of the Nth-order equation that 
describes the trajectory between the two input 
samples. Knowing the trajectory between the 
input samples and the output sample’s relative 
position between them, the value of the output 
sample can be calculated from the equation.

15.3.2 Quantization — 
Digitization in Amplitude

While sampling (digitization in time) theo-
retically causes no loss of signal informa-
tion, quantization (digitization in amplitude) 
always does. For example, an 8-bit signed 
number can represent a signal as a value from 
–128 to +127. For each sample, the A/D con-
verter assigns whichever number in that range 
is closest to the analog signal at that instant. 
If a particular sample has a value of 10, there 
is no way to tell if the original signal was 9.5, 
10.5 or somewhere in between. That informa-
tion has been lost forever.

When quantizing a complex signal such as 
speech, this error shows up as noise, called 
quantization noise. See Fig 15.9. The error is 
random — it is equally likely to be anywhere 
in the range of –1/2 to +1/2 of a single step 
of the ADC. We say that the maximum error 
is one-half of one least-significant bit (LSB). 
It can be shown mathematically that a series 
of uniformly-distributed random numbers be-
tween +0.5 LSB and –0.5 LSB has an RMS 
value of

LSB
12

which is –10.79 dB less than one LSB. Each 
time you add one bit to the data word, the 
number of LSBs in the range doubles, which 
means each LSB gets two times smaller 
reducing the noise by 6.02 dB. A full-scale 
sine wave has an RMS power –3.01 dB 
from a full-scale dc voltage. Combining that 
information results in the following equation 
for signal-to-noise ratio in decibels for a data 
word of width b bits:

SNR 1.76 6.02b  dB= +

For example, with 8-bit data, SNR =  
49.9 dB. An ideal 16-bit ADC would achieve 
a 98.1 dB signal-to-noise ratio. Of course, 
real-world devices are never perfect so actual 
performance would be somewhat less.

One critical point that is sometimes over-
looked is that quantization noise is spread 
over the entire bandwidth from zero Hz to 
the sample rate. If you are digitizing a 3 kHz 
audio channel with a 48 ksps sampler, only 
a fraction of the noise power is within the 
channel. For that reason, the effective signal-
to-noise ratio depends not only on the number 
of bits but also the sample rate, fs, and the 
signal bandwidth, B:

s
eff

f
SNR SNR 10log   dB

2B
 = +  
 

The reason for the factor of two in the de-
nominator is that the bandwidth of a positive-
frequency scalar signal should be compared 
to the Nyquist bandwidth, fs/2. When filtering 
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a complex signal (one that contains I and Q 
parts), the 2B in the denominator should be 
replaced by B.

When choosing an A/D converter don’t 
forget that the effective SNR depends on the 
sample rate. As an example, let’s compare 
an Analog Devices AD9235 12-bit, 65 Msps 
ADC to an AD7653, which is a 16-bit 100 ksps 
ADC from the same manufacturer. Assume  
a 10 kHz signal bandwidth.

An ideal 12-bit ADC has a SNR of 1.76 + 
6.02 × 12 = 74.0 dB. The AD9235’s perfor-
mance is not far from the ideal; its SNR is speci-
fied at 70.5 dB at its 65 Msps maximum sample 
rate. In a 10 kHz bandwidth, the effective SNR 
is 70.5 + 10 log (65,000/20) = 105.6 dB.

Fig 15.9 — Quantization error of a random noise signal that has been band-limited to 
1 kHz to simulate an audio signal. (A) The sampler resolution is 8 bits and the sample 
rate is 10 kHz. Sample values are indicated by circles. Also shown is the quantization 
error, in units of LSB. Below is the frequency spectrum of the signal before and after 
quantization. (B)

An ideal 16-bit ADC has an SNR of  
98.1 dB. The AD7653 is specified at 86 dB. 
The effective SNR is 86 + 10log(100/20) = 
93 dB.

So the 12-bit ADC with 70.5 dB SNR is 
actually 12.6 dB better than the 16-bit de- 
vice with 86 dB SNR! Even an ideal 16-bit, 
100 ksps ADC would only have an effective  
SNR of 98.1 + 10log(100/20) = 105.1 dB, still 
worse than the actual performance of the 
AD9235 when measured with the same band-
width. Note that to actually realize 105.6 dB 
of dynamic range the signal from the ADC 
would need to be filtered to a 10 kHz bandwidth 
while increasing the bits of data resolution.

Oversampling is the name given to the 

technique of using a higher-than-necessary 
sample rate in order to achieve an improved 
S/N ratio. Don’t forget that when the high-
sample-rate signal is decimated the data 
words must have enough bits to support the 
higher dynamic range at the lower sample 
rate. As a rule of thumb, the quantization 
noise should be at least 10 dB less than the 
signal noise in order not to significantly de-
grade the SNR. In the AD9235 example, 
assuming a 100 kHz output sample rate, 
about 18 bits would be required: 1.76 + 6.02 
× 18 + 10log(100/20) = 117.1 dB, which is  
11.5 dB better than the 105.6 dB dynamic 
range of the ADC in a 10 kHz bandwidth.

Most ADCs and DACs used in high-fidelity 
audio systems use an extreme form of overs-
ampling, where the internal converter may 
oversample by a rate of 128 or 256 times, but 
with very low resolution (in some cases just 
a 1-bit ADC!). In addition, such converters 
use a technique called noise shaping to push 
most of the quantization noise to frequencies 
near the sample rate, and reduce it in the audio 
spectrum. The noise is then removed in the 
decimation filter.

Although quantization error manifests 
itself as noise when digitizing a complex 
non-periodic signal, it can show up as dis-
crete spurious frequencies when digitizing a 
periodic signal. Fig 15.10 illustrates a 1 kHz 
sine wave sampled with 8-bit resolution at a  
9.5 kHz rate. On average there are 9.5  
samples per cycle of the sine wave so that 
the sampling error repeats every second 
cycle. That 500-Hz periodicity in the error 
signal causes a spurious signal at 500 Hz 
and harmonics. As the signal frequency is 
changed, the spurs move around in a com-
plicated manner that depends on the ratio 
of sample rate to signal frequency. In real-
world ADCs, nonlinearities in the transfer 
function can also create spurious signals that 
vary unpredictably as a function of the signal 
ampli-tude, especially at low signal levels.

In many applications, broadband noise is 
preferable to spurious signals on discrete fre-
quencies. The solution is to add dithering. Es-
sentially this involves adding a small amount 
of noise, typically on the order of an LSB or 
two, in order to randomize the quantization 
error. Some DACs have dithering capability 
built in to improve the SFDR, even though 
it does degrade the SNR slightly. Dithering 
is also useful in cases where the input signal 
to an ADC is smaller than one LSB. Even 
though the signal would be well above the 
noise level after narrow-band filtering, it can-
not be detected if the ADC input is always 
below one LSB. In many systems there is 
sufficient noise at the input, both from input 
amplifiers as well as from the ADC itself, to 
cause natural dithering.
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15.4 Digital Filters 

Fig 15.10 — Quantization 
error of a 1 kHz sine 
wave sampled at  
9.5 kHz with 8-bit 
resolution (A). Sample 
values are indicated by 
circles. Also shown is 
the quantization error, in 
units of LSB. Below is 
the frequency spectrum, 
showing the spurious 
frequencies caused by 
the quantization. (B)

As radio amateurs, most of us are well-
acquainted with the concept of frequency. 
We know, for example, that a pure sine wave 
consists of a single frequency, which is in-
versely proportional to the wavelength. If the 
sine wave is distorted, additional harmonic 
frequencies appear at integer multiples of the 
fundamental. For example, a square wave 
consists of sine waves at the fundamental fre-
quency and all the odd harmonics. In general, 
any periodic waveform can be decomposed 
into a combination of sine waves at various 
phase angles with frequencies that are in-
teger multiples of the repetition rate of the 
waveform.

Even a non-periodic waveform can be de-
composed into sine waves, although in this 
case they are not harmonically-related. For 
example a single pulse of width τ seconds has 

a frequency spectrum proportional to sinc(fτ) 
= sin(πfτ)/(πfτ). You can think of this as an 
infinite number of sine waves spaced infi-
nitely closely together with amplitudes that 
trace out that spectral shape. It is interesting 
to note that if τ is decreased, the value of f 
must increase by the same factor for any given 
value of sin(πfτ)/(πfτ). In other words, the 
narrower the pulse the wider the spectrum. 
Of course that applies to sine waves and other 
periodic waveforms as well — the smaller 
the wavelength the higher the frequency. In 
general, anything that makes the signal “skin-
nier” in the time domain makes it “fatter” in 
the frequency domain and vice versa.

As the pulse becomes narrower and nar-
rower, the frequency spectrum spreads out 
more and more. In the limit, if the pulse is 
made infinitely narrow, the spectrum becomes 

flat from zero hertz to infinity. An infinitely-
narrow pulse is called an impulse and is a very 
useful concept because of its flat frequency 
spectrum. If you feed an impulse into the input 
of a filter, the signal that comes out, the impulse 
response, has a frequency spectrum equal to 
the frequency response of the filter. One way 
to design a filter is to determine the impulse 
response that corresponds to the desired fre-
quency spectrum and then design the filter to 
have that impulse response. That method is 
ideally suited for designing FIR filters.

15.4.1 FIR Filters
A finite impulse response (FIR) filter is a 

filter whose impulse response is finite, ending 
in some fixed time. Note that analog filters 
have an infinite impulse response — the out-
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put theoretically rings forever. Even a simple 
R-C low-pass filter’s output dies exponential-
ly toward zero but theoretically never quite 
reaches it. In contrast, an FIR filter’s impulse 
response becomes exactly zero at some time af-
ter receiving the impulse and stays zero forever 
(or at least until another impulse comes along).

Given that you have somehow figured out 
the desired impulse response, how would you 
design a digital filter to have that response? 
The obvious method would be to pre-calculate 
a table of impulse response values, sampled 
at the sample rate. These are called the filter 
coefficients. When an impulse of a certain am-
plitude is received, you multiply that amplitude 
by the first entry in the coefficient table and 
send the result to the output. At the next sample 
time, multiply the impulse by the second entry, 
and so on until you have used up all the entries 
in the table.

A circuit to do that is shown in Fig 15.11. 
The input signal is stored in a shift register.  
Each block labeled “Delay” represents a delay 
of one sample time. At each sample time, the 
signal is shifted one register to the right. Each 
register feeds a multiplier and the other input 
to the multiplier comes from one of the coef-
ficient table entries. All the multiplier outputs 
are added together. Since the input is assumed 
to be a single impulse, at any given time all the 
shift registers contain zero except one, which 
is multiplied by the appropriate table entry and 
sent to the output.

We’ve just designed an FIR filter! By using 
a shift register with a separate multiplier for 
each tap, the filter works for continuous signals 
as well as for impulses. Since this is a linear 
system, the continuing signal is affected by 
the filter the same as an individual impulse.

It should be obvious from the diagram how 
to implement an FIR filter in software. You set 
up two buffers in memory, one for the filter 
coefficients and one for the data. The length 
of each buffer is the number of filter taps. (A 
tap is the combination of one filter coefficient, 
one shift register and one multiplier/accumula-
tor.) Each time a new data value is received, it 
is stored in the next available position in the 
data buffer and the accumulator is set to zero. 
Next, a software loop is executed a number 
of times equal to the number of taps. Dur-
ing each loop, pointers to the two buffers are 
incremented, the next coefficient is multiplied 
by the next data value and the result is added 
to the current accumulator value. After the last 
loop, the accumulator contents are the output 
value. Normally the buffers are implemented 
as circular buffers — when the address pointer 
gets to the end it is reset back to the beginning.

Now you can see why a hardware multiplier-
accumulator (MAC) is such an important fea-
ture of a DSP chip. Each tap of the FIR filter 
involves one multiplication and one addition. 
With a 1000-tap FIR filter, 1000 multiplica-
tions and 1000 additions must be performed 

during each sample time. Being able to do 
each MAC in a single clock cycle saves a lot 
of processing time.

An FIR filter is a hardware or software 
implementation of the mathematical opera-
tion called convolution. We say that the filter 
convolves the input signal with the impulse 
response of the filter. It turns out that convo-
lution in the time domain is mathematically 
equivalent to multiplication in the frequency 
domain. That means that the frequency spec-
trum of the output equals the frequency spec-
trum of the input times the frequency spectrum 
of the filter. Expressed in decibels, the output 
spectrum equals the input spectrum plus the 
filter frequency response, all in dB. If at some 
frequency the input signal is +3 dB and the 
filter is –10 dB compared to some reference, 
then the output signal will be 3 – 10 = –7 dB 
at that frequency.

