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Chapter 24 

Basic Theory of Transmission Lines 
The desirability of installing an antenna in a clear 

space, not too near buildings or power and telephone lines, 
cannot be stressed too strongly. On the other hand, the 
transmitter that generates the RF power for driving the 
antenna is usually, as a matter of necessity, located some 
distance from the antenna terminals. The connecting link 
between the two is the RF transmission line, feeder or 
feed line. Its sole purpose is to carry RF power from one 
place to another, and to do it as efficiently as possible. 
That is, the ratio of the power transferred by the line to 
the power lost in it should be as large as the circumstances 
permit. 

At radio frequencies, every conductor that has 
appreciable length compared with the wavelength in use 
radiates powerevery conductor is an antenna. Special 
care must be used, therefore, to minimize radiation from 
the conductors used in RF transmission lines. Without 
such care, the power radiated by the line may be much 
larger than that which is lost in the resistance of conduc-
tors and dielectrics (insulating materials). Power loss in 
resistance is inescapable, at least to a degree, but loss by 
radiation is largely avoidable. 

Radiation loss from transmission lines can be pre-
vented by using two conductors arranged and operated 
so the electromagnetic field from one is balanced every-
where by an equal and opposite field from the other. In 
such a case, the resultant field is zero everywhere in 
spacethere is no radiation from the line. 

For example, Fig 1A shows two parallel conductors 
having currents I1 and I2 flowing in opposite directions. 
If the current I1 at point Y on the upper conductor has 
the same amplitude as the current I2 at the correspond-
ing point X on the lower conductor, the fields set up by 
the two currents are equal in magnitude. Because the two 

currents are flowing in opposite directions, the field from 
I1 at Y is 180° out of phase with the field from I2 at X. 
However, it takes a measurable interval of time for the 
field from X to travel to Y. If I1 and I2 are alternating 
currents, the phase of the field from I1 at Y changes in 
such a time interval, so at the instant the field from X 
reaches Y, the two fields at Y are not exactly 180° out of 
phase. The two fields are exactly 180° out of phase at 
every point in space only when the two conductors occupy 
the same spacean obviously impossible condition if 
they are to remain separate conductors. 

The best that can be done is to make the two fields 
cancel each other as completely as possible. This can be 
achieved by keeping the distance d between the two con-
ductors small enough so the time interval during which 
the field from X is moving to Y is a very small part of a 
cycle. When this is the case, the phase difference between 
the two fields at any given point is so close to 180° that 
cancellation is nearly complete. 

Fig 1Two basic types of transmission lines. 
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Practical values of d (the separation between the two 
conductors) are determined by the physical limitations 
of line construction. A separation that meets the condi-
tion of being “very small” at one frequency may be quite 
large at another. For example, if d is 6 inches, the phase 
difference between the two fields at Y is only a fraction 
of a degree if the frequency is 3.5 MHz. This is because 
a distance of 6 inches is such a small fraction of a wave-
length (1 λ = 281 feet) at 3.5 MHz. But at 144 MHz, the 
phase difference is 26°, and at 420 MHz, it is 77°. In 
neither of these cases could the two fields be considered 
to “cancel” each other. Conductor separation must be very 
small in comparison with the wavelength used; it should 
never exceed 1% of the wavelength, and smaller separa-
tions are desirable. Transmission lines consisting of two 
parallel conductors as in Fig 1A are called open-wire 
lines, parallel-conductor lines or two-wire lines. 

A second general type of line construction is shown 
in Fig 1B. In this case, one of the conductors is tube- 
shaped and encloses the other conductor. This is called a 
coaxial line (coax, pronounced “co-ax”) or concentric 
line. The current flowing on the inner conductor is bal-
anced by an equal current flowing in the opposite direc-
tion on the inside surface of the outer conductor. Because 
of skin effect, the current on the inner surface of the outer 
conductor does not penetrate far enough to appear on the 
outside surface. In fact, the total electromagnetic field 
outside the coaxial line (as a result of currents flowing 
on the conductors inside) is always zero, because the outer 
conductor acts as a shield at radio frequencies. The sepa-
ration between the inner conductor and the outer con-
ductor is therefore unimportant from the standpoint of 
reducing radiation. 

A third general type of transmission line is the 
waveguide. Waveguides are discussed in detail in Chap-
ter 18, VHF and UHF Antenna Systems. 

CURRENT FLOW IN LONG LINES 
In Fig 2, imagine that the connection between the 

battery and the two wires is made instantaneously and 
then broken. During the time the wires are in contact with 
the battery terminals, electrons in wire 1 will be attracted 
to the positive battery terminal and an equal number of 
electrons in wire 2 will be repelled from the negative ter-
minal. This happens only near the battery terminals at 
first, because electromagnetic waves do not travel at infi-
nite speed. Some time does elapse before the currents flow 
at the more extreme parts of the wires. By ordinary stan-
dards, the elapsed time is very short. Because the speed 
of wave travel along the wires may approach the speed of 
light at 300,000,000 meters per second, it becomes nec-
essary to measure time in millionths of a second (micro-
seconds). 

For example, suppose that the contact with the bat-
tery is so short that it can be measured in a very small 
fraction of a microsecond. Then the “pulse” of current 

Fig 2A representation of current flow on a long 
transmission line. 

Fig 3A current pulse traveling along a transmission 
line at the speed of light would reach the successive 
positions shown at intervals of 0.1 microsecond. 

that flows at the battery terminals during this time can be 
represented by the vertical line in Fig 3. At the speed 
of light this pulse travels 30 meters along the line in 
0.1 microsecond, 60 meters in 0.2 microsecond, 90 meters 
in 0.3 microsecond, and so on, as far as the line reaches. 

The current does not exist all along the wires; it is 
only present at the point that the pulse has reached in its 
travel. At this point it is present in both wires, with the 
electrons moving in one direction in one wire and in the 
other direction in the other wire. If the line is infinitely 
long and has no resistance (or other cause of energy loss), 
the pulse will travel undiminished forever. 

By extending the example of Fig 3, it is not hard to 
see that if, instead of one pulse, a whole series of them 
were started on the line at equal time intervals, the pulses 
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conductors occur one cycle later in time than the cur-
rents at A and C. Put another way, the currents initiated 
at A and C do not appear at B and D, one wavelength 
away, until the applied voltage has gone through a com-
plete cycle. 

Because the applied voltage is always changing, the 
currents at A and C change in proportion. The current a 
short distance away from A and C—for instance, at X and 
Y—is not the same as the current at A and C. This is be-
cause the current at X and Y was caused by a value of 
voltage that occurred slightly earlier in the cycle. This situ-
ation holds true all along the line; at any instant the cur-
rent anywhere along the line from A to B and C to D is 
different from the current at any other point on that sec-
tion of the line. 

The remaining series of drawings in Fig 4 shows how 
the instantaneous currents might be distributed if we could 
take snapshots of them at intervals of 1/4 cycle. The cur-
rent travels out from the input end of the line in waves. 
At any given point on the line, the current goes through 
its complete range of ac values in one cycle, just as it 
does at the input end. Therefore (if there are no losses) 
an ammeter inserted in either conductor reads exactly the 
same current at any point along the line, because the 
ammeter averages the current over a whole cycle. (The 
phases of the currents at any two separate points are dif-
ferent, but the ammeter cannot show phase.) 

VELOCITY OF PROPAGATION 
In the example above it was assumed that energy 

travels along the line at the velocity of light. The actual 
velocity is very close to that of light only in lines in which 
the insulation between conductors is air. The presence of 
dielectrics other than air reduces the velocity. 

Current flows at the speed of light in any medium 
only in a vacuum, although the speed in air is close to 
that in a vacuum. Therefore, the time required for a sig-
nal of a given frequency to travel down a length of prac-
tical transmission line is longer than the time required 
for the same signal to travel the same distance in free 
space. Because of this propagation delay, 360º of a given 
wave exists in a physically shorter distance on a given 
transmission line than in free space. The exact delay for 
a given transmission line is a function of the properties 
of the line, mainly the dielectric constant of the insulat-
ing material between the conductors. This delay is 
expressed in terms of the speed of light (either as a per-
centage or a decimal fraction), and is referred to as 
velocity factor (VF). The velocity factor is related to the 
dielectric constant (ε) by 

ε

1
=VF (Eq 1) 

The wavelength in a practical line is always shorter 
than the wavelength in free space, which has a dielectric 
constant  ε = 1.0. Whenever reference is made to a line as 

Fig 4Instantaneous current along a transmission line 
at successive time intervals. The frequency is 10 MHz; 
the time for each complete cycle is 0.1 microsecond. 

would travel along the line with the same time and dis-
tance spacing between them, each pulse independent of 
the others. In fact, each pulse could even have a different 
amplitude if the battery voltage were varied between 
pulses. Furthermore, the pulses could be so closely spaced 
that they touched each other, in which case current would 
be present everywhere along the line simultaneously. 

It follows from this that an alternating voltage 
applied to the line would give rise to the sort of current 
flow shown in Fig 4. If the frequency of the ac voltage is 
10,000,000 hertz or 10 MHz, each cycle occupies 
0.1 µsecond, so a complete cycle of current will be present 
along each 30 meters of line. This is a distance of one 
wavelength. Any currents at points B and D on the two 
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being a half wavelength or quarter wavelength long (λ/2 
or λ/4), it is understood that what is meant by this is the 
electrical length of the line. The physical length corre-
sponding to an electrical wavelength on a given line is 
given by 

VF
f

6.983
=)feet( ×λ (Eq 2) 

where 
f = frequency in MHz 
VF = velocity factor 

Values of VF for several common types of lines are 
given later in this chapter. The actual VF of a given cable 
varies slightly from one production run or manufacturer 
to another, even though the cables may have exactly the 
same specifications. 

As we shall see later, a quarter-wavelength line is 
frequently used as an impedance transformer, and so it is 
convenient to calculate the length of a quarter-wave line 
directly by 

λ/4 = VF
f

9.245
× (Eq 2A) 

CHARACTERISTIC IMPEDANCE 
If the line could be perfect—having no resistive 

losses—a question might arise: What is the amplitude of 
the current in a pulse applied to this line? Will a larger 
voltage result in a larger current, or is the current theo-
retically infinite for an applied voltage, as we would 
expect from applying Ohm’s Law to a circuit without 
resistance? The answer is that the current does depend 
directly on the voltage, just as though resistance were 
present. 

The reason for this is that the current flowing in the 
line is something like the charging current that flows when 
a battery is connected to a capacitor. That is, the line has 
capacitance. However, it also has inductance. Both of 
these are “distributed” properties. We may think of the 
line as being composed of a whole series of small induc-
tors and capacitors, connected as in Fig 5, where each 
coil is the inductance of an extremely small section of 
wire, and the capacitance is that existing between the same 

two sections. Each series inductor acts to limit the rate at 
which current can charge the following shunt capacitor, 
and in so doing establishes a very important property of 
a transmission line: its surge impedance, more commonly 
known as its characteristic impedance. This is abbrevi-
ated by convention as Z0. 

TERMINATED LINES 
The value of the characteristic impedance is equal 

to C/L  in a perfect line—that is, one in which the con-
ductors have no resistance and there is no leakage between 
them—where L and C are the inductance and capacitance, 
respectively, per unit length of line. The inductance 
decreases with increasing conductor diameter, and the 
capacitance decreases with increasing spacing between 
the conductors. Hence a line with closely spaced large 
conductors has a relatively low characteristic impedance, 
while one with widely spaced thin conductors has a high 
impedance. Practical values of Z0 for parallel-conductor 
lines range from about 200 to 800 Ω. Typical coaxial lines 
have characteristic impedances from 30 to 100 Ω. Physi-
cal constraints on practical wire diameters and spacings 
limit Z0 values to these ranges. 

