
QEX : The ARRL
Experimenter's Exchange
American Radio Relay League
225 Main Street
Newington, CT USA 06111

$1 .75

74/f/ft fpe.161~(e1rtew s Exc~aye
	July 1996	

Izz _rat*
∎a

;isU5
.~Yifi

ma~o∎
INMONEW
imenoUS

QEX (ISSN : 0886-8093 USPS 011-424) is
published monthly by the American Radio Relay
League, Newington, CT USA .
Second-class postage paid at Hartford .
Connecticut and additional mailing offices .
David Sumner, K1ZZ
Publisher
Jon Bloom, KE3Z
Editor
Lori Weinberg
Assistant Editor
Zack Lau, KH6CP
Contributing Editor

Production Department
Mark J . Wilson, AA2Z
Publications Manager
Michelle Bloom, W131 ENT
Production Supervisor
Sue Fagan
Graphic Design Supervisor
Joseph Costa
Technical Illustrator
Joe Shea
Production Assistant

Advertising Information Contact :
Brad Thomas, KC1EX, Advertising Manager
American Radio Relay League
860-667-2494 direct
860-594-0200 ARRL
860-594-0259 fax

Circulation Department
Debra Jahnke, Manager
Kathy Fay, N1GZO, Deputy Manager
Cathy Stepina, QEX Circulation

Offices
225 Main St, Newington, CT 06111-1494 USA
Telephone: 860-594-0200
Telex : 650215-5052 MCI
Fax : 860-594-0259 (24 hour direct line)
Electronic M ail : MCIMAILID : 215-5052

I nternet :gex@arrl .or g

Subscription rate for 12 issues :

In the US: ARRL Member $15,
nonmember $27,

US, Canada and Mexico by First Class M ail :
ARRL Member $28, nonmember $40 ;

Elsewhere by Surface Mail (4-8 week delivery) :
ARRL Member $20,
nonmember $32 ;

Elsewhere by Air m ail : ARR L Member $48,
nonmember $60 .

QEX subscription orders, changes of address, and
reports of missing or damaged copies may be
marked : QEX Circulation . Postmaster : Form 3579
requested . Send change of address to : American
Radio Relay League, 225 Main St, Newington, CT
06111-1494 .

Members are asked to include their membership
control number or a label from their CST
wrapper when applying .

In order to insure prompt delivery, we ask that
you periodically check the address information
on your mailing label . If you find any inaccura-
cies, please contact the Circulation Department
immediately . Thank you for your assistance .

Copyright © 1996 by the American Radio Relay
League Inc . Material may be excerpted from QEX
without prior permission provided that the original
contributor is credited, and QEX is identified as
the source .

Features

Columns

About the Cover
W9CF explains why your
T-network tuner may not
be delivering as much
power to your antenna
as you expect .

3 A Complete DSP Design Example Using FIR Filters
By John Wiseman, KE3QG

16 Estimating T-Network Losses at 80 and 160 Meters
By Kevin Schmidt, W9CF

21 The Copper Wire Gauge for Electrical Technology
By Antonio L. Eguizabal, VE7FIF

24 Upcoming Technical Conferences

A

JR R

July 1996 QEX Advertising Index

4

American Radio Relay League: 15, 26, PacCom : 32, Coy IV
27, 28, 29

	

PC Electronics : 30
Communications Specialists Inc: 30

	

Sescom, Inc : 23
Down East Microwave, Inc : 30

	

Tucson Amateur Packet Radio Corp : 31
HAL Communications Corp : 31

	

Z Domain Technologies, Inc : 30
K6PY's Direction+ : 15

July 1996 1

THE AMERICAN RADIO
RELAY LEAGUE
The American Radio Relay League, Inc, is a
noncommercial association of radio amateurs,
organized for the promotion of interests in Amateur
Radio communication and experimentation, for
the establishment of networks to provide
communications in the event of disasters or other
emergencies, for the advancement of radio art
and of the public welfare, for the representation
of the radio amateur in legislative matters, and
for the maintenance of fraternalism and a high
standard of conduct .

ARRL is an incorporated association without
capital stock chartered under the laws of the
state of Connecticut, and is an exempt organiza-
tion under Section 501(c)(3) of the Internal
Revenue Code of 1986 . Its affairs are governed
by a Board of Directors, whose voting members
are elected every two years by the general
membership . The officers are elected or
appointed by the Directors . The League is
noncommercial, and no one who could gain
financially from the shaping of its affairs is
eligible for membership on its Board .

"Of, by, and for the radio amateur, "ARRL
numbers within its ranks the vast majority of
active amateurs in the nation and has a proud
history of achievement as the standard-bearer in
amateur affairs .

A bona fide interest in Amateur Radio is the
only essential qualification of membership ; an
Amateur Radio license is not a prerequisite,
although full voting membership is granted only
to licensed amateurs in the US .

Membership inquiries and general corres-
pondence should be addressed to the
administrative headquarters at 225 Main Street,
Newington, CT 06111 USA .

Telephone : 860-594-0200
Telex : 650215-5052 MCI
MCIMAIL (electronic mail system) ID : 215-5052
FAX : 860-594-0259 (24-hour direct line)

Officers
President : RODNEY STAFFORD, KB6ZV
5155 Shadow Estates, San Jose, CA 95135

Executive Vice President : DAVID SUMNER, K1ZZ

Purpose of QEX:
1) provide a medium for the exchange of ideas

and information between Amateur Radio
experimenters
2) document advanced technical work in the

Amateur Radio field
3) support efforts to advance the state of the

Amateur Radio art

All correspondence concerning QEXshould be
addressed to the American Radio Relay League,
225 Main Street, Newington, CT 06111 USA .
Envelopes containing manuscripts and corre-
spondence for publication in QEXshould be
marked: Editor, QEX.

Both theoretical and practical technical articles
are welcomed . Manuscripts should be typed and
doubled spaced . Please use the standard ARRL
abbreviations found in recent editions of The
ARRL Handbook. Photos should be glossy, black
and white positive prints of good definition and
contrast, and should be the same size or larger
than the size that is to appear in QEX.

Any opinions expressed in QEX are those of
the authors, not necessarily those of the editor or
the League . While we attempt to ensure that all
articles are technically valid, authors are
expected to defend their own material . Products
mentioned in the text are included for your
information ; no endorsement is implied . The
information is believed to be correct, but readers
are cautioned to verify availability of the product
before sending money to the vendor .

2 QEX

Empirically Speaking

Math Anxiety
One of the more common remarks

we hear from potential-not cur-
rent-QEX subscribers is : "There's
too much math in QEX for me." We
understand that point of view . After
all, most amateurs are not profes-
sional engineers, scientists or math-
ematicians, and for those who are
not, the math can be daunting .
QEX is a departure from most other

ARRL publications, too . Most of the
books and periodicals ARRL pub-
lishes are targeted toward a general
amateur audience . We don't expect
the readers of those publications to be
able to handle abstruse mathemat-
ics-we know they can't, for the most
part. Of course, you can't entirely
eliminate math from electronics .
Most of the time we just try to keep
the math to the minimum necessary
to allow the reader to accomplish his
goals. But in QEX, we don't restrict
the technical level-or the math .
Part of the reason QEX exists is

because some amateurs are profes-
sionals in electronics, and they need
a place they can come to exchange
ideas without the kinds of restric-
tions that must, of necessity, be ap-
plied to broad-interest publications .

Just to confirm that this approach
is the right one, we asked some time
ago (January 1994) in this space
whether the content of QEX was "too
technical." The overwhelming re-
sponse was that is was not too techni-
cal . QEX readers want the whole
story and are willing to slog through
the math if that's what's necessary to
get it .

We feel that using QEX as a vehicle
for this kind of material-instead of
QST-is appropriate. Printing a few
thousand copies of QEX and mailing
them to the few thousand people who
are likely to find the material of in-
terest makes more sense than filling
170,000-plus ARRL members' mail-
boxes with material that the vast
majority will just flip past .

We bring this up to make a point . It
is QEX that is the chosen ARRL pub-
lication for "more technical" articles,

by which we mean articles that are
cast at a level that will be useful only
to those amateurs who can handle
more complicated math than is usual
in amateur publications . Which
doesn't mean that every QEX article
has to be full of math, only that if
math is needed to cover the subject of
the article in depth, math is what
we'll use . We do try to achieve a mix
of articles that will appeal to both
amateur experimenters and "amateur
professionals ."

So, if you have an idea for an article
you think is worth publishing, and if
that article contains technical mate-
rial that is of a type you don't see in
QST, likely it is QEX that is the best
outlet for your article . And we'd love
to have the opportunity to publish it .

This Month in QEX
DSP is all the rage, and you can find

a fair amount of material that de-
scribes DSP algorithms and tech-
niques. But how do you translate that
into a working project? You've got to
select an algorithm, find a DSP chip
that will do the job and code the pro-
gram. Where to start? John Wiseman,
KE3QG, leads you through the pro-
cess by providing "A Complete DSP
Design Example Using FIR Filters ."
That T-network low-band tuner is

pretty handy ; it'll tune just about any-
thing and is easy to adjust. But do you
know how much power you're losing in
the tuner? You might be surprised .
It's worth spending a bit of time "Es-
timating T-Network Losses at 80 and
160 Meters," as Kevin Schmidt,
W9CF, did .
What can you say about wire

gauges? Plenty, as it turns out . A look
at the AWG table may lead you to
think someone made it up randomly,
but as Antonio L . Eguizabal, VE7FIF,
explains, "The Copper Wire Gauge for
Electronic Technology" is actually
quite logical .

'Tis the season for conferences, and
"Upcoming Technical Conferences"
again brings you the latest on the sub-
ject.-KE3Z, email: jbloom@arrl .org .

A Complete DSP Design
Example Using FIR Filters

Following this example through from start to finish
will give you a good introduction to the process

of designing a DSP application .

T he purpose of this article is to
illustrate a design example for
a digital signal processing

(DSP) algorithm, from basic concep-
tion through real-time implementa-
tion . The algorithm chosen for illus-
tration is the finite impulse response
(FIR) filter . This class of digital filter
is capable of excellent performance in
amateur-radio applications, is fairly
easy to implement in a DSP chip, and
its implementation uses a number of
high-performance features unique to
DSP architectures . By describing the
low-level details, I hope to provide
insights into important aspects of DSP
design and implementation . These
issues are pertinent not only to FIR

20 Amaryllis Lane
Newtown, PA 18940
email : johnw@asl .hitachi .com

By John Wiseman, KE3QG

filters, but also to other more ad-
vanced algorithms such as adaptive
filtering, frequency domain process-
ing, demodulation and other functions
that amateur-radio experimenters
will find of interest . I'll discuss simu-
lation of algorithm performance before
implementation, real-time perfor-
mance estimation, floating-point ver-
sus fixed-point DSP chip architec-
tures, and how certain unique features
of DSP chips can be effectively used .

FIR Filter Design
The implementation equation for a

finite impulse response (FIR) filter is :
M-I

v(n) - I, c(m)x(n - m)
In=k

where M is the number of coefficients,
or taps, in the filter, x(n-m) are the
sampled data inputs, y(n) is the fil-

Eq 1

tered output and c(m) are the filter
coefficients . The values of the coeffi-
cients also represent the filter's im-
pulse response . To implement a
specific filter, we must first find appro-
priate values of c, then calculate Eq 1
in real-time to produce an output v .
Compare this equation to that of an in-
finite impulse response (IIR) filter :

A1

	

N

v(ti)= Y, ih(in)x(n- at) - Ya(m)v(n-tn)
n,=u

	

ni=I
Eq2

Eq 2 results in both poles and zeroes
in the transfer function, unlike the
FIR transfer function of Eq 1, which
contains only zeroes . Because of this,
the IIR filter is more susceptible to
instabilities due to quantization of fil-
ter coefficients, an issue that will be
discussed later in detail . Another im-
portant issue is that FIR filters with

July 1996 3

symmetric coefficients are guaranteed to have linear phase
response . Proof of this is beyond the scope of this article but
is generally given in signal processing textbooks dealing
with FIR filter theory . 1,2 Because of their inherent stabil-
ity and linear phase characteristics, as well as the fact that
they are easy to derive coefficients for, FIR filters provide
good first-time DSP design experience, even though they
will in general require considerably more coefficients to
provide the equivalent amount of attenuation compared to
IIR filters .

One of the easiest and most straightforward ways of de-
riving the coefficients for an FIR filter is to use what is
known as the Fourier series method . This method takes
advantage of the fact that the frequency response of the
filter is really a periodic function with the same period as
that of the sampling frequency used to sample the analog
input signal . (See Fig 1A.) Because of this periodicity of the
frequency response "waveform," we can derive the Fourier
series coefficients and use them as our FIR filter coefficient
values . The equation for deriving these coefficients is :

0 .5
C, = f 11(v) cos(,21Tnv)dv

-0 .5
where n is the coefficient number, v is the frequency, and
H(v) is the desired frequency response . In our case, the
desired frequency response is of magnitude one in the pass-
band and magnitude zero outside of the passband, so this
equation reduces to :

C„ = f cos(2nn v)d v = 2
-J.

for an even-function low-pass filter. Note that f represents
the desired filter cut-off frequency, expressed as a fraction
of the sampling frequency fs . Because of this, its range will

'Notes appear on page 13 .

sin(2nn v)
2nn

H(v)

I	-T ----r -	
-1 .0

	

a5

	

fe

	

0

	

j-

	

0 .5

	

1 .0

Figure 1A
Desired Lowpass Filter Frequency Response

H(v)

T_ T-	_T11

-1 .0

	

-0 .s fr„

	

fc1 0 fci

	

fca

	

0 .s

	

1 .0

Figure lB
Desired Bandpass Filter Frequency Response

l, sin(2nnJ,)
Tin

0

4 QEX

Eq 3

Eq 4

Fig 1-A desired low-pass filter frequency response is shown
at (A), a desired band-pass filter frequency response at (B) .

be 0 to 0.5, as this represents the range of frequencies under
the Nyquist limit (1 .0 is the sampling rate itself). A note of
caution is warranted here . Some literature uses the frac-
tional notation as it is used in this article, where 0 .5 is the
Nyquist limit and 1 .0 is the sampling frequency, while other
sources have been known to define their Nyquist limit at 1 .0
and the sampling frequency at 2 .0. Yet other sources may
define these values in angular frequency terms, as 7c and 2n,
respectively .

