
Forum for Communications Experimenters September/October 2002

$5

INCLUDING:

ARRL
225 Main Street
Newington, CT USA 06111-1494

The national association for
AMATEUR RADIO

See W6LSN’s SurCapAdapt in Tech Notes

 Sept/Oct 2002 1

Mark J. Wilson, K1RO
Publisher
Doug Smith, KF6DX
Editor
Robert Schetgen, KU7G
Managing Editor
Lori Weinberg, KB1EIB
Assistant Editor
Peter Bertini, K1ZJH
Zack Lau, W1VT
Ray Mack, WD5IFS
Contributing Editors

Production Department
Steve Ford, WB8IMY
Publications Manager
Michelle Bloom, WB1ENT
Production Supervisor
Sue Fagan
Graphic Design Supervisor
David Pingree, N1NAS
Technical Illustrator
Joe Shea
Production Assistant

Advertising Information Contact:
Joe Bottiglieri, AA1GW, Account Manager

860-594-0329 direct
860-594-0200 ARRL
860-594-4285 fax

Circulation Department
Debra Jahnke, Circulation Manager
Kathy Capodicasa, Senior Fulfillment Supervisor
Cathy Stepina, QEX Circulation

Offices
225 Main St, Newington, CT 06111-1494 USA
Telephone: 860-594-0200
Telex: 650215-5052 MCI
Fax: 860-594-0259 (24 hour direct line)
e-mail: qex@arrl.org
Subscription rate for 6 issues:

In the US: ARRL Member $24,
nonmember $36;
US by First Class Mail:
ARRL member $37, nonmember $49;
Elsewhere by Surface Mail (4-8 week delivery):
ARRL member $31, nonmember $43;
Canada by Airmail: ARRL member $40,
nonmember $52;
Elsewhere by Airmail: ARRL member $59,
nonmember $71.

Members are asked to include their membership
control number or a label from their QST wrapper
when applying.

Sept/Oct 2002 QEX Advertising Index
American Radio Relay League: Cov II, 18
 55, Cov III
Atomic Time, Inc.: 18
Buylegacy.com: 29
Down East Microwave Inc.: 60
Roy Lewallen, W7EL: 60
Nemal Electronics International, Inc.: 18

Noble Publishing Corp: 40
Palomar: 29
Ten-Tec: Cov IV
Teri Software: 60
Tucson Amateur Packet Radio Corp: 35
Universal Radio: 64

About the Cover
A SurCapAdapt fixture
helps measure chip-
component values-
the story begins
on p 51.

Features
3 Customize the Ten-Tec Pegasus—Without Soldering

By Mark E. Erbaugh, N8ME

10 A Software-Defined Radio for the Masses, Part 2
By Gerald Youngblood, AC5OG

19 Amateur Radio Software: It Keeps Getting Better
By Stephen J. Gradijan, WB5KIA

30 Understanding Switching Power Supplies, Part 1
By Ray Mack, WD5IFS

36 The DX Prowess of HF Receivers
By Tadeusz Raczek, SP7HT

41 Software-Defined Hardware for Software-Defined
Radios
By John B. Stephensen, KD6OZH

Columns
51 Tech Notes
56 RF By Zack Lau, W1VT

In order to ensure prompt delivery, we ask that
you periodically check the address information
on your mailing label. If you find any inaccura-
cies, please contact the Circulation Department
immediately. Thank you for your assistance.

QEX (ISSN: 0886-8093) is published bimonthly
in January, March, May, July, September, and
November by the American Radio Relay League,
225 Main Street, Newington CT 06111-1494.
Yearly subscription rate to ARRL members is $24;
nonmembers $36. Other rates are listed below.
Periodicals postage paid at Hartford, CT and at
additional mailing offices.
POSTMASTER: Send address changes to:
QEX, 225 Main St, Newington, CT 06111-1494
Issue No 214

Copyright ©2002 by the American Radio Relay
League Inc. For permission to quote or reprint
material from QEX or any ARRL publication, send
a written request including the issue date (or book
title), article, page numbers and a description of
where you intend to use the reprinted material.
Send the request to the office of the Publications
Manager (permission@arrl.org)

INCLUDING:

61 Letters to the Editor
64 Next Issue in QEX

mailto:qex@arrl.org
mailto:permission@arrl.org

2 Sept/Oct 2002

THE AMERICAN RADIO
RELAY LEAGUE
The American Radio Relay League, Inc, is a
noncommercial association of radio amateurs,
organized for the promotion of interests in Amateur
Radio communication and experimentation, for
the establishment of networks to provide
communications in the event of disasters or other
emergencies, for the advancement of radio art
and of the public welfare, for the representation
of the radio amateur in legislative matters, and
for the maintenance of fraternalism and a high
standard of conduct.

ARRL is an incorporated association without
capital stock chartered under the laws of the
state of Connecticut, and is an exempt organiza-
tion under Section 501(c)(3) of the Internal
Revenue Code of 1986. Its affairs are governed
by a Board of Directors, whose voting members
are elected every two years by the general
membership. The officers are elected or
appointed by the Directors. The League is
noncommercial, and no one who could gain
financially from the shaping of its affairs is
eligible for membership on its Board.

“Of, by, and for the radio amateur, ”ARRL
numbers within its ranks the vast majority of
active amateurs in the nation and has a proud
history of achievement as the standard-bearer in
amateur affairs.

A bona fide interest in Amateur Radio is the
only essential qualification of membership; an
Amateur Radio license is not a prerequisite,
although full voting membership is granted only
to licensed amateurs in the US.

Membership inquiries and general corres-
pondence should be addressed to the
administrative headquarters at 225 Main Street,
Newington, CT 06111 USA.

Telephone: 860-594-0200
Telex: 650215-5052 MCI
MCIMAIL (electronic mail system) ID: 215-5052
FAX: 860-594-0259 (24-hour direct line)

Officers

President: JIM D. HAYNIE, W5JBP
3226 Newcastle Dr, Dallas, TX 75220-1640

Executive Vice President: DAVID SUMNER,
K1ZZ

The purpose of QEX is to:
1) provide a medium for the exchange of ideas

and information among Amateur Radio
experimenters,

2) document advanced technical work in the
Amateur Radio field, and

3) support efforts to advance the state of the
Amateur Radio art.

All correspondence concerning QEX should be
addressed to the American Radio Relay League,
225 Main Street, Newington, CT 06111 USA.
Envelopes containing manuscripts and letters for
publication in QEX should be marked Editor, QEX.

Both theoretical and practical technical articles
are welcomed. Manuscripts should be submitted
on IBM or Mac format 3.5-inch diskette in word-
processor format, if possible. We can redraw any
figures as long as their content is clear. Photos
should be glossy, color or black-and-white prints
of at least the size they are to appear in QEX.
Further information for authors can be found on
the Web at www.arrl.org/qex/ or by e-mail to
qex@arrl.org.

Any opinions expressed in QEX are those of
the authors, not necessarily those of the Editor or
the League. While we strive to ensure all material
is technically correct, authors are expected to
defend their own assertions. Products mentioned
are included for your information only; no
endorsement is implied. Readers are cautioned to
verify the availability of products before sending
money to vendors.

Empirical Outlook
It All Comes Down to Marketing

That old saw “Build a better mouse-
trap and folks will beat a path to your
door” is ridiculous. Mousetraps are
still necessary, but it is unlikely any-
one will better the combination of
three pieces of steel, a spring and
some wood. That invention fills a
need by being simple, inexpensive
and effective. It is reusable, too.

In telecommunications, we seek to
fill needs to exchange information ef-
ficiently over long distances. Anything
that reduces the cost or increases the
speed of that is potentially outstand-
ing. More than anything else, digital
technology has given us the tools to
have a good whack at it. In keeping
with Amateur Radio’s legacy, we’re
concentrating on those things that
seem most promising and contributing
what we know to the general knowl-
edge base. We’re not redesigning
mousetraps, but does anyone outside
Amateur Radio know that?

Like some of our correspondents,
we feel the technical facets of Ama-
teur Radio are not getting the press
they deserve. Emergency prepared-
ness is apparently perceived as the
most valuable purpose of our service.
Perhaps that is because the public
associates the word “service” with
something providing ready and tan-
gible benefits. Most do not think
about the other reasons that we are a
service; for many of us however, those
other reasons are at least as valuable
as emergency preparedness.

In fact, emergency services we rou-
tinely provide would not be possible
had it not been for certain technical
innovations, much of the praise for
which is due to amateurs. However,
the average Joe doesn’t know that. All
he knows is that ham radio is sort of
like CB except you need a license. We
have this perceptual problem, but it is
no use sitting around and moaning
about it—do something!

Most of the writers we know are or
were involved professionally in com-
munications. They write about things
of interest to them and others like
them. We suspect that League techni-
cal publications, including QEX,
could have a broader appeal than
they currently enjoy. We are taking

steps to see what we can do about
that.

We’d like to see QEX sustain fur-
ther growth. Sometimes it’s not
enough to focus entirely on content;
the rest of the job is marketing. One
thing’s for sure: Potential supporters
will not jump on our bandwagon un-
less they know we exist. It is the
same with any product or service, re-
ally. We encourage you to stand up
for your avocation by helping us get
the word out about what we’re doing.
Entice your colleagues to look at
Amateur Radio as a vehicle for future
growth. Identify needs and bottle-
necks to progress. Attack them with
vigor because this is your service, and
its fortune depends entirely on what
you do with it.

In This Issue
We received good feedback about

the Jul/Aug issue, so the discussion of
software controlled and software de-
fined radios (SDR) continues. Mark
Erbaugh, N8ME, contributes a piece
on software to control the Ten-Tec
Pegasus. It is applicable to other
transceivers, and it concentrates on
software development by example.

Gerald Youngblood, AC5OG, returns
with Part 2 of his SDR series. Gerald
focuses on how to interface a sound
card under Visual Basic to acquire
data. Jim Scarlett, KD7O’s Part 2 has
been delayed. Stephen Gradijan,
WB5KIA, discusses development envi-
ronments for high-level languages.

Ray Mack, WD5IFS, gives us an in-
troduction to switching power sup-
plies—something we have been
wanting for a while. His subsequent
parts will include details of circuit de-
sign, magnetics and semiconductors.
Tadeusz Raczek, SP7HT, explores the
“DX Prowess of Receivers.” He in-
cludes some specific examples using
test data from ARRL and others. John
Stephensen, KD6OZH, describes pro-
grammable logic devices and their ap-
plication to SDRs.

In Tech Notes, Dan Hinz, W6LSN,
describes a fixture for measuring the
value of surface-mount capacitors. In
RF, Zack Lau, W1VT, describes a
2-meter Yagi antenna.—73, Doug
Smith, KF6DX, kf6dx@arrl.org. ��

http://www.arrl.org/qex/
mailto:qex@arrl.org
mailto:kf6dx@arrl.org

 Sept/Oct 2002 3

3105 Big Plain-Circleville Rd
London, OH 43140
n8me@arrl.net

Customize the Ten-Tec Pegasus
–Without Soldering

By Mark E. Erbaugh, N8ME

Software driven radios? Let’s make some software!

This article is a brief introduction
to my favorite Windows pro-
gramming tool, Borland Delphi.

Instead of a simple “hello, world”
introduction, I’ll work through devel-
oping a minimal control program for
the Ten-Tec Pegasus transceiver. The
control program will only support
receive and won’t have all the bells
and whistles. Those will be left, as
they say, as an exercise for the reader.

However, the tools needed to flesh
out this control program will be
provided. It is up to you to decide how
you want your program to work. You
may even come up with an entirely new
operating paradigm that advances
Amateur Radio, or at least the Pegasus,
to the next level.

Delphi
Since its release in 1995, I have been

using Borland Delphi in my profes-
sional work as a Windows software

developer. I have found that it is every
bit as powerful as more sophisticated
languages, such as C++ and Java.
There is very little that I need to do in
my programs that can’t be done quickly
and easily with Delphi. On the other
hand, it is easy to learn and you need
not swallow the proverbial elephant in
one bite.

Programming in Delphi is done in the
Pascal language. Pascal was developed
in the 1970s as a teaching language and
was designed to demonstrate sound
programming principles. Yes, there is
a GOTO statement, but I seldom use it.
With just a brief introduction to the
language, you should be able to read a
piece of code and understand what it is
doing.

Delphi has been through six major
releases. The initial release (Delphi 1)
was for 16-bit Windows (Windows
3.11). The later releases have been for
32-bit Windows. The current version,
Delphi 6, was released in the spring of
2001. However, I still use the previous
version, Delphi 5, as it is very solid and
I have not found it lacking in the areas
where I work. This tutorial will be

based on Delphi 5, but any version
other than 1 or 2 should work as well.

Each release of Delphi has come in
three editions. For Delphi 6, these
editions are labeled Personal,
Professional and Enterprise in in-
creasing order of sophistication and
cost. The Personal edition is suitable
for the work described in this article
and sells for around $50. The other two
editions, with significantly higher
prices are geared for professional
developers. Essentially, they have
more “bells and whistles.”

The computer requirements for
Delphi 6 are minimal by today’s
standards so that shouldn’t be an issue.
Here they are for the Personal edition:

“Intel Pentium 166 MHz or higher
(P2 400 MHz recommended); Microsoft
Windows 2000, Windows ME, Windows
98 or Windows NT 4.0 with Service
Pack 5 or later; 32 MB RAM (128 MB
recommended); 75 MB hard disk space
(compact install), 160 MB hard disk
space (full install); CD-ROM drive;
VGA or higher-resolution monitor;
mouse or other pointing device.”

Check out the Borland Web site

mailto:n8me@arrl.net

4 Sept/Oct 2002

(www.borland.com) for more infor-
mation.

Pegasus
The Pegasus has been reviewed in

QST.1 It is a very solid ham transceiver
worthy of its Ten-Tec lineage. Except
for the ON/OFF switch, it is a completely
computer-controlled radio. All func-
tionality of the radio is provided via a
control program running on a computer
connected to the radio via a serial cable.
The Pegasus is supplied with a control
program, and there are other control
programs available as shareware. (See
the QST review of the N4PY software.2)
The only problem with these control
programs is that they do things the way
the author thinks best. If you want it to
work differently, you can ask the
author to make a change, or you can
write your own software.

Ten-Tec has published a Program-
mers’ Reference Guide that details the

protocol of the commands to and
responses from the Pegasus. It is
available on their Web site (www.
rfsquared.com). If you look at this
guide, you will see that while con-
trolling the Pegasus is not difficult, it
is not trivial and certainly is not a
candidate for an introductory tutorial.

Components
So how can a general-purpose pro-

gram-development tool, such as
Delphi, make developing a Pegasus
control program simple enough for this
tutorial? Controlling the Pegasus
needs to be much more straight-
forward, such as a simple assignment:
RXFREQUENCY := 14230000;

The answer is one of the most
powerful features of Delphi: compo-
nents. A component is a software “black
box” that can encapsulate complexity.
Delphi comes with dozens of compo-
nents that are used to simplify
Windows programming. In addition,
you can develop your own components

or add additional components devel-
oped by others. There are thousands of
components available for Delphi and
many may be downloaded from the Web
free of charge.

On the ARRL Web site is the
mePegasus component.3 Once this
component has been added to your
version of Delphi, it can be used in
programs that you develop just like
the components that come with
Delphi.

Getting Started
Install Delphi following the

instructions supplied. Install the
mePegasus component into Delphi
using the instructions in the help file
supplied with it. In this tutorial, we
will be working with the four main
Delphi windows shown in Fig 1.

This screen shot was from my devel-
opment system and is from Delphi 5.
The windows may be moved and sized
as needed, so your screen may appear
slightly different.

Fig 1—The Delphi programming environment. These are the four main windows.

1Notes appear on page 8.

http://www.borland.com
http://www.rfsquared.com
http://www.rfsquared.com

 Sept/Oct 2002 5

The top window is the main Delphi
window. It has the typical Windows
menu bar at the top. On the left are
speed buttons for common tasks. More
importantly, on the right side is the
component palette. This is where you
select components to add to your
program.

The window on the left side is the
Object Inspector. This is where you edit
the properties and events of the various
components. The window under the
main window on the right is where you
place the components that form the
appearance of your program. The
bottom-right window is the code editor,
where you enter Pascal program code.

Fig 2 is a screen shot of my version
of the finished program. However, the
appearance of the program is up to
you. You can place the components in
any position you like.

From the File menu, select New
Application. Then select Save Project
As, create a new folder to hold your
work and name it QSTPegasus.
Navigate to this folder and save the
unit file as main and the project file as
QSTPegasus.

As is standard in Windows, you can
resize windows by dragging the sides
or corners with the mouse, and you can
move windows by dragging the title
bars with the mouse. Size the main
form (Form1) window to the size you
want for your control program.

Click in the middle of the form
window to display properties of the
form in the Object Inspector window.

There are two tabs. The left tab lists
the properties, the right the events.
On each of these tabs, the name of the
property or event is listed in the left
column and the right column is where
you edit the value. Scroll to the name
property and change it from “Form1”
to “frmQSTPegasus.” Change the
caption property to “QST Pegasus.”

On the component palette, select the
QST tab and click on the mePegasus
component (the square with the flying
horse). Click anywhere on the QST
Pegasus form to drop the component.
This adds the component to the
program. The mePegasus component
is a nonvisual component. While it
shows up as the flying-horse box in
design mode, nothing will display
when running the application. In the
properties tab for this component,
change the name property value to
“Pegasus.”

Next, add some components for
setting a few of the properties of the
Pegasus and for indicating signal
strength. In this tutorial, we will not
be supporting all the functionality of
the mePegasus component, but we’ll
touch on enough to give you an idea of
how to add the rest. (The mePegasus
help file should be of use here.) The
mePegasus component sets up default
values for properties that are not used.
For example, the tutorial will not have
an adjustment for RF gain; the default
value is max and that will be fine.

From the Win32 palette tab, drop a
TrackBar component onto the form.

This will be the AF gain control.
Position it wherever you like on the
form and make it whatever size you
like. Note: If you pause the mouse
cursor over a component on the palette,
Delphi will pop up a hint that gives you
the name of the component. Change the
following properties from their initial
values in Table 1.

Now, select the events tab in the
Object Inspector. Locate the OnChange
event (it should be at the top of the list)
and double click in the right (value)
column. Delphi automatically inserts
the value “tbAFGainChange” and
creates a skeleton method in the code
editor window, where you can fill in the
code for the event-handler method. For
this method, enter the lines under
“Code for tbAFGainChange” from the
Code sidebar.

This event handler will run every
time the user changes the position of
the slider. We have already set the
properties to allow the position of the
track bar to range from 0 to 255, which
are the values of the AF gain setting
on the Pegasus. This line of code
instructs the mePegasusControl com-
ponent that we named Pegasus to set
the AF gain of the Pegasus to the
position of the track bar.

Now, from the Standard palette tab,
drop a label component (with the letter
A) onto the form. This will be the
caption for the AF gain control, and it
will display the numeric value of the
AF-gain setting. Move the label
wherever you like, but it should
probably be near the AF-gain track bar.
Change the properties to those shown
in Table 2.

The ampersand (&) in the caption
property causes Alt-A to be a shortcut
for this label component. Since we set
the FocusControl property to tbAFGain
(our AF gain track bar), this component

Table 1—AFGain TrackBar Proper-
ties

Name tbAFGain

Caption AF Gain
Max 255
Frequency 16
PageSize 16

Table 2—AFGain Label Properties

Property Value

Name lblAFGain
Caption &AF Gain
FocusControl tbAFGain

Fig 2—A screen capture of the finished program.

6 Sept/Oct 2002

will get the windows focus when alt-A
is pressed. Notice that when you
click in the value column for the
FocusControl property, a drop-down
menu button appears on the right side
of the column. You can use the drop-
down list and select tbAFGain from it
instead of typing if you choose.

Next, click on the mePegasus compo-
nent and select the event tab in the
Object Inspector. You will notice that
this component has many events. That
is because events are the primary way
the component communicates with the
program. Double-click in the value
column for the OnAFGain event to
create an event handler skeleton. For
this event handler type the lines in the
Code sidebar for tbAFGain Event-
Handler Code.

This event handler is called when-
ever the mePegasus component’s
AFGain value is changed. In this tutor-
ial, we don’t need to set the track-bar
position as it has just been set, and we
could set the lblAFGain caption in the
tbAFGain.OnChange event handler.
This illustrates an important feature
of the mePegasus component. It is
possible that the AF gain could be set
by other actions. If you didn’t use the
OnAFGain event, you would have to
remember to update the track bar
position and label caption. The
OnAFGain event handler can cen-
tralize this code. We’ll see the true
value of this when we get around to
setting the receiver frequency.

You are now ready to see the first
fruits of your labor. We are going to
compile and run this program. This
demonstrates the incremental develop-
ment that is possible with Delphi. From
the File menu, select Save All. We don’t
want to lose all the work! Then from the
Run menu, select Run. This will
compile and, if there are no errors, run
your program. If the compiler reports
errors, recheck your work and resolve
the errors. In most cases, the compiler
error message will be helpful in
locating and fixing the error. If you
double-click on the error message, the
error location will be displayed in the
code window. If you click on the error
message and press F1, the help system
will display details about the type of
error.

Once the program compiles success-
fully, the program will run. You will see
the track bar. As you move it with the
mouse, the caption label will display
the current value. To quit the program
and return to designing, click on the
close box (X) at the top right of the
window. At this point, we are not

Table 3—Radio Group Properties

Property Value

Name rgMode
Caption &Mode
Items AM USB LSB CW FM
ItemIndex 0
Columns 1 or 5

Table 4—Filter-Selection TrackBar
Properties

Property Value

Name tbFilter
Max 33
PageSize 1

Table 5—Filter TrackBar Label
Properties

Name lblFilter
Caption &Filter
FocusControl tbFilter

Table 6—Autonotch Checkbox
Properties

Name ckbAutoNotch
Caption Auto &Notch

Table 7—Frequency Caption Label
Properties

Property Value

Name lblFrequency
Caption F&requency
FocusControl edFrequency

Table 8—Frequency-Control Button
Properties

Name btnUp
Caption &Up

Name btnDown
Caption &Down

actually communicating with the
Pegasus so it doesn’t matter if the
Pegasus is connected or powered up.

Adding More Controls
Next, we will add a radio group

component for mode selection. The
component is called a radio group
because it behaves like the old push
button radios once common in cars.
When you push in one button, all the
other buttons pop out. Similarly, when
you click on one item, the dot moves to
that item; only one item may have the
dot at a time.

From the Standard palette page,
drop a RadioGroup component on the
form. Set its property values as shown
in Table 3.

If you want the choices to be in a
horizontal row, set the Columns pro-
perty to “5.” If you want them to be in
a vertical row, set Columns to “1.”
Then size the component as appro-
priate. To enter the Items value, click
in the values column: an ellipsis
button is displayed. Click on it and a
window pops up. Enter the values in
the order given, one to a line. Add the
code lines from the Code sidebar to the
rgMode.OnClick event handler. Then
add the code for the PegasusControl.
OnRxMode event handler.

Next, add another track bar for filter
selection. There are 34 possible filters
on the Pegasus ranging from 300 Hz
to 8000 Hz. Set the property values
as shown in Table 4. Add the tbFilter.
OnChange event-handler code. Add a
caption label as shown in Table 5, and
add the Pegasus.OnRxFilter event-
handler code.

From the Standard palette page,
add a CheckBox component with the
properties shown in Table 6. Then add
the ckbAutoNotch. OnClick event-
handler code and the Pegasus.
OnAutoNotch event-handler code.
Save your work and run the program
to see how it behaves.

Now we need a way to set the fre-
quency. The tutorial will have two or
three ways of doing it, which are
interchangeable. You can type the
frequency into an edit box, click up or
down buttons or adjust the frequency
using the remote tuning knob on the
Pegasus if that is available.

From the Standard palette page, add
an Edit component. Size this to handle
eight characters as we will enter and
display the frequency in hertz. Set
the Name property to “edFrequency”
and add the edFrequency.OnKeyPress
event-handler code.

Note that “end” at the end is in
addition to the end provided auto-
matically in the event-handler skele-
ton. This event handler is a little more
complex than previous event handlers.
Its purpose is to send the new fre-
quency to the radio when the user
pressed the ENTER key. The “try …
except” handling is to gracefully handle
the case when the user types a non-
numeric value. Add a caption label and
set its properties as shown in Table 7.

Add the Pegasus.OnRxFrequency
event-handler code. Then add two
Button components and set their
properties as shown in Table 8.

 Sept/Oct 2002 7

Table 9—Communication Radio Group Properties

Property Value

Name rgComPort
Caption &COM Port
Items NONE COM1 COM2 COM3 COM4
ItemIndex 0
Columns 1 or 5

Table 10—S-Meter Progress Bar
Properties

Property Value

Name pbSMeter
Max 19

Enter the code for the btnUp.
OnClick and btnDown.OnClick event
handlers. Now add the Pegasus.
OnEncoder event-handler code. Save
your work and run the program. Since
we have not established communi-
cation with the Pegasus, the remote-
tuning pod will not be working. The
next step is to actually establish
communication with the Pegasus.

Communicating with Pegasus
From the Standard palette page,

drop a RadioGroup component on the
form and set its property values as
shown in Table 9. Add the and the
Pegasus.OnComPort event-handler
code.

Run the program. Select the COM
port connected to the transceiver in the
software and you should have your very
own custom receiver. Exit the program
(and Delphi) and look at the program
icon that Delphi generated for you in
the QSTPegasus folder. You have a
functioning Windows program that is
less than 500 kb in size, and this is the
only file needed to run your program.
You could transfer just this file to
another machine with a Pegasus
connected to the same serial port and it
would work.

Let’s add some more controls. Reopen
Delphi and the source file. From the
Win32 palette, add a ProgressBar
component that will become the S-
meter. Its properties are in Table 10.
Add the Pegasus.OnRxMeter event-
handler code.

The maximum value of 19 corres-
ponds to a maximum S-meter reading
of about 60 over S9. The shr 8 (shift
right by 8) divides the value by 256. We
do this because the Pegasus reports
signal strength in S units and
fractional S units; we want only the
integer value.

To “calibrate” the S-meter display,
set the Position property to “1” and
notice how much is displayed. Place a
label with the caption of “1” at this
point. Repeat with positions and labels
for “3,” “5,” “7” and “9.” To get the
calibration points over S9, first set the
position to “14.” This corresponds to

five S units over S9, or +30 dB. Place
a label with a caption of “+30” at this
point. Then place labels of “+10” and
“+20” in between the “9” and “+30.”
Set the position to “19.” This is the
+60-dB point. Add the “+40” and
“+50” labels in a similar fashion.

You may notice that every time you
start the program, the radio para-
meters return to their default values.
The Pegasus has no memory for such
storage. All parameters must be
restored each time the Pegasus is
started. A control program needs to
save the last used settings and
restore them the next time it is run.
Three properties of the mePegasus
component can be used to save and
restore the settings: ComPort,
CurrentVFO and CurrentParams.
The ComPort property is an integer
value. The other two are record
structures that contain multiple
fields.

These data could be saved to a file,
such as an INI file, but for 32-bit
Windows programs, the preferred
storage location is the Windows
Registry. Create an event handler for
the frmQSTPegasus.OnCreateEv-
ent, and for the frmQSTPegasus.
OnDestroy event.

Note that the full event handlers
are shown. The var and lines below it
need to be added above the begin line.
These lines declare local variables for
the event handlers.