In the earlier discussion of current traveling along a 
transmission line, we assumed that the line was infinitely 
long. Practical lines have a definite length, and they are 
terminated in a load at the output or load end (the end to 
which the power is delivered). In Fig 6, if the load is a 
pure resistance of a value equal to the characteristic 
impedance of a perfect, lossless line, the current travel-
ing along the line to the load finds that the load simply 
“looks like” more transmission line of the same charac-
teristic impedance. 

The reason for this can be more easily understood 
by considering it from another viewpoint. Along a trans-
mission line, power is transferred successively from one 
elementary section in Fig 5 to the next. When the line is 
infinitely long, this power transfer goes on in one 
directionaway from the source of power. 

From the standpoint of Section B, Fig 5, for instance, 
the power transferred to section C has simply disappeared 
in C. As far as section B is concerned, it makes no differ-
ence whether C has absorbed the power itself or has trans-
ferred it along to more transmission line. Consequently, 
if we substitute a load for section C that has the same 

Fig 5Equivalent of an ideal (lossless) transmission 
line in terms of ordinary circuit elements (lumped 
constants). The values of inductance and capacitance 
depend on the line construction. 

Fig 6A transmission line terminated in a resistive 
load equal to the characteristic impedance of the line. 
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electrical characteristics as the transmission line, section 
B will transfer power into it just as if it were more trans-
mission line. A pure resistance equal to the characteristic 
impedance of C, which is also the characteristic imped-
ance of the line, meets this condition. It absorbs all the 
power just as the infinitely long line absorbs all the power 
transferred by section B. 

Matched Lines 

A line terminated in a load equal to the complex char-
acteristic line impedance is said to be matched. In a 
matched transmission line, power is transferred outward 
along the line from the source until it reaches the load, 
where it is completely absorbed. Thus with either the 
infinitely long line or its matched counterpart, the 
impedance presented to the source of power (the line- 
input impedance) is the same regardless of the line length. 
It is simply equal to the characteristic impedance of the 
line. The current in such a line is equal to the applied 
voltage divided by the characteristic impedance, and the 
power put into it is E2/Z0 or I2Z0, by Ohm’s Law. 

Mismatched Lines 

Now take the case where the terminating load is not 
equal to Z0, as in Fig 7. The load no longer looks like 
more line to the section of line immediately adjacent. Such 
a line is said to be mismatched. The more that the load 
impedance differs from Z0, the greater the mismatch. The 
power reaching the load is not totally absorbed, as it was 
when the load was equal to Z0, because the load requires 
a voltage to current ratio that is different from the one 
traveling along the line. The result is that the load absorbs 
only part of the power reaching it (the incident power); 
the remainder acts as though it had bounced off a wall 

and starts back along the line toward the source. This is 
known as reflected power, and the greater the mismatch, 
the larger is the percentage of the incident power that is 
reflected. In the extreme case where the load is zero (a 
short circuit) or infinity (an open circuit), all of the power 
reaching the end of the line is reflected back toward the 
source. 

Whenever there is a mismatch, power is transferred 
in both directions along the line. The voltage to current 
ratio is the same for the reflected power as for the inci-
dent power, because this ratio is determined by the Z0 of 
the line. The voltage and current travel along the line in 
both directions in the same wave motion shown in Fig 4. 
If the source of power is an ac generator, the incident 
(outgoing) voltage and the reflected (returning) voltage 
are simultaneously present all along the line. The actual 
voltage at any point along the line is the vector sum of 
the two components, taking into account the phases of 
each component. The same is true of the current. 

The effect of the incident and reflected components 
on the behavior of the line can be understood more readily 
by considering first the two limiting casesthe short- 
circuited line and the open-circuited line. If the line is 
short-circuited as in Fig 7B, the voltage at the end must 
be zero. Thus the incident voltage must disappear sud-
denly at the short. It can do this only if the reflected volt-
age is opposite in phase and of the same amplitude. This 
is shown by the vectors in Fig 8. The current, however, 
does not disappear in the short circuit; in fact, the inci-
dent current flows through the short and there is in addi-
tion the reflected component in phase with it and of the 
same amplitude. 

The reflected voltage and current must have the same 
amplitudes as the incident voltage and current, because 
no power is dissipated in the short circuit; all the power 
starts back toward the source. Reversing the phase of 
either the current or voltage (but not both) reverses the 

Fig 7Mismatched lines; extreme cases. At A, 
termination not equal to Z0; at B, short-circuited line; At 
C, open-circuited line. 

Fig 8Voltage and current at the short circuit on a 
short-circuited line. These vectors show how the 
outgoing voltage and current (A) combine with the 
reflected voltage and current (B) to result  in high 
current and very low voltage in the short circuit (C). 
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direction of power flow. In the short-circuited case the 
phase of the voltage is reversed on reflection, but the phase 
of the current is not. 

If the line is open-circuited (Fig 7C) the current must 
be zero at the end of the line. In this case the reflected 
current is 180° out of phase with the incident current and 
has the same amplitude. By reasoning similar to that used 
in the short-circuited case, the reflected voltage must be in 
phase with the incident voltage, and must have the same 
amplitude. Vectors for the open-circuited case are shown 
in Fig 9. 

Where there is a finite value of resistance (or a com-
bination of resistance and reactance) at the end of the 
line, as in Fig 7A, only part of the power reaching the 
end of the line is reflected. That is, the reflected voltage 
and current are smaller than the incident voltage and cur-
rent. If R is less than Z0, the reflected and incident volt-
age are 180° out of phase, just as in the case of the 
short-circuited line, but the amplitudes are not equal 
because all of the voltage does not disappear at R. Simi-
larly, if R is greater than Z0, the reflected and incident 
currents are 180° out of phase (as they were in the open- 
circuited line), but all of the current does not appear in 
R. The amplitudes of the two components are therefore 
not equal. These two cases are shown in Fig 10. Note 
that the resultant current and voltage are in phase in R, 
because R is a pure resistance. 

Nonresistive Terminations 

In most of the preceding discussions, we considered 
loads containing only resistance. Furthermore, our trans-
mission line was considered to be lossless. Such a resis-

Fig 10Incident and reflected components of voltage 
and current when the line is terminated in a pure 
resistance not equal to Z0. In the case shown, the 
reflected components have half the amplitude of the 
incident components. At A, R less than Z0; at B, R 
greater than Z0. 

Fig 9Voltage and current at the end of an open- 
circuited line. At A, outgoing voltage and current; At B, 
reflected voltage and current; At C, resultant. 

tive load will consume some, if not all, of the power that 
has been transferred along the line. However, a 
nonresistive load such as a pure reactance can also termi-
nate a length of line. Such terminations, of course, will 
consume no power, but will reflect all of the energy 
arriving at the end of the line. In this case the theoretical 
SWR (covered later) in the line will be infinite, but in 
practice, losses in the line will limit the SWR to some 
finite value at line positions back toward the source. 

At first you might think there is little or no point in 
terminating a line with a nonresistive load. In a later sec-
tion we shall examine this in more detail, but the value of 
input impedance depends on the value of the load 
impedance, on the length of the line, the losses in a prac-
tical line, and on the characteristic impedance of the line. 
There are times when a line terminated in a nonresistive 
load can be used to advantage, such as in phasing or 
matching applications. Remote switching of reactive ter-
minations on sections of line can be used to reverse the 
beam heading of an antenna array, for example. The point 
of this brief discussion is that a line need not always be 
terminated in a load that will consume power. 
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Practical Transmission Lines 
ATTENUATION 

Every practical line will have some inherent loss, 
partly because of the resistance of the conductors, partly 
because power is consumed in the dielectric used for 
insulating the conductors, and partly because in many 
cases a small amount of power escapes from the line by 
radiation. We shall consider here in detail the losses 
associated with conductor and dielectric losses. 

Matched-Line Losses 

Power lost in a transmission line is not directly pro-
portional to the line length, but varies logarithmically with 
the length. That is, if 10% of the input power is lost in a 
section of line of certain length, 10% of the remaining 
power will be lost in the next section of the same length, 
and so on. For this reason it is customary to express line 
losses in terms of decibels per unit length, since the deci-
bel is a logarithmic unit. Calculations are very simple 
because the total loss in a line is found by multiplying 
the decibel loss per unit length by the total length of the 
line. 

The power lost in a matched line (that is, where the 
load is equal to the characteristic impedance of the line) 
is called matched-line loss. Matched-line loss is usually 
expressed in decibels per 100 feet. It is necessary to 
specify the frequency for which the loss applies, because 
the loss does vary with frequency. 

Conductor and dielectric loss both increase as the 
operating frequency is increased, but not in the same way. 
This, together with the fact that the relative amount of 
each type of loss depends on the actual construction of 
the line, makes it impossible to give a specific relation-
ship between loss and frequency that will apply to all 
types of lines. Each line must be considered individually. 
Actual loss values for practical lines are given in a later 
section of this chapter. 

One effect of matched-line loss in a real transmis-
sion line is that the characteristic impedance, Z0, becomes 
complex, with a non-zero reactive component X0. Thus, 

000 X  RZ j−= (Eq 3) 

β
α

−= 00 RX (Eq 4) 

where 

feet 100

)dB/nepers( 0.1151 )feet /100dB( nAttenuatio ×
=α

the matched-line attenuation, in nepers per unit length 

λ
π

=β
2

     the phase constant in radians/unit length. 

The reactive portion of the complex characteristic 

impedance is always capacitive (that is, its sign is nega-
tive) and the value of X0 is usually small compared to the 
resistive portion R0. 

REFLECTION COEFFICIENT 
The ratio of the reflected voltage at a given point on 

a transmission line to the incident voltage is called the 
voltage reflection coefficient. The voltage reflection 
coefficient is also equal to the ratio of the incident and 
reflected currents. Thus 

f

r

f

r

I

I

E

E
==ρ (Eq 5) 

where 

ρ = reflection coefficient 
Er = reflected voltage 
Ef = forward (incident) voltage 
Ir  = reflected current 
If  = forward (incident) current 

The reflection coefficient is determined by the 
relationship between the line Z0 and the actual load at 
the terminated end of the line. In most cases, the actual 
load is not entirely resistivethat is, the load is a com-
plex impedance, consisting of a resistance in series with 
a reactance, as is the complex characteristic impedance 
of the transmission line. 

The reflection coefficient is thus a complex quan-
tity, having both amplitude and phase, and is generally 
designated by the Greek letter ρ (rho), or sometimes in 
the professional literature as Γ (Gamma). The relation-
ship between Ra (the load resistance), Xa (the load reac-
tance), Z0 (the complex line characteristic impedance, 
whose real part is R0 and whose reactive part is X0) and 
the complex reflection coefficient ρ is 

)X(R)X(R

)X(R)X(R

ZZ

ZZ

00aa

00aa

0a

0a

jj
jj

±±

±±

+
−

=
+
−

=ρ (Eq 6) 

For high-quality, low-loss transmission lines at low 
frequencies, the characteristic impedance Z0 is almost 
completely resistive, meaning that Z0 ≅ R0 and X0 ≅ 0. 
The magnitude of the complex reflection coefficient in 
Eq 6 then simplifies to: 

a0+a

a0a

X)RR(
X)R-R(= 22

22

+

+ρ (Eq 7) 

For example, if the characteristic impedance of a 
coaxial line at a low operating frequency is 50 Ω and the 
load impedance is 140 Ω in series with a capacitive 
reactance of –190 Ω, the magnitude of the reflection 
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coefficient is 

782.0
)190()14050(

)190()14050(
22

22
=

−++
−+−=ρ

Note that the vertical bars on each side of ρ mean 
the magnitude of rho. If Ra in Eq 7 is equal to R0 and if 
Xa is 0, the reflection coefficient, ρ, also is 0. This repre-
sents a matched condition, where all the energy in the 
incident wave is transferred to the load. On the other hand, 
if Ra is 0, meaning that the load has no real resistive part, 
the reflection coefficient is 1.0, regardless of the value of 
R0. This means that all the forward power is reflected, 
since the load is completely reactive. As we shall see later 
on, the concept of reflection coefficient is a very useful 
one to evaluate the impedance seen looking into the input 
of a mismatched transmission line. 