As an example, a quick design for a 7-tap FIR filter with
ff=0.125 (for example, 900 Hz with fs = 7200 Hz) may be
done with a hand calculator . Because of coefficient symme-
try about zero, we only have to calculate the following :
e 3 = 0.07503 c 2 = 0.15915 c 1 = 0.22508
By using symmetry :
C- 3 = 0.07503 c_ 2 = 0.15915 c_ 1 = 0 .22508
The "zero" coefficient cannot be directly calculated as it
results in 0/0, but elementary calculus (L'Hopital's rule)
tells us that the result will be 2f, so :
Co = 0.25000

From this basic result for a low-pass filter, it is interest-
ing to see how to obtain other filters as well . A high-pass
filter with the same cut-off frequency can be obtained from
the low-pass coefficients by using the following transfor-
mation :

CWHP) =(-I)" C,(LP)

	

Eq 5
Using the low-pass coefficients from the previous ex-

ample gives the following high-pass coefficients :
c_3=-0 .07503 c_2=0.15915 c_ 1=-0.22508 c 0=0.25000
c 1=-0.22508 c 2=0.15915 c 3=-0 .07503

I tend to use band-pass filters the most, and they are
easily designed by changing the limits of integration on the
formula for the Fourier series coefficients. An example with
the lower passband edge at f.1 and the upper passband edge
at f. u (Fig 1B) is :

31 Tap

127 Taps

7 Taps

0 900

	

1800

	

2700Frequency (Hz) 3600

Fig 2-The responses of three different FIR filter designs,
each of which is designed for a cut-off at 900 Hz with a
sampling frequency of 7200 Hz .

C„ _

0

0

sin(2mn v)

mn /,1

Computer-Generated Coefficients
The formulas for generating FIR fil-

ter coefficients are fairly simple and
easy to use, but they're impractical to
use directly for more than a few high-
precision values . This job can be made
almost trivial by writing a software
program that can calculate the coeffi-
cients for arbitrary cut-off frequencies
and arbitrary numbers of filter coeffi-
cients. Listing 1 is a C program I wrote
to perform this function. Included in
the program is a function that also cal-
culates the frequency response for the
newly designed filter, so you can verify
its performance before implementa-
tion. The response values can be in-
spected visually or imported into a plot
program for more detailed analysis .
As an example, Fig 2 shows the re-

sponse of three different FIR filter
designs. The filters were designed to
have a low-pass cut-off frequency of
900 Hz, which corresponds to a factor
of 0.125 for a sampling frequency of
7200 Hz. The filters were designed
with 7,31 and 127 coefficients, and you
can see that the desired frequency re-
sponse is more closely approximated
by using more coefficients, as would be
expected from Fourier theory .
As I said, the Fourier series method

Low Pass FIR Filter, No Window

o

	

-u-,,,,i, ...,1 .11yI, .Il il,lll'p .IL,II~Il .I I III l .

s in(/; .,,2m 1)

	

sin(J', .,2itn)

TM

	

mn

Eq 6

0

	

63
Coefficient

Fig 3-Coefficients for a low-pass FIR filter of 127 taps .

is easy and straightforward to imple-
ment, but it is somewhat limited in its
capabilities. Other mathematical
methods that are often used to derive
the coefficients include maximally flat
approximations, least-squared error
designs and minimax error designs . A
powerful example of the latter tech-
nique is the Remez exchange algo-
rithm, which can be used to design fil-
ters for an arbitrary set of specifica-
tions with the minimum number of
filter coefficients . Variations of these
algorithms are provided on supple-
mental disks to various DSP textbooks
for those experimenters who do not
desire to write their own coefficient
generating software . 3,4,5

Window Functions
The coefficients for a low-pass FIR

filter of 127 taps are plotted in Fig 3 .
Note that the coefficients do not ap-
proach zero, but instead are abruptly
truncated at each end of the sequence .
This abruptness causes ringing in the
passband, known as the Gibbs phe-
nomenon (Note 2), and relatively poor
sidelobe attenuation for filters de-
signed with this method . (An example
of how the frequency response is af-
fected is given in the next section .) Fig
4 shows the same filter coefficients
multiplied by the values for a Ham-
ming window. Notice that the coeffi-
cient values now approach zero at the
ends of the sequence . Windowing is an

III, 16,,,, , P"], u

Low
n
0

I)
0
3
+-
C O

0

0

0

126

	

0

important concept and is used in fre-
quency domain processing as well, for
purposes such as reducing spectral
"leakage" in discrete Fourier trans-
forms .
The window coefficients that are

used with the examples in this article
are from the formula for the general-
ized Hamming window :
I,1", =a+(1-a)cos(nxIN)

	

Eq 7
When the constant a = 0 .5, the win-

dow is known as a Hanning (or Hann)
window . If a = 0 .54, it is known as a
Hamming window . As a complement to
the pervious 7-coefficient low-pass
filter example, a 7-coefficient Ham-
ming window sequence can be
generated with a hand calculator,
with N=(7-1)/2=3 . This gives: w 3=
0 .08000, w 2=0.31000, w i =0.77000 and
wo=1 .00000
Because the function is symmetric

(try the calculation for n=-3), the re-
maining values are : w_3=0 .08000,
w_2=0 .31000 and w_ i =0.77000

A new set of windowed coefficients
is now created by multiplying the pre-
viously generated FIR coefficients
with these windowing values on a
pairwise basis like this :
c_3xw,j , c 2xw_ 2 , . . ., c 3xw3

The FIR filter design C program gen-
erates four different windows: trian-
gular, Hanning, Hamming and
Blackman. You can select which win-
dow to use or, if a 0 is entered for this

Pass FIR Filter,

11 111, 11 IIIII,,u.,,,~	

63
Coefficient

Hamming Window

Fig 4-The same filter as Fig 3 but with the coefficients
multiplied by the values of a Hamming window .

126

July 1996 5

selection, the default is to use no
window, which is actually a rectangu-
lar function . This is by no means the
complete list of possible window func-
tions . Others, such as the Kaiser win-
dow, can be fairly easily added to the
program .
Which window function should be

used for a particular filtering problem
is a trade-off. Experimentation will
help show you what parameters work
best for a given level of interference,
your own personal listening tastes,
what particular DSP chip architecture
the filter will be implemented on, and
so on .

Simulated Filter Performance
Fig 5 is a plot of the output data from

the C program for an FIR band-pass
filter with 127 coefficients . In this
case, the lower cut-off frequency is 0 .2
(7200x0 .2=1440 Hz) and the upper
cut-off frequency is 0 .3 (7200x
0.3=2160 Hz). No windowing function
is used . Fig 5 shows significant ring-
ing in the passband due to the Gibbs
phenomenon . Another problem with
this filter design is that the sidelobes
are not attenuated much relative to
the passband. These problems can be
helped significantly by the use of
windowing functions .

Fig 6 is a plot of the same filter de-
sign, this time using a Hanning win-
dow . The passband ringing is virtually

127 Tops, No Window

Fig 5-The frequency response calculated by the C program
for the 127-tap filter of Fig 3 . No windowing is used .

6 QEX

gone, and the sidelobe attenuation is
considerably better . The trade-off in
use of windowing can also be seen-
the passband skirts are slightly less
steep than for the nonwindowed filter .

Fig 7 is another plot of the original
filter design, but a Hamming window
is used in this case . Comparing this
plot directly with Fig 6 shows that a
fairly small change in the windowing
function can have significant effects
on the resulting filter frequency re-
sponse. In this case, the first sidelobes
outside of the passband are attenu-
ated by about 10 dB more than with
the use of a Hanning window . Again,
there is a price to pay : the attenuation
of the extended sidelobes is not nearly
as good, approximately 65 dB com-
pared with 120 dB . Passband roll-off
at the skirts is comparable between
the two windowing functions . It
should be clear that the choice of
windowing function is based largely on
the allowable passband ripple and
sidelobe attenuation as well as the
needed filter skirt shape .

One interesting point about these
plots is that the data is calculated us-
ing double-precision floating-point
arithmetic in the C program. In the
DSP chips we'll use, calculations are
performed with single-precision float-
ing point (TMS320C30) or 16-bit fixed-
point (TMS320C50) arithmetic. The
move to single-precision floating-point

N

.-0
N
N
Oa
u

0

I

implementation with the C30 will not
make a significant difference, but us-
ing the C50 with 16-bit (fixed-point)
filter coefficients will result in devia-
tion from the simulated frequency re-
sponse performance . I have added a
feature to the C program that calcu-
lates the frequency response using
16-bit coefficients, and a plot of this for
the Hanning window case is shown in
Fig 8. Contrast this plot with that of
Fig 6. Since the quantization noise of
a 16-bit value is approximately 96 dB,
it is not reasonable to expect the
120-dB filter attenuation of Fig 6 . If
that kind of performance is needed on
a 16-bit processor, and if you can toler-
ate running slower and using more
memory, a 32-bit double-precision
math scheme could be implemented .

Fig 9 shows the response of a 16-bit
version of the filter with a Hamming
window . The differences between this
plot and the corresponding plot of Fig
7 are much smaller than we saw be-
tween Figs 6 and 8, as the filter attenu-
ation is not that large to begin with,
fitting better into the available dy-
namic range of the 16-bit system .

This is part of the process that the
DSP designer must perform to opti-
mize the two variables of performance
and price. In general, the cost of DSP
chips rises as the word width in-
creases, and the cost of analog-to-digi-
tal and digital-to-analog converters

127 Tops, Hanning Window
I	I	I	I	I	i	1

1200
Frequency

7400
(Hz)

3600

Fig 6-The frequency response for the filter design of Fig 3
but using a Hanning window .

will follow the same trend . In a high-volume product, the
cost differences between a 16-bit, 24-bit, or even a floating-
point DSP chip may force a compromise in performance in
the final product . This need not be the case for the ama-
teur-radio experimenter, however, as the cost of DSP
starter kits is relatively low for all of these architectures .

DSP Hardware Platform Selection
Now that we know how to generate coefficients for an FIR

filter that satisfy particular requirements, we are ready to
implement the design in a DSP chip. The two chips that I'll
cover in this article are the Texas Instruments TMS320C30
and the TMS320C50. These two popular DSP chips are
representative of floating-point architectures (C30) and
16-bit fixed-point architectures (C50) . Both chips are avail-
able on internal PC half-cards that contain fast single-cycle
static RAM external to the DSP chip, a PC interface and an
analog interface circuit (AIC) . The AIC is a single chip
containing a 14-bit analog-to-digital converter (ADC) for
the incoming signal, a 14-bit digital-to-analog converter
(DAC) for the processed outgoing signal, antialiasing fil-
ters and a programmable sampling frequency . This par-
ticular configuration is known as a C30 or C50 Evaluation
Module, or EVM for short .

The C50 is also available as part of a starter kit called the
DSK. This board has the C50 DSP chip and the AIC but is
a stand-alone board that connects to a PC with a serial
cable. No external RAM is provided on the DSK, but the
internal RAM of the C50 should be more than enough for
most amateur-radio experiments . This board is available
from Texas Instruments for $99 and includes a code assem-
bler and loader. The software tools are slightly more lim-
ited than the full set available with the EVM boards (no
linker is provided, so absolute addressing is required), but
again they will easily suit the filtering example given here,

127 Taps, Hamming Window

Fig 7- The frequency response for the filter design
of Fig 3 but using a Hamming window .

as well as much more complicated algorithms that you
might develop on your own . The DSK is meant to compete
with starter kits available from other manufacturers such
as Motorola, for their 56002, and Analog Devices, for their

N
pO
N
m
00
	 - 0

Fig 8-The deviated frequency response of the filter using
16-bit coefficients and a Hanning window . Contrast this plot
with that of Fig 6 .

N

n 0

N
N
00
-0
v

m O
D I

a
UN oI

C
0
0.`0.
00
0 1

ro

6 0
I

C
mo

m
L
L N

I

127 16-Bit Taps, Hanning Window
I

f

r

	

I

	

t

	

I

0

	

1200

	

2400

	

3600

Frequency (Hz)

Fig 9-The deviated frequency response of the filter using
16-bit coefficients and a Hamming window . Contrast this plot
with that of Fig 7 .

July 1996 7

N

n O

N
m
0 0

0
v

n N
mO

I
u

a
~o
y I
C
0

00

a) I

a
TO
UI
C
mo
J

m
L
L N

3600

r

	

r I
1200

r

	

r
2400

r

	

r

Frequency (Hz)

2101 . As I was writing this article, I
came across an announcement from
Texas Instruments that a single-bus
version of the C30, the C31 . would also
be available in a DSK starter kit for
$99 . Although all of these DSP boards
can be used to perform the filtering
tasks described here, some architec-
tures may provide you with hardware
or software features that you might
find more appealing to work with . I
suggest you check the various manu-
facturers' data sheets on these boards
and the individual DSP chips them-
selves before settling on a platform to
experiment with yourself, as you
might find some features, such as the
16-bit ADC/DAC on the Motorola
board, to be more beneficial to your
algorithms .

Real-Time Performance
Before attempting to implement any

algorithm on a DSP chip, a real-time
performance analysis should be done .
In this case, the analysis is very
straightforward and easy to do . The
first thing that is needed is to select a
reasonable sampling frequency for the
analog-to-digital converter within the
AIC. A quick look at the AIC data sheet
shows that the minimum sampling
rate that can be programmed with the
standard clock is 7 .2 kHz . 'To prevent
aliasing, the analog signal must be
sampled at a frequency at least twice
that of the highest frequency con-
tained within the signal . Since it's
desirable that the same sampling
clock be used for both SSB and CW, the
maximum frequency of the incoming
analog signal could be limited to 2 .8
kHz by the AIC analog filter and the
Nyquist sampling theorem would be
satisfied . If we band-limit our
incoming signal to 2.8 kHz, then
7.2 kHz/2 .8 kHz=2.5, an acceptable
value,
The DSP chip has to perform all of

its computations for a given input
sample before the next sample arrives .
In this case, samples arrive every
1/7200=139 µs . The processor clock
speeds for the C30 and C50 EVM
boards are 30 and 50 MH:z, respec-
tively. Both DSP chips have machine
cycles operating at speeds of one-half
of the clock, so the C30 runs at a speed
of 15 million cycles per second . If the
assumption is made that all instruc-
tions will execute in one cycle (not al-
ways the case) then we cars calculate
the number of real-time instructions
available as 15,000,000/7200 . This
simple calculation shows that we will
have 2083 processor cycles available

8 QEX

for our algorithm to successfully com-
plete within the available sampling
time before new data is ready . This is
quite a lot of"horsepower," and we will
have plenty of time left over after
implementing a sophisticated time-
domain FIR filter .

