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The use of nonlinear components such as bipolar transistors, GaAs FETs, and microwave diodes makes it necessary 
to predict large signal-handling performance. The traditional tools to do this were the SPICE approach and Volterra 
series expansion. The SPICE program is a program operating solely in the time domain. SPICE is an outstanding 
workhorse for dc analysis as a function of bias and temperature and transient analysis. The drawbacks of SPICE are 
(1) the lack of an optimizer; (2) the lack of distributed elements such as tee junctions, crosses, and others; and (3) 
the slow execution speed related to the time-domain approach. [1-3] 

Another approach that has been tried is Volterra series expansion. This approach is a simulation where the actual 
computation time is somewhat independent of the values of the components used in a circuit. However, once the 
number of harmonics goes up, Volterra series expansion also becomes very time consuming. The Volterra series 
can be regarded as a nonlinear generalization of the familiar convolution integral. 

The Volterra series also has the limitation that the degree of nonlinearity must be mild, as the representation 
otherwise requires an intractably large number of details for adequate modeling. The recently developed harmonic 
balance method avoids many of the time consuming mathematical approaches mentioned previously. This method 
is a hybrid time- and frequency-domain approach which allows all the advantages of a time-domain device model, 
combined with the strength of the steady-state frequency-domain technique, to be presented in the lumped and 
distributed circuit elements in which the device is embedded. The time-domain model can be completely general, 
thus bypassing complicated determination of coefficients by curve fitting over different bias levels.  

How does the modern non-linear Program Work? [1] 

For a fixed circuit topology (analysis case), the frequency domain is passed through only once; the admittance 
matrix of the linear subnetwork is computed and stored for subsequent use. In the timedomain path, the state-
variable harmonics are first used to compute the corresponding time-domain waveforms. As mentioned earlier, 
these are fed to nonlinear device equipment to produce the time-domain device port voltages and currents. 
Voltage and current harmonics are then described by one- or two-dimensional fast Fourier transforms (FFTs) for 
the cases of single-tone and two-tone excitation, respectively. The voltage harmonics are used to generate "linear" 
current harmonics via the linear subnetwork admittance matrix. The two sets of current harmonics are finally 
compared to produce individual harmonic balance errors and a combined (global) harmonic balance error to be 
used in a convergence test. 

In well-conditioned cases (e.g., FET circuits), a standard Newton-Raphson iteration may be used successfully as an 
update mechanism even though no starting-point information is available (i.e., if zero initial values are assumed for 
all harmonics). In such cases the harmonic balance errors are used via a simple perturbation mechanism to 
generate a Jacobian matrix. The latter is then inverted and applied to the error vector to generate the updated 
harmonic vectors. The algorithm is fast and accurate.  

For circuits containing strongly nonlinear devices such as microwave diodes, a simple Newton iteration may 
sometimes fail to converge. To overcome this difficulty, Designer 5 incorporates a second iteration scheme based 



on a variable metric algorithm (quasi-Newton iteration), which is slower although considerably more robust than 
the regular Newton method. 

In ill-conditioned cases, the quasi-Newton iteration may be used to approach the required solution. After this has 
been done to a satisfactory extent, automatic switchover to Newton iteration takes place, so that the approach 
solution can quickly be refined to any desired accuracy. 

When circuit optimization is requested, the algorithm flowchart is modified. Harmonic balance errors are 
computed in the same way, but now the variable circuit parameters are also updated and the linear subnetwork 
admittance is computed at each iteration. An objective function is defined as a combination of harmonic balance 
error and a contribution arising from the electrical specifications. Such an objective is then minimized by the 
variable metric algorithm until a minimum close enough to zero is reached. Circuit parameters and state-variable 
harmonics are updated simultaneously, thus avoiding the nesting of nonlinear analysis and circuit optimization 
loops. Designer 5 is a general tool using the harmonic balance method for microwave. The harmonic balance 
method is a generic mathematical approach and is used for the first time in a commercial CAD software. Today the 
program of interest is Ansys’s Designer 5. These modern programs are written mathematically so well that stability 
problems in oscillators do not occur in amplifiers. 

Harmonic Balance Analysis (HBA) 

Harmonic balance analysis is performed using a spectrum of harmonically related frequencies, similar to what you 
would see by measuring signals on a spectrum analyzer. The fundamental frequencies are the frequencies whose 
integral combinations form the spectrum of harmonic frequency components used in the analysis. On a spectrum 
analyzer you may see a large number of signals, even if the input to your circuit is only one or two tones. The 
harmonic balance analysis must truncate the number of harmonically related signals so it can be analyzed on a 
computer. 

Analysis parameters such as No. of Harmonics specify the truncation and the set of fundamental frequencies used 
in the analysis. The fundamental frequencies are typically not the lowest frequencies (except in the single-tone 
case) nor must they be the frequencies of the excitation sources. They simply define the base frequencies upon 
which the complete analysis spectrum is built. 