Another representation of the reflection coefficient 
concept is the return loss, which is the reflection coeffi-
cient expressed in dB. 

dB  log 20RL ρ−= (Eq 8) 

For example, a reflection coefficient of 0.782 is a 
return loss of –20 log (0.782) = 2.14 dB. (Note that some 
texts express return loss as negative numbers, but most 
define it as positive.) 

STANDING WAVES 
As might be expected, reflection cannot occur at the 

load without some effect on the voltages and currents all 
along the line. To keep things simple for a while longer, 
let us continue to consider only resistive loads, without 
any reactance. The conclusions we shall reach are valid 
for transmission lines terminated in complex impedances 
as well. 

The effects are most simply shown by vector dia-
grams. Fig 11 is an example where the terminating 
resistance R is less than Z0. The voltage and current vec-
tors at R are shown in the reference position; they corre-
spond with the vectors in Fig 10A, turned 90°. Back along 
the line from R toward the power source, the incident 
vectors, E1 and I1, lead the vectors at the load according 
to their position along the line measured in electrical 
degrees. (The corresponding distances in fractions of a 
wavelength are also shown.) The vectors representing 
reflected voltage and current, E2 and I2, successively lag 
the same vectors at the load. 

This lag is the natural consequence of the direction 
in which the incident and reflected components are trav-
eling, together with the fact that it takes time for power 
to be transferred along the line. The resultant voltage E 
and current I at each of these positions are shown as dot-
ted arrows. Although the incident and reflected compo-
nents maintain their respective amplitudes (the reflected 
component is shown at half the incident-component 
amplitude in this drawing), their phase relationships vary 

Fig 11Incident and reflected components at various 
positions along the transmission line, together with 
resultant voltages and currents at the same positions. 
The case shown is for R less than Z0. 

with position along the line. The phase shifts cause both 
the amplitude and phase of the resultants to vary with 
position on the line. 

If the amplitude variations (disregarding phase) of 
the resultant voltage and current are plotted against 
position along the line, graphs like those of Fig 12A will 
result. If we could go along the line with a voltmeter and 
ammeter measuring the current and voltage at each point, 
plotting the collected data would give curves like these. 
In contrast, if the load matched the Z0 of the line, similar 
measurements along the line would show that the voltage 
is the same everywhere (and similarly for the current). 
The mismatch between load and line is responsible for 
the variations in amplitude which, because of their sta-
tionary, wave-like appearance, are called standing waves. 

Some general conclusions can be drawn from 
inspection of the standing-wave curves: At a position 180° 
(λ/2) from the load, the voltage and current have the same 
values they do at the load. At a position 90° from the 
load, the voltage and current are “inverted.” That is, if 
the voltage is lowest and current highest at the load (when 
R is less than Z0), then 90° from the load the voltage 
reaches its highest value. The current reaches its lowest 
value at the same point. In the case where R is greater 
than Z0, so the voltage is highest and the current lowest 
at the load, the voltage is lowest and the current is high-
est 90° from the load. 

Note that the conditions at the 90° point also exist at 
the 270° point (3λ/4). If the graph were continued on 
toward the source of power it would be found that this 
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min

max

min

max

I

I

E

E
=SWR = (Eq 9) 

The ratio of the maximum current to the minimum 
current is the same as the VSWR, so either current or 
voltage can be measured to determine the standing-wave 
ratio. The standing-wave ratio is an index of many of the 
properties of a mismatched line. It can be measured with 
fairly simple equipment, so it is a convenient quantity to 
use in making calculations on line performance. 

The SWR is related to the magnitude of the com-
plex reflection coefficient by 

ρ−

ρ+
=

1

1
SWR (Eq 10) 

and conversely the reflection coefficient magnitude may 
be defined from a measurement of SWR as 

1SWR
1SWR

+
−=ρ (Eq 11) 

We may also express the reflection coefficient in 
terms of forward and reflected power, quantities which 
can be easily measured using a directional RF wattmeter. 
The reflection coefficient may be computed as 

f

r
P
P

=ρ (Eq 12) 

where 

Pr =  power in the reflected wave 
Pf =  power in the forward wave. 

From Eq 11, SWR is related to the forward and 
reflected power by 

fr

fr

P/P1

P/P1

1

1
SWR

−

+
=

ρ−

ρ+
= (Eq 13) 

Fig 13 converts Eq 13 into a convenient nomograph. 
In the simple case where the load contains no reactance, 
the SWR is numerically equal to the ratio between the 
load resistance R and the characteristic impedance of the 
line. When R is greater than Z0, 

R

Z
=SWR 0 (Eq 14) 

When R is less than Z0, 

R

Z
=SWR 0 (Eq 15) 

(The smaller quantity is always used in the denomi-
nator of the fraction so the ratio will be a number greater 
than 1). 

Flat Lines 

As discussed earlier, all the power that is transferred 
along a transmission line is absorbed in the load if that 
load is a resistance value equal to the Z0 of the line. In 
this case, the line is said to be perfectly matched. None 

Fig 12Standing waves of current and voltage along 
the line for R less than Z0. At A, resultant voltages and 
currents along a mismatched line are shown at B and C. 
At B, R less than Z0; At C, R greater than Z0. 

duplication occurs at every point that is an odd multiple 
of 90º (odd multiple of λ/4) from the load. Similarly, the 
voltage and current are the same at every point that is a 
multiple of 180° (any multiple of λ/2) away from the load. 

Standing-Wave Ratio 

The ratio of the maximum voltage (resulting from the 
interaction of incident and reflected voltages along the line) 
to the minimum voltage—that is, the ratio of Emax to Emin in 
Fig 12A, is defined as the voltage standing-wave ratio 
(VSWR) or simply standing-wave ratio (SWR). 
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of the power is reflected back toward the source. As a 
result, no standing waves of current or voltage will be 
developed along the line. For a line operating in this con-
dition, the waveforms drawn in Fig 12A become straight 
lines, representing the voltage and current delivered by 
the source. The voltage along the line is constant, so the 
minimum value is the same as the maximum value. The 
voltage standing-wave ratio is therefore 1:1. Because a 
plot of the voltage standing wave is a straight line, the 
matched line is also said to be flat. 

ADDITIONAL POWER LOSS 
DUE TO SWR 

The power lost in a given line is least when the line 
is terminated in a resistance equal to its characteristic 
impedance, and as stated previously, that is called the 
matched-line loss. There is however an additional loss 
that increases with an increase in the SWR. This is because 
the effective values of both current and voltage become 
greater on a lines with standing waves. The increase in 
effective current raises the ohmic losses (I2R) in the con-
ductors, and the increase in effective voltage increases 
the losses in the dielectric (E2/R). 

The increased loss caused by an SWR greater than 
1:1 may or may not be serious. If the SWR at the load is 
not greater than 2:1, the additional loss caused by the 
standing waves, as compared with the loss when the line 
is perfectly matched, does not amount to more than about 
1/2 dB, even on very long lines. One-half dB is an unde-
tectable change in signal strength. Therefore, it can be 
said that, from a practical standpoint in the HF bands, an 
SWR of 2:1 or less is every bit as good as a perfect match, 
so far as additional losses due to SWR are concerned. 

However, above 30 MHz, in the VHF and especially 
the UHF range, where low receiver noise figures are 

Fig 13SWR as a function of forward and reflected 
power. 

essential for effective weak-signal work, matched-line 
losses for commonly available types of coax can be rela-
tively high. This means that even a slight mismatch may 
become a concern regarding overall transmission line 
losses. At UHF one-half dB of additional loss may be 
considered intolerable! 

The total loss in a line, including matched-line and 
the additional loss due to standing waves may be calcu-
lated from Eq 16 below for moderate levels of SWR (less 
than 20:1). 
























 −

−

2

22

ρ1a

ρa
log 10=(dB) Loss Total (Eq 16) 

where 
a = 10 ML/10 = matched-line loss ratio 

where 

ML = the matched-line loss for particular length of 
              line, in dB 

SWR = SWR at load end of line 

Thus, the additional loss caused by the standing 
waves is calculated from: 

MLLoss Total=(dB)loss Additional − (Eq 17) 

For example, RG-213 coax at 14.2 MHz is rated at 
0.795 dB of matched-line loss per 100 feet. A 150-foot 
length of RG-213 would have an overall matched-line loss 

of 

(0.795/100) ×150 = 1.193 dB 

Thus, if the SWR at the load end of the RG-213 is 
4:1, 

600.0
14

14
 

316.110 10/193.1

=
+
−

=ρ

==α

Fig 14—Additional 
line loss due to 
standing waves 
(SWR, measured at 
the load). See Fig 
23 for matched- 
line loss. To 
determine the total 
loss in dB, add the 
matched-line loss 
to the value from 
this graph. 
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and the total line loss 

( )
dB 2.12

0.60011.316

0.6001.316
10log

2

22

=
−

−
= 











The additional loss due to the SWR of 4:1 is 2.12 – 1.19 
= 0.93 dB. Fig 14 is a graph of additional loss versus 
SWR. 

LINE VOLTAGES AND CURRENTS 
It is often desirable to know the maximum voltages 

and currents that are developed in a line operating with stand-
ing waves. (We’ll cover the determination of the exact volt-
ages and currents along a transmission line later.) The voltage 
maximum may be calculated from Eq 18 below, and the 
other values determined from the result. 

SWR ZP E 0max ××= (Eq 18) 

where 

Emax = voltage maximum along the line in the pres-
ence of standing waves 

P = power delivered by the source to the line input, 
watts 

Z0 = characteristic impedance of the line, ohms 
SWR = SWR at the load 

If 100 W of power is applied to a 600 Ω line with an 
SWR at the load of 10:1, 

Emax = 10600100 ×× = 774.6 V. 

Based on Eq 8, Emin, the minimum voltage along 
the line equals Emax/SWR = 774.6/10 = 77.5 V. The maxi-
mum current may be found by using Ohm’s Law. Imax = 
Emax/Z0 =774.6/600 = 1.29 A. The minimum current 
equals Imax/SWR = 1.29/10 = 0.129 A. 

The voltage determined from Eq 17 is the RMS 
valuethat is, the voltage that would be measured with 
an ordinary RF voltmeter. If voltage breakdown is a con-
sideration, the value from Eq 18 should be converted to 
an instantaneous peak voltage. Do this by multiplying 
times √2(assuming the RF waveform is a sine wave). Thus, 
the maximum instantaneous peak voltage in the above 

example is 774.6 × √2 = 1095.4 V. 
Strictly speaking, the values obtained as above 

apply only near the load in the case of lines with appre-
ciable losses. However, the resultant values are the maxi-
mum possible that can exist along the line, whether there 
are line losses or not. For this reason they are useful as a 
rule-of-thumb in determining whether or not a particular 
line can operate safely with a given SWR. Voltage rat-
ings for various cable types are given in a later section. 