By extrapolation we can see that if a
very high-performance DSP (40 mil-
lion instructions per second is not un-
reasonable today) is to be used, a fairly
high sampling rate of 40 kHz would
leave 1000 instructions per sampling
interval for algorithm processing . This
is essentially what is done for low-IF
digital signal processing today .

Software Implementation
Once you've selected a hardware

platform that is capable of executing
your algorithm, the next step is to
write (and debug!) the software . DSP
chips have some unique architectural
features that assist in efficient execu-
tion of DSP algorithms . Even an
experienced programmer of general-
purpose microprocessors will have
some learning to do before being able
to write code for a DSP chip .
Probably the principal difference

between general-purpose processors
and DSP chips is that the latter make
use of a Harvard architecture . This
scheme uses separate program and
data memory areas, which allows si-
multaneous access of instructions and
operands . Refer to the programmer's
manual for the processor you're using
to learn the specifics of the memory
layout of the chip .
Other DSP-specific differences in-

clude support for hardware-assisted
circular buffering and for parallel ex-
ecution of common DSP operations,
both of which we need to make use of
in implementing the FIR filter .

Circular Buffering
The assembly code examples make

use of the concept of circular buffering .
The equation for an FIR filter (Eq 1)
shows that M data samples need to be
collected so that a sum-of-products
operation can be performed with the
coefficients, resulting in one output
value. For a filter of length 7, 7 input
data samples need to be stored . For a
filter with 127 coefficients, 127 input
data samples need to be stored . As each
new sample arrives, it must be placed
into storage and the oldest stored
sample must be discarded . And the
order in which the coefficients are used
with the samples is important, too : the
first coefficient is multiplied by the old-
est sample, the second coefficient by

the next-to-oldest sample and so on . In
a standard microprocessor, a variable-
length buffer would have to be set up
in memory and a pointer structure
would have to be maintained to keep
track of where incoming data was
placed to avoid having to shift and
move the entire block of previously
stored data values . A circular buffer is
a DSP chip feature that is designed
into the hardware to help with this
potentially high-overhead function .
Fig 10 shows how circular buffers

are used for both the FIR coefficients
and the incoming data values in the
7-tap filter. The c, values are placed
in consecutive memory locations, with
lower memory addresses being to-
wards the left in this example . The
vertical arrows above the memory lo-
cations indicate the position of a
memory pointer, with the pointer
starting out the calculation from posi-
tion 1 . Likewise, the incoming data
values are placed into separate con-
secutive memory locations, and in the
first example x, is the most recently
received data value from the analog-
to-digital converter . The filter calcula-
tion is now performed by multiplying
the c_.3 value that the coefficient
pointer is accessing times the xY1_6
data value that the data pointer is
accessing, placing the product in the
accumulator . Now both circular buff-
ers automatically update their respec-
tive pointers to the next memory loca-
tions indicated by arrow number 2 .
These data values are then multiplied
together, and the results are added to
the previous results and again stored
in the accumulator . This process is
repeater) until all the coefficients and
stored data values have been accessed .
At this time, the circular buffers are

each updated, but in slightly different
manners. The coefficient buffer values
remain constant-no new coefficients
are going to be added or changed dur-
ing the filtering operation . So the
pointer to this buffer is simply set up
to return to position 1 for the next cal-
culation cycle . The data circular buffer
handling is different, however, as a
new incoming value (from the ADC)
must be stored . When that sample
value arrives, the incoming value xn+1
must replace the oldest value in the
buffer, x,1 _ 6 . But since x 11+1 is the most
recent data value, it must be the last
to be accessed from memory during the
calculation cycle, being used in con-
junction with the c3 coefficient . To ac-
commodate this, the starting position
of the pointer to the input data buffer
is advanced by one position after the

new sample value is stored, as seen in
the second data buffer line of Fig 10 .
The next filter calculation now starts
with the pointers in position 1 of their
respective buffers, so that the first
multiply/accumulate starts with c_3
and x71_ 5 . When the data buffer pointer
reaches the highest position in
memory, it then wraps back to the low-
est position automatically to access
the next value consecutively. This
wrapping around is why the concept is
referred to as a circular buffer . If you
were to cut out the memory buffers
from Fig 10 with scissors and tape the
lowest memory position to the highest,
it would reinforce the circular nature
of what is actually happening .

Circular buffers greatly simplify the
handling of both the filter coefficients
and the incoming data values to be fil-
tered. Not only do they help to feed the
multiply/accumulate logic with data
quickly, but they provide an efficient
memory structure so that only 2M
memory locations need to be dedicated
to the storage of coefficients and data
values .

C30 Assembly Code Example
Fig 11 gives an assembly language

code listing for an FIR filter imple-
mentation on the C30 EVM . After pro-
cessor reset, an initialization routine
is run that leads to the routine labeled
LOOP. A polling loop at the start of the
routine continually checks to see if the
analog interface chip (AIC) is ready to
accept another data word from the
DSP. If not, the device is continually
repolled . This function could also be
done with an interrupt service routine,
but I chose to use polling as it is easier
to follow in the coded examples . If the
AIC is ready, an integer data value is
read by the DSP and converted to
floating-point format for further
mathematical processing. This float-
ing-point data value is then stored in
the circular buffer that has been pre-
viously set up in internal memory .
Now that data has been converted

into the correct format and placed into
the circular buffer, we are ready to
compute the filter output by imple-
menting the sum-of-products opera-
tion of Eq 1 using the stored filter
coefficients . Again, hardware within
the DSP chip is used to make this op-
eration extremely fast and efficient .
The RPTS instruction forces the C30
to execute the next instruction in a
repeating loop with no performance
penalty. This is advantageous to the
developer in two ways . First, the DSP
will be executing only the multiply-

add instruction in consecutive cycles,
so speed will be maximized . Second,
the constant that is called TAPS in the
RPTS instruction can be defined at the
beginning of the program and easily
modified so that the filter length can
be changed quickly . As your DSP pro-
grams grow in complexity, this be-
comes a major benefit in helping with
code maintenance .

Analyzing the one instruction that is
actually calculating the sum-of-prod-
ucts for the filter shows that quite a lot
is happening during this single ma-
chine cycle . First, the presence of the
I I symbol indicates that a parallel
operation is taking place in the DSP .
An MPYF3 (a floating-point multipli-
cation with 3 operands) is taking place
at the same time as an ADDF (a float-

L 1

L 1

L

C-3

	

C-2

6

2

FIR Coefficients Stored In Memory .
Circular Buffer Pointer Always Starts At 1 .

2

Input Data Stored In Memory .
x„ Is Most Recent Data, Pointer Is Advanced By 1 .

7 1

Input Data Stored In Memory,
x„+1 Is Most Recent Data, Pointer is Advanced By 1 .

I7

2

1 2

Input Data Stored In Memory .
x,+z Is Most Recent Data, Pointer is Advanced By 1 .

C3

Xn-6 Xn-S Xn-4 Xn-3 xn_2 xn-1

1
xn

Xn-4 I Xn-3 Xn-2 Xn-1
i
xn

5

xn+2

1
xn-4 Xn-3 Xn -2 Xn -1

i

xn

Fig 10-An example of how the coefficient and data circular buffers are managed
for a 7-tap filter .

July 1996 9

ing-point addition). Not all individual
instructions can be combined into par-
allel instructions . Since the entire in-
struction word itself is limited to 32
bits, a small subset of these bits is
available to be allocated to instruction
decoding, register allocation, address-
ing mode selection, etc . Because of this,
a limited number of instructions can be
paralleled . The designers of the chip
chose to allow parallel execution of
those instruction pairs that are most
useful in typical signal processing
algorithms . The MPYF3 I I ADDF in-
struction is a good example, as it imple-
ments a sum-of-products operation,
the heart of an FIR filter calculation .

The first two operands of the MPYF3
portion of the instruction are used to
get the data values from the input cir-
cular buffer and the coefficient values,
both now in internal DSP RAM . The
multiplier portion of the circuitry
multiplies these two values together
and places the floating-point result

The following code implements an FIR filter of length TAPS on the TMS320C30 floating point DSP
chip .
Initialization code is not shown . Register assignments are not optimized, and may need to be modified
in other applications .

ARl points to the serial port control register .
AR2 points to the data receive register .
AR3 points to the data transmit register .
AR5 points to the start of the filter coefficient table .
AR6 points to the input circular buffer.
AR7 points to the output data mask .

III contains the transmit bit mask (preloaded) .
R2 contains the input value converted to floating point .
R5 is used as an accumulator.
R6 is used as a temporary buffer for the multiplier .

Fig 11-Assembly-language code listing for an FIR filter
implementation on the C30 EVM .

10 QEX

into the 3rd operand, R6 . At the same
time (in parallel), an adder in the ALU
adds the floating-point values in R6
and R5 with the resulting value
placed, or accumulated, into R5 . Both
input operands for the multiply in-
struction are retrieved by circular
address generators . The input data
circular buffer is advanced one extra
position after every run through the
entire routine to make room for an
incoming data word, while the coeffi-
cient circular buffer is reset back to the
starting point of the coefficient table
located in RAM . (See Fig 10 .)

It is important to understand that
because the instructions are operating
in parallel, the ADDF portion of the
instruction is operating on data that
is one cycle behind in time! The archi-
tecture of the C30 is such that R6 is
updated by the MPYF3 portion after
the current value in R6 is read by the
ADDF portion . Because of this, after
the desired number of sum-of-prod-

The following code implements an FIR filter of length TAPS on the TMS320C50 16-hit DSP chip .
Initialization code is not shown . Register assignments are not optimized, and may need to be modified
in other applications .

ARl points to the serial port control register .
AR2 points to the data receive register.
AR3 points to the data transmit register .
AR6 points to the input data circular buffer,

; The Accumulator Buffer must be loaded with the 32-bit mask FFFC0000h during initialization .

LOOP

	

BIT

	

*,4

	

; check XRDY in serial port control register

BCND

	

LOOP,NTC

	

; loop if zero, continue if one

MAR

	

*,AR2

	

; change pointer register to AR2

LACL

	

*,AR6

	

input data from data receive register and place
in lower accumulator, change pointer register to AR6

SACL

	

; store input data in circular buffer, advance circular
buffer one position

RPTZ

	

TAPS-1

	

; repeat next instruction for # of taps in filter
automatically clear accumulator and product register
for next filter run

MAC

	

COEFF,*+

	

multiply-accumulate input circular buffer and
coefficient table

APAC

	

; final accumulate

MAR

	

*,AR3

	

; change pointer register to AR3

BD

	

LOOP

	

; delayed branch to LOOP

ANDB

	

; mask lower 2 bits of upper accumulator word to zero
by AND of accum, with accum, buffer

SACH

	

*,AR1

	

; store output in data transmit register, change pointer
to ARl before returning to LOOP

delayed branch occurs here

ucts operations is performed, a final
ADDF instruction must be tacked on
to the end to accumulate the final
product (in R6) into the sum . After this
instruction, R5 will contain the correct
answer for the filter calculation .
After the final addition is completed,

the filter output data must be con-
verted from floating-point back to
integer form for output to the AIC digi-
tal-to-analog converter (DAC). This
conversion is accomplished in one
cycle with the FIX instruction . Fi-
nally, the lower 2 bits of the 16-bit data
word must be set to zero, as the AIC
accepts as data only the upper 14 bits,
using the lower two bits during the
initial programming and set-up phase .

Now that the calculation is complete
and the filtered data word has been
output from the DSP to the outside
world, the routine executes a branch
back to begin polling for the availabil-
ity of more input data . The branch ex-
ecution is enabled by the BD instruc-

Fig 12-Assembly\-language code listing for an FIR filter
implementation on the C50 EVM .

delayed branch occurs at this point This is the coefficient file for a lowpasa FIR filter of length 7, with cutoff frequency at 0 .125
The coefficients are in hex format suitable for usage in the C50 assembler .

This is the coefficient file for a lowpasa FIR filter of length 7, with cutoff frequency at 0 .125.
The coefficients are in floating point format suitable for usage in the C30 assembler .

COIdFF ascot

	

coeff,0100h

	

; filter coefficients start at memory location 0100h

,word

	

0.0750263596

COEFF asect

.word

euefr,0100h

099ah

; filter coefficients start at program memory 0100h

w ord

	

0.1591549431
word

145th
word

	

0.2250790790 .word iccfh
,word

	

0.25001100000 .word 2000h
.word

	

0.2250790790 .word lccfh
.word

	

0.1591549431 .word 145th
.word

	

0.0750263596 .word 099ah

LOOP TSTB *ARI,R1 ; check transmit bit - RI is mask

BZD

LDI

LDI

LOOP

O .0,RS

0.0,R6

; loop if zero, continue if one (delayed)
next 3 instructions are always executed

; clear "accumulator" for next filter run

; clear temp register for next filter run

I

	

I

FLOAT

STF

RPTS

MPYF3
ADDF

*AR2,R2

R2,*AR6++°h,

TAPS-I

; AR2 points to data receive register
convert integer to Floating point

; delayed branch occurs at this point

; store data in circular buffer

; repeat next instruction for # of taps in filter

*AR6++5i,,*AR5 .o.c%,R6 ; input circular buffer x coefficient table
R6,R5

	

; accumulate into R5

ADDF R6,R5 ; final accumulate

BD

FIX

LOOP

R5,R5

; delayed branch to LOOP

; convert answer to integer format

AND3

STI

*AR7,R5

R5,*AR3

; mask lower 2 bits to zero (AR7 => mask)

; store output in data TX register

tion, whose mnemonic is short for branch delayed . Under
normal branching operation there is a three-instruction
delay (two-instruction delay in the C50) in performing the
actual branch after the instruction is read . If this branch
were the last instruction in the routine, there would effec-
tively be a waste of three instruction cycles because of in-
ternal processor pipeline delays . The delayed branch helps
the programmer make use of this time by potentially allow-
ing one to fill these gaps with useful instructions . In the
routine shown, the conversion to integer and the mask/store
operations are performed just prior to when the branch back
to LOOP is actually implemented . The only caveat to using
delayed branches is that during a conditional test the pro-
grammer must be careful, because the suceeding two in-
structions will be executed regardless of whether the branch
is actually taken .