A project for harmonic balance analysis must contain at least the following: A top-level circuit, at least one 
nonlinear active device, and a frequency specification (including the number of harmonics of interest). Designer 5 
has five categories of harmonic balance analysis: 

•   Single-tone analysis (single RF signal) 

•   Two-tone intermodulation analysis (two RF signals) 

•   Two-tone mixer analysis (one RF signal and one LO signal) 

•   Three-tone intermodulation analysis (three RF signals) 

•   Three-tone mixer analysis (two RF signals and one LO signal). 

Formation of the Harmonic Balance Equations 

Harmonic balance analysis involves the periodic steady-state response of a fixed circuit given a pre-determined set 
of fundamental tones [4, 5]. The analysis is limited to periodic responses because the basis set chosen to represent 
the physical signals in the circuit are sinusoids, which are periodic. The Fourier series is used to represent these 
signals. In the single-tone case, a signal is given by: 



          (1) 

where Xk = X-k
*, wo is the fundamental frequency and NH is the number of harmonics chosen to represent the 

signal. 

In harmonic balance, the circuit is usually divided into two subcircuits connected by wires forming multiports. One 
subcircuit contains the linear components of the circuit and the other contains the nonlinear device models as 
shown in the figure. The linear subcircuit response is calculated in the frequency domain at each harmonic 
component (k*wo) and is represented by a multiport Y matrix. This is the function performed by linear analysis. 

 

 
Figure 1: General block diagram showing the two 
subcircuits in the harmonic balance program. 

Separation of the linear and nonlinear subcircuits 

The nonlinear subcircuit contains the active devices whose models compute the voltages and currents at the 
intrinsic ports of the device (parasitic elements are linear and absorbed by the linear subnetwork). The port 
voltages (v) and currents (i) are analytic or numeric functions of the device state variables (x). Often the state 
variables represent physical voltages such as diode junction voltage or FET gate voltage, but are not restricted to 
physical quantities. The port voltages and currents are often functions of the time derivatives of the state variables 
(when a nonlinear capacitor is involved) and of time-delayed state variables (such as a time-delayed current 
source). Generally, the nonlinear device equations are of the form: 

         (2) 

         (3) 

The device state variables, port voltages, and currents are transformed to the frequency domain using the discrete 
Fourier transforms as X, Vk(X) and Ik(X), respectively. Kirchhoff's current law is applied to the interface between the 
subcircuits at each harmonic frequency:  

          (4) 

where Jk are the Norton equivalents of the applied generators. This constitutes the harmonic balance equations at 
each harmonic frequency. The object of the analysis is to find the set of state variables, X, to satisfy equation 4. 

When the analysis begins, the state variables are typically set to zero and the left side of equation 4 is non-zero. 
We can write an error vector: 

          (5) 

whose Euclidean norm EtE = ||E|| is called the Harmonic Balance Error (HBE). If the HBE is reduced below a 
tolerance, we say that equation 4 is satisfied and a solution has been obtained. 

Solving Methods 

The process of solving the harmonic balance equations is an iterative one. An estimate of X is inserted into 
equation (5), E is calculated and if it is not below the tolerance then a new value of X must be determined and 



tried. Each such loop is termed as an iteration. There have been several methods used in the past to determine 
new values of X and two that have proven to be the most general and efficient are discussed here. 

The state variables, X, and harmonic balance residuals, E are complex valued. In practice these are decomposed 
into their real and imaginary parts so that the number of real unknowns in X is ND*(2*Nt+1) where ND is the total 
number of nonlinear device ports and Nt is the number of frequency components (=NH for single tone analysis). 
Now we can write E(X)=0 as a Taylor series expansion truncated after the first derivative term: 

        (6) 

where J, the Jacobian matrix, is the first derivative matrix of E with respect to X and superscript n indicates the 
current iteration. Solving for X and using this for the next trial: 

         (7) 

This is the Newton-Raphson update method where the last right-hand term is the update. This method works in 
one iteration if the set of equations is linear, but will take an unknown number of iterations if nonlinear. Often the 
update is reduced by a factor called the Newton damping factor so the method takes smaller steps each iteration. 
Convergence to a solution is not guaranteed and the iterates may diverge if not controlled. Designer 5 uses 
enhanced versions of the Newton-Raphson method to improve convergence and speed.  

Designer 5 uses an algorithm that dynamically changes the Newton damping factor during solving based on the 
rate of convergence. If the solver has trouble converging, the factor will be made smaller to improve convergence. 
If it has been reduced by more than a predetermined factor, the solver will stop and an error will be reported.  

An important aspect to note is the size of the Jacobian. If X contains ND*(2*Nt+1) elements, then J contains this 
number squared. As a practical example, if ND=10 (5 FETs) and Nt=4, then there are 8100 entries in J which takes 
63 kBytes. This is relatively small, but Nt becomes much larger when multi-tone excitation is considered. 

