INCLUDING:

OMMUNICATIONS
UARTERLY

September/October 2002

See W6LSN’s SurCapAdapt in Tech Notes

A R R L The national association for
AMATEUR RADIO

225 Main Street

Newington, CT USA 06111-1494

2002 Shortwave Frequency
Guide

Schedules of clandestine, domestic,
and inteérnational broadcast statiors
wordwide! Quickly find frequencies
and a superb-aiphabetical list of
statons. Includes ancther 10,078
entries for utility stations (Red
Cross, United Natiors and more)

ARRL Order Neo, B663—534.95

2002 SHORTWAVE
PREQUENCY cAnne

2002 Super Frequency List

on CD-ROM

Includes all shorntwave broadeast
stations worldwide. pius all utility
stations from 0 t¢ 30 MHz. Nearly
40,000 entrnes! Find Ihe [atest
schedules of clandestine, domestic
and international broadcasting
services compiled by top experts
In this lield

ARRL Order No. 8671—$24.95

INDEPENDENT
ENERGY GUIDE

v pr—

Transmission Line
Transformers

—4th Edition
Tremendous ceverage of
the subject of broadband
transmission ling
fransfarmers, Guane’a
ard Ruthroft as well as
hundreds of real
transformers.

ARRL Order Ne, TLT4—$39

ELECTRICAL POWER
for HOME, BOAT & R\

The Mobile DXer

L A practical guide to succassful
mobile DXing. Learn how o
select and install mabiie aear
and pick anlenras
Understand propagation
mobile DX aperating tips. and
making the most of portable
operating.

ARRL Order No. TMDX—512.95

e Blubifls'
0% :

Electronic Applications

of the Smith Charl

Haw the chart is used tor designing
lumped element (nductors and
capacliors) and fransmissian [ine
circuils (coaxial wavegukle, siripline
or micrestnp lines), Includes tutorial
material on transmission line theary
and bebavior, circull represeniation
on the chart. matching networks,
natwork transformations and
broadband matehing

ARRL Order No. 7261—559

Practical Radio Frequency
Test & Measurement

Leam the basics of
performing fests and
measurements used in
radio-frequency sysiems
installation, proof of
perlormance, maintenance,
and troubleshooting. Provides
immediate applicatiors, test
sat-ups, procedures, and
interpretation of results.

ARRL Order No, 7954—§39.95

TRANSMITTER
Reilections I HUNTING

—Transmission Lines and RADIO DIRECTION
Antennas e
by M. Walter Maxwell, W2DU.
An in-gdepth treatment ¢f
transmission lines. standing
waves, anterna matching.
reflecied power and antenna
luners. Second adition

ARRL Order No. REF2—$19.95

Independent Energy Guide
—Electrical Power for Home,
Boat & RV

Covers fixed, portable, and
mobile energy systems: DC
charging sources and AC
pewer systems, solar, wind
and water power, battery
chargars. invertars. and more

ARRL Order No. B501—§19.95

HF Radlo Systems & Circuits
Includes Software! Comprehensive
caverage of system cefinition and
perormance requirements down to
the individual circuit elemants that
make up radio transmittars and
raceivers. Therough attention Is
given to key circuits like oscillators,
synthesizers, filters and amplifiers,
speech processing, AGC systems,
high linearity amplifiers. and selid
state power amplifiers,

ARRL Order No, 7253—875

winSMITH 2.0

An sasy-lo-use, flexibie
compularized Smith Chart.

Accalerate your RF and
microwave designs! Unlock &
greater understanding of
{ransmission lines and simplo
matching problems. 3.5-inch
instaliation diskette, Requires
Microsoft Windows.

ARRL Order No. 7946 —$80

33 Simple Weekend
Projects

A wide-ranging collection of
do-it-yourself electronics
projects. Useful accessories
for VHF FMing, projects for
salallile communications,
CW, simple antennas, and a
compiete HF station you can
build for around $1001

ARRL Order No. 7626—515.95

Transmitter Hunting

Radio Direction Finding
Simplitied
Cevers equipment and
techniques for HF and VHF
radio direction finding. Locate
jammers and other sources of
malicious Interference, engage
in spod hunting. even help
search-and-rescue groups!

ARRL Order No. 2701—824.95

ARRL Marketplace!

These publications have been added to the ARRL Library...
so you can add them to yours!

RF Components and Circuits
A comprehensive intcoduction
to understanding, designing
ard building RF circuits,
including fault-finding and use
ol lest equipment.

ARRL Order No. 8756—537.99

Radio-Electronic
Transmission
Fundamentals

Clear, conc'se explanations
of antennas. transmission
lines, and RF networks in
the framework of
electromagnetic field theory.

ARRL Order No. RETF—575

RATMOFLECTRONHU
TRANEMISSION
FINDAMENTALS

Build Your Qwn Test
Equipment

Bulld practical davices with
commonly-available
components. Multi-output

test bench power supply,
signal generator and tester. IC
tester, mullimetar, frequency
counter, and others.

ARRL Order No. 8604 —$310.95

International Microwave
Handbook

Operating techniques
equipment, system anaysis.
anlennas, propagation
transmission lines,
comporents, semiconductors
and valves, construction
techniques, and more.

ARRAL Order No. B739—3839.95

POWER
SUPPLY
COOKBOQOK

Power Supply Cookbook

A useful resource for amateurs
interested in circuit design, and
with a basic knowledge of
alecironics. A step-by-step design
framework lor power supplies,
many of which can be designed n
ess than a day

ARRL Order No. 8599—§39.99

Order Toll Free

1-888-277-5289

www.arrl.org/shop
Shipping and Handling instructions: US orders add 85
Tor otie item, plus $1 for ench additional item (10 max.). US

arders ure shipped via UPS. Tuternational orders add S2.00
1o the US shipping rate (S1200 max.). Orders are shipped
via surface madl, Other shipping options are svailable, Ploase

call or write for information

Sales Tax is required Lar shipments o CT Gneluding S7H),
VA 454 texcluding S/, CA (udd applicable L, exeluding
ST und Canada texeluding SM)

tel: 860-594-0355

The natianal association for

AMATEUR RADIO

ARRL

225 Main Street, Newington, CT 06111-1494 USA

fax: 860-594-0303 e-mail: pubsales@arrl.org World Wide Web: htip://www.arrl.org/shop

QEX 9/02

. L OMMUNICATIONS
INCLUDING: [yl prenry

QEX (ISSN: 0886-8093) is published bimonthly
in January, March, May, July, September, and
November by the American Radio Relay League,
225 Main Street, Newington CT 06111-1494.
Yearly subscription rate to ARRL members is $24;
nonmembers $36. Other rates are listed below.
Periodicals postage paid at Hartford, CT and at
additional mailing offices.

POSTMASTER: Send address changes to:
QEX, 225 Main St, Newington, CT 06111-1494
Issue No 214

N0 O
I 55 5 P I

EXS

Forum for Communieation:

About the Cover

A SurCapAdapt fixture
helps measure chip-
component values-
the story begins

onp 51.