You also need to manually add a unit
name to the “uses” clause at the top of
the file. Up until now, Delphi has
added files to the “uses” clause as you
add components, but since Tregistry is
not a component, you have to add its
unit, which is “Registry.” The com-
pleted “uses” clause should look as
shown in the Code sidebar. The
explanation of the code in these event
handlers is beyond the scope of this
tutorial. Look in the Delphi help file
for TRegistry to see how to use the
Windows registry.

As a final touch, we will add a large
frequency display. Add another label
component to the screen. Change the
name property to lblFrequencyDisplay.

Click on the Font property value and then
on the ellipsis button to bring up the font
dialog. Select a large font and a bright
color, such as green. Set the label color to
black. Change the caption to “00.000.00”
and make the label big enough to display
all of the text. Add a new line to the
Pegasus.OnRxFrequency event handler
after the line that is already there.

Conclusion
This completes the tutorial. While

we have only examined a handful of
the properties available in the
mePegasus component, we have exa-
mined a representative group. All the
remaining properties behave simil-
arly to the ones that were used in the
tutorial. Consult the mePegasus help
file for details on all the features.

The tutorial presents a very basic
control program. It is not intended to
be complete and does not exploit even
all the receive features of the Pegasus.
The processes of adding support for
the remaining features are simple and
similar to the ones already shown. The
difficult task is designing the way
those features should look and work
when added.

All of the control programs that I
have seen tend to create a virtual radio
front panel on the computer screen.
They show a picture of the radio,
complete with images of knobs and
buttons. The user manipulates these
virtual knobs and buttons with the
computer mouse, just as a user would
manipulate the knobs and buttons of a
real radio with their hands.

For those of us who have been
around radios for a while, this virtual
interface is familiar. This interface
represents a model or paradigm that
has been around for a long time. In
fact, when you look at a modern radio
you can see how persistent is the cur-
rent paradigm. Modern radios have a
knob or knobs that manipulate a VFO.
In old radios, VFO stood for variable
frequency oscillator and when you
turned the VFO knob, you were
changing the value of a variable
capacitor that changed the frequency
of this oscillator. In today’s radios, you

8 Sept/Oct 2002

Code
tbAFGainChange Event-Handler Code
if not Pegasus.InUpdateNotify then
Pegasus.AFGain := tbAFGain.Position;

tbAFGain Event-Handler Code
tbAFGain.Position := Sender.AFGain;
lblAFGain.Caption := ‘&AF Gain –’
+ IntToStr(Sender.AFGain);

rgMode.OnClick Event-Handler Code
if not Pegasus.InUpdateNotify then
Pegasus.RxMode := rgMode.ItemIndex;

PegasusControl.OnRxMode Event-Handler Code
rgMode.ItemIndex := Sender.RxMode;

tbFilter.OnChange Event-Handler Code
if not Pegasus.InUpdateNotify then
Pegasus.RxFilter := 33 - tbFilter.Position;

Pegasus.OnRxFilter Event-Handler Code
tbFilter.Position := 33 - Sender.RxFilter;
lblFilter.Caption := ‘&Filter - ‘
+ IntToStr(FILTER_WIDTH[Sender.RxFilter]);

ckbAutoNotch.OnClick Event-Handler Code
if not Pegasus.InUpdateNotify then
Pegasus.AutoNotch := ckbAutoNotch.checked;

Pegasus.OnAutoNotch Event-Handler Code
ckbAutoNotch.Checked := Sender.AutoNotch;

edFrequency.OnKeyPress Event-Handler Code
if Key = #13 then

try
Pegasus.RxFrequency := IntToStr(edFrequency.Text);
Key := #0;

except
end;

EdFrequency.Text Event-Handler Code
edFrequency.Text := IntToStr(sender.RxFrequency);
lblFrequencyDisplay.Caption := format(‘%.2d.%.3d.%.2d’,
 [sender.RxFrequency div 1000000,
 (sender.RxFrequency mod 1000000) div 1000,
 (sender.RxFrequency mod 1000) div 10]);

btnUp.OnClick Event-Handler Code
Pegasus.RxFrequency := Pegasus.RxFrequency + 10;

btnDown.OnClick Event-Handler Code
Pegasus.RxFrequency := Pegasus.RxFrequency - 10;

Pegasus.OnEncoder Event-Handler Code
Pegasus.RxFrequency := Pegasus.RxFrequency
+ 10 * Pegasus.LastEncoder;

rgMode.OnClick Event-Handler Code
if not Pegasus.InUpdateNotify then
Pegasus.ComPort := rgComPort.ItemIndex;

Pegasus.OnComPort Event-Handler Code
rgMode.ItemIndex := Sender.ComPort;

Pegasus.OnRxMeter Event-Handler Code
pbSMeter.Position := Sender.LastSMeter shr 8;

are merely turning the knob of an
optical encoder that sends pulses to a
microprocessor. The microprocessor
interprets these pulses as a request to
change the parameters to a digital
frequency synthesizer.

Perhaps the persistence of this
paradigm indicates that it is still the
best available for the task. Yet now
that the interface is a computer
program, there may be a previously
undiscovered paradigm that revolu-
tionizes the way we use our radios.

On the other extreme, with a custom
control program, you could emulate the
interface of your favorite radio,
contemporary or from the past. A QST
article showed a slide-rule tuning dial
for the Yaesu FT-1000 radios.4 Some-
thing like this is certainly doable.

If your computer has a sound card,
the control program can speak to the
operator by playing prerecorded wave
files. This could be a benefit to vision-
impaired operators.

The number of modifications that
can be made is virtually unlimited.
The nice thing about these modifi-
cations is that they are entirely
reversible. Assume that after you have
worked on a modification, you decide
that it really isn’t going to work out the
way you planned and you decide to
scrap it. All you have to do is delete
some source code files and revert to the
previous version. All your unwanted
changes are automatically undone.
Try that with a chassis full of new
holes and additional circuitry!

Mark earned a two-year nonrenew-
able novice ticket in high school, but
let that license expire without ever get-
ting on the air. He got back into Ama-
teur Radio in 1982. He has a BS in
Chemical Engineering from Rose-
Hulman Institute of Technology and
works as a self-employed programmer
developing business support software
for Windows (using Delphi).

Notes
1P. Danzer, N1II, “Ten-Tec Pegasus HF

Transceiver” (Product Review), QST, Feb
2000, pp 63-67.

2A. Gavenas, WA6IQD, “N4PY Pegasus
Control Program, version 1.45” (Short
Takes), QST, May 2001, p 65.

3You can download this package from the
ARRL Web http://www.arrl.org/qexfiles.
Look for 0209ERBAUGH.ZIP.

4B. Wood, W0DZ, “The Return of the Slide
Rule Dial,” QST, Feb 2002, pp 33-35.

http://www.arrl.org/qexfiles

 Sept/Oct 2002 9

frmQSTPegasus.OnCreateEvent Event-Handler Code
procedure TfrmQSTPegasus.FormCreate(Sender: TObject);
var
Reg: TRegistry;
ComPort : byte;
VFORec : TVFORec;
Params : TPegasusControlRec;

begin
Reg := TRegistry.Create;
try
Reg.RootKey := HKEY_CURRENT_USER;
if Reg.OpenKey(‘\Software\Pegasus’, false) then
begin
if Reg.ReadBinaryData(‘VFO’, VFORec, sizeof(TVFORec)) > 0
then Pegasus.CurrentVFO := VFORec;

if Reg.ReadBinaryData(‘PARAMS’, Params, sizeof(TPegasusControlRec)) > 0
then Pegasus.CurrentParams := Params;

try
ComPort := Reg.ReadInteger(‘COM_PORT’);
Pegasus.ComPort := ComPort

except
end;

end;
finally
Reg.CloseKey;
Reg.Free;

end;
end;

frmQSTPegasus.OnDestroy Event-Handler Code
procedure TfrmQSTPegasus.FormDestroy(Sender: TObject);
var

Reg: TRegistry;
ComPort : byte;
VFORec : TVFORec;
Params : TPegasusControlRec;

begin
Reg := TRegistry.Create;
try
Reg.RootKey := HKEY_CURRENT_USER;
if Reg.OpenKey(‘\Software\Pegasus’, true) then
begin
VFORec := Pegasus.CurrentVFO;
Params := Pegasus.CurrentParams;
ComPort := Pegasus.ComPort;
Reg.WriteBinaryData(‘VFO’, VFORec, sizeof(TVFORec));
Reg.WriteBinaryData(‘PARAMS’, Params, sizeof(TPegasusControlRec));
Reg.WriteInteger(‘COM_PORT’, ComPort);

end;
finally
Reg.CloseKey;
Reg.Free;

end;
end;

A Proper “Uses” Clause
uses

Registry,
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ComCtrls, PegasusControl,
ExtCtrls;

New Line for the Pegasus.OnRxFrequency Event-Handler Code
lblFrequencyDisplay.Caption := format(‘%.2d.%.3d.%.2d’,

[sender.RxFrequency div 1000000,
(sender.RxFrequency mod 1000000) div 1000,
(sender.RxFrequency mod 1000) div 10]);

��

10 Sept/Oct 2002

8900 Marybank Dr
Austin, TX 78750
gerald@sixthmarket.com

A Software-Defined Radio
for the Masses, Part 2

By Gerald Youngblood, AC5OG

Come learn how to use a PC sound card to enter

the wonderful world of digital signal processing.

P

art 1 gave a general description
of digital signal processing
(DSP) in software-defined ra-

dios (SDRs).1 It also provided an over-
view of a full-featured radio that uses
a personal computer to perform all
DSP functions. This article begins de-
sign implementation with a complete
description of software that provides
a full-duplex interface to a standard
PC sound card.

To perform the magic of digital sig-
nal processing, we must be able to con-
vert a signal from analog to digital and
back to analog again. Most amateur
experimenters already have this ca-

1Notes appear on page 18.

pability in their shacks and many
have used it for slow-scan television
or the new digital modes like PSK31.

Part 1 discussed the power of
quadrature signal processing using in-
phase (I) and quadrature (Q) signals
to receive or transmit using virtually
any modulation method. Fortunately,
all modern PC sound cards offer the
perfect method for digitizing the I and
Q signals. Since virtually all cards to-
day provide 16-bit stereo at 44-kHz
sampling rates, we have exactly what
we need capture and process the sig-
nals in software. Fig 1 illustrates a
direct quadrature-conversion mixer
connection to a PC sound card.

This article discusses complete
source code for a DirectX sound-card
interface in Microsoft Visual Basic.
Consequently, the discussion assumes
that the reader has some fundamen-

tal knowledge of high-level language
programming.

Sound Card and PC Capabilities
Very early PC sound cards were low-

performance, 8-bit mono versions. To-
day, virtually all PCs come with
16-bit stereo cards of sufficient quality
to be used in a software-defined radio.
Such a card will allow us to demodu-
late, filter and display up to approxi-
mately a 44-kHz bandwidth, assuming
a 44-kHz sampling rate. (The band-
width is 44 kHz, rather than 22 kHz,
because the use of two channels effec-
tively doubles the sampling rate—Ed.)
For high-performance applications, it is
important to select a card that offers a
high dynamic range—on the order of
90 dB. If you are just getting started,
most PC sound cards will allow you to
begin experimentation, although they

mailto:gerald@sixthmarket.com

 Sept/Oct 2002 11

may offer lower performance.
The best 16-bit price-to-perfor-

mance ratio I have found at the time
of this article is the Santa Cruz 6-
channel DSP Audio Accelerator from
Turtle Beach Inc (www.tbeach.com).
It offers four 18-bit internal analog-
to-digital (A/D) input channels and six
20-bit digital-to-analog (D/A) output
channels with sampling rates up to
48 kHz. The manufacturer specifies a
96-dB signal-to-noise ratio (SNR) and
better than –91 dB total harmonic dis-
tortion plus noise (THD+N). Crosstalk
is stated to be –105 dB at 100 Hz. The
Santa Cruz card can be purchased
from online retailers for under $70.

Each bit on an A/D or D/A converter
represents 6 dB of dynamic range, so
a 16-bit converter has a theoretical
limit of 96 dB. A very good converter
with low-noise design is required to
achieve this level of performance.
Many 16-bit sound cards provide no
more than 12-14 effective bits of dy-
namic range. To help achieve higher
performance, the Santa Cruz card uses
an 18-bit A/D converter to deliver
the 96 dB dynamic range (16-bit)
specification.

A SoundBlaster 64 also provides
reasonable performance on the order
of 76 dB SNR according to PC AV Tech
at www.pcavtech.com. I have used
this card with good results, but I much
prefer the Santa Cruz card.

The processing power needed from
the PC depends greatly on the signal
processing required by the application.
Since I am using very-high-perfor-
mance filters and large fast-Fourier
transforms (FFTs), my applications
require at least a 400-MHz Pentium
II processor with a minimum of
128 MB of RAM. If you require less
performance from the software, you
can get by with a much slower ma-
chine. Since the entry level for new
PCs is now 1 GHz, many amateurs
have ample processing power avail-
able.

Microsoft DirectX versus
Windows Multimedia

Digital signal processing using a PC
sound card requires that we be able to
capture blocks of digitized I and Q data
through the stereo inputs, process those
signals and return them to the sound-
card outputs in pseudo real time. This
is called full duplex. Unfortunately,
there is no high-level software interface
that offers the capabilities we need for
the SDR application.

Microsoft now provides two appli-
cation programming interfaces2 (APIs)
that allow direct access to the sound
card under C++ and Visual Basic. The
original interface is the Windows Mul-

Fig 1—Direct quadrature conversion mixer to sound-card interface used in the author’s
prototype.

Fig 2—DirectSoundCaptureBuffer and DirectSoundBuffer circular buffer layout.

timedia system using the Waveform
Audio API. While my early work was
done with the Waveform Audio API, I
later abandoned it for the higher per-
formance and simpler interface
DirectX offers. The only limitation I
have found with DirectX is that it does
not currently support sound cards
with more than 16-bits of resolution.
For 24-bit cards, Windows Multimedia
is required. While the Santa Cruz card
supports 18-bits internally, it presents
only 16-bits to the interface. For in-
formation on where to download the
DirectX software development kit
(SDK) see Note 2.

allows the simultaneous capture and
playback of two or more audio chan-
nels (stereo). Unfortunately, there is
no high-level code in Visual Basic or
C++ to directly support full duplex as
required in an SDR. We will therefore
have to write code to directly control
the card through the DirectX API.

DirectX internally manages all low-
level buffers and their respective
interfaces to the sound-card hard-
ware. Our code will have to manage
the high-level DirectX buffers
(called DirectSoundBuffer and
DirectSoundCaptureBuffer) to pro-
vide uninterrupted operation in
a multitasking system. The Direct-
SoundCaptureBuffer stores the digi-
tized signals from the stereo

Circular Buffer Concepts
A typical full-duplex PC sound card

http://www.tbeach.com
http://www.pcavtech.com

12 Sept/Oct 2002

A/D converter in a circular buffer and
notifies the application upon the
occurrence of predefined events. Once
captured in the buffer, we can read
the data, perform the necessary modu-
lation or demodulation functions us-
ing DSP and send the data to the
DirectSoundBuffer for D/A conversion
and output to the speakers or trans-
mitter.

To provide smooth operation in a
multitracking system without audio
popping or interruption, it will be nec-
essary to provide a multilevel buffer for
both capture and playback. You may
have heard the term double buffering.
We will use double buffering in the
DirectSoundCaptureBuffer
and quadruple buffering in the
DirectSoundBuffer. I found that the
quad buffer with overwrite detection
was required on the output to prevent
overwriting problems when the system
is heavily loaded with other applica-
tions. Figs 2A and 2B illustrate the
concept of a circular double buffer,
which is used for the Direct-
SoundCaptureBuffer. Although the
buffer is really a linear array in
memory, as shown in Fig 2B, we can
visualize it as circular, as illustrated in
Fig 2A. This is so because DirectX man-
ages the buffer so that as soon as each
cursor reaches the end of the array, the
driver resets the cursor to the begin-
ning of the buffer.

The DirectSoundCaptureBuffer is
broken into two blocks, each equal in
size to the amount of data to be cap-
tured and processed between each
event. Note that an event is much like
an interrupt. In our case, we will use
a block size of 2048 samples. Since we
are using a stereo (two-channel) board
with 16 bits per channel, we will be
capturing 8192 bytes per block (2048
samples × 2 channels × 2 bytes). There-
fore, the DirectSoundCaptureBuffer
will be twice as large (16,384 bytes).

Since the DirectSoundCapture
Buffer is divided into two data blocks,
we will need to send an event notifica-
tion to the application after each block
has been captured. The DirectX driver
maintains cursors that track the posi-
tion of the capture operation at all
times. The driver provides the means
of setting specific locations within the
buffer that cause an event to trigger,
thereby telling the application to re-
trieve the data. We may then read the
correct block directly from the
DirectSoundCaptureBuffer segment
that has been completed.

Referring again to Fig 2A, the two
cursors resemble the hands on a clock
face rotating in a clockwise direction.
The capture cursor, lPlay, represents
the point at which data are currently

being captured. (I know that sounds
backward, but that is how Microsoft
defined it.) The read cursor, lWrite,
trails the capture cursor and indicates
the point up to which data can safely
be read. The data after lWrite and up
to and including lPlay are not neces-
sarily good data because of hardware
buffering. We can use the lWrite cur-
sor to trigger an event that tells the
software to read each respective block
of data, as will be discussed later in
the article. We will therefore receive
two events per revolution of the circu-
lar buffer. Data can be captured into
one half of the buffer while data are
being read from the other half.

Fig 2C illustrates the Direct-
SoundBuffer, which is used to output
data to the D/A converters. In this case,
we will use a quadruple buffer to allow
plenty of room between the currently
playing segment and the segment be-
ing written. The play cursor, lPlay, al-
ways points to the next byte of data to
be played. The write cursor, lWrite, is
the point after which it is safe to write
data into the buffer. The cursors may
be thought of as rotating in a clockwise
motion just as the capture cursors do.
We must monitor the location of the
cursors before writing to buffer loca-
tions between the cursors to prevent

overwriting data that have already
been committed to the hardware for
playback.

Now let’s consider how the data
maps from the DirectSoundCapture-
Buffer to the DirectSoundBuffer. To
prevent gaps or pops in the sound due
to processor loading, we will want to
fill the entire quadruple buffer before
starting the playback looping. DirectX
allows the application to set the start-
ing point for the lPlay cursor and to
start the playback at any time.
Fig 3 shows how the data blocks map
sequentially from the Direct-
SoundCaptureBuffer to the Direct-
SoundBuffer. Block 0 from the
DirectSoundCaptureBuffer is trans-
ferred to Block 0 of the Direct-
SoundBuffer. Block 1 of the
DirectSoundCaptureBuffer is next
transferred to Block 1 of the
DirectSoundBuffer and so forth. The
subsequent source-code examples show
how control of the buffers is accom-
plished.

Fig 3—Method for mapping the
DirectSoundCaptureBuffer to
the DirectSoundBuffer.

Fig 4—Registration of the DirectX8 for Visual Basic Type Library in the Visual
Basic IDE.

Full Duplex, Step-by-Step
The following sections provide a

detailed discussion of full-duplex
DirectX implementation. The example
code captures and plays back a stereo
audio signal that is delayed by four

 Sept/Oct 2002 13

Option Explicit

‘Define Constants
Const Fs As Long = 44100 ‘Sampling frequency Hz
Const NFFT As Long = 4096 ‘Number of FFT bins
Const BLKSIZE As Long = 2048 ‘Capture/play block size
Const CAPTURESIZE As Long = 4096 ‘Capture Buffer size

‘Define DirectX Objects
Dim dx As New DirectX8 ‘DirectX object
Dim ds As DirectSound8 ‘DirectSound object
Dim dspb As DirectSoundPrimaryBuffer8 ‘Primary buffer object
Dim dsc As DirectSoundCapture8 ‘Capture object
Dim dsb As DirectSoundSecondaryBuffer8 ‘Output Buffer object
Dim dscb As DirectSoundCaptureBuffer8 ‘Capture Buffer object

‘Define Type Definitions
Dim dscbd As DSCBUFFERDESC ‘Capture buffer description
Dim dsbd As DSBUFFERDESC ‘DirectSound buffer description
Dim dspbd As WAVEFORMATEX ‘Primary buffer description
Dim CapCurs As DSCURSORS ‘DirectSound Capture Cursor
Dim PlyCurs As DSCURSORS ‘DirectSound Play Cursor

‘Create I/O Sound Buffers
Dim inBuffer(CAPTURESIZE) As Integer ‘Demodulator Input Buffer
Dim outBuffer(CAPTURESIZE) As Integer ‘Demodulator Output Buffer

‘Define pointers and counters
Dim Pass As Long ‘Number of capture passes
Dim InPtr As Long ‘Capture Buffer block pointer
Dim OutPtr As Long ‘Output Buffer block pointer
Dim StartAddr As Long ‘Buffer block starting address
Dim EndAddr As Long ‘Ending buffer block address
Dim CaptureBytes As Long ‘Capture bytes to read

‘Define loop counter variables for timing the capture event cycle
Dim TimeStart As Double ‘Start time for DirectX8Event loop
Dim TimeEnd As Double ‘Ending time for DirectX8Event loop
Dim AvgCtr As Long ‘Counts number of events to average
Dim AvgTime As Double ‘Stores the average event cycle time

‘Set up Event variables for the Capture Buffer
Implements DirectXEvent8 ‘Allows DirectX Events
Dim hEvent(1) As Long ‘Handle for DirectX Event
Dim EVNT(1) As DSBPOSITIONNOTIFY ‘Notify position array
Dim Receiving As Boolean ‘In Receive mode if true
Dim FirstPass As Boolean ‘Denotes first pass from Start

Fig 5—Declaration of variables, buffers, events and objects. This code is located in the General section of the module or form.

capture periods through buffering. You
should refer to the “DirectX Audio”
section of the DirectX 8.0 Program-
mers Reference that is installed with
the DirectX software developer’s kit
(SDK) throughout this discussion. The
DSP code will be discussed in the next
article of this series, which will dis-
cuss the modulation and demodula-
tion of quadrature signals in the SDR.
Here are the steps involved in creat-
ing the DirectX interface:
• Install DirectX runtime and SDK.

• Add a reference to DirectX8 for
Visual Basic Type Library.

• Define Variables, I/O buffers and
DirectX objects.

• Implement DirectX8 events and
event handles.

• Create the audio devices.
• Create the DirectX events.
• Start and stop capture and play buff-

ers.
• Process the DirectXEvent8.
• Fill the play buffer before starting

playback.

• Detect and correct overwrite errors.
• Parse the stereo buffer into I and Q

signals.
• Destroy objects and events on exit.

Complete functional source code for
the DirectX driver written in Microsoft
Visual Basic is provided for download
from the QEX Web site.3

Install DirectX and Register it
within Visual Basic

The first step is to download the
DirectX driver and the DirectX SDK

14 Sept/Oct 2002

‘Set up the DirectSound Objects and the Capture and Play Buffers
Sub CreateDevices()

 On Local Error Resume Next

 Set ds = dx.DirectSoundCreate(vbNullString) ‘DirectSound object
 Set dsc = dx.DirectSoundCaptureCreate(vbNullString) ‘DirectSound Capture

 ‘Check to se if Sound Card is properly installed
 If Err.Number <> 0 Then
 MsgBox “Unable to start DirectSound. Check proper sound card installation”
 End
 End If

 ‘Set the cooperative level to allow the Primary Buffer format to be set
 ds.SetCooperativeLevel Me.hWnd, DSSCL_PRIORITY

 ‘Set up format for capture buffer
 With dscbd
 With .fxFormat
 .nFormatTag = WAVE_FORMAT_PCM
 .nChannels = 2 ‘Stereo
 .lSamplesPerSec = Fs ‘Sampling rate in Hz
 .nBitsPerSample = 16 ’16 bit samples
 .nBlockAlign = .nBitsPerSample / 8 * .nChannels
 .lAvgBytesPerSec = .lSamplesPerSec * .nBlockAlign
 End With
 .lFlags = DSCBCAPS_DEFAULT
 .lBufferBytes = (dscbd.fxFormat.nBlockAlign * CAPTURESIZE) ‘Buffer Size
 CaptureBytes = .lBufferBytes \ 2 ‘Bytes for 1/2 of capture buffer
 End With

 Set dscb = dsc.CreateCaptureBuffer(dscbd) ‘Create the capture buffer

 ‘ Set up format for secondary playback buffer
 With dsbd
 .fxFormat = dscbd.fxFormat
 .lBufferBytes = dscbd.lBufferBytes * 2 ‘Play is 2X Capture Buffer Size
 .lFlags = DSBCAPS_GLOBALFOCUS Or DSBCAPS_GETCURRENTPOSITION2
 End With

 dspbd = dsbd.fxFormat ‘Set Primary Buffer format
 dspb.SetFormat dspbd ‘to same as Secondary Buffer

 Set dsb = ds.CreateSoundBuffer(dsbd) ‘Create the secondary buffer

End Sub

Fig 6—Create the DirectX capture and playback devices.

from the Microsoft Web site (see Note
3). Once the driver and SDK are in-
stalled, you will need to register the
DirectX8 for Visual Basic Type Li-
brary within the Visual Basic devel-
opment environment.

If you are building the project from
scratch, first create a Visual Basic
project and name it “Sound.” When the
project loads, go to the Project Menu/
References, which loads the form
shown in Fig 4. Scroll through Avail-
able References until you locate the

DirectX8 for Visual Basic Type Library
and check the box. When you press
“OK,” the library is registered.

Define Variables, Buffers and
DirectX Objects

Name the form in the Sound project
frmSound. In the General section of
frmSound, you will need to declare all
of the variables, buffers and DirectX
objects that will be used in the driver
interface. Fig 5 provides the code that
is to be copied into the General sec-

tion. All definitions are commented in
the code and should be self-explana-
tory when viewed in conjunction with
the subroutine code.

Create the Audio Devices
We are now ready to create the

DirectSound objects and set up the
format of the capture and play buff-
ers. Refer to the source code in Fig 6
during the following discussion.

The first step is to create the
DirectSound and DirectSoundCapture

 Sept/Oct 2002 15

Fig 7—Create the DirectX events.

‘Set events for capture buffer notification at 0 and 1/2
Sub SetEvents()

 hEvent(0) = dx.CreateEvent(Me) ‘Event handle for first half of buffer
 hEvent(1) = dx.CreateEvent(Me) ‘Event handle for second half of buffer

 ‘Buffer Event 0 sets Write at 50% of buffer
 EVNT(0).hEventNotify = hEvent(0)
 EVNT(0).lOffset = (dscbd.lBufferBytes \ 2) - 1 ‘Set event to first half of capture buffer

 ‘Buffer Event 1 Write at 100% of buffer
 EVNT(1).hEventNotify = hEvent(1)
 EVNT(1).lOffset = dscbd.lBufferBytes - 1 ‘Set Event to second half of capture buffer

 dscb.SetNotificationPositions 2, EVNT() ‘Set number of notification positions to 2

End Sub

‘Create Devices and Set the DirectX8Events
Private Sub Form_Load()
 CreateDevices ‘Create DirectSound devices
 SetEvents ‘Set up DirectX events
End Sub

‘Shut everything down and close application
Private Sub Form_Unload(Cancel As Integer)

 If Receiving = True Then
 dsb.Stop ‘Stop Playback
 dscb.Stop ‘Stop Capture
 End If

 Dim i As Integer
 For i = 0 To UBound(hEvent) ‘Kill DirectX Events
 DoEvents
 If hEvent(i) Then dx.DestroyEvent hEvent(i)
 Next

 Set dx = Nothing ‘Destroy DirectX objects
 Set ds = Nothing
 Set dsc = Nothing
 Set dsb = Nothing
 Set dscb = Nothing

 Unload Me

End Sub

Fig 8—Create and destroy the DirectSound Devices and events.

objects. We then check for an error to
see if we have a compatible sound card
installed. If not, an error message would
be displayed to the user. Next, we set
the cooperative level DSSCL_ PRIOR-
ITY to allow the Primary Buffer format
to be set to the same as that of the Sec-
ondary Buffer. The code that follows sets
up the DirectSoundCaptureBuffer-

Description format and creates the
DirectSoundCaptureBuffer object. The
format is set to 16-bit stereo at the sam-
pling rate set by the constant Fs.