Some of the controlling functions are made accessible through the CTRL block in the project (see the Control Blocks 
chapter). The HBE tolerance can be changed from its default by: HBTOL  x where x is the tolerance per device port 
per frequency component. 

The absolute harmonic balance error allowed is scaled by the number of device ports and number of frequency 
components so that large circuits with many frequency components meet HBE criteria similar to those of small 
circuits. The default for HBTOL is 1.0x10-6. For the case of 2-tone intermodulation analysis and 3-tone analysis, the 
allowed harmonic balance is also scaled by the relative currents of the circuit. This reduces the allowed error 
(effectively reducing HBTOL) to provide better accuracy of the intermodulation products. 

The number of allowed iterations before the program stops can be changed from its default value of 400 by: 
MAXITER n, where n is an integer. 

Multi-tone Analysis 

The discussion above was based on single-tone analysis for conceptual simplicity. Multi-tone analysis is simply an 
extension of single-tone [6,7,8]. In the single-tone case, a circuit is excited with an RF source and harmonics of that 
source are produced by the nonlinearities of the circuit. The set of harmonics, the frequency of excitation and DC 
are called the spectrum of the analysis. The single-tone spectrum is defined as:  S1 = k*f0 where k=0, 1, ... NH and f0 
is the fundamental frequency. In multi-tone analysis the spectrum is modified to include the harmonic products of 
each fundamental tone. The harmonic products are just integer functions of the fundamental frequencies and 
indicate the allowed “bins” for power conversion within a circuit. The rest of the harmonic balance analysis is 
exactly the same. 



The conversion between time-domain waveforms and Fourier coefficients is accomplished by the discrete Fourier 
transform in single-tone analysis. For each additional fundamental tone, a dimension is added in the transform. 
This allows efficient computation between domains, but becomes CPU-intensive when more than three-
dimensions are encountered. 

Local Oscillator Spectrum Initialization of Mixer Circuits 

For mixer analysis cases where the primary interest is the conversion gain and the RF signal powers are small 
compared to the LO, the circuit can be analyzed using the LO signal only and the conversion gain is determined 
using small-signal (linear) frequency-conversion methods. This is performed using the Small-Signal Mixer Analysis 
option. 

For cases where the RF signal power is not insignificant compared to the LO, a full mixer spectrum must be used. 
Compression of the conversion gain due to high RF power can then be analyzed. Here, the mixer problem can be 
divided into two parts to help speed the analysis. Firstly, the LO signal is analyzed using single-tone analysis; the RF 
signal is turned off. Single-tone analysis is usually very fast compared with a full two-tone analysis. Once the LO 
signal spectrum is found, the results are used to initialize the full mixer spectrum and the RF signal is turned back 
on. The full spectrum is then analyzed. 

This method is most useful for three-tone mixer problems, due to the large number of spectral components used 
in the analysis. The primary use of the three-tone mixer analysis is to determine the intermodulation products of 
the IF products. This precludes the use of small-signal mixer analysis (since the intermodulation products cannot be 
determined using linear frequency conversion methods), but the RF signals are generally small compared to the 
LO. By solving the LO problem first, which is the primary nonlinear problem, and then introducing the RF signals, 
the analysis time can be reduced by a factor of about three. The actual time reduction depends on the circuit, the 
RF power levels, and the conversion gain. 

Using the LO harmonic spectrum to initialize the full mixer spectrum is the default for three-tone analysis. The 
option is not the default for two-tone analysis, because significant time improvements have not been observed. 

Number of Spectral Components and Reduced Spectrum Option 

The number of spectral components considered in each type of analysis is related to the number of fundamental 
tones and the nonlinearity specified. The tables below list the number of spectral components for several 
nonlinearities considered in two-tone and three-tone analyses. The reduced spectrum option removes selected 
spectral components where significant harmonic power is not expected. The results of the analysis will not 
degrade at low power levels, but may yield different results for high power levels, depending on the circuit. 
Usually, the difference in results is negligible for practical cases. 

The reduced spectrum option is especially useful for three-tone mixer analysis where the primary objective is to 
obtain the intermodulation intercept point with the IF. Low RF signal power levels are used and the analysis results 
are unaffected by the reduced spectrum option (the number of LO harmonics is not affected). 