Soe WELSH's SuiCapAdapt in Tech Noles,

ARRI

Mark J. Wilson, K1IRO
Publisher

Doug Smith, KF6DX
Editor

Robert Schetgen, KU7G
Managing Editor

Lori Weinberg, KB1EIB
Assistant Editor

Peter Bertini, K1ZJH
Zack Lau, W1VT

Ray Mack, WD5IFS
Contributing Editors

Production Department
Steve Ford, WB8IMY
Publications Manager
Michelle Bloom, WB1ENT
Production Supervisor

Sue Fagan

Graphic Design Supervisor
David Pingree, NTNAS
Technical lllustrator

Joe Shea
Production Assistant

Advertising Information Contact:

Joe Bottiglieri, AATGW, Account Manager
860-594-0329 direct
860-594-0200 ARRL
860-594-4285 fax

Circulation Department

Debra Jahnke, Circulation Manager

Kathy Capodicasa, Senior Fulfillment Supervisor
Cathy Stepina, QEX Circulation

Offices

225 Main St, Newington, CT 06111-1494 USA
Telephone: 860-594-0200

Telex: 650215-5052 MCI

Fax: 860-594-0259 (24 hour direct line)
e-mail: qex@arrl.org

Subscription rate for 6 issues:

In the US: ARRL Member $24,
nonmember $36;
US by First Class Mail:
ARRL member $37, nonmember $49;
Elsewhere by Surface Mail (4-8 week delivery):
ARRL member $31, nonmember $43;
Canada by Airmail: ARRL member $40,
nonmember $52;
Elsewhere by Airmail: ARRL member $59,
nonmember $71.
Members are asked to include their membership
control number or a label from their QST wrapper
when applying.

Features

3 Customize the Ten-Tec Pegasus—Without Soldering
By Mark E. Erbaugh, NSME

10 A Software-Defined Radio for the Masses, Part 2
By Gerald Youngblood, AC50G

19 Amateur Radio Software: It Keeps Getting Better
By Stephen J. Gradijan, WB5KIA

30 Understanding Switching Power Supplies, Part 1
By Ray Mack, WD5IFS

36 The DX Prowess of HF Receivers
By Tadeusz Raczek, SP7HT

41 Software-Defined Hardware for Software-Defined
Radios

By John B. Stephensen, KD60OZH

Columns
51 Tech Notes 61 Letters to the Editor
56 RF By zack Lau, W1VT 64 NextlIssuein QEX

In order to ensure prompt delivery, we ask that
you periodically check the address information
on your mailing label. If you find any inaccura-
cies, please contact the Circulation Department
immediately. Thank you for your assistance.

Sept/Oct 2002 QEX Advertising Index

Copyright ©2002 by the American Radio Relay
League Inc. For permission to quote or reprint
material from QEX or any ARRL publication, send
a written request including the issue date (or book
title), article, page numbers and a description of
where you intend to use the reprinted material.
Send the request to the office of the Publications
Manager (permission@arrl.org)

American Radio Relay League: Cov Il, 18 Noble Publishing Corp: 40

55, Cov llI Palomar: 29
Atomic Time, Inc.: 18 Ten-Tec: Cov IV
Buylegacy.com: 29 Teri Software: 60
Down East Microwave Inc.: 60 Tucson Amateur Packet Radio Corp: 35
Roy Lewallen, W7EL: 60 Universal Radio: 64

Nemal Electronics International, Inc.: 18

OEX-— Sept/Oct 2002 1

mailto:qex@arrl.org
mailto:permission@arrl.org

THE AMERICAN RADIO
RELAY LEAGUE

The American Radio Relay League, Inc, is a
noncommercial association of radio amateurs,
organized for the promotion of interests in Amateur
Radio communication and experimentation, for
the establishment of networks to provide
communications in the event of disasters or other
emergencies, for the advancement of radio art
and of the public welfare, for the representation
of the radio amateur in legislative matters, and
for the maintenance of fraternalism and a high
standard of conduct.

ARRL is an incorporated association without
capital stock chartered under the laws of the
state of Connecticut, and is an exempt organiza-
tion under Section 501(c)(3) of the Internal
Revenue Code of 1986. Its affairs are governed
by a Board of Directors, whose voting members
are elected every two years by the general
membership. The officers are elected or
appointed by the Directors. The League is
noncommercial, and no one who could gain
financially from the shaping of its affairs is
eligible for membership on its Board.

“Of, by, and for the radio amateur, ’ARRL
numbers within its ranks the vast majority of
active amateurs in the nation and has a proud
history of achievement as the standard-bearer in
amateur affairs.

A bona fide interest in Amateur Radio is the
only essential qualification of membership; an
Amateur Radio license is not a prerequisite,
although full voting membership is granted only
to licensed amateurs in the US.

Membership inquiries and general corres-
pondence should be addressed to the
administrative headquarters at 225 Main Street,
Newington, CT 06111 USA.

Telephone: 860-594-0200

Telex: 650215-5052 MCI

MCIMAIL (electronic mail system) ID: 215-5052
FAX: 860-594-0259 (24-hour direct line)

Officers

President: JIM D. HAYNIE, W5JBP
3226 Newcastle Dr, Dallas, TX 75220-1640
Executive Vice President: DAVID SUMNER,
K1z2z

The purpose of QEX is to:

1) provide a medium for the exchange of ideas
and information among Amateur Radio
experimenters,

2) document advanced technical work in the
Amateur Radio field, and

3) support efforts to advance the state of the
Amateur Radio art.

All correspondence concerning QEX should be
addressed to the American Radio Relay League,
225 Main Street, Newington, CT 06111 USA.
Envelopes containing manuscripts and letters for
publication in QEX should be marked Editor, QEX.

Both theoretical and practical technical articles
are welcomed. Manuscripts should be submitted
on IBM or Mac format 3.5-inch diskette in word-
processor format, if possible. We can redraw any
figures as long as their content is clear. Photos
should be glossy, color or black-and-white prints
of at least the size they are to appear in QEX.
Further information for authors can be found on
the Web at www.arrl.org/qgex/ or by e-mail to
qex@arrl.org.

Any opinions expressed in QEX are those of
the authors, not necessarily those of the Editor or
the League. While we strive to ensure all material
is technically correct, authors are expected to
defend their own assertions. Products mentioned
are included for your information only; no
endorsement is implied. Readers are cautioned to
verify the availability of products before sending
money to vendors.

2 Sept/Oct 2002 OEX-

Empirical Outlook

It All Comes Down to Marketing

That old saw “Build a better mouse-
trap and folks will beat a path to your
door” is ridiculous. Mousetraps are
still necessary, but it is unlikely any-
one will better the combination of
three pieces of steel, a spring and
some wood. That invention fills a
need by being simple, inexpensive
and effective. It is reusable, too.