The second portion of the assembly language program is
labeled as COEFF, and it contains the actual filter coeffi-
cients as generated from the C program . For convenience,
the C program prints the floating point coefficients into a
separate file along with the .word assembler directive . The
.asect directive tells the assembler that the data is to be
assembled into the program at absolute address 0100h,
which was chosen somewhat arbitrarily. To change filters
in this basic set-up, generate a coefficient file for the de-
sired filter parameters, then include the data values into
the assembly language file at the COEFF entry point . If
the number of coefficients has changed, modify the value of
TAPS and then reassemble the code .

C50 Assembly Code Example
Fig 12 shows an assembly code listing for the C50 EVM

that performs the same filtering function as the C30 code
analyzed above . At a glance, it should be apparent that
there are some interesting differences between the two .
First, the instruction mnemonics are not the same even
though the two DSP chips are designed and produced by
the same manufacturer . Second, there are no parallel in-
structions in the C50 architecture. And third, it takes more
assembly-language instructions to do the same thing with
the C50, at least for this coding example with my particu-
lar style .
Again, a simple polling scheme is implemented as the

starting point of the FIR filtering routine . When the check
is successful and the routine has been entered, data is in-
put into the DSP and placed in the lower 16 bits of the
accumulator . Note the difference in architecture here . The
C50 has an accumulator register dedicated to that purpose
alone, while the C30 can use any general-purpose register
with the addition instructions to effectively implement an
accumulator . The SACL instruction then takes this data
and stores it into RAM in a predefined circular buffer .
Again, an architectural difference between the DSP chips
is apparent in that the incoming data in the C50 must be
routed through the accumulator before being placed in the
RAM circular buffer . The C30, on the other hand, can use
a parallel instruction along with any general-purpose reg-
ister to increase efficiency .
Like the C30, the C50 has a hardware repeat-next-

instruction feature that is used to maintain single-cycle ex-
ecution of the time-critical sum-of-products calculation . In
the C50, this is accomplished with the MAC instruction .
The MAC mnemonic is short for multiply/accumulate, and
the instruction allows the output of the multiplier to be
routed directly into the accumulator in the same machine
cycle . The two inputs are defined in the instruction to be

COEFF, which is my label for the start of the filter coeffi-
cient data table in RAM, and the data circular buffer that
is pointed to by the value contained in register AR6 . This
instruction is specially designed for repeating: once the
starting points in memory for the two operands are loaded,
they are automatically in-cremented to the next value by
special addressing hardware . The plus (+) sign in the in-
struction indicates that the starting value of the circular
buffer is advanced one position for the next run through
the routine . As was the case in the C30, the multiply/
accumulate operation is registered (or pipelined) so that
the value in the accumulator is actually one cycle behind
what the multiplier is presently calculating . Again, a final
accumulator cycle needs to be performed . The C50 has a
special instruction to do this, APAC, which automatically
uses the correct operands for the update .

In the C30 filter coding example, the fact that floating-
point arithmetic is used in the sum-of-products calculation
means that the answer appeared in a DSP register needing
only a conversion instruction (FIX) before storing the inte-
ger result in the AIC DAC . In the C50, things are not quite
as simple due to the fact that the architecture is based on
16-bit fixed-point words . Notice that in this example, no
data conversion is necessary during data input because we
are reading a two's complement integer from the ADC .
Likewise, no conversion will be necessary at the output to
the AIC DAC once the lower 2 bits are masked to zero . The
price we pay is that we must keep track of the radix point
in the accumulator . This is fairly simple in this applica-
tion, but more sophisticated algorithms can result in this
becoming very complicated!
The fixed-point multiplier in the C50 multiplies two

1 N

] o
4-

n N
0 N -

0o -
0

In
N

0

Son(x)/x Function
	 1

0n
0

8x Oversampling

Baseband

f

	

I

	

I

	

1

	

I

	

I
0

	

1000

	

2000

	

3000

	

4000

Froct1onal Frequency (/1000)

Fig 13-Output signal reconstruction by a DAC causes the
signal amplitude to vary with frequency, as shown here. To aid
in plotting, frequencies were multiplied by 1000 . Thus, the
1000 point on the x axis represents the sampling frequency .
Note that the baseband curve shows attenuation to about 0 .6
of the dc value at the Nyquist frequency, while the 8x over-
sampling curve shows almost no attenuation at that point .

July 1996

	

11

16-bit words together, producing a 32-
bit result. If the two input words are
unsigned, the output is also unsigned .
In this example, the input data from
the AIC ADC is 16-bit two's comple-
ment words (14-bit resolution, with
the lower two bits set to zero) and the
stored FIR filter coefficients are 16-bit
two's com-plement words as well . Be-
cause of the way binary numbers are
multiplied together, the output of a
multiplication of two two's comple-
ment numbers is another two's
complement number, but with an ad-
ditional sign bit on the left . The accu-
mulator in the C50 can be set up to
automatically compensate for this ex-
tra sign bit by shifting the word left
one bit. Again, hardware comes in
handy because without this an extra
instruction it would be necessary to
use an extra instruction to shift the
accumulator value by one bit .

After the sum-of-products calculation
is compete, the answer is contained in
the accumulator as a two's complement
32-bit number. Since we are only inter-
ested in transferring 16 bits to the AIC,
the obvious thing to do is to write the
upper half of the accumulator out since
it is this half that contains the most
significant bits of data, as well as the
sign bit . The C50 provides instructions
to store accumulator high word (SACH,
used in this code) and store accumula-
tor low word (SACL). Since the lower
half of the accumulator represents ex-
tended-resolution bits in this filtering
example, they can effectively be ig-
nored. As with the C30 example, the
lower two bits of the output word are
masked to zero for compatibility with
the AIC data format .
The second part of the assembly

routine is similar to the one used for
the C30 code, except that the data is
not in floating-point format but in
16-bit hex format instead . This con-
version is accomplished with a func-
tion in the C program, and rounding is
provided for greater accuracy in the re-
sults . Again, changing these values
along with the value of TAPS (if
required) will change the filter perfor-
mance after reassembly .

Comparison of DSP Functionality
Several things are apparent when

comparing the two assembly language
routines on the C30 and the C50 . Spe-
cial-purpose hardware is designed
into both DSP chips to help make typi-
cal signal processing operations more
efficient-like circular buffering, sum-
of-product calculations that can be
performed in consecutive cycles by

12 QEX

utilizing repeated multiply-addition
type operations and delayed branch
instructions that can be used to effi-
ciently handle both unconditional and
conditional program branches . Be-
cause the examples given in this ar-
ticle are somewhat limited in scope,
other DSP-specific hardware features
were not used . One such major feature
is automatic bit-reversal addressing
capability, available on both the C30
and the C50 . This feature helps reduce
the programming overhead associated
with the coding of fast Fourier trans-
form (FFT) algorithms, which are used
extensively in signal processing .

It is also fairly obvious that these
DSP chips, even though they are de-
signed and built by the same manufac-
turer, handle solving the same
problems in different ways . The two
coding examples show that floating-
point arithmetic alleviates the need for
worrying about accumulator overflow
or scaling but necessitates a conversion
to and from integer form for I/O pur-
poses. Parallel instructions available
on the C30 can help with overall effi-
ciency and speed, at the expense of forc-
ing the programmer to think in terms
of pipelining, but not all algorithms
may be able to take advantage of this
fully. Because the C50 is dealing with
an instruction word that is only 16 bits
wide compared to 32 bits for the C30, it
is more limited in its coding of instruc-
tions to support features such as indi-
rect addressing . If the programmer
tends to use indirect addressing fre-
quently (as I do), the C50 instructions
that are used solely to change the cur-
rent address pointer will appear often .
This is done in the C50 example twice,
with MAR instructions .
Because the assembly language in-

structions are different between DSP
chips, and because DSP programs can
become extremely difficult to design
and maintain when they incorporate
many functions in a real-time environ-
ment, many DSP developers will choose
to develop their code in the C language .
Most (if not all) commercially available
DSP chips now have C compilers
available that will generate assembly
language code from the higher level
language of C . C provides certain ad-
vantages over assembly code, such as
portability, speed of development and
maintainability, but inherently some
inefficiencies will result in the com-
piled code. Because of this, developers
will typically code their algorithms in
C, then test the compiled code to make
sure that real-time performance is met .
If it is not, the problem module or mod-

ules can be identified and rewritten in
optimized assembly language, then
called via the main C program . As a
matter of fact, C-language code devel-
opment is so pervasive that its use is
influencing the design of DSP chip ar-
chitectures. The C30 was designed
from the start to be efficiently coded
with C, and this can be seen in its
larger, more general-purpose register
file among other things .

Final System Considerations
A potential pitfall of practical imple-

mentations of sampled systems such
as the one here arises when a digital-
to-analog converter is used to convert
the DSP algorithm output back to an
analog signal . Practical DACs imple-
ment a zero-order sample-and-hold on
the output signal, which essentially
clamps the output voltage at a particu-
lar analog value for the entire clock-
ing period . An analog smoothing filter
is then used to eliminate the resulting
"stair-step" from the output wave-
form. This process results in an ampli-
tude roll-off of the signal as frequency
is increased, reaching 0 at the sam-
pling frequency, as shown in Fig 13 . Of
course, we won't usually be interested
in any output frequency above Nyquist
(half the sampling frequency)-the
analog smoothing filter should remove
any such signals anyway . But at the
Nyquist frequency, the output is down
to about 0 .6 of its dc value . This is quite
a serious degradation of the system
frequency response that we so care-
fully tried to design our filter for in the
first place!

The theoretical explanation of this
process is that the output signal from
the processor, which is formed using
ideal sampling, is convolved with a
rectangular pulse, equal in duration to
the time between clock pulses . The
outcome of this convolution process
can be visualized as a multiplication
of the signal's frequency spectrum
with the Fourier transform of a rect-
angle, a sin(x)/x function . This is the
function plotted in Fig 13 .

There are basically three solutions
to this problem . The first is to use what
is called a sin(x)/x compensation filter,
which essentially is an analog peaking
filter at the output, designed such that
the overall output is flat across the
frequency spectrum . This is the tech-
nique that is used in the AIC provided
on the two EVM boards that I have
used . In this case, the programmer
need only worry about initializing the
AIC correctly so that the compensa-
tion filter is used . The second solution,

which can be used if the available DAC
does not have this built-in compensa-
tion filter, is to program the compen-
sation into the DSP code itself. Texas
Instruments has detailed a method for
designing a first-order digital filter
that can be programmed in about 7
instructions per sampling interval, for
very little overhead . 6 The third solu-
tion is to use an oversampling DAC . A
typical oversampling rate for commer-
cial DACs is 8 times, and a plot of how
the sin(x)/x function for this case com-
pares to the baseband case is included
in Fig 13 . In this case, very little dis-
tortion of the frequency response is
introduced by the DAC .

Summary
This article has shown a complete

algorithm-to-assembly code design ex-
ample for developing real-time FIR fil-
ters on DSP chips . The basic principles
demonstrated can be extended to many
different algorithms and applications .
Because of the widespread availability
of personal computers and reasonably
priced software packages, such as C
compilers, it is fairly easy to develop an
algorithm simulation environment to
test performance prior to implementa-
tion. Even if it is not desired to experi-
ment at an algorithmic level, you can
go right to the implementation phase

Listing 1

/a This C program calculates FIR filter coefficients for lowpaee */
/ • and bandpase configurations . Highpass filters may be designed*/
/" by modifying the function Coeffi went))

a
shown . Floating •// • point values may be used directly on the C30 DSP, and a •/

/* conversion routine is given to allow hex output for the C50 . */
/ • This program compiles on a Sun workstation, and previous */
/ • versions have been compiled on a PC with a Borland C compiler .*/
/* File names may have to be changed for your machine . . .

	

*/
* a/

/ .aae*essa . . .es	s.a •s a	aa. . .as .a . .a . .aa .a . . .aaa . •/

#include cstdio .h>
#include <stdlib .h>
#include cmath .h>

#define MAX 4096

void Conversion(void) ;
void Coefficient (void) ;
void Window(void) ;
void Symmetric (void) ;
void FregResponse(void) ;
void Fr egReepone_16bit(void) ;
void ArrayMultiply(double WindowWt) ;

int m 1, n2,

	

j, TapNumber, FregReepPointe, WindowType ;
double q, gl, g2, am ;
double pi ;
double LPCoeffe(MAX], HPCoeffs(MAX], BPCoeffs[MAX], Coeffe l6bit[MAX] ;

/ .a*aes*a .a .a .aa . . .a .aasas*e* .a	*sa	a/

/* The function Coefficient() calculates the tap values for a/
/ • specified filter parameters . The Fourier series method is +/
/+ used in this function .

	

•/
w */
/sagases .ae*easss .aaaaasasea •a eassea*es*easessss .ass*essass .as . s/

by using design software available with
textbooks and from other commercial
sources. To go along with the personal
computer, several DSP chip manufac-
turers are now offering low-priced DSP
starter kits that give the home experi-
menter the ability to generate and
download assembly language pro-
grams from the PC for around $100 .
Because these boards generally have
analog I/O interfaces included on them,
they are a natural fit for amateur-radio
experimentation .
FIR filters implemented on DSP

chips can provide dramatic results in
amateur-radio applications and these
algorithms can be the starting point
for the design and implementation of
more sophisticated functions, such as
IIR filters and adaptive noise reduc-
tion. As prices go down and processing
power goes up, DSP chips are starting
to work their way up in the radio ar-
chitecture from predominantly audio
processing to performing IF process-
ing functions such as demodulation .
What better time could there be to
start your own DSP experiments?

