
QEX: The ARRL
Experimenter's Exchange
American Radio Relay League
225 Main Street
Newington, CT USA 06111

$1 .75

f(/C /C L ~pe~i~reKte,~s ~xe~Ca~~e0	November 1993

∎

Build this 8085 Microcomputer
for your next project!

Non-Profit Org .
US Postage

PAID
Hartford, CT

Permit No. 2929



4000

OEX (ISSN : 0886-8093) is published monthly
by the American Radio Relay League,
Newington, CT USA .
Application to mail at second-class postage
rates is pending at Hartford, CT .
David Sumner, K1ZZ
Publisher
Jon Bloom, KE3Z
Editor
Lori Weinberg
Assistant Editor
Harold Price, NK6K
Zack Lau, KH6CP
Contributing Editors

Production Department
Mark J. Wilson, AA2Z
Publications Manager
Michelle Bloom, WB1ENT
Production Supervisor
Sue Fagan
Graphic Design Supervisor
Dianna Roy, Deborah Strzeszkowski
Senior Production Assistants

Advertising Information Contact :
Brad Thomas . KC 1 EX, Advertising Manager
American Radio Relay League
203-667-2494 direct
203-666-1541 ARRL
203-665-7531 fax

Circulation Department
Debra Jahnke, Manager
Kathy Fay, N 1 GZO, Deputy Manager
Cathy Stepina, QEX Circulation
Offices
225 Main St, Newington, CT 06111-1494 USA
Telephone: 203-666-1541
Telex: 650215-5052 MCI
FAX: 203-665-7531 (24 hour direct line)
Electronic Mail : MCIMAILID : 215-5052

I nternet :gex@arrl .org

Subscription rate for 12 issues :

In the US by Third Class Mail : ARRL
Member $12, nonmember $24 ;

US, Canada and Mexico by First Class Mail :
ARRLMembe r $25, nonmember $37 ;

Elsewhere by Air mail :
ARRLMembe r $48 nonmember $60 .

QEX subscription orders, changes of address,
and reports of missing or damaged copies
may be marked : QEX Circulation . Postmaster :
Form 3579 requested . Send change of
address to: American Radio Relay League,
225 Main St, Newington, CT 06111-1494 .

Members are asked to include their member-
ship control number or a label from their QST
wrapper when applying .
Copyright ~ 1993 by the American Radio Relay League Inc .
Material may be excerpted from OEX without prior
permission provided that the original contributor is credited,
and OEX is identified as the source .

Features

3 An 8085-Based Computer System
By Sam Ulbing, N4UAU

9 The Growing Family of Federal Standards for
HF Radio Automatic Link Establishment (ALE)
Part 5 of 6

By Paul C. Smith, K3ZMO and Dennis Bodson, W4PWF

13 Simple and Inexpensive PC Interfacing
By Gary Sutcliffe, W9XT

Columns

20 RF
By Zack Lau, KH6CP/1

November 1993 QEX Advertising Index
Brian Beezley, K6STI : Cov III

	

LUCAS Radio/Kangaroo Tabor Software :12
Communications Specialists Inc : 23

	

P.C . Electronics : 19
Down East Microwave : 19

	

Rutland Arrays : 12
Henry Radio : 24

	

Yaesu: Cov IV
L .L Grace : Cov II

	

Z Domain Technologies, Inc : 23

About the Cover:
Perfboard construction works
fine for this 8085 microcomputer
by N4UAU.

141

November 1993 1



THE AMERICAN RADIO _

RELAY LEAGUE

The American Radio Relay League, Inc, is a
noncommercial association of radio amateurs,
organized for the promotion of interests in Amateur
Radio communication and experimentation, for
the establishment of networks to provide
communications in the event of disasters or other
emergencies, for the advancement of radio art
and of the public welfare, for the representation
of the' radio amateur in legislative matters, and for
the maintenance of fraternalism and a high
standard of conduct .

ARRL is an incorporated association without
capital stock chartered under the laws of the
state of Connecticut, and is an exempt organiza-
tion under Section 501 (c)(3) of the Internal
Revenue Code of 1986 . Its affairs are governed
by a Board of Directors, whose voting members
are elected every two years by the general
membership . The officers are elected or
appointed by the Directors . The League is
noncommercial, and no one who could gain
financially from the shaping of its affairs is
eligible for membership on its Board .

"Of, by, and for the radio amateur, "ARRL
numbers within its ranks the vast majority of
active amateurs in the nation and has a proud
history of achievement as the standard-bearer in
amateur affairs .

A bona fide interest in Amateur Radio is the
only essential qualification of membership ; an
Amateur Radio license is not a prerequisite,
although full voting membership is granted only
to licensed amateurs in the US .

Membership inquiries and general corres-
pondence should be addressed to the
administrative headquarters at 225 Main Street,
Newington, CT 06111 USA .
Telephone : 203-666-1541 Telex : 650215-5052
MCI .
MCIMAIL (electronic mail system) ID : 215-5052
FAX: 203-665-7531 (24-hour direct line)

Officers
President : GEORGE S . WILSON III, W4OYI

1649 Griffith Ave, Owensboro, KY 42301
Executive Vice President: DAVID SUMNER, K1ZZ

Purpose of QEX:
1) provide a medium for the exchange of ideas

and information between Amateur Radio
experimenters

2) document advanced technical work in the
Amateur Radio field

3) support efforts to advance the state of the
Amateur Radio art

All correspondence concerning QEX should be
addressed to the American Radio Relay League,
225 Main Street, Newington, CT 06111 USA .
Envelopes containing manuscripts and corre-
spondence for publication in QEX should be
marked : Editor, QEX.
Both theoretical and practical technical articles

are welcomed . Manuscripts should be typed and
doubled spaced . Please use the standard ARRL
abbreviations found in recent editions of The
ARRL Handbook . Photos should be glossy, black
and white positive prints of good definition and
contrast, and should be the same size or larger
than the size that is to appear in QEX .

Any opinions expressed in QEX are those of
the authors, not necessarily those of the editor or
the League . While we attempt to ensure that all
articles are technically valid, authors are
expected to defend their own material . Products
mentioned in the text are included for your
information ; no endorsement is implied . The
information is believed to be correct, but readers
are cautioned to verify availability of the product
before sending money to the vendor .

2 QEX

Empirically Speaking
Tales from the Crypt-o

One of the oldest rules regarding ham
radio is that hams are not to transmit en-
crypted communications . The idea, of
course, is that hams aren't supposed to be
communicating anything that needs to be
hidden, and allowing hiding of content
opens the door to abuse of the amateur
bands. (There is an exception made for
satellite control links; we do need to have
those secure!)

That doesn't necessarily mean that
there is no place in Amateur Radio for
cryptographic techniques, however . Us-
ing techniques detailed in the 5th Com-
puter Networking Conference Proceedings
by Hal Feinstein, WB3KDU, and in the
6th Proceedings by Phil Karn, KA9Q, and
elsewhere, cryptographic techniques can
legitimately be used by amateurs for pur-
poses of authentication . As used here, au-
thentication means ensuring that a
transmission, or a message, relayed via
amateur digital communications origi-
nates from the station it appears to origi-
nate from. The techniques suggested in
these papers and elsewhere don't require
sending any encrypted data, at least,
anything that isn't also sent in the clear .

Why go to all this trouble, though?
Isn't Amateur Radio a hobby, after all? Is
a concern for network security and track-
ing part of"real ham radio?" In brief, yes,
it is . It is because what we amateurs
want to do is build a network that serves
our communications needs. And any net-
work that serves those needs well will
allow communication of violative commu-
nications (to use the FCC's phrase) as
easily as legitimate communications . If
we don't want to be backed into a regula-
tory corner that restricts us so much that
an efficient network becomes impossible,
we have got to solve the problem of iden-
tifying the source of illegal data in the
amateur network .
At present, I can easily change the

MYCALL on my TNC to another call
sign-yours, say-and then log on to a
PBBS that will unquestioningly accept
that I am you . Imagine, though, if you
could send a message that the recipient-
any recipient-could verify was from you
regardless of how the message entered
the network . And any attempt to forge a
message "from" you was detectable, as
was any tampering with the text of a
message you actually sent . A network
that provided that kind of security as a
routine operation would make a powerful
case that we amateurs were in control of

our facilities and could prove it .
Such a network is possible. Modern

public-key cryptographic techniques can
provide digital "signatures" of messages .
These signatures are data blocks ap-
pended to the end of a message that act
as a checksum to test the message integ-
rity . But they are checksums that only
the specified originator can create . Thus
if I receive a message from you and the
signature checks out, I can be certain the
message is from you and it was not al-
tered enroute .

The challenge will be to implement this
kind of authentication on amateur net-
works. The logical first step-and the
easiest one-is to provide authentication
within BBS systems . One can at least
ensure that messages traverse the BBS
network uncorrupted . And if the BBS
SYSOP can ensure that the message
originator is who he says he is, again us-
ing a cryptographic technique, such as
that employed by the latest version of the
AA4RE BBS program, a pretty high de-
gree ofcertainty as to the message source
is possible .

If you would like more information
about this, I suggest getting a copy of
Answers to Frequently Asked Questions
About Today's Cryptography, from RSA
Laboratories . This document is available
via the Internet on host rsa.com in the
/pub/faq directory . A freeware copy of
RSA's RSAREF package of free C source
code for cryptographic routines is avail-
able on the same machine in the /rsaref
directory .

This Month in QEX
Sam Ulbing, N4UAU, wanted a building-

block microprocessor board to use in
developing projects-so he designed one .
The result, can be found in "An 8085-
Based Computer System ."
Gary Sutcliffe, W9XT, provides a

primer on how to use the PC parallel port
as a general-purpose digital interface in,
"Simple and Inexpensive PC Interfacing ."

Part 5 of our series on automatic link
establishment (ALE), by Paul C . Smith,
K3ZMO, and Dennis Bodson, W4PWF,
introduces a (relatively!) low-cost ap-
proach to ALE .

In this month's "RF" column, Zack Lau,
KH6CP/1 presents a simple, state-of-the-
art 13-cm PHEMT preamp design . And a
book review from Ed Hare, KA1CV,
rounds out, this month's menu of good-
ies.-KE3Z, email: jbloom@arrl .org
(Internet)



Introduction

Y ou have probably read articles in
QST or QEX describing various
circuits that use microproces-

sors : digital filters and memory keyers
are just two of the recent projects . With
the cost of these chips decreasing every
day and their availability increasing,
you can be certain that they will find
their way more and more into amateur
use .

Unfortunately, if you try to develop
your own microprocessor system to
control a project, you will soon discover
hurdles to overcome . You need to buy
or build a host micro system for devel-
opment; you need to write a basic oper-
ating system to control the host
system; and you need to he able to pro-
gram EPROMs to use any programs
you develop . All this before you can
even start on the project you really
wanted to do in the first place!
This article will make the job much

easier and less expensive for you . It
describes a general-purpose micropro-
cessor system which can communicate
with a PC, control many different hard-
ware systems and program EPROMs .
The photo on this page shows a proto-

5305 NE 57th Lane
Gainesville, FL 32606

An 8085-Based
Computer System

Here's a design you can use as a basic building block
microcomputer or just use it to program EPROMs.

By Sam Ulbing, N4UAU

The 8085 system with the EPROM
program module in place .

type of the system being used to pro-
gram an EPROM .
The system is modular, which pro-

vides great flexibility . (See Fig 1 .) A PC
interface is provided via an RS232 port .
A second interface is provided via a 44-
pin edge connector . Various modules
can be plugged in here and run by
downloading software from the PC to
the 8085. With the hardware shown
and the menu-driven software provided
you will be able to program 27C64 (or
similar) EPROMs. Just insert the
EPROM module into the 44-pin socket,
plug the system into a PC with a termi-
nal program, start up the 8085 and fol-
low the menu, shown in Fig 2 .
The menu of Fig 2 lists a number of

selections in addition to the EPROM
programmer . These might be of inter-

I	RS-232

	

8085PC	1 System

Fig 1-8085 system block diagram .

TYPE A LETTER FOR YOUR
CHOICE NOW OR TYPE M FOR
THE MENU

MENU SELECTIONS ARE :

I = INTRO PROGRAM
M = MENU
•

	

= EDIT
•

	

= OBJECT LOADER
•

	

= EPROM PROGRAMMER
•

	

= BLOCK MOVE
•

	

= UPLOADER
•

	

= DUMP REGS
•

	

= ASCII LOADER
R = RUN PGM
•

	

= BCDNUM GAME

Fig 2-8085 system menu .

est to the person who wants to do devel-
opment using this system . Since the
system has a basic operating system
already written, it is necessary to write
only the software for the specific
project you have in mind and build the

Plug-In
Modules)

November 1993 3



4 QEX

DC

	

VSS

10

hardware needed for your project on a
44-pin board . Some of the projects I
have built for use with this system are :
a game, a moving LCD dot-matrix dis-
play (like you see at some road construc-
tion sites) and a module to program the
8751 40-pin microprocessor, which I'll

D7

D6

D5

D4

D3

D2

D
DO

Y1
6 MHz_L
0

5 V

20

10

T

DD

3

34

32

31

30

19

18

17

16

15

14

13

12

D7

9

A7

16

A6

15

A5

12

A4

9

A3

6

A2

5

18 17 14 13 8 7

	

3

8D 7D 6D 5D 4D 30 2D 10

U6
74HC373

VSS

	

OE

80 70 60 50 40 30 20 10

Al

describe in a future article .