In telecommunications, we seek to
fill needs to exchange information ef-
ficiently over long distances. Anything
that reduces the cost or increases the
speed of that is potentially outstand-
ing. More than anything else, digital
technology has given us the tools to
have a good whack at it. In keeping
with Amateur Radio’s legacy, we're
concentrating on those things that
seem most promising and contributing
what we know to the general knowl-
edge base. We're not redesigning
mousetraps, but does anyone outside
Amateur Radio know that?

Like some of our correspondents,
we feel the technical facets of Ama-
teur Radio are not getting the press
they deserve. Emergency prepared-
ness is apparently perceived as the
most valuable purpose of our service.
Perhaps that is because the public
associates the word “service” with
something providing ready and tan-
gible benefits. Most do not think
about the other reasons that we are a
service; for many of us however, those
other reasons are at least as valuable
as emergency preparedness.

In fact, emergency services we rou-
tinely provide would not be possible
had it not been for certain technical
innovations, much of the praise for
which is due to amateurs. However,
the average Joe doesn’t know that. All
he knows is that ham radio is sort of
like CB except you need a license. We
have this perceptual problem, but it is
no use sitting around and moaning
about it—do something!

Most of the writers we know are or
were involved professionally in com-
munications. They write about things
of interest to them and others like
them. We suspect that League techni-
cal publications, including QEX,
could have a broader appeal than
they currently enjoy. We are taking

steps to see what we can do about
that.

We’'d like to see QEX sustain fur-
ther growth. Sometimes it’s not
enough to focus entirely on content;
the rest of the job is marketing. One
thing’s for sure: Potential supporters
will not jump on our bandwagon un-
less they know we exist. It is the
same with any product or service, re-
ally. We encourage you to stand up
for your avocation by helping us get
the word out about what we’re doing.
Entice your colleagues to look at
Amateur Radio as a vehicle for future
growth. Identify needs and bottle-
necks to progress. Attack them with
vigor because this is your service, and
its fortune depends entirely on what
you do with it.

In This Issue

We received good feedback about
the Jul/Aug issue, so the discussion of
software controlled and software de-
fined radios (SDR) continues. Mark
Erbaugh, N8ME, contributes a piece
on software to control the Ten-Tec
Pegasus. It is applicable to other
transceivers, and it concentrates on
software development by example.

Gerald Youngblood, AC50G, returns
with Part 2 of his SDR series. Gerald
focuses on how to interface a sound
card under Visual Basic to acquire
data. Jim Scarlett, KD70’s Part 2 has
been delayed. Stephen Gradijan,
WBS5KIA, discusses development envi-
ronments for high-level languages.

Ray Mack, WD5IF'S, gives us an in-
troduction to switching power sup-
plies—something we have been
wanting for a while. His subsequent
parts will include details of circuit de-
sign, magnetics and semiconductors.
Tadeusz Raczek, SPTHT, explores the
“DX Prowess of Receivers.” He in-
cludes some specific examples using
test data from ARRL and others. John
Stephensen, KD60OZH, describes pro-
grammable logic devices and their ap-
plication to SDRs.

In Tech Notes, Dan Hinz, W6LSN,
describes a fixture for measuring the
value of surface-mount capacitors. In
RF, Zack Lau, W1VT, describes a
2-meter Yagi antenna.—73, Doug
Smith, KF6DX, kf6dx@arrl.org. OO

http://www.arrl.org/qex/
mailto:qex@arrl.org
mailto:kf6dx@arrl.org

Customize the len-Tec Pegasus
—Without Soldering

Software driven radios? Lets mafke some software!

his article is a briefintroduction
to my favorite Windows pro-
gramming tool, Borland Delphi.
Instead of a simple “hello, world”
introduction, I'll work through devel-
oping a minimal control program for
the Ten-Tec Pegasus transceiver. The
control program will only support
receive and won’t have all the bells
and whistles. Those will be left, as
they say, as an exercise for the reader.
However, the tools needed to flesh
out this control program will be
provided. It is up to you to decide how
you want your program to work. You
may even come up with an entirely new
operating paradigm that advances
Amateur Radio, or at least the Pegasus,
to the next level.

Delphi

Since its release in 1995, I have been
using Borland Delphi in my profes-
sional work as a Windows software

3105 Big Plain-Circleville Rd
London, OH 43140
n8me@arrl.net

By Mark E. Erbaugh, NSME

developer. I have found that it is every
bit as powerful as more sophisticated
languages, such as C++ and Java.
There is very little that I need to do in
my programs that can’t be done quickly
and easily with Delphi. On the other
hand, it is easy to learn and you need
not swallow the proverbial elephant in
one bite.

Programming in Delphi is donein the
Pascal language. Pascal was developed
inthe 1970s as ateaching language and
was designed to demonstrate sound
programming principles. Yes, there is
a GOTO statement, but I seldom use it.
With just a brief introduction to the
language, you should be able to read a
piece of code and understand what it is
doing.

Delphi has been through six major
releases. The initial release (Delphi 1)
was for 16-bit Windows (Windows
3.11). The later releases have been for
32-bit Windows. The current version,
Delphi 6, was released in the spring of
2001. However, I still use the previous
version, Delphi 5, asitisvery solid and
Thave not found it lacking in the areas
where I work. This tutorial will be

based on Delphi 5, but any version
other than 1 or 2 should work as well.

Each release of Delphi has come in
three editions. For Delphi 6, these
editions are labeled Personal,
Professional and Enterprise in in-
creasing order of sophistication and
cost. The Personal edition is suitable
for the work described in this article
and sells for around $50. The other two
editions, with significantly higher
prices are geared for professional
developers. Essentially, they have
more “bells and whistles.”

The computer requirements for
Delphi 6 are minimal by today’s
standards so that shouldn’t be an issue.
Here they are for the Personal edition:

“Intel Pentium 166 MHz or higher
(P2 400 MHz recommended); Microsoft
Windows 2000, Windows ME, Windows
98 or Windows NT 4.0 with Service
Pack 5 or later; 32 MB RAM (128 MB
recommended); 75 MB hard disk space
(compact install), 160 MB hard disk
space (full install); CD-ROM drive;
VGA or higher-resolution monitor;
mouse or other pointing device.”

Check out the Borland Web site

OEX- Sept/Oct 2002 3

mailto:n8me@arrl.net

(www.borland.com) for more infor-
mation.

Pegasus

The Pegasus has been reviewed in
QST.'Itis avery solid ham transceiver
worthy of its Ten-Tec lineage. Except
for the ON/OFF switch, it is a completely
computer-controlled radio. All func-
tionality of the radio is provided via a
control program running on a computer
connected to theradio via a serial cable.
The Pegasus is supplied with a control
program, and there are other control
programs available as shareware. (See
the QST review of the N4PY software.2)
The only problem with these control
programsis that they do things the way
the author thinks best. If you want it to
work differently, you can ask the
author to make a change, or you can
write your own software.

Ten-Tec has published a Program-
mers’ Reference Guide that details the

"Notes appear on page 8.