An FIR filter whose bandwidth is very small 
compared to the sample rate requires a long 
impulse response with lot of taps. This is an-
other consequence of the “skinny” versus “fat” 
relationship between the frequency and time 
domains. If the filter is narrow in the frequency 
domain, then its impulse response is wide. 
Actually, if you want the frequency response 
to go all the way to zero (minus infinity dB) 
throughout the stop band, then the impulse 
response theoretically becomes infinitely 
wide. Since we’re designing a finite impulse 
response filter we have to truncate the impulse 
response at some point to get it to fit in the 
coefficient table. When you do that, however, 
you no longer have infinite attenuation in the 
stopband. The more heavily you truncate (the 
narrower the impulse response) the worse the 
stopband attenuation and the more ripple you 
get in the passband. Assuming optimum design 
techniques for selecting coefficients, you can 
estimate the minimum length L of the impulse 
response from the following equation:

( )1 2

T

s

10 log 15
L 1   taps

f14
f

δ δ −
= −

 
 
 

where
δ1 and δ2 = the passband and stopband 

ripple expressed as a fraction
fT = the transition bandwidth (frequency 

difference between passband and stop-
band edges)

fs = the sample rate.

For example, for a low-pass filter with a 
passband that extends up to 3 kHz, a stopband 
that starts at 4 kHz (fT = 4 – 3 = 1 kHz), fs =  
10 kHz sample rate, ±0.1 dB passband ripple 
(δ1 = 100.1/20 – 1 = 0.0116), and 60 dB stop-
band rejection (δ2 = 10–60/20 = 0.001), we get

( )10 log 0.0116 0.001 15
L 1

114
10

49.4 151 47  taps
1.4

× −
= −


 
 

− −
= − =

Overflow is a potential problem when do-
ing the calculations for an FIR filter. Multi-
plying two N-bit numbers results in a product 
with 2N bits, so space must be provided in the 
accumulator to accommodate that. Although 
the final result normally will be scaled and 
truncated back to N bits, it is best to carry 
through all the intermediate results with full 
resolution in order not to lose any dynamic 
range. In addition, the sum of all the taps can 
be a number with more than 2N bits. For ex-
ample, if the filter width is 256 taps, then if all 
coefficients and data are at full scale, the final 
result could theoretically be 256 times larger, 
requiring an extra 8 bits in the accumula-
tor. We say “theoretically” because normally 
most of the filter coefficients are much less 
than full scale and it is highly unlikely that all 
256 data values would ever simultaneously 
be full-scale values of the correct polarity to 
cause overflow. The dsPIC processors use 
16-bit multipliers with 32-bit results and a 
40-bit accumulator, which should handle any 
reasonable circumstances.

After all taps have been calculated, the final 

Fig 15.11 — A 4-tap FIR filter. The bn values are the filter coefficients.
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result must be retrieved from the accumulator. 
Since the accumulator has much more resolu-
tion than the processor’s data words, normally 
the result is truncated and scaled to fit. It 
is up to the circuit designer or programmer 
to scale by the correct value to avoid over-
flow. The worst case is when each data value 
in the shift register is full-scale — positive 
when it is multiplying a positive coefficient 
and negative for negative coefficients. That 
way, all taps add to the maximum value. To 
calculate the worst-case accumulator ampli-
tude, simply add the absolute values of all the 
coefficients. However, that normally gives 
an unrealistically pessimistic value because 
statistically it is extremely unlikely that such 
a high peak will ever be reached. For a low-
pass filter, a better estimate is to calculate the 
gain for a dc signal and add a few percent 
safety margin. The dc gain is just the sum of 
all the coefficients (not the absolute values). 
For a band-pass filter, add the sum of all the 
coefficients multiplied by a sine wave at the 
center frequency.

CALCULATING FIR FILTER 
COEFFICIENTS

So far we have ignored the question of how 
to determine the filter coefficients. For an 
ideal “brick-wall” low-pass filter, the answer 
turns out to be pretty simple. A “brick-wall” 
low-pass filter is one that has a constant re-
sponse from zero hertz up to the cutoff fre-
quency and zero response above. Its impulse 
response is proportional to the sinc function:

( ) ( )
o

sin 2 Bn
C(n) C  sinc 2Bn

2 Bn
π

= =
π

where C(n) are the filter coefficients, n is  
the sample number with n = 0 at the center of 
the impulse response, Co is a constant, and B 
is the single-sided bandwidth normalized to 
the sample rate, B = bandwidth / sample rate.

It is interesting that this has the same form 
as the frequency response of a pulse, as was 
shown in Fig 15.7. That is because a brick-
wall response in the frequency domain has 
the same shape as a pulse in the time domain. 
A pulse in one domain transforms to a sinc 
function in the other. This is an example of 
the general principle that the transformation 
between time and frequency domains is sym-
metrical. We will discuss this more later, in 
the section on Fourier transforms.

Normally, the filter coefficients are set up 
with the peak of the sinc function, sinc(0), 
at the center of the coefficient table so that 
there is an equal amount of “tail” on both 
sides. That points up the principle problem 
with this method of determining filter co-
efficients. Theoretically, the sinc function 
extends from minus infinity to plus infinity. 
Abruptly terminating the tails causes the fre-
quency response to differ from an ideal brick-
wall filter. There is ripple in the passband and 

Table 15.3
Routine for dsPIC Processor to Calculate Filter Coefficients

// Calculate FIR filter coefficients
// using the windowed-sinc method
void set_coef (
 double sample_rate;
 double bandwidth;)
{
extern int c[FIR_LEN]; // Coefficient array
int i; // Coefficient index
double ph; // Phase in radians
double coef; // Filter coefficient
int coef_int; // Digitized coefficient
double bw_ratio; // Normalized bandwidth

bw_ratio = 2 * bandwidth / sample_rate;
for (i = 0; i < (FIR_LEN/2); i++) {
 // Brick-wall filter:
 ph = PI * (i + 0.5) * bw_ratio;
 coef = sin(ph) / ph;
 // Hann window:
 ph = PI * (i + 0.5) / (FIR_LEN/2);
 coef *= (1 + cos(ph)) / 2;
 // Convert from floating point to int:
 coef *= 1 << (COEF_WIDTH - 1);
 coef_int = (int)coef;
 // Symmetrical impulse response:
 c[i + FIR_LEN/2] = coef_int;
 c[FIR_LEN/2 - 1 - i] = coef_int;
 }
}

non-zero response in the stopband, as shown 
in the graph in the upper right of Fig 15.12. 
This is mainly caused by the abruptness of 
the truncation. In effect, all the coefficients 
outside the limits of the coefficient table have 
been set to zero. The passband and stopband 
response can be improved by tapering the 
edges of the impulse response instead of 
abruptly transitioning to zero.

The process of tapering the edges of the 
impulse response is called windowing. The 
impulse response is multiplied by a window, 
a series of coefficients that smoothly taper to 
zero at the edges. For example, a rectangular 
window is equivalent to no window at all. 
Many different window shapes have been 
developed over the years — at one time it 
seemed that every doctoral candidate in the 
field of signal processing did their disserta-
tion on some new window. Each window 
has its advantages and disadvantages. A win-
dow that transitions slowly and smoothly to 
zero has excellent passband and stopband 
response but a wide transition band. A win-
dow that has a wider center portion and then 
transitions more abruptly to zero at the edges 
has a narrower transition band but poorer 
passband and stopband response. The equa-
tions for the windows in Fig 15.12 are in-

cluded in a sidebar.
The routine shown in Table 15.3 is writ-

ten for a dsPIC processor so it can be used 
to calculate filter coefficients “on the fly” as 
the operator adjusts a bandwidth control. The 
same code should also work using a generic C 
compiler on a PC so the coefficients could be 
downloaded into an FIR filter implemented 
in hardware.

The windowed-sinc method works pretty 
well for a simple low-pass filter, but what if 
some more-complicated spectral shape is de-
sired? The same general design approach still 
applies. You determine the desired spectral 
shape, transform it to the time domain using 
an inverse Fourier transform, and apply a 
window. There is lots of (often free) software 
available that can calculate the fast Fourier 
transform (FFT) and inverse fast Fourier 
transform (IFFT). So the technique is to gen-
erate the desired spectral shape, transform to 
the time domain with the IFFT, and multiply 
the resulting impulse response by the desired 
window. Then you can transform back to the 
frequency domain with the FFT to see how the 
window affected the result. If the result is not 
satisfactory, you can either choose a different 
window or modify the original spectral shape 
and go through the process again.
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Fig 15.12 — Various window functions and their Fourier transforms.
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Equations for  
Window Functions

For each window function, the center 
of the response is considered to be at 
time t = 0 and the width of the impulse 
is L. Each window is 1.0 when t = 0 
and 0.0 when the | t | > L/2.

Rectangular:

=w(t) 1.0

Triangular (Bartlett):

− 
=   

 

L / 2  t 
w(t) 2

L

Blackman:

π = +  
 

π +  
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2  t
w(t) 0.42 0.5cos

L

4  t
0.08cos
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Hamming:

2  t
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π = +  

 

Hanning (Hann):
2  t

w(t) 0.5 0.5cos
L
π = +  

 

Windowing methods are useful because 
they are simple to program and the result-
ing software routines execute quickly. For 
example, you can include a bandwidth knob 
on your DSP filter and calculate filter coef-
ficients “on the fly” as the user turns the knob. 
However, while the filter performance that re-
sults is pretty good, it is not “optimum” in the 
sense that it does not have minimum passband 
ripple and maximum stopband attenuation 
for a given number of filter coefficients. For 
that, you need what is known as an equal-
ripple, or Chebyshev filter. The calculations 
to determine Chebyshev filter coefficients 
are more complicated and time-consuming. 
For that reason, the coefficients are normally 
calculated in advance on a PC and stored in 
DSP program memory for retrieval as needed.

Engineers have not had much success in 
devising a mathematical algorithm to calcu-
late the Chebyshev coefficients directly, but 
in 1972 Thomas Parks and James McClellan 
figured out a method to do it iteratively. The 
Parks-McClellan algorithm is supported in 
most modern filter-design software, includ-

Fig 15.13 — A 6-tap FIR filter. Because the coefficients are symmetrical, the 
symmetrical taps may be combined before multiplication.

ing a number of programs available for free 
download on the Web. Typically you enter 
the sample rate, the passband and stopband 
frequency ranges, the passband ripple and 
the stopband attenuation. The software then 
determines the required number of filter coef-
ficients, calculates them and displays a plot of 
the resulting filter frequency response.

Filter design software typically presents 
the filter coefficients as floating-point num-
bers to the full accuracy of the computer. You 
will need to scale the values and truncate 
the resolution to the word size of your filter 
implementation. Truncation of filter coeffi-
cients affects the frequency response of the 
filter but does not add noise in the same man-
ner as truncating the signal data.

As you look at impulse responses for vari-
ous FIR filters calculated by various methods 
you soon realize that most of them are sym-
metrical. If the center of the impulse response 
is considered to be at time zero, then the 
value at time t equals the value at time –t 
for all t. If you know in advance that the 
filter coefficients are symmetrical, you can 
take advantage of that in the filter design. 
By re-arranging the adders and multipliers, 
the number of multipliers can be reduced by 
a factor of two, as shown in Fig 15.13. This 
trick is less useful in a software implementa-
tion of an FIR filter because the number of 
additions is the same and many DSPs take 
the same amount of time to do an addition 
as a multiply-accumulate.

In addition to the computational benefit, 
a symmetrical impulse response also has the 

advantage that it is linear phase. The time de-
lay through such a filter is one-half the length 
of the filter for all frequencies. For example, 
for a 1000-tap filter running at 10 kHz the 
delay is 500/10,000 = 0.05 second. Since 
the time delay is constant for all frequencies, 
the phase delay is directly proportional to the 
frequency. For example, if the phase delay at  
20 Hz is one cycle (0.05 second) it is ten 
cycles at 200 Hz (still 0.05 second). Linear 
phase delay is important with digital modu-
lation signals to avoid distortion and inter-
symbol interference. It is also desirable with 
analog modulation where it can result in more 
natural-sounding audio. All analog filters are 
non-linear-phase; the phase distortion tends 
to be worse the more abrupt the transition 
between passband and stopband. That is why 
an SSB signal sounds unnatural after being 
filtered by a crystal filter with a small shape 
factor even though the passband ripple may 
be small and distortion minimal.