About the Author
John Wiseman, KE3QG, was first

licensed ten years ago as KA5WTO and
has been an active shortwave and AM
radio listener for more than 25 years .

void Coefficient(void)

float LowerFC, UHparFC ;

printf("\nLS FIR Bandpase Filter Design With Windows\n") ;
printf("\nEnter : # of Taps, LowerFC, UDperFC, Window Type,
Response Points\n\n") ;

anf("%d%f%f%d%d", &TapNumber, &LowerFC, &UpperFC, &WindowType,
&FregReeppointe) ;

n2=TapNumber/2 ;
m=(TapMumber+l)/2 ;
1=TapNumber-l ;
pi=3 .141592654 ;
am=(TapNumber+1 .0)/2 .0 ;

/a Calculate the FIR filter coefficients

if (m==am)
f

LPCoeffa(m-13=2 .0 •UpperFC ;
HPCoeffs[m-l]=((2 .0 •LowerFC)+((0 .5-(2 .0 •L OwerFC))*2 .0)) ;
HPCoeffs(m-l(=(LPCoeffs[m-l]+HPCoeffe[m-1O-1 .0 ;

for (j=0 ; j<n2 ; ++j)
(

4=pi •((j+1)-am) ;
LPCOeffe(j]=(ein(UppcrFC2 .0*q))/q ;
HPCoeffs(j]=(-(ein(LowerFC*2 .0*q))/q) ;

/ • HPCOeffe[j]=(pow(-1 .0 .j))*(-(sin(LOwerFC •2 .0 •q))/q) ;
/ • Uncommenting this line and commenting out the previous one
/* will allow highpass filter coefficient design .

BPCoeffe[j]=LPCoeffa[j]+HPCoeffs[j] ;

return ;

He enjoys working HF SSB and CW,
and experimenting with his homebrew
transceiver . John has worked with
high-performance DSP chips for sev-
eral years and has published several
papers on DSP applications . When he
finds the spare time, John enjoys
implementing various DSP algorithms
in his homebrew radio . He holds a
BSEE from the University of Massa-
chusetts an.d an MSEE from the Uni-
versity of New Mexico . John is cur-
rently employed by Hitachi America in
Princeton, New Jersey, as a Senior Re-
searcher designing hardware for ad-
vanced video systems .

Notes
1 Parks, T . W. and Burrus, C . S ., Digital Filter

Design, John Wiley & Sons, 1987, ISBN 0-
471-82896-3 .

2 Mitra, S . K . and Kaiser, J . F ., Editors, Hand-
book for Digital Signal Processing, John
Wiley & Sons, 1993, ISBN 0-471-61995-7 .

3 Alkin, 0 ., Digital Signal Processing-A
Laboratory Approach Using PC-DSP,
Prentice Hall, 1994, ISBN 0-13-328139-6 .

4Thede, L ., Analog and Digital Filter Design
Using C, Prentice Hall, 1996 . ISBN 0-13-
352627-5 .

5Embree, P. M., C Algorithms for Real-Time
DSP, Prentice Hall, 1995, ISBN 0-13-
337353-3 .

6Linear Circuits Data Book-Volume 2,
"TLC32046 Wide-Band Analog Interface
Circuit," Texas Instruments, 1992 .

of Freq

July 1996 13

/ • The function Window(calculates the window values for •/
/ • triangular, Hanning, Hamming, Blackman, or rectangular */
/ • (no window - default) windows .

	

*/
/*	 •/

void Window(void)
I

double WindowWt ;

q=pi/am ;
gl=pi/(am-1 .0) ;

/*sasa .a . .saaa*a . . . s ssees .a s •* •* a .*sa .r .*ssrs . .sa .r .aaa.sa . . s .a/

void Symmetric(void)

FILE •f ;
FILE *ff ;

f=fopen("bpfilter .ftp", 'w") ;
ff=fopen("bpfilter .txt", 'w") ;

/* Equate symmetric coefficients •/

for (j=0 ; j<((TapNumber-l)/2) ; 1-=2, ++j)

BPCoeffs[j+l]=BPCoeffs[j] ;
}

/* Print coefficients •/

print£("\nThe calculated FIR coefficients are :\n\n") ;
printf("

	

BP coefficients\n") ;
printf("

	

Decimal\n\n") ;

for (j=0 ; j<TapNumber ; ++j)
{

printf("k18f\n",BPCoeffs[j]) ;
fprintf(f, "

	

.word %e15 .10f\n",BPCCeffs[j]) ;
fprintf(ff, "b]5 .l0f\n", BPCoeffe[j]) ;

fclose(f) ;
fcloee(ff) ;

return ;

14 QEX

/	 /

/	s	ss	s .ra	ss	ss. . . .as . . r/

void FregReeponse(void)

double bt ;
double a[MAX), c[MAX] ;

FILE •f ;

f=fopen("fregresp .txt", w") ;

/ • Calculate the frequency response •/

print£("\nThe calculated frequency response is :\n\n") ;
print£("

	

Magnitude

	

Decibel .\n\n") ;

q2=pi/FregRespPoints ;

for (j=0 ; j<FregRespPoints ; •+ j)

if (am==m)
(
bt=0 .5*BPCOeffs[m-1] ;
)

for (i=D ; i<n2 ; ++i)

bt=bt+(BPCOeffs[i] •c oe(g2*(am-(i+1)) •j)) ;

a [j]=2*bt ;

/ • Calculate frequency response in decibels •/

c[j]=20 .0 •(log10(fabs(a[j]))) ;
printf("%18f*s25f\n", a[j],c[j]) ;
fprintf(f, "%10f\n", c[j]) ;

/u .+, .u* .a* . ..u. . .r* . . .+a . .,ass . .=s	

/' The function Conversion) converts the floating point FIR •/
/ • filter coefficients to 16-bit hex values (2's complement) . •/
/ • These values a ounded to the nearest bit, then stored */
/ • in the file "bpfilter .hex" . Each coefficient is preceeded •/
/ • by the assembler directive word for easy usage in C50

	

•/
/* assembly code .

	

r/

void Conversion(void)
I

long int hexnum ;

FILE *ff ;

ff= fopen("bpfilter .hex", "w") ;

for (j=0 ; j<TapNUmber ; ++j)

hexnum=(long int)(BPCoeffe[j]*(float)524288 .0) ;
if ((hexnum & 15) >= 8)
(

hexnum += 16 ;

hexnum = ((he xnum « 12) & 4294901760) ;
hexnum = (hexnum cc 16) &65535 ;
printf("h04x\n", hexnum) ;
fprintf(ff, "

	

Word r04xh\n", hexnum) ;

Coeffe 16bit[j] = hexnum;

fclose(ff) ;

return ;

/	u	r . ., .= . . .s	+ . •' •	*	/

/a* . . .as*	 *+	aa	***.=/

/ • The function FregReeponse_16bit() calculates the FIR filter */
/ • frequency response for 16-bit resolution coefficients, for */
/ • comparison with the "ideal" double precision floating point •/
/ • coefficients calculated elawhere .

	

*/

/..ras .a* . .r .aaass .s . . .r .as*a . .ore . .sa .aaar . .sassraaaaar .* .s . * ssa/

switch (WindowType)
{

/ • Multiply by a triangular window •/

case 1 :
for (j=0 ; i<am ; ++j)

WindowWt=(i,l)/am ;
Art aymwltip1y(WindowWt) ;

break ;

/ • Multiply by a Manning window */

case 2 :
for (j=o ; j<am ; ++j)

WindowWt=0 .5-(0 .5*cos((J+l)*q)) ;
ArrayMultiply(WindowWt) ;

break ;

/ • Multiply by a Hamming window •/

case 3 :
for (j=0 ; j<am ; ++j)

WindowWt=0 .54-(0 .46*coe(j •g l)) ;
ArrayMultiply(WindowWt) ;

break ;

/ • Multiply by a Blackman window •/

case 4 :
for (j=0 ; j<am ; ++j)

WindowWt=0 .42-(0 .5*cos[(j+l)*q))+(o .08*cos(2*(j+l)*q)) ;
ArrayMultiply(WindowWt) ;

break ;

return ;
}

/ • The function Symmetric) calculates the symmetric portion

	

•/
/ • of the filter coefficients, then writes these floating

	

•/
/ • point values to the file "bpfilter .txt" . These same values •/
/* are written to the file "bpfilter .ftp", but each value is

	

*/
/ • preceeded with the assembler directive .word for easy

	

•/
/* inclusion in the C30 assembly language code .

	

•/

/ • The function FredReaponse() calculates the frequency

	

•/
/' response of the calculated FIR filter coefficients for

	

•/

/ •
verification purpose . . The a ray a[j] is the frequency

	

•/
response normalized to one, while the array c[jj is the

/ • response in dB . These values are printed on the screen,

	

*/
/' and c[j) is written to the file "fregresp .txt" for usage

	

•/
/ • with plot program . .

	

•/

void FregResponee_16bit(void)

double bt ;
double a[MAX], c[MAX] ;

FILE *f ;

f=fopen("fregrssp_l6bit .txt", "w") ;

/* Calculate the frequency response */

printf("\nThe calculated frequency response is ;\n\n") ;
printf("

	

Magnitude

	

Decibels\n\n") ;

q2=pi/FregaespPoints ;

for (j=0 ; j<FregRespPointe ; ++j)

3

(j=0 ; j<FregReepPoints ; ++j)

if (am==m)
{

3

for

e[j]=2*bt ;

bt=0 .5*Coeffs_l6bit[m-1] ;

for (i=0 ; i<n2 ; ++i)

bt=bt+(Coeffe_16bit[i]*cos(g2 •(am-(7.+1))*j)) ;

K6PY's DIRECTION+
Do you know your latitude and longitude in decimal
or minutes/seconds? How about the other station's
or location's? . . then FEAST YOUR EYES ON THIS:
Plug In yours, plug In his and get displayed these :

1 . Forward Bearing
2. Long Path Bearing
3 . HIS bearing to YOU !!!
4. Distance in kilometers
5 . Distance in nautical miles
6. Distance in statute miles
7. Distance in meters

ALL BEARINGS STORED IN ACCESSIBLE CONVEN-
VENTIONAL MEMORY ADDRESSES FOR OTHER
PROGRAMS TO RUN YOUR ANTENNA OR FOR
OTHER APPLICATIONS AFTER ENDING SESSION.
Plug In distance and forward bearing to other
station and get his latitude and longitude .
Plug in decimal latitude/longitude and get stand-
ard degrees/mins/secs accurate to 1 millisecond .
Plug in standard degrees/mins/secs, get decimal
latitude/longitude, immediately get data 1-7.
Min . '386SX, DOSS/WIN, 300K Ram. $14 .95+2s+t .
K6PY, Paul Cooper, 9845 Oakdale Avenue
Chatsworth, CA . 91311-5361, (818) 341-3499 Voice
FAX (818) 772-8863, Ans . Mach . (818) 993-8459

Coefficient() ;
Window() ;
Symmetric() ;
FregReeponse() ;
Conversion() ;
FregResponse_16bit() ;

return(0) ;

m

July 1996 15

Z Ia O
z
m r

Name Call

	

o T
DO -4 n

0 Address 0n a mZ 0
DG)m Zz ~>

01N State r
Zip or

n C C
to Z m

_zOo a
City Province' Postal Code'

y
om mJ

0aM
L	 nmmm

-izr yZC O
oCn >mm

Name Call v00i TI
C

D
°o. ZOX 	J

N Address m z 00 00D State
aNZip or mf m

City Province' Postal Code' {n

/* Calculate frequency response in decibels */
c[j]=20 .0*(logl0(fabs(a[j]))) ;
printf("h18f''S25f\n", a[j],c[j]) ;
fprintf(f, "%10f\n", c[j]) ;
)
fclose(f) :

return ;
3

/* The function ArrayMultiply() multiplies the FIR filter

	

*/
/* coefficients with the appropriate window values on a pair- */
/* wise basis .

	

*/

if(Coeffs_l6bit[j] c= 32768)

Coeffe_l6bit[j7
Coeffe_16bitfj]

= (double)(Coeffe_16bit[j]/(float)32768 .0) ;
-= 2 .0 ;

void ArrayMultiply(double WindowWt)

1

else

Coeffe_16bit[j] _ (double)(Coeffs_l6bit[j]/(float)32768 .0) ;

BPCoeffs[j] = WindowWt ;

return ;

Estimating T-Network Losses
at 80 and 160 Meters

T network tuners are popular for
matching antennas for 160
through 10 meters. Recent

articles by Frank Witt, AI1H, and
Andrew Griffith, W4ULD, addressed
how to measure tuner loss for various
resistive loads, gave some example cal-
culations and measurements and
showed how to adjust the tuner for
minimum loss . 1 ' 2 Measuring your
tuner's loss is the only sure way to
know, but by examining the worst case
losses at various standing wave ratios,
some useful simplifications and esti-
mates of tuner losses can be made .
Simple computer programs can accu-
rately analyze your tuner once you
know the component values, and all
I Notes appear on page 20 .

6510 S Roosevelt St
Tempe, AZ 85283

16 QEX

T-network tuners are common, but are
they good? You may be surprised.

By Kevin Schmidt, W9CF

the numerical results here can be ob-
tained in this way, but often a "back of
the envelope" calculation can give ad-
ditional insight . You can, for example,
look at a hamfest tuner, or read the
advertised specifications of a tuner,
and easily make an educated guess of
the sort of power loss that you can ex-
pect on 80 and 160 meters .

Fig 1A gives the schematic diagram
of a typical T-network tuner . Since
most of the loss is in the coil, lossless
capacitors are assumed, and coil loss
is included by the equivalent parallel
resistance QXL . Fig 113 shows an
equivalent circuit where the desired
impedance Rp=50 b2 in series with the
input capacitor C I is transformed into
its equivalent parallel resistance and
reactance . The output resistance R
and reactance X, in series with the
output capacitor C 2 , are also trans-

formed into their parallel equivalents .
The input impedance will be 50 S2 if

the tuner elements are selected so that
the parallel equivalent output resis-
tance in parallel with the coil loss re-
sistance gives the parallel equivalent
input resistance :

Ro

	

_

	

R

	

+ 1

R2 + (XC2 + X)2 QX LRoz + X
z

IC
Eq 1

and if the parallel reactances are
tuned to resonance :

0-XCI +	XC2+X

	

+ 1
Ro + Xc 1 R 2 + (XC2 + X)2 XL

Eq 2
The usual T network has C 1 , C2 and

L all variable . Since there are only two
matching equations, many combina-

tions will provide a match . The opti-
mum combination is the one that mini-
mizes power loss . The fractional power
loss is the ratio of parallel equivalent
input resistance to the the parallel coil
resistance .