The 8085 System Hardware
Fig 3 shows a schematic of the sys-

tem. The heart of the system is an 8085,
U1. This Intel microprocessor has an 8-

+5 V

	

U9
16

	

MAX232
C1+

	

VCC

2

AO

11

1

+5 V

28
e-

VPP

19

3

A7

18

A6

cl-

20UT

2 1N

E3

A

C2

	

V-

C

	

VDD
U7

74HC138

3

	

Y4

G1

	

Y1

G28

G2A

	

YO

05

17

07 06 05 04 03 02 01 00 A12 All A10 A9 A8

VDD

	

OE

A7 A6 A5 A4 A3 A2 Al

5

A5

6

VSS

6

A4

GND

15

D4 D3

15

7

A3

T2OUT (8

R21N

13

8

A2

V+

\ \ \

D2

U2
27064

/ / / / / /

2 µF

	

+

D

12

9

Al

6

2

16

11

14

15

DO

1

J2
SERIAL
DATA

5 V

N
a

2

OUT

IN

a

l

23

AO

	

VSS PCM

10

	

14
m

AO

O
a

21

22 µF

\

I
S1

A9

24

CE

A8

25

2

20

27
OL-N/V v-~ +5 V

10 k

\\ \ \ \ \ \ \

bit CPU. That is, data is processed 8
bits (1 byte) at a time. A 6-MHz clock
crystal results in a system clock speed
of 3 MHz .
U2 is an EPROM that contains the

basic software necessary to operate the
computer. U3 is a static RAM chip that

U1
8085

+SV

	

56k
-11VVr-t +5 V

S2

	

+
0 3X1

	

VC
0--0 T

22 µF35
READ µF / /

36
2

	

RESET IN + I ~
5

	

9
SID

4

	

0
SOD

22 µF

	

4+
25

	

A12
I

24

	

A11

RESET 23

	

A10 \
OUT

22

	

A9
O/M

21

	

A8
RD

WR
39 \

ALE

	

HOLD

Vss 20

28 /
AD7

	

A15

27

	

2A06

	

A14

26

	

1ADS

	

A13
1

	

12AD4

	

N TA

10AD3

	

INTR
9 6A02

	

RST 5 .5 +5 +5 V
8 5AD1

	

RST 6 .5
7 4ADO

	

RST 7 .5

D6 D5 D4 D3 D2 D1 DO D7 D6

U4
8155

+5 V

J1 40

Z >

Y >

X >

W >

V >

U >

T >

S >

02
>

21 >

20 >

19 >

18 >

17 >

16 >

21
PAS VC AD7

D6

AD5

AD4

AD3

AD2

AD

ADD

RESE

IO/M

RD

412

ALE

CE

9 D7

22
PA1

18 D6

23
PA2

17 D5

24 16 \
D4

25
PA3

15 D3

26
PA4

PAS 14 D2

27
PA6 3 \D1

28
PA7 12 DO

29 4 \

30
PRO

P81 7

31

32
PB2

10

33
PB3

1

34
PB

PB5 8

\5

36
PB6

15 > \

37
P87

R > \

38
PCO

PCP > \

39
PC2N > \

PC3M >
\

2
PC4L > \

5
PC5K > V55

\

2 > +5 Vj 20

A

B >

C >

D >

)

E >

1 > U8 +5 V

74HC02
14

+5 V

U5
74HC373 20 1

9 VDD 18 D7
14 > 8Q 8D

13 >
16

7D
17 D6 /70

12 >
5

60

	

6D
1 D5

11 >
2

50

	

50
13 D4

10 > 9 40

	

4D
8 D3

9 >
6

30

	

30
7 D2 /

8 >
5

20

	

2D
4 D /

7 > 2
0

	

D
DO



\ \

A7

D7

19

\

D6

18

\ \

D5

17

D4

16

\

D3

5

A6 A5 A4 A3 A2

D2

13

provides u p to 8 kbytes of temporary
data storage. U4, an 8155 program-
mable interface adapter, provides three
buffered I/O ports (two 8-bit ports and
one 6-bit port), 256 bytes of RAM and a
timer. The ports are parallel ports, so
data is sent out simultan-eously on

\ \
Dl

12

U3
6264

11

DO
N
a

2

a

23

Al AO

	

X55 56

10

	

14
m

AC

0

a

21

27

A9

24

07 06 05 04 03 02 01 00 A12 All A10 A9 A8

OE

CE

AS

25

22

20

multiple lines . A three-state latch, U5,
provides the system with an additional
8-bit output port . U6 is a three-state
latch that demultiplexes the address
and data . It is used because the 8085
can address up to 64 kbytes of data,
which requires 16 address bits . Since

Fig 4-8085 system memory map .

there are not enough pins available on
the 40-pin package for 16 dedicated
address lines, the 8085 multiplexes the
low 8 bits of the address and the 8 bits
of data on the same set of lines . Pin 11
of U6 is strobed by the 8085, causing it
to latch the address bits and hold them
while data is put out on these same
lines .
U7 is an address decoder . The sys-

tem uses inexpensive 8-k memory mod-
ules which require only 13 lines for an
address . The highest 3 bits of the ad-
dress from the 8085 are decoded by U7
to activate one of up to 8 different
chips. Fig 4 shows the memory map-
ping of the system .

U9 is an RS232 transmitter/receiver .
It is the serial port of the system and
provides the communications interface
to the RS232 port of a PC .

Switch S1 permits or inhibits a write
signal to the EPROM address. When
an EPROM is used, S1 has no function,
but I have often found it helpful to use
a Dallas 1225 nonvolatile RAM in the
ROM socket for developing software . If
an EPROM is used, the program to be
tested must be loaded and tested in
RAM space with different addresses or
programmed into an EPROM and then
moved to the ROM socket for testing .
With the nonvolatile RAM, and S1
closed, you can directly load programs
to ROM space for testing . Of course you
can also wipe out everything in the
ROM space, so care must be taken! As
soon as I load the program I open S1 to
disable writing to ROM space .
This system is about the simplest

general purpose computer you can
build with an 8085, but it is really quite
powerful . With a 3-MHz clock, it will
execute more than a half million in-
structions per second, and the 8 k of
ROM will hold about 4000 instructions .
22 1/0 lines, 8 output-only lines and 5
interrupt lines allow good parallel com-
munications with the project hard-
ware, while the RS232 port allows
communication with a PC .

November 1993 5

Fig 3-Schematic of the 8085-based computer system .
U1-8085AH2 8-bit HMOS microprocessor
U2-27C64 8-k x 8 CHMOS ROM
U3-6264 8-k x 8 SRAM
U4-8155 programmable I/O device with RAM and timer
U5-74HC373 three-state address latch
U6-74HC373 three-state address latch
U7-74HC138 address decoder
U8-74HC02 quad 2-input NOR gate
U9-MAX232 serial interface

Address Bit Hex
Number Address
15 14 13 Range

ROM-U2 0 0 0 0000 1 FFF
RAM-U3 0 0 1 2000 3FFF
NOT USED 0 1 0 4000 5FFF
PIA-U4

	

0 1 1 6000 7FFF
LATCH-U5 1 0 0 8000 9FFF
NOT USED 1 0 1 A000 BFFF
NOT USED 1 1 0 0000 DFFF
NOT USED 1 1 1 E000 FFFF



The physical layout of the system is
shown in the photo on the cover . I tried
to lay it out to permit future growth .
The board I used is a Radio Shack 276-
147 universal board . While a custom
PC board would be neater, I had no de-
sire to go to the effort of making one .
Besides I wasn't sure exactly what my
final system would look like . I decided
to use "ugly" computer construction (ie,
soldered wires) . It may look ugly, but it
runs beautifully and no one can see the
way it looks when it is in the box
anyway. I ran bare bus wires on the
underside of the board for the address
and data lines . This did two things for
me: (1) If I ever want to expand ROM,
RAM or I/O ports, all I need do is attach
another board to the end of the first and
continue the bus wires across the next
board . (2) It reduces the mass of wires
somewhat. Of course, I used sockets for
all the ICs. I selected the fast, low-
power HC family of CMOS logic since
the cost for the "best" was insignificant .
The I/O ports from U4 and U5 con-

nect to a Radio Shack 276-1551 44-pin
connector socket mounted on the top of
the "8085 main frame ." This allows
many different circuits to be connected
to the 8085 just by building a circuit on
a 276-154 circuit board and plugging it
in . Besides the I/O ports and the sys-
tem interrupts, a switched 5-V source
and the 8085 ground are available at
the socket . With the already large cur-
rent draw of the mother board, I would
recommend running only low-current
systems from this source . I did not con-
nect the U4 timer outputs to the socket,
but you could .
This system draws about 200 mA at

5 volts . Power is provided from a 7805
voltage regulator in a TO-220 case that
is driven from a 12-V source . The power
lost in the voltage regulator is fairly
large, 1 to 2 W, so have it well heat
sinked. Of course, any stable, well-
regulated 5-V source could be used . I
also used a heat sink on U1 as it runs a
little warm. To keep smoke from com-
ing out of the project box, I put diodes
in the 12-V line .
I got my aluminum box from my

"junk" collection . It was open at the top,
so I used some hardboard to build a top
surface. The 44-pin socket is mounted
on this. The RS232 port is a 9-pin
socket in the side of the box . Only the
send, receive and ground terminals are
used. An on-off switch, power-on LED
indicator and a reset button (S2 in
Fig 3) are mounted on the box .

The EPROM Programmer
The 27C64 EPROM programmer is

6 QEX

built on a 276-154 44-pin board so it
can be inserted into the socket of the
8085 system. The EPROM to be pro-
grammed is installed in a zero-
insertion-force (ZIF) socket to permit
easy insertion and withdrawal . The
programmer board communicates with
the 8085 via the four I/O ports . The
8155 and the latch provide the data
and address lines that connect directly
to the EPROM. The control lines for the
rest of the hardware come from the
8155 .
To understand the hardware, it is

useful to know the programming algo-
rithm. After the EPROM has been veri-
fied to be blank (all bits are 1), the
sequence of programming is :
1. Address and data are applied to

the EPROM .
2. Vc, is raised from 5 volts to

6.25 volts .
3. VPp is raised from 5 volts to

12.75 volts .
4 . CE goes from 5 volts to 0 .
5 . PGM goes from 5 volts to 0 for 100

microseconds to program the data
byte. This is the "quick pulse
programming" method .

6 . OE goes from 5 volts to 0 to permit
read-back verification that the
byte was successfully pro-
grammed .

7 . OE is returned to 5 volts .
8 . If the programming was not

successful, steps 6 and 7 are
repeated up to 25 times .

9. Upon successful programming, the
data and address are incremented
and steps 5 through 8 are re-
peated for the rest of the bytes to
be programmed .

10. V, and VPP are lowered to 5 volts .
11 . OE is set to 0 and the entire

EPROM is verified .
12. The EPROM is passed or failed .
The schematic shown in Fig 5 will

accomplish this process in conjunction
with the software in the 8085. Power is
supplied by a 13 .5-volt RMS ac wall
transformer, and the bridge rectifier
and filter provides around 17-volts dc
with little ripple . The data sheet for the
27C64 shows that as much as 60 mA
can be drawn during programming, so
size parts accordingly . Q1 controls the
power to the circuit . The 27C64 data
sheet indicates that V,, and V PP need to
be within ±0 .25 volts of nominal . While
I have seen designs that control these
voltages through NPN transistors, I
felt that better control of the voltage
values would be obtained by using a
circuit shown in the National Semicon-
ductor literature . The output voltage of
an LM317 three-terminal regulator de-

pends on the ratio of resistors used be-
tween the output, the adjust pin, and
ground. A simple switching circuit with
NPN transistors will quickly and accu-
rately change the resistance in the cir-
cuit and hence the output voltage . U2
and U3, and Q2 and Q3, perform this
way. The transistors are driven from
an LM339 comparator that senses the
state of the input control lines . This al-
lows the switching level to be set be-
tween logic high and low levels (at
around 1 .5 volts) . Additionally, the
LM339 minimizes current draw from
the 8085 output lines .