A band-pass filter can be constructed from 
a low-pass filter simply by multiplying the 
impulse response by a sine wave at the desired 
center frequency. This can be done before or 
after windowing. The linear-phase property 
is retained but with reference to the center 
frequency of the filter, that is, the phase shift 
is proportional to the difference in frequency 
from the center frequency. The frequency 
response is a double-sided version of the low-
pass response with the zero-hertz point of 
the low-pass filter shifted to the frequency 
of the sine wave.
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15.4.2 IIR Filters
An infinite impulse response (IIR) filter is 

a filter whose impulse response is infinite. 
After an impulse is applied to the input, theo-
retically the output never goes to zero and 
stays there. In practice, of course, the signal 
eventually does decay until it is below the 
noise level (analog filter) or less than one 
LSB (digital filter).

Unlike a symmetrical FIR filter, an IIR 
filter is not generally linear-phase. The delay 
through the filter is not the same for all fre-
quencies. Also, IIR filters tend to be harder 
to design than FIR filters. On the other hand, 
many fewer adders and multipliers are typi-
cally required to achieve the same passband 
and stop band ripple in a given filter, so IIR 
filters are often used where computations 
must be minimized.

All analog filters have an infinite impulse 
response. For a digital filter to be IIR it must 
have feedback. That means a delayed copy 
of some internal computation is applied to 
an earlier stage in the computation. A simple 
but useful example of an IIR filter is the ex-
ponential decay circuit in Fig 15.14. In the 
absence of a signal at the input, the output on 
the next clock cycle is always (1–δ) times the 
current output. The time constant (the time 
for the output to die to 1/e = 36.8% of the 
initial value) is very nearly

s
1 1f

2
 τ = − δ 

where fs is the sample rate. The circuit is the 
digital equivalent of a capacitor with a resistor 
in parallel and might be useful for example 
in a digital automatic gain control circuit.

One issue with IIR filters is resolution. 
Because of the feedback, the number of bits  
of resolution required for intermediate com-
putations can be much greater than at the input 
or output. In the previous example, δ is very 
small for very long time constants. When the 
value in the register falls below a certain level 
the multiplication by (1–δ) will no longer be 
accurate unless the bit width is increased. In 
practice, the increased resolution required 
with IIR filters often cancels out part of the 
savings in the number of circuit elements.

Another issue with IIR filters is stability. 

Fig 15.14 — An exponential decay circuit.
Fig 15.15 — An IIR filter with three feed-forward taps and two feed-back taps. Direct 
form I (A) and the equivalent direct form II (B).

Because of the feedback it is possible for 
the filter to oscillate if care is not taken in 
the design. Stability can also be affected by 
non-linearity at low signal levels. A circuit 
that is stable with large signals may oscillate 
with small signals due to the round-off error 
in certain calculations, which causes faint 
tones to appear when strong signals are not 
present. This is known as an unstable limit 
cycle. These issues are part of the reason 
that IIR filters have a reputation for being 
hard to design.

Design techniques for IIR filters mostly 
involve first designing an analog filter us-
ing any of the standard techniques and then 
transforming the design from the analog to 
the digital domain. The impulse-invariant 
method attempts to duplicate the filter re-
sponse directly by making the digital impulse 
response equal the impulse response of the 

equivalent analog filter. It works fairly well 
for low-pass filters with bandwidths much 
less than the sample rate. Its problem is that 
it tries to duplicate the frequency response all 
the way to infinity hertz, but that violates the 
Nyquist criterion resulting in a folding back 
of the high-frequency response down into low 
frequencies. It is similar to the aliasing that 
occurs in a DSP system when the input signal 
to be sampled is not band-limited below the 
Nyquist frequency.

The bilinear transform method gets around 
that problem by distorting the frequency axis 
such that infinity hertz in the analog domain 
becomes sample rate / 2 in the digital domain. 
Low frequencies are fairly accurate, but high 
frequencies are squeezed together more and 
more the closer you get to the Nyquist fre-
quency. It avoids the aliasing problem at the 
expense of a change in the spectrum shape, 
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especially at the high-frequency end. For 
example, when designing a low-pass filter 
it may be necessary to change the cutoff fre-
quency to compensate. Again, the method 
works best for filters with passband frequen-
cies much less than the sample rate.

In general, the output of an IIR filter is a 
combination of the current and previous input 
values (feed-forward) and previous output 
values (feed-back). Fig 15.15A shows the 
so-called direct form I of an IIR filter. The 
bi coefficients represent feed-forward and 
the ai coefficients feed-back. For example 
the previous value of the y output is mul-
tiplied by a1, the second previous value is 
multiplied by a2, and so on. Because the filter 
is linear, it doesn’t matter whether the feed 
forward or feed back stage is performed first. 
By reversing the order, the number of shift 
registers is reduced as in Fig 15.15B. There 
are other equivalent topologies as well. The 
mathematics for generating the ai and bi co-
efficients for both the impulse-invariant and 
bilinear transform methods is fairly involved, 
but fortunately some filter design programs 
can handle IIR as well as FIR filters.

15.4.3 Adaptive Filters
An adaptive filter is one that automatically 

adjusts its filter coefficients under the control 
of some algorithm. This is often done in situ-
ations where the filter characteristics are not 
known in advance. For example, an adaptive 
channel equalizer corrects for the non-flat-
ness in the amplitude and phase spectrum of 
a communications channel due to multipath 
propagation. Typically, the transmitting sta-

Fig 15.16 — An adaptive filter.

tion periodically sends a known sequence of 
data, known as a training sequence, which is 
used by the receiver to determine the channel 
characteristics and adjust its filter coefficients 
accordingly.

Another example is an automatic notch fil-
ter. An algorithm determines the frequency of 
an interfering tone and automatically adjusts 
the notch frequency to remove the tone. Noise 
cancellation is another application. It can be 
thought of as the opposite of a notch filter. In 
this case, all the sine-wave tones in the input 
signal are considered to be desired and the 
filter coefficients are configured to enhance 
them. That method works not only for CW 
signals but for voice as well since the human 
voice consists largely of discrete frequencies.

A generic block diagram of an adaptive 
filter is shown in Fig 15.16. The variable 
filter is typically an FIR type with coefficients 
calculated by the update algorithm. By some 
means, an estimate of the desired, unimpaired 
signal, d, is generated and compared to the 
filter output y. The difference between y and 

d is the error, e, which is used by the update 
algorithm to modify the filter coefficients to 
improve the accuracy of y. The algorithm is 
capable of acting as a noise-reduction filter 
and a notch filter simultaneously. Assuming 
d is in the form of a pure tone (sine wave), 
the tone is simultaneously optimized in the y 
output and minimized in the e output.

A common algorithm for minimizing the 
error signal is called least mean squares 
(LMS). The LMS algorithm includes a per-
formance parameter, µ, which can be adjusted 
between 0 and 1 to control the tradeoff be-
tween adjustment speed and accuracy. A 
value near 1 results in fast convergence but 
the convergence is not very accurate. For bet-
ter accuracy at the cost of slower adjustment, 
lower the value of µ. Some implementations 
adjust µ on the fly, using a large value at first to 
get faster lock-in when the error is large then 
a smaller value after convergence to reduce 
the error. That works as long as the signal 
characteristics are not changing too rapidly.

15.5 Miscellaneous DSP Algorithms
15.5.1 Sine Wave Generation

There are a number of techniques avail-
able for building a digital sine-wave genera-
tor, either in hardware or in software. One 
obvious idea is to make a digital oscillator, 
analogous to a conventional analog oscilla-
tor. Simply design a band-pass filter at the 
desired frequency and include positive feed-
back around it with a loop gain of unity. The 
problem is that, because of round-off error in 
the digital calculations, it is difficult to get 
the loop gain to be exactly 1.0. If it is slightly 
less, then the oscillation will eventually die 
out. If it is slightly greater, then the oscil-
lation will gradually increase in amplitude 
until it exceeds the maximum signal that the 
digital circuitry can handle. There are two 
techniques to handle this problem. One idea 
is to include an automatic gain-control circuit 

to detect the amplitude, low-pass filter it and 
feed the result to a multiplier in the feedback 
path to control the gain. Another idea is to 
intentionally set the loop gain slightly greater 
than 1.0 and include a clipping stage in the 
feedback path that limits the peak amplitude 
in a controlled manner.

With both of those techniques there is a 
tradeoff between distortion and start-up time. 
It can take many oscillation cycles for the 
amplitude to stabilize. If the loop gain is in-
creased or the AGC time constant is reduced 
to improve the start-up time, worse distortion 
results.

Probably the most common technique for 
generating sine waves is the numerically-
controlled oscillator (NCO), or direct digital 
synthesizer (DDS) as shown in Fig 15.17. 

At each clock cycle, the phase accumulator 
increments the phase by an amount equal to 
360° times f / fs, where f is the sine-wave 
frequency and fs is the sample rate. The cur-
rent phase value is used as a pointer to the 
proper address in a sine-wave lookup table. 
As the phase increases, the pointer moves 
through the look-up table, tracing out the 
sine-wave amplitude. Different frequencies 
can be obtained by changing the step size in 
the phase accumulator.

The lookup table size is a factor of two and 
the accumulator output is scaled such that 
the maximum count, corresponding to 360°, 
accesses the final entry in the table. When 
the phase passes 360° it automatically jumps 
back to zero as required. For good frequency 
resolution, the word size of the phase accu-
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Fourier Transform
The Fourier transform is the software 

equivalent of a hardware spectrum 
analyzer. It takes in a signal in the time 
domain and outputs a signal in the fre-
quency domain that shows the spectral 
content of the input signal. The Fourier 
transform works on both periodic and 
non-periodic signals, but since the 
periodic case is easier to explain we will 
start with that.

A periodic signal is one that repeats 
every τ seconds, where τ is the period. 
That means that the signal can consist 
only of frequencies whose sinusoidal 
waveforms have an integer number of 
cycles in τ seconds. In other words, the 
signal is made up of sinusoids that are 
at the frequency 1/τ and its harmon-
ics. Fourier’s idea was that you can 
determine if a frequency is present by 
multiplying the waveform by a sinusoid 
of that frequency and integrating the 
result. The result of the integration 
yields the amplitude of that harmonic. 
If the integration yields zero, then that 
frequency is not present.

To see how that works, look at  
Fig 15-A1. For the purpose of discus-
sion, assume the signal to be tested 
consists of a single tone at the second 
harmonic as shown at (A). The first test 
frequency is the fundamental, shown at 
(B). When you multiply the two together 
you get the waveform at (C). Integrat-
ing that signal gives its average value, 
which is zero. However if you multiply 
the test signal by a sine wave at the 
second harmonic (D), the resulting 
waveform (E) has a large dc offset so 
the integration yields a large non-zero 
value. It turns out that all harmonics 
other than the second yield a zero 
result. That is, the second harmonic is 
orthogonal to all the others.

If the test waveform included more 
than one frequency, each of those 
frequencies would yield a non-zero 
result when tested with the equivalent-
frequency sine wave. The presence of 
additional frequencies does not disturb 
the tests for other frequencies since 
they are all orthogonal with each other.

You may have noticed that this 
method only works if the test sine wave 
is in phase with the one in the signal. If 
they are 90° out of phase, the integra-
tion yields zero. The Fourier transform 
therefore multiplies the signal by both 
a sine wave and a cosine wave at each 
frequency. The results of the two tests 
then yield both the amplitude and phase 
of that frequency component of the 
signal using the equations

2 2A a b= +

and

b
arctan

a
 ϕ =  
 

where A is the amplitude, ϕ is the 
phase, a is the cosine amplitude and b 
is the sine amplitude.

If one period of the signal contains, 
say, 256 samples, then testing a single 
frequency requires multiplying the signal 
by the sine wave and by the cosine wave 
256 times and adding the results 256 
times as well, for a total of 512 multi-
plications and additions. There are 128 
frequencies that must be tested, since 
the 128th harmonic is at the Nyquist fre-
quency. The total number of calculations 
is therefore 512 × 128 = 2562 multiplica-
tions and additions. That is a general 
result. For any sample size, n, calculat-
ing the digital Fourier transform requires 
n2 multiply-accumulates.