Notice that the parallel equivalent
source and load resistances are larger
than either of the original source or
load resistances . In other words, any
T network will transform the load re-
sistance to a higher value that must
also be higher than 50 4 . It then trans-
forms this high value down to 50 Q to
produce a match . Typical examples at
80 m would be a 10-Q load resistance
transformed to a 4-kI2 parallel equiva-
lent, which is transformed back to
50 Q, while a 100-52 load resistance
might be transformed to 1 kQ before
being transformed back to 50 Q . The
loss mechanism is now easier to see .
For these typical cases, the coil reac-
tance will be around a few hundred
ohms. The parallel equivalent coil re-
sistance for a coil of Q=100 would be
10 or 20 kQ . This resistance is enor-
mous compared to 50 S2, and initially
you might be tempted to ignore it, but
it is placed across a point in the circuit
where the impedance is transformed
to a few kQ . This means that the loss
would be on the order of 10%, hardly
negligible if a 1500-W transmitter is
used-unless your coil is designed to
dissipate 150 W .
As discussed by Griffith (Note 2), a

typical T network designed for 160
through 10 m has compromises . One
of these is that the capacitors typically
have a maximum value of 200 to 300
pF. Another is that L is usually a roller
inductor . Tom Rauch, W8JI, who has
investigated the Q of some roller in-
ductors, tells me that a rough estimate
of the Q of high-quality, off-the-shelf,
commercial roller inductors would
range from a low of around 20 at low
values of inductance, up to a maximum
Q around 100 . Custom roller inductors
can have a higher Q . Since 80 and
160 m are the lower frequency limits
of these tuners, and the antennas to be
tuned there are often relatively short,
or far from resonance, losses for these
bands are an important concern . Prob-
lems also occur at the high frequency
limit of these tuners with large
stray reactances, minimum compo-
nent values and low coil Q . Here I will
concentrate only on performance at
lower frequencies .
Maximum loss occurs with low-

impedance loads . In Fig 2 I show a
Smith chart where I have plotted
points joined by straight lines to

approximate contours of constant loss . 0.5 dB and the outer group 1 .0 dB of
The inner group of points corresponds loss . Because the contours are cen-
to a loss of 0 .3 dB, the middle group tered toward the right hand side of the

A

B

XC1 +R
R0

Fig 1-A typical T network connected between a source designed for a termination
of Ro and a load impedance consisting of a resistance R and a reactance X. The coil
loss is shown as a parallel equivalent resistance (A). An equivalent circuit for the T
network where all elements have been transformed into parallel equivalents (B) .
Matching requires the load and source parallel equivalent resistances to be equal
and all the parallel equivalent reactors to resonate .

XL

	

XL

	

RZ+kX+XC2

	

RZ +(X+XC2)
X+XC2

	

R

/

	

I- / /

I

r~

	

p,~

	

qtU

W

X

Fig 2-A Smith chart, normalized to 50 S2, showing points of constant loss for a T
network with 250-pF capacitors and a coil Q of 100 . The inner set of dots are at
points with 0 .3 dB of loss. The points have been joined by lines to guide the eye .
The outer set of points corresponds to 1 dB loss and the middle set corresponds to
0.5 dB of loss .

July 1996 17

chart, which corresponds to higher
impedances, lower losses tend to occur
at higher impedances and higher
losses at lower impedances for a given
SWR. The contours are shifted toward
the top of the chart, which indicates
somewhat lower losses for inductive
rather than capacitive loads . Table 1
shows the loss at 3.7 MHz for a tuner
with capacitors with a maximum value
of 250 pF, coil Qs of 50, 100 and 200,
and purely resistive loads . The tuner
is adjusted to give the least loss .

Loads with significant reactance also
can be matched with a T network. Table
2 shows the worst-case loss and the
load that causes the maximum loss in
the network for an SWR of s, calculated
by a straightforward numerical search
on a computer . The load shown is that
for a Q of 100 . Detailed analytic calcu-
lations show that the worst-case loss
for SWR greater than about 2 occurs at
an impedance that is slightly capaci-
tive, and is given approximately by :

R = RO
S

Ro

	

Eq 3
2XC2

which agrees with the load calculated
numerically and shown in Table 2 .
A comparison of Tables 1 and 2

shows that while the maximum loss
for a given SWR is at a slightly capaci-

X=

A

B

C

18 QEX

m

X 1 XC2

tive load, an excellent approximation
to the worst case loss at a given SWR
is given by calculating with a purely
resistive load with :
R = !?o

S

This numerical result is verified by
analytical calculations that show that
the additional loss for the reactive load
over the purely resistive is given
roughly by an additional factor of

Rp /(4X 2
C2), which changes the calcu-

lated loss by only a few percent .
The usefulness of these results is

that the worst-case loss can be ap-
proximated simply . For typical capaci-
tor values used and with these low-
resistance loads, the magnitude of the
capacitive reactances of C 1 and C 2 at
80 and 160 m is significantly larger
than either R O or the load resistance
R; a 250-pF capacitance corresponds
to roughly 175 Q at 80 m and 350 Q at
160 m. If the loss is assumed small,
Eqs 1 and 2 can be approximated by :

Eq 4

The ratio of the power dissipated in the
coil Ploss to the power input P is ap-
proximately :

Ploss _ X
2
C1

P ROQXL
Using Eqs 5 and 6, this becomes :

ploss

	

(s + s)JXC.2 J
P

	

RoQ
This equation shows that the value of
JXC2 I should be minimized to minimize
the loss . Therefore, the capacitors
should be adjusted to have the largest
value they can while achieving a
match. For this low-impedance case,
C2 should be set to its maximum value .
The loss in the T network in dB is :

Eq 7

Eq 8

Table 1-Calculated loss in dB for a T-network tuner at 3 .7 MHz using the
full equivalent circuit of Fig 1 B with input and output capacitances of
250 pF, with resistive loads, R, and coil 0 shown .

HI	11H

XL TC2

	

Table 2-Calculated worst-case loss and corresponding load for a
T-network tuner at 3 .7 MHz using the full equivalent circuit of Fig 1 B with/)/, / input and output capacitances of 250 pF. The Rand Xvalues shown are
for Q=100 .

Fig 3-(A) The Ultimate transmatch
circuit, (B) the SPC transmatch circuit
and (C) an L network for matching low-
resistance loads .

R SWR Loss (dB) Loss(dB) Loss(dB)
Q=50 Q=100 0=200

1 50:1 7.47 4 .99 3 .08
2 .5 20 :1 4.62 2 .79 1 .57
5 10:1 3.00 1 .69 0.91
10 5 :1 1 .85 1 .00 0.52
25 2 :1 0.95 0 .49 0.25
50 1 :1 0.62 0 .31 0.15
100 2:1 0.53 0.26 0.13
250 5:1 0 .43 0 .21 0.10
500 10 :1 0 .37 0 .18 0.08
1000 20:1 0.39 0 .20 0.10
2500 50:1 0 .61 0 .31 0.15

R X SWR Loss(dB) Loss(dB) Loss(dB)
Q=50 Q=100 Q=200

50 0 1 :1 0 .62 0.31 0.15
26 -7 2:1 0.97 0 .50 0.25
10 -8 5 :1 1 .89 1 .02 0.53
5 -8 10:1 3 .05 1 .72 0.93
2 .5 -8 20:1 4.69 2.84 1 .60
1 -8 50 :1 7 .56 5.06 3 .13

R
XC1 =

R
XC2 - sXC2 Eq 5

and
1 1

	

1
XL XC1 XC2

Eq 6

LdB =-10log 10 1-loss E q 9

Since the approximate formula is only
good at small values of loss, I can ex-
pand the logarithm without making
the approximation worse, using :

1og10(1-x)=- x
ln(10) Eq 10

If the frequency f is given in MHz and
the maximum capacitance of the
capacitors is written as Cmax and
given in pF, then using R0=50 Q :

LdB = 14,000 s+js

	

Eq 11
C.a.f Q

The results of Eq 11 are shown in
Table 3 and can be compared with
those of Table 2 . For losses less than a
dB or two, the agreement is good .
Eq 11 allows us to estimate the

worst possible loss that can occur with
an output SWR of s . The loss can be a
lot smaller; for example if the SWR is
5, but corresponds to a purely resistive
load of 250 Q, Eq 11 greatly overesti-
mates the loss. However, if the SWR of
5 corresponds to a purely resistive load
of 10 S2, Eq 11 should fairly accurately
predict the loss . 3

Only the product of the Q value of the
coil and the maximum value of the
output capacitor needs to be measured
or estimated to use Eq 11 . The maxi-
mum value of the capacitor is often
given in the tuner specifications . If not,
it can be easily measured or estimated
from handbook formulas from the size,
spacing and number of plates . The coil
Q can be guessed, or, for a more accu-
rate estimate, measured using an RF
bridge or Q meter . Alternatively, mea-
suring the loss for a 50-Q load and then
applying Eq 11 will give a value of
QCmax at the measurement frequency .
This matched loss can be measured by
matching a 50-52 dummy load with
your tuner and using a power meter to
measure the input and output powers .
Once QCmax is known, it can be used to
calculate the worst case loss at other
SWR values .
Another popular tuner uses a differ-

ential T network . In this network the
capacitors C 1 and C 2 are ganged to-
gether so that their values sum to ap-
proximately Cmax . The worst-case loss
can be calculated as before and is :

2
(1+

	

)
L IT - 14,000		Eq 12

CmaxfQ

The worst-case loss of the differential
T network is a factor of 2 worse at an
SWR of 1, but becomes the same as the

standard T for large values of SWR .
This disadvantage is offset by the con-
venience of having only two compo-
nents to adjust, and by the fact that
one source of operator error is elimi-
nated since a really bad set of compo-
nent values cannot be chosen . This is
unlike the standard network where
the operator can set the components to
values that produce a match but
greatly increase losses .

Other T-type configurations can be
examined. The Ultimate and SPC
transmatches are shown in Fig 3A and
3B respectively . 4,5 In these, one of the
capacitors in the network is replaced
with a two-section variable . For the
Ultimate transmatch, at 80 or 160 m,
the reactance of the capacitor across
the input is significantly larger than
50 Q, so it has little effect . You can
simply ignore it in the loss analysis
here; the extra section just increases
the cost of the transmatch without
improving it. The SPC transmatch has
the second section of the output ca-
pacitor connected across the coil . The
worst-case loss of this circuit is always
greater than the standard T network .
The analysis above is easily extended
by adding this additional capacitance
across the coil . For the SPC network,
the loss, when matching load resis-
tances smaller than R0 , is given by :

LdBC = 14, 000 2s +
CmaxfQ

Table 3-Worst-case loss for a T-network tuner at 3 .7 MHz with input and
output capacitances of 250 pF, using Eq 11 .

Table 4-Worst-case loss on 80 m calculated from Eq 11 and compared to
the loss measured in Note 1 for the Heathkit SA-2040 tuner .

Eq 13

where Cmax is the maximum capaci-
tance of one section of the output ca-
pacitor for the SPC circuit . The loss is
50% more than a standard T network
for an SWR of 1, increasing to double
the loss as the output resistance drops .
Unlike the differential T network,
there do not appear to me to be any
benefits from this circuit that offset
this additional loss .

It is amusing to compare the T-net-
work results with those of a simple L
network designed to match a resistive
low impedance load, as shown in Fig
3C . The result is :

LdB ln(110) ~Q I

	

Eq 14

For this resistive load, the simple
L network is better by an overall fac-
tor of IXC2 1 / R0 which is about a factor
of 7 for Cmax of 250 pF at 160 m . In
addition, the loss for a load of 50 Q is
zero (where the L and C values are
both zero), and it increases less with
SWR than for the T networks . The
penalty is the limited matching range .
An L-network tuner needs to be
reconfigured to match a wide range of
loads; this switching of components
can get complicated .

The peak voltage across the output
capacitor of a T network for these loads
can also be calculated within these
same approximations . Since the series
capacitors' reactance is significantly

July 1996 19

SWR Loss(dB) Loss(dB) Loss(dB)
Q=50 0=100 Q=200

1 :1 0.61 0 .30 0.15
2:1 1 .03 0 .52 0 .26
5 :1 2.19 1 .10 0 .55
10 :1 3.98 1 .99 1 .00
20:1 7.41 3.70 1 .85
50:1 17.28 8 .64 4 .32

SWR Measured Loss (dB) Calculated Loss (dB)

1 :1 0 .6 0.6
2 :1 0 .8 0.8
4 :1 1 .2 1 .3
8 :1 2 .6 2.4
16 :1 4 .1 4.5

larger than 50 Q, the voltage across
the source can be ignored to get an
estimate of the peak voltage . The peak
input current is I = fP / R o . The
peak voltage across the input capaci-
tor is therefore :

V = IIX" , 2P
= RHXC1I

0

20 QEX

Eq 15

Substituting as above for the value of
XC 1 in terms of Cmax in pF, the
frequency f in MHz and the SWR s
gives the approximate peak voltage
across the capacitors for the standard
T network with R 0=50 Q:

V 100,000 CP ~

	

E 16q

Table 5-The "back of the envelope" formulas for the worst-case loss and
maximum peak voltage as a function of the SWR s derived in the text . f is
the frequency in MHz, Cmax is the maximum value of the output capacitor
in pF, Q is the coil Q and P is the power . The formulas for the ultimate
transmatch are the same as for the standard T network .

Eq 11 gives the calculated values at
other loads, shown in Table 4 along
with the measured values . The values
agree within about 10% . This level of
agreement is partially fortuitous, but
these results show that the simple
"back of the envelope" calculations
work .
For convenience, I have gathered

the approximate loss and peak voltage
formulas in Table 5 .
These results point out some funda-

mental problems in using a 160
through 10-m T-network tuner at 80
and especially 160 m . Even feeding a
resistive 50-Q load with a tuner with
250-pF capacitors and a coil Q of 100
gives a loss of about 0.6 dB. With a
1500-W transmitter, the coil will have
to dissipate about 180 W . I doubt if
many tuners can stand up to that .
Increasing the SWR to 3 increases the
worst-case loss to 1.3 dB, and the dis-
sipation could increase to almost
400 W. Clearly, a real 1500-W 160-m
T-network tuner needs to have signifi-
cantly larger capacitors and a high-
quality coil in a large cabinet to mini-
mize loss .
I would like to thank Tom Rauch,

W8JI, for reading a preliminary ver-
sion of this work, for many helpful
comments and for providing me with
reasonable estimates of the Q of the
coils in these networks .

