
 QEX – November/December 2012 19

Bob Simmons, WB6EYV

1268 Veronica Springs Rd, Santa Barbara, CA 93105; pelican2@silicon.com

APRS Unveiled
All the sneaky bit-level details of APRS messages...with an example packet.

Anyone attempting to create APRS
equipment “from scratch” has immediately
confronted the lack of a complete, detailed
summary of all the APRS message require-
ments. Finding these details requires consid-
erable effort, more than a little “luck,” and a
vocabulary that an APRS “novice” simply
won’t have. The lack of a simple, concise (and
complete) summary has probably thwarted
many attempts to create APRS technology.

This article (hopefully) addresses that
problem. It provides a detailed description of
a typical APRS message string, byte by byte,
with a complete example provided. Basically,
there is enough “message protocol” informa-
tion to enable the creation of a circuit that can
plug into the MIC jack of a non-APRS radio,
and generate APRS packets that will success-
fully propagate across an APRS network.

The guidelines described here have been
tested and proven. I used them to develop a
2 m APRS beacon transmitter design that has

been in service for 2 years, and which has
been used by several people. You can find
more information about the beacon itself on
my website: www.silcom.com/~pelican2/
PicoDopp/XDOPP.htm#MBCN.

The Bell 202 Modulation Method
APRS data is transmitted at a 1200 baud

data rate, typically on the (US) national
APRS channel of 144.390 MHz. The data
is frequency-modulated onto the RF carrier
with two audio tones (1200 / 2200 Hz) that
comply with a modified version of the Bell
202 modem standard. At the moment of data
bit transition, a logic “zero” data bit is signi-
fied by “flipping” between tones, (for exam-
ple, 1200 to 2200, or vice versa) whereas a
logic “one” data bit is signified by no “flip”
(steady frequency, either 1200 or 2200 Hz)

The Bell 202 standard specifies that the
tone “flip” must be “phase contiguous,”
which basically means that the transition

between tones must be as smooth as pos-
sible. The phase angle of the audio waveform
(at the instant of tone switching) must be
preserved and used as the “starting” phase
angle for the new tone waveform. This mini-
mizes switching transients and reduces the
required bandwidth of the signal, resulting
in improved signal to noise ratio (SNR). An
example modulation waveform is shown in
Figure 1.

Octets Versus Bytes
APRS message bytes are transmitted with

no START or STOP bits, (each byte is called
an octet) which is different from regular
RS232 bytes. Most of the message data is
encoded using ordinary ASCII characters,
but there are some exceptions to this rule,
described later. In all cases, octet (byte) data
bits are transmitted least significant bit (LSB)
first. (The bit order is B0 to B7.)

“Phase
Contiguous”
Frequency
Change

1200 Hz 2200 Hz

Bell 202 Modulation

Data Bit = 1
Tone = Steady

Data Bit = 1
Tone = Steady

Data Bit = 1
Tone = Steady

Data Bit = 0
Tone = “Flip”

QX1209-Simmons01

Figure 1 — This graph illustrates the Bell 202 Modem modulation specification for the transition between tone frequencies to
represent a 0 data bit.

Mark
Typewritten Text

Mark
Typewritten Text
Copyright © 2013 American Radio Relay League, Inc. - All Rights Reserved

20 QEX – November/December 2012

APRS Position Reports: The Message Format

The APRS “example” message provided in this article complies with the format identified on page 33 of the APRS specification docu-
ment, version 1.0.1, dated 29 August 2000.1 In that document, (page 33) this message format is identified as: “Lat/Long Position Report
Format with Data Extension (no Timestamp)” Byte by byte, the transmitted message has this format:

FDDDDDDdSSSSSSsVVVVVVvVVVVVVvCPsLLLLLLLHsLLLLLLLLHsCCCsSSSCccFF

With each byte defined as shown below:
(begin transmission)
(NOTE: Tone modulation begins IMMEDIATELY when transmission begins… no “dead carrier” time is provided.)
Starting Flag Bytes	 (1 byte minimum, usually several identical bytes)
  F	 Flag byte, always = 0x7E
Preamble Bytes
  DDDDDDd	 Destination addr	 (7 bytes)(“APDF00”+ SSID = “0” in this example)
  SSSSSSs
  Source addr	 (7 bytes = 6 call sign bytes + 1 SSID byte)
  VIA addr (0 - 8 addr = 0 - 56 bytes)	 (7 bytes each = 6 call sign + 1 SSID byte)
	 (NOTE: this example uses only 2 VIAs, shown below)
  VVVVVVv	 VIA 1 address + SSID (optional, 6 + 1 bytes)
  VVVVVVv	 VIA 2 address + SSID (optional, 6 + 1 bytes)
(end of preamble bytes)

