
ARRL 225 Main Street
Newington, CT USA 06111-1494

The national association for
AMATEUR RADIO

TM

$5

QEX July August 2014 Cover.indd 1QEX July August 2014 Cover.indd 1 05/27/2014 10:13:57 AM05/27/2014 10:13:57 AM

The TS-590S

Nothing But Performance

Kenwood has essentially redefined HF performance with the TS-590S compact HF transceiver. The TS-590S RX

section sports IMD (intermodulation distortion) characteristics that are on par with those "top of the line"

transceivers, not to mention having the best dynamic range in its class when handling unwanted, adjacent

off-frequency signals.*

• HF-50MHz 100W • Advanced DSP from the IF stage forward
• Digital IF Filters • 500Hz and 2.7KHz roofing filters included
• Built-in Antenna Tuner • Heavy duty TX section

* For 1.8/3.5/7/14/21 MHz Amateur bands, when receiving in CW/FSK/SSB modes, down conversion is automatically selected if the final passband is 2.7KHz or less.

Customer Support: (310) 639-4200
Fax: (310) 537-8235

ADS#36812

Scan with your phone to
download TS-590S brochure.

• 2 Color LCD

TS-590Ad_Layout 1 8/7/12 9:26 PM Page 1

 QEX – July/August 2014 1

About the Cover

In order to ensure prompt delivery, we ask that
you periodically check the address information on
your mailing label. If you find any inaccura-
cies, please contact the Circulation Department
immediately. Thank you for your assistance.

Copyright © 2014 by the American
Radio Relay League Inc. For permission
to quote or reprint material from QEX
or any ARRL publication, send a written
request including the issue date (or
book title), article, page numbers and a
description of where you intend to use
the reprinted material. Send the request
to the office of the Publications Manager
(permission@arrl.org).

Features

A Fully Automated Sweep Generator
Measurement System — Take 3
Dr. Sam Green, WØPCE
 		
  	

 In This Issue

July/August 2014

QEX (ISSN: 0886-8093) is published bimonthly
in January, March, May, July, September, and
November by the American Radio Relay League,
225 Main Street, Newington, CT 06111-1494.
Periodicals postage paid at Hartford, CT and at
additional mailing offices.

POSTMASTER: Send address changes to:
QEX, 225 Main St, Newington, CT 06111-1494
Issue No 285

Harold Kramer, WJ1B
Publisher

Larry Wolfgang, WR1B
Editor

Lori Weinberg, KB1EIB
Assistant Editor

Zack Lau, W1VT
Ray Mack, W5IFS
Contributing Editors

Production Department

Steve Ford, WB8IMY
Publications Manager

Michelle Bloom, WB1ENT
Production Supervisor

Sue Fagan, KB1OKW
Graphic Design Supervisor

David Pingree, N1NAS
Senior Technical Illustrator

Brian Washing
Technical Illustrator

Advertising Information Contact:

Janet L. Rocco, W1JLR
Business Services
860-594-0203 – Direct
800-243-7768 – ARRL
860-594-4285 – Fax

Circulation Department

Cathy Stepina, QEX Circulation

Offices

225 Main St, Newington, CT 06111-1494 USA
Telephone: 860-594-0200
Fax: 860-594-0259 (24 hour direct line)
e-mail: qex@arrl.org

Subscription rate for 6 issues:

In the US: ARRL Member $24,
nonmember $36;

US by First Class Mail:
ARRL member $37, nonmember $49;

International and Canada by Airmail: ARRL member
$31, nonmember $43;

Members are asked to include their membership
control number or a label from their QST when
applying.

Index of Advertisers
ARRL:...Cover III
Array Solutions:... 48
Down East Microwave Inc:........................... 22
Kenwood Communications:.................Cover II
M2:.. 15

		

  7

 3

Nemal Electronics International, Inc:............22
Quicksilver Radio Products............... Cover IV
RF Parts:... 25, 27
Tucson Amateur Packet Radio: 40

An RF Filter Evaluation Tool
Gary Richardson, AA7VM

		 47 Upcoming Conferences

		 16 Android Wireless Project Control: Part 2 —
Example Application
Thomas M. Alldread, VA7TA	

A Linear Scale Milliohm Meter; Another Look
Don Dorward, VA3DDN
 		
  	

23

Gary Richardson, AA7VM, designed “An RF Filter
Evaluation Tool” that will find plenty of use on your test
bench if you build or adjust RF filters. A microprocessor
controller board sends command signals to a signal
generator, which feeds the test signal through the
filter and to the input of an RF detector board. The
microprocessor board then reads the RF power
measurements from the detector and sends them to a
computer.

Hardware Building Blocks for High
Performance Software Defined Radios
Scotty Cowling, WA2DFI
 		

28
Digital Signal Processing and GNU Radio Companion
John Petrich, W7FU and Tom McDermott, N5EG
 		
  	

41

New Book Announcement: Radio Receiver Technology
 		 27

The American Radio Relay League,
Inc, is a noncommercial association
of radio amateurs, organized for the
promotion of interest in Amateur Radio
communication and experimentation,
for the establishment of networks to
provide communications in the event of
disasters or other emergencies, for the advancement
of the radio art and of the public welfare, for the
representation of the radio amateur in legislative
matters, and for the maintenance of fraternalism and
a high standard of conduct.

ARRL is an incorporated association without
capital stock chartered under the laws of the state
of Connecticut, and is an exempt organization
under Section 501(c)(3) of the Internal Revenue
Code of 1986. Its affairs are governed by a Board
of Directors, whose voting members are elected
every three years by the general membership. The
officers are elected or appointed by the Directors.
The League is noncommercial, and no one who
could gain financially from the shaping of its
affairs is eligible for membership on its Board.

“Of, by, and for the radio amateur,” ARRL
numbers within its ranks the vast majority of active
amateurs in the nation and has a proud history of
achievement as the standard-bearer in amateur
affairs.

A bona fide interest in Amateur Radio is the only
essential qualification of membership; an Amateur
Radio license is not a prerequisite, although full
voting membership is granted only to licensed
amateurs in the US.