Number of Spectral Components (excluding DC)  
for Two-Tone and Three-Tone Intermodulation Analysis 

nonlinearity 
INTM m 

two-tone 
Full (default) 

two-tone 
Reduced 

three-tone 
Full (default) 

three-tone 
Reduced 

3 12 8 31 21 

4 20 12 64 31 

5 30 22 115 79 



6 42 30 188 115 

7 56 44   209 

8 72 56     

9 90 74     

10 110 90     

 

Number of Spectral Components (excluding DC) for Two-Tone Mixer analysis 

  #SB (M2) = 1 #SB (M2) = 2 #SB (M2) = 3 

#LO (M1) Full (default) Reduced 
Full 
(default) 

Reduced 
Full 
(default) 

Reduced 

2 7 7 12 12 17 17 

4 13 13 22 18 31 23 

6 19 19 32 24 45 29 

10 31 31 52 36 73 41 

15 46 46 77 51 108 56 

20 61 61 102 66 143 71 

25 76 76 127 81 178 86 

30 91 91 152 96 213 101 

 
Note: #LO is the number of local oscillator harmonics; #SB is the number of RF sidebands 

Number of Spectral Components (excluding DC) for Three-Tone Mixer analysis 

  INTM (M2) = 3 INTM (M2) = 5 

# LO (M1) Full 
Reduced 
(default) 

Full 
Reduced 
(default) 

2 62 42 152 112 

4 112 52 274 122 

6 162 62   132 

10 262 82   152 

15   107   177 

20   132   202 

25   157   227 

30   182   252 

 
Notes: Entries that have been filled-in can be simulated 

#LO is the number of local oscillator harmonics; INTM is the intermodulation order 



The total number of spectral components grows very quickly with the level of nonlinearity and number and 
fundamental tones. 

•   Two-tone or three-tone intermodulation spectrum: The highest order group of spectral components, except 
those in the fundamental group (the intermodulation products), are ignored. In this case, the n in REDUCEDn is 
ignored. 

•   Two-tone mixer analysis: All sidebands except the first sideband above the nth local oscillator harmonic will be 
ignored. 

•   Three-tone mixer analysis: All sideband groups at or below the nth local oscillator harmonic will be the same as 
the reduced two-tone intermodulation spectrum; all the sidebands above the n'th local oscillator harmonic will 
contain the two fundamental frequencies only. 

Understanding the reduced spectrum is a little complicated. If the analysis is run with several reduced spectrum 
values and the spectrums are compared, then a better understanding of the spectral selections will be attained. 
Many studies were conducted and showed that the (default) reduced spectrum option for three-tone mixer 
intermodulation analysis affected analysis accuracy only slightly. 

Sparse Jacobian Techniques 

The Jacobian matrix, when properly arranged, can be treated as a sparse matrix by pre-setting some entries to zero 
[6]. The physical reason for doing this is that most of the power transfer takes place between the harmonic 
frequencies of the fundamentals and much less takes place between the other frequencies in the spectrum. We 
can therefore set these derivatives to zero within the Jacobian. When this criterion is not met, the band of non-
zero entries is widened to include cross-harmonic terms.  

Because the Jacobian structure is properly arranged, sparse matrix techniques are efficiently employed. General 
purpose sparse matrix solvers that analyze the sparsity structure are avoided and specialized solvers can be used 
that are much more efficient. Designer 5 automatically sets the bandwidth of the sparse tridiagonal matrix and 
dynamically alters it if the nonlinearity of the circuit is too great for the sparse assumptions. In this way the 
simulator achieves convergence using the minimal amount of computation time and memory that is possible for a 
given problem. For circuits with many devices under multi-tone operation, the CPU time may be decreased by a 
factor of 40. 

A control parameter is made available to override the initial default sparsity parameter that controls the Jacobian 
bandwidth. The initial setting is 0 and can be changed by:  

DIAG n 

where n will be the initial sparsity parameter. Typical values range between 0 and 6. The sparsity parameter will 
still be dynamically altered during execution if needed. If n is greater than Nt/3 (Nt is the number of frequencies), 
then the program will use the full Jacobian. If only the full Jacobian is desired, then set n to a large number. 

Using a sparse Jacobian does not affect the final values or accuracy of the results. It will only affect the 
convergence properties of the particular problem.  



 

 
Figure 2: Sparse Jacobian block structure 

Iterative Newton Method 

One of the short comings of harmonic-balance methods is the large memory requirements when a circuit has 
many nonlinear devices and/or multi-tone analysis is needed. The Jacobian system matrix grows large and must be 
stored and factored. Sparse methods may not be enough to keep the problem within the memory bounds and 
acceptable computational resources of desktop computers. Designer 5 uses a technique that efficiently solves 
large systems of equations without direct factorization of the system matrix. In this way, there is no simplification 
or approximation made to the problem and the full accuracy of the conventional harmonic-balance method is 
completely maintained. The convergence and power-handling capabilities of conventional harmonic-balance 
analysis are also fully maintained. The method is completely automatic and does not require any user intervention. 
An internal software switch detects when the new method should be used and automatically invokes it. 