' Delphi 5 - Projectl

protocol of the commands to and
responses from the Pegasus. It is
available on their Web site (www.
rfsquared.com). If you look at this
guide, you will see that while con-
trolling the Pegasus is not difficult, it
is not trivial and certainly is not a
candidate for an introductory tutorial.

Components

So how can a general-purpose pro-
gram-development tool, such as
Delphi, make developing a Pegasus
control program simple enough for this
tutorial? Controlling the Pegasus
needs to be much more straight-
forward, such as a simple assignment:
RXFREQUENCY := 14230000;

The answer is one of the most
powerful features of Delphi: compo-
nents. A componentis a software “black
box” that can encapsulate complexity.
Delphi comes with dozens of compo-
nents that are used to simplify
Windows programming. In addition,
you can develop your own components

Standard | Addtional | Wind2 | Sustem | Data Access | Data Controls | AD0 | InterBase | Midas | IntemetEsoress | Intemet | FastNet | Decision Cube | ORenort | Disloos | Win 31 Samoles | ctived [

n OF S A E =R e S g B &

or add additional components devel-

oped by others. There are thousands of
components available for Delphi and

many may be downloaded from the Web
free of charge.

On the ARRL Web site is the
mePegasus component.? Once this
component has been added to your
version of Delphi, it can be used in
programs that you develop just like
the components that come with
Delphi.

Getting Started

Install Delphi following the
instructions supplied. Install the
mePegasus component into Delphi
using the instructions in the help file
supplied with it. In this tutorial, we
will be working with the four main
Delphi windows shown in Fig 1.

This screen shot was from my devel-
opment system and is from Delphi 5.
The windows may be moved and sized
as needed, so your screen may appear
slightly different.

= E3

B Unit1.pas =] 5

-

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs:

TForml = class(TForm)
{ Brivate declarations }

{ Public desclarations }

b B Soceh Sow En B Compoon Bodbees Tk Mo Fhot H]<Nnna> RIS ﬂ;|
e B85 sse
" - -
BEGIOr -N]a T
Object Inspector t*Form1
Farmnl: TFam1 =
Properties Event8|
Ondctivate ;I
OnCanResize
OnClick
_OnClose
OnDestroy
OnDockD riop
OnDockOwer
OnDragDrop
OnDragOver
DrEndDack uriel |
OnGetSitelnfo =
Oritelp unit Unitil;
..... OnHide ,
it interface
OnKepPress
Onkeylp uses
Onbd ouseDo
Ontousehd owve
Ontousellp type
Onbdousetiher
Ontd ousehhe private
Onbdousetiher
OnPairt public
CONRESEE
OnShortCut end;
OnShow
OnStartDack var
Boiiicel Forml: TForml;
implementation
{SR *.DFM}
end.
4
|4 showin AN 11 [Modiied

[Insert

i start|[7 pelphi 5 B Mictosoft Word - DelphiPe.. |

Fig 1—The Delphi programming environment. These are the four main windows.

4 Sept/Oct 2002 OEX-

http://www.borland.com
http://www.rfsquared.com
http://www.rfsquared.com

The top window is the main Delphi
window. It has the typical Windows
menu bar at the top. On the left are
speed buttons for common tasks. More
importantly, on the right side is the
component palette. This is where you
select components to add to your
program.

The window on the left side is the
Object Inspector. Thisis where you edit
the properties and events of the various
components. The window under the
main window on the right is where you
place the components that form the
appearance of your program. The
bottom-right window is the code editor,
where you enter Pascal program code.

Fig 2 is a screen shot of my version
of the finished program. However, the
appearance of the program is up to
you. You can place the components in
any position you like.

From the File menu, select New
Application. Then select Save Project
As, create a new folder to hold your
work and name it QSTPegasus.
Navigate to this folder and save the
unit file as main and the project file as
QSTPegasus.

As is standard in Windows, you can
resize windows by dragging the sides
or corners with the mouse, and you can
move windows by dragging the title
bars with the mouse. Size the main
form (Form1) window to the size you
want for your control program.

Click in the middle of the form
window to display properties of the
form in the Object Inspector window.

There are two tabs. The left tab lists
the properties, the right the events.
On each of these tabs, the name of the
property or event is listed in the left
column and the right column is where
you edit the value. Scroll to the name
property and change it from “Form1”
to “frmQSTPegasus.” Change the

caption property to “QST Pegasus.”

Onthe component palette, select the
QST tab and click on the mePegasus
component (the square with the flying
horse). Click anywhere on the QST
Pegasus form to drop the component.
This adds the component to the
program. The mePegasus component
is a nonvisual component. While it
shows up as the flying-horse box in
design mode, nothing will display
when running the application. In the
properties tab for this component,
change the name property value to
“Pegasus.”

Next, add some components for
setting a few of the properties of the
Pegasus and for indicating signal
strength. In this tutorial, we will not
be supporting all the functionality of
the mePegasus component, but we’ll
touch on enough to give you an idea of
how to add the rest. (The mePegasus
help file should be of use here.) The
mePegasus component sets up default
values for properties that are not used.
For example, the tutorial will not have
an adjustment for RF gain; the default
value is max and that will be fine.

From the Win32 palette tab, drop a
TrackBar component onto the form.

s Q5T Pegasus M[=] E3
ANREERENNRENENENENENED
1 3 4] 7 9 +10 +20 +30 +40 +50 +ED
Mode—
[y
" USE
" L5E
AF Gain - 32 Frequency —
3) [14219140 =
Eilter - 2250
| J [~ Auta Maoteh

Fig 2—A screen capture of the finished program.

This will be the AF gain control.

Position it wherever you like on the
form and make it whatever size you
like. Note: If you pause the mouse

cursor over a component on the palette,
Delphi will pop up a hint that gives you
the name of the component. Change the
following properties from their initial
values in Table 1.

Now, select the events tab in the
Object Inspector. Locate the OnChange
event (it should be at the top of the list)
and double click in the right (value)
column. Delphi automatically inserts
the value “tbAFGainChange” and
creates a skeleton method in the code
editor window, where you can fill in the
code for the event-handler method. For
this method, enter the lines under
“Code for tbAFGainChange” from the
Code sidebar.

This event handler will run every
time the user changes the position of
the slider. We have already set the
properties to allow the position of the
track bar torange from 0 to 255, which
are the values of the AF gain setting
on the Pegasus. This line of code
instructs the mePegasusControl com-
ponent that we named Pegasus to set
the AF gain of the Pegasus to the
position of the track bar.

Now, from the Standard palette tab,
drop a label component (with the letter
A) onto the form. This will be the
caption for the AF gain control, and it
will display the numeric value of the
AF-gain setting. Move the label
wherever you like, but it should
probably be near the AF-gain track bar.
Change the properties to those shown
in Table 2.