The FFT

The number of calculations grows 
rapidly with sample size. Calculating 
the Fourier transform on 1024 samples 
requires over a million multiply-ac-
cumulates. However, you may notice 
that there is some redundancy in the 
calculations. When testing the second 
harmonic, for example, each of the two 
cycles of the test sine wave is identical. 
It would be possible to pre-add signal 
data from the first and second halves 
of the sequence and then just multiply 
once by a single cycle of the test sine 
wave. Also, the first quarter cycle of a 
sine wave is just a mirror-image of the 
second quarter cycle and the first half is 
just the negative of the second half.

In 1965, J. W. Cooley and John W. 
Tukey published an algorithm that takes 
advantage of all the symmetries inher-
ent in the Fourier transform to speed 
up the calculations. The Cooley-Tukey 
algorithm, usually just called the fast 
Fourier transform (FFT), makes the 
number of calculations proportional to 
nlog2(n) instead of n2. For a 1024-point 
FFT, the calculation time is proportional 
to 1024log2(1024) = 10,240 instead 
of 10242 = 1,048,576, more than a 
100-times improvement.

You’ll notice that sample sizes are 
usually a power of two, such as 27 = 
128, 28 = 256 and 29 = 512. That is 
because the FFT algorithm is most 
efficient with sequences of such sizes. 
The algorithm uses a process called 

radix-2 decimation in time, that is, it 
first breaks the data into two chunks of 
equal size, then breaks each of those 
chunks into two still-smaller chunks of 
equal size, and so on. It is possible to 
squeeze even a little more efficiency 
out of the algorithm with a radix-4 FFT 
which is based on decimation by four 
instead of by two. That is why you often 
see sample sizes that are powers of 
four, such as 43 = 64, 44 = 256 and 45 = 
1024. Other variations on the algorithm 
include decimation in frequency rather 
than time, mixed-radix FFTs that use 
different decimation factors at different 
stages in the calculation, and in-place 
calculation that puts the results into 
the same storage buffer as the input 
data, saving memory. The latter method 
causes the order of the output data 
to be scrambled by bit-reversing the 
address words. For example, address 
01010000 becomes 00001010.

Non-periodic signals

So far we have assumed that the 
signal to be transformed is periodic, so 
that there is an integer number of cycles 
of each sine wave harmonic in the 
sequence. With a non-periodic signal, 
that is not necessarily so. The various 
frequencies in the signal are not exact 
harmonics of 1/τ and are no longer 

Fig 15-A1 — Signal to be tested for 
frequency content (A). Fundamental 
test frequency (B). Product of signal 
and fundamental (C). Second harmonic 
test frequency (D). Product of signal 
and second harmonic (E).
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mulator, 32 in this example, is normally much 
greater than the address width of the look-up 
table, p. The less-significant accumulator bits 
are not used in the address. For example, with 
a 100 MHz clock rate and a 32-bit phase ac-
cumulator the frequency resolution is 100 × 
106 / 232 = 0.023 Hz.

The address width of the look-up table 
determines the number of table entries and 
thus the phase accuracy of the samples. The 
table size can be reduced by a factor of four 
by including only the first quarter-cycle of  
the sine wave in the table. The other three 
quadrants can be covered by modifying 
the look-up address appropriately and by 
negating the output when required under 
the control of some additional logic. For 
example, the method to transform quadrant 
three to quadrant one is illustrated in Fig 
15.18. Another technique to improve wave-
form accuracy without increasing table  
size is to interpolate between the entries. 
Instead of using the look-up table output 
directly, the output value is calculated by 
interpolating between the two nearest table 
entries using either a straight-line interpola-
tion as shown in Fig 15.19 or a higher-order 
curve fit.

Taking that last idea to an extreme, it is 
possible to generate a good approximation 
to one quadrant of a sine wave using a fifth-
order interpolation between the zero and 90° 
points. Assuming that the phase x has been 
scaled so that x = 1.0 corresponds to 90°, the 
sine formula is

2 3 4 5sin(x) Ax Bx Cx Dx Ex= + + + +

where the coefficients are A = 3.140625, B = 
0.02026367, C = -5.325196, D = 0.5446778 
and E = 1.800293.

With those coefficients, which come from 
an old Analog Devices DSP manual, all  
the harmonics of the sine wave are more 
than 100 dB below the carrier.3 With a 16-bit 
integer DSP the performance would be limi
ted only by the roundoff error. The formula 
can be reformulated as

sin(x) (A (B (C (D Ex)x)x)x)x= + + + +

which reduces the number of multipli- 
cations required from 15 to 5, as shown in 
Fig 15.20.

15.5.2 Tone Decoder
Tone decoders have a number of applica-

tions in Amateur Radio. A Morse code reader 
might use a tone decoder to determine the on 
and off states of the incoming CW signal. 
A sub-audible tone detector in a VHF FM 
receiver is another application. A DTMF de-
coder needs to detect two tones simultane-

Fig 15-A2 — Illustrating the 
use of windowing to minimize 
spectral leakage, the figures 
show (A) a cosine waveform not 
at a harmonic frequency, (B) the 
resulting unwindowed power 
spectrum, (C) the same cosine 
waveform with a Hamming 
window, and (D) the much 
narrower power spectrum of the 
windowed waveform.

orthogonal to the test frequencies. 
The result is spectral leakage; a 
single frequency in the signal may 
give a non-zero result when tested 
at a number of different harmonic 
frequencies. In Fig 15-A2, (B) illus-
trates the FFT of a single sine wave 
at a non-harmonic frequency. You 
can see that the spurious response 
extends quite far from the actual 
frequency.

Those far-out spurious responses 
are primarily caused by the abrupt 
termination of the signal at the edg-
es of the sequence. The spectrum 
can be cleaned up considerably by 
tapering the edges with a window, 
in a manner similar to windowing 
FIR filter coefficients as previously 
described. In fact, the same win-
dows work for both. Fig 15-A2 part 
C illustrates the result of applying a 
Hamming window to the signal in (A) 
and the resulting improved spec-
trum is shown at (D). Just as with 
FIR filters, different windows excel 
in different areas. Windows with 
a gradual transition to zero at the 
edges do a better job of suppress-
ing spurious responses but smear 
adjacent spectral lines, analogous to 
using a wider resolution bandwidth 
in an analog spectrum analyzer. 
Windows with a fatter center section 
and a more abrupt transition to zero 
at the edges have less smearing but 
worse spurious responses.

While it is interesting and instruc-
tional to write your own FFT from 
scratch, most programmers don’t 
bother to try to re-invent the wheel. 
Many implementations have been 
published on the Web and in books 
and articles. Most of the software 
development systems offered by 
DSP vendors include an FFT library 
routine, which runs faster than any-
thing you are likely to come up with 
on your own.
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ously to determine which of the Touch-Tone 
keys has been pressed.

An FFT is one type of tone decoder. A 
1024-point FFT simultaneously decodes 512 
frequencies up to one-half the sample rate 
using a very efficient algorithm. You can con-
trol the detection bandwidth by choosing the 
number of points in the FFT; the spacing of 
the frequency samples is just the sample rate 
divided by the number of FFT points. How-
ever, in many applications you don’t need 
that much resolution. For example, a DTMF 
signal consists of two tones, each of which 
can be one of four frequencies, for a total of 
8 possible frequencies. Instead of performing 
a complete FFT, you can simply convolve 
sinusoidal waves of each of those 8 frequen-
cies with the sequence of incoming samples 
to detect energy at those 8 frequencies. This 
will take less computation than a full FFT 
whenever the number of test frequencies is 
less than the base-2 logarithm of the number 
of points in the sequence. Since log2(1024) 
is 10, decoding 8 frequencies separately 
would be more efficient than a 1024-point 
FFT. Spectral leakage is just as much of a 
problem with this method as with an FFT, 
so you still need to window the sequence of 
samples before performing the convolution.

If only a single frequency needs to be de-
tected it might make more sense to mimic 
analog techniques and use a band-pass digital 
filter followed by an amplitude detector. That 
would have the advantage that the passband 
and stopband characteristics of the filter could 
be much more precisely controlled than with 
an FFT. In addition, the output is updated 
continuously instead of in “batch mode” af-
ter each batch of samples is collected and 
processed.

Fig 15.17 — DDS block diagram.

Fig 15.18 — The values of sin(x) between 180 and 270° are the same as those between 
0 and 90°, after the curve has been flipped vertically and shifted 180°.

Fig 15.19 — An approximation of a sine wave using a straight-line interpolation 
between lookup table entries.

Fig 15.20 — Method to calculate a fifth-order interpolation between lookup table 
entries.
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15.6 Analytic Signals and Modulation
In the area of modulation, the topic that 

seems to give people the most trouble is the 
concept of negative frequency. What in the 
world is meant by that? Consider a single-
frequency signal oscillating at ω radians per 
second. (Recall that ω = 2πf, where f is fre-
quency in Hz.) Let’s represent the signal by 
a cosine wave with a peak amplitude of 1.0, 
x(t) = cos(ωt), where t is time. Changing the 
sign of the frequency is equivalent to run-
ning time backwards because (–ω)t = ω(–t). 
By examining Fig 15.21A you can see that, 
because a cosine wave is symmetrical about 
the time t = 0 point, a negative frequency 
results in exactly the same signal. That is, as 
you may remember from high-school trigo-
nometry, cos(–ωt) = cos(ωt). If, for example, 
you add a positive-frequency cosine wave to 
its negative-frequency twin, you get the same 
signal with twice the amplitude.

That assumes that the phase of the signal 
is such that it reaches a peak at t = 0. What 
if instead we had a sine wave, which is zero 
at t = 0? From Fig 15.21B you can see that 
running time backwards results in a reversal 
of polarity, sin(–ωt) = –sin(ωt). If you add 
positive and negative-frequency sine waves 
of the same frequency and amplitude, they 
cancel, resulting in zero net signal.

A sinusoidal wave of any arbitrary ampli-
tude and phase may be represented by the 
weighted sum of a sine and cosine wave:

x(t) I cos( t) Qsin( t)= ω + ω

For computational purposes, it is conve-
nient to consider the in-phase (I) and quadra-
ture (Q) components separately. Since the I 
and Q components are 90° out of phase in 

Fig 15.23 — A real frequency is the sum of 
a positive and negative analytic frequency.

Fig 15.22 — In-phase (I) and quadrature 
(Q) portions of a signal.

Fig 15.21 — Cosine wave (A) and sine 
wave (B).

the time domain, they are often plotted on a 
polar graph at a 90° angle from each other. 
See Fig 15.22. For example if Q = 0, then 
as time increases the signal oscillates along 
the I (horizontal) axis, tracing out the path 
back and forth between I = +1 and I = –1 in 
a sinusoidal fashion. Conversely, if I = 0, then 
the signal oscillates along the Q axis.

What if both I and Q are non-zero, for ex-
ample I = Q = 1? Recall that the cosine and 
sine are 90° out of phase. When t = 0, cos(ωt) 
= 1 and sin (ωt) = 0. A quarter cycle later, 
cos(ωt) = 0 and sin (ωt) = 1. Comparing Fig 
15.22 with Fig 15.21 it should not be hard to 
convince yourself that the signal is tracing out 
a circle in the counter-clockwise direction.

What about negative frequency? Again, 
it should not be hard to convince yourself 
that changing ω to –ω results in a signal that 
circles the origin in the clockwise direction. 
If you combine equal-amplitude signals of 
opposite frequency, the sine portions cancel 
out and you are left with a simple cosine wave 
of twice the amplitude:

[ ]
[ ]

x(t) cos( t) sin( t)

cos( t) sin( t)
2cos( t)

= ω + ω

+ −ω + −ω

= ω

You can see that graphically in Fig 15.23. 
Imagine the two vectors rotating in oppo-
site directions. If you mentally add them by 
placing the tail of one vector on the head of 
the other, as shown by the dotted line, the 
result always lies on the I axis and oscillates 
between +2 and –2.

That is why we say that a single scalar 
sinusoidal signal, cos(ωt), actually contains 
two frequencies, +ω and –ω. It also offers a 
logical explanation of why a mixer or modu-
lator produces the sum and difference of the 

frequencies of the two inputs. For example, an 
AM modulator produces sidebands at the car-
rier frequency plus and minus the modulating 
frequency precisely because those positive 
and negative frequencies are actually already 
present in the modulating signal.