Membership inquiries and general corres-
pondence should be addressed to the
administrative headquarters:

ARRL
225 Main Street
Newington, CT 06111 USA
Telephone: 860-594-0200
FAX: 860-594-0259 (24-hour direct line)

Officers

President: KAY C. CRAIGIE, N3KN
570 Brush Mountain Rd, Blacksburg, VA 24060

Chief Executive Officer: DAVID SUMNER, K1ZZ

The purpose of QEX is to:

1) provide a medium for the exchange of ideas and
information among Amateur Radio experimenters,

2) document advanced technical work in the Amateur
Radio field, and

3) support efforts to advance the state of the
Amateur Radio art.

All correspondence concerning QEX should be
addressed to the American Radio Relay League,
225 Main Street, Newington, CT 06111 USA.
Envelopes containing manuscripts and letters for
publication in QEX should be marked Editor, QEX.

Both theoretical and practical technical articles are
welcomed. Manuscripts should be submitted in word-
processor format, if possible. We can redraw any
figures as long as their content is clear.
Photos should be glossy, color or black-and-white
prints of at least the size they are to appear in
QEX or high-resolution digital images (300 dots per
inch or higher at the printed size). Further
information for authors can be found on the Web at
www.arrl.org/qex/ or by e-mail to qex@arrl.org.

Any opinions expressed in QEX are those of
the authors, not necessarily those of the Editor or the
League. While we strive to ensure all material
is technically correct, authors are expected to
defend their own assertions. Products mentioned
are included for your information only; no
endorsement is implied. Readers are cautioned to
verify the availability of products before sending
money to vendors.

The American Radio
Relay League

Larry Wolfgang, WR1B

Empirical Outlook

2 QEX – July/August 2014

Sharing Ideas
I have occasionally used this space to encourage readers to document their projects and

share their ideas by writing for QEX. After all, the subtitle of our magazine is A Forum For
Communications Experimenters, and Forum implies shared information. You may think that this
is a plea for you to submit an article for publication. It is certainly true that we need a lot of good
article submissions to fill the pages of QEX. So yes, it is.

There are other reasons to write about your projects than just publishing them in QEX,
though. You are going to need some notes or documentation for later reference. I can almost
guarantee that some time later you will have to troubleshoot the device, or you may even want
to modify it to make use of a new IC or circuit idea. Sure some brief notes in a notebook or com-
puter file may help you remember the details, but how much easier would it be if you could read
the description you wrote for publication? With the extra care you will have to put into document-
ing the project for others, you will have a more complete record of your work.

There are other Amateur Radio operators who are also trying to do the same thing you have
been working on, or something very similar. At first, everyone has to “discover” all about the
project for themselves. That can be fun, and even provide it’s own reward, but sometimes it is
nice to know what others have been doing, rather than having to reinvent the wheel. There are
also some experimenters who aren’t engineers, and may not be able to invent the wheel, but
who would really enjoy building a wheel similar to yours, and learning how it works. With your
help, they will discover some of the same thrills you have experienced.

Here is one example that I would like to share. It’s a project I have recently become interested
in, and have begun to “play” with. We know that there are groups of hams who have taken off-
the-shelf wireless routers and installed new firmware to create Amateur Radio networks. These
have been called high speed multi-media (HSMM) mesh networks, although the more recent
term seems to be broadband-hamnet. A number of these reprogrammed routers can be
deployed to create a network in a remote area or during an emergency communications event.
There have been a few QST articles about the use of such networks by ARES groups or for
other applications. Some clubs have used these mesh networks to link their logging computers
at Field Day, for example. There is quite a bit of information on various websites, and the one
that I have found that seems to have the most information is www.broadband-hamnet.org.

By searching through the documentation on this website I have been able to find the list of
routers that will work with the new firmware. Then I found a pair of LinkSysWRT54G routers that
met the criteria at a tag sale, for $3 each. More searching brought me to a set of instructions for
flashing the new firmware into these routers. Great! Now what? Slowly I am digging through the
information to learn how I might link computers, create an access point to my little broadband-
hamnet network and eventually be able to use it in some way. At this point I have one router
connected via LAN cable to my Raspberry Pi, and the other one connected via LAN cable to my
iMac. How can I connect to my network with my iPhone or my wife’s Windows laptop via a WiFi
link? There must be a way, I think. More searching.

My point is that there is a lot of information, but it is not necessarily the clearest documentation
for someone who knows nothing about creating and using these networks. The Technical
Editorial Staff at ARRL Headquarters has discussed our desire to have an article or series of
articles for QST and/or QEX about these routers and networks. At first we had the mistaken
impression that the routers that could be flashed with this new firmware were obsolete models
that would only be available from a junkbox or lucky find at a tag sale. Publishing an article about
something that requires you to find some obsolete hardware is not generally the best idea. We
have since learned that there is at least one model (the LinkSys WRT54GL) that is a currently
available model. We have also learned that the movers and shakers in this project have been
working on creating firmware for some other current production routers.

So there is a need for an article that gives the basic details of what to look for in a router,
including sources for new hardware, a description of how to flash the new firmware into the
router and how to configure the mesh node. There is a need for a description of how to connect
to the network with either a wired LAN connection or a WiFi connection, and how to then pass
data around the network to and from the various computers on the network. An article or series
of articles about these networks would serve to document the details in a publication for those
new to the topic. The more people who become involved in building these nodes and adding
them to the overall network, the more we can do with this technology.

I haven’t even touched on the possibilities of adding high-gain external antennas and even
power amplifiers to the routers. There are many possibilities when we continue experimenting
with the networks as Amateur Radio operators.

This is just one example. There are lots of other projects that hams are experimenting with.
Help share the wealth!

 QEX – July/August 2014 3

Gary Richardson, AA7VM

PO Box 228, Marblemount, WA 98267; aa7vm@arrl.net

An RF Filter Evaluation Tool
Here is a microprocessor controlled system to measure filter frequency response.

1Notes appear on page 6.

Unless you have a spectrum analyzer,
determining the response of an RF filter is
rather tedious — adjust the signal generator,
measure the output, record the value and
repeat until sufficient data has been collected.
Then you must convert the values to decibels
and make a plot, or enter the data in your
computer and use a program to generate the
plot. Not long ago I was occupied with this
drill, and it seemed to me that there ought
to be a way to automate the process. A little
looking around turned up a lot of information
on the subject of RF signal measurement.1, 2,

3, 4 After several false starts I came up with
a design based on the AD8307 that seemed
promising.