The ampersand (&) in the caption
property causes Alt-A to be a shortcut
for this label component. Since we set
the FocusControl property to tbAFGain
(our AF gain track bar), this component

Table 1—AFGain TrackBar Proper-
ties

Name tbAFGain
Caption AF Gain
Max 255
Frequency 16
PageSize 16

Table 2—AFGain Label Properties

Property Value

Name IbIAFGain
Caption &AF Gain
FocusControl tbAFGain

OEX- Sept/Oct 2002 5

will get the windows focus when alt-A
is pressed. Notice that when you

click in the value column for the

FocusControl property, a drop-down
menu button appears on the right side
of the column. You can use the drop-
down list and select tbAFGain from it
instead of typing if you choose.

Next, click on the mePegasus compo-
nent and select the event tab in the
Object Inspector. You will notice that
this component has many events. That
is because events are the primary way
the component communicates with the
program. Double-click in the value
column for the OnAFGain event to
create an event handler skeleton. For
this event handler type the lines in the
Code sidebar for tbAFGain Event-
Handler Code.

This event handler is called when-
ever the mePegasus component’s
AFGain valueis changed. In this tutor-
ial, we don’t need to set the track-bar
position as it has just been set, and we
could set the IbIAFGain caption in the
tbAFGain.OnChange event handler.
This illustrates an important feature
of the mePegasus component. It is
possible that the AF gain could be set
by other actions. If you didn’t use the
OnAFGain event, you would have to
remember to update the track bar
position and label caption. The
OnAFGain event handler can cen-
tralize this code. We’ll see the true
value of this when we get around to
setting the receiver frequency.

You are now ready to see the first
fruits of your labor. We are going to
compile and run this program. This
demonstrates the incremental develop-
ment that is possible with Delphi. From
the File menu, select Save All. We don’t
want to lose all the work! Then from the
Run menu, select Run. This will
compile and, if there are no errors, run
your program. If the compiler reports
errors, recheck your work and resolve
the errors. In most cases, the compiler
error message will be helpful in
locating and fixing the error. If you
double-click on the error message, the
error location will be displayed in the
code window. If you click on the error
message and press F1, the help system
will display details about the type of
error.

Once the program compiles success-
fully, the program will run. You will see
the track bar. As you move it with the
mouse, the caption label will display
the current value. To quit the program
and return to designing, click on the
close box (X) at the top right of the
window. At this point, we are not

6 Sept/Oct 2002 QOQEX-

actually communicating with the
Pegasus so it doesn’t matter if the
Pegasus is connected or powered up.

Adding More Controls

Next, we will add a radio group
component for mode selection. The
component is called a radio group
because it behaves like the old push
button radios once common in cars.
When you push in one button, all the
other buttons pop out. Similarly, when
you click on one item, the dot moves to
that item; only one item may have the
dot at a time.

Table 3—Radio Group Properties

Property Value

Name rgMode

Caption &Mode

ltems AM USB LSB CW FM
ltemIndex 0

Columns 1orb5

Table 4—Filter-Selection TrackBar
Properties

Property Value
Name tbFilter
Max 33
PageSize 1

Table 5—Filter TrackBar Label
Properties

Name IblFilter
Caption &Filter
FocusControl tbFilter

Table 6—Autonotch Checkbox
Properties

Name ckbAutoNotch
Caption Auto &Notch

Table 7—Frequency Caption Label
Properties

Property Value

Name IbIFrequency
Caption F&requency
FocusControl edFrequency

Table 8—Frequency-Control Button
Properties

Name btnUp
Caption &Up
Name btnDown
Caption &Down

From the Standard palette page,
drop a RadioGroup component on the
form. Set its property values as shown
in Table 3.

If you want the choices to be in a
horizontal row, set the Columns pro-
perty to “5.” If you want them to be in
a vertical row, set Columns to “1.”
Then size the component as appro-
priate. To enter the Items value, click
in the values column: an ellipsis
button is displayed. Click on it and a
window pops up. Enter the values in
the order given, one to a line. Add the
code lines from the Code sidebar to the
rgMode.OnClick event handler. Then
add the code for the PegasusControl.
OnRxMode event handler.

Next, add another track bar for filter
selection. There are 34 possible filters
on the Pegasus ranging from 300 Hz
to 8000 Hz. Set the property values
as shown in Table 4. Add the tbFilter.
OnChange event-handler code. Add a
caption label as shown in Table 5, and
add the Pegasus.OnRxFilter event-
handler code.

From the Standard palette page,
add a CheckBox component with the
properties shown in Table 6. Then add
the ckbAutoNotch. OnClick event-
handler code and the Pegasus.
OnAutoNotch event-handler code.
Save your work and run the program
to see how it behaves.

Now we need a way to set the fre-
quency. The tutorial will have two or
three ways of doing it, which are
interchangeable. You can type the
frequency into an edit box, click up or
down buttons or adjust the frequency
using the remote tuning knob on the
Pegasus if that is available.

From the Standard palette page, add
an Edit component. Size this to handle
eight characters as we will enter and
display the frequency in hertz. Set
the Name property to “edFrequency”
and add the edFrequency.OnKeyPress
event-handler code.

Note that “end” at the end is in
addition to the end provided auto-
matically in the event-handler skele-
ton. This event handler is a little more
complex than previous event handlers.
Its purpose is to send the new fre-
quency to the radio when the user
pressed the ENTER key. The “try ...
except” handlingis to gracefully handle
the case when the user types a non-
numeric value. Add a caption label and
set its properties as shown in Table 7.

Add the Pegasus.OnRxFrequency
event-handler code. Then add two
Button components and set their
properties as shown in Table 8.

Enter the code for the btnUp.
OnClick and btnDown.OnClick event
handlers. Now add the Pegasus.
OnEncoder event-handler code. Save
your work and run the program. Since
we have not established communi-
cation with the Pegasus, the remote-
tuning pod will not be working. The
next step is to actually establish
communication with the Pegasus.

Communicating with Pegasus

From the Standard palette page,
drop a RadioGroup component on the
form and set its property values as
shown in Table 9. Add the and the
Pegasus.OnComPort event-handler
code.

Run the program. Select the COM
port connected to the transceiver in the
software and you should have your very
own custom receiver. Exit the program
(and Delphi) and look at the program
icon that Delphi generated for you in
the QSTPegasus folder. You have a
functioning Windows program that is
less than 500 kb in size, and this is the
only file needed to run your program.
You could transfer just this file to
another machine with a Pegasus
connected to the same serial port and it
would work.

Let’s add some more controls. Reopen
Delphi and the source file. From the
Win32 palette, add a ProgressBar
component that will become the S-
meter. Its properties are in Table 10.
Add the Pegasus.OnRxMeter event-
handler code.

The maximum value of 19 corres-
ponds to a maximum S-meter reading
of about 60 over S9. The shr 8 (shift
right by 8) divides the value by 256. We
do this because the Pegasus reports
signal strength in S units and
fractional S units; we want only the
integer value.