  Control and Protocol Bytes
  C	 Control field	 (1 byte, always = 0x03)
  P	 Protocol field	 (1 byte, always = 0xF0)
(end of control and protocol bytes)
Information Field	 (APRS Position report, no timestamp, no messaging)
  s	 Symbol	 (1 byte)(APRS message type identifier)
	 (! = exclamation mark = no APRS messaging, no time stamp)
  LLLLLLLH	 Latitude	 (8 bytes, XXxx.xxH)
		 (XX = degrees latitude, 00 to 89)
		 (xx.xx = minutes + dp + decimal minutes latitude)
 		 (H = hemisphere, N or S)
  s	 Symbol	 (1 byte)(= primary or alternate APRS symbol table)
	 (This identifies the type of APRS map icon to be displayed)
  LLLLLLLLH	 Longitude	 (9 bytes, XXXxx.xxH)
		 (XXX = degrees longitude, 000 to 179)
		 (xx.xx minutes + dp + decimal minutes longitude)
 		 (H = hemisphere, E or W)
  s	 Symbol	 (1 byte)(= map symbol displayed on APRS screens)
(data extension begins here: COURSE and SPEED)
  CCC	 Course	 (3 bytes, xxx = 001-359, true degrees, 000 = stationary)
  s	 Symbol	 (1 byte)(delimiter = “/”)
  SSS	 Speed	 (3 bytes, xxx = 000-999 knots)
(end of data extension)
  C	 Comment	 (0 - 36 bytes, 1 byte shown here)
(end of information field)

  Frame Checksum Bytes
  cc	 FCS field	 (2 bytes, CRC checksum, sent low byte / high byte)
  (end of frame checksum bytes)

  Ending Flag Bytes
  FF	 Flag	 (2 bytes minimum)
  (end of message…. end transmission)

NOTE: As a courtesy to the receiving decoder (to make its job easier) it is not unusual to send several bytes of 0x00 data before sending
the first FLAG byte. The pattern of several successive “0” bits causes the Bell 202 tones to constantly flip between tones, which simplifies
the detection of the boundary between successive data bits, at the receiving decoder. For similar reasons, it is not unusual to send several
FLAG bytes at the beginning (and end) of an APRS message, even though the APRS spec states only one FLAG byte is required.

Bear in mind that the receiver “at the other end” probably is an ordinary voice radio, with ordinary squelch circuits that will require
50 to 100 milliseconds (or more) of time to detect the presence of a signal on the channel, before any speaker audio is generated. At 1200
baud, 100 milliseconds of time equates to 15 transmitted bytes of message data… so the typical “courtesy” practice of transmitting several
starting flag bytes is (probably) more important than the APRS specification indicates.

1Ian Wade, G3NRW, Editor, Automatic Position Reporting System APRS Protocol Reference, TAPR, 2000, p 33: www.aprs.org/doc/
APRS101.PDF. [Yes, that should be “Automatic Packet Reporting System,” but the title of the document was not changed. — Ed.]

Mark
Typewritten Text
Copyright © 2013 American Radio Relay League, Inc. - All Rights Reserved

 QEX – November/December 2012 21

Flag Bytes and Bit Stuffing
The lack of START and STOP bits in APRS messages means that

some other method must be provided for an APRS decoder to “syn-
chronize” itself with the bitstream of arriving messages.

The boundary between successive data bits can be identified by
observing the 1200 / 2200 Hz tones, but the boundary between suc-
cessive BYTES (end of one byte and start of next byte) must be iden-
tified by some other means. This is accomplished with special octets
called FLAG bytes, consisting of a bit pattern of “01111110.” (hex
0x7e = ASCII “tilde” character: ~)

This pattern (six consecutive “one” data bits) is reserved
EXCLUSIVELY for FLAG bytes in the APRS specification.
Therefore, any “accidental” occurrence of the same pattern (in the
transmitted data) must be detected and prevented, but the data itself
must (somehow) be preserved and recovered at the receiver. To
accomplish this, a method is employed called “bit stuffing.”

With “bit stuffing,” each transmitted message is examined (bit
by bit) as it is transmitted, to detect any (accidental) occurrence of
five consecutive “1” bits. If such an event is detected, the sixth data
bit (which might be either “1” or “0”) is delayed, and a “0” bit is
sent, (“stuffed” into the data stream) followed immediately by the
(delayed) sixth data bit.