A brief summary of the method and its advantages is given: Conventional harmonic-balance computes and stores 
the Jacobian matrix. The iterative solution of the harmonic-balance equations requires factorization of the 
Jacobian to obtain updates of the circuit voltages. As the number of nonlinear devices in the circuit increases and 
the number of spectral components used to analyze the circuit increases, the Jacobian matrix can become very 
large, requiring tens or hundreds of megabytes of storage and several minutes of CPU time to factor it. The 
calculation and factorization of the Jacobian typically occurs several times during a single harmonic-balance 
solution. The new method, based on an iterative approach known as Krylov Subspace Methods, avoids direct 
storage and factorization of the Jacobian. Rather, a series of matrix-vector operations replaces the full storage and 
factorization steps while retaining full numerical accuracy. 

Observed speed-up factors depend on the number of nonlinear devices in the circuit and the number of spectral 
components used in the analysis as well as the convergence properties of the harmonic-balance algorithm. Speed 
improvements over conventional harmonic balance analysis from 2x to 10x for circuits consisting of a few 
transistors under two and three-tone excitation have routinely been observed. A circuit containing 20 FETs under 
three-tone analysis exhibited a speed improvement factor of 30x. Memory requirements have also been 
tremendously reduced. The 20 FET circuit originally required >200MB and now will analyze with 64MB. As the 
circuit becomes more “complex” the new methods provides better speed and memory improvements. 

Designer 5 Outputs 

During analysis, Designer 5 generates a number of output files that are used to store textual, graphical and 
initialization information. The files generated are: myfile.aud 

The audit file contains textual information about the analysis. In its basic form it contains the final results of the 
network functions. Additional information can be requested by setting the verbosity flag in the control block as:  

VERBOSE n 



where 0 ≤  n ≤ 4. The higher the verbosity number is, the more output that is generated about the final and initial 
points at each sweep step. 

Sweeping Frequency, Power and Voltage Sources 

Each source in the design can be swept in amplitude. Also, the tones defined for the analysis can be swept. When 
more than one source or frequencies are swept, an ambiguity arises as to the order of precedence. The following 
rules apply in the cases of multiple sweeps:  

1) When more than one source is swept and no frequencies are swept, then the sources sweep in unison. That is, 
each source is stepped at the same time. This is a one-dimensional sweep. 

2) When more than one frequency is swept and no sources are swept, then the frequencies sweep in unison. This 
is also a one-dimensional sweep. 

3) When frequencies and sources are both swept, the program performs a two-dimensional sweep where the 
sources are swept in the innermost loop. A matrix results where the source sweep is the most rapidly changing 
index. An exception to this case is during noise analysis, where the swept frequency deviation will be the 
innermost loop. 

Generating Large-Signal S-Parameters 

Since large-signal S-parameters are poorly defined, but widely used, we will show two methods of generating 
them. If your definition of large-signal S-parameters is different, you can redefine the example to suit your own 
needs. Here lies the ambiguity as to what one means by large-signal S-parameters. It will depend on the specific 
application and must be tailored in each case. Presented below is one interpretation: 

 
 

 
Figure 8: Schematic diagram: Generating large-signal S-parameters 

The calculation of S-parameters in the large-signal regime is not as straightforward as it is in the linear, small-signal 
regime. The large-signal S-parameters are dependent on the power of the excitation sources at each external 
circuit port as well as the circuit bias and terminations. Guidelines will be given here on using Designer 5 to 
generate large-signal S-parameters, but the proper use of these S-parameters in circuit design is up to you. 

Consider a two-port circuit whose large-signal S-parameters are desired. If we apply a source at port 1 with port 2 
terminated, we could measure the reflected and transmitted waves, and conversely for a source applied to port 2 
[10, 11]. However, this assumes that when the device under test is actually used, it will be terminated in the same 
impedance as it was tested. This is rarely the case. Typically the device is embedded in some matching network 
which presents a complex impedance to the device. Therefore, the operating regime of the device will change and 
its large-signal S-parameters will be altered. 

We could then hypothesize that a source can be placed at each port and the traveling waves could be measured at 
each port. The problem here is that it is not possible to distinguish between the reflected wave at a port and the 
transmitted wave due to the source at the other port because the sources are the same frequency. If we perturb 



the frequency of one of the sources, then the reflected and transmitted waves due to each source can be resolved. 
This, however, requires a two-tone analysis. The situation is illustrated in the diagram for a two-port device under 
test.  

The difference in frequency between the two sources can be made small, on the order of 0.001%. This is 
recommended for circuits of large Q. Typically the difference used is about 0.1% because the S-parameters of the 
device under test do not change rapidly with frequency.  

This example shows some of the inconsistencies associated with large-signal S-parameters. For example, what 
happens to the power that is converted to other harmonic products? These will depend on the bias point, 
harmonic terminations, etc. In practice, the powers measured include all harmonic powers incident on the 
detector, whereas in the calculations we can pick out the precise fundamental powers. Also, we chose incident 
power levels as 10dBm and 8dBm, but how do we know if these are correct until after the design is done? There 
are several approximations like these that are assumed to be small when using large-signal S-parameters in active 
circuit design. Nonetheless, these parameters persist in design and can be computed using Designer 5. 