A block diagram of my measurement
system is shown in Figure 1. It consists of
a computer having at least one serial port,
a signal generator that can be controlled
by commands sent to its serial port, the
filter to be evaluated (DUT), a couple of
attenuators and a bit of hardware to tie
everything together: a detector module and
a control module. The main component of
the detector module is an AD8307, which
generates a DC voltage proportional to the

QX1405-Richardson01

Log Power
Measurement

Control μP Computer
Device
Under
Test

Signal
Generator

–6 dB –6 dB

Serial Data
Commands And
Measurements

Serial Frequency Data

Figure 1 — This is a block diagram of the filter measurement system.

Figure 2 — The photo shows the two modules of the measurement system mounted
inside a small metal enclosure. The detector board is also mounted inside a separate

enclosure. For this photo, the top cover of that enclosure has been removed.

power of the input RF signal. The control
module has two functions accomplished by
a microprocessor: relaying command strings
from the computer to the signal generator
and acquiring and sending the power
measurements to the computer.5

Figure 2 is a photograph of the two
modules mounted in a small enclosure.
Following the advice of Hayward and
Larkin, I mounted the detector board in a
smaller enclosure made of 24-gauge copper
sheet (the top cover has been removed for

4 QEX – July/August 2014

viewing in this photo). A separate enclosure
for the detector board might not be necessary
if the larger enclosure is RF tight.

Electronics
Figure 4 is the schematic of the detector

board and is a variation of the circuit
described in note 2. All of the components
are mounted on the top side of a small piece
of 1/32 inch double-sided circuit board. The
initial version used surface-mount parts for

the input network but the high-frequency
response, above 100 MHz, was lower than
that shown in Figure 2 of the Hayward/
Larkin article and I thought small through-
hole components might be an improvement.
There was no significant change, however.
With a 5 V VCC, the output of the AD8307
ranges from about 200 mV to about 2.5 V.
An op-amp with a gain of gain 1.25 increases
the maximum output voltage to slightly less
than the maximum ADC input of 3.3 V. I had

originally planned to operate the AD8307 at
3.3 V but I found that the dynamic range was
considerably reduced.

The microprocessor series I’m most
familiar with is the TI MSP430, inexpensive,
low power devices that have a very nice
instruction set and excellent open-source
development and debugging tools. I chose an
MSP430F1232 for this project because it is
the smallest processor in this series with an
ADC (10 bits).

QX1405-Richardson03

R2
100 kΩ

2
1A

U2

FST3125

5
2A

9
3A

12
4A

1
OE1

4
OE2

10
OE3

13
OE4

3
1B

6
2B

8
3B

11
4B

1
C1+

U1

ADM3202

3
C1–

4
C2+

5
C2–

11 T1IN
12 R1OUT
10 T2IN
9 R2OUT

2
V+

6
V‒

14
T1OUT

13
R1IN

7
T2OUT

8
R2IN

C1
0.1 μF

C4
0.1 μF

C3
0.1 μF

3.3 V

C2
0.1 μF

Tx

Rx

PC

Tx

Rx

SIGGEN

TXOUT

RXIN

OEPC

OESIG

U3

MSP430F1232

JTAG

13

11

9

7

5

3

1

14

12

10

8

6

4

2

12
P3.1/SIMO0

21
P1.0/TACLK/ADC10CLK

22
P1.1/TA0

23
P1.2/TA1

28
P1.7/TA2/TDO/TDI

27
P1.6/TA1/TDI/TCLK

26
P1.5/TA0/TMS

25
P1.4/SMCLK/TCK

TDO

TDI

TMS

TCK

3.3 V

TEST

RESET

5
XOUT

6
XIN

X1
32768 Hz

24

TEST

7

P3.0/STE0/A5

1

P1.3/TA2

11

NMI/RST

C6
0.1 μF

C5
0.1 μF

3.3 V

3.3 V

2
VCC

16
P3.5/URXD0

15
P3.4/UTXD0

P3.2/SOMI0

8
P2.0/ACLK/A0

9
P2.1/INCLK/A1

10
P2.2/TA0/A2

17
P3.6/A6

18
P3.7/A7

19
P2.3/TA1/A3/VREF–

20
P2.4/TA2/A4/VREF+

3
P2.5/ROSC

14

13
P3.3/UCLK0

JP1
5 V

ADCIN4
VSS

P2.5

13.8 V

C7
0.1 μF

2

1

5 VU5
78L05

3

2

1
OUTIN

GND C8
0.1 μF

C9
10 μF

U4
TPS77033

1

2

5
OUTIN

GND

3 4
NC/FBEN

3.3 V

C10
0.1 μF

C11
10 μF

R1
100 kΩ

3.3 V

14
VCC

3.3 V

16
VCC

15
GND

7
GND

Figure 3 — Here is the schematic diagram of the microprocessor board.

 QEX – July/August 2014 5

QX1405-Richardson04

RF In

5 V

R4
52.3 Ω

R3
430 Ω

C13
15 pF

L1
C15

0.1 μF
8

1
INP

INM

4
OUT

6
E

N
B

5
IN

T

VDD

U6

AD8307

C21
0.1 μF

OUT

C16
0.1 μF

R5
7.5 kΩ

5 V

C19
0.1 μF

3

4

5

2

1

R6
30 kΩ

C17
0.1 μF

U7

TLV271

C22
0.1 μF

C20
0.1 μF

R7
7.5 Ω

VDD

2
COM

7
V

P
S

3
OFS

C18
1 μF

QX1405-Richardson05

R
es

po
ns

e
(d

B
)

Response Versus Frequency

Frequency (MHz)

1000.0

–32.0

0.1

–29.0

–31.5

–31.0

–30.5

–30.0

–29.5

1.0 10.0 100.0

Figure 4 — This schematic diagram shows the circuit of the detector board.

Figure 5 — This graph is the plotted frequency response of the unit. You can see that with
only a few tenths of a dB variation, the response is flat from 100 kHz through 100 MHz.

Figure 3 is a schematic of the processor
board. I had initially planned to include an
FT245R USB/Serial IC on this board to
provide a USB channel to the computer. I
created a nice looking schematic but progress
in routing the traces on the board quickly
ground to a halt. With only two layers it
was impossible (for me at least) to route the
connections between the FT245R and the
microprocessor. It might have been possible
to connect the two devices with wires, but it
would have been a mess. So I adopted a serial
approach.