7t

	

fCmax

This equation also works for both the
Ultimate transmatch and SPC tuner
circuits . For the differential T net-
work, the relationship between C 1 and
C2 changes the result to :
V _ 100,000 '

n fC

	

1 + s Eq 17
max

The power-loss equations can be
compared to some measurements
given in Frank Witt's article (Note 1) .
The only T network that he measured
was a Heath SA-2040, which has the
Ultimate transmatch configuration .
This tuner does not cover 160 m . The
input capacitor has a maximum value
of 125 pF and the output capacitor has
a maximum value of 170 pF . Because
these values are not equal, a little care
is needed. For a 50-Q input and output
impedance, the capacitor values must
be equal . This means that the output
capacitor can have a maximum value
of 125 pF for a match . However, when
the output resistance is reduced, Eq 5
can be applied to show that for loads
below about (125/170) 2 x 50 S2, or about
27 Q, the full 170-pF value of the out-
put capacitor can be used . The mea-
sured loss with a 50-Q load at 80 m was
13%, which corresponds to 0 .6 dB . Con-
verting this into a Q value using Cmax
of 125 pF gives a Q of approximately
100, a reasonable value . Using this Q
value and a Cmax value of 170 pF in

About the Author
Kevin Schmidt, W9CF, was first li-
censed in 1966 as WA9THN. He re-
ceived an AB degree from Washington
University and a PhD from the Univer-
sity of Illinois . Kevin is an associate
professor of physics and astronomy at
Arizona State University, where he
uses and develops methods to simulate
the quantum mechanical behavior of
many-particle systems using Monte
Carlo techniques and high-perfor-
mance computers .

Notes
'Witt, Frank, AI1H, "How to Evaluate Your
Antenna Tuner," Part 1, QST, April 1995,
p 30; Part 2, QST, May 1995, p 33 .

2 Griffith, Andrew, W4ULD, "Getting the Most
Out of Your T-network Antenna Tuner,"
QST, January 1995, p 44 .

3 Analytic calculations show that the least
loss with a purely resistive load will occur
approximately when both capacitors are
set to the maximum value and the load re-
sistance is R = X, IR , where X, is the
reactance of one of tie capacitors . The
minimum loss with a resistive load is ap-
proximately half that of the loss for a
matched load of Ro =50 S2 if the coil Q re-
mains the same . This result and Eq 11
give reasonable upper and lower bounds
to the loss .

4 McCoy, Lewis G ., W11CP, "The Ultimate
Transmatch," QST, July 1970, p 24 .

5 Straw, R . D., Editor, The ARRL Antenna
Book, 17th Edition,"A Transmatch for Bal-
anced or Unbalanced Lines," p 25-8 .

III

Network

Standard T

Loss in dB

14,000 s +J

Peak Voltage

100, 000 '
4

CmaxfQ

(1 + C
2

71

	

fCmax

Differential T 14,000 100,000 '
(1+,~s)

SPC

CmaxfQ

14,000 2s + ~s

Jt

	

fCmax

100, 000 ' vS

CmaxfQ 71

	

fCmax

The Copper Wire Gauge for
Electrical Technology

An explanation of the AWG wire gauge system, with
some handy tricks for converting between gauge and size.

Introduction
Insulated copper wire is used exten-

sively in electrical and electronics
applications. In amateur radio use, it
is predominant. Copper is a metal with
excellent thermal, electrical, me-
chanical and physical characteristics ;
unequaled in its cost-benefit proper-
ties . Hence its widespread use
throughout the world of electrotech-
nology. Most amateur radio circuits
use insulated circular-cross-section
(round) copper wire . Presently, in
Canada, the US and other countries,
the round copper wire is based on the
American Wire Gauge (AWG) system .
In this article, the basis for this gauge

151 West Osborne Road
North Vancouver, BC V7N 2P9
Canada

By Antonio L. Eguizabal, VE7FIF

is presented, together with some of its
interesting properties .

Sizing of Round Copper Wire
Circular-cross-section, bare copper

wire can be sized in several ways . For
smaller conductors (up to No . 4/0 or
0000 AWG) it follows the American
Wire Gauge . 1 For larger conductors,
the tendency is to use the cross-section
area expressed in circular mils (the
area corresponding to a circle of 0 .001
inches, or 1 mil, in diameter) . The
AWG system uses inches and feet and
has no direct equivalent in the metric
system .
The metric world usually sizes

round copper conductors by their
cross-section area in square millime-
ters (mm 2) and sometimes uses a
system based on the diameter in milli-
1 Notes appear on page 23 .

meters for small wires . 2 In the UK,
round copper wire follows the Stan-
dard Wire Gauge (SWG) 3 , which is
similar to the AWG but is not always
exactly equivalent, as shown in the
wire tables of Note 2 . To make matters
more confusing, other systems are
used for other materials, such as the
Steel Wire Gauge, the Birmingham
Wire Gauge, the Old English Wire
Gauge, the old Paris Gauge, and so on .
For a history of wire gauges, the
reader can consult Note 4 .

The AWG System
The American Wire Gauge was in-

vented by J . R. Brown in 1857 and is
also known as the Brown and Sharp
gauge. It is the prevalent wire gauge
in North America and other countries
for solid, round, bare copper wire of
diameter less than 0 .46 inches . Its use

July 1996 21

is a defacto standard for Canada and
the US, being specified for electrical
wiring using copper wire as regulated
by the Canadian Electrical Code and
the National Electrical Code in the
United States . 5 '6

Together with other gauges such as
the ones already mentioned, the AWG
system has the property that its sizes
represent approximately the succes-
sive steps in the process of wire draw-
ing (pulling through a hard steel die of
known diameter) .
Its numbers are retrogressive-a

larger number denoting a smaller
wire-corresponding to the successive
drawing operations. For example,
No. 0 AWG could be the first pass and
No. 1 AWG the second pass through a
smaller diameter die . Actually, the
AWG system starts at No . 0000 (or
4/0 AWG) and stops at No . 50 AWG .
The gauge numbers obey a math-
ematical relation and are not arbi-
trarily chosen as it may appear at first
glance .
The basis of the AWG is a math-

ematical law. I briefly mentioned the
relation in a previous article, which is
repeated here for completeness .? The
gauge is specified by two diameters
and the law that a given number of
intermediate diameters are formed by
a geometrical progression . Thus, the
diameter of No . 0000 or 4/0 AWG is
defined as 0.4600 inches and the diam-
eter of No . 36 AWG is 0.005 inches (see
Notes 1 and 2) . There are 38 sizes be-
tween these two, hence the ratio of any
diameter to the next diameter of a
larger size is given by :

39 0.4600 = 3y -

0.0050

	

~92 = 1 . 1229322

This is called the progression con-
stant of the AWG system. It can be
verified with a calculator by taking the
logarithm (any base will do) of 92, di-
viding by 39 and then taking the anti-
log (same base) of the quotient . A good
calculator will display as many digits
as shown here-or more . My HP-41CV
shows 1 .122 932 197 when FIX is set
at the maximum of 9 digits .
This number has some interesting

properties :
a) The square ofthe progression con-

stant is (1.1229322)2=1 .2610 .
b) The sixth power, that is the

ratio of any diameter to the diameter
of the sixth greater number is :
(1.1229322) 6=2.0050 .
c) The fact that b) is so close to the

number 2, is the basis of numerous
useful relations and computation
short cuts .

22 QEX

Eq 1

From the above, the following are
approximate rules which apply to the
AWG system and they are easy to re-
member :

1. An increase of three gauge num-
bers (say from No . 21 AWG to No . 18
AWG) doubles the area and weight,
which consequently cuts in half the dc
resistance .

2. An increase of six gauge numbers
(say from No . 18 AWG to No . 12 AWG)
doubles the diameter .

3. An increase in ten gauge numbers
(say from No. 12 AWG to No . 2 AWG)
increases the area and weight by ten
and this reduces the dc resistance by
ten times .

4 . A No. 10 AWG round copper wire
has a diameter of about 0 .10 inches, an
area of about ten thousand circular
mils and a dc resistance of approxi-
mately 1 Q per 1000 feet (standard
annealed copper at 20° C) .

5. The weight ofNo. 2 AWG copper
wire is approximately 200 pounds per
1000 feet .

6. The diameter of No . 12 AWG is
very close to 2 nim (exactly 2 .05 mm) .

7. The diameter of No. 18 AWG is
very close to 1 mm (exactly 1 .02 mm) .

8 . The diameter of No . 24 AWG is

very close to 0.5 mm (exactly 0.511
mm) .

9 . The diameter of No . .30 AWG is
very close to 0.25 min (exactly 0 .254
mm) .

These approximate rules are easy to
apply when winding coils, transform-
ers or inductors for ham radio use . No
consideration is given here to the in-
sulation thickness, as this varies from
manufacturer to manufacturer in the
case of enamelled wire (ie, Formvar, a
good thin insulating material) . The
insulating layer thickness also varies
with the size of the wire . For demand-
ing applications, the supplier's techni-
cal data should be carefully checked .
For example, see Note 8 .

An Additional Thought
For those interested in obtaining the

diameter of a round copper wire given
its AWG number, without the use of
tables or reference handbooks (Notes
2 and 3), I have written a short pro-
gram for the popular HP-41 CV pro-
grammable calculator . Using a com-
puter, I believe, is a bit of an overkill
in this case . The actual program is
shown in Table 1 and it is not to diffi-
cult to rewrite for other programmable

Table 1-HP-41 CV Program for Converting AWG into mils and mm .

01 LBL ALPHA WIRE ALPHA
02 LBL 01

<program name>
<begins branch/loop>

03 ALPHA WIRE SIZE? ALPHA
04 XEQ ALPHA PROMPT ALPHA
05 XEQ ALPHA INT ALPHA
06 STO 01

<asks for AWG number>
<makes AWG integer>

07 51
08 STO 02
09 RCL 01
10 RCL 02
11 X<_Y <checks if AWG<_50>
12 GTO 01 <if not start again>
13 92 <calc of prog const>
14 LN
15 39
16=
17 STO 03 <stores 1 n kawg>
18 RCL 01 <calc geom progression>
19 CHS
2036
21 +
22 x
23 ex
245
25 x <diameter in mils>
26 R/S
27 0 .0254
28 x <diameter in mm>
29 GTO . . <end>

machines. A very small error may ap-
pear in the calculated diameter when
compared to the wire tables in Note 2,
as these numbers are rounded off to
reduce the decimal digits .
The following relation, derived from

Eq 1, is used to convert an AWG num-
ber to diameter :

dN =5exp136-NJ k, 127., (mils)

k
In92

	

Eq 2
39

The above equation is used as the
basis of the program shown in Table 1 .
You must load it first by setting the
HP-41CV to "Prgm ." Once loaded, it
will stay in memory . To run this pro-
gram, called "Wire," do the following :
a) Do XEQ ALPHA WIRE ALPHA .

This invokes the WIRE program .
b) Press R/S : This will display a

WIRE SIZE? prompt .
c) Enter the AWG number, then

press R/S .
d) The display shows the diameter

in mils . Press R/S again for mm .
e) Press RS to continue with another

AWG computation .
Please note that for large wire sizes

you can enter the numbers as :

No . 1/0 AWG: enter as "0"
No . 2/0 AWG: enter as "-1"
No . 3/0 AWG: enter as "-2"
No . 4/0 AWG: enter as "-3", etc .

Conclusion
The American Wire Gauge system

has been briefly presented, with its
basic properties and some easy rules to
remember when building projects us-
ing round copper wire . A small error
exists in the exact calculation of the
diameter of the wire, as the insulation
thickness of the enamel is ignored .
This is a small error (about 0 .001 inch
or 1 mil) that does not greatly affect the
practice of winding small coils, induc-
tors or transformers for amateur radio
use. The calculator program shown
converts AWG numbers to diameters
in mils and mm for any gauge of wire
larger than or equal to No . 50 AWG .

About the Author
Antonio L. Eguizabal is a graduate

of the University of Santiago with a
BSc (Hops) and MASc from the Uni-
versity of British Columbia, both in
Electrical Engineering. He was first
licensed as CE3ACO in 1967. His
interestes include analog, digital, RF

circuits and telecommunication sys-
tems, as well as experimenting with
novel antennas for professional and
amateur work. Antonio is also a volun-
teer radio operator with the North and
West Vancouver Emergency Program .

Notes
'Dwight, H .B ., Professor at MIT, Electrical

Coils and Conductors, Their Characteris-
tics and Theory, Chapter 5, McGraw Hill
1945 .

2Fink, D .G, and Beaty, H .W., Standard
Handbook for Electrical Engineers, Chap-
ter 4, Twelfth Edition, McGraw Hill, 1987 .

3Staff of Siemens A.G ., Electrical Engineer-
ing Handbook, Chapters 1 and 8, John
Wiley and Sons, 1990 .

4 NBS Handbook 100, National Bureau of
Standards, National Technical Information
Service, US Department of Commerce,
Washington, DC .

5 Canadian Electrical Code, Section 2-116,
Canadian Standards Association, 1990,
Rexdale, Ontario .

6 National Electrical Code Handbook, Article
110-6, National Fire Protection Associa-
tion, 1990, Quincy, Massachussetts .

7Eguizabal, A.L ., "Inductance of Solenoid
Coils : A Radio Amateur View, Part II, The
Canadian Amateur, February 1994, p 53 .

8 Belden Wire and Cable Master Catalog,
Cooper Industries, 1989, Richmond,
Indiana .

	

m

Box
Metal Cabinets

MODEL W . , • •

	

A• B" YODEL -.1,

	

A• B^

4RU1OHD
0080' ANODIZED AL UMINUM
SIDES ARE 0 125'
ANODIZED ALUMINUM

Heavy Duty
Rack Chassis

_DEL	
l0U7RD

	

1801
190

	

,5a ,7,01 1unJn 1001 aex
•

	

•
7• 490 1~'0 qt W 15201

,3301
1701

•

	

7• 3,10 _ 137 W 59 W

•

	

• 190 u W
8 W

gx WW

I t:TM

DSS

	

1 5J 75 M
Dse

	

a 7s
Dal

	

vW 7.
DSE

	

59 % %

DS ~0

	

,

	

J BS W
Ds .,,

	

91st

MDDIP
L

roe
R AOKS 8.•

	 IUCF anf
S RACE sn01N1r5',	7700781 7

RSR4
asn s

	

1

	

71

As'	
14

	

Mx
RSR,7	

71
8975

r rroT9;2s'1--T

Rs94-,3 e, 7s 9s W
ly, .,o-n

	

8771

1.