Next, the DirectSoundBuffer-
Description is set to the same format
as the DirectSoundCaptureBuffer-
Description. We then set the Primary
Buffer format to that of the Second-

ary Buffer before creating the
DirectSoundBuffer object.

Set the DirectX Events
As discussed earlier, the

DirectSoundCaptureBuffer is divided
into two blocks so that we can read
from one block while capturing to the
other. To do so, we must know when

16 Sept/Oct 2002

Fig 9—Start and stop the capture/playback buffers.

‘Turn Capture/Playback On
Private Sub cmdOn_Click()
 dscb.Start DSCBSTART_LOOPING ‘Start Capture Looping
 Receiving = True ‘Set flag to receive mode
 FirstPass = True ‘This is the first pass after
Start
 OutPtr = 0 ‘Starts writing to first buffer
End Sub

‘Turn Capture/Playback Off
Private Sub cmdOff_Click()
 Receiving = False ‘Reset Receiving flag
 FirstPass = False ‘Reset FirstPass flag
 dscb.Stop ‘Stop Capture Loop
 dsb.Stop ‘Stop Playback Loop
End Sub

DirectX has finished writing to a
block. This is accomplished using the
DirectXEvent8. Fig 7 provides the code
necessary to set up the two events that
occur when the lWrite cursor has
reached 50% and 100% of the
DirectSoundCaptureBuffer.

We begin by creating the two event
handles hEvent(0) and hEvent(1). The
code that follows creates a handle for
each of the respective events and sets
them to trigger after each half of the
DirectSoundCaptureBuffer is filled.
Finally, we set the number of notifica-
tion positions to two and pass the
name of the EVNT() event handle ar-
ray to DirectX.

The CreateDevices and SetEvents
subroutines should be called from the
Form_Load() subroutine. The Form_
Unload subroutine must stop capture
and playback and destroy all of the
DirectX objects before shutting down.
The code for loading and unloading is
shown in Fig 8.

Starting and Stopping
Capture/Playback

Fig 9 illustrates how to start and
stop the DirectSoundCaptureBuffer.
The dscb.Start DSCBSTART_ LOOP-
ING command starts the Direct-
SoundCaptureBuffer in a continuous
circular loop. When it fills the first half
of the buffer, it triggers the DirectX
Event8 subroutine so that the data
can be read, processed and sent to the
DirectSoundBuffer. Note that the
DirectSoundBuffer has not yet been
started since we will quadruple buffer
the output to prevent processor load-
ing from causing gaps in the output.
The FirstPass flag tells the event to
start filling the DirectSoundBuffer for
the first time before starting the buffer
looping.

Processing the Direct-XEvent8
Once we have started the Direct-

SoundCaptureBuffer looping, the
completion of each block will cause the
DirectX Event8 code in Fig 10 to be
executed. As we have noted, the events
will occur when 50% and 100% of the
buffer has been filled with data. Since
the buffer is circular, it will begin
again at the 0 location when the buffer
is full to start the cycle all over again.
Given a sampling rate of 44,100 Hz
and 2048 samples per capture block,
the block rate is calculated to be
44,100/2048 = 21.53 blocks/s or one
block every 46.4 ms. Since the quad
buffer is filled before starting playback
the total delay from input to output is
4 × 46.4 ms = 185.6 ms.

The DirectX Event8_DXCallback
event passes the eventid as a variable.
The case statement at the beginning of

the code determines from the eventid,
which half of the DirectSoundCapture-
Buffer has just been filled. With that
information, we can calculate the start-
ing address for reading each block from
the DirectSoundCaptureBuffer to the
inBuffer() array with the dscb.
ReadBuffer command. Next, we simply
pass the inBuffer() to the external DSP
subroutine, which returns the processed
data in the outBuffer() array.

Then we calculate the StartAddr
and EndAddr for the next write loca-
tion in the DirectSoundBuffer. Before
writing to the buffer, we first check to
make sure that we are not writing
between the lWrite and lPlay cursors,
which will cause portions of the buffer
to be overwritten that have already
been committed to the output. This
will result in noise and distortion in
the audio output. If an error occurs,
the FirstPass flag is set to true and
the pointers are reset to zero so that
we flush the DirectSoundBuffer and
start over. This effectively performs an
automatic reset when the processor is
overloaded, typically because of graph-
ics intensive applications running
alongside the SDR application.

If there are no overwrite errors, we
write the outBuffer() array that was
returned from the DSP routine to the
next StartAddr to EndAddr in the
DirectSoundBuffer. Important note: In
the sample code, the DSP subroutine
call is commented out and the
inBuffer() array is passed directly to
the DirectSoundBuffer for testing of
the code. When the FirstPass flag is
set to True, we capture and write four
data blocks before starting playback
looping with the .SetCurrentPosition
0 and .Play DSBPLAY_LOOPING
commands.

The subroutine calls to StartTimer
and StopTimer allow the average com-
putational time of the event loop to be
displayed in the immediate window.
This is useful in measuring the effi-

ciency of the DSP subroutine code that
is called from the event. In normal
operation, these subroutine calls
should be commented out.

Coming Up Next
In the next article, we will discuss

in detail the DSP code that provides

Parsing the Stereo Buffer
into I and Q Signals

One more step that is required to
use the captured signal in the DSP
subroutine is to separate or parse the
left and right channel data into the I
and Q signals, respectively. This can
be accomplished using the code in
Fig 11. In 16-bit stereo, the left and
right channels are interleaved in the
inBuffer() and outBuffer(). The code
simply copies the alternating 16-bit
integer values to the RealIn()), (same
as I) and ImagIn(), (same as Q) buff-
ers respectively. Now we are ready to
perform the magic of digital signal
processing that we will discuss in the
next article of the series.

Testing the Driver
To test the driver, connect an audio

generator—or any other audio device,
such as a receiver—to the line input of
the sound card. Be sure to mute line-
in on the mixer control panel so that
you will not hear the audio directly
through the operating system. You can
open the mixer by double clicking on
the speaker icon in the lower right cor-
ner of your Windows screen. It is also
accessible through the Control Panel.

Now run the Sound application and
press the On button. You should hear
the audio playing through the driver.
It will be delayed about 185 ms from
the incoming audio because of the qua-
druple buffering. You can turn the
mute control on the line-in mixer on
and off to test the delay. It should
sound like an echo. If so, you know that
everything is operating properly.

 Sept/Oct 2002 17

‘Process the Capture events, call DSP routines, and output to Secondary Play Buffer
Private Sub DirectXEvent8_DXCallback (ByVal eventid As Long)

 StartTimer ‘Save loop start time

 Select Case eventid ‘Determine which Capture Block is ready
 Case hEvent(0)
 InPtr = 0 ‘First half of Capture Buffer
 Case hEvent(1)
 InPtr = 1 ‘Second half of Capture Buffer
 End Select

 StartAddr = InPtr * CaptureBytes ‘Capture buffer starting address

 ‘Read from DirectX circular Capture Buffer to inBuffer
 dscb.ReadBuffer StartAddr, CaptureBytes, inBuffer(0), DSCBLOCK_DEFAULT

 ‘DSP Modulation/Demodulation - NOTE: THIS IS WHERE THE DSP CODE IS CALLED
‘ DSP inBuffer, outBuffer

 StartAddr = OutPtr * CaptureBytes ‘Play buffer starting address
 EndAddr = OutPtr + CaptureBytes - 1 ‘Play buffer ending address

 With dsb ‘Reference DirectSoundBuffer

 .GetCurrentPosition PlyCurs ‘Get current Play position

 ‘If true the write is overlapping the lWrite cursor due to processor loading
 If PlyCurs.lWrite >= StartAddr _
 And PlyCurs.lWrite <= EndAddr Then
 FirstPass = True ‘Restart play buffer
 OutPtr = 0
 StartAddr = 0
 End If

 ‘If true the write is overlapping the lPlay cursor due to processor loading
 If PlyCurs.lPlay >= StartAddr _
 And PlyCurs.lPlay <= EndAddr Then
 FirstPass = True ‘Restart play buffer
 OutPtr = 0
 StartAddr = 0
 End If

 ‘Write outBuffer to DirectX circular Secondary Buffer. NOTE: writing inBuffer causes
direct pass through. Replace
 ‘with outBuffer below to when using DSP subroutine for modulation/demodulation
 .WriteBuffer StartAddr, CaptureBytes, inBuffer(0), DSBLOCK_DEFAULT

 OutPtr = IIf(OutPtr >= 3, 0, OutPtr + 1) ‘Counts 0 to 3

 If FirstPass = True Then ‘On FirstPass wait 4 counts before starting
 Pass = Pass + 1 ‘the Secondary Play buffer looping at 0
 If Pass = 3 Then ‘This puts the Play buffer three Capture cycles
 FirstPass = False ‘after the current one
 Pass = 0 ‘Reset the Pass counter
 .SetCurrentPosition 0 ‘Set playback position to zero
 .Play DSBPLAY_LOOPING ‘Start playback looping
 End If
 End If

 End With

 StopTimer ‘Display average loop time in immediate window

End Sub Fig 10—Process the DirectXEvent8 event. Note that the example code passes the inBuffer() directly to the DirectSoundBuffer
without processing. The DSP subroutine call has been commented out for this illustration so that the audio input to the sound
card will be passed directly to the audio output with a 185 ms delay. Destroy objects and events on exit.

18 Sept/Oct 2002

modulation and demodulation of SSB
signals. Included will be source code
for implementing ultra-high-perfor-
mance variable band-pass filtering in
the frequency domain, offset baseband
IF processing and digital AGC.

Erase RealIn, ImagIn

 For S = 0 To CAPTURESIZE - 1 Step 2 ‘Copy I to RealIn and Q to ImagIn
 RealIn(S \ 2) = inBuffer(S)
 ImagIn(S \ 2) = inBuffer(S + 1)
 Next S

Fig 11—Code for parsing the stereo inBuffer() into in-phase and quadrature signals. This code must be imbedded into the DSP
subroutine.

��

Notes
1G. Youngblood, AC5OG, “A Software-

Defined Radio for the Masses: Part 1,”
QEX, July/Aug 2002, pp 13-21.

2Information on both DirectX and Windows
Multimedia programming can be accessed
on the Microsoft Developer Network (MSDN)
Web site at www.msdn. microsoft.com/li-
brary. To download the DirectX Software
Development Kit go to msdn.microsoft.
com/downloads/ and click on “Graphics and
Multimedia” in the left-hand navigation win-
dow. Next click on “DirectX” and then
“DirectX 8.1” (or a later version if available).

The DirectX runtime driver may be down-
loaded from www.microsoft.com/windows/
directx/downloads/default.asp.

3You can download this package from the
ARRL Web www.arrl.org/qexfiles/. Look
for 0902Youngblood.zip.

http://www.msdn.microsoft.com/library
http://www.msdn.microsoft.com/library
http://msdn.microsoft.com/downloads/
http://msdn.microsoft.com/downloads/
http://www.microsoft.com/windows/directx/downloads/default.asp
http://www.microsoft.com/windows/directx/downloads/default.asp
http://www.arrl.org/qexfiles/

 Sept/Oct 2002 19

1902 Middle Glen Dr
Carrollton, TX 75007
wb5kia@arrl.net

Amateur Radio Software:
It Keeps Getting Better

By Stephen J. Gradijan, WB5KIA

The tools to develop Amateur Radio

applications steadily improve.

My first effort in programming
software for Amateur Radio
was a program written 20

years ago in BASIC. It provided accu-
rate calculations but it was not very
pretty, as its graphic capabilities were
limited. Today, amateurs are creating
commercial and near-commercial-
quality Amateur Radio software to do
all kinds of things and are making it
free to the amateur community. Not
all hams programming are profes-
sional programmers. High-level pro-
gramming is easier to do than ever,
and personal computers are permit-
ting execution of mathematical rou-
tines that would have brought the PCs
of 10 years ago to their knees.

Sophisticated graphics are within
the capabilities of the novice program-
mer. Many ham-developed computer
programs are available at no cost to
the amateur—they track satellites, log
contacts, predict radio propagation
and support every digital mode avail-
able. Until recently, ham-oriented
freeware and shareware could be
found on the Internet, but without its

source code (the code required to
modify the program). Most of the pro-
grams came with only the executable
code. State-of-the-art programming-
code examples of ham-radio processes,
with a few exceptions, were difficult
to find. Today, some amateurs are
freely sharing source code with oth-
ers and even sharing the program-de-
velopment experience.

The purposes of this article are to
show that it is relatively easy to write
code with modern programming pack-
ages and point out some options for
obtaining and using software for your
projects.

Internet sites like N1MM’s logging
project, WA0TTN and AE4YJ’s pages
for development of PSK, SV2AGW’s
AGWPacket Engine site for develop-
ment of packet communications and
JE3HHT’s MMTTY RTTY pages fea-
ture ham programming at its best.
Such sites let radio amateurs, world-
wide, get involved with the program
development, have access to the source
code or to a control or DLL to use with
your program. Most of what is avail-
able is free of charge and usually sub-
ject to very generous fair-use terms.
Information on the sites describes how
the material may be used. The source

material available at these sites can
shorten the program-development
time of your project or help a begin-
ning programmer discover how to do
something that otherwise might seem
impossible.

Software on the Web
The N1MM Logger (Fig 1) Web site

is at n1mm.com. On the N1MM Ya-
hoo Discussion Group, one can request
new features to the current version of
the versatile N1MM logging program
and discuss problems (called bugs)
with the current logging program. Sev-
eral hams help Tom Walker, the
program’s principal developer, develop
new code and documentation. Tom and
his crew are a cooperative develop-
ment venture, programming in Visual
Basic 6. N1MM Logger uses Microsoft
Access files for the logging database.
However, most of the code can be read
using a simple text editor such as
Notepad, which comes with the vari-
ous versions of Windows. Routines can
be used in various projects that you
might program in another version of
Visual Basic or that could be trans-
lated into another language.

JE3HHT has made the dynamic-
link library he programmed for

mailto:wb5kia@arrl.net
http://n1mm.com

20 Sept/Oct 2002

MMTTY available for use by radio
amateurs. The MMTTY page is at
www.qsl.net/mmhamsoft/mmtty/.
It has a copy of the RTTY engine and
examples for Visual Basic 6 and
Borland C++ developers. Dynamic link
libraries (DLLs) are program modules
that contain code, data or resources
that can be shared among many Win-
dows applications. They can be thought
of as compact programs that can be
accessed by various Windows programs
to provide specific functions. Makato’s
DLL allows others to incorporate his
RTTY engine in their own programs.

Moe Wheatley, AE4YJ, has made
his PSK Core DLL available for ama-
teur use. Dave Cook, WA0TTN, took
Moe’s idea farther and created a
WinPSK ActiveX control (Fig 2) that
can be used with a variety of
programming platforms. Moe has also
made available the original code on
which the PSK Core DLL is based. His
links to a Visual Basic 6 demon-
stration by Eric Sundstrup, VK7AAB,
have disappeared but a Delphi
demonstration by Julian Moss, G4ILO,
is still linked at his site www.qsl.net/
ae4jy/pskcoredll.htm. G4ILO has
his own site, www.qsl.net/g4ilo/
main.html with additional code and
programs. WA0TTN’s site is www.
netdave.com/wa0ttn. The effort that
went into programming the DLL and
ActiveX control was awesome. All
these tools are free for amateur use.

You can write your own programs
too. It takes time to become familiar
with the programming languages, but
once you get started, programming can
be fun. Hamming and computer pro-
gramming do go together!

History
For decades, radio amateurs have

made use of computers to enhance
their operating with programs to cal-
culate engineering values, log contacts
and keep track of awards and QSLs,
operate packet, RTTY or other digital
modes, predict radio propagation con-
ditions and track Amateur Radio
satellites.

Efforts in the 1960s involved main-
frame computers, the FORTRAN lan-
guage and punch cards, but few hams
were able to get access to the institu-
tional computers or do the necessary
work. Beginning in the 1970s and with
the advent of personal computers and
the spread of the BASIC language in
its various forms, hams began to pro-
gram in earnest.

It was practical in the early days
to publish BASIC code listings in
magazines. In 1981, Tom Clark,
W3IWI, wrote a satellite tracking pro-
gram described in an article called

Fig 2—WA0TNN’s documentation for the WinPSK ActiveX control he wrote based on
AE4JY’s PSK Core DLL is very thorough. It works with Visual Basic, Delphi, C++ and
such.

Fig 1—The N1MM Logger is being developed by ham users through exchange of
comments and ideas at an Internet discussion Web site. Visual Basic 6 is the main
tool for development of the project.

“BASIC Orbits” (Orbit, March/April
1981, pp 10-11, 19-20, 29). It was very
popular and became the basis for
many later Windows programs. QST
contained the MINIMUF propagation
program and the Super Duper logging
program in 1982 and 1985, respec-
tively. Keyboarding of long programs

was a chore and error-prone. After
1986, program listings disappeared
from most journals, as shareware and
freeware programs became available
on telephone and packet bulletin-
board systems (BBSs), disks and CD
ROMs. This was a huge improvement
in the ability to share software code.

http://www.qsl.net/mmhamsoft/mmtty/
http://www.qsl.net/ae4jy/pskcoredll.htm
http://www.qsl.net/ae4jy/pskcoredll.htm
http://www.qsl.net/g4ilo/main.html
http://www.qsl.net/g4ilo/main.html
http://www.netdave.com/wa0ttn
http://www.netdave.com/wa0ttn

 Sept/Oct 2002 21

BASIC was the primary tool for
nonprofessional programmers. Profes-
sional programmers used other
high-level languages like Pascal and
FORTRAN (in its various forms) on
PCs, along with assembly language.

Early Windows-environment pro-
grammers used C and C+ followed by
Visual Basic in about 1991. It was very
difficult for the amateur to write a
program for Windows. Visual Basic
changed that as it became relatively
easy to program, so Windows-based
ham programs began to appear. It is
difficult to provide Windows program
listings because it is impractical to
print a listing of the graphical proper-
ties that are attached to specific con-
trols. Consequently it became difficult
to print the source code listings in
magazines.

Since 1995 and the creation of
Windows 95, tools like Visual Basic
and Delphi have created 32-bit
programs that can execute at
lightning speed on today’s fast PCs.

My Experience with
Programming Projects

I have developed numerous pro-
grams through the years for my per-
sonal enjoyment using interpreted
BASIC, Computer Associates Realizer,
Visual Basic, C++, Delphi 1 and Delphi
5. Today, I program almost exclusively
with Delphi 5 Professional.

Many of my DOS and Windows pro-
grams were near commercial quality
at the time they were written, but
many were only partially fleshed out
or documented. I knew how to run
them and did not require a polished
finished product, but only the func-
tionality. Similar programs were avail-
able commercially but my own pro-
grams cost me only my time and re-
sulted in a better understanding of the
basis for the programs (their under-
lying mathematics and principles that
allowed execution).

I programmed antenna pointing, sat-
ellite tracking and logging programs, a
program to control my PK-232 Multi-
mode controller, Technician and Gen-
eral Class License study guides, and so
forth. My most recent effort is a PSK
program with an attached logger (see
Fig 3). Although I may not be typical, I
believe it is possible for you to write
programs for yourself too!

KIApsk Logger is a PSK program I
developed recently because the trans-
mit and receive frequencies of my ag-
ing ICOM IC-740 are off by 16 Hz (or
there may be a problem with input
versus output frequencies of my clone
sound card on my six-year-old com-
puter). Using any of the excellent
available PSK software programs, I

Fig 3—This is the main screen of the KIApsk Logger that was programmed with Delphi 5
and using the ActiveX control by WA0TTN described in the text.

constantly received complaints of
slightly off-frequency operation or “you
must have left your RIT control on.” I
do not get such reports any more.

KIApsk Logger uses the WinPSK
ActiveX control (copyrighted in 2001 by
Dave Cook, WA0TTN and Moe
Wheatley, AE4JY) based on the
PSKCore DLL developed by Moe
Wheatley. The ActiveX control incorpo-

rates Moe Wheatley’s DLL code. It pro-
vides a convenient COM object for de-
veloping PSK31 applications in
Microsoft Visual Basic, Delphi and C++.
The ActiveX control provides a visual
display of the common data viewing
modes of spectrum, waterfall, input and
data sync. The program is similar to
most of the available PSK programs
today; the difference is that I coded it

Fig 4—A General class license quiz generator and study guide was easily programmed
with Realizer.

22 Sept/Oct 2002

and it does what I want it to.
My son Francis, KD5HTB, found it

relatively easy to pass his Technician
Plus and General exams using soft-
ware learning programs I developed
using the ARRL/VEC question pool. I
created a trial exam generating pro-
gram and study guide using Realizer
(see Fig 4). This is one of the simplest
types of program. Plenty of material
was available on the Internet with
source files showing various ways of
creating generic test generating pro-
grams for educators. Potential pro-
gram developers of educational ham
programs have a wealth of example
information and code available.

Putting together various pieces of
code can result in new and useful pro-
grams. You might need to modify the
code for your version of the language
or even for a different programming
environment. For several years, I used
a propagation forecast/beam-heading
program based on a modification of the
BASIC code in the MINIMUF QST ar-
ticle, code modified from various other
magazines and independently devel-
oped code (see Fig 5). The initial code
came from the article; the rest came
through curiosity and a desire to have
additional features.

Programming Tools
What is needed to get a start in pro-

gramming for Amateur Radio may be
as simple as acquiring a copy of QBasic,
QuickBasic, PowerBasic, Visual Basic
or Turbo Pascal for DOS programming.
BASIC interpreters come in various
forms such as GWBasic, BasicA and so
on. Microsoft Qbasic is an interpreted
version of its compiled QuickBasic. The
main difference is that Qbasic requires
the presence of the Qbasic interpreter
to run the program code. QuickBasic
can create an executable file that is self-
contained. It also has more capabilities.
PowerBasic by Powerbasic is offering
similar to QuickBasic. The original
Visual Basic was a DOS programming
tool with expanded graphics capabili-
ties. Turbo Pascal is a Borland product
using the Pascal programming lan-
guage. Pascal and BASIC have both
similarities and differences. Noncom-
mercial versions of both the original
BASIC and Pascal languages have been
developed and can be found for down-
loading on the Internet. While inter-
preters can be used to code complex
problems, they probably should be
avoided today because everyone using
the program has to have a copy of the
interpreter that was used to develop it.
On the other hand, the actual BASIC
program s readable by anyone who has
a copy of BASIC or a text editor to read
the code. Compiled languages are pre-

Fig 5—This highly updated and improved MINIMUF HF propagation program was coded
with Realizer.

Fig 6—A DOS contest logger running in a Windows DOS window was programmed with
QuickBasic 4.5.

ferred because they create an execut-
able file and process code faster.

Although some versions of the DOS
programming languages have en-
hanced graphics abilities, DOS pro-
gramming for ham radio purposes is
limited to text output and very simple
graphic displays (Fig 6). Most pro-
grams that you would code using DOS
will run under Windows in a DOS Win-
dow, so do not exclude the DOS com-
piled languages just because they are
old technology. If you do not require
lightning speed or fancy graphics, you

should be quite happy with DOS.
However, Windows programming

may be easier to learn. This was not
always true. Early Windows programs
were coded in C and C++; development
was difficult and slow. The visual pro-
gramming tools developed for Windows
3.1 that made programming simpler
include Visual Basic 3, Delphi 1 and
Realizer. These languages are based on
the concept of visual objects. Compo-
nents that provide basic functions can
be dragged onto a form in the program-
ming environment. One can modify

 Sept/Oct 2002 23

their characteristics from a table and
avoid detailed coding for many usual
tasks. Visual Basic 3 and Realizer are
based on the BASIC language. Delphi
1 is based on Pascal.

Tools developed for Windows 95 and
later operating systems running on
32-bit processors include Visual Basic
4-6, Delphi 2-6 and Visual C++. The
16-bit tools can run on 32-bit proces-
sors but cannot take advantage of all
the increases in processing speed and
features of the modern processors and
operating systems. Both 16-bit and 32-
bit programming systems have en-
hanced graphics capabilities; they can
be used to produce very good-looking
programs (see Fig 7).

Tools for Apple users are more dif-
ficult to come by and are beyond the
scope of this article. A BASIC lan-
guage was available at one time for
Apple users. Linux users might con-
sider Kylix by Borland. It is a Delphi-
like clone developed by Borland for the
Linux operating system.

Table 1 describes some of the tools
that you might use for your program-
ming activities and a few can be seen
in Figs 8, 9, 10.

These programming tools may be
available free of charge or used at rea-
sonable prices, especially if the soft-
ware is designed for 16-bit Windows
or DOS programming. Check the
terms of the individual software li-
cense. Licenses may be transferred in
most instances if the media is ex-

Table 1—Some Programming Tools

For DOS

Language Description Source Type Ease of Use

GWBasic* Simple BASIC Microsoft Interpreter Easy
Qbasic* Advanced BASIC Windows disks Interpreter Easy
QuickBasic* Structured BASIC Microsoft Compiler Relatively Easy
PowerBasic Structured BASIC PowerBASIC Inc Compiler Relatively Easy
Turbo Pascal* Pascal language Borland Compiler Intermediate

difficulty
For Microsoft Windows

Visual Basic Object-oriented Microsoft Compiler with Relatively Easy
structured BASIC runtime DLL

Realizer* Object-oriented Computer Associates Compiler with Easy
structured BASIC runtime DLL

Delphi 1 16-bit Visual Pascal Borland Compiler Relatively Easy
Delphi 2-6 32-bit Visual Pascal Borland Compiler Relatively Easy
C++ various flavors Borland or Microsoft Compiler Difficult
Visual C++ various flavors Borland or Microsoft Compiler Relatively Difficult

Linux

Kylix 32-bit Visual Pascal Borland Compiler Relatively Easy
Visual C++ Various Compiler Difficult
*These languages are no longer supported by the companies that originated them, but there is some community support on the Web. They

are no longer sold at retail.

changed and the programs have been
removed from the original owner’s
computers. Copies of Delphi 1 were
made available at no charge in the
United Kingdom a few years ago but
with the stipulation that programs
generated were not for distribution,
that is, only for personal use. Copies
of Turbo Pascal and Turbo C++
are available free for personal use
from the Borland Museum (www.
community.Borland.com) if you
register. Whatever programming lan-
guage you choose or find available,
make sure the software license terms
allow you to either sell or give away
the resulting program before you start
sharing your programs.