The ADM3202 is a dual RS-232 line
driver/receiver device. The SN74CBT3125
is a quad FET switch that connects one of
two serial channels to the microprocessor.
This board supplies the power for both
boards, hence the two voltage regulators. The
total current consumption is about 23 mA.

Performance
Figure 5 is a plot of the frequency

response of the unit for a –30 dBm input; it
varies a few tenths of a dB between 100 kHz
and 100 MHz, but then falls off rapidly,
whereas the response of the Hayward/Larkin
unit is reasonably flat out to 600 MHz. I
used a BNC connector for the RF input
and RG-58 coax to connect to the signal
generator. I assume the bandwidth of my
unit would have been greater had I used an
N-type connector and high quality coax.

The top portion of Figure 6 is a plot
of detector output in ADC counts versus
input power for a 10 MHz input signal. A
regression (least squares fit) line is drawn
through the data points from –70 dBm to

+15 dBm. The slope of this line is the scale
factor of the measurements in terms of ADC
counts per dBm. Y0 is the value on the
regression line for 0 dBm. The lower part
of the graph shows the difference between
the data points and the corresponding values
on the regression line, and provides an
indication of the linearity of the AD8307.

Software
The software for the MSP430F1232 was

written in C using the mspgcc development
tools.6 The computer software was written in
Python and consists primarily of two modules,

one dealing with the communication with
the microprocessor and the signal generator
and the other with various higher level
functions, primarily plotting.7 The code that
generates the plot of Figure 6 also serves
to calibrate the system; the gain and Y0
values are saved in a file and are used by the
plotting functions. An example of the use of
the plotting function is shown in the code
of Figure 7. This code was used to generate
the plot of Figure 5. The arguments to the
plot function are obvious except perhaps for
“yOffset.” If this argument is set equal to
the total pad attenuation (typically 12 dB)
minus the signal generator power level,

6 QEX – July/August 2014

Figure 7 Computer Code Listing

from PMSA.process import PMSA_PROCESS
dirname = ‘C:\Documents and Settings\Owner\My Documents\Python\PMSA’
pmsa = PMSA_PROCESS(dirname)
freqs = [0.1*k for k in range(1, 10)]
freqs += [k for k in range(1, 10)]
freqs += [10*k for k in range(1, 10)]
freqs += [100*k for k in range(1, 5)]
freqs = array(freqs)	 # Frequencies have units MHz
siggen = -30	 # signal generator power level - dBm
yH = siggen + 1	 # Max Y axis limit in dB
yL = siggen - 2	 # Min Y axis limit
yOffset = 0	 # no Y-a xis offset
title = ‘Response vs Frequency’
mode = 0	 # semilog plot
pmsa.plotFreqResponse(freqs, siggen, yOffset, yL, yH, title, mode)

Figure 6 — The top portion of this graph shows the analog to digital converter counts
versus the input power from the signal generator, which is set to 10 MHz. The lower

portion of the graph shows the deviation from or the conformance of the measurements
to a least squares fit of the data. You can see that the AD8307 log detector is linear from

about –75 dBm through +10 or +15 dBm.

the peak plot values will be near zero. The
function “plotFrequencyResponse” has
an additional argument not shown Figure
7, findBandwidth, which when set to true
will cause a horizontal line to be drawn at
the –3 dB level and the bandwidth of the
response curve to be computed and displayed
on the plot. This requires that the yOffset
argument be set to –12 dB (assuming 6 dB
attenuators used).

The files for this project are available for
download from the ARRL QEX files website
at www.arrl.org/qexfiles. Look for the file
7x14_Richardson.zip.8 The files include the

QX1405-Richardson06

C
on

fo
rm

an
ce

 T
o

R
eg

re
ss

io
n

Li
ne

 (d
B

)

Response Versus Signal Generator Output

dBm

20

–1.0

–100

1000

1.0

–80 –60 –40 –20 0

–0.5

0.0

0.5

200

400

600

800

A
D

C
 C

ou
nt

s

Slope: 9.788 Counts/dBm
in range –70 to 15 dBm
Y0: 793.27
Frequency: 10.0 MHz

software (Python and microprocessor code)
and the Eagle schematic and circuit board
layout files.9

Gary Richardson, AA7VM was first licensed
as KN5WHO in 1957. Interest in amateur radio
waned in subsequent years due to pressure
of school and work. Gary earned an MSEE
degree from Michigan State University in
1967 and spent much of his career designing
software for embedded microprocessors in
medical systems. He was licensed as AA7VM
in 1999. You can reach Gary at PO Box 228,
Marblemount, WA 98267 or aa7vm@arrl.net.

Notes
1Wes Hayward, W7ZOI and Bob Larkin,

W7PUA, “Simple RF-Power Measurement,”
June 2001 QST, pp 38-43.

2Wes Hayward, W7ZOI, Rick Campbell, KK7B,
and Bob Larkin, W7PUA, Experimental
Methods in RF Design, Section 7.3. ISBN:
978-087259-923-9; ARRL Publication Order
No. 9239, $49.95. ARRL publications are
available from your local ARRL dealer or
from the ARRL Bookstore. Telephone toll
free in the US: 888-277-5289, or call 860-
594-0355, fax 860-594-0303; www.arrl.org/
shop; pubsales@arrl.org.

3Loftur Jonasson, TF3LJ/VE2LJX, “Squeeze
Every Last Drop Out of the AD8307 Log
Amp,” May/June 2013 QEX, pp 29-33.

4For more information about the AD8307
logarithmic amplifier see the Analog Devices
website: www.analog.com/en/
rfif-components/detectors/ad8307/
products/product.html

5If your computer has two serial ports one
could be used to talk to the signal generator,
eliminating one of the tasks the micropro-
cessor would need to perform, and would
simplify the hardware somewhat.

6For information about the mspgcc devel-
opment tools see: http://sourceforge.
net/apps/mediawiki/mspgcc/index.
php?title=MSPGCC_Wiki

7You can find more information about Python
at: www.python.org/. The plots were gener-
ated with the matplotlib package: www.
matplotlib.org/

8The files for this article, including the software
(Python and microprocessor code) and the
Eagle schematic and circuit board layout
files are available for download from the
ARRL QEX files website at: www.arrl.org/
qexfiles. Look for the file 7x14_Richardson.
zip.