In some cases where it can be approximated that one or more ports will be conjugately matched so a source 
doesn't need to be present there, higher port parameters can also be computed using repetitive analyses. 

Other so-called conversion parameters can be computed. For example, if a mixer conversion matrix is desired 
between the RF and IF frequencies, the corresponding transmission parameters can be computed using TG 
between the proper harmonic numbers. The reflection coefficients can be found by using RL at the source ports 
and source harmonics. 

Algorithm for Single-Tone Y-parameters Evaluation of Nonlinear Systems [12]: 

For single-tone bandpass analysis, it is assumed that a nonlinear element’s measurements are obtained when both 
the source and load have a 50Ω termination and the input is a bandpass single-tone signal. The measurements 
obtained are directly related to the large signal S-parameters of the two-port nonlinear element and the power 
available at the input and output ports.  

For a given single-tone input, we can refer to large signal S-parameters as the operating point of the nonlinear two-
port element when operating independently and terminated in 50Ω. One would certainly expect this operating 
point to change when this nonlinear element is embedded in a nonlinear topology system (as in Figure 3) 
composed of linear and nonlinear components. 

The new operating point (i.e., large-signal S-parameters) is determined for each nonlinear element using an 
iterative algorithm where the levels of the incident powers at both ports are interpolated iteratively until the 
algorithm converges to the actual operating point. This nonlinear frequency domain iterative algorithm accounts 
for all nonlinearities and inter-stage mismatches in the system.  

For the multi-channel nonlinear topology in Figure 3, it is always assumed that parallel nonlinear channels 
connected to the same linear electrical subsystem are not coupled (i.e., non-interacting). This, in simple terms, 
implies that signals traveling in one nonlinear path do not spill over into the other nonlinear path (by virtue of the 
S-parameters describing the linear electrical subsystem). 

This effectively implies that the signals in nonlinear channels are not coupled, and as a result, the impedances Zsn, 
Zinn, Zoutn, and Zln for the nth nonlinear element (1≤n≤N) in Figure 3 are well defined. With that important 
assumption, the iterative algorithm used for evaluating the operating point for each nonlinear element proceeds 
as follows (refer to Figure 3): 

1. Assume an initial guess of for the first iteration (k=0) for the nth nonlinear element 
(1≤n≤N). 



2. Calculate the power-dependent S-parameters for the nth nonlinear element (1≤n≤N) at the kth iteration (k≥0). 
For the first iteration (k=0), this would basically yield the nth nonlinear element small signal S-parameters since the 
initial estimate for the incident powers is zero. 

3. Calculate the entire system’s Y matrix, the impedances shown in the above figure Zsn(k), Zinn(k), Zoutn(k), and 
Zln(k), and the nodal voltages at the input and output ports of the nth nonlinear element at the kth iteration. 

4. Recalculate the incident powers at each port with (1≤n≤N) and (k ≥ 0) according to  

 

P1n(k + 1) = The power available at the input port of the nth nonlinear element at the kth iteration when the output 
port is terminated in Zln(k). 

and  

 

 

 
 
Figure 3: General non-linear electrical topology containing N non-linear elements (NE= nonlinear elements) 

P2n(k + 1) = The power available at the output port of the nth nonlinear element at the kth iteration when the input 
port is terminated in Zsn(k). 

5. Form the error function 

 

The algorithm is assumed convergent if the condition  is met. If this convergence condition is 
not satisfied, steps 2-5 above are repeated until the algorithm converges. If the algorithm fails to converge after 30 
iterations, an error in analysis message will be displayed. 

Linear Electrical Discrete Time Simulation 

During signal analysis, all electrical components and sub-designs are converted to time domain behavioral models 
(i.e., unidirectional models). This time domain model is extracted from the corresponding frequency response 
evaluated during the course of the simulation.  



The extracted time domain behavioral models will typically contain the transient, steady state, and noise 
responses of the electrical sub-design (all in accordance with the frequency-domain signal and noise response of 
the electrical sub-design as well as impedance mismatches within the sub-design). Therefore, the processing of 
modulated signals through electrical components/sub-designs will include the transient, steady state, group delay, 
and noise effects. 

There are two techniques available for discrete time simulation of linear electrical components and sub-designs: 
Convolution and Impulse Invariance.  

Setting Discrete Time Simulation Control Parameters 

For the discrete time simulation of a mixed-mode communications system, the user must carefully select the 
following control parameters:  

1. = Simulation time step (which may assume different values at different points in the system) 
2. MIN_BW = Minimum bandwidth of an electrical component or sub-design in the complete mixed mode 
system. 
3. MAX_RATIO = Ratio of a local maximum to the global maximum in the impulse response. 