Used bookstores frequently have
copies of software available in its origi-
nal packaging at discounted prices.
Various E-vendors have last year’ s ver-
sion of some programming software at
discounted or reduced prices. Recently,
I have found “Professional” editions of
Visual Basic 4 at under $50 and of Vi-
sual Basic 3 and Realizer under $20 in
a national used-book chain. They were
sealed in their original packaging. New
“starter” versions of the latest editions
of Visual Basic and Delphi are avail-
able for around $100. These are very
usable versions of the larger profes-
sional or enterprise programs but with-
out all of their parent-program features.
The license terms vary with the vari-
ous versions but most do not permit
commercial distribution of the devel-

oped programs. The good news is that
it is possible to upgrade to the full ver-
sion of many of these products after you
have developed confidence in your pro-
gramming skills. Also, free or shareware
tools are available on the Internet that
augment the functionality of these cut-
down versions of the professional soft-
ware packages.

Table 2 is a compilation of Internet
sites that have information and re-
sources that can help you with your
programming experience. The Inter-
net site addresses frequently change,
so be resourceful if they do. If you can-
not find what is described at the indi-
cated sites, use a search engine to find
what you need.

What is the best language for you?
Most of the DOS-based languages are
very easy to learn and may be practi-
cal if you are comfortable with DOS
or have an ancient machine. DOS pro-
grams, with a few exceptions, do run
on computers having a Windows op-
erating system. Although it is possible
to use graphics, it is not as easy as
with the Windows programming tools.
DOS is fine for “number crunching”
applications but consider the arith-
metic precision possible with the lan-
guage and/or program you select.

Windows programming tools come
in several flavors. Some are more user
friendly to beginners than others.
Some tools provide executable files that
have a significant speed advantage.
Programs designed with 16-bit pro-

http://www.community.Borland.com
http://www.community.Borland.com

24 Sept/Oct 2002

Table 2—Internet Sites with Programming Information and/or Source Code

General Amateur Radio Resources
N1MM Logger
www.n1mm.com
Development of contest logging program. Specific source
code is available by request. A great site/discussion group

WA0TTN Web page
www.netdave.com/wa0ttn
PSK ActiveX control for Visual Basic, Delphi and C++,
other controls to make developing PSK programs easier. A
remarkable free tool for working with a homemade PSK
program

PSK Core DLL
www.qsl.net/ae4jy/pskcoredll.htm
PSK Core DLL and example code for Delphi. Free DLL
works fine.

MMTTY
www.qsl.net./mmhamsoft
RTTY DLL by Makoto Mori, JE3HHT—amazing RTTY

MMTTY Programmer’s Page
www.qsl.net/mmhamsoft/programmer/p-download.htm
Examples of how to use the DLL

SV2AGW Sound-Card Packet
www.elcom.gr/sv2agw/agwsc.htm
Packet engine (Packet without TNC hardware)—difficult to
use.

HB9JNX/AE4WA Multplatform Sound-Card Packet
www.baycom.org/~tom/ham/soundmodem
Another sound-card packet implementation—untested.

Official PSK Web site
www.aintel.bi.ehu.es/psk31.html
Code snippets and partial program showing how to use
AE4JYs PSK Core DLL with Visual Basic and Delphi. Many
examples of quality programs coded by hams

DX Atlas (shareware)
www.dxatlas.com
Advice on how to interface your project to the DX Atlas via
COM or OLE automation is in the program’s help file. Two
Delphi 5 example programs with code. Example of tech-
niques to interface your project with another project. One of
the numerous shareware/ commercial sites that provide
information for developers to interface with their products.

Ten-Tec Programers’ Page
tentec.com/rfsquared
Follow the update links to the Ten-Tec Programmer’s
Reference Guide for programming Pegasus and Jupiter
radios. General public license source code (Microsoft
Visual C++, 16-bit) for control of Pegasus/Jupiter and
reference guide.

ICOM America
icomamerica.com

Kenwood*
Kenwood.net/ama_page.cfm
In downloads section, “Software” has several free rig-
memory programming applications. Amateur/RCPSoftware
section has a free TS-570 control program that also works
with many TS-2000 features.

Yaesu*
Yaesu.com/amateur/amateur.html or soft.html
Only commercial software listed.

The Plicht Brothers
www.plicht.de/ekki/
Delphi code snippets for ICOM CT-17 level control by
DF4OR. Lots of information about controlling radios with
PCs in the software and ICOM CI-V sections.

AA6YQ / Ambersoft
Ambersoft.com/Amateur_Radio/Index.htm
Visual Basic code fragments for programmers controlling
radios with PCs

Commander
www.qsl.net/civ_commander
Free radio frequency-control program for ICOM, Kenwood
and Yaesu. Those developing this program solicit your
input

*There is no online developer support from any of these
manufacturers.

Programming Resources

Mapping site
www.versamap.com/webdoc03.htm
CIA public domain map of the world in digital form

Voice of America/Department of Commerce
elbert.its.bldrdoc.gov/
VOCAP—predicts performance of HF broadcast systems.
May no longer be available, contains both Visual Basic and
BASIC code.

Intel
www.intel.com/software/products/perflib/index.htm
Intel signal-processing library—free signal processing
DLLs, controls and so on. Examples with Delphi and Visual
Basic

CIA—The World Fact Book
www.cia.gov/cia/publications/factbook/
Amazing public domain data regarding countries of the
world including maps.

CIA World DataBank II
www.evl.uic.edu/pape/data/Earth/
Public domain information about countries of the world, up-
to-date map information. Dave Pape has digital map data
at different resolutions and bitmaps for download.

http://www.n1mm.com
http://www.netdave.com/wa0ttn
http://www.qsl.net/ae4jy/pskcoredll.htm
http://www.qsl.net./mmhamsoft
http://www.qsl.net/mmhamsoft/programmer/p-download.htm
http://www.elcom.gr/sv2agw/agwsc.htm
http://www.baycom.org/~tom/ham/soundmodem
http://www.aintel.bi.ehu.es/psk31.html
http://www.dxatlas.com
http://tentec.com/rfsquared
http://icomamerica.com
http://Kenwood.net/ama_page.cfm
http://Yaesu.com/amateur/amateur.html
http://Yaesu.com/amateur/soft.html
http://www.plicht.de/ekki/
http://Ambersoft.com/Amateur_Radio/Index.htm
http://www.qsl.net/civ_commander
http://www.versamap.com/webdoc03.htm
http://elbert.its.bldrdoc.gov/
http://www.intel.com/software/products/perflib/index.htm
http://www.cia.gov/cia/publications/factbook/
http://www.evl.uic.edu/pape/data/Earth/

 Sept/Oct 2002 25

QRZ.com
www.qrz.com

Specifications for format of Keplerian elements in file
kep_fmt.txt. Explanation of satellite orbital elements
available from NASA, AMSAT and so on.

Delphi Resources

Yahoo Discussion Forum
Yahoo.com
Delphi programming forum, general code examples and
answers to programming questions

Borland
Borland.com
General code examples and downloads for Delphi and C++
Builder. The main Delphi site. A free download of Delphi 6
Standard might still be available on the site. It requires
registration. There are restrictions on the use of programs
developed with the free download.

Delphi Super Page
delphi.icm.edu.pl/
Freeware, shareware controls and code examples.

gramming tools (Visual Basic 3, Delphi
1, Realizer) execute more slowly than
those designed with 32-bit tools (Visual
Basic 4-6, Delphi 2-6 and such).

I have learned to program C++ and
Visual C++, but I find that it takes a
special kind of person to become profi-
cient with those languages. Generally,
development time is longer with these
tools than with Visual Basic or Delphi
but project execution, if you followed
best programming practices, is faster,
especially execution of mathematical
routines. Delphi 5 and Delphi 6, in
many programming situations are al-
most as fast as C++ implementations
versus the much slower Visual Basic.

My personal preference is the
Delphi 5 Professional that I acquired

Table 3—Suggested Reading

Beginners
G. Perry, The Complete Idiot’s Guide to Qbasic, (Indianapolis, Indiana: Alpha Books, 1994).
N. Rubenking, Delphi Programming for Dummies, (New York: IDG Books Worldwide, 1995).
D. Stivison, Introduction to Turbo Pascal, (Alameda, California: Sybex, 1987).
B. Watson, Delphi By Example, (New York: Que, 1995).
K. Reisdorph, Sams’ Teach Yourself Borland C++ Builder 3 in 21 Days, (Indianapolis,

Indiana: Sams Publishing, 1998).

Advanced
M. Cantu′, Mastering Delphi 4, (Alameda, California: Sybex, 1998).
S. Teixeira and X. Pacheco, Delphi 5 Developer’s Guide, (Indianapolis, Indiana:

Sams Publishing, 2000).
M. Waite and others, Microsoft QuickBasic Bible, (Redmond, Washington: Microsoft Press,

1990).
C. Calvert, Charlie Calvert’s Borland C++ Builder, (Indianapolis, Indiana: Sams Publishing,

1997).

Torry’s Delphi Pages
www.torry.net/
Freeware, shareware controls and code examples.

Efg’s Reference Library Delphi
www.efg2.com/lab/library/index.html
Extensive source for programming code for graphics, math
routines and such. Numerous links and code for various
programming platforms.

General Visual Basic Resources

Visual Basic World
www.vb-world.net
Source code shareware, freeware, tutorials

General QBasic, Quick Basic PowerBasic Resources

ABC Basic
www.allbasiccode.com
Over 2000 pieces of free source code—lots of example
code and complete nonham projects.

Qbasic.com
www.qbasic.com
300 program examples (not associated with Microsoft)

new about a year ago. My learning
curve was very steep. Programming in
DOS is still practical and enjoyable,
but for the time employed and for a
few more dollars to buy the program-
ming software, you should be program-
ming Windows. If you do not like
Delphi, try Visual Basic, and if you are
a perfectionist try Visual C++, but be
prepared to work hard.

Start to Program
“Just do it!” exhorts a sign in the of-

fice of one of my friends. Depending on
what tool one is using, this may work
for most of you. For the rest, learning
to program is not necessarily any more
difficult than getting your amateur li-
cense provided you arm yourself with

some of the programmers’ study guides.
If you can find them, several beginning
books might be useful. “Suggested
Reading” contains some you might wish
to consider.

Some of these books are quite expen-
sive, but it is possible to find earlier,
used or new editions in secondhand
bookstores. Many of these include a
CD-ROM with coding examples. Your
local library may be an excellent re-
source. If the book covers a version not
too far removed from the language ver-
sion you are using, a book purchase
might be worthwhile.

While programming today is less dif-
ficult than it once was, most programs
contain hundreds of lines of code that
someone else spent considerable time
to develop. While it does take some skill
to program, modifying existing pro-
grams can be considerably easier than
developing a new program. That is
when the material available at Web-
sites like those made available by
N1MM, WA0TTN, AE4JY and others
become important to beginning and ac-
complished software programmers.

Other sites provide full source code
(see Table 2). If you are lucky, the code
will be usable directly with your
programming software. If it is not com-
patible with the language you are us-
ing, aptitude in several programming
languages may permit you to trans-
late what you can find into the form
you require. Sites on the Internet may

http://www.qrz.com
http://Yahoo.com
http://Borland.com
http://delphi.icm.edu.pl/
http://www.torry.net/
http://www.efg2.com/lab/library/index.html
http://www.vb-world.net
http://www.allbasiccode.com
http://www.qbasic.com

26 Sept/Oct 2002

help you with translations.
If you find a program that interests

you, look at the source code and com-
pile it using your programming soft-
ware. If the program runs, you are in
luck. If not, the source code might have
been programmed in an earlier or later
version of the software you have. Do not
give up hope. Most probably, only small
changes are needed to get the source
code to compile with your compiler.
Some compilers, like Delphi, give you
hints as to what the difficulty might be.

I am a great believer in learning by
example. There are lots of ham radio
source code examples out there—and
even more general examples. Hams do
a lot to help one another. If you decide
to write your own programs, you will
find that the programming fraternity
is similar; however, many programmers
rightfully consider their code propri-
etary. When you use someone else’s
code, give credit where it is due. If it is
copyrighted, follow the terms of the li-
cense agreement. If you have questions
about how to do something program-

Table 4—Code Sources

Radio Propagation
R. Rose, K6GKU, “MINIMUF: A Simplified MUF-Prediction Program

for Microcomputers,” QST, Dec 1982, pp 36-38, 43. This is a very
simple HF propagation prediction program.

J. Priedigkeit, W6ZGN, “A Simple Computer Model for VHF/UHF
Propagation,” QST, July 1983, pp 32-33.

T. Frenaye, K1KI, “The KI Edge,” QST, Jun 1984, pp 54-56. Dis-
cusses the gray-line and provides mathematical information for
calculation.

K. Arneberg, LA9YF, “Beregning av soloppgang og solnedgand,”
Amatorradio, Mars 1985, pp 75-76, BASIC code for sunrise/sun-
set times (Norwegian Radio Relay League Journal).

Source code for VOACAP, the propagation program developed by
NTIA/ITS for the Voice of America.

Satellites
T. Clark, W3IWI, “BASIC Orbits,” Orbit, Mar/Apr 1981, pp 10-11, 19-

20, 29. Article contains a BASIC listing of a satellite-tracking pro-
gram.

I. Jefferson, G4IXT, “Tracking Satellites with a Microcomputer,”
Wireless World, Apr 1983. Describes the mathematics of satellite
tracking. A BASIC listing was available from the magazine.

Finding Directions
Svein, LA6PV, “Avstandsberegning,” Amatorradio, Mars 1985, pp

93-94. The article describes distances, bearings and grid-square
calculation program in BASIC (Norwegian Radio Relay League
Journal).

Logging Programs
J. Hess, W9KTP, “The Would-be Contest Killer,” QST, Oct 1983,

pp 20-22. Article contains a BASIC program listing.
S. Horzepa, WA1LOU, “BASIC Duping,” QST, Dec 1982, p 74.

Article contains a BASIC “hash table” listing.
R. Cheek, W3VT, “LOGPROG—A DXer’s Log in BASIC,” QST,
Sep 1984, pp 24-29. Article contains a BASIC logging program

listing.
G. Allison, K5IJ, “The Super Duper,” QST, Pt 1, Sep 1985, pp 27-30;

Nov 1985, pp 44-50. Learn BASIC language programming tech-
niques while designing a contest duping and logging program.

R. Keller, K3PCS, “Super-Double Bubble,” (Technical Correspon-
dence) QST, Dec 1985, pp 52-53. Article contains another bubble
sort for the Super Duper.

P. Wisiolek, K1TKL, “Super-Double Bubble,” (Technical Correspon-
dence) QST, Dec 1985, p 53. Still another bubble sort for the
Super Duper.

G. Schulz, WB9NDM, “Super Duper POOP,” (Technical Correspon-
dence) QST, Mar 1986, p 46. Article contains suggested changes
to the Super Duper listing.

J. Scott, KA8FSM, “Super Duper Printer,” (Technical Correspon-
dence) QST, Apr 1986, pp 41-42. Article contains a BASIC listing
to print log results.

T. Karnauskas, N9BWY, “Better Sort,” (Technical Correspondence)
QST, Aug 1986, p 40. Article contains a better sort routine.

“The Cabrillo File Format,” QST, Nov 1999, p 102. Article shows the
file format ARRL requires for submission of digital contest logs.

CW Sending
D. Whipkey, N3DN, “A Keyboard Keyer and Code-Practice System,”

QST, Jan 1984, pp 13-16. Article contains a BASIC program list-
ing and machine-language routine for a Commodore VIC 20.

R. Schetgen, KU7G, “C 64 Keyboard,” QST, May 1984, p 45.
Article adapts “A Keyboard Keyer and Code-Practice System” to
work on a Commodore C64 computer.

Technical
C. MacKeand, WA3ZKZ, “The Smith Chart in BASIC,” QST, Nov

1984, pp 28-31. Article contains a listing in BASIC.

Radio Control and Information Display
B. Wood, W0DZ, “The Return of the Slide Rule Dial,” QST, Feb 2002,

pp 33-35. Article contains a code snippet from the Visual Basic
project. Source code and the executable are free by e-mail
(w0dz@arrl.net).

AA6YQ Web site, Visual Basic code fragments for ICOM radio con-
trol (www.ambersoft.com/Amateur_Radio/index.htm).

The Plickt Brothers Website, Ekkis, DF4OR has Delphi code frag-
ments for ICOM and others. (www.plicht.de/ekki/).

Amateur Radio Education
The ARRL/VEC exam question pool is available from the ARRL

(www.arrl.org) as a text or PDF file and is useful although not a
program listing.

Fig 7—Delphi 5 design screen showing KIApsk Logger development in progress. Delphi
uses visual objects and controls to simplify programming tasks.

mailto:w0dz@arrl.net
http://www.ambersoft.com/Amateur_Radio/index.htm
http://www.plicht.de/ekki/
http://www.arrl.org

 Sept/Oct 2002 27

Fig 8—Programming-language media for Delphi 5, C++ Builder, QuickBasic 4.5 and
Realizer.

matically, someone might have an an-
swer on the Internet forum devoted to
your particular programming language.

BASIC code listings for various
Amateur Radio activities are de-
scribed in the literature and sources
(oldest to youngest) described in “Code
Sources.” These are useful if you are
programming in BASIC or Visual Ba-
sic because they can be used in a more
modern program with some rewriting.
The algorithms can also be adapted
for other languages.

Program listings are available in
books by the ARRL, CQ magazine and
so forth or from various sites on the
Internet. Sources of material suitable
for designing computer programs in-
clude QST, The ARRL Handbook and
various books and magazines.

Looking at some of the material dis-
cussed above will give you a feel for
what a fully coded project will look like.
If you have the right language software,
you probably will want to load some of
the source code you find (after reading
instructions about how to do this with
your particular coding software). If this
has not frightened you away, and it
should not, try the program out.

What language should you start to
program in? It depends on your bud-
get. The latest professional editions of
Windows software start at about $400
but that is because they contain tools
to program Internet sites, servers, net-
works and all kinds of things in addi-
tion to desktop applications. What you
do need is something that will let you
program desktop applications. Both
Borland and Microsoft have beginners’
versions of their programming software
available for less than $100 at present.
I would recommend investing in one of
these rather than working with the
older software. You will get the latest
controls and they can be augmented
from various freeware and shareware
components available on the Internet.
Older software is fine, I still use it, de-
pending on what I want to do.

DLLs and ActiveX Controls
The programming languages

developed for the Windows operating
system can operate with various mini-
programs or program libraries. These
tools can work with most of the indi-
vidual programming languages al-
though they themselves might have
been developed with a different lan-
guage. Such tools may be DLLs or
ActiveX controls. A DLL is a function
library that works in conjunction with
programs that link to it. Several free

Fig 9—(right) The QuickBasic 4.5
development screen showing one of its
possible programming menus.

28 Sept/Oct 2002

DLLs related to ham radio topics are
available to link to your project includ-
ing AE4JY’s PSK Core DLL and
JE3HHT’s RTTY DLL. The only free
ActiveX control I know of for amateur
purposes is WA0TTN’s WinPSK. DLLs
can be generated by Delphi, and most
versions of C++. Visual Basic 3 does not
create DLLs but can make use of those
generated by other programs. Visual
Basic 4 and above can be used to make
DLLs.

There are two types of Windows ex-
ecutable files, programs and DLLs.
When you write a Windows application,
you typically generate a program file
that is an independent program. The
executable programs (those with the
familiar form PROGRAM.EXE) may
use calls to functions stored in DLLs.
Dynamic link libraries are program
modules that contain code, data or re-
sources that can be shared. They allow
programs to be modular and simplify
updating applications. They are lan-
guage-independent, so a DLL can be
used by C++, Visual Basic, Delphi or
any other language that supports DLLs.

ActiveX is a Microsoft technology
that is an extension of the older OCX
technology. It provides controls that
can be used in a Windows visual-pro-
gramming environment to provide
certain functionality. ActiveX controls
are add-ons to your programming en-
vironment and should be cross plat-
form compatible with most 32-bit sys-
tems.

What Should You Program?
If you have gotten this far in the

article, you may have in mind a par-
ticular project or perhaps not. It is
possible to write a software program
describing just about any conceivable
process or mathematical relationship.
Many very good ham-related pro-
grams are available already. You may
want to duplicate an expensive piece

Fig 10—The Realizer for Windows development screen was one of the first to use
visual objects.

Fig 11—Pseudo-Mercator, Postel and azimuth-equal area map projections of the world using the CIA World Map public domain
database coordinates described in Table 2. A gray-line track of the boundary between areas of sunrise and sunset is also
shown.

of commercial software to save costs
or just for the fun and satisfaction of
doing it. I hope that you have some-
thing new in mind or a new way to
present familiar material.

Giving Your Software the
“Commercial” Look

On-board help and “about” boxes or
splash screens containing information
about the programmer/copyright
holder can make your program easier
for the user to understand and help
protect your rights as a developer by
providing a place for a copyright no-
tice or licensing terms, even if you
choose to give your software away.

Tools necessary to develop Microsoft
compatible help files are usually in-

cluded with the Windows programming
language. The Microsoft Windows Help
File Compiler was provided with the
copies of the development programs I
have as part of the development prod-
uct. The compiler, in its various ver-
sions, is a script-like language similar
to HTML, the language used to program
many Web sites.

“About” boxes are drop-down or pop-
up information boxes. Splash screens
display a picture or other data on your
screen when your program starts
(Fig 12). Both of these methods can pro-
vide information about your program
or its author in a pleasing way.

Conclusion
Programming for DOS or for Win-

 Sept/Oct 2002 29

dows certainly is not for everyone, but
with the right tools, it can be an enjoy-
able and satisfying experience. If all you

Fig 12—An about screen from the General license quiz generator and study guide
programmed with Realizer.

��

Additional Programming
Resources

Readers may want to visit the
sites of the Free Software Foun-
dation (www.fsf.org) and Sun
microsystems (www.sun.com). Sun
gives away Java tools. FSF does the
same with many development tools.
The only tool I use of these is the C
compiler from FSF (Gnu C); it is a
high-quality piece of code. I have
downloaded Java from Sun, but
never got a chance to use it (the
book has been gathering dust for
three years). It is similar to Delphi
and Visual Basic in its abilities to
create Windows programs. There is
a lot more than just C and C++
available from FSF. They have an
editor (Emacs), a free version of just
about every Unix tool ever written
(available for Windows, Linux, Unix
etc) and numerous things that are
unique to FSF. I just cruised to their
Web site and found projects for C,
Pascal, Software Defined Radios,
Java and a ham-radio section under
“Hobbies.”

The Free Software Foundation
has what they call a “copyleft.” They
basically detest copyrights, but in
order to protect their work, assert an
actual copyright that let’s you use
the software for any purpose
(including commercial purposes),
but if you improve it, you must give
your improvements away to the
whole world. This is a good model
for getting things moving in the ham
community. Linux is now a viable
product because of this model.—
Ray Mack, WD5IFS, QEX Contri-
buting Editor; wd5ifs@arrl.org

have available are DOS tools, remem-
ber it is possible to run most DOS
programs in a window in the various
versions of Windows. If you do not pro-
gram, but have some good ideas for a
program or for its improvement, share
them. If you do program for fun, con-
sider making your project and code
available for others to use in their
projects.

A ham since 1963, Steve Gradijan,
WB5KIA, is a geological consul-
tant in the Dallas, Texas area. He
holds an Extra class license. Compu-
ter programming has been his second
hobby since the late 70s. He has previ-
ously been licensed as WA8KBK
and LA0DY. His wife Chris is
WD5EML (ex LA0DZ) and 15-year-old
son Francis is KD5HTB.

http://www.fsf.org
http://www.sun.com
mailto:wd5ifs@arrl.org

30 Sept/Oct 2002

17060 Conway Springs Ct
Austin, TX 78717-2989
wd5ifs@arrl.org

Understanding Switching
Power Supplies, Part 1

By Ray Mack, WD5IFS

Many find switching supplies mystifying.

Let’s begin a tour through that strange land.

This is the first of a series of
articles that will explain how
switch-mode power supplies

work in detail. They will give enough
information to design several differ-
ent types of switching power supplies.

There are two broad classes of power
supplies: linear and switching. Linear
supplies use time-continuous control of
the output. Switching supplies are time-
sampled systems that use rectangular
samples to control the output. There are
three types of switching power supplies.
Charge pumps manipulate the charge
on a capacitor to change voltage. They
can be used to increase voltage or in-
vert the voltage. Buck and boost switch-
ing supplies use an inductor to provide

the voltage conversion and regulation
to either increase the voltage (a boost
regulator), to reduce the voltage (a buck
regulator) or invert the voltage (volt-
age inversion boost regulator). These
articles focus on the buck and boost
types of supply.

Inductor Basics
The important features of an induc-

tor are that the current through it can-
not change instantaneously and the
voltage across the inductor is a result
of the change in inductor current. This
means that the voltage across the in-
ductor will be positive (with respect
to the polarity dot) when you charge
the inductor and negative when the
inductor is discharging. This allows
the voltage to change essentially in-
stantaneously.

If you start current flowing through

an inductor by closing a switch (Fig 1A),
the current will rise exponentially. Im-
mediately after the switch is opened
(Fig 1B), the current through the induc-
tor continues to flow in the same direc-
tion at the same value. The current
decreases exponentially while the cur-
rent flows through R2. The property
that allows the voltage across an induc-
tor to quickly change from positive to
negative is the main property exploited
in switching power supplies.

A Buck Regulator
The buck regulator is a variation

on the classic choke-input supply. The
output of a choke input supply is al-
ways the average value of the input
waveform. In the case of a rectangu-
lar input waveform, the output volt-
age is simply the input voltage times
the duty cycle of the input (Eq 1). It is

mailto:wd5ifs@arrl.org

 Sept/Oct 2002 31

possible for the input duty cycle to be
any value between zero and 100%. The
defining characteristic of a buck regu-
lator is that the inductor provides cur-
rent to the load during charging and
discharging of the inductor.

CycleDutyVV ×= inout
(Eq 1)

Let’s analyze the operation of a rep-
resentative buck regulator. Our ex-
ample regulator takes a nominal
12.6 V from a battery for a transceiver
and creates 5.0 V for the digital logic.
We’ll assume that the logic draws
200 mA, which is the equivalent of a
25 Ω resistor as a load. The typical
switching supply today uses a sample
rate of 100 kHz or more. This allows
us to use a very small value of induc-
tor and a small value of output capaci-
tor. The sample frequency of 100 kHz
means that we will sample every 10
microseconds.

Fig 2 is an idealized representation
of our regulator. The regulator switch,
S1, is an electronically controlled me-
chanical switch that opens and closes
at the 100-kHz sample frequency. We
start our analysis with the output volt-
age of zero and zero current flowing in
the inductor (see Fig 3). During the first
sample period, the majority of the in-
ductor current flows into the output
capacitor. The output voltage has not
risen to 5.0 V yet, so the switch does
not open (100% duty cycle). The same
is true during the second sample period.

By the fifth sample period, most of
the current of the inductor is flowing
into the load resistor and the voltage
has risen to the desired 5.0 V so the
switch opens. When the switch opens,
the current through the inductor con-
tinues to flow in the same direction into
the load resistor. D1 is a commutating
diode that allows the inductor current
to continue to flow without significantly
changing the effective resistance across
the inductor. Without the diode, the
energy stored in the inductor would be
dissipated very quickly across the very
high equivalent resistance of the switch.
In other words, there would be an arc
across the switch contacts.