9The schematic shown in Figure 4 is not
exactly the same as the schematic used
to generate the board because the input
network components (C13, L1, R3, R4, C15)
are through-hole components and are not
mounted on the board, neither is the coax
connector.

 QEX – July/August 2014 7

Dr Sam Green, WØPCE

10951 Pem Rd, Saint Louis, MO 63146; w0pce@arrl.net

A Fully Automated Sweep
Generator Measurement

System — Take 3

This update describes enhancements achieved by substituting a daughtercard with
a programmable Si570 crystal oscillator for the NJQRP DDS daughtercard and
requisite changes to the addressing circuitry, drivers, and logarithmic detector.

1Notes appear on page 15.

The first two takes of my fully automated
sweep measurement system were based
on the American QRP Club/New Jersey
QRP Club Direct Digital Synthesis (DDS)
Daughtercards.1, 2 The earlier version of the
NJQRP card uses the 0 – 30 MHz Analog
Devices AD9850 DDS and the current
version uses the 0 – 60 MHz AD9851.
Both synthesize 10 bit approximations of a
sine wave with digital to analog converters
to provide readily filtered sinusoidal
waveforms.

This update substitutes the KangaUS/
AAØZZ Si570 daughtercard to perform
measurements at still higher frequencies.
Both the NJQRP daughtercard and the
KangaUS daughtercard have similar
dimensions and pinout, as both mate and
operate with the PIC-EL.3, 4 Usage in my
system requires modifications to the base
circuit board and to the daughtercard.

Differences between the Analog Devices
DDS and the Silicon Labs Si570 are many.
One major difference is that the Si570
provides logic level outputs rather than
synthesized sinusoidal waves. Another
major difference is that we control the Si570
through an inter-integrated circuit (I2C)
interface rather than the serial (or parallel)
load interface of the AD985x.5

Figure 1 shows that there are twenty
different standard versions of the Si570 in
the data sheet, and Silicon Labs is happy to
sell you additional custom versions.6 The
standard twenty offer four different logic
families, three power supply ranges, and a
choice of a high or low signal on an output
enable pin. Within these twenty, there are
three options for temperature stability and
four possible frequency ranges. Whew! The
Si571 variant also offers voltage variable
fine tuning.

The KangaUS Si570 daughtercard is
the same one that Craig Johnson, AAØZZ,
shows in his QEX article of July/August
2011.7 The particular Si570 version that
KangaUS provides is the lowest cost 3.3 V
CMOS “C” version with Output Enable
high and the lowest frequency range of
10 – 160 MHz. I bought one of these from
KangaUS to perform development, plus a
bare board to mount the fastest Si570 “A”
version of the IC, which I obtained from
my friend Herb Ullmann, AF4JF. The “A”
version operates from 10 - 1417.5 MHz with
two gaps in the operating range, so I can
sweep it from 10 – 945 MHz, from 970 –
1134 MHz, and from 1213 – 1417.5 MHz.
The much less expensive “B” version
operates from 10 – 810 MHz, and is a “best
buy” unless you really need the highest
frequency regions.

Versions with the best temperature
stability of 7 parts per million use a different
set of programming registers than the less

stable versions, so avoid them unless you are
prepared to recompile the software.

Note that the Si570 only operates down
to a minimum of 10 MHz, so you still
need the NJQRP DDS to operate at lower
frequencies.

I changed the circuitry and the
printed circuit card to accommodate the
requirements of the I2C interface but kept
both compatible with the NJQRP AD9850
and AD9851 daughtercards.

The I2C hardware interface and software
come from Maxim, but I modified the
interface to accommodate the non-
inverting open collector 74LS07 rather
than the inverting 74LS05 that Maxim
uses, and I modified the software to access
different pins on the parallel port in order
to maintain compatibility with the NJQRP
daughtercards.8, 9

Again, this simple software doesn’t work
with newer versions of Windows unless
you use a third party application to enable
program control of the I/O hardware. I use
UserPort and some folks recommend an
alternative (Direct I/O) that I haven’t tried.10, 11

High frequency pickup problems that I
solved in the previous article returned with a
vengeance. I discuss problems and solutions
later in this article.

Circuit Revisions and Corrections

Take 2 of the project used six inverters
to buffer the three lines from the parallel

8 QEX – July/August 2014

Figure 1 — Standard versions of Silicon Labs Si570.

 QEX – July/August 2014 9

port to the DDS daughtercard with power
from the daughtercard so that an AD9851
won’t receive any power when the DDS is
off. The AD9851 does not power-on-reset
when parallel port lines supply even limited
power. Pin 4 of the DDS daughtercard
provides 5 V dc to power these buffers so
that all DDS power disappears with power
off. The KangaUS Si570 daughtercard does
not use pin 4, so I added a jumper from pin 4
to the +5 V dc regulator to power the address
buffers. Figure 2 shows the daughtercard
modifications. Omit C8 and convey the
output directly via coaxial cable to decrease
EMI.

The I2C interface requires more than
three gates, and they require open collectors
and pull-up resistors. Maxim designed their
I2C interface and software around the open-
collector inverting 74LS05. In order to use
the six or fewer gates available in a single
DIP package and work with both the DDS
and the Si570, I could no longer waste two
inverters to form a non-inverting buffer for
each of three DDS lines.

Given these restrictions, I changed the
Maxim software to use the non-inverting
open-collector 74LS07. To maintain the
ability to drive the DDS with the same
interface, I further changed the Maxim
software to drive different parallel port pins.
No, none of this worked the first time, nor
the second!

Figure 3 shows the revised schematic.
Note the changes to the lines between the
DB-25M connector and the daughtercard
socket. Especially note the addition of
the reverse signal path from pin 2 of the
daughtercard socket through a non-inverting
gate and back to pin 12 of the DB-25M
connector. This pin is bit 5 of the status port
at base address plus 1, and serves as an input
for the I2C receiver.

