
24.34 Chapter 24

Would you rather not watch the clock when
engaged in a QSO? Repeaters usually have
an automatic 10-minute ID to remind you
when it’s time to identify your station, but on
HF and simplex it’s more of a problem. Dale
Botkin, NØXAS, set out to design a simple
10-minute ID timer with a reminder beep and
some sort of visual indicator, something along
the lines of the ID timer portion of the old
Heathkit SB-630. Along the way he added a
few features to make the timer more useful,
and as sometimes happens, things just kind
of snowballed from there. The ID-O-Matic
described here and shown in Fig 24.54 is an
automatic ID timer/annunciator with a rich
set of features that make it useful for many
applications.

Fig 24.54 — This version of the ID-O-Matic is built from a kit offered by
www.hamgadgets.com. The parts count is low, and it can easily be built
on a prototype board.

Fig 24.55 — Schematic of the ID-O-Matic. Resistors are 1⁄4 W.

DS1 — Dual-color LED, MV5437.
J1 — DB9 female connector (Mouser 152-

3409).
LS1 — Soberton GT-111P speaker or

equiv (Mouser 665-AT-10Z or Digi-key
433-1020-ND).

Q1-Q4 — 2N7000 MOSFET.
U1 — Microchip PIC16F648A. Must be

programmed before use (see text).
Programmed chips and parts kits are
available from www.hamgadgets.com.

(ARRL now publishes a book about PIC
Programming for beginners.)

X1 — 4 MHz cylindrical crystal (Mouser
520-ECS-400-18-10).

Enclosure: Pac-Tec HMW-ET (Mouser
76688-510).

24.13 The ID-O-Matic Station Identification Timer

Station Accessories 24.35

FEATURE HIGHLIGHTS
There’s an old saying that goes, “When all

you have is a hammer, everything looks like
a nail.” While the author has a pretty well
stocked junk box, he never liked building 555
timers and the like. He tends to use whatever
is handy and can cobble together with an ab-
solute minimum of parts, and likes to be able
to make changes or add features later on. That
often means writing firmware for a PIC mi-
crocontroller, and this time was no exception.

The basic device uses a single PIC 16F648A
processor selected for its memory capacity,
internal oscillator, hardware USART and
other features. All features are implemented
in program code, with just enough external
hardware to provide a useful interface to the
user. Audio and visual output is used to in-
dicate the end of the time period, and one
user control is all that is required other than
a power switch.

Let’s take a quick look first at the basic
features. In its most basic timer mode, a single
pushbutton is used to start the timing cycle
by resetting the PIC. This starts a 10-minute
timer running and lights the green section of a
red-green dual color LED. The LED remains
green until 60 seconds before the set period
expires. With less than 60 seconds remaining,
the LED turns yellow; this is accomplished by
illuminating both the green and red halves.
At 30 seconds the LED begins to blink,
alternating between yellow and red. When the
time period expires, the LED turns red and the
timer starts beeping until you reset it with a
pushbutton switch. Now the cycle starts again,
ready to remind you in another 10 minutes.

So far so good, but using a PIC like this
is a little bit of overkill. Of course no good
project is complete until “feature creep” sets
in! With the timing and audio portions of
the program done, some other features were
pretty simple to add. What if you want to ID
at some other interval instead of 10 minutes,
or have the device automatically ID in Morse
code? What if you want to use it for a beacon
or a repeater ID device? How about CW and
PTT keying outputs for a fox hunt beacon?

Eventually the firmware evolved to have a
fairly robust set of features. There is a serial
interface for setup using a computer or terminal.
You can set the timeout period anywhere from 1
to 32,767 seconds. You can set select a simple
beeping alert, or set a Morse ID message with
up to 60 characters. For repeater and fox hunt
use, there are outputs for PTT and CW keying
just in case they might be needed, as well as a
couple of inputs intended for COR or squelch
inputs if the chip is used in repeater mode. We’ll
cover all of that in a bit; first, let’s look at the
basic functions and the hardware design.