Fig 15 shows the ratio of current or voltage at a loop, 
in the presence of standing waves, to the current or volt-
age that would exist with the same power in a perfectly 
matched line. As with Eq 18 and related calculations, the 
curve literally applies only near the load. 

Fig 15Increase in maximum value of current or 
voltage on a line with standing waves, as referred to the 
current or voltage on a perfectly matched line, for the 
same power delivered to the load. Voltage and current 
at minimum points are given by the reciprocals of the 
values along the vertical axis. The curve is plotted from 
the relationship, current (or voltage) ratio = the square 
root of SWR. 

Input Impedance 
The effects of incident and reflected voltage and cur-

rent along a mismatched transmission line can be diffi-
cult to envision, particularly when the load at the end of 
the transmission line is not purely resistive, and when 
the line is not perfectly lossless. 

If we can put aside for a moment all the complexi-
ties of reflections, SWR and line losses, a transmission 
line can simply be considered to be an impedance trans-
former. A certain value of  load impedance, consisting of 

a resistance and reactance, at the end of a particular trans-
mission line is transformed into another value of imped-
ance at the input of the line. The amount of transformation 
is determined by the electrical length of the line, its char-
acteristic impedance, and by the losses inherent in the 
line. The input impedance of a real, lossy transmission 
line is computed using the following equation, called the 
Transmission Line Equation, which uses the hyperbolic 
cosine and sine functions. 
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) (coshZ) (sinhZ
) (sinhZ)(coshZ

ZZ
0L

0L
0in ll

ll
γ+γ
γ+γ

= (Eq 19)

where

Zin= complex impedance at input of line
ZL = complex load impedance at end of line =

Ra ± j Xa
Z0 = characteristic impedance of line = R0 − j X0

l = physical length of line
γ = complex loss coefficient = α + j β
α = matched-line loss attenuation constant, in nepers/

unit length (1 neper = 8.686 dB; cables are rated in
dB/100 ft)

β = phase constant of line in radians/unit length
(related to physical length of line l by the fact that
2π radians = one wavelength, and by Eq 2)

β = 
(MHz) 983.6/fVF

2

×
π

 for l in feet

        VF = velocity factor

For example, assume that a half-wave dipole termi-
nates a 50-foot long piece of RG-213 coax. This dipole
is assumed to have an impedance of 43 + j 30 Ω at
7.15 MHz, and its velocity factor is 0.66. The matched-
line loss at 7.15 MHz is 0.54 dB/100 feet, and the char-
acteristic impedance Z0 for this type of cable at this
frequency is 50 − j 0.45 Ω. Using Eq 19, we compute the
impedance at the input of the line as 65.8 + j 32.0 Ω.

Solving this equation manually is quite tedious, but
it may be solved using a traditional paper Smith Chart or
a computer program. Chapter 28 details the use of the
Smith Chart. ARRL MicroSmith, a sophisticated graphi-
cal Smith Chart program written for the IBM PC, is avail-
able through ARRL. TLW (Transmission Line for
Windows) is another ARRL program that performs this
transformation, but without Smith Chart graphics. TLW
is on the CD-ROM accompanying this edition of the ARRL
Antenna Book.

One caution should be noted when using any of these
computational tools to calculate the impedance at the input
of a mismatched transmission line⎯the velocity factor of
practical transmission lines can vary significantly between
manufacturing runs of the same type of cable. For highest
accuracy, you should measure the velocity factor of a par-
ticular length of cable before using it to compute the
impedance at the end of the cable. See Chapter 27 for
details on measurements of line characteristics.

Series and Parallel Equivalent Circuits

Once the series-form impedance RS ± j XS at the
input of a particular line has been determined, either by
measurement or by computation, you may wish to deter-
mine the equivalent parallel circuit RP || ± j XP, which is
equivalent to the series form only at a single frequency.
The equivalent parallel circuit is often useful when

designing a matching circuit (such as an antenna tuner,
for example) to transform the impedance at the input of
the cable to another impedance. The following equations
are used to make the transformation from series to paral-
lel and from parallel to series. See Fig 16.

s
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2
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p R
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R

+
= (Eq 20A)
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+
= (Eq 21A)

2
p

2
p

p
2

p
s

XR

XR
X

+
= (Eq 21B)

The individual values in the parallel circuit are not
the same as those in the series circuit (although the over-
all result is the same, but only at one frequency), but are
related to the series-circuit values by these equations. For

Fig 16⎯⎯⎯⎯⎯Input impedance of a line terminated in a
resistance. This impedance can be represented by
either a resistance and reactance in series, or a
resistance and reactance in parallel, at a single
frequency. The relationships between the R and X
values in the series and parallel equivalents are given
by the equations shown. X may be either inductive or
capacitive, depending on the line length, Z0 and the
load impedance, which need not be purely resistive.
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example, let us continue the example in the section above, 
where the impedance at the input of the 50 feet of RG-213 
at 7.15 MHz is 65.8 + j 32.0 Ω. The equivalent parallel 
circuit at 7.15 MHz is 

Ω=
+

=  46.81
8.65

1.328.65
R

22

p

Ω=
+

=  97.169
2.31

2.318.65
X

22

p

If we were to put 100 W of power into this parallel 
equivalent circuit, the voltage across the parallel compo-
nents would be 

V 26.9046.81100RP=E ,
R

E
P Since

2
=×=×=

Thus, the current through the inductive part of the 
parallel circuit would be 

A 53.0
97.169

26.90

X

E
I

p
===

Highly Reactive Loads 

When highly reactive loads are used with practical 
transmission lines, especially coax lines, the overall loss 
can reach staggering levels. For example, a popular multi-
band antenna is a 100-foot long center-fed dipole located 
some 50 feet over average ground. At 1.83 MHz, such an 
antenna will exhibit a feed-point impedance of 4.5 − 
j 1673 Ω, according to the analysis program EZNEC 
ARRL. The high value of capacitive reactance indicates 
that the antenna is extremely short electrically—after all, 
a half-wave dipole at 1.83 MHz is almost 270 feet long, 
compared to this 100 foot long antenna. If an amateur 
attempts to feed such a multiband antenna directly with 
100 feet of RG-213 50-Ω coaxial cable, the SWR at the 
antenna terminals would be (using the TLW program) 
1740:1. An SWR of more than 1700 to one is a very high 
level of SWR indeed! At 1.83 MHz the matched-line loss 
of 100 feet of the RG-213 coax by itself is only 0.26 dB. 
However, the total line loss due to this extreme level of 
SWR is 26 dB. 

This means that if 100 W is fed into the input of this 
line, the amount of power at the antenna is reduced to 
only 0.25 W. Admittedly, this is an extreme case. It is 
more likely that an amateur would feed such a multiband 
antenna with open-wire ladder or window line than 
coaxial cable. The matched-line loss characteristics for 
450-Ω window open-wire line are far better than coax, 
but the SWR at the end of this line is still 793:1, resulting 
in an overall loss of 8.9 dB. Even for low-loss open-wire 
line, the total loss is significant because of the extreme 
SWR. 

This means that only about 13% of the power from 
the transmitter is getting to the antenna, and although this 

is not very desirable, it is a lot better than the losses in 
coax cable feeding the same antenna. However, at a trans-
mitter power level of 1500 W, the maximum voltage in a 
typical antenna tuner used to match this line impedance 
is almost 9200V with the open-wire line, a level which 
will certainly cause arcing or burning inside. (As a small 
compensation for all the loss in coax under this extreme 
condition, so much power is lost that the voltages present 
in the antenna tuner are not excessive.) Keep in mind also 
that an antenna tuner can lose significant power in inter-
nal losses for very high impedance levels, even if it has 
sufficient range to match such impedances in the first 
place. 

Clearly, it would be far better to use a longer antenna 
at this 160-meter frequency. Another alternative would 
be to resonate a short antenna with loading coils (at the 
antenna). Either strategy would help avoid excessive feed 
line loss, even with low-loss line. 

SPECIAL CASES 
Beside the primary purpose of transporting power 

from one point to another, transmission lines have prop-
erties that are useful in a variety of ways. One such spe-
cial case is a line an exact multiple of λ/4 (90°) long. As 
shown earlier, such a line will have a purely resistive input 
impedance when the termination is a pure resistance. 
Also, short-circuited or open-circuited lines can be used 
in place of conventional inductors and capacitors since 
such lines have an input impedance that is substantially a 
pure reactance when the line losses are low. 

The Half-Wavelength Line 

When the line length is a multiple of 180° (that is, a 
multiple of λ/2), the input resistance is equal to the load 
resistance, regardless of the line Z0. As a matter of fact, a 
line an exact multiple of λ/2 in length (disregarding line 
losses) simply repeats, at its input or sending end, what-
ever impedance exists at its output or receiving end. It 
does not matter whether the impedance at the receiving 
end is resistive, reactive, or a combination of both. Sec-
tions of line having such length can be added or removed 
without changing any of the operating conditions, at least 
when the losses in the line itself are negligible. 

Impedance Transformation with 
Quarter-Wave Lines 

The input impedance of a line an odd multiple of 
λ/4 long is 

L

2
0

i Z

Z
Z = (Eq 22) 

where Zi is the input impedance and ZL is the load 
impedance. If ZL is a pure resistance, Zi will also be a 
pure resistance. Rearranging this equation gives 

Li0 ZZZ = (Eq 23) 
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This means that if we have two values of impedance 
that we wish to “match,” we can do so if we connect them 
together by a λ/4 transmission line having a characteris-
tic impedance equal to the square root of their product. 

A λ/4 line is, in effect, a transformer, and in fact is 
often referred to as a quarter-wave transformer. It is 
frequently used as such in antenna work when it is 
desired, for example, to transform the impedance of an 
antenna to a new value that will match a given transmis-
sion line. This subject is considered in greater detail in a 
later chapter. 

Lines as Circuit Elements 

Two types of nonresistive line terminations are quite 
usefulshort and open circuits. The impedance of the 
short-circuit termination is 0 + j 0, and the impedance of 
the open-circuit termination is infinite. Such terminations 
are used in stub matching. (See Chapters 26 and 28.) An 
open- or short-circuited line does not deliver any power 
to a load, and for that reason is not, strictly speaking a 
“transmission” line. However, the fact that a line of the 
proper length has inductive reactance makes it possible 
to substitute the line for a coil in an ordinary circuit. Like-
wise, another line of appropriate length having capaci-
tive reactance can be substituted for a capacitor. 

Sections of lines used as circuit elements are usu-
ally λ/4 or less long. The desired type of reactance 
(inductive or capacitive) or the desired type of resonance 
(series or parallel) is obtained by shorting or opening the 
far end of the line. The circuit equivalents of various types 
of line sections are shown in Fig 17. 

When a line section is used as a reactance, the 
amount of reactance is determined by the characteristic 
impedance and the electrical length of the line. The type 
of reactance exhibited at the input terminals of a line of 
given length depends on whether it is open- or short-cir-
cuited at the far end. 

The equivalent lumped value for any inductor or 
capacitor may be determined with the aid of the Smith 
Chart or Eq 19. Line losses may be taken into account if 
desired, as explained for Eq 19. In the case of a line hav-
ing no losses, and to a close approximation when the 
losses are small, the inductive reactance of a short- 
circuited line less than λ/4 in length is 

l tanZ=  in X 0L Ω  (Eq 24) 

where l is the length of the line in electrical degrees 
and Z0 is the characteristic impedance of the line. 

Fig 17Lumped-constant circuit equivalents of open- 
and short-circuited transmission lines. 