The regulator has now reached the
point where it is in regulation. When
the sample period begins, the switch
closes and there is 7.6 V (12.6 – 5.0)
across the inductor. The inductor cur-
rent increases until the switch opens.
When the switch opens the voltage
across the inductor decreases to the
5.0 V across the capacitor plus the
0.7 V drop across the diode. This lower
voltage causes the inductor current to
decrease at a lower rate than the
charging current increase. The aver-
age current into the load resistance is Fig 2—An idealized representation of our regulator.

Fig 1—Behavior of a switched ideal inductor. When S is first closed (A), currents flow
through both the load (I1) and inductor (I2). Immediately after S is opened, current from
the inductor continues to flow through the load in the same direction at the same value
(B). (C) shows how I2 and V2 behave during switching.

easily calculated as the area under the
triangular waveform. In our case, this
average is 200 mA. Our assumption
here is that the output RC time con-
stant of the load resistance and filter
capacitor is significantly longer than
the 10 µs sample time.

Now we close S2 to model what hap-
pens with a large jump in load current.
At first, the current in the inductor re-
mains at the level of 200 mA. The addi-
tional current required by the second
25-Ω load resistor starts to reduce the
voltage on the output capacitor. The
regulator responds by keeping the
switch closed through several sample

periods so that the inductor charges up
to 400 mA. You will notice that the
ripple current is the same for 400 mA
of output current as when delivering
200 mA (remember that this is a regu-
lator with ideal components). We will
look more closely at the non-ideal be-
havior of real components in real regu-
lators in the next installment.

Step-Up Boost Regulator
Anyone who has ever worked on the

high-voltage section of a TV or the ig-
nition coil of an automobile is famil-
iar with the mechanism that is the
heart of a boost regulator. In general,

32 Sept/Oct 2002

Fig 3—An operational analysis of the regulator in Fig 2. See the text for details.

a boost regulator operates by charg-
ing an inductor with current from a
low voltage, low resistance source for
a long period and then discharging the
inductor over a much shorter period
of time through a high resistance. The
defining characteristic of a boost regu-
lator is that the inductor provides
current to the load only during dis-
charging of the inductor.

There are two topologies for a boost
regulator. One adds the voltage across
the inductor to the input voltage to
provide a boosted output voltage
(Fig 4). If the switch is moved between
the supply and the inductor (Fig 5),
the polarity of the output voltage is
reversed. Again, the commutating di-
ode allows the current in the inductor
to continue flowing when the switch
opens. In this case, it also prevents
current from flowing in the load while
the inductor is charging.

Fig 6 illustrates the operation of a
voltage-boost regulator. Unlike the buck
regulator, a boost regulator must have
the duty cycle of the switch restricted
to some value less than 100%. This is
so because current is only delivered to
the load when the switch opens. For our
idealized example, we will limit the
duty cycle to 95%. Again, we choose a
sample frequency of 100 kHz. Before the
control circuit can start operating, the
commutating diode allows current to
flow into the capacitor and the resistor
charging it to the supply voltage
(12.6 V). During the first sample period,
the current in the inductor starts at
52 mA and rises at a rate controlled by
the voltage across the inductor. Since
the output voltage is 12.6, the control
circuitry keeps the switch closed for the
full 9.5 µs. The switch, S1, opens and
current continues to flow in the same
direction in the inductor. Now, however,
the voltage across the inductor changes
polarity and adds to the voltage of the
power supply to charge the capacitor
and deliver current to R1.

As the capacitor charges, the induc-
tor current required tends to grow very
large until the circuit is in control. For
several reasons, it is necessary to limit

the current in the inductor (1 A in our
example) so that the control circuit will
eventually be able to control the out-
put voltage. In our example, the circuit
must also keep the switch open allow-
ing the inductor current to return to
zero in order to compensate for the over-
shoot of the output voltage. Once the
output voltage has stabilized at 24.0 V,
the control circuit implements Eq 2.

CycleDuty

V
V

−
=

1
in

out
(Eq 2)

Again, we can look at what happens
when a jump in load current occurs.
We close S2, which places an addi-
tional 240 Ω of load on the circuit. The
capacitor immediately starts supply-
ing the additional current and its volt-
age starts to decrease. The control cir-
cuit responds by increasing the charge
time of the inductor to bring the sys-
tem back into stability. Again, this cir-
cuit is underdamped, so the voltage
rises out of control and drifts back

down to where the control circuit can
use Eq 2 to control the output voltage.

Fig 5—This boost-regulator topology moves the switch between
the supply and the inductor to reverse the polarity of the output.

Fig 4—This boost-regulator topology adds the voltage across the
inductor to the input voltage for a boosted output.

Voltage-Inversion Boost
Regulator

The other variation of the boost
regulator is the voltage inverter. The
operation of the circuit is similar to
the step-up boost circuit. The switch
and inductor trade places, and the di-
ode is reversed from the boost configu-
ration. We will again start our analy-
sis with initial power on (see Fig 7).
When the switch closes, current flows
for the full 9.5 µs, charging the induc-
tor. When the switch opens, the volt-
age across the inductor again reverses.
This creates a negative output voltage
across the capacitor and load. The con-
trol circuit continues to charge the in-
ductor until the inductor current is
sufficient to supply all of the load cur-
rent during each sample period. The
analysis of a change in load current is
equivalent to that for the step-up boost

 Sept/Oct 2002 33

regulator. Notice again that the induc-
tor current is limited to allow the cir-
cuit to quickly come into control.

Basic Transformer Topologies
If you read textbooks on switching

supplies, you will see transformer-
coupled supplies described as either
buck or boost topology.

Buck converters are also called for-
ward converters because the trans-
former operates as a true transformer.
This means that while current is flow-
ing in the primary, there is also current
flowing in the secondary. Leakage in-
ductance is an undesired side effect of
the transformer operation.

A boost converter is also called a
flyback converter, and the leakage in-
ductance of the transformer is used to
store the energy that is eventually de-
livered to the load. In flyback convert-
ers, the secondary current flows while
the switch is off. It gets its name from
the flyback circuit of a television hori-
zontal-deflection system. In effect, the
transformer of a flyback converter is
really two inductors that share a com-
mon magnetic core rather than a true
transformer.

It is very easy to get confused by
the topologies when a transformer is
involved. A buck regulator can only
regulate a voltage to a lower value. A
boost regulator can only create a
higher voltage or a negative voltage.
When a transformer is involved, both
topologies can perform one or all of the
voltage-conversion functions.

All off-line (hooked to the power
mains) power supplies use either for-
ward or flyback designs to isolate the
load from the power lines using the in-
herent isolation of the primary and sec-
ondary windings of the transformer.

The Flyback Converter
Operation of the flyback converter is

very similar to the operation of the
boost converter. We vary the energy
delivered to the load by varying the

Fig 6—An operational analysis of a voltage-boost regulator. See the text for details.

Fig 8—A model of a flyback converter. Fig 9—A model of a single-switch forward converter.

Fig 7—An operational analysis of a voltage-boost inverter. See the text for details.

34 Sept/Oct 2002

energy stored in the inductor. Since the
energy is stored in the leakage induc-
tance of the transformer, we intention-
ally control the size of this inductance.

Fig 8 shows a model of the flyback
converter. Notice that the phasing is
opposite to normal phasing of a trans-
former. The primary-side inductor is
charged with energy while the switch
is closed, and the energy in the core is
transferred from the secondary-side
inductor to the capacitor and load af-
ter the switch opens. This operation
requires that the duty cycle be limited
to a value less than 100 % as in a boost
converter. The voltage across the
primary inductor reverses (which
forward biases the diode in the sec-
ondary) when the switch opens, and
secondary current flows according to
the transformer equation N1/N2 =
I2/I1. The current flowing in the load
circuit controls the voltage across the
transformer windings. The voltage
across the primary reverses polarity
during energy delivery and this adds
to the voltage of the input supply. The
voltage across the switch is typically
twice the input voltage.

The Single-Switch Forward
Converter

Fig 9 shows a single-switch forward
converter. Notice that a major difference
from the flyback converter is the phas-
ing of the transformer windings. This
converter delivers energy to the filter
during the time the switch is closed. We
use the almost rectangular shape of the
voltage across the primary and second-
ary of the transformer to vary the
amount of energy delivered to the filter
and load circuit. The output voltage is
controlled by the averaging effect of the
low-pass filter. We must provide a con-
trolled path for the current in the leak-
age inductance to flow once the switch
opens, since the current cannot imme-
diately return to zero. This path is pro-
vided by D3 and D4 in Fig 9. There are
various other ways to control the path
of the current discharge. We will look
closely at those in the design section.
The voltage reversal that discharges the
current adds with the supply voltage.
The consequence is that the peak volt-
age across the switch is typically twice
the input voltage.

The Push-Pull Forward
Converter

Fig 10 shows a push-pull forward
converter. This circuit is identical to a
push-pull audio or RF circuit except
that the signals are rectangular
waves. This circuit uses the core to full
advantage because the current flow-
ing in opposite windings creates a net
zero dc current flow for the core. This

allows the full magnetic capability of
the transformer core to be utilized.
This circuit has the advantage that the
drive circuitry for the switches is rela-
tively simple, since both switches are
referenced to the common of the in-
put supply. Each switch must with-
stand twice the input supply voltage.
The disadvantage of this circuit is that
the transformer primary requires two
balanced windings. The 1969 ARRL
Handbook portable/emergency chap-
ter shows a circuit utilizing self-ex-
cited push-pull forward converters.
There are two disadvantages to self-
excited converters: ensuring proper
starting and reproducing the satura-
tion characteristics of the magnetic
circuits from supply to supply.

The Half-Bridge Forward
Converter

Fig 11 shows a half-bridge forward
converter. This circuit is essentially
the same as a totem-pole audio out-
put stage. The difference being that
the waveforms are high-frequency
square waves instead of audio signals.
This configuration also has the advan-
tage that the current flows in oppo-
site directions during opposite cycles,
so the transformer core has a net zero
dc current flowing in it. The trans-
former primary has one-half of the
input voltage across it. Each switch
need withstand only the input supply
voltage. This circuit is capable of
higher power levels than the single-

Fig 10—A model of a push-pull forward converter.

Fig 12—A model of a full-bridge forward converter.

Fig 11—A model of a half-bridge forward converter.

 Sept/Oct 2002 35

switch converter for equal-size com-
ponents. The disadvantage is that the
drive circuitry for the top switch must
be isolated from the input-supply com-
mon connection.

The Full-Bridge Forward
Converter

Fig 12 shows a full-bridge forward
converter. This circuit replaces the
capacitance voltage divider with a
second set of switches. Again, there is
a net zero dc current in the primary
so the full capability of the trans-
former is used. The full input supply
voltage is placed across the trans- ��

former primary. Each switch must
withstand only the input supply
voltage. In this circuit, we need
two isolated drive circuits for the
top switches. The full-bridge conver-
ter gives the highest possible output
power for a given size of compo-
nents at the cost of four switches and
two isolated drive circuits.

Next Installment
The next installment will cover

the characteristics of real magnetic
components and guidelines for how
to design a transformer or filter in-
ductor.

Acknowledgements and
References

I thank the folks at Linear Technol-
ogy, who made a special version of their
SwitcherCAD program to assist in the
drawing of the schematics in this ar-
ticle. SwitcherCAD is available free on
the Linear Technology Web site.

You can find short application notes
on switching power-supply design
that complements the information in
these articles in the application note
sections of the Web sites for Linear
Technology (www.linear-tech.com)
and Maxim Semiconductors (www.
maxim-ic.com).

http://www.linear-tech.com
http://www.maxim-ic.com
http://www.maxim-ic.com

36 Sept/Oct 2002

Skrytka Pocztowa 738
25-324 Kielce 25
POLAND
sp7ht@wp.pl

The DX Prowess of
HF Receivers

By Tadeusz Raczek, SP7HT

Are you looking for a good receiver for DX hunting?

Here are some distilled performance numbers that

might point you in the right direction.

Comparing the performance of
one receiver to another is quite
a difficult task. Receiver-

performance tests are described in
detail in The ARRL Handbook, Chapter
26. Shortwave DX hunters and contest
participants have requested that
testing of receiver front ends be made
at conditions representing real on-the-
air situations. That is, we should test
receivers when extremely weak DX
signals from the other end of the world
are present at the same time as several
strong local signals that are close to that
tiny DX signal. In contrast to standards
set by Amateur Radio community,
equipment manufacturers prefer that

their products be evaluated at 50 kHz
or even 100 kHz signal spacings, where
much more optimistic results can be
achieved. Table 1 illustrates IC-765
receiver front-end dynamic-range
measurements performed by the ARRL
laboratory at various signal spacings.

We can see a big difference between
5- and 50-kHz test results; that is,
blocking dynamic range (BDR) and
intermodulation-dynamic-range (IMD
DR) measurements for widely spaced
signals produce much better results
than for 5-kHz spacing. That explains
why manufacturers are opting for
wide-spaced measurements.

Closely spaced tests can inform us
much more realistically about a
receiver’s usefulness for DXing and
contesting on our crowded HF Bands.
The ARRL laboratory, G3SJX and
W8JI have published measurement

results for some HF receivers with
closely spaced signals. The ARRL
laboratory and G3SJX used 20 kHz for
wide-spaced signals and 5 kHz for
narrow-spaced signals. W8JI has used
10 kHz for wide-spaced signals and
2 kHz for narrow-spaced signals.

BDR and Two-Tone Third-Order
Dynamic-Range Tests

BDR is the difference, in decibels,
between the minimum discernable
signal (MDS) and an off-channel signal
that causes 1dB of gain compression in
the receiver. Two-tone third-order
dynamic range (IMD DR) is the
difference between MDS and the levels
of two interfering signals causing IMD
products just equal to the MDS.

IMD DR depicts the strong-signal
capabilities of a receiver; that is, how
it behaves under real-world conditions,

mailto:sp7ht@wp.pl

 Sept/Oct 2002 37

when strong signals are delivered from
the antenna to the receiver input.
Receiver IMD immunity is determined
by the limits of its linear signal-
handling capabilities. Those, in turn,
are determined by the limiting effects
of receiver active circuitry such as the
preamplifier, mixer and first IF
amplifier. Passive components may also
exhibit such limiting effects. For
instance, fast RF silicon diodes used for
receiver input-filter selection and for
receive-transmit switching or pream-
plifier/attenuator activation often cause
additional IMD in some present-day HF
transceiver models. Moreover, overload
of varactor diodes in automatically
tuned preselectors, as well as submin-
iature, inexpensive inductors and
monolithic two-pole first-IF filters
placed immediately after the first up-
conversion mixer, can have a role in
IMD generation and receiver perfor-
mance degradation.

Table 2 demonstrates 20 and 5-kHz-
spacing test results of BDR and IMD
DR for some HF receivers tested in the
ARRL laboratory. Two columns are
added for convenience in analysis. In
the fourth column, the decrease in BDR
is calculated between the 20 and 5-kHz
tests. In the sixth column, the decrease
in IMD DR is calculated between 20 and
5-kHz tests. Italic numerals distinguish
5-kHz spacing test results.

Table 3 demonstrates 10 and
2-kHz-spacing test results of BDR and
IMD DR for some HF transceivers
tested by W8JI. Table 3 includes the
same additional columns as in Table
2. In column four, the decrease in BDR
is calculated between the 10 and
2-kHz tests. Consequently, in column
6, the decrease in IMD DR is cal-
culated between 10 and 2-kHz tests.
Italic numerals distinguish 2-kHz test
results.

The 2 and 5-kHz closely spaced
receiver tests represent real-world, on-
the-air DX hunting (split operation),
when many strong signals are very
close to a very weak DX station signal
barely copied in the noise. Less
degradation of BDR and IMD DR
values means better receiver
performance for strong closely spaced
signals. You can see that some
receivers perform better and some are

not as good as we want them to be.
Considering the decrease in BDR

and the lowering of IMD DR between
widely and closely spaced tests, I
consider the best receivers for split-
frequency operation with DX stations
to be those of the following HF
transceivers:
• Elecraft Model K2
• Ten-Tec Model Omni-VI+
• Heavily modified Drake R-4C

The three best results in Table 2 and
one result in Table 3 are distinguished
by boldface lettering.

K2 and OMNI-VI+: Design
Concepts and Features

Elecraft and Ten-Tec manufacture
the K2 and OMNI-VI+, respectively
[The Omni-VI+ has been discontinued
as of 2001 in favor of a superior design–
Ed]. Drake discontinued the manu-
facture of the R-4C about 20 years ago.

Table 1—IC-765 Receiver Front-End Dynamic-Range Measurements

Signal Spacing Blocking DR (dB) IMD DR (dB)
(kHz) IF Shift Off IF Shift On IF Shift Off IF Shift On
5 120 91 85 73
10 130.5 105 90 88
20 151.5 139.5 97 95
50 152 152 99 99

Table 2—20 and 5-kHz-Spacing BDR and IMD DR for some HF receivers tested by the ARRL

Manufacturer Model BDR (dB) BDR Decrease IMD DR (dB) IMD DR Decrease
Elecraft K2 133 and 126 only 7 dB 97 and 88 only 9 dB
ICOM IC-706MkIIG 120nl and 86 34 dB! 86 and 74 12 dB
ICOM IC-746 113 and 88 25 dB! 92 and 78 14 dB
ICOM IC-756PRO 120 and 104 16 dB 88 and 80 only 8 dB
ICOM IC-775DSP 132 and 104 28 dB! 103 and 77 26 dB!
Kenwood TS-570S(G) 119 and 87 32 dB! 97nl and 72 25 dB!
Kenwood TS-570D “ “ “ “
Kenwood TS-2000 121nl and 99 22 dB! 92 and 67 25 dB!
Ten-Tec OMNI-VI 128nl and 119 only 9 dB 100 and 86 14 dB
Ten-Tec OMNI-VI+ “ “ “ “
Yaesu FT-847 109nl and 82 27 dB! 89 and 73 16 dB
Yaesu Mark-V FT-1000MP 126 and 106 20 dB! 98 and 78 20 dB!

Table 3—10 and 2-kHz-Spacing BDR and IMD DR for some HF transceivers tested by W8JI

Manufacturer Model BDR (dB) BDR Decrease IMD DR (dB) IMD DR Decrease
ICOM IC-751A 98 and 83.5 14.5 dB 91 and 79 12 dB
Drake R-4C (stock 1)* 109 and 57 52 dB! 82 and 48 34 dB!
Drake R-4C (stock 2)† 116 and 80 36 dB! 86 and 68 18 dB
Drake R-4C (heavy mod)†† 131 and 127 only 4 dB 119 and 118 only 1 dB
*Stock 1 has MOSFET second mixer.
†Stock 2 has vacuum-tube second mixer.
††Heavy mod is rebuilt with solid-state doubly balanced high-level mixers and Sherwood 600-Hz roofing filter.

38 Sept/Oct 2002

For CW-oriented DX hunters, the R-4C
is not an impressive receiver when
compared to rec2ent models. But after
radical modifications, an upgraded
R-4C is a good receiver for weak DX
signal CW reception on crowded
amateur HF bands, thanks to the low
phase noise of the R-4C PTO (perme-
ability tuned oscillator). As shown in the
ON4UN questionnaire results in the
second edition of The Antennas and
Techniques for Low-Band DXing, a
significant number of responders have
reported using the R-4C for DXing on
80 and 160 meters.

The K2 and OMNI-VI+ BDR for
5-kHz spacing between strong signals
is (126 – 106) 20 dB and (119 – 106)
13 dB, respectively, greater than that
for the third-ranked FT-1000MP Mark-
V (106 dB). Accordingly, the two-tone
third-order dynamic range (IMD DR) of
the K2 and OMNI-VI+ for 5-kHz
spacing from two strong signals is,
respectively, (88 – 80) 8 dB and (86 –
80) 6 dB better than for the third-
ranked IC-756PRO (80 dB). This
advantage is especially useful for DX-
oriented operators.

Such good receiver front-end
parameters prove the design concepts
implemented by Elecraft and Ten-Tec
in the K2 and OMNI-VI+ models. Both
makers have abandoned ideas
commonly exploited during last 20
years by most other makers of HF
transceivers and returned to proven
designs used previously but with
modern implementations.

The K2 and OMNI-VI+ use the
following crucial design ideas in the
receiver front end:
• HF ham-band coverage only, no

general coverage capability
• Only single (K2) or double (OMNI-

VI+) conversion is used instead of a
chain of several mixers commonly
used by other makers

• Both models have excluded the first
up-conversion IF into the 50 to
90-MHz range with the associated
wide bandwidth first-IF roofing filter
(with its passband set wide enough
for narrow FM transmission and
adequate for noise-blanker operation)

• Both models use a relatively low first
IF that allows installation of narrow
SSB/CW crystal filters with good
shape factors to greatly attenuate
out-of-band IF signals just at the
front of the IF amplifier

• The main IF selectivity of the crystal
filters is very close to the receiver
front end, which helps substantially
to obtain high BDR and good IMD DR
even for closely spaced strong signals

• Both models implement ham-band-
only preselector filters that substan-
tially suppress strong signals outside

of the ham bands and prevent
receiver front-end overload and IMD
In designing its K2, the main goal

of Elecraft was to construct an HF
transceiver devoted only to the ham
bands, useful for DX hunting—mainly
CW—with SSB as an option. As
Table 2 indicates, this has been done
successfully.

The K2 HF transceiver implements
a single-conversion superhet receiver:
• A doubly balanced diode mixer offers

excellent dynamic range. Narrow
and ham-band-only double-tuned
preselector filters are switched by
relays, so the receiver front end
offers much better IMD response
than when diode switching is used

• A switchable HF preamplifier and
switchable attenuator increase the
range of receiver sensitivity adjust-
ments, which allow the operator to
adjust the receiver to particular
propagation conditions and the
receiving antenna actually in use

• AGC is derived from the IF signal.
AGC offers fast attack time and
smooth operation (without any
popping effect on strong signals) for
fast and slow settings. It is even
possibile to switch the AGC off,
which is sometimes the last chance
to copy extremely weak DX sur-
rounded by strong signals—
experienced DXers know it.

• A sharp IF crystal filter is close to
the mixer and because of the
relatively low IF (4.915-MHz), the
crystal filter greatly attenuates out-
of-IF signals. That helps to prevent
receiver overloading by strong
signals from outside the IF-filter
pass-band. The IF crystal filter
offers an adjustable passband for
CW from wide (2000 Hz) to narrow
(200 Hz).

• A low-phase-noise PLL local oscillator
Implemented microprocessor

control offers:

computer logging and remote-
control purposes
The K2 itself is devoted to CW QRP

enthusiasts, but could be tailored for
other preferences by adding following
options:

• The SSB option offers an
adjustable speech compressor and
optimized seven-pole, 2.2-kHz-wide IF
crystal filter,
• 100-W PA Module (offered since the

Dayton 2002 convention)
• 160-meter band with second receive

antenna
• An automatic antenna tuner
• A noise blanker
• An auxiliary I/O RS-232 interface
• An audio filter, eliminating residual

noises outside the desired passband
The K2 is sold in kit form with

assembly instructions that are well
written. Anyone can complete the kit
and buy what one really prefers. The
K2 Product Review, written by Larry
Wolfgang, WR1B, appears in QST
(March 2000, pp 69-74). “Impressions
of the Elecraft K2 Transceiver” by Rich
Arland, K7SZ, appears in QST (April
2001, p 99).

In designing the OMNI VI+, Ten-
Tec has also departed from the
prevailing general-coverage receiver
concept and returned to ideas used 20
years ago. Ten-Tec have abandoned:
• Wide semi-octave, noisy first local

oscillators generated by synthesizers
• First-IF up-conversion into the 50 to

90-MHz region
• Wide first-IF roofing filters

The OMNI VI+ HF transceiver is
designed for ham bands only, from 160
to 10 meters. There are only two mixers
in receiver chain: first IF = 9 MHz,
second IF = 6.3 MHz. All ham bands
are covered in 12 segments of 500 kHz,
each having 30-kHz margins at lower
and upper band edges. This model is a
successful comeback of already proven
concepts but with an implementation
using present-day components:
• The first local-oscillator signal is

produced with band-dependent
crystal oscillators mixed with a low-
noise 4.97 to 5.53 MHz PLL.
Therefore, all synthesis noise
problems causing reciprocal mixing
have been avoided.

• The first IF is low enough to
implement a narrow IF crystal filter
with a good shape factor (having a
passband adequate for SSB and
CW) offering great attenuation of
out-of-passband signals
The first IF is at 9 MHz and can be

fitted with the following passband IF
crystal filters:

• Split operation with two VFOs
• Dual-range RIT and XIT
• Memory operation for mode (CW or

SSB), dual VFO A/B split operation,
receive IF crystal-filter passband
selection, receive CW sideband
selection (allows canceling of one-
side interference from strong nearby
station by switching to opposite
received sideband—a rudimentary
IF-shift function),

• Direct keypad entry of frequencies
and memory channels

• Three tuning rates: 1, 10 and
100 kHz per main-knob revolution

• 10-Hz tuning resolution
• Adjustable receive CW offset with a

tracking sidetone
• Auxiliary I/O RS-232 interface for • SSB: 1.8 kHz or 2.4 kHz

 Sept/Oct 2002 39

• CW: 250 Hz or 500 Hz
• A special 500-Hz, 6-pole IF crystal

filter centered for digital modes
The second IF at 6.3 MHz can be

equipped with the following bandpass
crystal filters:
• SSB: 1.8 kHz
• CW: 250 Hz or 500 Hz

Such a mixing concept allows
installation of narrow crystal filters in
both IF chains right at the beginning
of first and second-IF receiver ampli-
fiers. Therefore the receiver main
selectivity filters are close to the mixers,
where they should be according to
DXers—and where they are not in most
ham radio HF transceivers made in the
last 20 years.

Depending on chosen crystal-filter
combinations, the following good
shape factors should be achieved:
• 1.3 for 2.4-kHz first and second-IF

crystal filters for SSB reception
• 1.4 for 1.8-Hz first and second-IF

crystal filters for SSB reception
• 2.6 for 500-Hz first and second-IF

crystal filters for CW reception
• 2.9 for 250-Hz first and second-IF

crystal filters for CW reception
Other combinations of first and

second IF crystal filters are possible.
All installed IF crystal filters can be
selected independently of the mode.
Superior receiver selectivity signifi-
cantly decreases interference even
from very close signals.

DSP noise reduction (5 to 15 dB),
DSP auto-notch elimination of inter-
fering carriers and DSP low-pass (five
choices) help to customize receiver
selectivity in addition to the selectivity
already offered by IF crystal filters.

Influence of Phase Noise
The main limiting factor of modern

receiver performance is local-oscillator
phase noise. Phase noise contributes
to poor receiver BDR in the form of
desensitization by nearby strong
signals resulting from reciprocal
mixing.

In the OMNI VI+, phase noise is
–122 dBc for 1-kHz spacing, –123 dBc
for 10-kHz spacing and –138 dBc for
20-kHz spacing. In the K2, phase noise
is –120 dBc for 4-kHz spacing and
–126 dBc for 10-kHz spacing.

Therefore, both OMNI VI+ and K2
have superb ham-band performance
with an extremely high close-in
dynamic selectivity. That enables
reception of very weak signals from DX
stations when strong signals are only a
few kilohertz away. Several on-the-air
A/B reception comparisons (using the
same switchable receive antenna) of HF
transceivers made by other makers
against OMNI VI+ and K2 have been

made recently. Generally, these
comparisons favored the OMNI VI+ and
K2, especially in the case of CW
reception on 160-meter band.