To “calibrate” the S-meter display,
set the Position property to “1” and
notice how much is displayed. Place a
label with the caption of “1” at this
point. Repeat with positions and labels
for “3,” “5,” “7” and “9.” To get the
calibration points over S9, first set the
position to “14.” This corresponds to

five S units over S9, or +30 dB. Place
a label with a caption of “+30” at this
point. Then place labels of “+10” and
“+20” in between the “9” and “+30.”
Set the position to “19.” This is the
+60-dB point. Add the “+40” and
“+50” labels in a similar fashion.

You may notice that every time you
start the program, the radio para-
meters return to their default values.
The Pegasus has no memory for such
storage. All parameters must be
restored each time the Pegasus is
started. A control program needs to
save the last used settings and
restore them the next time it is run.
Three properties of the mePegasus
component can be used to save and
restore the settings: ComPort,
CurrentVFO and CurrentParams.
The ComPort property is an integer
value. The other two are record
structures that contain multiple
fields.

These data could be saved to a file,
such as an INI file, but for 32-bit
Windows programs, the preferred
storage location is the Windows
Registry. Create an event handler for
the frmQSTPegasus.OnCreateEv-
ent, and for the frmQSTPegasus.
OnDestroy event.

Note that the full event handlers
are shown. The var and lines below it
need to be added above the begin line.
Theselines declare local variables for
the event handlers.

You alsoneed tomanually add a unit
name to the “uses” clause at the top of
the file. Up until now, Delphi has
added files to the “uses” clause as you
add components, but since Tregistry is
not a component, you have to add its
unit, which is “Registry.” The com-
pleted “uses” clause should look as
shown in the Code sidebar. The
explanation of the code in these event
handlers is beyond the scope of this
tutorial. Look in the Delphi help file
for TRegistry to see how to use the
Windows registry.

As a final touch, we will add a large
frequency display. Add another label
component to the screen. Change the
name property to IblFrequencyDisplay.

Click on the Font property value and then
on the ellipsis button to bring up the font
dialog. Select a large font and a bright
color, such as green. Set the label color to
black. Change the caption to “00.000.00”
and make the label big enough to display
all of the text. Add a new line to the

Pegasus.OnRxFrequency event handler
after the line that is already there.

Conclusion

This completes the tutorial. While
we have only examined a handful of
the properties available in the
mePegasus component, we have exa-
mined a representative group. All the
remaining properties behave simil-
arly to the ones that were used in the
tutorial. Consult the mePegasus help
file for details on all the features.

The tutorial presents a very basic
control program. It is not intended to
be complete and does not exploit even
all the receive features of the Pegasus.
The processes of adding support for
the remaining features are simple and
similar to the ones already shown. The
difficult task is designing the way
those features should look and work
when added.

All of the control programs that I
have seen tend to create a virtual radio
front panel on the computer screen.
They show a picture of the radio,
complete with images of knobs and
buttons. The user manipulates these
virtual knobs and buttons with the
computer mouse, just as a user would
manipulate the knobs and buttons of a
real radio with their hands.

For those of us who have been
around radios for a while, this virtual
interface is familiar. This interface
represents a model or paradigm that
has been around for a long time. In
fact, when you look at a modern radio
you can see how persistent is the cur-
rent paradigm. Modern radios have a
knob or knobs that manipulate a VFO.
In old radios, VFO stood for variable
frequency oscillator and when you
turned the VFO knob, you were
changing the value of a variable
capacitor that changed the frequency
of'this oscillator. In today’s radios, you

Table 9—Communication Radio Group Properties

Property Value

Name rgComPort

Caption &COM Port

ltems NONE COM1 COM2 COM3 COM4
ItemIndex 0

Columns 1or5

Table 10—S-Meter Progress Bar
Properties

Property Value
Name pbSMeter
Max 19

OEX- Sept/Oct 2002 7

are merely turning the knob of an
optical encoder that sends pulses to a
microprocessor. The microprocessor
interprets these pulses as a request to
change the parameters to a digital
frequency synthesizer.

Perhaps the persistence of this
paradigm indicates that it is still the
best available for the task. Yet now
that the interface is a computer
program, there may be a previously
undiscovered paradigm that revolu-
tionizes the way we use our radios.

On the other extreme, with a custom
control program, you could emulate the
interface of your favorite radio,
contemporary or from the past. A @ST
article showed a slide-rule tuning dial
for the Yaesu FT-1000 radios.* Some-
thing like this is certainly doable.

If your computer has a sound card,
the control program can speak to the
operator by playing prerecorded wave
files. This could be a benefit to vision-
impaired operators.

The number of modifications that
can be made is virtually unlimited.
The nice thing about these modifi-
cations is that they are entirely
reversible. Assume that after you have
worked on a modification, you decide
thatitreallyisn’t going to work out the
way you planned and you decide to
scrap it. All you have to do is delete
some source code files and revert to the
previous version. All your unwanted
changes are automatically undone.
Try that with a chassis full of new
holes and additional circuitry!

Mark earned a two-year nonrenew-
able novice ticket in high school, but
let that license expire without ever get-
ting on the air. He got back into Ama-
teur Radio in 1982. He has a BS in
Chemical Engineering from Rose-
Hulman Institute of Technology and
works as a self-employed programmer
developing business support software
for Windows (using Delphi).

Notes

'P. Danzer, N1ll, “Ten-Tec Pegasus HF
Transceiver” (Product Review), QST, Feb
2000, pp 63-67.

2A. Gavenas, WA6IQD, “N4PY Pegasus
Control Program, version 1.45” (Short
Takes), QST, May 2001, p 65.

3You can download this package from the
ARRL Web http://www.arrl.org/qexfiles.
Look for 0209ERBAUGH.ZIP.

“B. Wood, WODZ, “The Return of the Slide
Rule Dial,” QST, Feb 2002, pp 33-35.

8 Sept/Oct 2002 QOQEX-

Code
tbAFGainChange Event-Handler Code

if not Pegasus.InUpdateNotify then

Pegasus.AFGain :=

tbAFGain Event-Handler Code
tbAFGain.Position :=
1blAFGain.Caption :=
+ IntToStr(Sender.AFGain) ;

rgMode.OnClick Event-Handler Code

tbAFGain.Position;

Sender .AFGain;
‘&AF Gain -’

if not Pegasus.InUpdateNotify then

Pegasus.RxMode :=

rgMode.ItemIndex;

PegasusControl.OnRxMode Event-Handler Code

rgMode.ItemIndex :=

tbFilter.OnChange Event-Handler Code

Sender .RxMode;

if not Pegasus.InUpdateNotify then

Pegasus.RxFilter := 33

Pegasus.OnRxFilter Event-Handler Code

tbFilter.Position := 33
lblFilter.Caption :=

‘&Filter -
+ IntToStr(FILTER WIDTH[Sender.RxFilter]

v

ckbAutoNotch.OnClick Event-Handler Code
if not Pegasus.InUpdateNotify then

Pegasus.AutoNotch :=

Pegasus.OnAutoNotch Event-Handler Code

ckbAutoNotch.Checked :=

Sender .AutoNotch;

edFrequency.OnKeyPress Event-Handler Code

if Key = #13 then

try
Pegasus.RxFrequency :=
Key := #0;

except

end;