For many purposes, it is useful to sepa-
rate the portion of the signal that specifies 
the amplitude and phase (I and Q) from the 
oscillating part (sin(ωt) and cos(ωt)). For 
mathematical convenience, the I/Q part is 
represented by a complex number, x = I + jQ. 
The oscillating part is also a complex number 
e–jwt = cos(ωt) – jsin(ωt). (Don’t worry if you 
don’t know where that equation comes from 
— concentrate on the part to the right of the 
equals sign.4) In the equations, j = 1−  . Of 
course, –1 does not have a real square root 
(any real number multiplied by itself is posi-
tive) so j, or any real number multiplied by 
j, is called an imaginary number. A number 
with both real and imaginary parts is called 
a complex number. The total analytic signal 
is a complex number equal to

( )( )j tx(t) xe I jQ cos( t) jsin( t)− ω= = + ω − ω

In the above equation, the cos(ωt) – sin(ωt) 
portion generally represents an RF carrier, 
with ω being the carrier frequency (a posi-
tive or negative value). The I + jQ part is the 
modulation. The scalar value of a modulated 
signal (what you would measure with an os-
cilloscope) is just the real part of the analytic 
signal. Using the fact that j2 = –1,

[ ] ( )( )Re x(t) Re I jQ cos( t) jsin( t) = + ω − ω 

[ ]
( )
( )

I cos( t) Qsin( t)
Re x(t) Re

j Qcos( t) Isin( t)

 ω + ω
=  

+ ω − ω  
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[ ]Re x(t) I cos( t) Qsin( t)= ω + ω

Note that if the modulation (I and Q) var-
ies with time, the above equation assumes 
that the modulated signal does not overlap 
zero Hz. That is, I and Q have no frequency 
components greater than ω.

Normally the I/Q diagram shows only I and 
Q (the modulation) and not the oscillating 
part. We call such a representation a phasor 
diagram. The I/Q vector represents the differ-
ence in phase and amplitude of the RF signal 
compared to the unmodulated carrier. For 
example, if the I/Q vector is at 90°, that means 
the carrier has been phase-shifted by 90° from 
what it otherwise would have been. If the I/Q 
vector is rotating counter-clockwise 10 times 
per second, then the carrier frequency has 
been increased by 10 Hz.

It is worth noting that the modulation 
can be specified either by the in-phase and 
quadrature (I and Q) values as shown or al-
ternatively by the amplitude and phase. The 
amplitude is the length of the I/Q vector in 
the phasor diagram,

2 2A I Q= +

The phase is the angle of the vector with 
respect to the +I axis,

Qarctan
I

 ϕ =   
An alternative expression for the modulated 
analytic signal using amplitude and phase is

[ ]
j( t)x(t) Ae

A cos( t) jsin( t)

− ϕ+ω=

= ϕ + ω + ϕ + ω

and for the scalar signal

Re[x(t)] Acos( t)= ϕ + ω

One final comment. So far we have been 

looking at signals that consist of a single si-
nusoidal frequency. In any linear system, any-
thing that is true for a single frequency is also 
true for a combination of many frequencies. 
Each frequency is affected by the system as 
though the others were not present. Since any 
complicated signal can be broken down into 
a (perhaps large) number of single-frequency 
sinusoids, all our previous conclusions apply 
to multi-frequency signals as well.

15.6.1 I/Q Modulation and 
Demodulation

An I/Q modulator is just a device that con-
trols the amplitude and phase of an RF signal 
directly from the in-phase (I) and quadrature 
(Q) components. See Fig 15.24A. An I/Q 
demodulator is basically the same circuit in 
reverse. It puts out I and Q signals that repre-
sent the in-phase and quadrature components 
of the incoming RF signal. See Fig 15.24B. 
Assuming the demodulator’s local oscillator 
is on the same frequency and is in phase with 
the carrier of the signal being received then 
the I/Q output of the receiver’s demodulator 
is theoretically identical to the I/Q input at 
the transmitter end.

I/Q modulators and demodulators can 
be built with analog components. The LO 
could be a transistor oscillator and the 90° 
phase-shift network could be implemented 
with coils and capacitors. The circles with 
the multiplication symbol would be double-
balanced mixers. Not shown in the diagram 
are trim adjustments to balance the amplitude 
between the I and Q channels and to adjust 
the phase shift as close as possible to 90°.

No analog circuit is perfect, however. If 
the 90° phase-shift network is not exactly 
90° or the amplitudes of the I and Q chan-
nels are not perfectly balanced, you don’t 
get perfect opposite-sideband rejection. The 
modulator output includes a little bit of signal 

Fig 15.24 — I/Q modulator (A) and demodulator (B).

on the unwanted sideband and the I/Q signal 
from the demodulator includes a small signal 
rotating in the wrong direction. If there is 
a small dc offset in the amplifiers feeding 
the modulator’s I/Q inputs, that shows up as 
carrier feedthrough. On receive, a dc offset 
makes the demodulator think there is a small 
signal at a constant amplitude and phase angle 
that is always there even when no actual sig-
nal is being received. Nor is analog circuitry 
distortion-free, especially the mixers. Inter-
modulation distortion shows up as out-of-
channel “splatter” on transmit and unwanted 
out-of channel responses on receive.

All those problems can be avoided by go-
ing digital. If the analog I/Q inputs to the 
modulator are converted to streams of digital 
numbers with a pair of ADCs, then the mixers, 
oscillator, phase-shift network and summer 
can all be digital. In many systems, the I and 
Q signals are also generated digitally, so that 
the digital output signal has perfect unwanted 
sideband rejection, no carrier feedthrough 
and no distortion within the dynamic range 
afforded by the number of bits in the data 
words. A similar argument holds for a digital 
demodulator. If the incoming RF signal is first 
digitized with an ADC, then the demodu-
lation can be done digitally without any of 
the artifacts caused by imperfections in the 
analog circuitry.

You can think of an I/Q modulator as a 
device that converts the analytic signal I + jQ 
into a scalar signal at some RF frequency. The 
spectrum of the I/Q signal, both positive and 
negative frequencies, is translated upward in 
frequency so that it is centered on the carrier 
frequency. Thinking in terms of the phasor 
diagram, any components of the I/Q signal 
that are rotating counter-clockwise appear 
above the carrier frequency and clockwise 
components appear below.

15.6.2 SSB Using 
I/Q Modulators and 
Demodulators

As an example of how this works, let’s 
walk through the process of generating an 
upper-sideband signal using an I/Q modula-
tor. See Fig 15.25. We’ll first describe the 
mathematics in the following paragraph and 
then give the equivalent explanation using 
the phasor diagram.

The modulating signal is a sine wave at a 
frequency of ωm radians per second (ωm / 2π 
cycles per second). Because ωm is a positive 
frequency the signals applied to the I/Q inputs 
are I(t) = cos(ωmt) and Q(t) = sin(ωmt). As-
sume the modulating frequency ωm is much 
less than the RF frequency ω. The analytic 
signal is

[ ]
[ ]

m mx(t) cos( t) jsin( t)

cos( t) jsin( t)

= ω + ω

× ω − ω
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so that the real, scalar signal that appears at 
the modulator output is

[ ] m

m

Re x(t) cos( t)cos( t)
sin( t)sin( t)

= ω ω

+ ω ω

At the moment when t = 0, then cos(ωmt) 
= 1 and sin(ωmt) = 0, so the real signal is 
just cos(ωt), the RF signal with zero phase. 
One quarter of a modulation cycle later ωmt 
= π/2, so cos(ωmt) = 0 and sin(ωmt) = 1, and 
the real signal is now sin(ωt), the RF signal 
with a phase of +π/2, or +90°. Every quarter 
cycle of the modulating signal, the RF phase, 
increases by 90°. That means that the RF 
phase increases by one full cycle for every 
cycle of the modulation, which is another way 
of saying the frequency has shifted by ωm. 
We have an upper sideband at a frequency 
of ω + ωm.

On the phasor diagram, the I/Q signal is 
rotating counterclockwise at a frequency of 
ωm radians per second. As it rotates it is in-
creasing the phase of the RF signal at the same 
rate, which causes the frequency to increase 
by ωm radians per second. To cause the phasor 
to rotate in the opposite direction, you could 
change the polarity of either I or Q or you 
could swap the I and Q inputs. In that case 
you would have a lower sideband.

For that to work, the baseband signals ap-
plied to the I and Q inputs must be 90° out 
of phase. That’s not hard to do for a single 
sine wave, but to generate a voice SSB signal, 
all frequencies in the audio range must be 
simultaneously phase-shifted by 90° without 
changing their amplitudes. To do that with 
analog components requires a broadband 
phase-shift network consisting of an array 
of precision resistors and capacitors and a 
number of operational amplifiers.

Fig 15.25 — Generating a USB signal with an I/Q modulator.

Fig 15.26 — Generating a non-sinusoidal USB signal with an I/Q modulator.

THE HILBERT TRANSFORMER
To do that with DSP requires a Hilbert 

transformer, an FIR filter with a constant 
90° phase shift at all frequencies. Recall that 
a symmetrical FIR filter has a constant delay 
at all frequencies. That means that the phase 
shift is not constant — it increases linearly 
with frequency. It turns out that with an anti-
symmetrical filter, in which the top half of 
the coefficients are the negative of the mirror 
image of the lower half, the phase shift is 90° 
at all frequencies, which is exactly what we 
need to generate an SSB signal.

The Hilbert transformer is connected in 
series with either the I or Q input, depending 
on whether USB or LSB is desired. Just as 
with any FIR filter, a Hilbert transformer has a 
delay equal to half its length, so an equal delay 
must be included in the other I/Q channel as 
shown in Fig 15.26. It is possible to combine 

the Hilbert transformer with the normal FIR 
filter that may be needed anyway to filter the 
baseband signal. The other I/Q channel then 
simply uses a similar filter with the same 
delay but without the 90° phase shift.

Because the RF output of the modulator is 
normally at a much higher frequency than the 
audio signal, it is customary to use a higher 
sample rate for the output signal than for 
the input. The FIR filters can still run at the 
lower rate to save processing time, and their 
output is then upsampled to a higher rate 
with an interpolator. It is convenient to use an 
output sample rate that is exactly four times 
the carrier frequency because each sample 
advances the RF phase by exactly 90°. The 
sequence of values for the sine wave is 0, 1, 
0 and –1. To generate the 90° phase shift for 
the cosine wave, simply start the sequence at 
the second sample: 1, 0, –1, 0. The complete 
block diagram is shown in Fig 15.27.

A Hilbert transformer may also be used in 
an SSB demodulator at the receiver end of 
the communications system. It is basically 
the same block diagram drawn backwards, 
as illustrated in Fig 15.28.

Amateurs who have been in the hobby 
for many years may recognize this as the 
“phasing method” of SSB generation. It was 
popular when SSB first became common on 
the amateur bands back in the 1950s because 
suitable crystal filters were expensive or dif-
ficult to obtain.5 The phasing method had the 
reputation of producing signals with excel-
lent-quality audio, no doubt due to the lack of 
the phase distortion caused by crystal filters.

It is important to note that an ideal Hilbert 
transformer is impossible to construct be-
cause it theoretically has an infinitely-long 
impulse response. However, with a suffi-
ciently-long impulse response, the accuracy 
is much better than an analog phase-shift 
network. Just as with an analog network, the 
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frequency passband must be limited both at 
the low end as well as the high end. That is, 
the audio must be band-pass filtered before 
the 90° phase shift. Actually, the filtering 
and phase shifting can be combined into one 
operation using the following method.

First design a low-pass FIR filter with a 
bandwidth one-half the desired audio band-
width. For example, if the desired passband is 
300 to 2700 Hz, the low-pass filter bandwidth 
should be (2700 – 300)/2 = 1200 Hz. Then mul-
tiply the impulse response coefficients with a 
sine wave of a frequency equal to the center 
frequency of the desired passband, (2700 + 
300)/2 = 1500 Hz in this case. That results in 

Fig 15.27 — Block diagram of a digital SSB modulator.

Fig 15.28 — Block diagram of a digital SSB demodulator.

a band-pass filter with the desired 300 – 2700 
Hz response. By using sine waves 90° out of 
phase for the I and Q channels, you end up with 
two band-pass filters with the same amplitude 
response and delay but a 90° phase difference 
at all frequencies. Multiply by a cosine for 
zero phase and by a sine for a 90° phase shift.

Old timers may notice that this bears a 
striking resemblance to the Weaver method, 
the so-called “third method” of SSB genera-
tion, that was used back in the late 1950s to 
eliminate the need for a wide-band audio 
phase-shift network.6,7 It is almost as if there 
is no such thing as truly new technology, just 
old ideas coming back with new terminology! 

Analog modulators and demodulators using 
the phasing and Weaver methods are covered 
in the Transmitters and Transceivers and  
Mixers, Modulators and Demodulators 
chapters.