At the receiving end of the message, detection of 5 consecutive
“1” data bits will alert the software that the following (6th) bit will
determine if the data is a FLAG byte, or simply part of a regular mes-
sage byte...if the 6th bit is a “1,” the byte is judged to be a FLAG byte...
otherwise, the 6th bit (which is a “0”) will be ignored and discarded
from the bitstream.

The Preamble: General Description
The message preamble includes the source, destination and VIA

address bytes, and their associated SSID bytes. According to the
APRS specification, the number of VIAs (which are user specified)
can vary from zero to eight, but in the example provided in this article,
the number is limited to two VIASs.

The SOURCE address is actually the FCC call sign of the trans-
mitter operator, (6 characters, always spelled with CAPITOL letters)
with an SSID byte appended to the end (7 bytes total...more info
about SSID bytes later). If the call sign is less than 6 characters long,
it is left-justified and padded with trailing ASCII “blank” characters,
(0x20) followed by the SSID byte.

The DESTINATION address is not actually used in APRS… it is
a legacy of packet communications, but APRS is a specialized subset
of packet that does not employ this data field. Instead, it is filled with
a fixed string of characters that identifies the type of software used
to generate the APRS message. The string provided in this article’s
example was assigned to the author by Bob Bruninga, (developer of
APRS) and consists of the text string “APDF00,” with an SSID char-
acter of zero. This “assignment” is a matter of social courtesy, so that
any problems in the resulting APRS messages can be traced back to
the software author, and corrected. Anyone creating their own soft-
ware should therefore contact Bob Bruninga for a similar assignment.

The VIA call signs (and their SSID characters) are optional (two
are provided in this article’s example). These are supplemental iden-
tifiers that provide information about the preferred signal path or
direction for the message to take, and/or the preferred recipients for
the message.

Typically these two VIAs are “WIDE1” (with SSID = 1) and
“WIDE2.” (with SSID = 2) These particular VIAs are actually
requests for automatic “message relays” by any digipeater station that
hears the messages.

The Preamble: SSID Bytes
SSID stands for “Secondary Station ID” (secondary station

identification) SSID is encoded as a single byte that can express a

number ranging from 0 to 15. Various (somewhat complex) “rules”
for selection of SSID numbers are included in the APRS specifica-
tion, but their actual values do not seem to be critical to message
detection / propagation through the APRS network. In this article’s
example, the SSID for the DESTINATION station (= APDF00) is
zero. For a WIDE1 VIA, this SSID should be one, and for a WIDE2
VIA, this SSID should be 2.

It is important to mention that the SSID values shown in ordi-
nary computer displays (and in published articles) always include
a hyphen character, so that “W6XYZ-0” indicates station W6XYZ
with an SSID of zero, but in the actual transmitted message, no
hyphen character is transmitted.

Furthermore, the SSID character is not an ASCII character; the
SSID number is a 4-bit BINARY number, encoded into an 8-bit byte.
The remaining bits are employed for other purposes and a description
of the bits is provided below:

SSID bit 0 = extension bit (= 1 for last PREAMBLE field, = 0
otherwise)

SSID bits 1 to 4 = secondary station identification number (0 to
15, = “SSID” number)

SSID bits 5 and 6 = reserved, always = 1
SSID bit 7 = “control info,” (C-bit) always = 0

The Preamble: Extension Bits and Byte Rotation
The APRS specification allows zero to eight VIA stations to be

identified in a message, so some method must be provided to indicate
how many VIAs are actually contained in any specific message. (This
signals the end of the preamble block of data.) This is accomplished
with the least significant bit (LSB) in ALL the preamble bytes. If the
LSB (= bit 0) in a preamble SSID byte equals zero, then more pre-
amble bytes remain in the message. If this bit equals one, no more
preamble bytes remain. This bit is called the “extension bit”

This bit is often used in ordinary ASCII codes, and therefore it is
not normally available for this purpose. To deal with this conflict, the
ASCII codes used in the preamble (but not in the main message body)
are limited to the 7-bit ASCII codes only (high order bit = always
zero). This includes all “printable” ASCII characters, which are a
subset of the entire ASCII set.

Furthermore, each ASCII byte (in the preamble only) is “rotated
left” by one bit position, which is (arithmetically) equivalent to multi-
plying the character’s binary value by two. This can be done without
loss of information because the top bit of all 7-bit ASCII codes always
equals zero. As a result of this “rotation,” the LSB in each preamble
byte is “liberated” for use as an APRS “extension bit.”

For example, ASCII character “3” would normally be expressed
as hex number 0x33, but in an APRS preamble, (due to the byte rota-
tion) this would be transmitted as hex number 0x66, (if the extension
bit = 0) or as hex number 0x67 (if the extension bit = 1). A table of
ASCII characters with their regular and “rotated” values is in included
in the APRS specification, in Appendix 3, Part 2.

