Quantizing a sine wave - N1AL 6/5/2009

Quantizing a complex signal generally results in quantization noise. Quantizing a periodic signal results in quantization spurs - discrete tones on frequencies related to the signal frequency and the sample rate. Let's see how that works with a sine wave.

fs := 9500	Sample rate		We choose a sample rate that is not an integer multiple of the sine wave frequency so that the spurs don't end
f := 1000	Sine wave frequency		up on harmonics only.
bits := 8	Resolution		
n := 9500 i := 0 n - 1	Number of samp Sample index	les	By sampling for an integer number of sine-wave cycles, we won't have to window the FFT.
$A_i := \sin\left(2 \cdot \pi\right)$	$\cdot \frac{\mathbf{f}}{\mathbf{fs}} \cdot \mathbf{i}$	Undig	itized sine wave
scale := 2 ^{bits-}	⁻¹ - 1	Scale full sc	the signal so that the peak is at ale of the analog-to-digital conversion.
$Adig_i := \frac{floo}{}$	$\frac{r\left(\text{scale}\cdot A_{i}+0.5\right)}{\text{scale}}$	Digitiz	ed sine wave
er _i := Adig _i –	- A _i The error si and the qua	ignal is antized	the difference between the original signal signal
k :=0 100	Counter for	points	to plot. $ms_i := i \cdot \frac{1000}{fs}$ Time in millisconds
			Sampled sine wave & quantization error
A _k scale er _k			

Notice how the error signal repeats every two cycles.

4

Calculate the frequency spectrum using the fast Fourier transform.

The regular FFT functions in Mathcad require that the input be a real sequence of length 2ⁿ. Our sequence is real but of the wrong length so we have to use the "complex FFT" cfft():

S := cfft(A)Frequency spectrum of undigitized signal.

Sd := cfft(Adig) Frequency spectrum of digitized signal.

$$m := \operatorname{ceil}\left(\frac{n}{2}\right)$$

j :=0.. m

The Fourier transform of a real signal gives a symmetrical frequency spectrum. That is, the spectrum from 0 to fs/2 is the mirror image of the spectrum from -fs/2 to 0 (which is the same as the spectrum from fs/2 to fs). So the output of the normal FFT function has only half the samples since the other half is the same anyway. The complex FFT gives the entire spectrum but we will only use half of it since we actually have a real input.

$$f_index := floor\left(f \cdot \frac{n}{fs} + 0.5\right) \quad norm := |S_{f_index}| \quad S_j := \frac{S_j}{norm} \quad Normalize the spectra so that the value at the sine-wave frequency is at zero dB.$$

$$SdB_j := 20 \cdot log(|S_j| + 0.00001) \quad Convert frequency spectra into dB.$$

$$The 0.000001 fudge factor is to prevent taking$$

$$SdB_{j} := 20 \cdot log(|S_{j}| + 0.000001)$$

 $SddB_{i} := 20 \cdot log(|Sd_{i}| + 0.000001)$

uye ta cior is to prev the log of zero in case some sample is zero.

Because the error has a period of two sine-wave cycles, the spurs are at f/2 and harmonics.

Now let's try dithering. By adding a small amount of noise to the signal before quantization the quantization error is no longer periodic. The quantization spurs are converted to quantization noise, which is preferable in many applications even though the total spurious signal power is greater.

The discrete spurs have been "smeared out" into random noise.