Step 1: Choosing the Simulation Time Step 

Choosing the simulation time step  is not a direct process in discrete time signal analysis. For a typical wireless 
communications system, the user always begins by setting the bit rate for binary data sources (or sampling rate if a 
source happens to be a waveform source).  

Binary source components in Designer 5 (e.g., BSRC) have a parameter that determines their output bit rate. In a 
typical baseband modulation process, binary bits (at a user-defined bit rate) are mapped unto information symbols 
(to yield a given symbol rate). Each symbol is then represented by a user-selected number of samples (typically by 
upsampling or repeating each symbol) to finally yield a desired sampling rate  and the corresponding simulation 
time step of  . These samples are then filtered to yield the discrete baseband modulation waveform S(nts) 
described above. 

When choosing the simulation time step caution should be exercised to preserve the Nyquist criterion for the 
signal S(t). In other words, the user must ensure that the discrete signal S(nts) (at any point in the system) has at 
least a Nyquist sampling rate or higher, where the Nyquist sampling rate is equal to twice the bandwidth of the 
continuous signal S(t). 

At the same time, the simulation time step must be chosen in accordance with the Nyquist criterion for system 
bandwidth. In other words, if the bandwidth of a filter or electrical sub-design is BW, then, . Good 
results may be obtained for values of . 

In conclusion, the simulation time step  must be chosen in accordance with the expected (baseband or bandpass) 
signal S(t) and (baseband or bandpass) system bandwidths. For most practical applications, the signal and system 
bandwidths are of the same order, but in general, at any point in the system must be chosen in accordance with 
the larger of the signal bandwidth and system bandwidth at that point. 

In some applications, the user may be interested in generating direct waveforms without having to convert binary 
information to symbols and symbols to samples. The Designer 5 system has a good number of waveform sources 
that can generate a variety of periodic and transient waveforms. In addition, arbitrary waveforms may be imported 
for the discrete time system analysis from MATLAB, WinIQSim and other system simulators by means of an 
external waveform file.  



All waveform source components in the Designer 5 system have a parameter that determines the desired sampling 
rate , which in turn will set the desired simulation time step.  

As an example, consider the second order (type 1) PLL project shown below in Figure 4. Note that the sample rate 
parameter for the complex constant source (CCONST) is set to 50 kHz (well beyond the Nyquist rate of the 
electrical sub-design or loop filter of the Phase Locked Loop). This sampling rate implies a time step of 20µs. After 
analyzing the project, the PLL time domain response shown below in Figure 5 will be displayed.  

 

 
Figure 4: Example of PLL project to show the time domain response 

 
Figure 5: PLL time domain response for 3 different R1 values in the loop filter. Simulation sampling rate

  (values of R1 used are R1=74800, R1=174800, R1=274800) 

If the sample rate of the CCONST source is readjusted to 20 KHz and the project is reanalyzed, the resulting change 
in time domain response for the PLL can be seen below in Figure 6 in terms of the “smoothness” of the output 
curves. There is a warning message displayed for this step. 
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Figure 6: PLL time domain response for 3 different R1 values in the loop filter. Simulation sampling rate

 (values of R1 used are R1=74800, R1=174800, R1=274800) 

As can be seen from the two figures (figure 5 and figure 6), choosing a higher sampling rate results in more 
accurate simulation results. 

Step 2: Choosing the Minimum Bandwidth Control Variable 

Another important control parameter for analyzing mixed systems is MIN_BW which is the minimum bandwidth of 
an electrical component or sub-design. It is up to the user to define this minimum bandwidth as the point where 
the frequency domain response is down by 3dB, 10dB or more. The simulation speed and accuracy of mixed mode 
systems largely depends on selecting this control parameter. The parameter MIN_BW may be specified through 
the Discrete Time Domain System solution setup. To specify a reasonable value for MIN_BW, it may be worthwhile 
to evaluate the frequency response (i.e., ) of electrical sub-designs using the single tone frequency domain 
sweep analysis discussed in the Frequency Domain Analysis topic. This will help identify the MIN_BW in the system 
more appropriately. 

 The number of frequency points used to evaluate the frequency response of an electrical component/sub-design 
(during discrete time analysis) is given by the next power of 2 greater than or equal to K, where  

K = {Minimum power of 2 }  

and the frequency step is given by 

= Sweep resolution used for warning message in the discrete time domain analysis dialog, where 

is the sampling rate of the input signal(s) to the electrical component/sub-design. 

Step 3: Choosing the Maximum Ratio Control Variable 

Once the frequency response of a linear electrical RF sub-design is obtained, the impulse response is extracted 
from the frequency response by means of the inverse FFT operation and the pre-defined variable MAX_RATIO (0 < 
MAX_RATIO ≤ 1).  