ASCII “3” character	 = 0x33	 = 00110011
Rotated character	 = 0x66	 = 01100110	 (if extension bit = 0)
	 = 0x67	 = 01100111	 (if extension bit = 1)
This “byte rotation” method is only applied to the preamble bytes

— not to the entire contents of the APRS transmission. The first
“rotated” byte is the first byte of the destination address, and the last
“rotated” byte is the last byte of the last VIA address (SSID byte of
the last VIA). If no VIAs are used, then the last “rotated” byte would
be the SSID byte of the source address.

Summarizing, the extension bit in all PREAMBLE charac-
ters must be zero, EXCEPT for the VERY LAST character in the
PREAMBLE, in which the extension bit must equal one.

Control and Protocol Characters
The control and protocol characters consist of two octets trans-

Mark
Typewritten Text
Copyright © 2013 American Radio Relay League, Inc. - All Rights Reserved

22 QEX – November/December 2012

mitted immediately after the preamble.
The control octet is transmitted first, and
always consists of 0x0f. The protocol octet
is transmitted next, always consisting of
0xf0. (No explanation is offered here for
their purpose.)

Message Body (Information Field)
The message body (called the “informa-

tion field” in the APRS spec) has various
forms, depending on the type of APRS mes-
sage being transmitted. The format of the
data contained in this field is identified by the
very first character, (“symbol”) and different
APRS messages use different characters for
this field. (Refer to the APRS specification.)

APRS Map Symbol
The APRS map symbol is identified

with two ASCII bytes located in the mes-
sage body. One is located immediately after

the latitude data field, the other immediately
after the longitude data field. These two bytes
are defined in the APRS specification, in
Appendix 2.

The first character identifies one of
two “symbol tables” in the appendix,
(PRIMARY or ALTERNATE) each contain-
ing 93 “symbols” that will be shown on a
map display when the message is received.
The second character identifies one of the 93
symbols in the associated table.

Data Extensions
Data extensions are optional 7-byte

fields that (if employed) express additional
information, as described in Chapter 7 of
the APRS specification. In this example, a
data extension is employed to express the
COURSE and SPEED of the reporting sta-
tion.

Comment Field
The COMMENT field is optional. The

maximum allowed length of the COMMENT
field varies depending on the type of APRS
message being sent. (See the details in the
APRS specification for a particular message
type.)

Frame Checksum
The frame checksum is calculated using

a CRC calculation method. CRC refers to
“Cyclic Redundancy Check,” which consists
of a special two byte “checksum” that allows
the integrity of the message data to be tested,
after it is received. The CRC checksum
(= frame checksum) is generated when each
message is transmitted, and evaluated at the
destination, when the message is received.

The CRC checksum generation is per-
formed by examining each byte in the trans-
mitted message, using a special “formula”

Table 1
Sample APRS Example Message

NAME	 VALUE	 	 HEX DATA TRANSMITTED
(begin transmission)
NULLS	 (5X <nul>)	 0x00	 0x00	 0x00	 0x00	 0x00
FLAGS	 (5X <tilde>)	 0x7e	 0x7e	 0x7e	 0x7e	 0x7e
(begin CRC calculation here)
(begin bit stuffing here)

(NOTE: The following bytes are left-rotated one bit position to provide bit 0 = extension bit)

DESTINATION	 APDF00 	 0x82	 0xa0	 0x88	 0x8c	 0x60	 0x60
DEST SSID	 <SSID = 0>	 0x60
SOURCE	 W6XYZ<sp>	 0xae	 0x6c	 0xb0	 0xb2	 0xb4	 0x40
SRC SSID	 <SSID=15> 	 0x7e
VIA1		 WIDE1<sp>	 0xae	 0x92	 0x88	 0x8a	 0x62	 0x40	
VIA1 SSID	 <SSID=1>	 0x62
VIA2		 WIDE2<sp>	 0xae	 0x92	 0x88	 0x8a	 0x64	 0x40	
VIA2 SSID	 <SSID=2>	 0x65

(end left-rotation)

CTRL CHAR	 <control>	 0x03
PROTO CHAR	 <protocol>	 0xf0
MSG TYPE	 <msg type>	 0x21
LATITUDE	 3426.22N	 0x33	 0x34	 0x32	 0x36	 0x2e	 0x32	 0x32	 0x4e
SYMB TABLE	 <primary>	 0x2f
LONGITUDE	 11943.57W	 0x31	 0x31	 0x39	 0x34	 0x33	 0x2e	 0x35	 0x37	 0x57
SYMB CODE	 <car>		 0x3e
COURSE	 264		 0x32	 0x36	 0x34
DELIMITER	 /		 0x2f
SPEED	 000		 0x30 	 0x30 	 0x30
COMMENT	 COMMENT	 0x43	 0x4f	 0x4d	 0x4d	 0x35	 0x4e	 0x54