CIRCUIT DESIGN
As shown in Fig 24.55, the hardware is

quite simple. In its basic form all you need
is the PIC, a red and green dual-color LED,

and a few other parts as seen in the schematic.
Supply voltage can be 3 to 5.5 V, so you can
use three AA alkaline cells. You can also add
a 5 V regulator, allowing the use of a 12 V
power supply. Despite their size, 9 V batter-
ies have surprisingly low capacity and will
only last a few days of continuous use in a
project like this.

R1 is a pull-up resistor whose value is not
critical; 10 kW is a good value. Its function
is to hold the !RESET line high until S1 is
pressed. R2 and R3 set the current for the red
and green sections of the dual LED. They are
different values because the red section of the
LED is usually substantially brighter than the
green. R4 pulls the serial RxD line high when
no serial connection is present. For use in the
shack to remind you to ID every 10 minutes,
that’s all you need.

The original prototype fits in a Pac-Tec
enclosure model HMW-ET. For audio out-
put, try a tiny Soberton GT-111P speaker.
About the size of a small piezo element at
12 mm diameter and about 8 mm tall, this is
actually a low current magnetic speaker that
can be driven directly from the PIC’s output
pinch Switches can be whatever style you
like. Many of the parts can be obtained at a
local RadioShack, where you may also find a
suitable enclosure and battery holder.

A level converter circuit allows you to
connect a PC or terminal to set up some of
the more advanced features. A single chip
solution such as a MAX232 or similar chip
could be used, but the circuit shown is effec-
tive, very low cost and easy to build. Most
modern serial ports do not require full EIA-
232 compliance, but will work fine without
a negative voltage for the interface lines. Ac-
cordingly, the interface presented in the sche-
matic simply inverts the polarity of the signals
and also converts the ±12 V logic levels that
may be present on the PC interface to levels
appropriate for the PIC I/O pins. By using
MOSFETs instead of the more traditional
NPN and PNP transistors we can eliminate
some of the parts usually seen in level shifting
circuits like this. The only additional compo-
nents are Q1, Q2 and R4, a current limiting
resistor for the TxD line.

 With a terminal or terminal emulator pro-
gram you can set your own delay time, CW
speed, ID message and select a simple beep or
a CW ID. Inputs used for repeater operation
(!INHIBIT and !START) are an exercise left to the
builder. The thing to remember is that these
inputs are active low, and the input voltage
must be limited to no more than the PIC’s
Vdd supply voltage.

PUTTING THE ID-O-MATIC TO WORk
When power is applied, the PIC is set

to beep at the end of a 10-minute time-out
period. After a series of reminder beeps, it will
automatically reset and begin a new timing
cycle. To change any of the settings, simply

connect a serial cable to your PC or a dumb
terminal and the ID-O-Matic. Any serial com-
munication program such as PuTTY, Hyper-
Terminal or Minicom can be used. The com-
munication settings are 9600 baud, 8 bits, no
parity and no handshaking. Hit the ENTER key
twice to view and edit the configuration. The
program will step through a series of prompts
as shown in Fig 24.56. At each prompt you
may either enter a new setting or simply hit
ENTER to keep the existing setting, shown in
parenthesis.

There are a few optional inputs and outputs
that could be used to make the timer suitable
for use in a “fox” transmitter or repeater.

• Pin 6 (RB0) is the !TEST input. You can
momentarily ground this input to hear your ID
and/or beacon messages. If no messages have
been stored, the ID-O-Matic will announce its
firmware version. During normal operation,
this pin will select the alternate ID message.
This may be useful to indicate, for example, if
a repeater site has switched to battery power,
or if a “fox” transmitter has been located.

• Pin 12 (RB6) is the !INHIBIT input. This
pin is normally held high by the PIC’s inter-
nal weak pull-up resistors, and can be driven
low by some external signal (squelch, for
example) to delay the CW ID until the input
goes high.