The capacitive reactance of an open-circuited line 
less than λ/4 in length is 

lcot  Z= in X 0C Ω (Eq 25) 

Lengths of line that are exact multiples of λ/4 have 
the properties of resonant circuits. With an open-circuit 
termination, the input impedance of the line acts like a 
series-resonant circuit. With a short-circuit termination, 
the line input simulates a parallel-resonant circuit. The 
effective Q of such linear resonant circuits is very high if 
the line losses, both in resistance and by radiation, are 
kept down. This can be done without much difficulty, par-
ticularly in coaxial lines, if air insulation is used between 
the conductors. Air-insulated open-wire lines are likewise 
very good at frequencies for which the conductor spac-
ing is very small in terms of wavelength. 

Applications of line sections as circuit elements in 
connection with antenna and transmission-line systems 
are discussed in later chapters. 
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Voltage/Current Along a Line 
The voltage and current along a transmission line 

will vary in a predictable manner, whether that line is 
matched or mismatched at its load end. (The voltage and 
current along a matched line vary because of loss in the 
line.) Eq 26 below describes the voltage at point l, while 
Eq 27 describes the current at point l, each as a function 
of the voltage at the input of the line. 

volts sinh
Z

Z
coshEE

in

0
inx 








γ−γ= ll                          (Eq 26) 
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γ−γ= ll                   (Eq 27) 

where γ  = complex loss coefficient used in Eq 19, and 
cosh and sinh are the hyperbolic cosine and sine func-
tions. The load end of the transmission line is, by defini-

tion, at a length of l. 
The power at the input and the output of a trans-

mission line may be calculated using Eq 28 and Eq 29 
below. 

                                           (Eq 28) 

(Eq 29) 

where Gin and Gload are the admittance at the input (the 
real part of 1/Zin) and the admittance at the load (the real 
part of 1/Zload) ends respectively of the line. Zin is calcu-
lated using Eq 19 for a length of l. 

The power loss in the transmission line in dB is: 

(Eq 30) 

Line Construction and Operating Characteristics 

Fig 18Typical open-wire line construction. The 
spacers may be held in place by beads of solder or 
epoxy cement. Wire wraps can also be used, as shown. 

to 600 Ω. Although once used nearly exclusively, such 
homemade lines are enjoying a renaissance of sorts 
because of their high efficiency and low cost. 

Where an air insulated line with still lower charac-
teristic impedance is needed, metal tubing from 1/4 to 
1/2-inch diameter is frequently used. With the larger con-
ductor diameter and relatively close spacing, it is pos-
sible to build a line having a characteristic impedance as 
low as about 200 Ω. This construction technique is prin-
cipally used for λ/4 matching transformers at the higher 
frequencies. 

The characteristic impedance of an air insulated par-

The two basic types of transmission lines, parallel 
conductor and coaxial, can be constructed in a variety of 
forms. Both types can be divided into two classes, (1) those 
in which the majority of the insulation between the con-
ductors is air, where only the minimum of solid dielectric 
necessary for mechanical support is used, and (2) those in 
which the conductors are embedded in and separated by a 
solid dielectric. The first variety (air insulated) has the 
lowest loss per unit length, because there is no power loss 
in dry air if the voltage between conductors is below the 
value at which corona forms. At the maximum power per-
mitted in amateur transmitters, it is seldom necessary to 
consider corona unless the SWR on the line is very high. 

AIR-INSULATED LINES 
A typical construction technique used for parallel con-

ductor or “two wire” air-insulated transmission lines is 
shown in Fig 18. The two wires are supported a fixed dis-
tance apart by means of insulating rods called spacers. Spac-
ers may be made from material such as Teflon, Plexiglas, 
phenolic, polystyrene, plastic clothespins or plastic hair 
curlers. Materials commonly used in high quality spacers 
are isolantite, Lucite and polystyrene. (Teflon is generally 
not used because of its higher cost.) The spacer length var-
ies from 2 to 6 inches. The smaller spacings are desirable at 
the higher frequencies (28 MHz) so radiation from the trans-
mission line is minimized. 

Spacers must be used at small enough intervals along 
the line to keep the two wires from moving appreciably 
with respect to each other. For amateur purposes, lines 
using this construction ordinarily have #12 or #14 con-
ductors, and the characteristic impedance is between 500 
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watts GEP load
2

loadload

dB 
P

P
log10P
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Fig 20Construction of air insulated transmission 
lines. 

Fig 19Characteristic impedance as a function of 
conductor spacing and size for parallel conductor 
lines. 

Fig 21Characteristic impedance of typical air 
insulated coaxial lines. 

allel conductor line, neglecting the effect of the spacers, 
is given by 

d

S2
log276Z0 = (Eq 31) 

where 

Z0 = characteristic impedance in ohms 
S = center-to-center distance between conductors 
d = outer diameter of conductor (in the same units 

as S) 

Impedances for common sizes of conductors over a 
range of spacings are given in Fig 19. 

Four-Wire Lines 

Another parallel conductor line that is useful in some 
applications is the four-wire line (Fig 20C). In cross sec-
tion, the conductors of the four-wire line are at the cor-
ners of a square. Spacings are on the same order as those 
used in two-wire lines. The conductors at opposite cor-
ners of the square are connected to operate in parallel. 
This type of line has a lower characteristic impedance 
than the simple two-wire type. Also, because of the more 
symmetrical construction, it has better electrical balance 
to ground and other objects that are close to the line. The 
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spacers for a four-wire line may be discs of insulating 
material, X-shaped members, etc. 

Air-Insulated Coaxial Lines 

In air-insulated coaxial lines (Fig 20D), a consider-
able proportion of the insulation between conductors may 
actually be a solid dielectric, because the separation 
between the inner and outer conductors must be constant. 
This is particularly likely to be true in small diameter 
lines. The inner conductor, usually a solid copper wire, 
is supported at the center of the copper tubing outer con-
ductor by insulating beads or a helically wound strip of 
insulating material. The beads usually are isolantite, and 
the wire is generally crimped on each side of each bead 
to prevent the beads from sliding. The material of which 
the beads are made, and the number of beads per unit 
length of line, will affect the characteristic impedance of 
the line. The greater the number of beads in a given length, 
the lower the characteristic impedance compared with the 
value obtained with air insulation only. Teflon is ordi-
narily used as a helically wound support for the center 
conductor. A tighter helical winding lowers the charac-
teristic impedance. 

The presence of the solid dielectric also increases 
the losses in the line. On the whole, however, a coaxial 
line of this type tends to have lower actual loss, at fre-
quencies up to about 100 MHz, than any other line con-
struction, provided the air inside the line can be kept dry. 
This usually means that air-tight seals must be used at 
the ends of the line and at every joint. The characteristic 
impedance of an air-insulated coaxial line is given by 

d

D
log138Z0 = (Eq 32) 

where 

Z0 = characteristic impedance in ohms 
D = inside diameter of outer conductor 
d = outside diameter of inner conductor (in same 

units as D) 

Values for typical conductor sizes are graphed in 
Fig 21. The equation and the graph for coaxial lines are 
approximately correct for lines in which bead spacers are 
used, provided the beads are not too closely spaced. 

FLEXIBLE LINES 
Transmission lines in which the conductors are sepa-

rated by a flexible dielectric have a number of advantages 
over the air insulated type. They are less bulky, weigh 
less in comparable types and maintain more uniform spac-
ing between conductors. They are also generally easier 

Fig 22Construction of flexible parallel conductor and 
coaxial lines with solid dielectric. A common variation 
of the double shielded design at E has the braids in 
continuous electrical contact. 
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Table 1
Nominal Characteristics of Commonly Used Transmission Lines
RG or Part Nom. Z0 VF Cap. Cent. Cond.  Diel. Shield Jacket OD Max V       Matched Loss (dB/100)
Type Number W % pF/ft   AWG Type Type Matl inches (RMS) 1 MHz 10 100 1000
RG-6 Belden 1694A 75 82 16.2 #18 Solid BC FPE FC P1 0.275 600 0.2 0.7 1.8 5.9
RG-6 Belden 8215 75 66 20.5 #21 Solid CCS PE D PE 0.332 2700 0.4 0.8 2.7 9.8

RG-8 Belden 7810A 50 86 23.0 #10 Solid BC FPE FC PE 0.405 600 0.1 0.4 1.2 4.0
RG-8 TMS LMR400 50 85 23.9 #10 Solid CCA FPE FC PE 0.405 600 0.1 0.4 1.3 4.1
RG-8 Belden 9913 50 84 24.6 #10 Solid BC ASPE FC P1 0.405 600 0.1 0.4 1.3 4.5
RG-8 CXP1318FX 50 84 24.0 #10 Flex BC FPE FC P2N 0.405 600 0.1 0.4 1.3 4.5
RG-8 Belden 9913F7 50 83 24.6 #11 Flex BC FPE FC P1 0.405 600 0.2 0.6 1.5 4.8
RG-8 Belden 9914 50 82 24.8 #10 Solid BC FPE FC P1 0.405 600 0.2 0.5 1.5 4.8
RG-8 TMS LMR400UF 50 85 23.9 #10 Flex BC FPE FC PE 0.405 600 0.1 0.4 1.4 4.9
RG-8 DRF-BF 50 84 24.5 #9.5 Flex BC FPE FC PE 0.405 600 0.1 0.5 1.6 5.2
RG-8 WM CQ106 50 84 24.5 #9.5 Flex BC FPE FC P2N 0.405 600 0.2 0.6 1.8 5.3
RG-8 CXP008 50 78 26.0 #13 Flex BC FPE S P1 0.405 600 0.1 0.5 1.8 7.1
RG-8 Belden 8237 52 66 29.5 #13 Flex BC PE S P1 0.405 3700 0.2 0.6 1.9 7.4

RG-8X Belden 7808A 50 86 23.5 #15 Solid BC FPE FC PE 0.240 600 0.2 0.7 2.3 7.4
RG-8X TMS LMR240 50 84 24.2 #15 Solid BC FPE FC PE 0.242 300 0.2 0.8 2.5 8.0
RG-8X WM CQ118 50 82 25.0 #16 Flex BC FPE FC P2N 0.242 300 0.3 0.9 2.8 8.4
RG-8X TMS LMR240UF 50 84 24.2 #15 Flex BC FPE FC PE 0.242 300 0.2 0.8 2.8 9.6
RG-8X Belden 9258 50 82 24.8 #16 Flex BC FPE S P1 0.242 600 0.3 0.9 3.1 11.2
RG-8X CXP08XB 50 80 25.3 #16 Flex BC FPE S P1 0.242 300 0.3 0.9 3.1 14.0

RG-9 Belden 8242 51 66 30.0 #13 Flex SPC PE SCBC P2N 0.420 5000 0.2 0.6 2.1 8.2

RG-11 Belden 8213 75 84 16.1 #14 Solid BC FPE S PE 0.405 600 0.2 0.4 1.3 5.2
RG-11 Belden 8238 75 66 20.5 #18 Flex TC PE S P1 0.405 600 0.2 0.7 2.0 7.1

RG-58 Belden 7807A 50 85 23.7 #18 Solid BC FPE FC PE 0.195 300 0.3 1.0 3.0 9.7
RG-58 TMS LMR200 50 83 24.5 #17 Solid BC FPE FC PE 0.195 300 0.3 1.0 3.2 10.5
RG-58 WM CQ124 52 66 28.5 #20 Solid BC PE S PE 0.195 1400 0.4 1.3 4.3 14.3
RG-58 Belden 8240 52 66 28.5 #20 Solid BC PE S P1 0.193 1900 0.3 1.1 3.8 14.5
RG-58A Belden 8219 53 73 26.5 #20 Flex TC FPE S P1 0.195 300 0.4 1.3 4.5 18.1
RG-58C Belden 8262 50 66 30.8 #20 Flex TC PE S P2N 0.195 1400 0.4 1.4 4.9 21.5
RG-58A Belden 8259 50 66 30.8 #20 Flex TC PE S P1 0.192 1900 0.4 1.5 5.4 22.8