MAX_RATIO is a critical parameter used to determine the actual length of the impulse response used for discrete 
time simulation. Since the inverse FFT of the frequency response yields an impulse response of length K/2 samples, 
not all of these samples will be used in the actual discrete time domain simulation. Starting at the last impulse 
response sample at time KtS/2 and moving towards t = 0 (see Figure 7), the pre-defined variable MAX_RATIO is 
used to truncate the impulse response at the point where the ratio of the impulse response local maximum to the 
global maximum is ≥ MAX_RATIO. Thus, specifying a smaller MAX_RATIO value will typically result in longer 
impulse responses (and longer simulation time) but more accuracy. 

The default value for MAX_RATIO is 1e-10, which should produce the most accurate results. At the expense of 
accuracy, the user may specify larger values for MAX_RATIO if a shorter simulation time is desired. 

A graphical illustration of the effects MAX_RATIO has on determining the length of the impulse response is shown 
below.  

 
Figure 7: Graphical illustration of the significance of the maximum ratio control parameter. 

Consider the PLL example discussed above. The responses shown in Figures 8 and 9 below reflect two different 
values for the MAX_RATIO control parameter, namely 0.001 in Figure 8 and 0.1 in Figure 9, with a fixed sampling 
rate of 50 kHz. Clearly, the impact of choosing a larger MAX_RATIO (Figure 9) can be seen. This is due to the fact 
that a larger MAX_RATIO resulted in a premature truncation of the impulse response of the PLL electrical loop 
filter, and consequently, the simulation results are inaccurate. In general, a longer discrete time impulse response 
(smaller MAX_RATIO) requires a longer simulation time, but will tend to yield more accurate results. 

Note  If starting at Kts/2 and moving towards t = 0, the search process fails to detect a local maximum/global 
maximum ratio that is less than MAX_RATIO, a warning message at the end of the simulation will be 
displayed. 

 



  
Figure 8: PLL  response from MAX_RATIO = 0.001 Figure 9: PLL response from MAX_RATIO = 0.1 

Checking Connectivity 

The Electric Rule Check (ERC) feature checks the circuit for valid connectivity. ERC automatically conducts rule 
checking for ports, connections, and components of the active schematic. 

1. To test for connectivity, select Schematic > Electric Rule Check, which opens the following dialog: 

 
2. Select Check subcircuits to run the electric rule check on subcircuits of the active schematic display. 
3. Click Run ERC to begin the error check. 
4. If an error is displayed in the Results window double-click the error message or select the message and 

click Goto Error to go directly to the object in the Schematic Editor that caused the error. 

 

Possible causes of Electric Rule Check error messages include: 

• Unconnected Pins — A component, or port, with a pin that is not connected to anything else.  

• Overlapping Components — A component that completely overlaps another such that the two components 
appear as one component. (Often caused by accidentally clicking twice when placing a component.)  

• Nets with Multiple Output Pins — A net which has more than one output pin connected to it. (This is rare since 
most component pins are labeled as input and output.) 



If You Encounter Convergence Difficulties 

The nonlinear solver have been greatly improved, but you may still have convergence problems with some circuits, 
particularly, highly nonlinear circuits with bipolar transistors or circuits with high drive levels may pose a problem. 
For such circuits, the following hints are suggested to enable finding a solution:  

1) Check the circuit connections. Improper node connections and/or missing units on parameters are the most 
common causes for convergence problems and messages that indicate “Singular Jacobian.” This commonly 
happens when the active devices are not biased properly or the signal path is not connected. Use the Show Bias 
Point option on the Analysis dialog to check for proper bias. 

2) Check that the bias sources are properly connected. If constant current sources are used, make sure the current 
flow is in the desired direction. 

3) Add losses in the circuit. When initial designs are simulated it is common to use ideal elements that don't have 
losses (e.g., transmission lines using characteristic impedance and electrical length only). This may pose problems 
in the analysis of the linear subcircuit at DC or when computing the Jacobian for nonlinear analysis. 

4) Approach the solution point incrementally. By sweeping the source voltage or power toward the desired level, 
the circuit is driven gradually into the region where convergence is difficult to obtain. During a source sweep, the 
results of the previous step are used for the initial iterate of the subsequent step, the starting point is closer to the 
vicinity of the desired solution than a “cold” start from zero initial values. Designer 5 also employs automatic step 
reduction on power sweeps, whereby the step size is halved if convergence was not obtained on the previous step. 

5) A similar solution to the above is to start the analysis from the previous solution. The *.VAR file should be 
backed up, the solution options should start from a previous solution, and the DC initialization should be disabled. 
This method can also be useful when manually tuning the circuit to achieve a desired response (if it is a single-
point analysis). 

6) If insufficient sampling points are used to represent the time-domain waveforms, there will be significant 
aliasing errors in the FFT. 
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