It is important to note that any volt-
age over 13 .0 V at VpPeven a momen-
tary glitch-can destroy the EPROM .
Four 0 .1--pF capacitors are used to
eliminate transient overshoots during
switching. To avoid transients at start
up, start the 8085 EPROM program
first so that the voltages on the control
lines are stable . The EPROM must not
be inserted or extracted while power is
applied to the ZIF socket . The green
LED, D2, shows when the power is on,
and the red LED, D1, indicates when
power is present at the ZIF socket . Pro-
gramming takes around 3 seconds once
the EPROM has been socketed and
verified .

Using the Machine
To use the 8085, hook it to your PC

via the RS232 port, put your PC in the
terminal mode using a standard termi-
nal program, turn on the power to the
8085, press RESET, then tap the space
bar. The menu will be displayed . Tap-
ping the space bar sends an ASCII
space character (20 t6 ) to the PC, which
it uses to determine the baud rate of the
host computer . I have found 4800 baud
to be a good rate . I have used both my
NEC Multispeed laptop and my 486-25
with Windows as hosts . The laptop has
a simple terminal program in it, and it
worked immediately . The 486 worked,
too, except that when I sent a file via
the object loader the 8085 hung up .
With some trial and error I discovered
that the Windows terminal program
will "strip LF after a CR" unless you
override it . I did so, and now it works
great . Now that the 486 works, I don't
use the laptop much at all! I use the
Windows Notepad to write my source
code, toggle to DOS to assemble the
code, toggle to the terminal program to
load and run it and then, too often,
toggle back to the note pad to correct
programming errors I made! I must say
I feel a sense of awe and pride that my
simple little hand-wired 8085 can work
so well with a state-of-the-art 486 .



AC Line

-UI. l

___rl'YYL-

D4-D7
1N4001

+17 V

2 .2 k

U1
7805

Reg
OUT

	

+5 V
GND

01
TIP32

330 gF
D2

X

	

~

	

10 k

If you want to use this system only to
program EPROMs, you do not need to
learn any 8085 code. Just follow the
menu and you will be able to program
them . Fig 6 shows the PC screen for a
typical EPROM programming session .
If you want to use the 8085 for other
purposes, the other routines on the
menu may be of interest. The main pro-
grams in the system are listed below :
1 . Menu program-lists the menu .
2 . Edit-permits the user to view and

modify the hexadecimal code at a
specified location in memory . The
program requests a starting ad-
dress from the user, then lists the

C6.0

U4
LM339

14

U3
LM31 7

Fig 5-Programmer board for 27C64 EPROMS. Use 10-turn potentiometers .

5 .00/12 .75 V

address and the data byte at that
location . If' the user enters a car-
riage return, the next address and
its data are listed . Enter a 2-digit
hex number to modify the byte in
memory. Enter minus and a 1-digit
number to backspace the memory
location being displayed . ESC ter-
minates the edit program .

3. Object loader-loads Intel hex for-
mat code. The loading address is
specified by the source code
through the assembler's ORG com-
mand at compile time. It is some-
times useful to load at an address
different from the compiled location

+5 V

(eg, when loading code to RAM for
later use in programming an
EPROM). The object program will
request an offset in kbytes from the
compile location and then load the
code at the location specified by the
sum of this value plus the ORG ad-
dress .

4. EPROM programmer-provides
the necessary control signals to pro-
gram a 27C64 EPROM . The data
for programming must be already
loaded to RAM memory 2000H to
3FFFH (use the object loader pro-
gram). The program checks to see
that the EPROM is blank and

November 1993 7

U5
27C64

P1
11

Vpp 00 < Z
12

01 < Y
13

02 < X
15

03 < W
16

04 < V
17

05 < U
18

06 < T
19

07 < S

A12
2

<L
23

All
21

< M
A10 < N

24
A9 < P

25
VCC A8 < R

3
A7 < 14

4
A6 < 13

5
A5 < 12

6V55 A4 < 11
7

A3 < 10
8

A2 < 9
9

Al < 8

OE AO
10

<7

POM

	

CE

27 20
< 20

< 19

< 18
VCC LOW

< 22
PROM PWR

< 15
Vpp LOW

< 21

< 1



AN EPROM PROGRAMMING SESSION
User response is on left side, system response on right . My comments are

in small letters .
The object code is loaded to RAM (object loader) . In this case it was

assembeld for location 0 so a 2-k offset is requested for loading to RAM .

0

2

The EPROM programmer is run . Repeated commands are an attempt to reduce
operator error .

TYPE A LETTER FOR YOUR CHOICE NOW
OR TYPE M FOR THE MENU
P

Y

Y

Y

Y

Y

Y

Y

Fig 6-Example EPROM programming session .

aborts if it is not . Data is copied
from RAM to the EPROM a byte at
a time starting with the data at
2000H and continuing to location
3FFFH. The program verification
then compares the data in the
EPROM to the data in RAM .

5. Block move-copies a specified
block of data from one memory loca-
tion to another .

6. Uploader-copies a specified mem-
ory area to the RS232 port. I have
used this to document and verify
the code in the 8085. Your PC must
be able to receive the data at the
rate at which the 8085 sends it
since there is no handshaking to
stop the 8085 until it is done .

7. Dump regs-dumps the registers .
Register a first, then the flag regis-
ter in bit format, then registers B,
C, D, E, H and L. It works, but I
find it of limited value as a debug-
ging tool . If a program hangs up, it

8 QEX

TYPE A LETTER FOR YOUR CHOICE NOW
OR TYPE M FOR THE MENU

WHAT COMPILE/LOAD OFFSET IN K BYTES

SEND FILE NOW. DO NOT TOUCH KEYBOARD UNTIL FILE LOADED

FILE IS NOW LOADED

IS PROGRAM IN RAM?

VERIFY POWER ON & EPROM NOT SOCKETED

VERIFY POWER ON & EPROM NOT SOCKETED

INSERT EPROM IF LITE NOT RED

INSERT EPROM IF LITE NOT RED

EPROM IS BLANK

ARE U SURE U WANT TO PROGRAM EPROM?

ARE U SURE U WANT TO PROGRAM EPROM?

EPROM IS PROGRAMMED

REMOVE CHIP

9 .

10 .

11 .

is necessary to reset the CPU and
most register data is lost . Periodic
calls to dump in a program under
debug might aid the process .
ASCII loader-loads a file exactly
as it is in ASCII . I used it to view
the ASCII contents of the Intel hex
format and discovered the presence
of a CR at the end of each data line .
This was not visible in the PC print
out .
Run--requests an address in the
8085 and then transfers control to
that location .
BCDNUM game-a numbers game
similar to NIM . It requires a plug-
in game board module I built . I
wrote this because it provides a
noncomputer literate person with
an easy to understand demonstra-
tion of the capabilities of the ma-
chine, and I wanted to impress my
friends!

The programs above have worked for

me so far. They are not optimum or el-
egant, but they have enabled me to do
many things with my 8085 . If I ever
wish to fancy up the code, I can use this
code to load and program a new
EPROM with all the hells and whistles .

I will be glad to send anyone inter-
ested my source code on a 3 .5" or 5 .25"
disk for $5. I can also provide a
preprogrammed EPROM for $12 . The
charges are only to cover my costs . You
can also get the program from the
ARRL BBS (20:3 666-0578) or via the
Internet from ft p.cs .buffalo .edu in the
/pub/ham-radio directory . The file
name is 8085SYS .ZIP .

Where To Go From Here
If you have read this far you may be

interested in developing some of your
own modules. That will require learn-
ing 8085 assembler code (or a suitable
higher level language) . Intel documen-
tation on the 8085 is available from
JDR Micro Devices . 1 The MCS 80/85
Family Users Manual covers the hard-
ware and software aspects reasonably
well. An 8085 assembler is necessary to
convert the assembler code to machine
code. There are a number of sources . I
used an assembler from Pseudocorp . 2
It is available as freeware, or a com-
mercial version is available for $50 .
Another assembler is TASM . :3 It is also
available as freeware and a commercial
version with tables for 10 different mi-
croprocessors is available for $40 .
(Note: TASM is available on the ARRL
BBS, 203 666-0578 .) Note that differ-
ent assemblers may have slightly dif-
ferent syntax rules requiring minor
changes in source code formatting .

Acknowledgments
I was able to do this project only with

the support of others . Dr. James
Humphries of Santa Fe Community
College agreed to allow me to audit
the College's Microprocessor course . It
was here that I learned the basics . Mr .
Ron Tinckham, the instructor, was
willing to spend some of his free time
after the course to monitor and advise
me as I developed my own system .
I thank the State of Florida for having
a Community College system where
a person can go to learn more about
subjects of interest. In a way, it
was my Elmer for this project .

Notes -	
1 JDR Micro Devices, 2233 Samaritan Dr,
San Jose, CA 95124, tel . 800 538-5000 .

2Pseudocorp, 716 Thimble Shoals Blvd,
Newport News, VA 23606, tel . 804 873-1947 .

3Speech Technology, Inc, 837 Front St S,
Issaquah, WA 98027, tel 206 392-8150 .

	

1



The Growing Family ofFederal
Standards for HF Radio Automatic Link

Establishment (ALE)

Paul C. Smith, K3ZMO
12328 Jasmine St
Brighton, CO 80601

Part V: An Amateur's Practical Approach to HF ALE Radio Systems

Introduction
If you have been following this series

of articles on Automatic Link Estab-
lishment (ALE) technology and those
by Adair, Wickwire, and others, you
have probably been convinced that this
new technology is worth looking at for
use by amateurs, but if you are like
most hams, you will reserve judgment
until you have had the opportunity to
get some "hands on" experience with
real equipment. Magazine articles can
go just so far . Alas, here is the problem .
These systems were designed with the
requirements of the Federal Govern-
ment in mind, emergency prepared-
ness agencies and the military services
in particular . We all know too well
what that means : sticker prices in the
$10,000 to $20,000 range which places
those technologies out of reach for
years, until they begin to appear on the
surplus market . There is at least one
manufacturer that produces an ALE
system for less than $1.0,000, but that
price is still well beyond what most

ALE is becoming doable for amateurs .
Here's one low-cost approach used now .

Paul C . Smith, K3ZMO and Dennis Bodson, W4PWF

hams could comfortably afford .
The engineers at the National Tele-

communications and Information Ad-
ministration/Institute for Telecommu-
nication Sciences (NTIA/ITS) in Boul-
der, Colorado, have long been involved
in the development of a family of tele-
communication standards for federal
agencies describing adaptive HF radio
systems . Several years ago, ITS devel-
oped a need for inexpensive ALE radio
systems to support the early testing
and evaluation of new concepts . ITS is
a very small government agency that
receives the majority of its annual
operating funds indirectly from other
federal agencies, rather than in the
form of direct appropriations from Con-
gress. As funds for the purchase of
equipment, such as ALE radios, are in
a constant state of short supply, some
degree of ingenuity was needed to ac-
quire the needed ALE equipment .
Hams can now benefit from that inge-
nuity .
The remainder of this article de-

Dennis Bodson, W4PWF
233 N Columbus St
Arlington, VA 22203

scribes the approach that ITS took to
home-brew an ALE radio system using
off-the-shelf components . The total cost
of this project was under $4,000, and it
can be done for even less now . This ap-
proach should be of some interest to
those hams who may want to experi-
ment with this new technology without
spending the family's fortune to do so .
This might make a good club project,
too .

System Specifications
An HF ALE radio system is nothing

more than an HF SSB transceiver and
an associated modem that supports the
unique FED-STD-1045 (and MIL-STD-
188-141A) protocols . The ALE modem
is both a modem in the conventional
sense and a controller for the trans-
ceiver, causing the radio to scan, trans-
mit, and receive on command . Except
for the robust protocols employed by
the ALE modem (eg, deep interleaving,
triply redundant word transmission
and Golay encoding for error detection
and correction), it can be considered to
be very similar to the AX .25 packet
modems (TNCs) familiar to most hams .
It seemed logical to ITS that any mod-
ern low-cost transceiver developed for
the amateur market and capable of

November 1993 9



being controlled by a computer would
work as part of a home-brewed ALE
system. ITS selected the ICOM IC-725
because we already possessed an ICOM
IC-781 transceiver and were familiar
with the programming and commands
of this series of radios . 1 Since the gov-
ernment operates on frequencies which
are, in some cases, far from the ham
bands, it was necessary to convert the
IC-725 to general coverage on both
transmit and receive . This was easily
accomplished following instructions
obtained from ICOM America, Inc, in
Bellevue, Washington. To control the
transceiver by computer, it was also
necessary to obtain one additional
piece of equipment: the ICOM commu-
nications interface, CI-V (model
CT-17 ) . The CT-17 is a signal-level con-
verter that connects between the trans-
ceiver and a computer (or terminal)
with an EIA RS-232C communications
port .