USES FOR I/Q MODULATORS AND 
DEMODULATORS

While I/Q modulators and demodulators 
can be used for analog modes such as SSB, 
they really shine when used with digital 
modulation modes. The Modulation chap-
ter shows how the modulation states of the 
various digital formats map to positions in the 
phasor diagram, what is called a constellation 
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to downconvert an RF signal to IF with zero 
image response. Analog imageless mixers are 
covered in the Receivers chapter. They are 
sometimes used in microwave receivers and 
transmitters where it is difficult to build filters 
narrow enough to reject the image response, 
but they typically only achieve image rejection 
in the 20-30 dB range. With a digital imageless 
mixer, the image rejection is “perfect” within 
the dynamic range of the bit resolution.

diagram. The transmitter can generate the 
correct modulation states simply by placing 
the correct values on the I and Q inputs to the 
I/Q modulator. In the receiver, the filtered I 
and Q values are sampled at the symbol de-
cision times to determine which modulation 
state they most closely match.

I/Q modulators and demodulators can also 
be used as so-called imageless mixers. A nor-
mal mixer with inputs at f1 and f2 produces 
outputs at f1, f2, f1 + f2, and f1 - f2. A balanced 

mixer eliminates the f1 and f2 terms but both 
the sum and difference terms remain, even 
though normally only one is desired. By feed-
ing an RF instead of AF signal into the input 
of an SSB modulator, we can choose the sum 
or difference frequency in the same way as 
choosing the upper or lower sideband. If the 
input signal is a sine wave, the Hilbert trans-
former can be replaced by a simple 90° phase 
shifter. Similarly, a mixer with the same ar-
chitecture as an SSB demodulator can be used 

15.7 Software-Defined Radios (SDR)
There has been much, sometimes heated, 

discussion about the precise definition of 
a software-defined radio (SDR). Most feel 
that, at minimum, an SDR must implement 
in software at least some of the functions 
that are normally done in hardware. Others 
feel that a radio doesn’t count as an SDR 
unless nearly all the signal-processing func-
tions, from the input mixer to the audio output 
(for the receiver) and from the microphone 
ADC to the power amplifier input (for the 
transmitter), are done in software. Others add 
the requirement that the software must be re-
configurable by downloading new code, pref-
erably open-source. For our purposes we will 
use a rather loose definition and consider any 
signal-processing function done in software 
to fall under the general category of SDR.

Some SDRs use a personal computer to do 
the computational heavy lifting and external 
hardware to convert the transmitted and re-
ceived RF signals to lower-frequency signals 
that the computer’s sound card can handle. 
Some SDRs avoid the use of the sound card by 
including their own audio codec and transfer-
ring the data to the PC via a USB port. Modern 
PCs provide a lot of computational power for 
the buck and are getting cheaper and more 
powerful all the time. They also come with a 
large color display, a keyboard for easy data 
entry, and a large memory and hard disk, 
which allows running logging programs and 
other software while simultaneously doing 
the signal processing required by the SDR.

Other SDRs look more like conventional 

analog radios with everything contained in 
one box, which makes for a neater, more 
compact installation. The signal processing 
is done with one or more embedded DSPs. 
For those who prefer a knob and button user 
interface, this is much preferred to having to 
use a mouse. Especially for contesting and 
competitive DXing, it is much faster to have 
a separate control for each critical function 
rather than having to select from pull-down 
menus. In addition SDRs of this type often 
have some performance advantages over PC-
based SDRs, as we shall see.

Either method offers all the most-impor-
tant advantages of applying DSP techniques 
to signal processing. The channel filter can 
have a much better shape factor (the ratio 
between the width of the passband and the 
frequency difference of the stopband edges). 
FIR filters are linear phase and have less ring-
ing than analog filters of the same bandwidth 
and shape factor. Once the signal is in the 
digital domain all the fancy digital signal 
processing algorithms can be applied such 
as automatic notch filters, adaptive channel 
equalization, noise reduction, noise blank-
ing, and feed-forward automatic gain control. 
Correcting bugs, improving performance or 
adding new features is as simple as download-
ing new software.

15.7.1 SDR Hardware
The transition between analog and digital 

Fig 15.29 — An outboard DSP processor.

signals can occur at any of several places in 
the signal chain between the antenna and the 
human interface. Back in 1992, Dave Hersh-
berger W9GR designed an audio-frequency 
DSP filter based on the TMS320C10, one of 
the earliest practical DSP chips available.8 
This was an external unit that plugged into 
the headphone jack of a receiver and included 
FIR filters with various bandwidths, an au-
tomatic multi-frequency notch filter, and an 
adaptive noise filter. The advantage of doing 
the DSP at AF is that it can easily be added to 
an unmodified analog radio as in Fig 15.29. 
It is the technique used today to implement 
many digital modulation modes using the 
sound card of a PC connected to the audio in-
put and output of a conventional transceiver.

A related technique is to downconvert a 
slice of the radio spectrum to baseband audio 
using a technique similar to the direct-conver-
sion receivers popular with simple low-power 
CW transceivers. This idea was pioneered by 
Gerald Youngblood, AC5OG (now K5SDR), 
with the SDR-1000 transceiver, which he de-
scribed in a series of QEX articles in 2002-
2003.9 The receiver block diagram is shown 
in Fig 15.30. It uses a unique I/Q demodulator 
designed by Dan Tayloe, N7VE, to convert 
the RF frequency directly to baseband I and 
Q signals, which are fed to the stereo input 
of a PC’s sound card, represented by the low-
pass filters and A/D converters in the figure.10 
Software in the PC does all the signal process-
ing and demodulation. The transmitter is the 

Fig 15.30 — Block diagram of K5SDR’s direct-conversion software-
defined receiver.
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same block diagram in reverse, with an I/Q 
modulator converting an I/Q signal from the 
sound card up to the RF frequency where it is 
filtered and amplified to the final power level.

The sound card method manages to 
achieve reasonable performance with simple 
inexpensive hardware. Once the signal is digi-
tized by the A/D converters in the sound card, 
the powerful DSP capability of the PC can 
do amazing things with it. The software for 
the SDR-1000 is open-source and available 
for free download on the Web.11 In addition 
to implementing conventional transceiver 
functions such as several types of detector, 
variable-bandwidth filters, software AGC, an 
S-meter and speech compression, the soft-
ware includes some extra goodies such as an 
automatic notch filter, noise reduction, and a 
panadapter spectrum display.

The simple hardware does impose some 
performance limitations. Because of imper-
fections in the analog downconverter, un-
wanted-sideband rejection is not perfect. This 
is called “image rejection” in the SDR-1000 
literature. On the panadapter display, strong 
signals show up weakly on the opposite side 
of the display, equally-spaced from the cen-
ter. Dc offset in the analog circuitry causes a 
spurious signal to appear at the center of the 
bandwidth. To prevent an unwanted tone from 
appearing in the audio output, the software 
demodulator is tuned slightly off frequency, 
but that means interference at the image fre-
quency can cause problems because of the im-
perfect image rejection. The dynamic range 
depends on the sound card performance as 
well as the RF hardware. Some newer SDRs 
include an integrated audio codec optimized 
for the application so that the PC’s sound 
card is not needed.

Among the integrated, one-box, software-
defined radios, the most common place to 
perform the analog-digital transition is at an 
intermediate frequency. In the receiver, plac-
ing the ADC after a crystal IF filter improves 
the blocking dynamic range (BDR) for in-
terfering signals that fall outside the crystal 
filter bandwidth. BDR is the ratio, expressed 
in dB, between the noise level (normally as-
suming a 500 Hz bandwidth) and an interfer-
ing signal strong enough to cause 1 dB gain 
reduction of the desired signal. With careful 
design, a receiver with such an architecture 
can achieve up to about 140 dB of BDR. 
The third-order dynamic range is similar to 
what can be achieved with a conventional 
analog architecture since the circuitry up to 
the crystal filter is the same.

Another advantage of the IF-based ap-
proach compared to sampling right at the 
final RF frequency is that the ADC does not 
have to run at such a high sample rate. In fact, 
because the crystal filter acts as a high-perfor-
mance, narrow-bandwidth anti-aliasing filter, 
undersampling is possible. With bandwidths F
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of a few kHz or less, sample rates in the 10s 
of kHz can be used even though the center 
frequency of the IF signal is much higher, so 
long as the ADC’s sample-and-hold circuit 
has sufficient bandwidth. Another common 
approach is to add a conventional analog 
mixer after the crystal filter to heterodyne 
the signal down to a second, much lower IF 
in the 10-20 kHz range, which is then sampled 
by an inexpensive, low-sample-rate ADC in 
the normal fashion. IF-based SDRs tend to 
have the highest overall performance at the 
expense of additional complexity.

SAMPLING AT RF
The ultimate SDR architecture is to transi-

tion between the analog and digital domains 
right at the frequency to be transmitted or 
received. In the receiver, the only remaining 
analog components in the signal chain are a 
wide-band anti-aliasing filter and an ampli-
fier to improve the noise figure of the ADC. 
See Fig 15.31. The local oscillator, mixer, 
IF filters, AGC, demodulators and other cir-
cuitry are all replaced by digital hardware 
and software. It has only been fairly recently 
that low-cost high-speed ADCs have become 
available with specifications good enough 
to allow reasonable performance in a com-
munications receiver. Today it is possible 
to achieve blocking dynamic range in the 
low 120s of dB. That is not as good as the 
best analog radios but is comparable to some 
medium-priced models currently available on 
the Amateur Radio market.

Third-order dynamic range is not a mean-
ingful specification for this type of radio 
because it assumes that distortion products 
increase 3 dB for each 1 dB increase in sig-
nal level, which is not true for an ADC. The 
level of the distortion products in an ADC 
tends to be more-or-less independent of sig-

Fig 15.33 — DSP-based feedback type of AGC showing a combination of analog and digital gain-control points.

Fig 15.32 — The Analog Devices AD6620 is a digital downconverter (DDC) IC.  
The CIC filters and FIR filter are all decimating types.

nal level until the signal peak exceeds full 
scale, at which point the distortion spikes up 
dramatically. Compared to a conventional 
analog mixer, ADCs tend to give very good 
results with a two-tone test but don’t do as 
well when simultaneously handling a large 
number of signals, which results in a high 
peak-to-average ratio. It is important to read 
the data sheet carefully and note the test con-
ditions for the distortion measurements.

There are definite advantages to sampling 
at RF. For one thing, it saves a lot of analog 
circuitry. Even if the ADC is fairly expen-
sive the radio may be end up being cheaper 
because of the reduced component count. 
Performance is improved in some areas. For 
example, image rejection is no longer a worry, 
as long as the anti-aliasing filter is doing its 
job. The dynamic range theoretically does not 
depend on signal spacing — close-in dynamic 
range is often better than with a conventional 
architecture that uses a wide roofing filter. 
With no crystal filters in the signal chain, 
the entire system is completely linear-phase 
which can improve the quality of both analog 

and digital signals after demodulation.
The biggest challenge with RF sampling 

is what to do with the torrent of high-speed 
data coming out of the receiver ADC and how 
to generate transmit data fast enough to keep 
up with the DAC. To cover the 0-30 MHz  
HF range without aliasing requires a sam-
ple rate of at least 65 or 70 MHz. That is 
much faster than a typical microprocessor-
type DSP can handle. The local oscillator, 
mixer and decimator or interpolator must be 
implemented in digital hardware so that the 
DSP can send and receive data at a more-
reasonable sample rate. Analog Devices 
makes a series of digital downconverters 
(DDC) which perform those functions and 
output a lower-sample-rate digital I/Q signal 
to the DSP.12 See Fig 15.32. It would also be 
possible to implement your own DDC in an 
FPGA. The same company also makes digital 
upconverters (DUC) that do the same conver-
sion in reverse for the transmitter. Some of 
their DUCs even include the capability to 
encode several digital modulation formats 
such as GMSK, QPSK and π/4 DQPSK.
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DIGITAL AGC
In the transmitter portion of a software-

defined radio, dynamic range is generally 
not a problem because the transmitted signal 
always has approximately the same power 
level. Even if power control is implemented 
digitally, a 1-100 W adjustment range only 
adds 20 dB to the dynamic range. The re-
ceiver is another story. Assuming 6 dB per 
S-unit, the difference between S1 and 60 dB 
over S9 is 108 dB. Considering peak power 
rather than average, the actual range is much 
greater than that. While AGC implemented 
in software can be quite effective in regulat-
ing the signal level at the speaker output, it 
does nothing to prevent the ADC from being 
overloaded on signal peaks. For that, some 
kind of hardware AGC is needed in the signal 
path ahead of the A/D converter. This device 
could be a switched attenuator or variable-
gain amplifier as illustrated in Fig 15.33. It 
normally runs at full gain and only attenuates 
the incoming signal when very strong peak 
signal levels are encountered. It could be to-
tally self-contained with its own threshold 
detector or it can be controlled as shown by 
the DSP, which activates the hardware AGC 
whenever it detects ADC overflow.