Si570 Output Configurations

The Si570 is available with LVPECL,
CMOS, LVDS, and CML outputs. The
lowest-cost version of the Si570 has a
single-ended CMOS output that provides
several volt output signals rather than the
complementary fractional volt output signals
that the others provide.

The CMOS version provides sufficient
output swing to overload the combination
of logarithmic detector and analog-to-digital
converter. I use a 6 dB 50 W BNC attenuator
on the output to handle the excess power.
I suggest adding a surface mount 6 dB
attenuator chip to the daughtercard with
the CMOS version. Several are available
inexpensively from Digi-Key including the
PAT05S6CT-ND and the PAT126CT-ND.
Mini-Circuits offers the LAT-6+, but their
minimum order quantity is 20, and I found

Table 1
Parts List

Capacitors
C1	 22 pF
C2, C3	 1 mF or 100 µF for low frequency operation
C4	 1 mF
C5	 0.001 mF
C6, C7	 0.100 mF

Resistors
R1, R2, R3, R15	 4.7 kW
R4	 10 kW
R5	 20 kW
R6, R7	 40 kW
R8, R10, R11	 3.9 kW
R9	 1 MW
R12	 51 W
R13 	 22 kW
R14 	 100 kW

Voltage Reference Diodes
D1	 LT1004-2.5 in TO-92
D2, D3	 LT1004-1.25 in TO-92

Active Components
74LS07 or 7407 or 74C07
MX7543 DAC
MAX110 ADC
LM324 Quad Operational Amplifier
AD8307 and/or ADL5513 logarithmic detectors

NJQRP DDS or AA0ZZ KangaUS Si570 daughtercard

ADL5513 Components in Figure 3 are all surface mount except L2 uses a six-hole ferrite
core in Figure 4 and ferrite beads in Figure 8.

Standard ham tolerance of half to double is acceptable for all components except R12,
which should be near 50 W, and R4, R5, R6, and R7, which are not critical in value but
should be very close to a ratio of 1:2:4:4.

Figure 2 — AAØZZ KangaUS Si570 daughtercard – Note the jumper to bring +5 V to pin 4, and
the omission of C8.

10 QEX – July/August 2014

QX1407-Green03

S
tb

2
LD

2

S
R

I
S

tb
3

X
S

tb
4

LD
1

D
G

nd

S
TB

1
C

LR

A
gn

d
V D

D

O
ut

2
V R

E
F

O
ut

1
R

FB

M
X

75
43

S
er

ia
l D

/A

B
us

y
C

S

S
C

LK
D

ou
t

X
cl

k
D

in

R
C

se
l

G
nd

V
dd

V
ss

R
ef

+
In

2–

R
ef

–
In

2+

In
1+

In
1–

M
A

X
11

0
S

er
ia

l A
/D

O
U

T
N

C

O
FS

E
N

B

C
O

M
V

P
S

IN
M

IN
P

A
D

83
07

Lo
g

D
et

ec
to

r

74
LS

07
he

x
op

en
-c

ol
le

ct
or

no
n-

in
ve

rti
ng

 b
uf

fe
r

1 13
2514

D
B

-2
5M

O
sc

ill
os

co
pe

Tr
ig

ge
r

N
JQ

R
P

 D
D

S
 o

r
A

A
0Z

Z
S

i5
70

D
au

gh
te

rc
ar

d
S

oc
ke

t

8
V

R
4

C
1 –5

 V
5

V

LM
32

4
qu

ad
 o

p
am

p

R
3

R
2

R
1

R
15

5
V

 fr
om

 D
D

S
 re

gu
la

to
r

A
/D

In
pu

t 1

5
V

–5
 V

R
9

R
10

D
2

D
3

R
11

A
/D

 In
pu

t 2
fro

m
 L

og
 D

et
ec

to
r

R
14

C
7

C
4C

5

R
12

Lo
g

D
et

ec
to

r
O

ut
pu

t

C
6

5
V

Lo
g

D
et

ec
to

r
In

pu
t

C
2

C
3

S
er

ia
l d

at
a

Tr
an

sf
er

C
lo

ck

5
V

R
8

R
6

D
1

R
13

D
/A

O
ut

R
5

R
7

Fi
gu

re
 3

 —
 P

ic
to

ri
al

 s
ch

em
at

ic
 w

ith
 A

D
83

07
 lo

ga
ri

th
m

ic
 d

et
ec

to
r

fo
r

so
ur

ce
s

be
lo

w
 5

00
 M

H
z

sh
ow

s
no

n-
in

ve
rt

in
g

op
en

-c
ol

le
ct

or
 b

uf
fe

rs
 to

 d
au

gh
te

rc
ar

d.

 QEX – July/August 2014 11

QX1407-Green04

1 Vpos

2 Inhi

3 Inlo

4 Vpos

ADL5513

17

16

12Vout

11Vset

10Gnd

9Tadj

G
nd

15

G
nd

14

C
lp

f

13

G
nd

5

G
nd

6

G
nd

7

G
nd

8

G
nd

gndPad

100 nF

L1

L2

100 nF

5 V

W1
Log

Detector
Input

51 Ω
47 μF

47 μF

W2
Log
Detector
Output

22 kΩ

1 nF

10 nF

4.7 μF 100 nF

Figure 4 — ADL5513 logarithmic detector schematic diagram.

QX1407-Green05

Top
View

Pin 1
Indicator

3.00
BSC SQ

2.75
BSC SQ

Exposed
Pad

13

For proper connection of
the exposed pad, refer to
the pin configuration and
function descriptions
section of this data sheet.

16

8 5
9

12

4

1

0.45

0.50
BSC

1.50 REF

0.25 MIN

*1.65
1.50 SQ

1.35

0.60 MAX

0.50
0.40
0.30

Bottom View

12° MAX

0.90
0.85
0.80

0.80 MAX
0.65 TYP

0.20 REF

0.05 MAX
0.02 NOM

0.30
0.23
0.18

Seating
Plane

Pin 1
Indicator

Figure 5 — Lead frame chip scale package [LFCSP_VQ] (3 mm × 3 mm).

12 QEX – July/August 2014

them very uncooperative with requests for
information in the past.

My Si570 has complementary LVDS
outputs that expect a 100 W differential load.
Instead, I placed a 50 W resistor between
one output and some RG174/U coaxial
cable to the front panel connector. I placed a
100 W resistor between the complementary
output and ground. The reverse termination
minimizes reflections from poorly matched
loads.