RG-59 Belden 1426A 75 83 16.3 #20 Solid BC FPE S P1 0.242 300 0.3 0.9 2.6 8.5
RG-59 CXP 0815 75 82 16.2 #20 Solid BC FPE S P1 0.232 300 0.5 0.9 2.2 9.1
RG-59 Belden 8212 75 78 17.3 #20 Solid CCS FPE S P1 0.242 300 0.6 1.0 3.0 10.9
RG-59 Belden 8241 75 66 20.4 #23 Solid CCS PE S P1 0.242 1700 0.6 1.1 3.4 12.0

RG-62A Belden 9269 93 84 13.5 #22 Solid CCS ASPE S P1 0.240 750 0.3 0.9 2.7 8.7
RG-62B Belden 8255 93 84 13.5 #24 Flex CCS ASPE S P2N 0.242 750 0.3 0.9 2.9 11.0
RG-63B Belden 9857 125 84 9.7 #22 Solid CCS ASPE S P2N 0.405 750 0.2 0.5 1.5 5.8

RG-142 CXP 183242 50 69.5 29.4 #19 Solid SCCS TFE D FEP 0.195 1900 0.3 1.1 3.8 12.8
RG-142B Belden 83242 50 69.5 29.0 #19 Solid SCCS TFE D TFE 0.195 1400 0.3 1.1 3.9 13.5
RG-174 Belden 7805R 50 73.5 26.2 #25 Solid BC FPE FC P1 0.110 300 0.6 2.0 6.5 21.3
RG-174 Belden 8216 50 66 30.8 #26 Flex CCS PE S P1 0.110 1100 1.9 3.3 8.4 34.0

RG-213 Belden 8267 50 66 30.8 #13 Flex BC PE S P2N 0.405 3700 0.2 0.6 1.9 8.0
RG-213 CXP213 50 66 30.8 #13 Flex BC PE S P2N 0.405 600 0.2 0.6 2.0 8.2
RG-214 Belden 8268 50 66 30.8 #13 Flex SPC PE D P2N 0.425 3700 0.2 0.6 1.9 8.0
RG-216 Belden 9850 75 66 20.5 #18 Flex TC PE D P2N 0.425 3700 0.2 0.7 2.0 7.1
RG-217 WM CQ217F 50 66 30.8 #10 Flex BC PE D PE 0.545 7000 0.1 0.4 1.4 5.2
RG-217 M17/78-RG217 50 66 30.8 #10 Solid BC PE D P2N 0.545 7000 0.1 0.4 1.4 5.2
RG-218 M17/79-RG218 50 66 29.5 #4.5 Solid BC PE S P2N 0.870 11000 0.1 0.2 0.8 3.4

to install, and are neater in appearance. Both parallel con-
ductor and coaxial lines are available with flexible insu-
lation.

The chief disadvantage of such lines is that the power
loss per unit length is greater than in air insulated lines.
Power is lost in heating of the dielectric, and if the heat-
ing is great enough (as it may be with high power and a
high SWR), the line may break down mechanically and
electrically.

Parallel-Conductor Lines

The construction of a number of types of flexible
line is shown in Fig 22. In the most common 300-Ω type
(twin-lead), the conductors are stranded wire equivalent
to #20 in cross sectional area, and are molded in the edges
of a polyethylene ribbon about 1/2-inch wide that keeps
the wires spaced away a constant amount from each other.
The effective dielectric is partly solid and partly air, and
the presence of the solid dielectric lowers the character-
istic impedance of the line as compared with the same

conductors in air. The resulting impedance is approxi-
mately 300 Ω.

Because part of the field between the conductors
exists outside the solid dielectric, dirt and moisture on the
surface of the ribbon tend to change the characteristic
impedance of the line. The operation of the line is there-
fore affected by weather conditions. The effect will not be
very serious in a line terminated in its characteristic
impedance, but if there is a considerable mismatch, a small
change in Z0 may cause wide fluctuations of the input
impedance. Weather effects can be minimized by cleaning
the line occasionally and giving it a thin coating of a water
repellent material such as silicone grease or car wax.

To overcome the effects of weather on the charac-
teristic impedance and attenuation of ribbon type line,
another type of twin-lead is made using an oval polyeth-
ylene tube with an air core or a foamed dielectric core.
The conductors are molded diametrically opposite each
other in the walls. This increases the leakage path across
the dielectric surface. Also, much of the electric field
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RG or Part Nom. Z0 VF Cap. Cent. Cond.  Diel. Shield Jacket OD Max V        Matched Loss (dB/100) 
Type Number W % pF/ft   AWG Type Type Matl inches (RMS) 1 MHz 10 100 1000 
RG-223 Belden 9273 50 66 30.8 #19 Solid SPC PE D P2N 0.212 1400 0.4 1.2 4.1 14.5 
RG-303 Belden 84303 50 69.5 29.0 #18 Solid SCCS TFE S TFE 0.170 1400 0.3 1.1 3.9 13.5 
RG-316 CXP TJ1316 50 69.5 29.4 #26 Flex BC TFE S FEP 0.098 1200 1.2 2.7 8.0 26.1 
RG-316 Belden 84316 50 69.5 29.0 #26 Flex SCCS TFE S FEP 0.096 900 1.2 2.7 8.3 29.0 
RG-393 M17/127-RG393 50 69.5 29.4 #12 Flex SPC TFE D FEP 0.390 5000 0.2 0.5 1.7 6.1 
RG-400 M17/128-RG400 50 69.5 29.4 #20 Flex SPC TFE D FEP 0.195 1400 0.4 1.1 3.9 13.2 

LMR500 TMS LMR500UF 50 85 23.9 #7 Flex BC FPE FC PE 0.500 2500 0.1 0.4 1.2 4.0 
LMR500 TMS LMR500 50 85 23.9 #7 Solid CCA FPE FC PE 0.500 2500 0.1 0.3 0.9 3.3 
LMR600 TMS LMR600 50 86 23.4 #5.5 Solid CCA FPE FC PE 0.590 4000 0.1 0.2 0.8 2.7 
LMR600 TMS LMR600UF 50 86 23.4 #5.5 Flex BC FPE FC PE 0.590 4000 0.1 0.2 0.8 2.7 
LMR1200 TMS LMR1200 50 88 23.1 #0 Copper Tube FPE FC PE 1.200 4500 0.04 0.1 0.4 1.3 

Hardline 
1/2” CATV Hardline 50 81 25.0 #5.5 BC FPE SM none 0.500 2500 0.05 0.2 0.8 3.2 
1/2" CATV Hardline 75 81 16.7 #11.5 BC FPE SM none 0.500 2500 0.1 0.2 0.8 3.2 
7/8" CATV Hardline 50 81 25.0 #1 BC FPE SM none 0.875 4000 0.03 0.1 0.6 2.9 
7/8" CATV Hardline 75 81 16.7 #5.5 BC FPE SM none 0.875 4000 0.03 0.1 0.6 2.9 

LDF4-50A Heliax –1/2" 50 88 25.9 #5 Solid BC FPE CC PE 0.630 1400 0.05 0.2 0.6 2.4 
LDF5-50A Heliax –7/8" 50 88 25.9 0.355" BC FPE CC PE 1.090 2100 0.03 0.10 0.4 1.3 
LDF6-50A Heliax – 1/4” 50 88 25.9 0.516" BC FPE CC PE 1.550 3200 0.02 0.08 0.3 1.1 

Parallel Lines 
TV Twinlead  (Belden 9085) 300 80 4.5 #22 Flex CCS PE none P1 0.400 ** 0.1 0.3 1.4 5.9 
Twinlead (Belden 8225) 300 80 4.4 #20 Flex BC PE none P1 0.400 8000 0.1 0.2 1.1 4.8 

Generic Window Line 405 91 2.5 #18 Solid CCS PE none P1 1.000 10000 0.02 0.08 0.3 1.1 
WM CQ 554 420 91 2.7 #14 Flex CCS PE none P1 1.000 10000 0.02 0.08 0.3 1.1 
WM CQ 552 440 91 2.5 #16 Flex CCS PE none P1 1.000 10000 0.02 0.08 0.3 1.1 
WM CQ 553 450 91 2.5 #18 Flex CCS PE none P1 1.000 10000 0.02 0.08 0.3 1.1 
WM CQ 551 450 91 2.5 #18 Solid CCS PE none P1 1.000 10000 0.02 0.08 0.3 1.1 
Open-Wire Line 600 92 1.1 #12 BC none none none    ** 12000 0.02 0.06 0.2 0.7 

Approximate Power Handling Capability (1:1 SWR, 40°C Ambient): 
1.8 MHz 7 14 30 50 150 220 450 1 GHz 

RG-58 Style 1350 700 500 350 250 150 120 100 50 
RG-59 Style 2300 1100 800 550 400 250 200 130 90 
RG-8X Style 1830 840 560 360 270 145 115 80 50 
RG-8/213 Style 5900 3000 2000 1500 1000 600 500 350 250 
RG-217 Style 20000 9200 6100 3900 2900 1500 1200 800 500 
LDF4-50A 38000 18000 13000 8200 6200 3400 2800 1900 1200 
LDF5-50A 67000 32000 22000 14000 11000 5900 4800 3200 2100 
LMR500 18000 9200 6500 4400 3400 1900 1600 1100 700 
LMR1200 52000 26000 19000 13000 10000 5500 4500 3000 2000 

Legend: 
** Not Available or varies 
ASPE Air Spaced Polyethylene 
BC Bare Copper 
CC Corrugated Copper 
CCA Copper Cover Aluminum 
CCS Copper Covered Steel 
CXP Cable X-Perts, Inc. 
D Double Copper Braids 

DRF Davis RF 
FC Foil + Tinned Copper Braid 
FEP Teflon ® Type IX 
Flex Flexible Stranded Wire 
FPE Foamed Polyethylene 

Heliax Andrew Corp Heliax 
N Non-Contaminating 

P1 PVC, Class 1 
P2 PVC, Class 2 
PE Polyethylene 
S Single Braided Shield 
SC Silver Coated Braid 
SCCS Silver Plated Copper Coated 

Steel 

SM Smooth Aluminum 
SPC Silver Plated Copper 
TC Tinned Copper 
TFE Teflon® Systems 
UF Ultra Flex 
WM Wireman 

between the conductors is in the hollow (or foam-filled) 
center of the tube. This type of line is fairly impervious 
to weather effects. Care should be used when installing 
it, however, so any moisture that condenses on the inside 
with changes in temperature and humidity can drain out 
at the bottom end of the tube and not be trapped in one 
section. This type of line is made in two conductor sizes 
(with different tube diameters), one for receiving appli-
cations and the other for transmitting. 

Transmitting type 75-Ω twin lead uses stranded con-
ductors nearly equivalent to solid #12 wire, with quite 
close spacing between conductors. Because of the close 
spacing, most of the field is confined to the solid dielec-
tric, with very little existing in the surrounding air. This 
makes the 75-Ω line much less susceptible to weather 
effects than the 300-Ω ribbon type. 