Fig 1 explains the superior
performance of the OMNI VI+ and K2.
The figure demonstrates a typical
situation where a barely heard DX
station—only a few decibels above the
receiver noise floor (dotted line)—is
operating SSB on 14.195 MHz. That DX
station is operating split and listening
upward a few kilohertz. A pile-up of
strong stations is calling where he is
listening. For simplicity, only four
signals are shown on the graph. Also
for illustration, let us say that a QSO
is in progress just 3 kHz higher on the
neighboring frequency of 14.198 MHz.

The ability to copy such a weak DX
station in presence of many nearby
strong signals will depend on several
receiver qualities: selectivity, BDR,
IMD DR and the amount of phase
noise on the LO signal.

We can presume that almost any
modern HF receiver has enough
sensitivity and selectivity to copy the
weak DX station with no other signals
present. Nevertheless, for real, on-the-
air situations when plenty of strong
signals are present near DX-station
frequencies, some receivers will do
better than the others. That will
depend on how great is their BDR,
how great is their IMD DR and how
much phase noise accompanies the LO
for any particular HF transceiver.

If the receiver has only average
BDR, even a single adjacent signal
—for instance, on 14.198 MHz, if it
is strong enough—will desensi-
tize that receiver and the weak
DX station will not be heard in

the presence of strong interference.
When many strong stations are

calling, spread out 3-20 kHz up from
weak DX signal, the IMD DR plays a
big role in performance of the receiver.
We can find in pile-up situations that
many combinations of 2 F1 – F2 and
2F2 – F1 are present. Those will
produce intermodulation products on
the weak DX station’s frequency and
these IMD products will interfere with
or distort the weak DX signal. They
can even completely bury the DX
signal in noise and hiss. As the tables
show, some receivers are more and
some are less prone to IMD.

Most present-day HF transceivers
implement synthesizers to produce LO
signals for mixing. Analyzing BDR and
IMD DR results, you can judge for
yourself which makers do better and
which ones are not as good—look for
noise-limited remarks in test results.
Some synthesizer designs produce more
phase noise than one can obtain using
methods implemented by Elecraft in
the K2 and by Ten-Tec in the OMNI VI+
models. Therefore, K2 and OMNI VI+
models are better predisposed to deal
with pile-ups on crowded ham bands.

The dotted line on Fig 1 indicates
the receiver noise floor. The noise-floor
levels of the OMNI VI+ and K2 do not
change in the presence of strong
nearby signals, because the OMNI VI+
and K2 have much less phase noise
than most HF receivers using fre-
quency synthesis. The dot-dash line
illustrates the general situation for
synthesized LOs. The presence of
many strong signals near a weak DX-
station frequency leads to the
appearance of reciprocal mixing
signals on the DX frequency that will

Fig 1—A representation of a typical DX pileup situation in the frequency domain. Vertical
lines represent the strengths of incoming signals. There is a weak DX station (shaded) at
14.195 MHz. The dotted line is the receiver noise floor for low-phase-noise receivers. It
does not change in the presence of nearby strong signals and allows the tiny DX station
(shaded) to be heard. The dot-dash line indicates the noise floor for a noisy synthesized
local oscillator, which has increased in the presence of nearby strong signals. The
increased noise floor hides the DX station at 14.195 MHz. The dashed line is the S9 signal
level.

40 Sept/Oct 2002

interfere with that signal. When LO
phase noise and calling stations’
signals are high enough, then
reciprocal-mixing products can bury a
DX station signal completely in noise.
That case is illustrated by the shaded
bar around 14.195 MHz.

Summary
The K2 by Elecraft and the OMNI

VI+ by Ten-Tec are relatively new.
American makers have manufactured
both. As far as I know (as of October
2001), there is no response to the call
for superior dynamic range from other
makers of HF transceivers yet. DX
hunters can optimistically expect that
good times have come at last for them
and other makers will offer their new
models designed appropriately for DX
hunting and contesting. Nevertheless,
this is still a market economy and the
next steps of other makers will depend
on how much popularity and admir-
ation the K2 and OMNI VI+ achieve
among the DX community.

I’ve analyzed equipment-review
articles published in QST and some
articles devoted to receiver front ends
published in QEX for some time now.
At the same time, I was gathering
components to build my own homemade
dream receiver to perform better in
extreme DX-hunting situations than
equipment offered commercially on the
market—European QRM on low HF
bands is much, much stronger than in
other parts of the world. I’ve planned
to begin construction upon retirement.
Recently, I’ve noticed that there are
models on the market performing
almost as well as I need. Additionally,
Elecraft offers the K2 as a kit. Its many
options can be purchased and tailored
according preferences, without the
unnecessary bells and whistles found
in general coverage multipurpose
machines.

According to W8JI, there is also a
challenge for ambitious constructors to
upgrade old R-4Cs having the narrow
600-Hz Sherwood roofing crystal filter
in the first IF. You can replace the poor
second mixer with a high-level-input
doubly balanced low-noise mixer and
add more gain after the narrow IF
filters following the second mixer (using
a solid-state IF amplifier instead of a
tube version). An R-4C upgraded that
way, with gain properly distributed in
the receive chain, could offer better
performance for extreme DX situations
than most modern HF transceivers.

Perhaps I am an old-fashioned man.
But my motto is: If equipment is
designed properly to achieve best
performance in some specific and

narrow area—in this case solely for
reception of weak CW and SSB DX
signals only on crowded HF ham-
bands—you can expect better perfor-
mance from it than from general-
coverage multiband machines.

Therefore, if an HF transceiver is
used mainly for CW and SSB DXing
only inside the ham bands, a general-
coverage receiver with its associated
up-conversion and its first-IF wide
roofing filter is not the best way to reach
the main goal. Adversely to the concept
used in general-coverage receivers, the
main bandwidth selection should take
place at a point as close to the front end
as possible. That will enable us to
achieve the greatest immunity against
strong adjacent signals.

Unfortunately, that crucial demand
is not acted upon in most of HF
transceivers offered in the ham-radio
market at the present time. Being
myself a devoted DX hunter, I
recognize the concepts implemented
by Elecraft in the K2 and Ten-Tec in
the OMNI VI+ as a step in the right
direction. To meet demands of DX
hunters, first of all, we need very good
receiver performance and immunity to
strong adjacent signals. In my opinion
Elecraft in the K2 and Ten-Tec in the
OMNI VI+ have properly designed
receiver front ends for DX-oriented
hams. This article was written late in
the autumn of 2001. Since then, Ten-
Tec has announced their ORION
Model new HF Transceiver. I believe

this is a big step in the right direction.

��

References
I’ve drawn material from many sources to

produce this article. These include:
Many Product Review articles in QST. My

articles published in SP HF Magazines
J. Devoldere, ON4UN, Low Band DXing,

second edition (Newington, Connecticut:
ARRL). The third edition is available from
ARRL as Order No. 7040, ISBN: 0-87259-
704-0; $28.

Web sites: W8JI’s (www.w8ji.com, receiver
measurements as of 8 Aug 2001) and sev-
eral others: sherweng.com/table.html;
drakelist@baltimoremd.com

w
;

www.tentec.com; ww.elecraft.com;
Elecraft mailing list Elecraft@mailman.
qth.net (throughout the summer and
autumn of 2001).

SP7HT has been involved in DX
hunting for last 45 years. During the
first 25 years of his activities all of his
HF equipment was homemade (inclu-
ding SSB crystal-filter production).
Until recent years, a homemade rig has
been the only way to be on the air from
this part of the world. The last 20 years
he has used several ICOM and
Kenwood HF transceivers, but he’s had
no experience with other makers.

Tadeus was the very first DXer from
Poland to reach the DXCC Honor Roll
(1981) and DXCC Honor Roll #1 (1986).
For last 28 years his occupation has been
associated with microwave satellite
telecommunication. Actually he is a
specialist at the Polish Telecom Satellite
Services Center “TP SAT” in Psary,
Poland. He will retire in January 2003.

http://www.w8ji.com
http://sherweng.com/table.html
mailto:drakelist@baltimoremd.com
http://www.tentec.com
http://www.elecraft.com
mailto:Elecraft@mailman.qth.net
mailto:Elecraft@mailman.qth.net

 Sept/Oct 2002 41

153 S Gretna Green Way
Los Angeles, CA 90049-4015
kd6ozh@arrl.net

Software-Defined Hardware for
Software-Defined Radios

By John B. Stephensen, KD6OZH

Using programmable logic in Amateur Radio applications.

Recently, I decided to upgrade my
homebrew HF transceiver.1 The
goals of the new design were to

replace most of the analog filtering
and analog-control circuitry with soft-
ware using digital signal processing
(DSP) and to provide separate trans-
mit and receive signal processing for
full-duplex operation with amateur
satellites. I also suspected that DSP
could be used to improve AGC action
and noise blanking.

My first impulse was to use a DSP
chip—either on an evaluation board or
by making a board with high-speed
ADCs, DACs, digital up-converters and
1Notes appear on page 50.

Fig 1—A SPLD macrocell (source: Lattice Semiconductor Corporation).

mailto:kd6ozh@arrl.net

42 Sept/Oct 2002

Fig 2—A 16V8 SPLD programmable AND-array (source: Lattice Semiconductor
Corporation).

down-converters. The only inexpensive
board uses the Analog Devices ADSP-
2181 and that is going out of produc-
tion. I looked at newer DSP chips, but
evaluation board prices are in the $300
to $1000 range. The chips themselves
are inexpensive in quantity but most
are packaged only in ball-grid arrays.
I also evaluated ASICs (application-
specific integrated circuits) designed
for the wireless infrastructure market
such as digital up- and down-convert-
ers. Some are available in QFP pack-
ages with 0.65 or 0.8-mm-pitch leads,
but they are expensive, their dynamic
range is limited, and they are not opti-
mal for the narrow-band modes ama-
teurs tend to use.

After doing several paper designs
and estimating costs, I took a differ-
ent approach by using programmable
logic devices (PLDs). PLDs are better
suited to Amateur Radio applications
than ASICs because they are more
customizable. The facilities that are
needed for narrow-band modes like
AM, SSB, MFSK16, PSK31 and CW
can be programmed into these parts.
In addition, implementing only the
functions that are needed for amateur
applications minimizes the cost of a
software-defined radio.

Four types of PLDs are available:
simple programmable logic devices
(SPLDs), complex programmable logic
devices (CPLDs), field-programmable
gate arrays (FPGAs) and combinations
of MCUs and FPGAs called a system
on a chip (SoC). Since many outside of
the computer industry are unfamiliar
with these parts I’ll describe them here.

SPLDs
SPLDs have been available for 15

years. They consist of 8-10 D-type reg-
isters with programmable combinato-
rial logic ahead of the registers as
shown in Fig 1. The registers may be
bypassed to create pure combinatorial
logic. The logic for each register con-
sists of a number of AND gates that are
connected to an OR gate that drives
the register input. The multiplexers
are configuration devices and are con-
trolled by nonvolatile memory. The
AND-gate inputs are also program-
mable and may be connected to any
input pin, any register output bit or
left unused (see Fig 2).

The original SPLD products used
fusible links for programming, and
they could be configured only once.
Present devices contain EEPROM
memories to hold the configuration
data; they can be reconfigured 100-
1000 times. Typical parts include the
16V8 (which has 8 registers and 16
inputs) and the 22V10 (which has 22
inputs and 10 registers).

SPLDs are mature devices and are
being replaced by CPLDs in new de-
signs. Many CPLDs now cost less than
SPLDs and offer more functionality.

CPLDs
CPLDs build on the SPLD by put-

ting arrays of SPLDs on a single chip.
They provide more programmability in
the form of programmable-interconnec-
tion arrays and specialized I/O control
blocks. Fig 3 shows the general archi-
tecture of a CPLD. Notice that there are
several clock, enable and clear pins,
which have programmable polarity and
may be routed to any macrocell via the
programmable interconnect array
(PIA). The PIA also accepts inputs from
the macrocells. CPLDs may contain 32

to 512 macrocells in 2 to 32 logic-array
blocks (LABs).

The macrocells in the logic-array
blocks are the equivalent of SPLDs
plus additional logic as shown in
Fig 4. SPLDs typically have one dedi-
cated clock input, while CPLDs pro-
vide multiple clock inputs and allow
clocks to be derived from the program-
mable AND-array. Many manufactur-
ers also provide programmable
expansion of the AND-array where un-
used logic in one macrocell may be re-
routed to another macrocell.

The I/O facilities contained in
CPLDs are more flexible that SPLDs
(see Fig 5). In a SPLD, each macrocell
had a dedicated output pin. CPLDs
have dedicated drivers next to the I/O

 Sept/Oct 2002 43

pins that may be connected to
macrocells via a programmable switch
matrix. Driver slew rates and logic
levels are also programmable in many
devices. Input logic levels also may be
programmable and optionally regis-
tered.

CPLD Programming
CPLD manufacturers provide soft-

ware for programming CPLDs. This
consists of a compiler that takes a de-
scription of the desired logic and cre-
ates the configuration data and a
downloader that loads the configura-
tion into the CPLD (see Fig 6). The
logic description may be entered by
drawing schematic diagrams or by
entering Boolean equations in a lan-
guage such as ABEL. The download
software usually works with a cable
that attaches a few pins on the CPLD
to the PC parallel port. Most manu-
facturers provide a free version of the
compiler and download software that
is suitable for amateur purposes.

Schematic design entry is easy to
use and works well for small designs.
A typical application for a CPLD is a
phase-locked loop (PLL). For example,
the phase-locked crystal oscillator de-
sign that I published in QEX2 can be
simplified by using a CPLD to replace
both the microcontroller (MCU) and
PLL chips. The reference and VCO
counter modulus can be programmed
directly into the CPLD. Fig 7 shows
the design of the phase detector. Fig 8
shows the design of the VCO and ref-
erence frequency dividers. The design
software includes TTL MSI equiva-
lents to minimize the design effort.
Finally, Fig 9 shows the top-level sche-
matic with the preset counter modu-
lus. The modulus can be set to any
value and programmed into the CPLD
EEPROM configuration memory.

The PLL design fits into a 32-
macrocell CPLD that costs $1 in small
quantities from suppliers such as Lat-
tice Semiconductor (Mach 4 series) or
Altera (MAX 3032A series). The origi-
nal PLL plus MCU cost was almost $10.

FPGAs
The field-programmable gate array

(FPGA) provides even greater logic
densities. The original products had a
“fine-grained” architecture. They con-
sisted of a sea of gates that could be
interconnected via programmable
switches and busses. Anything could
be constructed from the gates, but gate
utilization of 50% or less was common
because of routing limitations.

Recently, FPGAs have begun to look
more like huge CPLDs as the basic
cells have become more complex. The
cells of modern FPGAs typically con-

Fig 3—A typical CPLD block diagram (source: Altera Corporation). See Note 4.

Fig 4—A typical CPLD macrocell logic block (source: Altera Corporation). See Note 4.

tain one or more look-up tables (LUTs)
to define arbitrary logic functions and
one, two or four output registers. These
can be interconnected to form adders,
multipliers or other functions that are
commonly used in digital signal pro-
cessing (DSP). The Atmel AT40K se-
ries is a good example as it is particu-
larly suitable for amateur use.

The FPGA consists of a square ar-
ray of 256 to 2304 core logic cells ar-
ranged as groups of 16 cells as shown

in Fig 10. Between the groups of core
cells are RAM cells that may be inter-
connected with the logic cells. I/O cells
are located near the bonding pads
around the periphery of the die. They
may be connected to logic and RAM cells
via direct connection or busses that are
dispersed throughout the FPGA.

The core cell consists of two three-
input LUTs and a D register as shown
in Fig 11. There are four inputs to the
cell: W, X, Y and Z. These inputs may

44 Sept/Oct 2002

Fig 10—AT40K FPGA architecture (source: Atmel Corporation).
See Note 4.

Fig 7—Phase-detector schematic input. See Note 4.

Fig 6—CPLD design software for a PC. See Note 4.

Fig 5—A typical CPLD I/O control block (source: Lattice
Semiconductor Corporation).

Fig 8—Reference and VCO divider schematic input. See Note 4.

Fig 9—A top-level schematic for a custom PLL. See Note 4.

 Sept/Oct 2002 45

Fig 12—Direct cell-to-cell connections (source: Atmel
Corporation). See Note 4.

Fig 11—AT40K core cell (source: Atmel Corporation). (Beware! Antel uses a circle with
cross to indicate switches. They are not mixers.) See Note 4.

Fig 13—AT40K busses (source: Atmel Corporation). See Note 4.

come from direct connections to adja-
cent cells as shown in Fig 12 or from
busses that run throughout the FPGA
as shown in Fig 13. The busses have
programmable lengths. Bus segments
may be isolated to a group of 16 core
cells or interconnected via program-
mable repeaters to run through the
entire array.

The core cell has three outputs that
may come from the LUTs, the regis-
ter or the tristate bus driver. The X
and Y outputs may use the orthogo-
nal or diagonal direct connections to
adjacent cells shown in Fig 12. This is
useful for fast-carry propagation and
the construction of efficient parallel
adders and multipliers. The tristate L
output connects to one of ten bus lines
adjacent to each cell as shown in Fig
13. The busses are useful for multi-
plexing data from multiple cells and
connecting to input ports on multiple
cells.

The core cells may be configured for
various applications. A full adder is
shown in Fig 14A. The adder may be
combined with the AND gate in the cell
to create parallel multipliers as shown
in Fig 14B. The counter cell in Fig 14C
shows how internal feedback may be
used without requiring any external
busses or connections. The cell may be
used as plain combinatorial with three
inputs and two outputs or four inputs
and one output as shown in Fig 14D.

The FPGA also contains 2,048 to
18,432 bits of distributed RAM in
16 to 144 RAM cells as shown in Fig
15. Each RAM cell contains 32 4-bit-

wide entries, and it may be configured
as a single or dual-port RAM with syn-
chronous or asynchronous I/O. In any
configuration, the RAM has a 12-ns
cycle time. Address and data ports are
available via the busses shown in
Fig 16.

RAM is desirable for many purposes
including storage of data constants or
microcode for FPGA processing ele-
ments. It can also be used to replace
registers where access to individual bits
is not required. Both applications allow
the placement of more logic into each
FPGA.

The I/O connection on the periph-
ery of the FPGA die may be reached
directly from adjacent cells or via the
bus network as shown in Fig 17. In-
put and output pins may have dedi-
cated registers or tie directly to cells
or busses. Inputs and outputs can be
programmed to operate at TTL or
CMOS levels. The inputs may option-
ally have Schmidtt-triggers for noise-
rejection and the outputs may option-
ally be tri-state to drive external bus-
ses. The drive current is program-
mable so slew rates may be limited in
order to reduce EMI.

46 Sept/Oct 2002

Fig 16—AT40K RAM cell bus usage (source: Atmel Corporation).
See Note 4. Fig 14—Core-cell configurations (source: Atmel Corporation).

Fig 15—AT40K RAM cell (source: Atmel Corporation).

FPGA Programming
The FPGA manufacturer provides

software packages for entering design
information and compiling it into con-
figuration bits for downloading to the
FPGA. Design entry can be done via
schematics or ABEL as with CPLDs
or by using higher-level languages
such as Verilog or VHDL.3 These lan-
guages provide a way to describe the
behavior of the logic and to create “test
benches” to simulate the input to the
logic and verify the correct output. A
simple Verilog language description of

combinatorial logic is shown in Fig 18.
The design software synthesizes a

gate-level design and then places and
routes the design for the FPGA being
used. The result is a configuration file
that can be loaded into the FPGA via
a PC parallel port. One major differ-
ence between FPGAs and CPLDs is
that the configuration is loaded into
RAM on the FPGA. This has the ad-
vantage that the configuration may be
changed as many times as desired.
Configurations can even be changed
in real time so only the logic needed
for the current operating mode need

be resident in the FPGA.
Atmel also provides a design

language called Macro Generation
Language (MGL) that allows the
specification of logic designs with very
tight control over the placement and
routing in the FPGA. These macros
can be optimized for minimal cell
usage and/or maximum speed. MGL
allows the creation of fast reusable
modules that can be referenced from
Verilog or VHDL files.

MGL is similar to many structured
programming languages. A macro defi-
nition consists of an interface block and

 Sept/Oct 2002 47

Fig 21—Routing in Atmel
MGL (source: Atmel
Corporation).

Fig 17—AT40K FPGA I/O (source: Atmel Corporation).
See Note 4.

Fig 18—Schematic diagram and equivalent Verilog description
(source: Doulos CBT).

Fig 19—Interface description in
Atmel MGL (source: Atmel
Corporation).

Fig 20—Component
“instantiation” in Atmel MGL
(source: Atmel Corporation).

a contents block. The interface block
defines the input and output ports for
the macro. These are the signals that
will be connected to external logic when
the macro is used. Fig 19 shows one
example, the interface to a four-bit
counter. The snippet of MGL code
defines RESET and CLOCK as the two in-
puts to the counter and Q0 through Q3

48 Sept/Oct 2002

Fig 22—FPGA design software showing four cells and
interconnection. See Note 4.

Fig 23—An Atmel FPSLIC (source: Atmel Corporation).
See Note 4.

Fig 24—The AVR RISC MCU and peripherals (source: Atmel Corporation). See Note 4.

as the outputs from the counter.
The MGL contents block describes

the underlying implementation of the
macro. It instantiates components, con-
nects the components together via nets
and specifies the physical routing of
these nets. Fig 20 shows the instan-
tiation of a flip-flop and its connection
to nets. First, the variable aMacro is
assigned a value of FGEN1RF, which
is part of the Atmel vendor library of
dynamic macros. It defines a configu-
ration of the AT40K core cell that has a
LUT producing one output, which is
stored in a register, and the stored value
is fed back to the LUT.

The location statement creates an
instance of the core cell and places it
at the bottom left corner of the macro.
This position is relative to the even-
tual placement of the macro. The
functiong statement defines the con-
tents of the LUT such that the output
is the complement of the value fed
back from the register. The connections
statement then connects the ports on
Cell0 to the ports of the macro.

Fig 21 shows how a direct connec-
tion between core cells is specified in
MGL. The route statement contains a
list of nodes that are to be intercon-
nected. In this case, the Y output of
Cell1 is connected to the Y input of
Cell2. A more complex route, using a
bus, would have a longer list of nodes
and a specification of the type and lo-
cation of the bus to use. The route can
be specified to any degree of complete-
ness as the routing can be completed
using automated tools.

After the macro has been defined,
debugged and executed, the generated
macro can be imported into Figaro—the
Atmel-provided tool for placement and
routing on the FPGA. The process is
similar to routing traces on PC boards.
If the macro has been defined correctly,

the cell placement will already be opti-
mal. The automatic-routing software
can be run to route any connections not
fully defined in MGL. Fig 22 shows a
close-up of four core cells after routing.

SoC—System on a Chip
A recent trend in the semiconduc-

tor industry has been the introduction
of various “systems on a chip.” These
products provide a CPU, memory and
programmable logic on one die to mini-
mize the size of portable program-

mable devices. The CPU may be either
“soft” (a gate-level design that can be
downloaded onto the gate array) or
“hard” (a custom-designed CPU shar-
ing the die with an FPGA). The cus-
tom CPU uses less die area, but there
are few companies with both gate ar-
ray and microprocessor products.

A software-defined radio requires
several processing functions that have
traditionally resided in multiple chips.
A microcontroller provided general
housekeeping functions. A specialized

 Sept/Oct 2002 49

Fig 25—FPSLIC design software main screen. See Note 4.

Fig 26—DSP filter design software. See Note 4. Fig 27—The upper right corner of CORDIC quad serial arithmetic
unit. See Note 4.

DSP chip provided filtering, modula-
tion and demodulation. Multiple PLL
and DDS chips provided frequency
control. Multiple chips required long
interconnections and tended to in-
crease the level of spurious emissions.

A SoC with a CPU and FPGA can
provide all major housekeeping, signal-
processing and frequency-control func-
tions. This simplifies the design and
reduces cost without sacrificing any
performance. The SoC that I have se-
lected is the Atmel AT94K10AL. Atmel
calls this a field-programmable system-
level integrated circuit or “FPSLIC.” It
contains a 20- or 32-MIPS 8-bit RISC
CPU, two serial ports, counter-timers,
36 kB of fast dual-port memory and a
576-cell FPGA that can be programmed
from the MCU. Fig 23 shows the major
components in the FPSLIC and Fig 24
is the MCU block diagram.

IC Packaging
One initial concern when selecting

the SoC was the package size. The de-
sire to produce small portable devices
has driven package sizes down towards
the size of the die. Technology has pro-
gressed from DIPs in the 1970s, to plas-
tic J-leaded chip carriers (PLCC) in the
1980s, small outline packages (SOP)
and quad flat packs (QFP) in the 1990s
and now the ball-grid array (BGA) pack-
ages. A BGA package has all connec-
tions on the bottom of the package us-
ing a rectangular grid of solder bumps
spaced as close as 0.8 mm. BGAs are
mounted on a PC board that has solder
paste silk-screened onto the mounting
pads. The assembly is then exposed to
a hot inert gas that melts the solder
bumps and the solder paste to attach
the component to the board. BGA pack-
ages are not suitable for home projects.

Luckily, manufacturers of compo-

nents for industrial control and profes-
sional video/audio equipment do not
have to produce tiny components for
tiny products and continue to use SOP,
QFP and LCC packages. Small CPLDs
with 32-64 macrocells are available in
a PLCC-44 package. Several FPGAs in
sizes up to the 1200-cell range and the
Atmel FPSLIC are available in PLCC-
84 packages. The PLCC was originally
designed to ease transition from
through-hole to surface-mount PC-
board technology. There are contacts on
all four sides of the package spaced
50 mils (0.05 inches) apart. This pack-
age can either be soldered directly to
the surface of a PC board or plugged
into a socket. The sockets have leads

on a 100-mil grid for compatibility with
through-hole designs. This is ideal for
construction of a prototype (or a one-
of-a-kind unit) with point-to-point wir-
ing as the sockets fit in pre-punched
copper-clad boards.

Design Software
This type of design moves much of

the traditional hardware prototyping
work onto the PC with software-based
simulation. I use the Atmel-provided
FPSLIC-design software that inte-
grates the FPGA and RISC CPU pro-
gramming and verification tools
(Fig 25) into one package.

The MCU programming is done in
assembly language. The AVR CPU is

50 Sept/Oct 2002

Fig 28—A serial-parallel multiplier-accumulator unit. See Note 4.

a two-address general register ma-
chine that makes assembly-language
programming easy compared to the
old single-accumulator, single-address
architecture used in 8051 MCUs.

The DSP filter-design software is
from Momentum Data Systems
(Fig 26). This software generates co-
efficients for either FIR or IIR filter
designs optimized for a minimal num-
ber of taps for a given frequency
response. There are several public-do-
main filter-design packages available
on the Web that could be used in its
place, and filter design could also be
done with products like MathCAD.

FPGA Performance Results
The DSP version of my transceiver

has the last IF at 13-19 kHz. This fre-
quency is low enough to allow use of
low-cost 24-bit audio converters with
high dynamic ranges, and it is high
enough to allow use of low-cost mono-
lithic crystal filters as roofing filters.
The frequency-conversion scheme is
similar to that used in the Drake R8
but with ferrite filters replaced by
DSP. The FPSLIC generates and pro-
cesses digitized baseband in-phase
and quadrature signals at a combined
16 ksps rate.