Frequency Range Issues

Silicon Labs specifies the CMOS part
from 10 to 160 MHz. The one I evaluated
works fine to 170 MHz. The AD8307
logarithmic detector in the previous articles
works to 500 MHz and need not be changed
for the low-frequency CMOS version. The
AD8307 is not suitable for use with any of
the high frequency versions of the Si570.
I experimented with the 2.5 GHz AD8313
and the 4 GHz ADL5513 logarithmic
detectors and chose the latter because it has
a wider dynamic range. Figure 4 shows the
schematic for the ADL5513.

Figure 5, from the ADL5513 data sheet
shows that the chip is very difficult to work
with because the 16-Lead Lead Frame Chip
Scale Package [LFCSP_VQ] has contact
pads underneath instead of leads.

I laid out a printed circuit board to
accommodate both the ADL5513 and the
AD8307, because I wasn’t sure I could make
the chip scale part work. Figure 6 shows
an early photo of the new board before
I learned to align the chip scale package
properly. Figure 7 shows the detail of poorly
and properly aligned chips. Both actually
worked.

Attachment of such parts requires solder
paste and a hot air rework station for
assembly and the many repairs. I purchased
my own after borrowing one several times
from my friend Lee Johnson, NØVI.

Figure 8 shows significant pickup from
the CMOS Si570, but this would be greatly
reduced with a surface mount 6 dB pad on
the daughtercard and coaxial cable to the
front panel instead of using pin 6 for the RF
output path as with the DDS daughtercards.
Remove or do not initially install C8 on the
Si570 daughtercard so that RF does not reach
pin 6.

Pickup from the LVDS Si570 to the
AD8307 is low because the level is lower
than with the CMOS Si570, because all RF
from the daughtercard passes through the
coaxial cable.

Early attempts at coupling high frequency
output signals from the LVDS Si570 led to
a lot of pickup between the Si570 and the
ADL5513 logarithmic detector on the board.
Shielding and common mode filtering did

Figure 6 — Photo of the new board with both AD8307 and ADL5513 logarithmic detector
chip. High Frequency Si570 versions use ADL5513. CMOS versions use original AD8307.

Both are populated in this photo, but only the ADL5513 receives power and an input.

Figure 7 — Misaligned and aligned ADL5513 chips prove difficult to solder.

Figure 8 — CMOS and LVDS Si570s drive a 500 MHz AD8307 logarithmic detector.

QX1407-Green08

O
ut

pu
t (

dB
m

)

CMOS And LVDS Si570s With AD8307 Logarithmic Detector

1000

–90

10 100

20

–80

–70

–60

–50

–40

–30

–20

–10

0

10

Frequency (MHz)

CMOS via pin 6 with 6 dB pad
LVDS via coax with reverse termination
CMOS Leakage
LVDS Leakage

 QEX – July/August 2014 13

not help. I removed the ADL5513 portion
of the circuit from the board and mounted it
within a Pomona Model 3754 shielded case,
the smallest I could find.12 The completely
shielded configuration in Figures 9A and 9B
solves all pickup problems.

Alternatively, the output configuration
with coaxial cable directly to the daughtercard
may adequately reduce the pickup, but I
already removed the ADL5513 logarithmic
detectors from all available boards and
can no longer evaluate this configuration.
Figure 10 shows that I bring one LVDS
output to the front panel via coaxial cable,
with a reverse termination and terminate the
complementary LVDS output for balance.

A disappointing feature of the Si570 also
pointed out by AAØZZ is that the output
ceases between large frequency changes.
In my drivers, all frequency changes are
large, so there is a 240 ms dropout preceding
each measurement. This doesn’t matter for
the swept measurement programs where
the frequency steps to the next value and
an analog-to-digital converter measures the
output of the logarithmic detector for some
period. It does matter in the continuously
swept programs for oscilloscope display.
In these, a glitch appears at each start and
stop because I couple the output through
a capacitor to remove the dc offset of the
output. For this reason, I select a small value
of 300 – 1000 pF for the capacitor into the
coaxial cable in this figure. The resulting
narrow pulses are now barely noticeable.

Note that I like to use copper tape with

Figure 9 — Part A shows the logarithmic detectors removed from the main board and
the ADL5513 placed in the Pomona Box with the cover on. Part B shows the ADL5513

logarithmic detector in the Pomona Box, without the cover.

(A)

(B)

conductive adhesive for good grounding
when I work with other materials.

New DDS Software Drivers for
previous versions

With multiple instances of this equipment
operating with two versions of the NJQRP
DDS daughtercard and now two versions
of Si570 and slightly different values of
calibration parameters, configuration control
became a problem. Each unit was slightly
different, even if it was just the offsets or the
values of the reference diodes for the digital
to analog and analog to digital converters.
Each driver for each version had these
constants embedded, and I recompiled each
driver for every version. This was getting old.

I revised all of the earlier drivers to accept
external calibration files, so that a simple text
file with appropriate calibration parameters
accompanies a particular piece of hardware.
Each program now reads this calibration file
on startup and uses the appropriate values in
its operation, so the same program now runs
similar kinds of hardware and accounts for
inherent and minor differences.

The DDS calibration file format is:
DACVref DACoffset ADCVrefPos

ADCVrefNeg ADCoffset LogDetSlope
LogDetIntercept RefClock Base

A corresponding DDS-60 calibration file
looks like this:

2.484 0.0017 1.232 1.232 +0.0005 0.025
–86.0 180000000 0x378

With this system in place, I no longer
modify and recompile the drivers to

accommodate calibration differences.
Further, I use the reference clock to

discriminate between the NJQRP DDS-30
and the NJQRP DDS-60. If the reference
clock is around 100 MHz, the programs
run an AD9550 direct digital synthesis
chip, and if the reference clock is around
180 MHz, the programs run an AD9551
direct digital synthesis chip. Small changes
to these numbers further allow correction to
the operating frequency, if you have a better
frequency measurement setup than I do.
Finally, if the reference clock is 10 MHz, the
DDS programs complain that the Si570 is
present instead of a DDS and tells me to use
a different program.