A third type of commercial parallel-line is so-called 
window line, illustrated in Fig 22C. This is a variation of 
twinlead construction, except that windows are cut in the 
polyethylene insulation at regular intervals. This holds 

down on the weight of the line, and also breaks up the 
amount of surface area where dirt, dust and moisture can 
accumulate. Such window line is commonly available 
with a nominal characteristic impedance of 450 Ω, 
although 300-Ω line can be found also. A conductor spac-
ing of about 1 inch is used in the 450-Ω line and 1/2 inch 
in the 300-Ω line. The conductor size is usually about 
#18. The impedances of such lines are somewhat lower 
than given by Fig 19 for the same conductor size and 
spacing, because of the effect of the dielectric constant 
of the spacer material used. The attenuation is quite low 
and lines of this type are entirely satisfactory for trans-
mitting applications at amateur power levels. 

COAXIAL CABLES 
Coaxial cable is available in flexible and semi-flex-

ible varieties. The fundamental design is the same in all 
types, as shown in Fig 22. The outer diameter varies from 
0.06 inch to over 5 inches. Power handling capability and 
cable size are directly proportional, as larger dielectric 
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Fig 23Nominal matched-line attenuation in decibels per 100 feet of various common transmission lines. Total 
attenuation is directly proportional to length. Attenuation will vary somewhat in actual cable samples, and generally 
increases with age in coaxial cables having a type 1 jacket. Cables grouped together in the above chart have 
approximately the same attenuation. Types having foam polyethylene dielectric have slightly lower loss than 
equivalent solid types, when not specifically shown above. 

thickness and larger conductor sizes can handle higher 
voltages and currents. Generally, losses decrease as cable 
diameter increases. The extent to which this is true is 
dependent on the properties of the insulating material. 

Some coaxial cables have stranded wire center con-
ductors while others use a solid copper conductor. Simi-
larly, the outer conductor (shield) may be a single layer 
of copper braid, a double layer of braid (more effective 
shielding), solid aluminum (Hardline), aluminum foil, or 
a combination of these. 

Losses and Deterioration 

The power handling capability and loss characteris-
tics of coaxial cable depend largely on the dielectric 
material between the conductors and the size of the con-
ductors. The commonly used cables and many of their prop-
erties are listed in Table 1. Fig 23 is a graph of the 
matched-line attenuation characteristics versus frequency 
for the most popular lines. The outer insulating jacket of 
the cable (usually PVC) is used solely as protection from 

dirt, moisture and chemicals. It has no electrical function. 
Exposure of the inner insulating material to moisture and 
chemicals over time contaminates the dielectric and 
increases cable losses. Newer types of foam-dielectric 
cables are less prone to contamination than are older types 
of solid-polyethylene insulated cables. 

Impregnated cables, such as Decibel Products VB-8 and 
Times Wire & Cable Co. Imperveon, are immune to water 
and chemical damage, and may be buried if desired. They 
also have a self-healing property that is valuable when 
rodents chew into the line. Cable loss should be checked at 
least every two years if the cable has been outdoors or bur-
ied. See the section on testing transmission lines. 

The pertinent characteristics of unmarked coaxial 
cables can be determined from the equations in Table 2. 
The most common impedance values are 50, 75 and 95 Ω. 
However, impedances from 25 to 125 Ω are available in 
special types of manufactured line. The 25-Ω cable (min-
iature) is used extensively in magnetic-core broadband 
transformers. 
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Fig 24Shielded balanced transmission lines utilizing 
standard small-size coaxial cable, such as RG-58 or 
RG-59. These balanced lines may be routed inside 
metal conduit or near large metal objects without 
adverse effects. 

Table 2 
Coaxial Cable Equations 
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where 

A = attenuation in dB/100 foot 
d = OD of inner conductor 
D = ID of outer conductor 
S = max voltage gradient of insulation in volts/mil 
ε = dielectric constant 
K = safety factor 
K1 = strand factor 
K2 = braid factor 
f = freq in MHz 
PF = power factor 

Note: Obtain K1 and K2 data from manufacturer. 

Cable Capacitance 

The capacitance between the conductors of 
coaxial cable varies with the impedance and dielectric 
constant of the line. Therefore, the lower the impedance, 
the higher the capacitance per foot, because the conduc-
tor spacing is decreased. Capacitance also increases with 
dielectric constant. 

Voltage and Power Ratings 

Selection of the correct coaxial cable for a particu-
lar application is not a casual matter. Not only is the 
attenuation loss of significance, but breakdown and heat-
ing (voltage and power) also need to be considered. If a 
cable were lossless, the power handling capability would 
be limited only by the breakdown voltage. RG-58, for 
example, can withstand an operating potential of 1400 V 
RMS. In a 50-Ω system this equates to more than 37 kW, 
but the current corresponding to this power level is 
27 amperes, which would obviously melt the conductors 
in RG-58. In practical coaxial cables, the copper and 
dielectric losses, rather than breakdown voltage, limit the 
maximum power than can be accommodated. If 1000 W 
is applied to a cable having a loss of 3 dB, only 500 W is 
delivered to the load. The remaining 500 W must be 
dissipated in the cable. The dielectric and outer jacket 
are good thermal insulators, which prevent the conduc-
tors from efficiently transferring the heat to free air. 

As the operating frequency increases, the power-han-
dling capability of a cable decreases because of increas-
ing conductor loss (skin effect) and dielectric loss. RG-58 
with foam dielectric has a breakdown rating of only 300 V, 
yet it can handle substantially more power than its ordi-
nary solid dielectric counterpart because of the lower 
losses. Normally, the loss is inconsequential (except as it 
affects power handling capability) below 10 MHz in ama-
teur applications. This is true unless extremely long runs 
of cable are used. In general, full legal amateur power 
can be safely applied to inexpensive RG-58 coax in the 
bands below 10 MHz. Cables of the RG-8 family can 
withstand full amateur power through the VHF spectrum, 
but connectors must be carefully chosen in these appli-
cations. Connector choice is discussed in a later section. 

Excessive RF operating voltage in a coaxial cable 
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Fig 26Crimp-on connectors and adapters for use with standard PL-259 connectors are popular for connecting to 
RG-58 and RG-59 coax. (This material courtesy of Amphenol Electronic Components, RF Division, Bunker Ramo Corp.) 

1. Strip cable - don't nick braid, dielectric or conductor.
Slide ferrule, then coupling ring on cable. Flare braid slightly
by rotating conductor and dielectric in circular motion.

2. Slide body on dielectric, barb going under braid until flange is
agains outer jacket. Braid will fan out against body flange

3. Slide nut over body. Grasp cable with hand and push ferrule over barb
until braid is captured between ferrule and body flange.
Squeeze crimp tip only of center contact with pliers; alternate-solder tip.

83-58FCP

83-1SP (PL-259) PLUG WITH ADAPTERS
(UG-176/U OR UG-175/U)

1. Cut end of cable even. Remove vinyl jacket 
3/4" - don't nick braid. Slide coupling ring and 
adapter on cable.

2. Fan braid slightly and fold back over cable.

3. Position adapter to dimension shown. Press 
braid down over body of adapter and trim to 
3/8". Bare 5/8" of conductor. Tin exposed center 
conductor.

4. Screw the plug assembly on adapter. Solder 
braid to shell through solder holes. Solder 
conductor to contact sleeve.

5. Screw coupling ring on plug assembly.

Fig 25The PL-259 or UHF connector is almost universal for amateur HF work and is popular for equipment 
operating up through the VHF range. Steps for assembly are given in detail in the text. 
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can cause noise generation, dielectric damage and even-
tual breakdown between the conductors. 

Shielded Parallel Lines 

Shielded balanced lines have several advantages over 
open-wire lines. Since there is no noise pickup on long 
runs, they can be buried and they can be routed through 
metal buildings or inside metal piping. Shielded balanced 
lines having impedances of 140 or 100 Ω can be con-
structed from two equal lengths of 70-Ω or 50-Ω cable 
(RG-59 or RG-58 would be satisfactory for amateur power 
levels). Paralleled RG-63 (125-Ω) cable would make a 
balanced transmission line more in accord with traditional 
300-Ω twin-lead feed line (Z0 = 250 Ω). Note that the 
losses for these shielded types of balanced lines will gen-
erally be higher than those for classic open-wire lines. 

The shields are connected together (see Fig 24A), 
and the two inner conductors constitute the balanced line. 
At the input, the coaxial shields should be connected to 
chassis ground; at the output (the antenna side), they are 
joined but left floating. 

A high power, low-loss, low-impedance 70-Ω (or 
50-Ω) balanced line can be constructed from four coaxial 
cables. See Fig 24B. Again, the shields are all connected 
together. The center conductors of the two sets of coaxial 
cables that are connected in parallel provide the balanced 
feed. 

Coaxial Fittings 

There is a wide variety of fittings and connectors 
designed to go with various sizes and types of solid- 
dielectric coaxial line. The UHF series of fittings is by 
far the most widely used type in the amateur field, largely 
because they are widely available and are inexpensive. 
These fittings, typified by the PL-259 plug and SO-239 

chassis fitting (military designations) are quite adequate 
for VHF and lower frequency applications, but are not 
weatherproof. Neither do they exhibit a 52-Ω impedance. 

Type N series fittings are designed to maintain con-
stant impedance at cable joints. They are a bit harder to 
assemble than the UHF type, but are better for frequen-
cies above 300 MHz or so. These fittings are weather-
proof. 

The BNC fittings are for small cable such as RG-58, 
RG-59 and RG-62. They feature a bayonet-locking 
arrangement for quick connect and disconnect, and are 
weatherproof. They exhibit a constant impedance. 

Methods of assembling connectors on the cable are 
shown in Figs 25 through 29. The most common or long-
est established connector in each series is illustrated. Sev-
eral variations of each type exist. Assembly instructions 
for coaxial fittings not shown here are available from the 
manufacturers. 

PL-259 Assembly 

Fig 25 shows how to install the solder type of 
PL-259 connector on RG-8 type cable. Proper prepara-
tion of the cable end is the key to success. Follow these 
simple steps. 

1) Measure back 3/4 inch from the cable end and slightly 
score the outer jacket around its circumference. 

2) With a sharp knife, cut along the score line through the 
outer jacket, through the braid, and through the dielec-
tric material, right down to the center conductor. Be 
careful not to score the center conductor. Cutting 
through all outer layers at once keeps the braid from 
separating. 

3) Pull the severed outer jacket, braid and dielectric off 
the end of the cable as one piece. Inspect the area 

1) Cut end of cable even: Remove vinyl jacket to 
dimension appropriate for type of hood. Tin exposed 

2) Remove braid and dielectric to expose center 
conductor. Do not nick conductor.

3) Remove braid to expose dielectric ro appropriate 
dimension. Tin center conductor. Soldering assembly 
depends on hood used, as illustrated.

4) Slide hood over braid. Solder conductor to contact. 
Slide hood flush against receptacle and bolt both to 
chassis. Solder hood to braid as illustrated. Tape this 
junction if necessary. (for UG-177/U)

5) Slide hood over braid. Bring receptacle flush 
against hood. Solder hood to braid and conductor to 
contact sleeve through solder holes as illustrated. 
Tape junction if necessary. (for UG-372/U)

6) Slide hood over braid and force under vinyl. Place 
inner conductor in contact sleeve and solder. Push hood 
flush against receptacle. Solder hood to braid through 
solder holes. Tape junction if necessary. (for UG-106/U)

Fig 27Assembly of the 83 series (SO-239) with hoods. Complete electrical shield integrity in the UHF female 
connector requires that the shield be attached to the connector flange by means of a hood. 
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BNC CONNECTORS

Standard Clamp
Improved Clamp C. C. Clamp

1. Cut cable even. Strip jacket. Fray braid and 
strip dielectric. Don't nick braid or center 
conductor. Tin center conductor.

2. Taper braid. Slide nut, washer, gasket and 
clamp over braid. Clamp inner shoulder should 
fit squarely against end of jacket.