The final item needed in our build-
it-yourself ALE project was the ALE
modem. At the time there was only one
source for a stand-alone ALE modem :
the Model 1045 ALE controller from
Frederick Electronics of Frederick,
Maryland (with a 1991 price of $3,000) .
As far as ITS is aware, this is still the
case, although we understand that
Space Research Technologies, Inc, in-
tends to produce an ALE controller on
a card for insertion into a PC, to be sold
to the amateur market . 2 The card price
is projected to be somewhere in the
$700-$800 range and to be available in
late 1993 .
The Frederick ALE modem is de-

signed to interface with several differ-
ent radios, as well as external high-
speed data modems and terminal de-
vices. Table 1 lists the transceivers

TABLE 1

Transceivers Currently Interfaced to
Frederick Model 1045 ALE Modems

'Notes appear on page 12 .

10 QEX

with which the Model 1045 has been
interfaced. ITS provided Frederick
with the ICOM radio command set .
These commands were incorporated
into the Model 1045 firmware with the
radio hex address that was selected
(to match those of our other ICOM
products) .
Interfacing a stand-alone ALE

modem/controller to an SSB HF trans-
ceiver is no more difficult than interfac-
ing a packet terminal node controller
(TNC) . One simply provides paths be-
tween the two devices for control sig-
nals and the FSK audio tones to and
from the radio . However, the imped-
ances of the inputs and outputs of the
various devices have to be considered .
Upon receiving the new Frederick

modem it was discovered that the input
and output impedances for the FSK
tones are 600 S2 balanced, while the
ICOM transceiver requires impedances
of 10 kil unbalanced for input to the
radio and 4 .7 kK2 unbalanced from the
radio. A quick test revealed that the
system could correctly receive the ALE
tones from another station but could
not transmit them successfully without
providing a closer impedance match ; it
was necessary to provide impedance
matching between the radio and the
ALE modem/controller . A quick look at

Fig 1-Low-cost HF ALE radio system .

HF TRANSCEIVER

Fig 2-Low-cost ALE system block diagram .

a recent Radio Shack catalog provided
the answer. Radio Shack offered a mi-
crophone transformer designed to
match an unbalanced high impedance
(nominally 10 kI2) to a 600-52 balanced
line impedance . While not the perfect
solution, these transformers provided
adequate signal levels for the ALE
tones. Fig 1 shows the prototype ITS
low-cost ALE system components . Fig 2
is a block diagram of this system show-
ing the major I/O ports on the ALE
modem . Fig 3 is a schematic of the
"field-expedient" audio impedance
transformation unit .

Equipment Setup
The final step was to interface a

video display terminal or personal com-
puter running a communications pro-
gram that permits the emulation of a
Digital Equipment Corp (DEC) VT 100
or VT 220 terminal . ITS chose to use an
available laptop computer with
ProComnz Plus communications soft-
ware. Once the system is assembled
and interconnected as shown in Fig 2,
power is applied to the radio (via an
external power supply) and the system
with Proconim Plus booted up on the
computer. At this point, the computer-
to-ALE modem parameters are set up .
These are presented in Table 2 .

\/

ICOM
IC-725

CT 17

	

∎

z
CONVERTER

FREDERICK
MODEL 1045

I

ALE MODEM PC or TERMINAL

Transceiver Models
TransWorld Comm : TW/RT-100
MacKay Comm : MSR-8050A
ICOM : IC-781,725,etc
Signal One : MilSpec 1030C
Ten-Tec : 585 Paragon
Rohde & Schwarz : XK-852C1/C2
Skanti : TRP 82XX
SGC : SG-2000
Hagenuk : RX 1001 M/L11

EX 1010/L11



Table 2

Terminal Communications
Parameters

Display Mode = VT 220 (VT 100)
Data Rate = 9600 Baud
8 data bits, 1 stop bit
No parity, Full duplex

8-pin DIN
(m)

Having set the terminal communica-
tions parameters, we are at the point
where power may be applied to the
Frederick modem . As the power is ap-
plied, you will see the Frederick
header screen with its credits and the

FSK to Transmitter

Fig 3-Audio impedance transformation interface box .

- Link Terminated via No-Activity timeout .

RX : ALE

	

07:58 :38

	

05

	

15

	

MAC - -

Station Call From. NTIA	To. ITS	

- Call terminated via user .

Fig 4-Sample computer terminal display of ALE data .

dB9
(m)

software version number (currently
2.20). After a few seconds, the screen
will change to the working screen with
its menus . This screen should look like
the one shown in Fig 4 . The bottom
line, in reversed video, is the Procomm
Plus status line. Everything else above
the status line belongs to the ALE
system. The ALE modem has its own
status line at the very top of the screen .
In the example shown in Fig 4, we
see that our ALE system is scanning
the frequencies of channel group #1,
at a rate of 2 channels per second
and listening for a call . We are cur-
rently on channel #4 with a transceiver
frequency of 10 .224 MHz. The indi-

--------------- ---- ---- --------------- ----

	

---------------------------

	

-----
STATUS

	

SOUNDS

	

MODE

	

GROUP

	

CHANNEL

	

RX FREQ

	

VOLUME

	

LIME
LISTEN

	

DISABLED

	

SCAN 2

	

# 04

	

10,224000

	

MUTE

	

08.01 :45
-----------------------------------------------------------------------------------

FUNCTION

	

TIME

	

CH

	

TO-LQA-FR

	

'TO' ADDRESS

	

'FROM' ADDRESS

RX CALL

	

07:43 :05

	

03

	

25

	

NTIA@@	ITS	

RX CALL

	

0743 :10

	

03

	

26

	

NTIA@@	ITS	

Linked with Station ITS	

MIR -

---------- ---------

	

---------

	

---------- ---------

	

- -------

	

--------

	

-----------

CALL

	

SOUNDS

	

MODE

	

GROUPS

	

CHANNELS

	

LAST AMD

	

VOLUME

	

SET-UP
---------

	

---------- ---------

	

---------

	

---------

	

---------

	

---------

	

---------

All -Z FOR HELP

	

I ANSI

	

I FDX I

	

960(1 N82

	

I LOG CLOSED I

	

PRINT OFF

	

I

	

OFF LINE

--------

	

--- ------ -

	

--------

	

- - ------

	

--------------------- -

	

-------- -

cated time is 08 :01 :45 (may be either
UTC or local, as defined by the opera-
tor). The volume/mute indicator has no
meaning for our system as this function
is not used .
The line of ALE commands just

above the Procomm Plus status line is
the point of operator-machine interface
with the ALE system . The example
screen in Fig 4 shows the cursor on the
"call" function key . After first accessing
the system, you must program your
station variables into the ALE soft-
ware. These values include station call
sign(s), called self addresses in the
ALE vernacular, a set or sets of fre-
quencies to be scanned, the sounding
interval, and numerous other technical
system parameters . For basic simplex
operation, it is only necessary to load a
single self address (call sign), the indi-
vidual addresses (calls) of stations that
you might wish to contact, and a set of
frequencies that have been mutually
agreed upon in the appropriate li-
censed bands .

Summary
This low-cost ALE radio system has

been a part of ITS's HF radio
Interoperability Test Facility since
December 1990 and has been used
in numerous ALE performance and
interoperability tests since that time .
Laboratory personnel find the system
easy to learn and very user friendly .
The screen of the computer permits
much more information to be displayed
than does the LCD displays of most
ALE equipment .

We recommend this approach to indi-
viduals or groups desiring to get into
ALE for the lowest possible cost . Ama-
teurs involved in traffic-handling for
the NTS or MARS should find the new
ALE technology particularly useful .
As expounded upon in previous ar-

ticles, ALE radios operate quite suc-
cessfully for linking and slow-speed
data traffic at SIN ratios of 0 to 6 dB .
These levels are unusable for voice and
other modes having no error correction .
This means that previously unusable
noisy portions of the ham bands are
now available for passing data traffic
using ALE radios. And they do not in-
terfere with existing modes of HF com-
munications . Once again-new tech-
nology is exciting and opens a whole
new realm of possibilities .

Acknowledgments
This work was supported by the Na-

tional Communications System (NCS)
and the National Telecommunica-
tions and Information Administration/

	

November 1993 1 1

Frederick
Modem

+13 vdc to CT-17

	

J4ICOM
ACC-1 FSK to ALE Modem

i
I 05

l

	

4.7k 52 a O 6002
09

I o 0
to0 0I F

6

I
PTT 07

8 0

	

0 I Ground 0 1
I 02

of to ----03I 0 to
10kL2 0

I 0 04
0 0 6000I 08

L _



Institute for 'felec ~rnmunication Sci-
ences INTIA/ITS~ .

Bibliography
Federal Standard 1045, Telecommuni-

cations: HF Radio Automatic Link
Establishment, General Services Ad-
ministration, Washington, DC,
January 24, 1990 .

Horzepa, S., "ALE : A Cure for What
Ails HF Communications?" Packet
Perspective, QST, November 1992,
p 107 .

12 QEX

Wickwire, K., "The Status and Future
of High Frequency Digital Communi-
cation, Part I : Overview," QEX, June
1992, pp 3-14 .

Wickwire, K., "The Status and Future
of High Frequency Digital Communi-
cation, Part II : HF Modems and
Their Performance," QEX, July 1992,
pp 3-15 .

Wickwire, K ., The Status and Future of
High Frequency Digital Communica-
tion, Part III : Simulating the Perfor-
mance of HF Digital Networks,"
QEX, August 1992, pp 12-17 .

Wickwire, K., "The Status and Future
of High Frequency Digital Communi-
cation, Part IV : Where is HF Digital
Networking and Where is it Going?,"
QEX, October 1992, pp 10-18 .

Adair, R.T. and Peach, D.F ., "A Federal
Standard for HF Automatic Link Es-
tablishment," QEX, January 1990,
pp 3-7 .

Adair, R.T. and Bodson, D ., "A Family
of Federal Standards for HF ALE Ra-
dios, QST, May 1992, pp 73-76 .

Smith, P.C ., Wortendyke, D .R .,
Redding, C., and Ingram, W . J .,
"Interoperability Testing of FED-
STD-1045 HF Radios," RF Expo
West, Santa Clara, CA, February 5-
7, 1991, pp 119-126 .

Notes
'Certain commercial equipment and software
products are identified in this paper to ad-
equately describe the design of the experi-
ment. In no case does such identification
imply recommendation or endorsement by
NTIA, nor does it imply that the materials or
equipment identified are necessarily the
best available for the purpose .

2 Space Research Technologies, Inc, Attn : Mr
Laurence Rennie, 31255 Cedar Valley Dr,
Westlake Village, CA 91362, phone (818)
991-0693 .

	

DE



A s PC users upgrade to faster 386
and 486 computers their old
machines are often gathering

dust in closets . Who wants to use an old
4.77-MHz 8088-based PC with minimal
memory and a single floppy drive? You
can barely give them away at hamfests!
Yet, such computers make great plat-
forms for dedicated controllers for
equipment in the ham shack or other
electronic projects .

The bad news is that you are likely to
have to pay a lot more for an interface
board to connect to the outside world
than the computer itself is worth . For-
tunately, the computer probably al-
ready has a built-in interface that is
often overlooked . It is the line printer
interface port, commonly known as the
LPT port .

The LPT port has 12 bits of output
and 5 bits of input used for communi-
cating with a printer . Ham radio con-
testing software, such as K8CC's NA
and K1EA's CT, uses LPT ports for con-
trolling voice keyers and sending CW .
Some PC-based PROM programmers
also make use of LPT ports . With a
little imagination, you can use the port
to control your project . This article ex-
plains the LPT port, shows ways of us-

Simple and Inexpensive
PC Interfacing

3310 Bonnie Lane
Slinger, WI 53086
Email : ppvvpp@mixcom .co m (Internet)

The PC printer port provides a useful and easy
interface with the circuits described here .

Gary C . Sutcliffe, W9XT

ing the LPT I/O (input/output) lines,
and discusses programming the LPT
port in BASIC and C . Finally, I've pro-
vided a design and sample software for
a generic interface suitable for bench-
top experimentation .

The Hardware Side of the LPT
Table I lists the signals found at the

DB-25 connector of a standard LPT
port. The signals are all TTL voltage
levels, but the drive capability of the
outputs will vary from computer to
computer. Portable and laptop comput-
ers frequently have less drive capabil-
ity than desk-top units due to their
power conserving designs . Drive capa-
bility comes into play when long cables,
with their associated large stray ca-
pacitance, are used, so this may be a
consideration if the device is some dis-
tance from the computer .
When the port is connected to the

printer, each of the signals has a de-
fined purpose . But when you are con-
trolling something else, you can define
the signals to represent whatever you
want as long as you keep the inputs
and outputs straight . There are a
couple of things to keep in mind when
using a few of the signals ; they will be
discussed later when the software side
of the LPT port is covered .

Output Interfacing
If the device to be controlled has

Table 1 - LPT Port I/0 Pins

Outputs
Pin 1 :

	

STROBE
Pins 2-9 : Data bits 0-7
Pin 14 : AUTO LF
Pin 16 :

	

INIT
Pin 17 :

	

SLOT IN

Inputs
Pin 10 :

	

ACK
Pin 11 :

	

BUSY
Pin 12 :

	

PE
Pin 13 : SLOT
Pin 15: ERROR

Grounds
Pins 18-25

TTL-level inputs and outputs, it can
usually be connected directly to the
LPT port. But many applications will
require more drive power than the port
can supply, or switching voltages dif-
ferent from 5-V TTL levels . In some ap-
plications you will want to provide
isolation to protect the computer . Fig 1
shows some simple interface tech-
niques to accomplish this .

