Medium Power Diode Frequency Doublers
Rick Campbell 5/20/99

Two types of frequency doublers were simulated in PSPICE, built, and measured in the
lab. The first is a traditional full-wave rectifier using a Mini-Circuits T4-1 transformer,
but includes a bias circuit consisting of a bypassed DC load. The load permits the drive
level to be much higher than would be permitted with the diodes short-circuited to
ground, which allows the doublers to be used to obtain very respectable output power
(more than 13 dBm) at reasonable conversion efficiency. Loss is approximately 10 dB.
The second type of frequency doubler replaces the T4-1 transformer with a half-wave
balun of the type often used with folded dipole antennas. This permits the frequency
doubler to be constructed for much higher frequencies, limited only by the diode and chip
component parasitics. Diode doublers with similar performance have been built and
measured for output frequencies as high as 10 GHz.

The first doubler is built using the basic topology shown in figure 1. With the values
shown, this circuit works well with input frequencies from 2 MHz to 400 MHz.
Optimum performance is between 10 MHz and 100 MHz input, but loss increases only
by about a dB at the 2 MHz and 400 MHz points.
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A more general form of doubler is shown in figure 2, which includes a low-pass filter on
the input. Balanced doublers require sine wave drive. The presence of even small
amounts of even or odd harmonics will dramatically reduce the desired output and
increase the undesired outputs. Square wave drive to the circuit in figure 1 (no odd
harmonics, 3rd harmonic 9.5 dB down, 5th harmonic 14 dB down, 7th harmonic 17 dB
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down etc.) will result in no RF output at all! For best performance, drive to a balanced
doubler should have all harmonics 40 dB down or more.
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The second type of doubler is illustrated in figures 3 and 4. Use of a half-wave
transmission line makes this topology a narrow-band structure. The “narrow
bandedness” applies to suppression of the drive frequency and odd harmonics. There is a
narrow null in input frequency suppression at the design frequency. The desired output
level does not change much as the input frequency goes through the null. Examining the
schematic, it is clear that the circuit degenerates to two diodes in parallel at low
frequency, so the circuit still doubles, but the drive frequency is no longer suppressed.
The upper circuit is optimized for doubling from 576 MHz to 1152 MHz, and the figure 4
circuit is optimized for doubling from 1152 MHz to 2304 MHz. Both circuits have about

10 dB conversion loss, and can provide more than +13 dBm output when driven by 200
mW.
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Not only does addition of the bias resistor permit optimizing the doubler for much higher
drive levels, the bias circuit provides a built-in test point that provides a calibrated output
reading. Two different doublers, one using a T4:1 transformer and the other using a half-
wave UT-085 balun were measured, using a 47 ohm bias resistor. The voltage across the

bias resistor versus the second harmonic (desired) output level are shown in the figure 5
plot below.
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The open circles are from the T4-1 transformer doubler and the filled circles are from the
UT-085 balun doubler. Clearly the DC voltage across the 47 ohm bias resistor provides a
usefil measurement of output power. There is a relationship between bias voltage and
frequency doubler output power, which can be used as a power indicator, but this voltage
will likely change when the doubler drives something other than a perfect 50 ohm RF
load.

Power output versus power input is quite linear over the drive level range from about +7
dBm to +25 dBm, as shown in the plot in Figure 6. The open circles are the T4-1 version
driven at 144 MHz and the filled circles are from the 576 MHz to 1152 MHz half-wave
line version. This type of frequency doubler is very different from other frequency
multipliers in its linear input to output curve. For example, the odd-harmonic multiplier
using a CMOS logic chip provides the same harmonic output level over a very wide
range of input levels, once the drive level is high enough to toggle the logic. Class C
multipliers using bipolar transistors or FETs generally display a very non-linear output
level versus input level curve, and in fact the drive level is varied to optimize a particular
harmonic. Frequency multipliers that use the non-linear semiconductor properties of
diodes must be optimized for a particular drive level, and output power typically falls off
rapidly both above and below the optimum drive level. .