3. With clamp in place, comb out braid, fold 
back smooth as shown. Trim center conductor.

4. Solder contact on conductor through solder 
hole. Contact should butt against dielectric. 
Remove excess solder from outside of contact. 
Avoid excess heat to prevent swollen dielectric 
which would interfere with connector body.

5. Push assembly into body. Screw nut into 
body with wrench until tight. Don't rotate 
body on cable to tighten.

Follow 1, 2, 3 and 4 in BNC connectors (standard clamp) 
exceptas noted. Strip cable as shown. Slide gasket on 
cable with groove facing clamp. Slide clamp with sharp 
edge facing gasket. Clamp should cut gasket to seal 
properly.

1. Follow steps 1, 2, and 3 as outlined for the 
standard-clamp BNC connector.

2. Slide on bushing, rear insulator and contact. The 
parts must butt securely against each other, as 
shown.

3. Solder the center conductor to the contact. 
Remove flux and excess solder.

4. Slide the front insulator over the contact, making 
sure it butts against the contact shoulder.

5. Insert the prepared cable end into the connector 
body and tighten the nut. Make sure the sharp edge 
of the clamp seats properly in the gasket.

Fig 28BNC connectors are common on VHF and UHF equipment at low power levels. (Courtesy of Amphenol 
Electronic Components, RF Division, Bunker Ramo Corp.) 

around the cut, looking for any strands of braid hang-
ing loose. If there are any, snip them off. There won’t 
be any if your knife was sharp enough. 

4) Next, score the outer jacket 5/16 inch back from the 
first cut. Cut through the jacket lightly; do not score 
the braid. This step takes practice. If you score the 
braid, start again. 

5) Remove the outer jacket. Tin the exposed braid and 
center conductor, but apply the solder sparingly. Avoid 

melting the dielectric. 
6) Slide the coupling ring onto the cable. (Don’t forget 

this important step!) 
7) Screw the connector body onto the cable. If you pre-

pared the cable to the right dimensions, the center con-
ductor will protrude through the center pin, the braid 
will show through the solder holes, and the body will 
actually thread itself onto the outer cable jacket. 

8) With a large soldering iron, solder the braid through 
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Fig 29Type N connectors are required for high-power operation at VHF and UHF. (Courtesy of Amphenol 
Electronic Components, RF Division, Bunker Ramo Corp.) 

1. Cut cable even. Remove 9/16" of vinyl jacket.
When using double-shielded cable remove 5/8".

2. Comb out copper braid as shown. Cut off
dielectric 7/32" from end. Tin center conductor.

3. Taper braid as shown. Slide nut, washer and
gasket over vinyl jacket. Slide clamp over braid
with internal shoulder of clamp flush against
end of vinyl jacket. When assembling connectors
with gland, be sure knife-edge is toward end of
cable and groove in gasket is toward gland.

4. Smooth braid over clamp and trim. Soft-solder
contact to center conductor. Avoid use of
execessive heat and solder. See that end of
dielectric is clean. Contact must be flush against
dielectric. Outside of contact must be free of
solder. Female contact is shown; procedure is
similar to male contact.

5. Slide body into place carefully so that contact
enters hole in insulator (male contact shown).
Face of dielectric must flush against insulator.
Slide completed assembly into body by pushing
nut. When nut is inplace tighten with wrenches.
In connectors with gland, khife edge should cut
gasket in half by tightening sufficientlly.

Improved Clamp

TYPE N CONNECTORS

Standard Clamp

C. C. Clamp

1) Follow instructions 1 through 4 as detailed in 
the standard clamp (be sure to use the correct 
dimensions).

2) Slide the body over the prepared cabel end. 
Make sure the sharp edges of the clamp seat 
properly in the gasket. Tighten the nut.

1) Follow instructions 1 through 3 as outlined  for 
the standard-clamp Type N connector.

2) Slide on the washer, rear insulator and contact. 
The parts must butt securely against each other.

3) Solder the center conductor to the contact. 
Remove flux and excess solder.

4) Slide the front insulator over the contact, 
making sure it butts against the contact shoulder.

5) Insert the prepared cable end into the 
connector body and tighten the nut. Make sure 
the sharp edge of the clamp seats properly in the 
gasket.
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each of the four solder holes. Use enough heat to flow 
the solder onto the connector body, but no so much as 
to melt the dielectric. Poor connection to the braid is 
a the most common form of PL-259 failure. This con-
nection is just as important as that between the center 
conductor and the connector. With some practice you’ll 
learn how much heat to use. 

9) Allow the connector body to cool somewhat, and then 
solder the center connector to the center pin. The sol-
der should flow on the inside, not the outside of the 
pin. Trim the center conductor to be even with the end 
of the center pin. Use a small file to round the end, 
removing any solder that may have built up on the outer 
surface of the center pin. Use a sharp knife, very fine 
sandpaper, or steel wool to remove any solder flux 
from the outer surface of the center pin. 

10)  Screw the coupling onto the body, and the job is fin-
ished. 

Fig 26 shows two options for using RG-58 or 
RG-59 cable with PL-259 connectors. The crimp-on con-
nectors manufactured for the smaller cable work well if 
installed correctly. The alternative method involves using 
adapters for the smaller cable with standard PL-259 
connectors made for RG-8. Prepare the cable as shown 
in Fig 26. Once the braid is prepared, screw the adapter 
into the PL-259 shell and finish the job as you would 
with RG-8 cable. 

Fig 27 shows how to assemble female SO-239 con-
nectors onto coaxial cable. Figs 28 and 29 respectively 
show the assembly of BNC and type N connectors. 

SINGLE-WIRE LINE 
There is one type of line, in addition to those 

already described, that deserves mention because it is still 
used to a limited extent. This is the single-wire line, con-

sisting simply of a single conductor running from the 
transmitter to the antenna. The return circuit for such a 
line is the earth; in fact, the second conductor of the line 
can be considered to be the image of the actual conduc-
tor in the same way that an antenna strung above the earth 
has an image (see Chapter 3). The characteristic imped-
ance of the single wire line depends on the conductor 
size and the height of the wire above ground, ranging 
from 500 to 600 ohms for #12 or #14 conductors at 
heights of 10 to 30 feet. The characteristic impedance may 
be calculated from 

d

h4
log 138Z0 = (Eq 33) 

where 
Z0 = characteristic impedance of the single wire line 
h = antenna height 
d = wire diameter, in same units as h 

By connecting the line to the antenna at a point 
that represents a resistive impedance of 500 to 600 Ω, 
the line can be matched and operated without standing 
waves. 

Although the single wire line is very simple to install, 
it has at least two outstanding disadvantages. First, 
because the return circuit is through the earth, the behav-
ior of the system depends on the kind of ground over 
which the antenna and transmission lines are erected. In 
practice, it may not be possible to get the necessary good 
connection to actual ground that is required at the trans-
mitter. Second, the line always radiates, because there is 
no nearby second conductor to cancel the fields. Radia-
tion is minimum when the line is properly terminated, 
because the line current is lowest under these conditions. 
The line is, however, always a part of the radiating antenna 
system, to some extent. 

Line Installation 

INSTALLING COAX LINE 
One great advantage of coaxial line, particularly the 

flexible dielectric type, is that it can be installed with 
almost no regard for its surroundings. It requires no 
insulation, can be run on or in the ground or in piping, can 
be bent around corners with a reasonable radius, and can 
be snaked through places such as the space between walls 
where it would be impractical to use other types of lines. 
However, coaxial lines should always be operated in sys-
tems that permit a low SWR, and precautions must be taken 
to prevent RF currents from flowing on the outside of the 
line. This is discussed in Chapter 26. Additional informa-
tion on line installation is given in Chapter 4. 

Installing Parallel-Wire Lines 

In installing a parallel wire line, care must be used 
to prevent it from being affected by moisture, snow and 
ice. In home construction, only spacers that are impervi-
ous to moisture and are unaffected by sunlight and 
weather should be used on air insulated lines. Steatite 
spacers meet this requirement adequately, although they 
are somewhat heavy. The wider the line spacing, the 
longer the leakage path across the spacers, but this can-
not be carried too far without running into line radiation, 
particularly at the higher frequencies. Where an open wire 
line must be anchored to a building or other structure, 
standoff insulators of a height comparable with the line 
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spacing should be used if mounted in a spot that is open 
to the weather. Lead-in bushings for bringing the line into 
a building also should have a long leakage path. 

The line should be kept away from other conduc-
tors, including downspouts, metal window frames, flash-
ing, etc, by a distance of two or three times the line 
spacing. Conductors that are very close to the line will 
be coupled to it to some degree, and the effect is that of 
placing an additional load across the line at the point 
where the coupling occurs. Reflections take place from 
this coupled load, raising the SWR. The effect is at its 
worst when one wire is closer than the other to the 
external conductor. In such a case one wire carries a 
heavier load than the other, with the result that the line 
currents are no longer equal. The line then becomes 
unbalanced. 

Solid dielectric, two-wire lines have a relatively 
small external field because of the small spacing, and can 
be mounted within a few inches of other conductors with-
out much danger of coupling between the line and such 
conductors. Standoff insulators are available for support-
ing lines of this type when run along walls or similar struc-
tures. 

Sharp bends should be avoided in any type of trans-
mission line, because such bends cause a change in the 
characteristic impedance. The result is that reflections 
take place from each bend. This is of less importance 
when the SWR is high than when an attempt is being made 
to match the load to the line Z0. It may be impossible to 
get the SWR to the desired figure until bends in the line 
are made very gradual. 

TESTING TRANSMISSION LINES 
Coaxial cable loss should be checked at least 

every two years if the cable is installed outdoors or bur-
ied. (See earlier section on losses and deterioration.) 
Testing of any type of line can be done using the tech-
nique illustrated in Fig 30. If the measured loss in watts 
equates to more than 1 dB over the rated matched-line 
loss per 100 feet, the line should be replaced. The 
matched-line loss in dB can be determined from 

Fig 30Method for determining losses in transmission 
lines. The impedance of the dummy load must equal the 
Z0 of the line for accurate results. 

2

1

P

P
log 10=Bd (Eq 34) 

where 
P1 is the power at the transmitter output 
P2 is the power measured at RLof Fig 30. 

Yet other methods of determining line losses may 
be used. If the line input impedances can be measured 
accurately with a short- and then an open-circuit termi-
nation, the electrical line length (determined by velocity 
factor) and the matched-line loss may be calculated for 
the frequency of measurement. The procedure is described 
in Chapter 28. 

Determining line characteristics as just mentioned re-
quires the use of a laboratory style of impedance bridge, 
or at least an impedance or noise bridge calibrated to a 
high degree of accuracy. But useful information about a 
transmission line can also be learned with just an SWR 
indicator, if it offers reliable readings at high SWR values. 

A lossless line theoretically exhibits an infinite SWR 
when terminated in an open or a short circuit. A practical 
line will have losses, and therefore will limit the SWR at 
the line input to some finite value. Provided the signal 
source can operate safely into a severe mismatch, an SWR 
indicator can be used to determine the line loss. The 
instruments available to most amateurs lose accuracy at 
SWR values greater th  an about 5:1, so this method is 
useful principally as a go/no-go check on lines that are 
fairly long. For short, low-loss cables, only significant 
deterioration can be detected by the open-circuit SWR 
test. 

First, either open or short circuit one end of the line. 
It makes no difference which termination is used, as the 
terminating SWR is theoretically infinite in either case. 
Then measure the SWR at the other end of the line. The 
matched-line loss for the frequency of measurement may 
then be determined from 









−
+

=
1SWR

1SWR
 log 10Lm (Eq 35) 

where SWR = the SWR value measured at the line input. 
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