One issue with most AGC systems is re-
sponse time. The level detector is normally 
placed after the gain-control stage. Because 
of delays in the feedback loop, by the time the 
AGC circuit detects an over-range condition it 
is already too late to reduce the gain without 
overshoot. One of the advantages of digital 
AGC is that it is easy to use feed-forward 
rather than feed-back control. In Fig 15.34, 
the gain control stage is placed after the level 
detector. A small delay is included in the 
signal path so that the AGC circuit can reduce 
the gain just before the large signal arrives at 
the gain multiplier. With proper design, that 
totally eliminates overshoot and makes for a 
very smooth-operating AGC.

Fig 15.34 — DSP-based AGC with analog feedback and digital feed forward control.

THE LOCAL OSCILLATOR
With direct-RF sampling, the digital lo-

cal oscillator is normally implemented 
with a direct digital synthesizer, operating 
totally in digital hardware. DDS operation 
was explained previously in the sine-wave 
generation section. A separate DDS chip 
with a built-in DAC is sometimes used in 
IF-sampled SDRs as well as in some analog 
radios. One advantage that a DDS oscillator 
has over a phase-locked loop (PLL) synthe-
sizer is very fast frequency changing. That 
can be important in transceivers that use the 
same local oscillator for both the receiver and 
transmitter. If the transmitter and receiver are 
tuned to different frequencies, each time the 
rig is keyed the LO frequency must settle at 
its new value before a signal is transmitted.

The phase noise of the DDS clock is just 
as important as the phase noise of the local 
oscillator in a conventional radio. Phase noise 
shows up as broadband noise that gradually 
diminishes the farther you get from the os-
cillator frequency. In a receiver, phase noise 
causes a phenomenon called reciprocal 

Fig 15.35 — A hybrid DDS/PLL 
synthesizer.

mixing, in which a strong off-channel signal 
mixes with off-channel phase noise to cause 
a noise-modulated spurious signal to appear 
in the receiver passband. In many receivers, 
dynamic range measurements are phase-
noise-limited because the spurious response 
due to reciprocal mixing is louder than the 
distortion products. One way to reduce the 
phase noise from the DDS is to use a conven-
tional PLL synthesizer to generate a signal 
with large frequency steps and combine it 
with a DDS synthesizer to obtain the fine-
grained frequency resolution, as suggested 
in Fig 15.35. In this way, you get the phase 
noise of the DDS and PLL within the loop 
bandwidth of the PLL and the phase noise of 
the VCO outside that bandwidth.

One advantage a PLL has over a DDS oscil-
lator is lower spurious signal levels. A DDS 
with a wideband spurious-free dynamic range 
(SFDR) specification of 60 dB would be bet-
ter than most, but that could cause spurious 
responses in the receiver only 60 dB down. 
The hybrid PLL/DDS technique can suppress 
these spurs as well.

15.7.2 SDR Software
When designing DSP software, it is some-

times surprising how much of your intuition 
about analog circuits and systems transfers 
directly over to the field of digital signal 
processing. The main difference is that you 
need to forget much of what you have learned 
about the imperfections of analog circuitry. 
For example, a multiplier is the DSP equiva-
lent of an ideal double-balanced mixer. The 
multiplier output contains frequencies only 
at the sum and difference of the two input 
signals. There is no intermodulation distor-
tion to create spurious frequencies.

Multiplication by a constant is equivalent 
to an amplifier or attenuator, but with no dc 
offset and with a very precisely-set gain that 
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Fig 15.37 — A digital AM modulator.

does not drift with time or temperature. A 
distortionless AM “diode” detector is just a 
software routine that forces the signal to zero 
whenever it is negative. To build an ideal full-
wave diode detector, just take the absolute 
value of the signal.

When you design an analog circuit you 
have to take into account all the things that 
don’t appear on the schematic. For example 
your crystal filter may show a beautiful fre-
quency response in your filter design pro-
gram, but in the actual circuit the passband 
is skewed because of the input impedance of 
the post-amplifier and the stopband response 
is degraded by signals leaking around the 
filter due to the PC board layout. With soft-
ware, what you see in the simulation is what 
you get (assuming you did the calculations 
correctly!)

SOFTWARE ARCHITECTURE
Incoming data to the DSP from A/D con-

verters or other devices is normally handled 
in an interrupt service routine (ISR) that is 
called automatically whenever new data is 
ready. The AM and AGC detection code in 
Table 15.5 could be included right in the ISR, 
but it is almost always better to limit the ISR 
function to the minimum necessary to service 

Table 15.4
Interrupt Service Routine

void __attribute__((auto_psv, interrupt)) _DCIInterrupt(void)
{
extern int i, q, data_flag;

// Clear interrupt flag:
IFS3bits.DCIIF = 0;
// Input data is 2’s complement:
i = RXBUF0;
q = RXBUF1;
data_flag = 1;
return;
}

the hardware that calls the interrupt and do 
all the signal processing elsewhere. For ex-
ample, Table 15.4 shows an ISR that inputs 
16-bit I and Q data coming in on the dsPIC 
serial data communications interface (DCI). 
The first line is a secret incantation that de-
fines this function to be the interrupt service 
routine for the DCI interface.

As you can see, there is minimal function-
ality in the ISR itself. All the heavy com-
putational lifting is done in processes that 
run in the background and are interrupted 
periodically when new data is available. The 
data_flag variable is a semaphore to signal 
the signal-processing routine that new data is 
ready. Fig 15.36 illustrates the basic program 
architecture of some DSP projects for the An-
alog Devices EZ-Kit Lite DSP development 
board described in the ARRL publication 
Experimental Methods in RF Design. That 
book, by the way, is an excellent source for 
practical “how-to” information on designing 
DSP projects.

SOFTWARE MODULATORS AND 
DEMODULATORS

In this chapter we’ve already covered many 
of the algorithms needed for a software-
defined radio. For example, we know how 
to make I/Q modulators and demodulators 
and use them to build an SSB modulator and 
detector. Let’s say we want our software-
defined transceiver to operate on AM voice 
as well. How do you make an AM modulator 
and demodulator?

The modulator is easy. Simply add a con-
stant value, representing the carrier, to the 
audio signal and multiply the result by a sine 
wave at the carrier frequency, as shown in 
Fig 15.37.

Demodulation is almost as easy. We could 
just simulate a full-wave rectifier by taking 
the absolute value of the signal, as mentioned 
previously, and low-pass filter the result to 
remove the RF energy. If the signal to be 
demodulated is complex, with I and Q com-

Fig 15.36 — Main program flow of a 
typical DSP program.

Fig 15.38 — A digital quadrature 
detector.

ponents, then instead of absolute value we 
take the magnitude

2 2A I Q= +

The dc bias can be removed by adding a 
“series blocking capacitor” — a high-pass 
filter with a suitable cut-off frequency.

A little more elegant way to do it would 
be to include the AM detector as part of the 
AGC loop. In the C code snippet shown in 
Table 15.5, the variable “carrier” is the aver-
age AM carrier level. It is passed to another 
subroutine to control the gain.

Note that no “series capacitor” is needed 
since the audio signal is computed by sub-
tracting the average historical value, carrier, 
from the magnitude of the current I/Q sig- 
nal, am. A small fraction of its value is  
added to the historical value so that the AGC 
tracks the average AM carrier level. AGC 
speed is controlled by that fraction. Dividing 

by 210 = 1024 gives a time con-
stant of about 1024 clock cycles.

Another type of detector we 
haven’t discussed yet is for fre-
quency modulation. For a scalar 
signal, the quadrature detector 
shown in Fig 15.38 is one elegant 
solution. This is the same circuit 
whose analog equivalent is used 
today in millions of FM receivers 
around the world. In the digital 
implementation, the delay block 
is a FIFO buffer constructed from 
a series of shift registers. Multi-
plying the signal by a delayed 
version of itself gives an output 
with a cosinusoidal response 
versus frequency. The response 
crosses zero whenever the carrier 
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Table 15.5
AM Detector

static long int carrier;
long int am;
int i, q, signal;

/* Code that generates i and q omitted */
am = (long int)sqrt((long int)i*i + (long int)q*q);
signal = am - carrier;
// Divide signal by 2^10:
carrier += signal >> 10;
// Audio output to DAC via SPI bus:
SPI1BUF = signal;

frequency is f = N/(4τ), where N is an odd 
integer and the delay in seconds is t=n/fs, 
where n is the number of samples of delay 
and fs is the sample frquency. As the carrier 
deviates above and below the zero-crossing 
frequency the output varies above and below 
zero, just what we want for an FM detector.

For an I/Q signal, probably the most 
straightforward FM detector is a phase de-
tector followed by a differentiator to remove 
the 6 dB per octave rolloff caused by the phase 
detector. The phase is just

Qarctan
I

 ϕ =  
 

You have to be a little careful since there is 
a 180° phase ambiguity in the arctangent 
function. For example,

1 1arctan arctan
1 1

−   =   −   
Software will have to check which quadrant 
of the phasor diagram the I/Q signal is in 
and add 180° when necessary. If there is 
no arctan function in the library, one can be 
constructed using a look-up table. Frequency 
is the derivative of the phase. A differentiator 
is nothing more than a subtractor that takes 
the difference between successive samples.

n n 1

s
f

2  f
−ϕ − ϕ

=
π

where n is the sample number and fs is the 
sample rate. It is important to make sure that 
the difference equation functions properly 
around 360°. If the phase variable is scaled 
so that 360° equals the difference between the 

highest and lowest representable numbers, 
then standard two’s complement subtraction 
should roll over to the right value at the 360° 
/ 0° transition. Another thing to watch out for 
is that the derivative of the phase may be a 
rather small signal, so it might be necessary to 
carry through all the calculations using long 
integers or floating point numbers.

OTHER SOFTWARE FUNCTIONS
A carrier-locked loop is a circuit that auto-

matically tunes a receiver so that it is centered 
on the carrier of the incoming signal. One 
way to achieve that is to make the receiver 
local oscillator controllable by a frequency 
detector. For example if the local oscillator 
(LO) in the receiver were an analog voltage-
controlled oscillator (VCO), the output of 
the FM detector described above could be 
applied to a DAC that generates an error volt-
age to pull the VCO on frequency. If the LO 
were an NCO or other digitally-controlled 
synthesizer, then the error signal could be 
used to control the frequency digitally. An 
even more elegant way to do it is to leave the 
LO alone and tune the frequency of the I/Q 
signal directly. Conceptually, you determine 
the amplitude

2 2A I Q= +

and phase

Qarctan
I

 ϕ =  
 

of the signal, add or subtract the phase 
error from φ to keep its average value from 
changing and then convert back to I = Acos(φ) 

and Q = Asin(φ) again for further processing. 
This is easy to do with a signal that does not 
change phase, such as AM phone. For an FM 
or PM signal, considerable averaging must be 
done of the error signal so that it represents 
the average phase of the carrier rather than 
the instantaneous phase of the modulation.
Speech processing is a function that lends 
itself well to digital signal processing. The 
human voice has a high peak-to-average 
power ratio, typically on the order 15 dB. That 
means, that without processing, a 100-W PEP 
SSB transmitter is only putting out about 3 W 
average! Most SSB transmitters do have an 
automatic level control (ALC) circuit that can 
reduce the peak-to-average ratio by 3-6 dB, 
but that still means your 100-W transmitter is 
only putting out 6-12 W on average.

The problem is that if the ALC setting is 
too aggressive, considerable distortion of the 
audio can result. A transmitter’s ALC circuit 
operates much like the AGC in a receiver. It 
can do a fair job of keeping the peak power 
from overdriving the amplifier but it can do 
little to reduce the short-term power varia-
tions between speech syllables. With digital 
processing, it is fairly easy to use feed forward 
gain control rather than feed back, in a man-
ner similar to the AGC system illustrated in 
Fig 15.34.