Fig 1A is an example using a transis-
tor to act as a switch for turning on a
load. The voltage and load currents can
be any reasonable values the transistor
can safely handle . The diode in the in-

November 1993 13



Load

4124

14 QEX

(B)

(C)

LPT Port

	

1488

	

Destination
Output

	

1489

	

(TTL Levels)

+V

Long Cable

+V

Fig 1-Output interface circuits .

put connector may not be needed in
some cases, but it ensures that the
transistor will turn off when the output
line goes low-to a few tenths of a volt .
If the load is inductive (such as a sole-
noid or a relay) the diode across the
load is needed to protect the transistor
from currents generated when the
transistor is switched off and the mag-
netic field of the coil collapses . Fig 113
is just a special case of Fig 1A, using a

+V
relay . The relay provides better isola-
tion than just a transistor .

Isolation can be provided by use of
an optoisolator, as shown in Fig 1C .
In this case, light from the LED
turns on the transistor built into the
optoisolator. Inexpensive optoisolators
can provide isolation of a thousand
volts or more. Optoisolators are also
available with TRIAC outputs that let
you switch ac voltages .

LPT ports were designed to drive a
printer located near the PC . The maxi-
mum recommended cable length is
often about 10 feet. The device you
want to control may be located much
further away . In this case, some sort of
driver IC may be in order . Fig 1D
shows an LPT port output signal using
an RS-232 driver to drive a long cable .
The RS-232 receiver at the far end has
a TTL output . You could use this to
drive one of the circuits in Figs 1A or 1B
to provide additional drive capability .

If the output changes state infre-
quently (say less than a few hundred
Hertz), this circuit should work fine for
cable lengths of several hundred feet or
more . Keep in mind that the circuit in
Fig 1D only uses RS-232 voltages
(±12V) and does not directly support
RS-232 serial data transmissions
(although it could do that with proper
software) .

Using the Inputs
Monitoring external signals is not

difficult. If the external device has
TTL-compatible outputs, they nor-
mally can be directly connected to the
LPT input pins . Switches will need a
pull-up resistor . Fig 2A shows a simple
method of detecting switch closures .
The LPT input pin will sense a logic 1
when the switch is open, and a logic 0
when it is closed .

As with outputs, there will be times
when you want to provide additional
isolation between the external device
and the computer. The optoisolator
again proves a good way to do this . Fig
2B shows one way. The resistor, R, is
chosen to limit the LED current to ac-
ceptable limits . Keep in mind that Fig
2B incurs a logical inversion. That
means if the signal driving the diode in
the optoisolator is high (a logical 1) the
input pin will detect a logical zero . You
could put an inverter between the
optoisolator and the input pin, but it is
cheaper and easier to account for the
inversion in your software .

If you need to monitor a signal from
a distance, you can use a circuit like
Fig 1D to use RS-232 signaling levels .
In this case, have your remote switch

(or whatever) drive the 1488 and con-
nect the 1489 receiver output to the
LPT port input pin .

The Software View of the LPT
The PC talks to the LPT port (and

other I/O devices, for that matter)
through registers . Registers are 8- or
16-bit locations in the peripheral de-
vice similar to bytes in main memory .
The 80x86 microprocessor family has a
range of 1, 10 locations separate from
main memory and uses special instruc-
tions to act upon these I/O registers .
LPT ports; have 8-bit registers, so
unless noted otherwise, from now on
registers will be assumed to be 8 bits .

Every I/O device has what is known
as a base address . The base address is
the address of the first register of the
device. Each additional register has an
address one higher (or two for 16-bit
registers) than the previous one .

For older PC and XT class machines
(especially those with monochrome
graphics adapters), the LPT port often
has a base address of 3BCh (the h
means the address is in hexadecimal,
or hex for short) . AT-class machines
usually have LPT1 at 378h, with LPT2
at 278h .
You can find out how many LPT

ports your PC has, and what their base
addresses are, by running the program
"FINDLPT.BAS" found in Listing 1 .
This program is written in BASIC, and
works with Microsoft GWBASIC and
QBASIC. lit may need some changes for
use with other BASIC dialects . When
you run the program, FINDLPT will
check the BIOS data area and print out

+5 V

CK4
(B)

Fig 2-Input interface circuits .

+5 V

LPT
Port
Input



Table 2 - LPT Register Definitions

Data Register - Base Address

Status Register - Base Address + 1

Bit 0: Undefined
Bit 1 : Undefined
Bit 2 : Undefined
Bit 3 : ERROR
Bit 4 : SLOT
Bit 5 : PE
Bit 6 : ACK
Bit 7 : BUSY

Input, Pin 15
Input, Pin 13
Input, Pin 12
Input, Pin 10
Input, Pin 11

Control Register - Base Address + 2

Bit 0 : STROBE - Output, Pin 1
Bit 1 : AUTO LF - Output, Pin 14
Bit 2 : INIT	 - Output, Pin 16
Bit 3: SCLT IN - Output, Pin 17
Bit 4 : Interrupt Enable, Internal
Bit 5: Undefined
Bit 6 : Undefined
Bit 7 : Undefined

the base addresses of the LPT ports it
has found .
The LPT port has 3 registers, as

shown in Table 2 . The table lists the
standard names for each of the defined
bits, but a detailed description of their
purpose will not be given here since you
can use them for pretty much anything
you want to for your project .

The first register (found at the base
address) is the data register . This is
simply the 8 data bits that normally
output the ASCII character to be
printed. The bit pattern you write to
this register will appear at output pins
2-9 and remain there until you write
something else to the register . If you
read the data register, you will get back
the last byte you wrote to it .

The next register is the status regis-
ter. Its address is the base address + 1 .
The bits in this register reflect the lev-
els on the input pins . The status regis-
ter is read-only, and is normally used
for keeping track of the printer's condi-
tion. Normally, the software will check
these bits and report situations like the
printer being off-line or out of paper .
Writing to this register has no effect .

Bits 0-2 of the status register are not
defined . They generally read as all 0's

or 1's depending on the make of the
computer. Any software you write
should not depend on them being in a
particular state .
Two bits in the status register de-

serve special mention . First, bit 7
(BUSY, from pin 11) is inverted . This
means that if the signal connected to
pin 11 is high (a logical 1), it will be a
zero when you read the status register .
The other special bit is bit 6, the ACK
signal from pin 10 . This signal will
cause an interrupt if the interrupt en-
able bit (to be described shortly) is set .

The final register is the control regis-
ter, which has an address equal to the
base address + 2 . This register is nor-
mally used to tell the printer to reset,
or to accept a new character to print,
etc. Bits 0-3 appear at the LPT port out-
put connector . Note that bits 0, 1, and 3
are inverted . If you write a 1 to one of
the inverted bits, the output pin will be
low, and vice versa . Bit 4 is the inter-
rupt enable bit. If you write a 1 to this
bit, and if pin 10 is low, it will generate
an interrupt to the PC . Reading the
control register will return what you
have previously written .

Many PCs implement the control reg-
ister bi-directionally, using TTL driv-
ers with open collector outputs . You
could use these bits for both inputs and
outputs, but I have come across at least
one PC clone that only implemented the
outputs . For compatibility reasons I
only use the control register for outputs .

Writing Software
Once you have connected the LPT

port to your external device, either di-
rectly or through additional circuitry
similar to that found in Figs 1 and 2, you
will have to write software to run it all .

There are two ways to write software
to control hardware . The first-and
normally the best-way is through the
operating system . With PCs this is usu-
ally accomplished through BIOS (Basic
Input/Output System) calls or loadable
device drivers. The BIOS contains spe-
cial low-level software routines found
in ROM that control and monitor the
hardware. I3IOS routines are accessed
through software interrupts . Device
drivers are loaded into RAM for use by
DOS and application programs . Video
and mouse drivers are common ex-
amples of these .

BIOS calls and device drivers are fine
if you are going to be using the PC's
hardware (disks, printer and serial
ports) in the manner it was normally in-
tended to be used . If you are doing some-
thing different, say controlling a re-
peater or antenna switching, these func-

tions are not likely to do precisely what
you want them to do. For example, when
you want to print a character, the proper
BIOS call will put the ASCII character
in the data register . It then writes a logi-
cal 1 to bit 0 (STROBE) of the control
register to tell the printer to accept the
new character, and finally, clears the
STROBE bit after a few microseconds .
But you may want to use the STROBE
bit in a different way, making the use of
BIOS calls impractical .

Device drivers could be written to
control your antenna switching system,
but writing them is an involved proce-
dure and is of no particular benefit to a
stand-alone control program .

The other way to use the LPT port is
to directly access the registers in ques-
tion . The advantage of this method is
that it allows you to control the regis-
ter bits exactly as you wish . The danger
is that you can end up with problems if
you accidentally cause an interrupt or
switch between using the LPT port for
controlling your device and printing
without rebooting first . But you should
not have any problems if you use care .

This article covers programming the
hardware registers . Using interrupts
will not be discussed . Interrupt-driven
software is more complex. The books
mentioned in the reference section are
a good place to start if you are inter-
ested in digging into device drivers and
interrupts .
BASIC and C have functions for

reading and writing directly to the reg-
isters of boards plugged into the expan-
sion slots . These may be unfamiliar to
programmers who normally write ap-
plication programs that do not directly
deal with the hardware .

BASIC uses the INP and OUT func-
tions to read and write bytes to and
from the I/O registers . These are simi-
lar to PEEK and POKE, but deal with
I/O registers as opposed to main mem-
ory. BASIC is not the best language for
controlling hardware since it is cum-
bersome in its handling of individual
bits. It is discussed here because nearly
every PC has BASIC and nearly every
programmer has experience with it .
Standard C does not include func-

tions to communicate with PC I/O ad-
dresses since the language was de-
signed to be machine independent.
Software companies who write compil-
ers include their own extensions to
handle machine-specific operations .
Unfortunately, there is no standard for
I/O functions in the various dialects of
C for the PC, so consult your compiler
manual to find what your compiler
uses. The C examples included in this

November 1993 15

Bit 0 : Data bit 0 - Output, pin 2
Bit 1 : Data bit 1 - Output, pin 3
Bit 2 : Data bit 2 - Output, pin 4
Bit 3 : Data bit 3 - Output, pin 5
Bit 4 : Data bit 4 - Output, pin 6
Bit 5 : Data bit 5 - Output, pin 7
Bit 6 : Data bit 6 - Output, pin 8
Bit 7 : Data bit 7 - Output, pin 9



Fig 3-Schematic diagram of the LPT Expander circuit .
J2

16 QEX

LS4 t 13

J1
DB25

4

m

G1

G2A

G2B

Y3

Y4

Y5

Y6

Y7

LCO

LC1

LC2
R1
10 k

LC3

2 14

13

2

11

10

9

8

1

U3
74LS374

J3

1

DO

	

3

	

2

5

6

9

12

15

16

19

1

2
--~ 1 3-
4
--~ 14-4

6
--~ 14-5

8
14-6

11
15-3

13

15

	

15-4

-~ IS-5
17

15-6

Z 1	? 5EL4

	 19 t SEL5

01-0

01-1

01-2

01-3

01-4

01-5

01-6

01-7

NC

4 NC

NC

NC
11

	

`
13-3

13
13-4

15
13-5

17
-~ 13-6

1
~ Pul

;)
9

	

SEL3

? 16-3
4

16-4

16-5
8

16-6
11

17-3
3

17-4
15

17-5
17

	

17-6

1)--r SEL6

12-~ 02-4
15

02-5
16

02-6
9

	

02-7

SEL7

U4
74LS244

DO
00

	

QO
D1 4

D2 7
Dl

	

Q1

D2

	

02
D3 8

D3

	

03
D4 13

D4

	

Q4
D5 14

05

	

Q5
D6 17

D6

	

06
D7 18

D7

	

07

CLK2
11

DC

CLK

U8
74LS244

NC l
18

1Y1

	

1A1
16

NC 1Y2

	

1A2
14

NC 1Y3

	

1A3
12

NC 1Y4

	

1A4
LS3 9

2Y1

	

2A1
LS4 7

/
2Y2

	

2A2
LS5 5

/
2Y3

	

2A3
LS6 3

2Y4

	

2A4/
/ ? LS3 1G

/

	

LS4 2G

~-~ LS5
U7

/-q LS6 74LS244

LS3 18

l yl
l Al

/ LS4 16
1Y2 1A2

/ LS5 14
1 Y3 1A3

/ LS6 12

/
1Y4 1A4

LS3 9
2Y1 2A1

/ LS4 7
2Y2 2A2

/ LS5 5
2Y3 2A3

/ LS6 3
2Y4 2A4

1G

2G

U1
74LS244

LDO
Al l yl

18

	