The approach used has been to de-
sign macros that implement high-
speed DSP functions efficiently in the
gate array hardware and do the rest
of the processing in software. The fol-
lowing functions have been imple-
mented as macros for the gate array:
• Dual 40-bit DDS phase accumula-

tor
• Dual 19-bit CORDIC (coordinate ro-

tation incremental computer)
phase-angle-to-amplitude conver-
sion unit

• 20-bit MAC filter coprocessor unit
• 24-bit serial ADC and DAC interface

These functions are tied together
and interfaced to the MCU in Verilog.
This allows hand-optimization where
needed for speed and quicker program-
ming for control circuitry that has less
stringent requirements. Low-speed
functions, such as AGC, are imple-
mented in AVR assembly language. The
two-cycle multiply instruction in the
AVR CPU is ideal for implementing
DSP functions.

Hardware implemented in a gate
array has a different set of constraints
than hardware in ASICs or TTL logic
ICs on a PC board. The designer must
always be aware of routing delays. In
the AT40/94K series FPGAs, a direct
orthogonal or diagonal connection
from cell to cell has a delay of only
0.1 ns. A connection via a bus can in-
cur delays of up to 11 ns depending
on bus length. Very often, serial imple-

mentations of arithmetic functions
will outperform parallel implementa-
tions. The MAC and CORDIC macros
were the most difficult to implement,
and they use a combination of serial
and parallel logic to minimize size
while retaining maximum speed.

The CORDIC serial arithmetic unit
requires only 98 FPGA core cells and
is capable of 800,000 sine and cosine
calculations per second. CORDIC is an
algorithm that calculates sines and co-
sines using only shift and add opera-
tions. It is used to generate the fre-
quency-reference signals for the trans-
ceiver and has spur levels below any
current DDS ASIC.

Fig 27 shows the upper end of two
serial arithmetic units that implement
simultaneous bit-serial dual cross-con-
nected shift and add operations to
implement the core of the algorithm.
The propagation delay in the most criti-
cal path has been reduced to 9.54 ns.

The MAC arithmetic unit requires
only 145 FPGA core cells and is capable
of 4.8 million 20-by-20-bit multiply-ac-
cumulate operations per second. Addi-
tion is done with 20 bits in parallel and
multiplication is done by serial add and
shift operations. The accumulator is
44 bits wide to accommodate all 40 bits
of the product and prevent rounding er-
rors. Four additional bits are provided
to the left of the decimal point to pre-
vent overflow when the transient value
of the sum of products exceeds ±1.

Fig 28 shows the entire serial-par-
allel multiplier-accumulator unit. Or-
ange cells (light squares) are used in
the macro and gray cells are unused.

The high packing density is achieved
with serpentine routing that minimizes
the length of several vertical and hori-
zontal delay paths simultaneously. The
maximum delay in any bit-serial data
path is 9.17 ns. The 10.16-ns delay
shown in the figure is for one multipli-
cand data bit, which changes state only
once every 20 clock cycles.

Conclusions
The FPSLIC has proven viable for

use in SDRs, and it provides a better
solution for narrow-bandwidth modes
than do ASICs designed for wireless
applications. A follow-on article will
describe the hardware that surrounds
the FPSLIC to convert between the digi-
tal and analog domains and translate
signals to and from the 16-kHz IF.

Notes
1J. Stephensen, KD6OZH, “The ATR-2000:

A Homemade, High-Performance HF
Transceiver,” QEX, Pt 1, Mar 2000, pp 3-
15; Pt 2, May 2000, pp 39-51; Pt 3, Mar
2001 pp 3-8; Letters to the Editor, May
2001, p 62.

2J. Stephensen, KD6OZH, “A Stable, Low-
Noise Crystal Oscillator for Microwave and
Millimeter-Wave Transverters,” QEX, Nov
1999, pp 11-17.

3J. Wiseman, KE3QG, “Modern Digital De-
sign for the Radio Amateur,” QEX, Dec
1997, pp 3-12.

4Several of the figures in this article are cap-
tured from complex computer-screen im-
ages that do not reproduce well in print or
in black and white. Interested readers can
view these images full size and in color on
their computers by downloading a pack-
age from the ARRL Web www.arrl.org/
qexfiles/. Look for 9X02STEP.ZIP. ��

http://www.arrl.org/qexfiles/
http://www.arrl.org/qexfiles/

 Sept/Oct 2002 51

Tech Notes
 [The SurCapAdapt test jig came to

fruition while Dan was constructing a
DSP-10 radio to be an IF in his
microwave station. Here are the details
for building the SurCapAdapt, a
simple jig that holds SMT components
undergoing measurements.—Peter
Bertini, K1ZJH, QEX Contributing
Editor; k1zjh@arrl.org]

of this and I can’t verify the suitability
of possible substitutes.

1. Clamp the back of the connector
(cable end) firmly in a vice—don’t
worry if it slightly deforms, the rear
of the connector will be cut off and
discarded in a later step. Carefully
remove the center pin by grasping the
pin with vise-grip pliers and pulling
it out. Set it aside, as it will be needed
later (Fig 2).

2. Cut off the rear (cable end,

Fig 3) of the PL-259 housing using a
hacksaw or Dremel tool equipped with
a cutoff wheel. Screwing the connector
onto a barrel connector provides some
strength and prevents deforming the
housing as it is clamped into the vice.
Once the rear is removed, the cut
surface of the PL-259 connector needs
to be smoothed. This took me about
20 seconds using an orbital sander
with 100-grit abrasive paper. The
brassy color of the base metal should
be visible, and the surface should be
smooth and even (Fig 4). This area will
be one of the two contact points made
to the SMT device under test. Cut a
radial groove on the newly sanded
connector end with a hacksaw or a
Dremel tool using a cutoff wheel. The
depth of the groove can be shallo
 (Fig 5). This notch serves to grip and
stabilize SMT components being held
in the SurCapAdapt during measure-
ments. If the notch catches the edge
of a SMT body, it’s deep and wide
enough to do what is required.

3. The 7/16-inch diameter dowel
serves as an insertion jig for
reinstalling the center-pin assembly
back into the PL-259 body. Drill a hole
into the end of the dowel that is large
enough and deep enough to clear the
center pin of the PL-259. Set the
connector face up on the edge of an
open vice. Carefully press the center
pin back in using the dowel. Once
you’re sure the pin is straight, set the
PL-259 aside.

4. This step is tricky. We need to
drill a hole along the axis and centered
on the threaded end of a #6-32×3/4-inch

Fig 2—(above)The center-pin assembly is removed from the
connector by securing the connector body in a vice, grasping the
thick pin with pliers and pulling the assembly free.
Fig 3—(right) Remove the knurled rear portion of the connector.
Here the job is easily done with a band saw in the ARRL Lab.

Fig 1—The author’s SurCapAdapt
mounted on the Autek RF-1 Analyzer.

SurCapAdapt
By Dan Hinz, W6LSN, 1738 Manitou

Ct, San Jose, CA 95120; w6lsn@arrl.
net

During my recent foray into SMT
construction, I was concerned about
determining the values of some
components. While resistor values
were easily verified on my DVM, I
noticed that many SMT capacitors
have no markings. My Autek RF-1
analyzer can measure values from 1
pF to about 0.01 µF, but I lacked a
means to hold the SMT components for
testing. The RF-1 was supplied with
several alligator clips that I could use,
but they were cumbersome to use on
SMT parts, and too many parts ended
up lost on the workshop floor. I needed
a better way to hold capacitors while
measuring them. So was born the
SurCapAdapt in Fig 1.

Building the SurCapAdapt
RadioShack’s #278-186B solder-less

style PL-259 connector, with it’s stiff
center pin on the “back side” (internal
to the body) of the connector, is a key
element in the construction of the
SurCapAdapt. Other vendors may sell
similar connectors, but I am not certain

mailto:k1zjh@arrl.org
mailto:w6lsn@arrl.net
mailto:w6lsn@arrl.net

52 Sept/Oct 2002

brass machine screw using a #55 drill
bit. This hole must be drilled through
the entire length of the screw body.

This step can be facilitated by
making a wood jig to hold the screw
to a drill-press table. Drill a #36 hole
through a block of wood that is slightly
less than 3/4-inch thick. Carefully
thread the machine screw into the
wood (Fig 6). Place the block on the
drill press with the screw head
downward and centered on the drill
clearance hole in the drill press table.
By the way, even after several
attempts I was never to able to
successfully drill a steel #6-32 screw,

Fig 6—(above) To facilitate drilling a lengthwise hole in the #6-
32×××××3/4 screw, drive it snugly into a 3/4-inch-thick board. Here we see
the drilled end of the screw slightly protruding from the board.
Fig 7—(right) The prepared #6-32 screw is in place on the rear of
the connector. It is important that the screw does not contact the
rear of the connector anywhere.

Fig 4—After abrading away the saw marks, the rear of the
connector is smooth, with some of the base metal showing.

Fig 5—A shallow notch in the rear face of the connector serves
to contact and hold the device under test.

but I was successful with the first
brass screw I tried.

Slowly drill through the full length
of the screw. You may need to clamp
the screw from underneath to prevent
it from turning; the drilling tends to
unscrew it from the block. Don’t use a
lubricant or cutting fluid; either one
might impair the electrical perfor-
mance or the following fabrication
steps. Drill slowly and gently—back
the bit out often to clear material from
the hole. Align the hole as close to the
center of the screw as possible. Don’t
despair if the finished product isn’t
perfect. As long as the screw clears and

doesn’t contact the connector body
once it’s installed on the connector
center pin, it will do fine (Fig 7).

5. Remove the screw from the wood
block. You may need to use vice-grips
because the drilling has probably
damaged the screw head beyond use.
This is not a problem because the head
will be removed and discarded.

6. Check that the threads at the end
of the screw are not damaged. Screw
on the #6-32 steel nut or #6-32 die. Cut
off the screw head with a hacksaw or
a Dremel tool equipped with a cutting
disc. Removing the steel nut or die will
dress the screw threads as it passes

 Sept/Oct 2002 53

over them. Don’t worry if the threads
are not perfect on one end; just be sure
that the end with the damaged
threads goes on the PL-259 center pin
when that step of assembly is reached.

7. Cut a scrap of PC board to
approximately 0.25×0.6 inches (the
length should be about equal to the
width of the PL-259). Mark the center
of the PC board and drill a hole large
enough to clear a #6-32 screw. Tin the
board with solder.

8. Lightly clamp the connector in a
vice with the sharp end of center pin
(internal pin) pointing upward. Strip
about four inches of insulation from a
length of stranded wire. Thread the
wire through the entire length of the
hole previously drilled through the
#6-32 screw shaft. Now comes the
tricky part.

Since the center pin is not easy to
solder we will make an interference
fit. At the end of the screw that will be
attached to the PL-259 center pin,
carefully untwist one end of the wire
strands for about 3/8-inch. Cut off all
but three or four strands of wire
(Fig 8A). Pull the stranded wire back
into the screw until about 1/8-inch of
each uncut strand is visible. Form the
wires back up over the end of the screw
(Fig 8B). Force the pin into the hole
where the three or four wire strands
are folded back. This leaves a short
length of reduced-diameter stranded
wire inside the screw body—enough
for center pin clearance and a snug fit,
while the wire folded back keeps the
wire from pushing back out. If there
are too many wire strands, you will
not be able to force the screw onto the
pin. If there are too few strands, the
screw will not fit the pin snugly and it

Fig 8—Installing the stranded wire in the prepared screw. At A, about 3/8-inch protrudes from the screw and a few strands are removed.
At B, the stranded wire is retracted back inside the screw leaving enough of the remaining strands exposed to fold back over the end.

(A)

Bill of Materials

1 Solder-less PL-259 connector (RadioShack #278-186B)
1 #6-32×3/4 inch brass machine screw
1 Small section PC board material
1 #6-32 steel nut (#6-32 die may be used instead)
1 #6-32 brass nut
1 7/16-inch-diameter wooden dowel a few inches long
4 inches of #24 to #26 AWG stranded wire

(B)

will easily pull off the pin. The goal is
to achieve both a good electrical
connection and an adequate
mechanical connection. It may take
several attempts to get things just
right. Check for a low resistance
connection from the pin to the wire.

9. Put the PC board on with the
copper facing the back of the connector
(the surface that was sanded and
notched earlier). The PC-board foil will
form the second contact point to the
SMT device under test. Screw the
brass nut down the screw as far as
possible. (You want to minimize the
mass that you must heat while
soldering.)

You should be able to feed some
solder into the top of the hole in the
screw and down to the top of the pin. I
used 0.025-inch solder. Tin the wire
and heat the top of the screw so that
the solder melts and flows, securing
the wire to the inside of the screw. This
little bit of solder helps relieve
mechanical stress on the three or four
wire strands at the other end of the
screw. Minimize the solder on the
screw threads. (Actually, some is good.
It keeps the nut from backing off.)
Solder the other end of the wire to the

PC board. Tin the wire to provide some
additional strength, but not so much
as to prevent you from bending it. The
wire should be able to hold the PC
board away from the connector against
the force of gravity. Trim away any
excess wire. Lastly, align the PC board
with the groove on the back of the PL-
259. Now, I hope you have something
that looks like Fig 1.

10. Be sure there is a good dc
connection from the center pin of the
connector to the PC board and that it
is not shorted to the connector
housing.

Check Out and Correction Factor
Attach the adapter to your analyzer.

Avoid twisting the wire or pulling on
the screw. To determine the correction
factor, screw the plates together onto a
scrap of PC board, plastic bag or other
insulator. Measure the SurCapAdapt’s
self capacitance. Mine shows 1 or 2 pF,
depending on the measurement
frequency. This represents the
capacitance that is to be subtracted
from a component’s reading. You are
now ready to measure a component. I
hope that your analyzer’s manual
provides a graph similar to Fig 10,

54 Sept/Oct 2002

A SurCapAdapt PL-259 Style
For Figures 2, 3, 4, 5, 6, 7 and 8, I constructed a

SurCapAdapt in the ARRL lab. Since I was buying the
RadioShack connectors, I also stopped at a local con-
nector shop and bought some generic solderless PL-
259s. The RadioShack connectors make the shield
connection by means of a screw in the knurled rear
section that pierces the cable jacket. The generic
versions have a tubular rear protrusion meant to slide
inside the cable jacket, where it is secured by a crimped
ferrule (Fig A). While it may be possible to construct a
SurCapAdapt fixture from such connectors, I did not
bother. Instead, I constructed a SurCapAdapt from a
normal PL-259 connector. Here’s how:

Begin by removing the rear portion of the connector,
leaving enough to protrude about 1/16 inch beyond the
coupling ring when it is installed in a socket (Fig B).

Fig C—(above) Here is the trimmed, sanded and notched PL-
259. I trimmed too much; it would be better if the notched
shoulder stood at least 1/16-inch proud of the coupling ring.
Fig D—(right) A finished SurCapAdapt PL-259 style. I used a
stainless-steel screw that was on hand. With a brass screw,
the wire could be soldered to the screw head, eliminating the
second nut and solder lug.

Smooth and notch the rear face as on the RadioShack
connector (Fig C).

I then found that a #6-32 tap can successfully thread
the dielectric and the inside of the center pin when started
from the rear of the connector. I used a #6-32×11/4 screw
that was on hand, which allowed it to penetrate about four
turns into the center pin. A longer screw would be better
to allow more turns into the center pin. Since the thread-
ing of the center pin stops, the screw makes good contact
when driven into the bottom of the threads.

The screw I used is stainless steel, so I couldn’t solder
to it very well. Instead, I used a solder lug and an extra
nut to secure it against the screw head. A wire from the
lug to the PC board piece completes the PL-259 version
of the SurCapAdapt (Fig D).—Bob Schetgen, KU7G,
QEX Managing Editor; ku7g@arrl.org

Fig A—The rear of a generic solderless PL-259 purchased
locally is unsuitable for construction of a SurCapAdapt.

Fig B—Trim excess material from the rear of the PL-259.

mailto:ku7g@arrl.org

 Sept/Oct 2002 55

which is taken from my RF-1
instruction manual.1 I normally operate
my analyzer at approximately 12 MHz,
this permits me to measure values from
1 to 1000 pF with reasonable accuracy.
With a frequency of 1.66-MHz, I can
measure up to 0.01 µF.

Grasp the chip capacitor to be
measured in a pair of tweezers and
place it’s body between the notch cut
in the back of the connector and the
PC board above it. Try to set the
capacitor under the outline of the nut
to reduce any angling of the PC board.
You don’t want the part to “squirt” out.
Carefully tighten the nut until PC
board is snug and holding the
capacitor against the base. Over
tightening will cause the capacitor
body to tip and squirt out—gone
forever! Switch on the unit and read
the capacitance. The first capacitor I
measured indicated 17 pF. Allowing
for the internal 1-pF stray capacitance
of the SurCapAdapt jig, yields 16 pF,
which is darn close to the actual 15
pF marked on the capacitor.

The RF-1 manual gives additional
insights for achieving accurate
readings. The SurCapAdapt will allow
you to measure SMT inductor values
that are within the range of the
analyzer. For the RF-1, that should be
about 0.05 µH to 0.3 mH. I hope you
find the adapter useful.

Fig 9—A graph of the capacitance range for the Autek RF-1 analyzer.

1Fig 9 is taken from the RF-1 instruction
manual. (Instructions RF Analyst Model
RF-1Autek Research 4/94) This figure is
used by permission of Autek Research.

��

ARRL The national association for

AMATEUR RADIO

tel: 860-594-0355 fax: 860-594-0303
e-mail: pubsales@arrl.org

Order toll-free 1-888-277-5289 (US)
www.arrl.org/shop

International Microwave Handbook
— Published by RSGB and ARRL

Edited by Andy Barter, G8ATD

Reference information and
designs for the microwave
experimenter: operating
techniques; system analysis
and propagation; microwave
antennas; transmission lines
and components; microwave
semiconductors and valves;
construction techniques;
common equipment; test
equipment; bands 1.3 GHz,
2.3 GHz, 3.4 GHz, 5.6 GHz,
10 GHz, 24 GHz, and above.

The precursor to this significant work
was the three volume Microwave Handbook published by the
RSGB in the late eighties and early nineties. This new book
includes contributions from radio amateurs, organizations,
publications and companies from around the world.

ARRL Order No. 8739 — $39.95*
*shipping $7 US (UPS)/$9.00 International

Dan Hinz, W6LSN, was first
licensed in 1973 as WN3VHS. He
assumed his grandfather’s call sign
after passing his extra exam in 1999.
While at the US Naval Academy he
served as the president of the radio
club and earned a BSEE. He served
more than 11 years on nuclear
submarines before leaving active duty
for civilian life. When not shuttling his
family to or from some activity, he is
active on 40 through 10 meter CW or
putting together a microwave station
to do weak-signal and satellite work.

56 Sept/Oct 2002

225 Main St
Newington, CT 06111-1494
zlau@arrl.org

RF

By Zack Lau, W1VT

A Small 2-Meter Yagi
I’ve been working on a compact 2-

meter Yagi for several years now—this
is really a work in progress rather
than a polished design ready for
production (see Fig 1). It works well—
except for the matching network—I’d
be interested in hearing about designs
that sacrifice a little bandwidth for
lower SWR in the amateur band.
Many hams would like the SWR to be
less than 1.5:1, so the automatic SWR
circuitry in sensitive radios does not
fold back the power. The first
prototype, with a carefully adjusted
matched network, has a SWR of less
than 1.5:1 across the band. The second

one, built according to plan (Fig 2), has
a similar SWR curve and an SWR of
less than 1.8:1 across the band.

The Yagi was designed to fit in the

trunk of my Saturn SL2 without any
disassembly. The boom is made out of
32 inches of 1-inch-square aluminum
tubing—you can make three booms out
of one 8-foot length. A square boom
makes it easier to drill the element-

Table 1—Frequency versus SWR

(MHz) Ant 1 Ant 2 Ant 2
(259B) (259B) (Bird)

141 2.1 1.8
142 1.5 1.6
143 1.3 1.5
144 1.4 1.6 1.6
145 1.5 1.7 1.7
146 1.5 1.7 1.8
147 1.5 1.6 1.7
148 1.3 1.4 1.5
149 1.0 1.0
150 1.4 1.6

Table 2—Yagi Analyzer Model
(Element Center Spacing and Half-
Element Lengths)

1/4-inch elements
144.000 145.986 148.000 MHz

4 elements, inches
 0.250

0.000 20.230
6.950 20.000

29.600 17.190

mailto:zlau@arrl.org

 Sept/Oct 2002 57

mounting holes accurately. A round
1-inch boom could be used with no
change in element lengths or spacing.
This antenna was designed for good
performance across the band. The
computer-calculated gain is 8.3 dBi
across the band. The front-to-back ratio
is at least 20 dB across the band. I used
Yagi Analyzer, YA, the program that
comes with The ARRL Antenna Book,
for these computer calculations. Table
2 shows the computer file used by YA.

The most challenging part of
designing a 2-meter Yagi is the driven
element (see Figs 3 and 4). It needs to
be simple and easy to construct yet
weather resistant and capable of
matching impedances efficiently,
without distorting the antenna
pattern. From an electrical standpoint,
perhaps the simplest solution is to just
split the element, and match it to
50 Ω. However, a split element is
highly undesirable mechanically,
unless someone devises an insulator
with the excellent mechanical
properties of aluminum or brass. I
decided to use a T-match with a
machined Teflon center insulator that
helps keep everything in alignment.
The resulting driven element is
relatively rugged, with minimal wind
loading. This reduces the stress on the
mast in adverse weather conditions.

I made the balun out of λ/2 of semi-
rigid UT-141A 50-Ω semi-rigid coax
(see Figs 5 and 6). It is easily coiled to
save space. I published an analysis of
this design in the Jan 2000 QEX, in
an article titled “Feeding Open-Wire
Line at VHF and UHF.” I use a copper
strap (Fig 7) to attach it to the boom.
It is a good idea to make the exposed
center conductors long, so they may be
wrapped across the T-bars. This makes
it more difficult for the antenna to
come apart. I machined a Teflon
insulator (Fig 8) to fit across the T-
bars—this also helps to hold the
driven element together.

Fig 2—The boom and elements.

Fig 1—A prototype of the four-element
Yagi. The matching network has
telescoping T-bars that are soldered in
place after adjustment.

The T-bars are a little unusual in
that they are actually thicker than the
driven element. Experimental trials
and computer modeling show better
performance than with thinner bars.
The bars are made out of brass tubing.

The driven element is also made out
of brass, so the driven element can be
easily soldered together for excellent
electrical performance. It is difficult
to attach aluminum and copper
antenna parts together in a fashion

58 Sept/Oct 2002

that will withstand the normal
stresses experienced by antennas.

The parasitic elements are made out
of 1/4-inch aluminum rod. I’ve made 2-
meter antennas using 3/16-inch rod, but
the elements are rather flimsy. The
1/4-inch elements are a bit more
material-efficient with this design—
both directors can be made out of a
single 72-inch rod. With 3/16-inch rod,
the lengths become too long, requiring
two lengths of 72-inch rod. Computer
analysis programs work with the free-
space element lengths, which is a good
approximation for a non-conductive
boom. I use an insulated metal boom,
which requires slightly longer element
lengths to account for the detuning
effect of the boom. The ARRL UHF/
Microwave Experimenter’s Manual has
a chart on page 9-5 for figuring out the
boom correction. A 1.0-inch boom is
0.012 λ on 146 MHz—the element
correction is 0.0033 λ, or 0.267 inches
at 146 MHz. However, this is for
elements that are in electrical contact
with the boom—insulating the
elements reduces the correction by
50%. Thus, a mere 0.133 inches needs
to be added for either square or round
booms. This is rather negligible on 2
meters, just 0.3% of λ/2. However, this
correction becomes more significant on
higher frequencies, like the 70 and
23-cm bands.

Construction
Start by studying my July 2001 RF

column, which describes a small 70-cm
Yagi. It has many similarities. The
biggest difference is the use of 1/4-inch
rod, instead of 3/16-inch rod. This does
require the use of bigger insulators. Get
the insulators first. There are suppliers
of suitable insulators, but I’ve not
purchased any myself, preferring to
machine my own (see Fig 9) on a small
lathe.1 You may need to modify the
dimensions slightly for the insulators
you buy. Similarly, the U-bolt holes in
the boom should match the U-bolt you
buy. I like to machine my own saddles
to precisely match the masts I use. The
extra gripping surface of homebrew
saddles allows finger-tight wing nuts to
hold the Yagi firmly in place.

The U-bolt hole locations are
designed for use as a single hori-
zontally polarized Yagi or a vertically
polarized Yagi mounted on a hori-
zontal cross boom. Another alternative
for vertical polarization is to rear
1Notes appear on page 60.

Fig 6—(left) A prototype of the 2-meter
balun assembly. The exposed center
conductors are a little shorter than in the
final version.

Fig 3—The Yagi feed system before the N connector screws and T-bars are attached. This
view is from the reflector side.

Fig 4—The fully assembled Yagi feed system. AWG #14 wire connects the center pin of
the UG-58 connector to one of the T-bars.

Fig 5—Use λλλλλ/2 of semi-rigid coax for the balun.

 Sept/Oct 2002 59

Fig 7—Balun-to-boom mount: use 32 or
20-mil copper sheet.

Fig 8—The machined Teflon insulator
between the T-bars.

Fig 9—Teflon insulators between the boom
and elements. Two insulators are required
for each element: one on each side of the
boom.

Fig 10—Straps for the 1/4 to 9/32-inch T-match bars. Use 20-mil copper sheet.

Fig 11—An N-connector mounting bracket. I make two at a time, shearing the large hole
in half as the final step.

mount the Yagi—extend the boom and
install the mast mounting hardware
behind the reflector.

The first prototype used inexpensive
aluminum rod purchased from Enco.
Unfortunately, it was intended to be
machined—the actual diameter was
approximately 0.256 inches. The extra
metal is useful in machine work—
machining off the excess removes dings
and blemishes for a nice clean surface.
While the extra diameter has a
negligible effect on electrical charac-
teristics, the rod is too thick for
standard external retaining rings.
Instead of using retaining rings, I glued
the elements in place using RadioShack
silicone rubber sealant. I used inex-
pensive zinc-plated retaining rings sold
by Small Parts to hold all the 0.250-inch
diameter elements.2 Texas Towers is a
good source of 0.250-inch diameter
6061-T6 aluminum rod.3 The 6061-T6
alloy has an excellent temper for
aluminum elements.

The thicker elements should make
it easy to drill the element-mounting
holes. As the drill gets thicker, it tends
to wander less as it passes through the
boom. While it is possible to eliminate
this wandering by drilling the holes on
one side of the boom and then drilling
them on the other side, this requires a
great deal of accuracy in positioning the
holes. It is easy to have two sets of holes
that don’t quite line up if the end of the
tubing isn’t cut perpendicular.
Beginning metal-workers prefer to drill
the holes in pairs—just push the drill
through the boom to make both holes.

I find that the Vargus B30 deburring
blade works great on cleaning up the
boom holes. It removes the internal and
external burrs simultaneously.4 It is the
best tool I’ve found for removing
internal burrs in long metal tubes.

The first prototype used 20-mil
copper straps (Fig 10), while the
second used 32-mil copper straps to
hold the T-bars to the driven element.
20-mil copper is much easier to work

with, but less rugged. I don’t re-
commend thicker straps—you can
damage or even break a pair of pliers
attempting to bend thick copper. I used
a pair of pliers with thick round tips.