EdFrequency.Text Event-Handler Code
IntToStr (sender.RxFrequency)
‘%.2d.%.3d.

edFrequency.Text :=
1lblFrequencyDisplay.Caption :=

format (

[sender.RxFrequency div 1000000,

(sender.RxFrequency mod 1000000)
(sender.RxFrequency mod 1000)

btnUp.OnClick Event-Handler Code
Pegasus.RxFrequency :=

btnDown.OnClick Event-Handler Code
Pegasus.RxFrequency :=

div 10]

Pegasus.OnEncoder Event-Handler Code

Pegasus.RxFrequency :=
+ 10 * Pegasus.LastEncoder;

rgMode.OnClick Event-Handler Code

if not Pegasus.InUpdateNotify then

Pegasus.ComPort :=

rgComPort.ItemIndex;

Pegasus.OnComPort Event-Handler Code

rgMode.ItemIndex :=

Sender.ComPort;

Pegasus.OnRxMeter Event-Handler Code

pbSMeter.Position :=

- tbFilter.Position;

- Sender.RxFilter;

)i

ckbAutoNotch.checked;

)i

Pegasus.RxFrequency -

Pegasus.RxFrequency

Sender.LastSMeter shr 8;

div 1000,

Pegasus.RxFrequency + 10;

10;

IntToStr (edFrequency.Text) ;

i
5.24',

http://www.arrl.org/qexfiles

frmQSTPegasus.OnCreateEvent Event-Handler Code
procedure TfrmQSTPegasus.FormCreate (Sender: TObject) ;
var
Reg: TRegistry;
ComPort : byte;
VFORec : TVFORec;
Params : TPegasusControlRec;
begin
Reg := TRegistry.Create;
try
Reg.RootKey := HKEY CURRENT USER;
if Reg.OpenKey(‘\Software\Pegasus’, false) then

begin
if Reg.ReadBinaryData(‘VFO’, VFORec, sizeof(TVFORec)) > O
then Pegasus.CurrentVFO := VFORec;
if Reg.ReadBinaryData(‘PARAMS’, Params, sizeof(TPegasusControlRec)) > O
then Pegasus.CurrentParams := Params;
try
ComPort := Reg.ReadInteger(‘COM_PORT’) ;
Pegasus.ComPort := ComPort
except
end;
end;
finally
Reg.CloseKey;
Reg.Free;
end;

end;

frmQSTPegasus.OnDestroy Event-Handler Code
procedure TfrmQSTPegasus.FormDestroy (Sender: TObject) ;
var
Reg: TRegistry;
ComPort : byte;
VFORec : TVFORec;
Params : TPegasusControlRec;
begin
Reg := TRegistry.Create;
try
Reg.RootKey := HKEY CURRENT USER;
if Reg.OpenKey(‘\Software\Pegasus’, true) then

begin
VFORec := Pegasus.CurrentVFO;
Params := Pegasus.CurrentParams;
ComPort := Pegasus.ComPort;

Reg.WriteBinaryData(‘VFO’, VFORec, sizeof (TVFORec)) ;
Reg.WriteBinaryData(‘PARAMS’, Params, sizeof (TPegasusControlRec)) ;
Reg.WriteInteger(‘COM_PORT’, ComPort) ;

end;

finally

Reg.CloseKey;

Reg.Free;

end;

end;

A Proper “Uses” Clause

uses
Registry,
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ComCtrls, PegasusControl,
ExtCtrls;

New Line for the Pegasus.OnRxFrequency Event-Handler Code
lblFrequencyDisplay.Caption := format(‘'%.2d.%.3d.%.2d’',
[sender.RxFrequency div 1000000,
(sender.RxFrequency mod 1000000) div 1000,
(sender.RxFrequency mod 1000) div 10]);

m

OEX- Sept/Oct 2002 9

A Software-Defined Radio
for the Masses, Part 2

Come learn how to use a PC sound card to enter
the wonderful world of digital signal processing.

art 1 gave a general description

of digital signal processing

(DSP) in software-defined ra-
dios (SDRs).! It also provided an over-
view of a full-featured radio that uses
a personal computer to perform all
DSP functions. This article begins de-
sign implementation with a complete
description of software that provides
a full-duplex interface to a standard
PC sound card.

To perform the magic of digital sig-
nal processing, we must be able to con-
vert a signal from analog to digital and
back to analog again. Most amateur
experimenters already have this ca-

"Notes appear on page 18.

8900 Marybank Dr
Austin, TX 78750
gerald @sixthmarket.com

10 Sept/Oct 2002 OEX-

By Gerald Youngblood, AC50G

pability in their shacks and many
have used it for slow-scan television
or the new digital modes like PSK31.

Part 1 discussed the power of
quadrature signal processing using in-
phase (I) and quadrature (@) signals
to receive or transmit using virtually
any modulation method. Fortunately,
all modern PC sound cards offer the
perfect method for digitizing the I and
@ signals. Since virtually all cards to-
day provide 16-bit stereo at 44-kHz
sampling rates, we have exactly what
we need capture and process the sig-
nals in software. Fig 1 illustrates a
direct quadrature-conversion mixer
connection to a PC sound card.

This article discusses complete
source code for a DirectX sound-card
interface in Microsoft Visual Basic.
Consequently, the discussion assumes
that the reader has some fundamen-

tal knowledge of high-level language
programming.

Sound Card and PC Capabilities

Very early PC sound cards were low-
performance, 8-bit mono versions. To-
day, virtually all PCs come with
16-bit stereo cards of sufficient quality
to be used in a software-defined radio.
Such a card will allow us to demodu-
late, filter and display up to approxi-
mately a 44-kHz bandwidth, assuming
a 44-kHz sampling rate. (The band-
width is 44 kHz, rather than 22 kHz,
because the use of two channels effec-
tively doubles the sampling rate—FEd.)
For high-performance applications, it is
important to select a card that offers a
high dynamic range—on the order of
90 dB. If you are just getting started,
most PC sound cards will allow you to
begin experimentation, although they

mailto:gerald@sixthmarket.com

may offer lower performance.

The best 16-bit price-to-perfor-
mance ratio I have found at the time
of this article is the Santa Cruz 6-
channel DSP Audio Accelerator from
Turtle Beach Inc (www.tbeach.com).
It offers four 18-bit internal analog-
to-digital (A/D) input channels and six
20-bit digital-to-analog (D/A) output
channels with sampling rates up to
48 kHz. The manufacturer specifies a
96-dB signal-to-noise ratio (SNR) and
better than —91 dB total harmonic dis-
tortion plus noise (THD+N). Crosstalk
is stated to be =105 dB at 100 Hz. The
Santa Cruz card can be purchased
from online retailers for under $70.

Each bit on an A/D or D/A converter
represents 6 dB of dynamic range, so
a 16-bit converter has a theoretical
limit of 96 dB. A very good converter
with low-noise design is required to
achieve this level of performance.
Many 16-bit sound cards provide no
more than 12-14 effective bits of dy-
namic range. To help achieve higher
performance, the Santa Cruz card uses
an 18-bit A/D converter to deliver
the 96 dB dynamic range (16-bit)
specification.