	

LE

0 75 1
(i~

w itINS S ESCO M

Mini Box-it'"
MODEL W,D .7 . . A' 8"OPT"

-

1-I(ALA)17 \ 50 R .K11!''
ao.7

MODEL

	

o ."~

Rsea

FRR
• D

1RU5

GREAT FOR LOW COST CONSTRUCTION
New Boxes for '96

sutQ'rJ-
RAWAWiNUi
Pail ANC
00 EMS'.~

UNLESS OTHERWISE NOTED BOX(. HAVE FI AT

PANELS CONSTRUCTED OF 11,XJ' ANODIZED

ALUMINUM (SIDES ARE 0725'1 FRONT AND
REAR PANELS ARE CLEAR . BALANCE OF BON IS

BLACK BLACK OR GOLD FRONT A REAR
AVAILABLE FOR AN ADDITIONAL 55 00

Rack Chassis
MODEL

	

5" MODEL W .I .r,

	

B°

Large Box-it'"
MODEL W .0,R .. A'

	

9' -

RF Shielded
,Steel Boxes

u

	

W,D.n

sea
6BA
se-s
sB4 ~e .z_-,,, 1301
sB4

	

3 .27,11

	

'Ss

	

10.271 6J 7

	

8
121

se. 1 .27 . 7 Bb
113 .11 .

	

925 ,
II FUD 1	

.5
	 -1

FnS-l 0)4 CA 1.,A1 19
F rru

	

v
FTSL1

	

55 . Xpne llI

	

7 .5

HEM

OEM

® SESCOM, INC .

2100 WARD DRIVE

HENDERSON.NV

89015-4249 U .S .A .

O F3 K::P E F3 1' O S A Y!
A=U . S . 48 STATES . MEXICO AND CANADA 8 = REST OF THE WORLD

ALL PRICES INCLUDE SURFACE SHIPPING'

$30-00
MINIMUM ORDER VISA

Monday
thru

Friday
T x, 81

x,-

ORDERS (800) 634-3457 ∎ FAX (800) 551-2749

OFFICE (702) 565-3400 ∎ FAX (702) 565-4828

TECH LINE (702) 565-3993 M-Th 8 am to 4 pm (PST)
SESCOM INC 1s not responsible for inadvertent typographical enors .

Prices and specdicalions are subject to change without notice .

3• .(

July 1996 23

IRUS 1 .,

	

• ,

	

, 3 , 79270 '- • !5a~ 6815

1 '

	

E R 77 65 W,RUTS
lams 1

3007 2
,Sn 5901 74%

lP[T 8P'.
192717 11,7 . 07 11

37 IS x
11

IF
7R U11
7"217

"sri
, 575

0725
65 %

%701
.7752501

mw ,15 	oW 51 11 3 sre9 tsar znEE
79014
792717

19,11,77
19,

	

5
32%
39%

,u • 7 006 .% 80	 r .v+RAaw471wMU13 'D . 7,77 57'5 66 .

1~ 1-1 ME-

YGAA
YC I2A
YC-IlA

1171 70 n 18 01 00MCSA
-A 1, 5 . 1 18 75

SCau
1175 YC75A , • 75 .7 70 75 31 5(,

'C ;A'
1850 19'5 41L'-76A ,`4435 3075 5175

5
zor5

70 : ME a7A
1 7' -1. .

	

s 37 W
nW

W W

5
uW
3725

" .•. -Z7

	

.1041w r̂v 7750
3101 3P

MC ,JA

	

-
79 75
7B "

3100
J9 R

YC-71A
YC.17A

	

0 . 6
75 01
4o w

30 0.'
36 X

+ 3e75 11% . IoW nW
MC,v 075 1*wrlau:l1

MC r A

	

, bW
50 W
5150

r
57AIOYi13(YrO~(wp4~'v~,~ . ..

MC 0A
SOW 6775 GdP .uPYer•s n .MP43' •w r

MPB (
MPB'2

5 1 75 , 355
:65 ,

MPea ' 7J5 !35
MPB- 75 , W
UP15 165 1Y5 1
MPB-6

	

' 1 5
MPB 7

2
2
35
75

265
2 25

371
115

MPB F,

	

3 zs in 371
MPB

9
35

I
315 355

MPB-10 L5 760 7J
MPB-n '
MPB43~

	

0 .2
4

145
40

J'1
111

330
6 1`•MPB47 2 . '7 .2

201
225 1'01

"PI-141 .3 .2 275 125 175
up B"15 : .6 .2 355 515 1

li
p:
B-117 .1 .3

615 '60 525MPB-16 : .8 .2
255 705 till

MPB-78 7 3 . 7 JED J65 3 ill
MPB-19

	

, .7 435 505 SITU
M'S -70 401 Still '
MPB-T + •

	

' 3 71 S Y7
MPB-23 ++' s till 6 1C 10 65
MPB-271 •' ., . 590 6501:55
MPB341 .a,

.F ; . .. x
e70 70013%

BAr1N0

LPB"1 7 •6 , . 10 .- ,
LP94 6 . A .2 11

. . 2
' mUP:

"5
U. 4 7 .912
LP8 "7 1 .1 11-1
1884 3 .7 17
LPB"9 . 15 41 25 .5
LPB ID '1
LPB11 • %`+5.
111112 1 . . . Ira

LPB-14 5 5'5 700
LPB-15 7350 nr
LPB46'„5,1 2550 302'
IPSO 8,101 2500 29Y'
LPB1EUP
" ::11
LPB"m

B,Cr3
:,1 ,,2,7

2750
19'5

1'4

1- 1
LPBa1 '

	

1,3 315]
LPB"22
LPB 23

l

	

1
A . 1 - 13

JS'S
44 1~

UPS 24 1 45

Eastern VHF/UHF Conference
The 22nd Annual Eastern VHF/

UHF Conference will be held August
23-25, 1996, at the Quality Inn
and Conference Center, Vernon,
Connecticut .

Friday will feature informal gather-
ings in the Hospitality Room . Regis-
tration, formal talks, VHF-SHF
band sessions, banquet and a VHF-
microwave trivia quiz are on
Saturday's agenda . A VHF-UHF
Swap `n' Sell and antenna gain mea-
suring will take place on Sunday .
Advanced registration (includes a

copy of the Proceedings) is $20, $25 at
the door . Sunday-only registration is
$5. Extra Proceedings are $12 each .
Banquet tickets are available by mail .
To register (make checks payable to
Eastern VHF/UHF Society) or for
more information, contact Rae Bristol,
K1LXD, 328 Mark Drive, Coventry,
CT 06238; tel : 860-742-8650. For in-

24 QEX

Upcoming Technical
Conferences

formation on the Swap `n' Sell, contact
Mark Casey, N1LZV, 303 Main Street,
Hampden, MA 01036; tel 413-566-
2445 .

For hotel reservation, contact Lori
Torizer at 1-800-235-4667 . The Qual-
ity Inn and Conference Center is lo-
cated at 51 Hartford Turnpike (Route
83), Vernon, CT 06066 .

1996 ARRL and TAPR Digital
Communications Conference
The 15th ARRL and TAPR Digital

Communications Conference will be
held September 20-22, 1996, at the
Quality Inn Seattle Airport in
Seattle, Washington (minutes from
SeaTac airport) .

This year's co-hosts are the Puget
Sound Amateur Radio TCP/IP Group
and Boeing Employees Amateur Radio
Society (BEARS) .
The ARRL and TAPR Digital Com-

munications Conference is an interna-

tional forum for radio amateurs in
digital communications, networking,
and related technologies to meet, pub-
lish their work, and present new ideas
and techniques for discussion. Pre-
senters and attendees will have the
opportunity to exchange ideas and
learn about recent hardware and soft-
ware advances, theories, experimen-
tal results and practical applications .
The Digital Communications Confer-
ence is not just for the digital expert,
but for digitally-orientated amateurs
of all levels of experience .
This year's conference will again

provide an entire morning with begin-
ning and intermediate presentations
on selected topics in digital communi-
cations . Some of the topics will in-
clude: APRS, Satellite Communica-
tions, TCP/IP, Digital Radio, Spread
Spectrum and other introductory top-
ics. Come to the conference and hear
these topics presented by the experts!

In addition to the presentation of
papers on Friday and Saturday, three
workshops will be held during the con-
ference. On Friday, Keith Sproul,
WU2Z, will hold a workshop on APRS
packet-location software . Keith is the
Chair of the TAPR APRS Special
Interest Group, developer of the
Macintosh and more recent co-devel-
oper of the Windows95 version of
APRS, and a leader in the area of
APRS technology . This is a unique
opportunity to gain insight into this
fast growing new digital aspect of
amateur operations that combines
computers, packet radio and GPS (Glo-
bal Positioning Satellites) . On Sun-
day, Dewayne Hendricks, WA8DZP,
will conduct a workshop focusing on
"How to utilize Part 15 wireless Radios
for Ham Applications ." Dewayne is an
expert in the area of commercial wire-
less systems; his company WarpSpeed
Imagineering, focuses on wireless
Internet connectivity . This workshop
presents an opportunity to learn how
Personal Communications Technology
(handheld and small business wireless
systems) can be used in the amateur
service. A second Sunday workshop
will focus on Wireless Networking us-
ing the WA4DSY 56K RF modem Tech-
nology. This workshop will focus on
the technology and accessories of cre-
ating and maintaining 56K networks
using the WA4DSY modem and equip-
ment compatible with it such as rout-
ers, digital driver cards, transverters
and repeaters . Use of WA4DSY 56K
equipment in the 219-220 band will
also be discussed .

Full information on the conference
and hotel information can be obtained
by contacting Tucson Amateur Packet
Radio, 8987-309 E . Tanque Verde
Road #337, Tucson, AZ 85749-9399 .
Phone: 817-383-0000. Fax: 817-566-
2544. Internet : tapr@tapr.org. Web :
http://www.tapr.org .

Microwave Update 1996
Microwave Update 1996 will be held

October 4-6, 1996, at the Ramada
Camelback Hotel in Phoenix, Arizona .
For those arriving Thursday, Octo-

ber 3, there will be tours of the Phoe-
nix area electronic surplus stores .
Tours will begin at 9 :30 AM and con-
tinue at various times throughout the
day. An X-Band EME demonstration
is planned for Thursday night at
WA7CJO's QTH .
The technical program will be de-

voted to frequencies above 902 MHz
and will include microwave test equip-
ment, low-noise amplifiers, TWT

power amplifiers and other pertinent
microwave topics. In addition to the
predominant "Who's Who in North
America Microwave" speakers, we cur-
rently have speakers scheduled from
Japan and Europe as well .

We will have a microwave flea mar-
ket on both Friday and Saturday night .
Noise figure measurements are also
planned. There will be a microwave
equipment auction held on Saturday
afternoon that promises to have some
high-power TWT ampliferes along
with other useful "junk ."
The Ramada Camelback Hotel offers

free airport transportation . Room
rates for the conference are $62 per
night for singles, $72 for doubles . For
reservations call 800-688-2021 or 602-
264-9290; fax 602-264-3068 .

Conference resistration is $40 prior
to September 22 and $45 at the door .
To register, or for more information,
contact Jim Vogler, WA7CJO, 2540 E .
Heatherbrae Drive, Phoenix, AZ
85016. Tel/fax : 602-954-0541 .

20th Annual Mid Atlantic States
VHF Conference
The 20th Annual Mid Atlantic

States VHF Conference will be held
October 5, 1996, at the Horsham Days
Inn in Horsham, Pennsylvania .
Sponsored by the Mt . Airy VHF

Radio Club, the conference continues
to present a wide variety of technical
papers covering all aspects of 50 MHz
through light frequencies . Talks on
operating, propagation, construction
and theory are among those requested .
Speakers are encouraged to contact
the conference chairman early .
Rooms may be reserved at the Days

Inn by calling 215-674-2500. Mention
"Packrats" or "Hamarama" for a dis-
count. A dinner will be held on Satur-
day evening. On Sunday, Hamarama,
our annual hamfest will be held at the

Our Apologies to Mr . Wien
Parker Cope's, W2GOM, March

1996 QEX article "Designing a Wein-
Bridge Oscillator," has stirred up some
correspondence .
The inventor's name is actually

Wien. The misspelling of his name
crept into several major reference

books about thirty years ago and the
error has become widespread .
The original Wien-bridge article,

"Meassuring Inductance with the'Op-
tical Telephone'," (a somewhat primi-
tive oscilloscope using a light beam
reflected off a speaker) appeared in
Annalen der Physik in 1891 .

	

m

Feedback

Bucks County Drive-In a few miles
north of Warrington, PA .

For more information contact : John
Sorter, KB3XG, Conference Chair-
man, at 1214 N . Trooper Road,
Norristown, PA 19403 . Tel : 610-584-
2489 . Email: Joh n KB3XG@aol .com,

1996 AMSAT-NA Space
Symposium and Annual Meeting
The 1996 AMSAT-NA Space Sympo-

sium and Annual Meeting will be held
November 8-10, 1996, in Tucson,
Arizona .
You know those times when you've

been too busy or thought "ho-hum"
about a ham event, so your buddy
went, and you "missed it"!? This event
is going to be good .
All the Southwest charm of Tuc-

son-clear, broad, blue skies, at a sea-
son when our temperatures are the
most comfortable . Friendly Southwest
people and experiences .
Meet and share with hams from

around the world .
Discuss and learn about the lat-

est ham radio satellites under
development .

Participate in Satellite Beginners'
forums or immerse yourself in the in-
tricate details of Amateur Space
Technology .

Enjoy demonstrations of the latest
satellite ground stations or take notes
on how to put together the absolutely
cheapest satellite ham station .
Bring your family ; have them enjoy

the tour to the Kitt Peak Radio Tele-
scope with you . Or see them in the
evening after they have spent the day
enjoying the tourist sites in the area .
Plan to not to miss it . For information

call Heather Johnson, N7DZU, tel : 520-
749-5106, email : n7dzu@ azstarnet .
com, or Larry Brown,NW7N, tel : 520-
886-1957, email: nw7n@amsat .org .

Ill

July 1996 25

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