This suggests that different multipliers should be chosen for different applications. For
example, the output level of a VXO typically varies considerably over the tuning range of
the oscillator. It is good practice to imediately follow a VXO with a limiter circuit so that
LO chain performance is not a function of tuning. When a frequency multiplier is
needed, using a CMOS logic chip after the VXO implements the limiting function with
no additional parts. On the other hand, a microwave frequency multiplier chain with
many stages of frequency multiplication, amplifiers and filters can benefit greatly from
the use of diode balanced diode doublers. The linear input-to-output level relationship



makes it very easy to tune up all the preceeding stages just by observing the output.
With bias resistors in the multipliers, each stage has a built-in test point. The entire LO
multiplier chain can be tuned up using just a voltmeter.
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Conservative amateurs who own Spectrum Analyzers may question the viability of
tuning up LO chains without this critical piece of test equipment, but consider this: A
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narrow bandpass filter followed by a diode detector is a one channel spectrum analyzer.
Since balanced diode doublers must be preceeded by narrow filters to ensure sine wave
drive, each multiplier stage is the ideal test instrument for tuning the previous stages—
assuming that the filter elements have somewhat restricted tuning range so that they can’t
be tuned to the wrong harmonic.

Frequency multipliers using single transistors or transistors in balanced pairs are most
useful when either parts count or DC power must be reduced. While it is possible to
achieve good performance with a number of different types of frequency multiplier
circuits, the use of balance doublers for even harmonic multiplication is highly
recommended. The built-in suppression of all undesired outputs, linear output to input
level relationship, broadband, non-critical frequency behavior, and no power supply
requirements make it easy to build and adjust very high performance multiplier chains.

Below is a letter and more measurements I sent to Wes Hayward after making a few more
measurements.

Hi Wes,

I did a few more sims this morning, sweeping drive level to two of the transformer doublers, one with
MBD-101s and one with IN4148s. I don’t have a PSPICE model for the HP2835. The MBD-101 is close
at low frequency and low drive level, but in the sims the MBD-101 folds over starting at about +20 dBm
drive and the HP2835 doesn’t fold until about +26 dBm in the measurements.

The 1N4148 is interesting in the simulations. It takes significantly more drive to get it started, as expected.
At 0 dBm it puts out only about —20 dBm, and it doesn’t hit 10 dB conversion loss until + 5 dBm drive. It
keeps getting better until +12 dBm drive, where the simulated loss is only 5.0 dB! That holds until +16
dBm drive, where the loss starts to increase again. By +20 dBm drive, it is putting out +14 dBm and at +26
dBm drive it is putting out +19.7 dBm. These are simulations, of course, but it is a very brain-dead circuit
that only requires that the diode behave like a diode. At +26 dBm drive, the DC dissipated in the 47 ohm
bias resistor is 41.3 mW, so there is lots of available RF energy floating around to end up in the second
harmonic. Still, only 5 dB conversion loss as a passive frequency doubler seems optimistic. Also, the
1N4148 has significantly more output on the fundamental and odd harmonics. This is to be expected, as
the varacter modes and carrier storage times are more significant. I didn’t see any evidence of parametric
amplification in the sims, but I wasn’t really looking for them in this simple, resistively loaded circuit with
an ideal transformer.

Bottom line at this point is that I would use the microwave Shottkey diodes for a lab bench doubler, since it
is wonderfully “linear” over a broad range of inputs and has significantly better suppression of undesired
outputs. The switching diodes are a good choice for HF rigs, as they have lower simulated conversion loss,
high output capability, acceptable suppression of the fundamental and odd harmonics, and are cheap and
available. For higher power 1’d try the switching diodes, and even try parallel combinations and or
quadrature power splitting and recombining to get good matches and higher output capability. It might be
possible to get a quarter watt out on the second harmonic of a 1 watt rig, broadband, passive and with a
very good input match. This would be a useful book project, as the 1 watt rig already has to have clean
sine wave output. Perhaps a VXO “unchirpable” for 12 m and 6 m, with the 6 m passive power doubler
integrated into a dipole insulator.

The other interesting point is that diode doublers with “linear” behavior over a drive range greater than
their conversion loss lend themselves to cascade doublers with no gain in between. 400 mW in at 36 MHz
would give you +7 dBm at 144 MHz.
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