DO ^ DO

LD1 4 16

	

D Dl
/ A2 1Y2

LD2 6 14

	

D2 ^ D2
/

1A3 1Y3
LD3 8 12

	

D3 ^ D3
/

A4 1Y4
LD4 11 9

	

D4_^ D4
2A 2Y

/ LD5 13 7

	

D5 ^ D5
/ 2A2 2Y2

LD6 15 5

	

D6 D6
/ 2A3 2Y3

LD7 17
2A4 2Y4

3

	

D7 ^ D7

1
1G D

19
2G CLKO

CLK1
11

U6
74LS244

LS3 18
l yl 1 A1

LS4 16
/

1Y2 tA2
LS5 14

/ 1Y3 1A3
LS6 12

1Y4 1A4
/ LS3 9

2Y1 2A1
LS4 7

2Y2 2A2
LS5 5

2Y3 2A3
LS6 3

2Y4 2A4

1G

2G

14

LDO
LCO

15
j FC-1

LD1 3 16
LS3

LD2 4 17
LC2

--
LD3 5 18

FC 3

LD4 6 19

LD5 7 20

LD6 8 21

LD7 9 22

10 23
LS6

11 24
LS7

LS5
12 25

J4

1
13-3

<

2
13-4 t

	

<
3

13-5
<

13-6 I

	

4 <

5
<

J5

1
02-Oa

<

2
02-Ob <

02-la

	

3 <

4
02-1b

<

5
02-2a <

6
02-2b

<

02-3a

	

7 <

02-3b

	

8 <

R22

5

	

1k

6

9

U2
74LS374

DO 00 00-0

D 01 00-1

D2 Q26 00-2
9

D3 03 00-3
12

D4 04 ~-j 00-4
15

D5 05 00-5

D6 06
16

	

006-
19

D7 Q7 00-7

OC
1

CLK m



+5 V

+5 V

+5 V

+5 V

GND +5 V

J6
	 Y v

c1
	 )I+

10 fuF
C2

•	)

0 .1 µF

C3

•

	

)I
0 .1 µF
C4

•

	

)I
0 .1 µF

C5

K3

+5 V

Fig 4-LPT Expander parts list .

article use Borland Turbo C which uses
the inportb() and outportbO functions
for reading and writing bytes to and
from I/O ports .

Using the I/O functions to communi-
cate with an LPT port is pretty straight
forward once you know the base ad-
dress of your port . You just use the cor-
rect functions to read bits from the sta-
tus register and to write bits to the
data and control registers. Here are a
few tips to keep you out of trouble :
1) Never allow a 1 to be written to bit

4 of the control register unless you
have included software to handle
interrupts .

2) Keep in mind that the input bits
you read from the status register
appear in locations 3-7, not starting
at bit 0 .

3) Never depend on an undefined bit
to be in a certain state . Likewise, it
is best to choose comparison strate-
gies that can't be affected by any
bits other than the particular bits of
interest .

4) Remember that switch contacts
bounce and can create a series of 1's
and 0's when the switch is toggled .
It is good practice to put a 50-milli-
second delay in your software after
you detect a switch change to
handle de-bouncing .

02-2b 5) Your computer operates in the
world of microseconds or faster . Re-
lays and other electo-mechanical
devices operate in the world of tens
or hundreds of milliseconds . Don't
set a bit to turn on a relay and ex-
pect it to be closed by the next com-
puter instruction!

6) Be sure you keep track of which in-
puts and outputs are inverted be-
tween the registers and pins .

The LPT Expander
I have used LPT ports to interface

PCs to the outside world on several oc-

casions in both my electronic consult-
ing business and for playing around
with stuff at home and in the shack . I
thought it would be nice to have a little
generic interface that would make it
easy to play with controlling things on
the bench without having to go through
the trouble of building new interface
circuits every time . I also wanted to in-
crease the number of inputs and out-
puts from the number available on the
LPT . These considerations gave rise to
the LPT Expander, shown in Fig 3 .

The LPT port connects to J1 through
a 25-pin cable . The signals from the
port have been renamed to make it
easy to know where they come from . All
the signals that are from the LPT data
register start with LD . Control register
signals start with LC, and status regis-
ter signals start with LS . The number
following the signal name represents
the bit in the corresponding register . If
a signal takes the form of LXn, it
means there is a logical inversion be-
tween the register in the LPT port and
the connector pin .

The signals from the data register go
through U1, which acts as a buffer, and
drive U2-U4 . These are 8-bit registers
that latch the data, expanding the out-
puts from 8 to 24 bits . The outputs of
these ICs are labeled On-m, where n is
the output port number (0-2) and m is
the corresponding bit number in the
data register . Bits 0-3 in U4 (port 2)
drive relays to provide isolated switch
closures . The other outputs go to con-
nectors as TTL-level signals .
The input. signals that ultimately

find their way to the status register go
through ICs U6-U8. These are three-
state drivers that allow the selection of
20 input signals, 4 bits at a time . The
input signals from the connectors are
numbered lit-m, where again n is the
port number (3-7), and m is the corre-
sponding bit in the status register .

November 1993 17

C1

	

10µF, 16 V min
C2-C7

	

0.1 tF, 16 V min, 20%
D1-D4

	

1 N4001
J1

	

DB-25 right angle connector
J2,J3

	

26-pin right angle PC-mount ribbon cable connector
J4

	

5-position screw terminal block
J5

	

8-position screw terminal block
K1-K4

	

5-V SPST DIP relay, EAC D1A05H or similar . Note some DIP
relays may have different pin outs .

R1

	

10 k, 5%, 1/4 watt
R2-R5

	

1 k, 5%, 1 /4 watt
Q1-Q4

	

2N2222 or similar
1 .111,1_16-1-18 74LS244
U2-U4

	

74LS374
U5

	

74LS138



The control register bits all go to U5, which acts as a
decoder to select which set of outputs or inputs to use . Bits
0-2 form a binary number to select the desired output port
(0-2) or input port (3-7) .
Note that bits 0 and 1 from the control register are in-

verted but bit 2 is not . This means that if you write a 000
bit pattern in the control register, it will appear at the in-
put pins of U5 as 011 . Rather than trying to remember to
keep this in mind every time you want to write the control
register bits, the outputs of U5 are wired so that when you
write the number 0 to bits 0-2 you get CLKO (port 0), when
you write the number 5, you get SEL5 (port 5), etc .
A problem can occur when using a simple decoder for

generating clocks for latches as is done for U2-U4 : switch-
ing glitches can cause the wrong output latch to clock. This
is prevented by using control register bit 3 to enable the
outputs of U5 . This makes the software to drive the LPT
Expander a bit more complex, but an extra instruction or
two is less expensive than more complex hardware .
The output connectors take two forms on the unit I built .

J4 and J5 are screw-type terminal blocks . They have the four
relay outputs and four TTL-level inputs . This type of connec-
tor is used to make it easy to hook up simple circuits . J2 and
J3 have more TTL inputs and outputs . J2 has 12 outputs and

8 inputs, while J3 has 8 outputs and 12 inputs . These are
used where more complex interfacing is needed, and the ex-
tra trouble of making a ribbon cable is worthwhile .
A couple of months after I build something like the LPT

Expander I usually forget exactly how to use it . This project
was designed to be easy to figure out what is going on and
use . Along with naming the I/O signals to give an immedi-
ate indication of the LPT port bit and register they are as-
sociated with, I wrote special software routines to make it
easy to read and write to the outside world-without rein-

/ • CLPTE% .C - This program contains C functions for controlling the
/" LPT Expander . The

I
li"" function only show a ampler of the

/ • functions that talk to the LPT Expander through[ the LPT port .

/" This program w

	

ritten with Borland's Turbo C . Some changes
/" may be needed if another compiler

	

.ed.
/ • July 21, 1993 - Gary C . Sutcliffe WOXT
/* .** •* ****** •* ** ." . .* •* . •* •* • • • • • . *	 .* .

#include odos .ho

#define LPT1 0,378

	

/ •hare address for LPTI - may need to be changed */
/* to 0x3BC o

	

xT class ma nines •/#define LPT2 0 .278

	

/* May need to ben changed on some PCs •/

void outBIFI( ;unsigned char InBIF ;) ;unsigned char In
BIF

void main ; ;
l
unsigned char indat ;

	

/" input data read from external device `/
unsigned char o,td,t ; / • output data to write to external demure •/

/* The following ate example ca11s to the functions shown later `/

out Ian = 0x05 ;

	

/-sample output data-/

OutBIF(LPT1,2,outdat) ;

indat = InBIF(LPT1,3) ; / •read 4 bits of input from Expander port 3 •/

/'Note bits a e in location 7-fi •/
print£(^VnAneorc 3 snows data : NOh',indac) ;

indat = indat >0 3 ;

	

/-This shifts them so the low bit is a bit 0 •/
/* ,

	

se i

	

none useful to operate on them ^/
/* this a nay . •/ s

printf("\nThis shows Port 3 data shifted d owr. to hit 0 : iXh",indat) ;

indat - InBIFD(LPT1,4) ; /-read the bits 11 Expander ports 4 & 5 and get `/
/*them ae , 1-911 B bit byte . •/

pruntf( ° VnAnThia is tomhined datatro" port, 4 h 5 : x2XhVnAn ,inaat) ;

/-lit, OF), pattern to LPT Expander port 2*/
/^ This example turns on relays K1 & K3 on the Expand-/

/^ end of OutBIF •/

unsigned char InnIFD(int base, char port)(

u signed char indat ;

	

/*input ; data byte-/
signed char tmp ;

	

/` temporafy data •/
rot creg ;

	

/* control reg, used to select ports-/
-eg = base t 2 ;

	

/-set to proper address-/

if(port != 4 66 port != G)return(0) ; /-bug out rf wrong port selected-/
outportb(creg,port) ;

	

/ •select first port •/
outportb(creg,port

	

0x8) ;

	

/ •enable the port •/
/ • read the data ^

/ •cambin= the i Ibles t .+

	

n the byte^/

tmp - inportb(base+l) ;
outportb(creg,port) ;
top = If, & 0x78 ;
indat = _P Oo 3 ;
port
outportb)creg,port) ;
outportb(creg,port

1
0x8) ;

top = inportb(basetl) ;
outportb)creg,port) ;
tmp = tmp 6 0x78 ;
top = tmp cc 1
inch[

	

i,dat

	

tmp ;
return(indat) ;
}

	

,

	

end of InBIFO •/

Listing 1 - Program to find LPT port addresses .

Listing 2 - C program to control the LPT Expander .

18 QEX

-

10 REM FINDLPT .BAS - THIS PROGRAM CHECKS THE BIOS DATA AREAS TO FIND WHAT
20 REM LPT PORTS DOS HAS FOUND .
30 REM GARY C . SUTCLIFFE, W9XT, JUNE 1993
40 DEF SEG = &H40

	

'DEFINE SEGMENT
50 PRINT

" DOS REPORTS LPT PORTS FOUND60 PRINT AT THE FOLLOWING I/O ADDRESSES :
70 PRINT
80 FOR I = 1 TO 3
90 X = PEEK(I + I + 6) 'LOW BYTE OF I/O ADDRESS
100 Y = PEEK(I + I + 7) 'HIGH BYTE OF I/O ADDRESS
110 IF Y - 0 THEN 160 'IF Y =0, NO MORE LPTS
120 X$ = HEX $ (X) 'CONVERT BYTES TO HEX STRING
130 Y$ = HEX$(Y)
140 PRINT "

	

LPT" ; I, Y$ ; X$
150 NEXT I
160 PRINT
170 END

( n
/*	 /

signed char I5BIF(Lnt base, char port)

signed char indat ;

	

put data byte •/
int creg ;

	

/ • control reg,

	

as, o .elect poet ^/
c - = base

	

2 ;

	

/-set t, proper addnxss •/

outportb(creq,port) ;

	

/^select port •/
outpertb)creg,port J 0x8) ;

	

/ •enable the port^/
indat = rnportb(basetl) ;

	

/ • reed the data •/outpertb(creq,port) ; /-deselect the Port'/
indat = indat 6

0 .,8
;

	

/* blank unused bits (only bits 3-6 used)'/
return(indat) ;
)

	

/* end of I0BIF •/

/` IOBIFD O - This function i

	

red to read two 4 bit input ports and t •` /
/` ombine them to form a single B bit byte of input data .

	

"/

/` ARGUMENTS : base - base address of the desired LP port ./
4 or 6 other values will1 ./Port - l

re
ow

t
es

tn
a
v
rt
lidd
umber

ta)ur i
P
naa

/* RETURNS : data byte from ,alerted input ports
/* CALLS : u

	

outportbl) S inportb, found i <d0s .h •
/ • NOTES : Only ports 111 6 should be used . " Zeros a ill be returned if
/ •

	

another value '
.
used .