A SoundBlaster 64 also provides
reasonable performance on the order
of 76 dB SNR according to PC AV Tech
at www.pcavtech.com. I have used
this card with good results, but I much
prefer the Santa Cruz card.

The processing power needed from
the PC depends greatly on the signal
processing required by the application.
Since I am using very-high-perfor-
mance filters and large fast-Fourier
transforms (FFTs), my applications
require at least a 400-MHz Pentium
IT processor with a minimum of
128 MB of RAM. If you require less
performance from the software, you
can get by with a much slower ma-
chine. Since the entry level for new
PCs is now 1 GHz, many amateurs
have ample processing power avail-
able.

Microsoft DirectX versus
Windows Multimedia

Digital signal processing using a PC
sound card requires that we be able to
capture blocks of digitized I and @ data
through the stereo inputs, process those
signals and return them to the sound-
card outputs in pseudo real time. This
is called full duplex. Unfortunately,
there is no high-level software interface
that offers the capabilities we need for
the SDR application.

Microsoft now provides two appli-
cation programming interfaces? (APIs)
that allow direct access to the sound
card under C++ and Visual Basic. The
original interface is the Windows Mul-

timedia system using the Waveform

Audio API. While my early work was
done with the Waveform Audio API, I
later abandoned it for the higher per-
formance and simpler interface

DirectX offers. The only limitation I

have found with DirectX is that it does
not currently support sound cards

with more than 16-bits of resolution.

For 24-bit cards, Windows Multimedia
is required. While the Santa Cruz card
supports 18-bits internally, it presents
only 16-bits to the interface. For in-
formation on where to download the

DirectX software development kit

(SDK) see Note 2.

Circular Buffer Concepts
A typical full-duplex PC sound card

allows the simultaneous capture and
playback of two or more audio chan-
nels (stereo). Unfortunately, there is
no high-level code in Visual Basic or
C++ to directly support full duplex as
required in an SDR. We will therefore
have to write code to directly control
the card through the DirectX API.
DirectX internally manages all low-
level buffers and their respective
interfaces to the sound-card hard-
ware. Our code will have to manage
the high-level DirectX buffers
(called DirectSoundBuffer and
DirectSoundCaptureBuffer) to pro-
vide uninterrupted operation in
a multitasking system. The Direct-
SoundCaptureBuffer stores the digi-
tized signals from the stereo

SSM2164
PI5V331 LT1115
NG |)
BPF > VCA>—> L Audio
\£> PC _()
== Tayloe Sound
e Detector Card
— VCA>—Q> R
AGC
Johnson
Counter T4ACT4 Log Amplifier
AD8307
Comparator Out
I PIC PC Control &
DDS Control 1 & Q Audio

AD9854

Fig 1—Direct quadrature conversion mixer to sound-card interface used in the author’s

prototype.

o

2048 4095

Block 0 Block 1

| Play " | Write

2048
(A) DirectSoundCaptureBuffer

0
I Play "'A\ I Write

6144 u‘ 2048

4096
(C) DirectSoundBuffer

(B)

Fig 2—DirectSoundCaptureBuffer and DirectSoundBuffer circular buffer layout.

OEX= Sept/Oct 2002 11

http://www.tbeach.com
http://www.pcavtech.com

A/D converter in a circular buffer and
notifies the application upon the
occurrence of predefined events. Once
captured in the buffer, we can read
the data, perform the necessary modu-
lation or demodulation functions us-
ing DSP and send the data to the
DirectSoundBuffer for D/A conversion
and output to the speakers or trans-
mitter.

To provide smooth operation in a
multitracking system without audio
popping or interruption, it will be nec-
essary to provide a multilevel buffer for
both capture and playback. You may
have heard the term double buffering.
We will use double buffering in the
DirectSoundCaptureBuffer
and quadruple buffering in the
DirectSoundBuffer. I found that the
quad buffer with overwrite detection
was required on the output to prevent
overwriting problems when the system
is heavily loaded with other applica-
tions. Figs 2A and 2B illustrate the
concept of a circular double buffer,
which is used for the Direct-
SoundCaptureBuffer. Although the
buffer is really a linear array in
memory, as shown in Fig 2B, we can
visualize it as circular, as illustrated in
Fig 2A. This is so because DirectX man-
ages the buffer so that as soon as each
cursor reaches the end of the array, the
driver resets the cursor to the begin-
ning of the buffer.

The DirectSoundCaptureBuffer is
broken into two blocks, each equal in
size to the amount of data to be cap-
tured and processed between each
event. Note that an event is much like
an interrupt. In our case, we will use
a block size of 2048 samples. Since we
are using a stereo (two-channel) board
with 16 bits per channel, we will be
capturing 8192 bytes per block (2048
samples x 2 channels x 2 bytes). There-
fore, the DirectSoundCaptureBuffer
will be twice as large (16,384 bytes).

Since the DirectSoundCapture
Buffer is divided into two data blocks,
we will need to send an event notifica-
tion to the application after each block
has been captured. The DirectX driver
maintains cursors that track the posi-
tion of the capture operation at all
times. The driver provides the means
of setting specific locations within the
buffer that cause an event to trigger,
thereby telling the application to re-
trieve the data. We may then read the
correct block directly from the
DirectSoundCaptureBuffer segment
that has been completed.

Referring again to Fig 2A, the two
cursors resemble the hands on a clock
face rotating in a clockwise direction.
The capture cursor, 1Play, represents
the point at which data are currently

12 Sept/Oct 2002 OEX-

being captured. (I know that sounds

backward, but that is how Microsoft

defined it.) The read cursor, IWrite,

trails the capture cursor and indicates
the point up to which data can safely
be read. The data after IWrite and up
to and including 1Play are not neces-
sarily good data because of hardware
buffering. We can use the IWrite cur-
sor to trigger an event that tells the

software to read each respective block
of data, as will be discussed later in

the article. We will therefore receive

two events per revolution of the circu-
lar buffer. Data can be captured into

one half of the buffer while data are

being read from the other half.

Fig 2C illustrates the Direct-
SoundBuffer, which is used to output
data to the D/A converters. In this case,
we will use a quadruple buffer to allow
plenty of room between the currently
playing segment and the segment be-
ing written. The play cursor, 1Play, al-
ways points to the next byte of data to
be played. The write cursor, IWrite, is
the point after which it is safe to write
data into the buffer. The cursors may
be thought of as rotating in a clockwise
motion just as the capture cursors do.
We must monitor the location of the
cursors before writing to buffer loca-
tions between the cursors to prevent

overwriting data that have already
been committed to the hardware for
playback.

Now let’s consider how the data
maps from the DirectSoundCapture-
Buffer to the DirectSoundBuffer. To
prevent gaps or pops in the sound due
to processor loading, we will want to
fill the entire