• Pin 13 (RB7) is the !START input, used only
in repeater mode. Also pulled high internally,
a LOW logic signal on this pin will start the
timer. This can be handy to have your rig or
repeater ID 10 minutes after a transmission,
but not every 10 minutes. In repeater mode,
the chip will ID a few seconds after the first

Fig 24.56 — Using HyperTerminal to set
up the ID-O-Matic

24.36 Chapter 24

low signal on the !START input. If repeated
!START inputs are seen, subsequent IDs will
occur at the programmed intervals.

• Pin 17 (RA0) is a PTT output. PTT goes
high about 100 milliseconds before the audio
starts and stays high until 100 ms after the end
of the message. With the 2N7000, the PTT and
CW outputs can handle up to 60 V at 200 mA.

• Pin 18 (RA1) is a CW output pin; it will
output the same message as the audio output.

The original program code took several
days to write and tweak, and has undergone
numerous revisions since then. As with any
project like this, the testing was the time
consuming part. The author used the PIC C
compiler from CCS, Inc. to write the program,
but the logic is simple enough that porting to

assembly, BASIC or a different C compiler
should be pretty straightforward.

The code is relatively easy to adapt to
your own equipment or requirements. For
example, you may wish to move certain func-
tions to different pins, change the polarity of
various signals or change some of the timing
defaults. The .LST file contains the C source
with the ASM equivalents, and is a good start-
ing point for someone wishing to understand
the program logic in assembly rather than C.
See the ARRL Handbook CD at the back of
this book for these files.

The really interesting thing about this proj-
ect is its versatility. Think of the ID-O-Matic
as a general purpose PIC based project plat-
form. With a serial interface, a few available

inputs and outputs and a dual-color LED, the
hardware can be adapted to many different
uses simply by changing the PIC’s program
code. For example, the author built a 40 yard
dash timer for his son’s high school football
team by substituting an infrared LED for the
speaker, connecting an IR detector to one of
the inputs and using another for a pushbutton
switch. The serial interface is connected to a
serial LCD display module. Within a couple
of days he had a working device, customized
with his son’s team name, that can be used to
time various events.

It’s a good little project for beginning PIC
users, and a useful station accessory that can
be built in an evening and carried around in
a shirt pocket.

24.14 An Audio Intelligibility Enhancer

Fig 24.57 — The audio intelligibility enhancer is a compact audio processor that can
help to compensate for degraded high-frequency hearing.

Fig 24.58 — The author’s audiology exam results. Threshold sensitivity loss as a
function of frequency is commonly associated with aging.

Here’s a simple audio processor (Fig 24.57)
described by Hal Kennedy, N4GG, that can
improve intelligibility, particularly for those
with degraded high-frequency hearing. It
might just give you an edge in that next DX
pileup.

What we understand (intelligibility) of
what we hear or detect is strongly affected by
the end-to-end frequency response of a given
communications circuit. Our equipment typi-
cally has a fixed audio bandwidth spanning
about 300 Hz to 2700 Hz for SSB operation,
but our hearing varies widely from operator
to operator and it sometimes varies widely for
an individual over the course of his or her life.

Speech intelligibility has been studied ex-
tensively since the 1940s. In brief, the “human
speech signal” can be thought of as being
made up of vowel and consonant sounds.
The vowel sounds are low in frequency, with
fundamental frequencies typically between
100 Hz and 400 Hz, and harmonics as high
as 2 kHz. Consonant sounds occupy higher
frequencies — typically from 2 kHz to as
high as 9 kHz. (See “Speech Intelligibility
Papers” at www.meyersound.com/support/
papers/ speech/). In spoken English, vowel
sounds contain most of the energy in the
speech signal, while consonant sounds are
short, noise-like, and convey the majority of
intelligibility. When consonants are not heard
well, it sounds like the speaker is mumbling.
It becomes difficult to distinguish F from S
and D from T.

Frequently, hearing degradation mani-
fests itself both as a loss of sensitivity over
all frequencies and a frequency dependent
loss where the sensitivity of our hearing de-
grades as the frequency increases. Sensitivity
loss that is flat over frequency does not affect
intelligibility, assuming that levels are high
enough to be heard. A simple loss of sensitivi-
ty can be addressed by turning up the AF gain!