/*

	

Port, 4 6 6 are the low nobble, 5 6 7 are high

) /* end of main •/

/ • • • " • • . * .* .*	*	* . •* •* *****	* .* .*** .* . . .* .** . ., */
/" OutBIFO - This function i used to write a byte of data to one of the •/
/* three output ports of the LPT Expander .

	

*/

/ ARGUMENTS : base - base address of the desired LP port

	

•/

port - port number (0-2)

	

•1
/ •

	

data - data to write

	

•/

/ • RETURNS : void

	

•/
/ • CALLS : uses outportbO, faund in 0005 .h>

	

*/
------------------------------- 	 /

-- OutRlF(int base, ,'hat port, -,"-d :'hat darn!

rey :

	

/' ' !ntu t aq, ,uad to =alai[ ports •/

outportb(base,data) ;

	

/ •p ut the data ,o the LPT UA'cA keg-;

g = base

	

L ;

outportb(crey,portl ;

	

/ •s elect the proper output F .'.tt (0 - -)^/
u,portb(creg,part

	

OslO) ;

	

Lock t

	

•/
outportb(creg, port) ;

	

/*remove the Lack

/ •deselect the port •/
/ • blank u [sed bits (only bits 3-6 used) •/
/ • sate low nibhie`/

input port •//^ c

	

e the - .t
/ • elec_

	

and pot •/
nable the pot `/ t

/ • read the data [ •/
/ •deselect_ the port^/
/ • blank 1

	

sed bite. (only hits l-6 used) •/
/ •

	

ae bigh nibble to co

	

posi , 1 •/

/- 1"11() - This " funrtio • " " • • • sed •t o * read •1 1bite ^of ^ data from " one * of """ */
Ue*/ / • the five input ports of theLPT Expander .

*/

/* ARGUMENTS : base - base address of the desired 6F port
/ •

	

port - input port number (J- .)
	 /

	 /
*/ /" RETURNS : data byte from selected Input port

/" CALLS : u

	

o,tportbO 6 inportb, found i adcs .h •
/" NOTES : Only bits 3-6 have data . The oUrer burs are . .e ro



Listing 3 - BASIC program to control the LPT Expander .

venting the wheel for each application .
The LPT Expander design shown in Fig 3 is a good starting

point for experimenting with parallel computer interfacing .
Use the design as a starting point for your own interface,
but don't be afraid to make changes to the design for your
needs. For example, you may want to change the numbers
of inputs or outputs, or include some of
the interfacing techniques shown in
Fig 1 or 2 . You may also want to use dif-
ferent connectors . Some of the parts
used were designed in largely because
they were already in my junk box,
although all of them are readily avail-
able through mail-order sources .

Listings 2 and 3 include some basic
routines that can be used with the LPT
Expander . They show the basic opera-
tions needed to control it, but the big-
gest advantage is they can be reused for
the next project without having to go
back and look at the circuit to figure out
what has to be done to control the
thing. Listing 2 is in the C language,
and Listing 3 is in BASIC .

Summary
Using an old PC to control external

devices is not all that difficult or expen-
sive if you understand a bit about pro-
gramming and interfacing techniques .
Give that old clunker PC of yours a sec-
ond life!

References
Jourdain, R., Progranimer :s Problem Solver, New York,

Brady Publishing, 1992 .
Lai, R.S ., Writing MS-DOS Device Drivers, New York,

Addison-Wesley, 1987 .

	

00

10 REM BLPTEX .BAS - THIS PROGRAM GIVES SOME EXAMPLES ON CONTROLLING THE
20 REM LPT EXPANDER IN BASIC . THIS PROGRAM WAS WRITTEN WITH MICROSOFT
30 REM GWBASIC . SOME CHANGES MIGHT BE NEEDED IF ANOTHER BASIC
40 REM INTERPRETER/COMPILER IS USED .
50 REM JULY 1993 - GARY C . SUTCLIFFE W9XT
60 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70 B • 888 'BASE ADP, 888 - 378H (LPT1) ; USE 632 FOR 278H, 956 FOR 3BCH
60 P - 2 'BLPTIF PORT, 0-2 ARE OUTPUTS, 3-7 ARE INPUTS
90 REM - SAMPLE OPERATIONS
100 D - 15 'DATA TO WRITE
110 GOSUB 500

	

'WRITE DATA D TO PORT P ON LPT WITH BASE ADR B
120 P - 3

	

'SELECT INPUT PORT 3
D130 GOSUB 600

	

'READ INPUT PORT 3 AND SAVE IN VARIABLE
140 D5 •

	

HEXS(D) 'CONVERT IT TO ITS HEX VALUE
- ;DS 'PRINT150 PRINT - BLPTIP PORT - ;P ; - READS THE HEX VALUE IT OUT

160 P - 6

	

'CHANGE TO INPUT PoRT 6
170 GOSUB 700 ' READ INPUT PORTS 6 & 7 AS A COMBINED 8 BIT VALUE
180 DS - HEXS(D)

- )P; - 6 - :P .1 ; - READ A COMBINED HEX VALUEPORTS190 PRINT - BLPTIP OF ' ;DS
200 END ' OF EXAMPLES
500 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
510 REM OUTPUT DATA D TO PORT P ON LPT WITH BASE ADDRESS B
515 OUT B,D 'SEND OUT DATA TO THE LPT DATA REG
520 OUT :.2:P 'SELECT THE PROPER LPT EXPANDER OUTPUT PORT
530 OUT B .2,P OR 8 'CLOCK THE DATA
540 OUT B .2,P 'REMOVE THE CLOCK
550 RETURN 'END OF SUBROUTINE TO WRITE TO LPT EXPANDER OUTPUT PORT
600 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

610 REM INPUT DATA FROM PORT P OF LPT EXPANDER CONNECTED TO LPT AT BASE ADDR B
620 REM NOTE THAT ONLY BITS 3-6 ARE USED . OTHER BITS ARE SET • 0
630 OUT B.2 ,P 'SELECT THE RIGHT INPUT PORT ON LPT EXPANDER
640 OUT 8+2,P OR 8 'ENABLE SELECTED PORT
650 D - INP (B.1) 'GET THE DATA

INPUT660 OUT B .2,P 'DISABLE SELECTED PORT
665 D - D AND 120 'BLANK UNUSED BITS
670 RETURN 'END OF SUBROUTINE TO READ FROM LPT EXPANDER INPUT PORT
700 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
710 REM INPUT 6 BITS FROM TWO CONSECUTIVE LPT EXPANDER PORTS (ONLY 4-5 OR
720 REM 6-7) .

'SELECT PORT OP LOW 4 BITR730 OUT B .2,P
740 OUT 8 .2,(P OR 8) 'ENABLE PORT
750 D . INP(B .1) 'GET LOW 4 BITS
760 OUT B .2,P 'DISABLE SELECTED INPUT PORT
770 D D AND 120 'BLANK UNUSED BITS
780 D - D / 8 'SAME AS SHIFTING 3 BIT POSITIONS TO RIGHT
790 P - P . 1 'NOW USE NEXT HIGHER PORT
800 OUT B .2,P 'SELECT THE PORT WITH THE HIGH NIBBLE
810 OUT B .2, P OR 8 'ENABLE THAT PORT
820 T - INP(B .1) 'GET THE DATA AND SAVE IN T
830 OUT B .2,P 'DE-SELECT THE PORT
840 T - T AND 120 'BLANK UNUSED BITS
850 T - T • 2 'SHIFT 1 BIT POSITION TO LEFT
B60 D - T OR D 'COMBINE UPPPER AND LOWER BITS
870 P - P - 1 'RETURN PORT NUMBER TO ORIGINAL STATE JUST IN CASE . . .
800 RETURN



Designing a High-Performance
13-cm Preamp
Al Ward, WB5LUA, has designed

some fine preamps for 13 cm using
PHEMT devices made by Hewlett
Packard . 1 He has wrung those devices
just about dry, so I decided to see
whether I could do any better with
NEC's high-performance PHEMTs . To
do that, I had to forget any idea of a no-
tune design. (If you want a no-tune
preamp, build Al's ATF-10135 preamp
in the 1993 ARRL Handbook, page 32-
22 .) If you are looking for the ultimate
preamp and have the ability and re-
sources to tweak a circuit, you might
find this design useful .

Design Strategy
The first thing I did was look at the

losses of preamps such as Al's PHEMT
design. This uses a series capacitor and
series inductor at the input . One of the
things Al did to reduce the input loss
was to elevate the inductor above the
board to reduce dielectric loss . But
there is a weak area : the input capa-
citor. Look at Table 1, which shows the
Q of several values of ATC 100A chip
capacitors at various frequencies .
Notice how bad the Q gets at micro-
waves . I've since heard that better
chip capacitors are available-except
that they can't be soldered in like ordi-
nary capacitors, since they are really
meant to be attached with lead-bonding
equipment. Few amateurs have access
to such exotic equipment ; I know I
don't!
Anyway, I decided to see what I could

20 QEX

RF

Zack Lau, KH6CP/1

do to eliminate the lossy input capaci-
tor. The elegant solution is to ground
the gate and source-bias the device .
Source biasing is simple and reliable .
Its disadvantages, supposedly, are de-
creased broadband stability and worse
noise figure. But is this really true? As
many designers have discovered, for
many devices there are specific
amounts of source inductance that
actually enhance stability . Perhaps
the source-biasing capacitor can add
just enough stray inductance to stabi-
lize the device . As for the reportedly
worse noise figure, I think it stems
from poor source bypassing. In the
design presented here, the increase
in noise figure due to source losses is
more than offset by the improvement in
input loss . If you just add source by-
passing and don't improve the input
circuit, you can expect results to get
worse .
I found that 100-pF ATC 100A chip

capacitors do a pretty good job of source
bypassing NEC 32684A PHEMTs . You
might experiment to see if there is ac-
tually a better source bypass ; I merely
investigated the short list of candidates
I had on hand . (For some reason, I al-
ways seem to be designing preamps a
few days before a noise figure contest-
when there isn't enough time to order
more or better parts!) There might also
be a better electrical model for the

Table 1-ATC 100A Chip Capacitor 0

transistor leads . The device sits on two
chip caps whose center-to-center dis-
tance is about 140 mils . Is the lead
length to model the part to the edge, or
all the wail to the center of the chip ca-
pacitor? Or is it something else? I'm not
kidding! The difference is quite signifi-
cant with lead lengths on the order of
15 mils and chip capacitors 55 mils
wide .
As both Jim Davey, WA8NLC, and

Randy Rhea, N4HI, pointed out at the
1993 Microwave Update just held in
Atlanta, you probably want all of the
source-bypass capacitors to be of the
same type . Otherwise, you may get par-
allel resonances that severely degrade
the bypassing at certain frequencies .
Of course, this effect probably isn't too
bad given the lousy Q these capacitors
have at microwaves! Still, it may be an
effect worth considering, especially if
you are trying to find out why your
preamp doesn't work right . In any case,
I don't recommend installing 6 or 7
source-bypass capacitors in hopes of
blindly improving this design unless
you have a good way of avoiding such
problems . A good computer program,
coupled with accurate device models, is
probably the only way to handle such
complicated situations . I don't have ac-
curate device models because I don't
have a microwave network analyzer for
such measurements. Instead, I often
estimate parasitics based on the physi-
cal dimensions of the part, with correc-
tions based on circuit performance or
educated guessing.
Finally, I decided to make the

preamp unconditionally stable under
all loads, although I suppose you might
want to compromise on this if you just
wanted to win a noise figure contest
and knew what mixer your preamp
would be tested with . I planned to
eventually use one of these with a
mode-S converter, so I decided to build
something; useful . Resistor RD1 does a
fine job of obtaining unconditional sta-

1 A. Ward, "PHEMT Low Noise Amplifiers for

Capacitance

(pf)

Frequency

(MHz)

Q

2304 MHz and 3456 MHz," Proceedings of 470 150 150
Microwave Update '92, published by the 100 1000 18ARRL, pp 148-152 .

10 2304 14
10 3456 7

225 Main Street 10 5760 3
Newington, CT 06111 1 5760 11
email : zlau@arrl .org (Internet) 1 10368 4



bility over a wide frequency range . I
thought it might also reduce the
preamp's sensitivity to variations in
the output load, but the improvement
is small . Single-stage preamps will of-
ten be quite load sensitive, particularly
as you get close to the maximum useful
frequency of the device. This one is no
exception .