(end CRC calculation)

CRC LSB	 <CRC lo byte>	 0xf9
CRC MSB	 <CRC hi byte>	 0x3c

(end bit stuffing)

FLAGS	 (5X < tilde>)	 0x7e	 0x7e	 0x7e	 0x7e	 0x7e

(end of transmission)
(total = 81 bytes = 540 ms at 1200 baud)

Mark
Typewritten Text
Copyright © 2013 American Radio Relay League, Inc. - All Rights Reserved

 QEX – November/December 2012 23

that is applied to each bit in the message.
The result of this special “formula” is a two
byte number that expresses the CRC (frame)
checksum.

Bits that are added to the bitstream as a
result of “bit stuffing” are not included in the
calculation of the CRC checksum. The two-
byte checksum itself is also excluded from
the calculation.

CRC checksum calculation begins
with the first byte in the PREAMBLE
block, (immediately after the last starting
FLAG) and ends with the last byte in the
COMMENT block. The two CRC bytes are
then transmitted LSB / MSB (low byte first,
then high byte).

Rather than re-explaining it here in the
author’s own words, I defer to the source
where I learned of it myself — many thanks
to Scott Miller, N1VG, for posting this
simple and concise explanation of the CRC
checksum calculation method on his website:

Frame Check Sequence

One detail of the AX.25 format that
deserves attention is the Frame Check
Sequence (FCS) checksum. This is a two-
byte checksum added to the end of every
frame. It’s generated using the CRC-CCITT
polynomial, and is sent low-byte first.

The CRC-CCITT algorithm has plenty
of published code examples, but the one I
needed, and had trouble finding, was the
algorithm for calculating the FCS one bit at a

time, rather than a byte at a time. That algo-
rithm is as follows:

Start with the 16-bit FCS set to 0xffff.
For each data bit sent, shift the FCS value
right one bit. If the bit that was shifted off
(formerly bit 1) was not equal to the bit
being sent, exclusive-OR the FCS value with
0x8408. After the last data bit, take the ones
complement (inverse) of the FCS value and
send it low-byte first.

NOTE: this text (and more useful infor-
mation) can be found at Scott Miller’s web-
site, at: http://n1vg.net/packet/index.php

Those who choose to double-check this
information against the AX.25 protocol spec-
ification, AX.25.2.2, dated July 1998, will
find in section 3.8 that the order of bit trans-
mission for the FCS data bits is opposite to
that for the rest of the packet data, that is, the
FCS bits (in the spec) should be transmitted
most significant bit first (bit order B15 to B0
for the two FCS bytes) whereas the bit order
for all other packet bytes should be sent least
significant bit first (bit order = B0 to B7).

This contradicts the author’s experience,
in which successful on-air tests (and iGate
postings) of the beacon transmitter’s APRS
packets used FCS data transmitted LSB first,
just like the rest of the APRS packet data.
There also is no mention of this “reversed”
bit order in Scott Miller’s comments on the
topic, so it seems that the AX.25 spec is “sus-
pect,” on this point.

A Message Example
The message example given in Table 1

expresses a complete APRS message gen-
erated in compliance with the guidelines
described in this article. For clarity, bits
added as a result of “bit stuffing” are not
shown in this data. Because a few of the bytes
consist of unprintable ASCII characters, the
data here is expressed in hexadecimal nota-
tion.

Bob Simmons, WB6EYV, was first licensed
as a novice in 1964 at age 13, and remained
licensed (more or less) constantly ever since.
He also earned a commercial FCC license in
1967. He served Naval Reserve duty as a radar
technician (ETR2) with about 6 months of
total sea time. He spent several years of civil-
ian work in nautical and marine electronics
in Los Angeles harbor, as well as doing some
land mobile radio work, followed by 5 years in
flight line avionics, working on business jets.
He moved to Santa Barbara, CA in 1992 and
worked on vacuum deposition systems for 5
years, and held assorted odd engineering jobs
at other times.

Presently, Bob is self employed and runs
a website making and selling radio direction
finding equipment and modules, with a major-
ity of his “new” work spent creating embedded
software / hardware and developing technolo-
gies to enable Internet-linked remote DF sta-
tions. His primary interest is developing and
applying new technologies to old problems,
and pushing the DF “art” forward.

Mark
Typewritten Text
Copyright © 2013 American Radio Relay League, Inc. - All Rights Reserved