It is generally easier to make a
5/32-inch hole in the balun-to-boom
clamp (Fig 7) with a hand punch than
to drill a hole—copper is very stringy
and difficult to drill cleanly. If you
must drill copper, hold it in a heavy
vise or clamp it down—copper straps
will often grab a drill bit, becoming a
dangerous propeller. I’d make the
clamp after bending the connector
bracket—you may need to move the
exact location of the hole if you have
trouble bending aluminum precisely.

The surface of the balun-to-boom
clamp that touches the aluminum
bracket should be tinned with solder to
minimize corrosion. Solder is much
more anodic than copper, and thus a
better match to aluminum, which is
very anodic. A Digi-Key RP323 black

cable clamp and #6-32 hardware is used
to clamp a coil of the balun to the boom.

When bending the semi-rigid coax
for the balun, it may help to first
concentrate on getting the ends of the
coax aligned with the copper bracket.
After the coax is soldered to the bracket,
the remaining coax can be formed
neatly into place. It may be a good idea
to wear safety goggles—the coax can
form a spring that splashes solder.

AWG #14 wire is used to connect
the center pin of the UG-58 coax
connector to one of the T-bars. Which
T-bar you choose becomes important
if you intend to stack Yagis. Choosing
the other T-bar changes the phase by
180°. This allows you to flip one of the
Yagis to minimize phasing-line
lengths. Stacked Yagis perform rather
poorly if phased incorrectly.

I make my connector mounting
brackets two at a time, shearing the
big 5/8-inch hole in half as the last step
(see Fig 11). I find little advantage to

60 Sept/Oct 2002

attaching the N connectors to the
bracket with all four holes.

The prototype T match used 5.97-
inch long 9/32-inch T-bars and sliding
sections of 1/4-inch tubing. The extra
sections added 0.33 inch to each T-bar.
Brass tubing with 14-mil-thick walls is
designed to telescope together. The
sliding sections of tubing make it easier
to adjust the assembly to the proper
length. A difficulty with sliding sections
is maintaining good electrical contact—
they may work better if the tubing isn’t
quite round, so that the tubing binds.
It is easy to solder tubing together once
the optimum dimension is found. If the
tuning changes after soldering, it
indicates that the sliding section wasn’t
making good electrical contact.

I machined the insulators out of

Teflon rod with a miniature lathe
(Fig 9). UV-resistant black Delrin
could also be used, as the element
insulators are at low impedance
points. The Teflon center insulator is
across the 200-Ω balun connection. I
cut the shoulders first and then drill
the hole—the extra material makes it
easier to cut the Teflon cleanly.

I made SWR measurements with
an MFJ 259B SWR analyzer. I tried
using an Autek RF-5 analyzer, but the
SWR readings were abnormally low—
1.0 across the entire 2-meter band on
both Yagis! I suspect the detector isn’t
sensitive enough to accurately
measure low SWR. Results similar to
those of the 259B were obtained using
a Bird wattmeter and a 2-meter CW
transmitter. The antenna was

approximately 6 feet above ground.

��

Notes
1Byers chassis sells black Delrin insulators

and stainless keepers. www.flash.net/
~k3iwk/info.htm. C3i sells molded Celcon
insulators and stainless keepers; www.
c3iusa.com/.

2SMALL PARTS Inc, 13980 NW 58th Ct, PO
Box 4650, Miami Lakes, FL 33014-0650;
tel 800-220-4242, fax 1-800-423-9009;
www.smallparts.com.

3Texas Towers, A Division of Texas RF
Distributors Inc, 1108 Summit Ave Ste #4,
Plano, TX 75074; tel 800-272-3467, 972-
422-7306; www.texastowers.com.

4Enco has three types, stock numbers 380-
1524, 380-0234 and 380-1324. Enco
Manufacturing, 400 Nevada Pacific
Highway, Fernley, NV 89408; tel 800-873-
3626; www.use-enco.com.

http://www.flash.net/~k3iwk/info.htm
http://www.flash.net/~k3iwk/info.htm
http://www.c3iusa.com/
http://www.c3iusa.com/
http://www.smallparts.com
http://www.texastowers.com
http://www.use-enco.com

 Sept/Oct 2002 61

Letters to the
Editor

HF Receiver Dynamic Range:
How Much do We Need? (May/
Jun 2002)

Dear Sir,
Peter E. Chadwick, G3RZP, re-

ported on his findings about the dy-
namic range a receiver should have for
adequate performance in the 7-MHz
band. In 1995, I did some measure-
ments to answer the same question
and published the results later.1 The
approach used was different from
Chadwick’s methods. It consisted in
measuring the power the antenna de-
livered after passage through a 6 to
8-MHz filter. Such filters were com-
mon at that time for good Amateur
Radio receiver front-ends.

This is a worst-case approach be-
cause it assumes that there are always
two frequencies of sufficient strength
in the spectrum to cause interference
to the received frequency of interest.
Measurements were taken from an in-
verted V-dipole in a suburban environ-
ment continually for 30 days using an
A/D converter and a computer. Data
were averaged and converted to a dia-
gram showing the variation in power
level during a whole day. Maximum
power peaked at –15 dBm for the av-
erage at 18:00 UTC. Taking into ac-
count the one-hour time difference
between the UK and Germany, this is
in accordance with Chadwick’s data.

Of course, there were also days with
signal levels up to –10 dBm. I wasn’t
able to measure the noise floor
continually, but I took several mea-
surements that were between –105
and –115 dBm using a CW (400 Hz)
bandwidth. Maybe these were a few
decibels too low. Nevertheless, these
data are pointing to a required dy-
namic range of 90-100 dB. Because of
rapidly varying band conditions in the
evening, it’s good to have some deci-
bels of headroom available. I would
therefore recommend a dynamic range
of 100 dB for receivers with broad in-
put filters.

In addition to the broadband mea-
surements, I also made measurements
with a relatively narrow bandwidth.
In the early ’90s, I was active in build-
ing QRP equipment for portable op-
eration with low power consumption.
Low power consumption and a re-

ceiver front-end having 100 dB of dy-
namic range are in sharp contrast. So,
I asked myself if it were possible to
reduce the needed dynamic range by
a not-too-sophisticated filter. In the
’70s and ’80s, high-Q, two-resonator
filters for 7 MHz were advocated here
in Germany to reduce receiver IMD.2
Using this information, I constructed
a bottom-coupled Cohn filter with a
70-kHz bandwidth and 12-dB inser-
tion loss centered at 7.020 MHz
(European CW subband). I then con-
nected it to a wattmeter and A/D con-
verter. This narrow filter and the
broad 6 to 8-MHz filter mentioned
above were driven in parallel by a
power splitter and the whole setup
calibrated with a signal generator. As
a 30-day measurement and a short
control with a spectrum analyzer
showed, the narrow filter isn’t able to
eliminate the power coming from the
nearby BC-band. However, it eases the
load to the receiver front end by more
than 20 dB. Using such a filter, a dy-
namic range of 85 dB is sufficient for
operation in the European CW
subband.

As a whole, I came to the same con-
clusions as Chadwick, and it would be
interesting to know if other hams in
other locations have similar experi-
ences.—Werner Hallenbach, DK8PD,
Lichtenbergerstrasse 68, 40789
Monheim, Germany; whallenbach@
compuserve.com
2A. Heinrich, “Bessere 40m-Vorselektion am

Beispiel von TS-930S und TS-140S,” cq-
DL 1993, p 540 and literature cited therein.
[“Better 40-m pre-selection by example of
the TS-930S and TS-140S”—Ed.]

pacitance for 180° rotation, or full scale.
This assumes, of course that the

relationship is linear. The estimated
∆C for 180° rotation is 1.5 pF. That’s
considerably less than can be ex-
plained by replacement of dielectric by
metallic conductor as I suggested in
my article. The floating-rotor capaci-
tor continues to work well as a fine-
tuning or band-spread capacitor in
parallel with the main tuning capaci-
tor, but I don’t want readers to think
that it produces a greater change in
capacitance than it does. It may be
possible to construct a capacitor of this
type with more than one rotor and
smaller clearances resulting in a
greater change in capacitance, but I
must say that I don’t fully understand
how the device works. It does work
well in my application as described
in QEX, however.—Bill Young,
WD5HOH, 343 Forrest Lake Dr,
Seabrook, TX 77586; blyoung@
hal-pc.org

On Quarter-Wave Transformers
I happened to see the letter from

Lincoln Kraeuter concerning the quar-
ter-wave transformer in the Jul/Aug
2002 QEX. If you’re interested in fur-
ther exploring the wave mechanics of
this device, John Kraus has a very
good explanation in his book Electro-
magnetics (pp 515-517). His explana-
tion is based on partial reflections and
partial transmissions of the voltage
and current waves at the discon-
tinuities of the transformer. Details
are left out, unfortunately. I saw this
several years ago and, to convince
myself of Kraus’s method, laboriously
worked out the values of the various
current and wave components. Think-
ing that this would be of interest to
other hams, I wrote an article that
another ham posted at his Web site.
You can view the PDF at home.attbi.
com/~kb7qhc/. The button at the
lower left-hand corner of that page
opens the PDF.—Bill Klocko, N3WK,
701 Hillcrest Dr, Annapolis, MD
21401-4642; n3wk@arrl.net

The Dirodyne: A New Radio
Architecture? (Jul/Aug 2002)

I enjoyed reading the article on the
Dirodyne and the Tayloe detector. One
thing bothered me from the start of
the article. The two-bit counter is not
a single-bit transition counter. Then
as I read, I found out that noise was a
problem with birdies. If the counter
did not transition one bit at a time, I
would expect that the spikes that oc-
curred during the transitions would
cause noise.

What do I mean by single-bit tran-
sitions? With a normal counter, the

1W. Hallenbach, “Belastung von 40-m-Band-
Empfängern durch BC-Stationen,” cq-DL
1997, p 870. [“The burden on 40-m-band
receivers from BC stations”—Ed.]

A Homebrew Regenerative
Superheterodyne Receiver
(May/Jun 2002)

I would like to make available to you
and the readers of QEX some additional
information concerning the “floating-
rotor capacitor” which was part of my
article in the May/Jun 2002 issue of
QEX. I have thought of a way to esti-
mate the total change in capacitance of
the floating-rotor tuning capacitor from
out to in. I turned on the receiver nor-
mally and tuned in the 10-MHz WWV
to zero beat with the receiver’s IF oscil-
lating. I then tuned off zero-beat to an
approximately 1-kHz beat note. I mea-
sured (approximately) through what
angle the floating rotor was turned to
reach 1 kHz from zero beat at about
2 MHz IF. The angle was about 7°. I pre-
viously calculated the tuning induc-
tance of that stage, so I was then able
to calculate total capacitance at both
zero-beat and at 1 kHz from zero beat.
I then scaled the ∆C or change in capaci-
tance for 7° rotation to a value of ca-

mailto:whallenbach@compuserve.com
mailto:whallenbach@compuserve.com
mailt:blyoung@hal-pc.org
mailt:blyoung@hal-pc.org
http://home.attbi.com/~kb7qhc/
http://home.attbi.com/~kb7qhc/
mailto:n3wk@arrl.net

62 Sept/Oct 2002

binary output of the counter would be
00, 01, 10, 11, 00 ... (0, 1, 2, 3). Transi-
tions between 00 and 01 or 10 and 11
would be a single-bit change. But tran-
sitions between 01 and 10 or 11 and
00 would be two-bit changes. Thus, the
transitions could be 01, 11 10 or 11,
10, 00 or 11, 01, 00. As can be seen,
the bit transitions could cause invalid
states to be enabled (11 or 10 or 01)
thus turning on the CMOS switches
that you do not want at certain bit
transitions. A single bit-transition
counter would count 00, 01, 11, 10, 00;
or 0, 1, 3, 2, 0; and only one bit changes
at a time. A counter can be made from
asynchronous logic that will be very
fast (only two gate delays) and that
will do single-bit transitions. The in-
put would be the clock (local oscilla-
tor) and the output would be both the
two-bit counter output (Q0 and Q1 for
S0 and S1) and the four decoded out-
puts: CTL1, CTL2, CTL3, CTL4. See
my Fig 1.—Alvin P. Schmitt, KE4GVG,
PO Box 10336, Blacksburg, VA, 24062-
0336; schmitta@blacksburg.net

Fig 1—A schematic and support logic for a two-bit counter with single-bit transitions.

o

o

o

o

2700114

1801143

901032

00021
01 QQClkState

01

01

01

01

01

01

01

01

QQ

QQ

QQ

QQ

RRQQ

RSQQ

SSQQ

SRQQ

→

→

→

→

SETS

RESET

⇒

⇒

=
=

R

JS

KR

10101

10101

00101

00101

0

0

1

1

QQQQQS

QQQQQR

QQQQQS

QQQQQR

Q

Q

Q

Q

=+=

=+=

=+=

=+=

ments. In fact, they have me won-
dering!

I showed his idea regarding the two
transitions to my work colleague (chief
engineer) and he feels as do I that
since all the transitions are synchro-
nous from the 74AC161, that there are
no spurious, asynchronous signals
generated. Nevertheless, we could be
wrong and I am happy to try a Gray-
code counter to feed the Tayloe detec-
tor and simply reroute the audio paths.
Of course, all of this takes time and I
am currently working on a two-path
system that is much quieter. It may
be noteworthy that there are no dual
transitions with this, which uses a
standard quadrature generator using
a Johnson counter straight out of The
ARRL Handbook. As I mentioned in
the article, there’s plenty of work for
whoever wants to take it on.—Rod
Green, VK6KRG, 106 Rosebery St,
Bedford, Western Australia 6052;
rodagreen@bigpond.com

caught my attention. I recently [had a]
discussion of similar ideas with Wes
Hayward, W7ZOI. You don’t reference
Wes’ correspondence (“More Thoughts
on Receiver Performance Specification,”
QST, Nov 1979, pp 48-49) but it shares
the concerns about MDS and associated
bandwidth, solving the problem with
“Receiver Factor.” This is the receiver
input IP3 (in dBm) minus the noise
figure.

Unfortunately, there are errors in
the noise discussion, making Eqs 5
and 6 wrong. The concept of “noise over
relatively short time frames” just
doesn’t give the right answers. Band-
width-limited noise has an auto-cor-
relation function. Once enough time
goes by for this function to essentially
go to zero (a few inverse bandwidths),
you are drawing a new random
sample. The probability of its taking
on any particular value is described
by the probability density function
(PDF). For the receiver voltages un-
der consideration, there are no bounds
on this. Likewise, the statement, “It is
also equally likely to be small as
large,” is only valid if the PDF is uni-
form, which is quite far from the usual

Dear Doug,
I have no problem with Alvin’s com-

Improved Dynamic-Range
Testing (Jul/Aug 2002)

In addition to all the good SDR ma-
terial, your dynamic-range article

mailto:schmitta@blacksburg.net
mailto:rodagreen@bigpond.com

 Sept/Oct 2002 63

situation for receiver voltages.
“In a receiver circuit, a noise volt-

age...” could have various meanings.
Assuming it is the audio (or IF) out-
put from a SSB receiver, the noise
would have a Gaussian PDF. Since you
are looking at this with an ac voltme-
ter consisting of a diode detector and
a filter capacitor, this output signal is
the one of interest. Your reference to
absolute value agrees with this idea.
The signal is approximated by its “en-
velope” and the PDF is Rayleigh (W.
B. Davenport and W. L. Root, An In-
troduction to the Theory of Random
Signals and Noise, McGraw-Hill,
1958, Section 8-5). The envelope PDF
is very poorly approximated by a uni-
form distribution. Thus Eqs 5 and 6
don’t work out.

The answers for Eqs 3 and 4 are
correct for the case of a signal consist-
ing of the absolute value of another
[kind of] signal having zero-mean uni-
form PDF. I think this was the inten-
tion! However, the formulation of the
problems is wrong and the interme-
diate math has errors.

The formulation in the first line of
Eq 3 is for the case of a uniform dis-
tribution, but not the absolute value.
The third line of Eq 3 has an error in
sign, so the average should come out
zero, not A/2 as shown. The answer is
correct for the absolute value with a
signal having a zero-mean uniform
PDF. Eq 4 is formulated for the zero-
mean uniform PDF and the answer is
correct, as well as for the absolute
value (they are the same). There is an
error in the second line. [It] should
have only one term.

Your point of using a true RMS volt-
meter for measuring signal plus noise
is excellent. However, at 10-dB of SNR
if one does not make a correction for
the noise, the estimate of signal is still
too high by 10 log(1.1) ≈ 0.4 dB, which
may or may not be acceptable. More
importantly, if one measures the noise
power with no signal present, the
noise power can be subtracted from
the measured S + N. Incidentally, if
one wants to try to use the envelope-
like voltmeter, the PDF of Gaussian
noise plus a sine wave is the Ricean
distribution (S. O. Rice, “Statistical
Properties of a Sine-wave Plus Ran-
dom Noise,” Bell Systems Technical
Journal, Jan 1948, also in Davenport
and Root, above).

Doug, I hope this is useful and helps
lead to good measurements for folks.—
Bob Larkin, W7PUA, 2982 NW
Acacia Pl, Corvallis, OR 97330;
boblark@proaxis.com

Dear Bob,
You are right that the amplitude

distribution of broadband thermal
noise is not uniform but Gaussian.
That means the simplifying assump-
tion I made about noise amplitudes’
being just as likely small as large is
not strictly correct but only an
approximation to measurements
made on so-called peak-reading
meters. Let me have a crack at it
explaining it better.

The normalized amplitude distri-
bution of thermal noise is:













 −

= 2

2

2

1
)(

x

exP
π

(Eq 1)

This is the familiar probability
density function (PDF) known as the
“bell” curve, shown in Fig 2. I write
normalized here because x is norm-
alized with respect to a standard
deviation of σ = 1 and because the
mean, µ, is assumed to be zero. The
probability that noise magnitudes lie
in the range 0-A is found by inte-
grating P(x) over that range and
doubling the result.

Most peak-reading audio volt-
meters are more properly called quasi-
peak-reading, because the charge and
discharge times of the detector are
chosen to match the ear’s response to
impulsive peaks. Standards for VU
meters developed by NAB, DIN and
IEC all use quasi-peak-reading
techniques. Those meters don’t
produce readings that match the
equation.

What happens when reading noise
voltages from such a meter is that a
certain averaging process takes place;
but because of the detector and meter
characteristics, it is a nonlinear
process. The net effect is to make the
noise look almost uniform. It can be
shown that the part of the time
broadband noise magnitude exceeds
its own RMS (σ) value is only about
31.8% and that it exceeds √3σ less
than 10% of the time.

McClaning and Vito (Radio
Receiver Design, Noble, 2000, p 460)
indicate that the RMS-to-average
ratio of broadband noise is 1.96 dB.
My figure of 1.25 dB represents the

Fig 2—The bell curve, or Gaussian
probability-density function.

3

3

3

1

1

RMS

2

0

3

0
2

MS

A
E

A

e

A

dee
A

E

A

A

=

=












=

= ∫

difference produced by the meter.
The ARRL lab uses an RMS

voltmeter for its measurements and I
should make clear that they are not
victims of the voltmeter problem that
I tried to explain. I used an old
Ballantine voltmeter and a Helper
Instruments Sinadder for my
measurements. When meters are
bopping around, it is sometimes hard
to average measurements; however,
the Ballantine consistently indicated
an 8-dB SNR when the Sinadder
showed 10 dB. The 2-dB difference is
evidently caused by the characteristics
of the Ballantine. Other meters may
produce different results. Nonetheless,
a spectrum analyzer can pick discrete
IMD products out of noise when
nothing else can, providing a method
for avoiding the vagaries of noise.

Finally, I acknowledge the inter-
mediate errors in Eqs 3 and 4. They
should read:

2

0
2

1

2

1

1

2

0

2

0AVG

A

A

A

e

A

dee
A

E

A

A

=












−=












=

= ∫

and

(Eq 4)

(Eq 3)

73, Doug Smith, KF6DX; kf6dx@
arrl.org

In Search of Amateur Innovation
If you experiment with radio as a

ham, please read this through to the
end and try to help me out. My name
is Greg Lapin, N9GL, and I am a mem-
ber of the FCC Technological Advisory
Council. The TAC was formed by the
Office of Engineering and Technology
at the FCC to help keep the Commis-
sion informed about communication
trends. It is made up of an erudite set
of people, mostly from the communi-

mailto:boblark@proaxis.com
mailto:kf6dx@arrl.org
mailto:kf6dx@arrl.org

64 Sept/Oct 2002

cations industry. I’ve included a list of
TAC members and their titles at the
end of this letter.

I’ve been a ham since 1970. I credit
our hobby with putting me on the path
to a PhD degree in electrical engineer-
ing and for much of the work that I do
as a consultant. I have found that
people in industry have had good ex-
periences working with hams and gen-
erally trust engineers from our hobby
to provide innovative engineering ser-
vices.

Unfortunately, that view is not al-
ways held at the higher levels in com-
panies. I see a trend at places like FCC
TAC meetings where suggestions are
made that the spectrum that is as-
signed to Amateur Radio would be
better allocated in other ways. As one
corporate CTO put it to me regarding
complaints from amateurs that their
weak-signal work was being inter-
fered with by Part-15, 2.4-GHz wire-
less networking, “The public good is
better served by allowing millions of
people to connect to the Internet from
anywhere rather than by a few ama-
teurs playing around.”

Fortunately, the FCC has not
bought this argument so far. However,
the pressure on them is intense. The
ARRL is already making admirable
attempts at convincing Congress and
the FCC that Amateur Radio is a valu-
able commodity, but most of their ar-
guments seem to be based on the use
of Amateur Radio to provide necessary
communications in emergencies.

The word amateur often serves as
an impediment to having what is done
on the ham bands taken seriously.
When I looked in a dictionary for the
word amateur, there were two conflict-
ing definitions that explain attitudes
about our service:

“amateur: 1) one who pursues an
activity or is devoted to a study purely
for intrinsic reward rather and mon-
etary gain; 2) one who is unskilled in
a given area or activity.”
Many people in the communica-

tions industry seem to identify our
avocation with the second definition.
I work as a consultant in the commu-
nications industry and in my experi-
ence working with professionals, the
members of our avocation who can be
described with the first definition are
usually more capable than many of the
people who develop communications
techniques for a living. Often, the best
professionals in the companies that I
have worked for hold Amateur Radio
licenses.

There is another very important
aspect to Amateur Radio that does not
get the press it deserves. Experimen-
tation with new communication tech-
niques by amateurs over the course of
the history of radio has provided the
basis of much of what we consider to
be modern communications. When I
started to compile a list to report at a
TAC meeting, there were very few de-
tails that anyone could give me. In the
broadest terms, these were the devel-
opments in communications in which
hams had an integral part: experimen-
tation with ionospheric propagation in
the early days of radio, early develop-
ment of the use of frequencies above
HF, early development of mobile radio
equipment, initial experimentation
with SSB, various antenna designs, the
first non-military communications sat-
ellite, low-Earth-orbit satellites, expe-
rience with linked repeater networks
that affected the design of cellular tele-
phone networks, packet radio as the
first wireless digital networks, early
experimentation with digital signal
processing and exploration of new
modes of VHF propagation.

You may notice that much of the
innovation by amateurs in that list is
decades old. The question asked by
many in the communications indus-
try is, “What has Amateur Radio done
for us lately?”

Thus, the point of my appeal, I don’t
believe that the Amateur Radio commu-
nity has been effective at letting the rest
of the technical world know the answer
to that question. We all suspect that a
lot of experimentation is taking place
on the ham bands, but we don’t hear of
it often enough. I’d like to change that.
Let me know about what you are work-
ing on. How is existence of the Amateur
Radio Service helping to make your in-
vestigations possible? I’d like to report
on your work; even it if never amounts
to anything. If you try something that
fails, it is still important because it adds
to our knowledge of what is and isn’t
feasible. The big company that gets rec-
ognition for developing new communi-
cations techniques may have been able
to do so only because of the experience
that was gained by radio amateurs.
Let’s tell the world about our part in it!

I’d like to compile your experiences
in experimentation on the amateur
bands for two reasons: to report them
to bodies such as the FCC TAC and to
report them to the amateur commu-
nity. Please get in touch with me by e-
mail at g.lapin@ieee.org with your
stories and experiences.—Gregory D.

��

Are you getting what you expect
from your guyed antenna installation?
In the next issue, Dick Weber, K5IU,
explores the interactions between his
antennas and his guy wires. Dick uses
modeling software to predict behavior
and compares his predictions with ac-
tual measurements—how neat! The
exercise reveals certain pitfalls and
sets limits on the length and proxim-
ity of conductive guy sections.

Next Issue in
QEX/Communications

Quarterly

��

Lapin, PhD, PE, N9GL; g.lapin@ieee.
org; Chairman, ARRL RF Safety Com-
mittee; www.arrl.org/rfsafety; Mem-
ber, FCC Technological Advisory Coun-
cil, www.fcc.gov/oet/tac

mailto:g.lapin@ieee.org
mailto:g.lapin@ieee.org
mailto:g.lapin@ieee.org
http://www.arrl.org/rfsafety
http://www.fcc.gov/oet/tac

 Sept/Oct 2002 65

66 Sept/Oct 2002

	Introduction to the 2002 ARRL Periodicals CD
	Using this CD-ROM
	Full-Text Searching
	Additional Files
	QST Product Review Expanded Lab Reports
	QST Files
	QEX Files

	ARRL on the Web
	ARRL Products
	Product Support

	NCJ
	January/February 2002 NCJ
	Features
	Columns
	Contests
	Advertising Index

	March/April 2002 NCJ
	Features
	Columns
	Contests
	Advertising Index

	May/June 2002 NCJ
	Features
	Columns
	Advertising Index

	July/August 2002 NCJ
	Features
	Columns
	Contests
	Advertising Index

	September/October 2002 NCJ
	Features
	Columns
	Advertising Index

	November/December 2002 NCJ
	Features
	Columns
	Scores
	Advertising Index

	QEX
	January/February 2002 QEX
	Features
	Columns
	Advertising Index

	March/April 2002 QEX
	Features
	Columns
	Advertising Index

	May/June 2002 QEX
	Features
	Columns
	Advertising Index

	July/August 2002 QEX
	Features
	Columns
	Advertising Index

	September/October 2002 QEX
	Features
	Columns
	Advertising Index

	November/December 2002 QEX
	Features
	Columns
	Advertising Index

	2002 Index

	QST
	January 2002 QST
	Technical
	News and Features
	QST Workbench
	Operating
	Departments

	February 2002 QST
	Technical
	News and Features
	QST Workbench
	Operating
	Departments

	March 2002 QST
	Technical
	News and Features
	QST Workbench
	Operating
	Departments

	April 2002 QST
	Technical
	News and Features
	QST Workbench
	Operating
	Departments

	May 2002 QST
	Technical
	News and Features
	QST Workbench
	Operating
	Departments

	June 2002 QST
	Technical
	News and Features
	QST Workbench
	Operating
	Departments

	July 2002 QST
	Technical
	News and Features
	QST Workbench
	Operating
	Departments

	August 2002 QST
	Technical
	News and Features
	QST Workbench
	Operating
	Departments

	September 2002 QST
	Technical
	News and Features
	QST Workbench
	Operating
	Departments

	October 2002 QST
	Technical
	News and Features
	QST Workbench
	Operating
	Departments

	November 2002 QST
	Technical
	News and Features
	QST Workbench
	Operating
	Departments

	December 2002 QST
	Technical
	News and Features
	QST Workbench
	Operating
	Departments