Construction
The key is the input circuit : it has to

be as low-loss as possible. I built two of
these preamps, one with 1-inch-high
walls and another with '/-inch walls .
The one with 1-inch walls is pretty
much insensitive to attachment of a
cover, with the gain being affected by
only a few hundredths of a dB . On the
other hand, the one with '/-inch walls
will occasionally measure a tenth or
two higher than normal when a cover is
installed but not tightly attached to the
walls with screws, despite some micro-
wave absorber material attached to the
cover. I suspect that the inductor loops
just don't have enough room in the
smaller preamp, and the cover inter-
acts with the loops . The two input loops
are made from 32-gauge silver-plated
solid copper wire . This is actually a
single strand taken from some 20-
gauge Teflon hook-up wire . Ordinary
copper should do as well, but I figured
that every little bit helps! The SMA

IM

B

ve

131

Imo- 1 rich

J7

Fig 1-Schematic of the 2 .3- to 2 .45-GHz preamplifier with measured dc voltages shown at key points .

1

	

Solder edges to 1' bras, Culls

m

7 41 V
y Ran lead
through board .

Fig 2-Parts-placement diagram for the 13-cm preamplifier . A mirror image of the
board I etched should also work just fine .

Fig 3-Etching pattern for the 13-cm preamplifier output network . (A Postscript image
file is available from the ARRL BBS, 203 666-0578, or via Internet on ftp.cs .buffalo.ed u
in the /pub/ham-radio directory .)

November 1993 21

C1, C2-100-pF ATC 100A chip capaci- D1-1 N4001 reverse polarity protection RD1-75-t2 chip resistor .
tors. Substitution not recommended . diode . This is useful in noise figure UI-LM317L adjustable three-terminal

C3-1000-pF chip capacitor. contests when you hook up the power regulator IC .
C4-10-pF chip capacitor . supply backwards! W1, W2-wire loops made from no . 32
C7-0.02-pF feedthrough capacitor or JS-SMA connector with captivated silver-plated copper wire. See Fig 4 for

EMI filter . Value not critical : anything center contact . a precise description .
from 100 pF to 0 .1 pF should work fine . J2-SMA connector . 01-NEC 32864A PHEMT .



*2304 HEMT preamp using the NEC 32684A

	

slc 74 76 1=0 .3nh c=10pf q=4 f=6ghz
*bias 2 volts at 10 mA

	

trl 76 78 w=w50 p=300mil gull

LL : 15MIL
* source lead length

	

amp : 2por 1 78

W50 :9OMIL
* 50 ohm line thickness

	

end

WBIAS:19MIL
•

	

bias line width

PBIAS :875MIL
•

	

bias line length--roughly quarter wavelength

WOUT :35 .2662MIL
•

	

output matching line width

POUT :528 .111MIL
•

	

output matching line length

WOS :16 .6553MIL
POs :27 .8347MIL
•

	

matching stub

BLK

WIRE 1 0

	

D=8MIL L=250MIL S= 200MIL SUB2
WIRE 1 4

	

D=8MIL L=?322 .574MIL? R=1 .59 S=?97 .5077MIL? SUB2

•

	

input matching network--wire loops
•

	

L is the length of wire, S is the separation between wire
•

	

ends . Height of ends is 55 mils . Silver wire is modeled .

two 4 39 300 NE326
trl 39 40

	

w=20mil p=2omil subl

srl 40 44

	

r=75 1=2nh

*added resistor for stability at a minor loss

22 QEX

trl 300 310 w=20mil p=ll subl
trl 300 320 w=20mil p=ll subl
slc 310 0

	

1=0 .28nh c=100pf q=1 .26 f=2 .3ghz
slc 320 0

	

1=0 .28nh c=l0opf q=1 .26 f=2 .3ghz
srl 320 0

	

r=10 1=30nh

*source biased FET .

trl 44 50

	

w=wout p=pout subl
cross 50 60 72 150 wl=wout w2=wos w3=w50 w4=wbias sub! .
ost

	

60 w=wos p=pos subl

trl

	

150 152 w=wbias p=pbias subl
tee

	

160 170 152 w1=50mil w2=50mil w3=wbias subl
trl

	

160 162 w=50mi1 p=20mi1 subl
srl

	

162 164 r=51 1=2nh
trl

	

164 166 w=50mil p=5omil subl
slc

	

166 0

	

1=0 .4nh c=1000pf
ost

	

170

	

w=50mLl p=pbias subl

*output biasing

trI 72 74 w=w50 p=20mil subl

Fig 4-Microwave Harmonica input file .

connector has a captivated center con-
tact. This is important since the con-
tact isn't attached to anything rigid . I
increased the diameter of the center
pin with a 0.27-inch length Of :/32 -inch
diameter brass tubing to decrease the
impedance of the input line, making it
a little closer to 50 52. I could have
just moved the pin closer to ground, but
this would have made accidentally
shorting the input to ground that much
easier . The gap between the center pin

in gain

and the ground plane looks to be about
55 mils .

The entire input network, transistor,
and most of the drain resistor are
built over a copper ground plane (a
piece of double sided, unetched circuit
board) . The drain resistor connects
from the transistor to the printed-
circuit board output network, which is
on V32 - inch Teflon board (with a die-
lectric constant of 2 .55) that is soldered
to the unetched board . The Teflon

subl :ms h=30mil er=2 .2 metl=cu .7mil rgh=75uin tand=0 .0011

•

	

output substrate is 30 mil 5880 Duroid or equivalent

sub2 :ms h=55mil er=1 metl=au .7mil

•

	

input substrate is low loss "air microstrip" stripline?

end

board has a "U" cut into it to accom-
modate the PHEMT and input net-
work . A lead is brought through the
Teflon board for the 2 .5-volt supply,
which is built on the underside of the
preamp .

The preamp was adjusted for lowest
noise figure by varying the two input
coils with a pair of stainless tweezers
and a soldering iron . Yeah, I know
it's not the easiest technique . A trim-
mer capacitor might make things

freq
2304mhz 2400mhz 2447mhz
step 0.1ghz lghz .2ghz
step lghz 20ghz lghz

end

opt
*amp mall .1 It
amp ms22 .1 It
amp of .3db It
end
data
NE326 :S
*NE326 NEC32684A 2V, lOmA

.lghz .999

	

-2 .3 6 .402 178 . .002 88 .9 .48 -2
.2ghz .999

	

-4

	

6 .366 176 .1 .003 88 .6 .48 -2 .9
.5ghz .998

	

-9 .6 6 .384 17C .6 .007 87 .6 .48 -5 .9
lghz

	

.986 -18 .9 6 .298 161 .014 77 .6 .476 -11 .5
2ghz

	

.948 -36 .2 6 .108 143 .6 .026 72 .2 .467 -22
3ghz

	

.894 -52 .3 5 .792 127 .1 .038 62 .449 -31 .2
4ghz

	

.833 -67 .8 5 .404 112 .1 .049 55 .8 .436 -40 .4
5ghz

	

.766 -82 .1 5 .063 97 .6 .058 49 .4 .413 -49 .2
6ghz

	

.703 -95 .8 4 .713 84 .3 .067 44 .1 .394 -58 .3
7ghz

	

.653 -108 .6 4 .385 71 .3 .074 38 .3 .382 -67 .4
8ghz

	

.607 -119 .6 4 .112 59 .8 .082 33 .8 .374 -74 .9
9ghz

	

.569 -130 .6 3 .861 48 .6 .09 28 .3 .375 -83 .3
l0ghz

	

.529 -141 .4 3 .686 37 .5 .097 23 .4 .378 -90 .8
llghz

	

.487 -153 .2 3 .517 26 .107 18 .4 .374 -99 .4
12ghz

	

.554 -166

	

3 .376 14 .8 .114 11 .8 .365 -108
13ghz .428 -179 .3 3 .262 4 .1 .121 6 .3 .354 -116 .8
14ghz .407

	

167 .8 3 .165 -5 .9 .13 .6 .341 -125 .5
15ghz .387 154 .5 3 .081 -17 .3 .138 -5 .4 .345 -136 .6
16ghz .368 139 .9 3 .007 -27 .9 .146 -13 .5 .352 -148 .4
17ghz .359

	

124 .4 2 .934 -41 .2 .154 -21 .6 .353 -160
18ghz .358

	

107 .6 2 .91 -52 .3 .16 -30 .1 .349 -170 .6
19ghz .361

	

89 .4 2 .865 -65 .4 .169 -39 .1 .337 177 .9
20ghz .379

	

73 .7 2 .812 -77 .8 .174 -49 .319 165 .2

not rn
lghz .28 .9

	

17 .45
2ghz .3

	

.85

	

32 .37
4ghz .33 .72

	

64 .27
6ghz .37 .62

	

91 .21
8ghz .40 .54

	

116 .15
l0ghz .45 .48

	

138 .1
12ghz .5

	

.42

	

164 .07
14ghz .62 .38 -169 .07
16ghz .75 .34 -139 .08
18ghz .91 .34 -101 .09
20ghz 1 .1 .38 -77

	

.1



Fig 5-Microwave Harmonica analysis output .

easier, but the losses would almost cer-
tainly be worse, degrading the noise
figure .
You may want to tie the gate and

source leads together while rearrang-
ing things--a little static electricity
can easily damage the transistor while
the gate is floating . Soldering irons can
also damage sensitive semiconductors .
It isn't unusual for insulators to de-
grade when heated to high tempera-
tures .

How Does it Work?
The measured noise figure is ap-

proximately 0 .4 dB3, with a gain around
14 to 17 d13 . The gain is a few dB
lower-and the noise figure a few
hundredths lower, too-as you go up to
the high end of the 13-cm band, making
the preamp quite useful for satellite
work as well as for terrestrial use .
More precise numbers are meaning-
less, since I've seen the same preamp
measure as low as 0 .33 and as high as
0.46, using different HP 346A noise
sources and the same transverter
(mixer/filter) .

As this design shows, a source-biased
preamp can do surprisingly well com-
pared to other designs-even at 13 cm .
As always with low-noise microwave
circuits, attending to the input losses-
wherever they come from-will pay off
in improved noise figure .

	

110

November 1993 23

Freq
GHz

NF
dB
AMP

MS21
dB

AMP

MS11
dB

AMP

MS22
dB
AMP

MS11
dB

AMP

MS12
dB
AMP

K

AMP

0 .100 23 .01 -17 .43 -0 .01 -32 .41 -0 .01 -86 .93 102 .34
0 .300 13 .37 -7 .42 -0 .01 -23 .26 -0 .01 -70 .31 8 .31
0 .500 8 .91 -2 .09 -0 .01 -19 .14 -0 .01 -60 .58 2 .00
0 .700 6 .14 1 .85 -0 .02 -16 .81 -0 .02 -53 .64 1 .12
0 .900 4 .27 5 .05 -0 .06 -15 .46 -0 .06 -48 .22 1 .15
1 .000 3 .57 6 .50 -0 .11 -15 .03 -0 .11 -45 .87 1 .23
2 .000 0 .52 19 .04 -9 .53 -11 .65 -9 .53 -27 .05 1 .28
2 .304 0 .38 17 .77 -8 .77 -17 .38 -8 .77 -26 .81 1 .38
2 .400 0 .39 17 .06 -7 .06 -17 .34 -7 .06 -27 .07 1 .42
2 .447 0 .39 16 .69 -6 .38 -16 .91 -6 .38 -27 .23 1 .44
3 .000 0 .84 12 .40 -2 .60 -11 .51 -2 .60 -29 .18 1 .68
4 .000 3 .02 3 .55 -1 .02 -5 .87 -1 .02 -34 .26 3 .09
5 .000 4 .91 3 .16 -1 .02 -11 .66 -1 .02 -31 .68 2 .58
6 .000 7 .13 -0 .68 -0 .77 -14 .43 -0 .77 -32 .84 3 .80
7 .000 8 .31 -1 .99 -0 .44 -4 .85 -0 .44 -32 .02 2 .11
8 .000 9 .39 -3 .02 -0 .39 -5 .79 -0 .39 -31 .16 2 .12
9 .000 15 .09 -16 .46 -0 .29 -3 .45 -0 .29 -42 .98 16 .47

10 .000 10 .44 -5 .34 -0 .41 -7 .06 -0 .41 -30 .53 2 .55
11 .000 14 .44 -16 .57 -0 .50 -2 .52 -0 .50 -40 .41 17 .48
12 .000 9 .54 -4 .55 -0 .46 -8 .73 -0 .46 -26 .72 1 .79
13 .000 8 .54 -4 .36 -0 .76 -5 .37 -0 .76 -26 .02 1 .92
14 .000 8 .31 -9 .13 -0 .80 -2 .08 -0 .80 -29 .89 2 .81
15 .000 5 .80 -3 .32 -1 .67 -5 .11 -1 .67 -23 .08 2 .07
16 .000 7 .72 -11 .51 -3 .47 -1 .60 -3 .47 -30 .43 10 .08
17 .000 3 .08 -1 .31 -7 .26 -3 .26 -7 .26 -19 .34 2 .06
18 .000 3 .22 -2 .94 -15 .38 -1 .71 -15 .38 -20 .34 2 .31
19 .000 4 .41 -2 .31 -5 .97 -3 .85 -5 .97 -19 .16 2 .69
20 .000 4 .99 -8 .04 -2 .64 -0 .74 -2 .64 -24 .34 1 .23


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24