The gold standard of speech processing of 
SSB signals is RF clipping. By clipping at 
radio frequency instead of at audio, many of 
the distortion products fall outside the pass-
band where they can be filtered out, by a 
crystal filter in an analog radio or by a digital 
band-pass filter in an SDR. “RF” clipping 
doesn’t actually have to be done at a high RF 
frequency. An IF of a few kHz is sufficient, 
so long as the center frequency is greater than 
about twice the audio bandwidth. That can all 
be done in software and then the signal can be 
converted back to baseband audio if desired.

Developing DSP software is a wonderful 
homebrew activity for the Radio Amateur. 
As electronic devices have become smaller  
and smaller and more and more sophisti-
cated it has become harder and harder to get 
a soldering iron on the tiny pins of surface-
mount ICs. Software development allows 
hobbyists to experiment to their heart’s con-
tent with no danger that an expensive piece of 
electronics will be destroyed by one moment 
of clumsiness. With nothing more than a PC 
and some free software, the enthusiast can 
while away hours exploring the fascinating 
world of digital signal processing and soft-
ware radios.
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15.8 Glossary
Adaptive filter — A filter whose 

coefficients can be changed 
automatically.

Analog-to-digital converter (ADC) — A 
device that samples an analog signal and 
outputs a digital number representing the 
amplitude of the signal.

Analytic signal — A representation of 
the phase and amplitude of a signal 
(often in the form of the in-phase 
and quadrature components), without 
explicitly including the oscillating part 
(the carrier).

Anti-aliasing filter — A band-limiting 
filter placed before a sampler to make 
sure the incoming signal obeys the 
Nyquist criterion.

Anti-symmetrical — A function that is 
anti-symmetrical about point x=0 has the 
property that f(x) = –f(–x).

Application-specific integrated circuit 
(ASIC) — A non-programmable IC that 
is designed for a particular application.

Arithmetic logic unit (ALU) — The 
portion of a microprocessor that 
performs basic arithmetic and logical 
operations.

Automatic gain control (AGC) — The 
circuit in a receiver that keeps the signal 
level approximately constant.

Automatic level control (ALC) — The 
circuit in a transmitter that keeps 
the peak signal level approximately 
constant.

Barrel shifter — A circuit in a 
microprocessor that can bit-shift a 
number by multiple bits at one time.

Baseband — The low-frequency portion 
of a signal. This is typically the 
modulation.

Bilinear transform — A design technique 
for IIR filters in which the frequency 
axis is transformed to prevent the filter 
bandwidth from violating the Nyquist 
criterion.

Binary point — The symbol that separates 
the integer part from the fractional part 
of a binary number.

Blocking dynamic range (BDR) — The 
difference between the noise level 
(usually in a 500-Hz bandwidth) and the 
signal level that causes a 1 dB reduction 
in the level of a weaker signal.

Carrier-locked loop — A feedback control 
loop to automatically tune a receiver 
or demodulator to the frequency of a 
received carrier.

Chebyshev filter — A filter with equal 
ripple in the passband, stopband or both.

Circular buffers — A buffer in which the 
final entry is considered to be adjacent 
to the first.

Cognitive radio — A radio system in 
which a wireless node automatically 
changes its transmission or reception 
parameters to avoid interference with 
other nodes.

Complex number — A number that 
contains real and imaginary parts.

Complex PLD (CPLD) — A 
programmable logic device that is more 
complex than a small PLD, such as a 
PAL, but with a similar architecture.

Constellation diagram — A phasor 
diagram showing the locations of all the 
modulation states of a digital modulation 
type.

Convolution — A mathematical operation 
that modifies a sequence of numbers 
with another sequence of numbers so 
as to produce a third sequence with a 
different frequency spectrum or other 
desired characteristic. An FIR filter is a 
convolution engine.

Cooley-Tukey algorithm — Another name 
for the fast Fourier transform.

Decimation — Reduction of sample rate 
by an integer factor.

Decimation in time — The division of a 
sequence of numbers into successively 
smaller sub-sequences in order to 
facilitate calculations such as the Fourier 
transform.

Digital downconverter (DDC) — A device 
that translates a band of frequencies to 
baseband, typically at a lower sample 
rate.

Digital signal processing — The 
processing of sequences of digital 
numbers that represent signals.

Digital signal processor (DSP) — A 
device to do digital signal processing. 
The term normally is understood to refer 
to a microprocessor-type device with 
special capabilities for signal processing.

Digital-to-analog converter (DAC) — A 
device that converts digital numbers 
to an analog signal with an amplitude 
proportional to the digital numbers.

Digital upconverters (DUC) — A device 
that frequency-translates a baseband 
signal to a higher frequency, typically at 
a higher sample rate.

Direct digital synthesis (DDS) — The 
generation of a periodic waveform by 
directly calculating the values of the 
waveform samples.

Direct form — A circuit topology for an 
IIR filter that corresponds directly to the 
standard filter equation.

Direct memory access (DMA) — The 
ability of a microprocessor chip to 
transfer data between memory and some 
other device without the necessity to 

execute any processor instructions.
Dithering — Randomly varying the 

amplitude or phase of a signal in order to 
overcome quantization effects.

Embedded system — A system that 
includes a microprocessor for purposes 
other than general-purpose computing.

Equal-ripple filter — A filter in which 
the variation in passband or stopband 
response is constant across the band.

Exponent — The number of digits that the 
radix point must be moved to represent 
a number.

Fast Fourier transform (FFT) — An 
algorithm that can calculate the discrete 
Fourier transform with an execution 
time proportional to nlog(n), instead of 
n2 as is required by the straight-forward 
application of the Fourier transform 
equation.

Field-programmable gate array (FPGA) 
— An IC that contains a large array of 
complex logic blocks whose function 
and connections can be re-programmed 
in the field.

Filter coefficient — One of a series of 
numbers that define the transfer function 
of a filter.

Finite impulse response (FIR) — An 
impulse response that is zero for all time 
that is greater than some finite amount 
from the time of the impulse.

Floating-point — Refers to a number 
whose value is represented by a mantissa 
and an exponent.

Fourier transform — A mathematical 
operation that derives the frequency 
spectrum of a time-domain signal.

Hardware-description languages (HDL) 
— A computer language to specify the 
circuitry of a digital device or system.

Harmonic sampling — The use of a 
sample rate that is less than twice the 
highest frequency of the signal to be 
sampled. The sample rate must be 
greater than two times the bandwidth of 
the signal.

Harvard architecture — A computer 
architecture in which the program and 
data are stored in separate memories.

Hilbert transformer — A filter that creates 
a constant 90° phase difference over a 
band of frequencies.

Imageless mixer — A mixer in which 
the output contains only the sum or 
difference of the two input frequencies, 
but not both.

Imaginary number — A real number 
multiplied by the square root of minus 
one.

Impulse — A pulse of finite energy with a 
width that approaches zero.
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Impulse-invariant — A design technique 
for IIR filters in which the impulse 
response is the same as the impulse 
response of a certain analog filter.

Impulse response — The response versus 
time of a filter to an impulse.

In-circuit emulator (ICE) — A device 
that emulates the operation of a 
microprocessor while providing 
debugging tools to the operator. The ICE 
normally plugs into an IC socket that 
normally holds the microprocessor.

In-circuit debugger (ICD) — A device 
that uses debugging features built into 
the microprocessor so that it can be 
tested while in the circuit.

In-circuit programmable (ICP) — 
A programmable IC that can be 
programmed while it is connected to the 
application circuit.

In-circuit programmer (ICP) — A 
device to facilitate programming of 
programmable ICs while they are 
connected to the application circuit.

In-phase (I) — The portion of a radio 
signal that is in phase with a reference 
carrier.

Infinite impulse response (IIR) — An 
impulse response that theoretically never 
goes to zero and stays there.

Integrated development environment 
(IDE) — An integrated collection 
of software and hardware tools for 
developing a microprocessor project.

I/Q demodulator — A device to derive the 
in-phase and quadrature portions of an 
oscillating signal.

I/Q modulator — A device to generate an 
oscillating signal with specified in-phase 
and quadrature parts.

Interpolation — Increasing the sample rate 
by an integer factor.

Interrupt service routine (ISR) — A 
software subroutine that is called 
automatically when the main routine is 
interrupted by some event.

Least mean squares (LMS) — An 
algorithm for adaptive filters that 
minimizes the mean square error of a 
signal.

Least-significant bit (LSB) — When used 
as a measurement unit, the size of the 
smallest step of a digital number.

Limit cycle — A non-linear oscillation in 
an IIR filter.

Linear phase — Refers to a system 
in which the delay is constant at all 
frequencies, which means that the phase 
is linear with frequency.

Mantissa — The decimal or binary part of 
a logarithm or floating-point number.

Multiplier-accumulator (MAC) — A 
device that can multiply two numbers 
and add the result to a previous result all 
in one operation.

Multi-rate — Refers to a system with more 
than one sample rate.

Numerically-controlled oscillator (NCO) 
— An oscillator that synthesizes the 
output frequency from a fixed timebase. 
A DDS oscillator.

Nyquist criterion — The requirement that 
the sample rate must be at least twice the 
bandwidth of the signal.

Nyquist frequency — One half the sample 
rate.

Nyquist rate — Twice the signal 
bandwidth.

One-time programmable (OTP) — A 
programmable device that may not be 
re-programmed.

Orthogonal — Perpendicular. In analogy 
with the mathematics of perpendicular 
geometrical vectors, the term is used in 
communications to refer to two signals 
that produce zero when convolved.

Oversampling — Use of a sample rate 
higher than required by the Nyquist 
criterion in order to improve the signal-
to-noise ratio.

Parks-McClellan algorithm — An 
optimized design technique for equal-
ripple filters.

Phasor diagram — A polar plot of 
the magnitude of the in-phase and 
quadrature components of a signal.

Pipeline — An arrangement of 
computational units in a microprocessor 
or other digital device so that different 
units can be working on different 
instructions or signal samples at the 
same time.

Programmable-array logic (PAL) — A 
type of small PLD that consists of an 
array of AND gates, OR gates, inverters 
and latches.

Programmable-logic device (PLD) — 
A device with many logic elements 
whose connections are not defined at 
manufacturer but must be programmed.

Quadrature (Q) — The portion of a radio 
signal that is 90° out of phase with a 
reference carrier.

Quadrature detector — An FM detector 
that multiplies the signal by a delayed 
version of the same signal.

Quantization — The representation of a 
continuous analog signal by a number 
with a finite number of bits.

Quantization error — The difference in 
amplitude between an analog signal and 
its digital samples.

Quantization noise — Noise caused by 
random quantization error.

Radix − The base of a number system. 
Binary is radix 2 and decimal is radix 
10.

Radix point — The symbol that separates 
the integer part from the fractional part 
of a number.

Reciprocal mixing — A spurious response 
in a receiver to an off-channel signal 
caused by local oscillator phase noise 
at the same frequency offset as the 
interference.

Reconstruction filter — A filter located 
after a digital-to-analog conversion or 
interpolation to filter out sampling spurs.

Resampling — Changing the sample rate 
by a non-integer ratio.

Resolution — The number of bits required 
to represent a digital number from its 
smallest to its largest value.

Sample rate — The rate at which samples 
are generated, processed or output from 
a system.

Sampling — The process of measuring 
and recording a signal at discrete points 
of time.

Software-defined radio (SDR) — A 
transmitter and/or receiver whose 
principal signal processing functions are 
defined by software.

Spectral leakage — In a Fourier transform, 
the indication of frequencies that are 
not actually present in the signal due to 
inadequate windowing.

Tap — One processing block, consisting 
of a coefficient memory, signal register, 
multiplier and adder, of an FIR filter.

Training sequence — A sequence of one 
or more known symbols transmitted for 
the purpose of training the adaptive filter 
in a receiver.

Undersampling — Harmonic sampling.
Volatile memory — A memory that 

requires the presence of power supply 
voltage for data retention.

Von Neumann architecture — A computer 
architecture that includes a processing 
unit and a single separate read/write 
memory to hold both program and data.

Windowing — Tapering the edges of a 
data sequence so that the samples do not 
transition abruptly to zero. This avoids 
passband and stopband ripple in an FIR 
filter and spectral leakage in a Fourier 
transform.

Zero-order hold — Holding of a data value 
for the entire sample period.

Zero-overhead looping — The ability of 
a microprocessor to automatically jump 
from the end of a memory block back 
to the beginning without additional 
instructions.

Zero-stuffing — Interpolation by inserting 
zero-valued samples in between the 
original samples.
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