With this structure in place, I then wrote
self-calibration software. I calibrate the ADC
from a reference source that I measure with
my best digital multimeter, a Fluke 77. The
program derives the three ADC parameters
and writes them to the calibration files.
Another program then calibrates the DAC
against the ADC and writes its calibration
parameters to the calibration file. With these
two functions calibrated and in agreement,

14 QEX – July/August 2014

the Transfer.exe measurement becomes
precise to within a millivolt.

I measure the response of the logarithmic
detector and use a spreadsheet to derive
the slope and intercept so that RF power
measurements become fairly accurate, at
least at the frequency I measure. I enter
the slope and intercept into the calibration
file manually with a text editor. I no longer
adjust two trim-pots in a sometimes vain
attempt to make all logarithmic detectors
behave the same. Instead I just measure their
performance without adjustments and enter
the parameters into the calibration file.

I similarly enter the reference clock
frequency and the parallel port base address
into the calibration file manually.

While implementing the modifications to
accommodate the calibration files, I found
several errors in the repetitive scanning DDS
drivers that no one has yet complained about.
These are fixed, so you can upgrade from
the programs that originally accompanied
the two previous papers. I also added a little
functionality to the repetitively swept DDS
programs to increase or decrease delay
between scans with two more keys on the
numeric keypad.

Si570 Software Drivers

I revised all previous programs and then
adapted them to run the Si570 daughtercard
in the same manner as they ran the NJQRP
DDS daughtercards, except that I added

Figure 10 — Coaxial cable connects directly to the Si570 daughtercard.

Figure 11 — Here is the Take 2 circuit board with the updated open-collector interface.

an upper frequency limit called FreqLimit
to the Si570 calibration file, because each
of the many Si570 versions has a different
upper frequency capability. Annoying
things happen when a program sweeps the
Si570 much above its upper frequency limit,
ultimately requiring a power-on reset.

No Kits Available

I have not produced any kits for this
project at the time of this writing. I use
ExpressPCB, which is not a low cost solution
to producing a large number of boards.13

A kit that would use the 160 MHz CMOS
Si570 may leave the ADL5513 circuitry
unpopulated but still requires installation of
several larger size surface mount chips for
the AD8307 logarithmic detector circuitry.
Larger chips are easier to install one at a time
than smaller chips. I have not tried to install
several at one time in some kind of oven.

A kit that would use the high frequency
Si570 variants requires the ADL5513 Lead
Frame Chip Scale Package [LFCSP_VQ].
That chip requires special tooling, so the
whole logarithmic detector portion of the
board would have to be pre-assembled.

Conclusion

T h e A AØ Z Z K a n g a U S S i 5 7 0
daughtercard signal source greatly expands
the spectral range over which my swept
measurements system is useful. I am so
grateful that QEX brought this product to
my attention that I finally subscribed to this
fine journal. I thank friends Herb Ullmann,
AF4JF, and Lee Johnson, NØVI, for their
contributions. I thank Analog Devices,
Linear Technology, and Maxim for the
sample devices they provided.

Remember that you still need the NJQRP
DDS daughtercard to operate below 10 MHz.
Yes, I considered putting both an AD985X
DDS and an Si590 programable oscillator in
the same instrument but haven’t yet tried to
make that work.

I think about converting to a USB
interface all the time. USB does not allow
the rapid bit twiddling that I require, so I
would have to add local intelligence just as
Dr. Thomas Baier, DG8SAQ, did in his QEX
article.14

And finally, yes, I was able to modify
the circuit of “Take 2” to accommodate the
new open-collector gate circuitry so that it
successfully hosts the Si570 daughtercard.
Figure 11 shows the result.

Software Download

All programs are available for download
from the ARRL QEX files website.15
Description of the software operation
accompany the previous “Take 2” article.
The new versions use calibration files, and

 QEX – July/August 2014 15

there are programs to enable semiautomatic
calibration. The GNU Public License
Statement is included in each program. That
statement says:

This program is free software: you can
redistribute it and/or modify it under the
terms of the GNU General Public License as
published by the Free Software Foundation,
either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope
that it will be useful, but without any
warranty; without even the implied warranty
of merchantability or fitness for a particular
purpose. See the GNU General Public
License for more details.16

Dr Sam Green, WØPCE, is a retired
aerospace engineer. Sam lives in Saint Louis,
Missouri. He holds degrees in Electronic
Engineering from Northwestern University
and the University of Illinois at Urbana. Sam
specialized in free space and fiber optical data
communications and photonics. Sam became
KN9KEQ and K9KEQ in 1957, while a high
school freshman in Skokie, Illinois, where he
was a Skokie Six Meter Indian. Sam held a
Technician class license for 36 years before
finally upgrading to Amateur Extra Class in

1993. He is a member of ARRL, a member of
the Boeing Employees Amateur Radio Society
(BEARS), a member of the Saint Louis QRP
Society, and breakfasts with the Saint Louis
Area Microwave Society. Sam is a Registered
Professional Engineer in Missouri and a life
senior member of IEEE. Sam has authored 17
patents, and has one more patent application
pending.

Notes
1Dr Sam Green, WØPCE, “Fully Automated

DDS Sweep Generator Measurement
System,” QEX, Nov/Dec 2008, pp 13-32.

2Dr Sam Green, WØPCE, “Fully Automated
DDS Sweep Generator Measurement
System – Take 2,” QEX, Sept/Oct 2012, pp
14-24.

3Order the Kangaus Picel-iii kit at: www.
kangaus.com/content/picel-iii

4Details about the American QRP Club
PIC-EL 160 project board are available at:

www.amqrp.org/elmer160/board/index.
html.

5See en.wikipedia.org/wiki/I2C.
6Download the Silicon Labs (Silabs)

Si750 data sheet at: www.silabs.com/
Support%20Documents/TechnicalDocs/
si570.pdf

7Craig Johnson, AAØZZ, “Programmable PLL

(Si570) Local Oscillator for HF Receivers,
Transmitters and Transceivers,” QEX, Jul/
Aug 2011, pp 3-16.

8For a good discussion of how to use the
Maxim I2C interface with a computer parallel
port, go to: www.maximintegrated.com/
app-notes/index.mvp/id/3230

9For a description of the C source code
for the Maxim I2C interface, go to: http://
pdfserv.maximintegrated.com/en/an/
AN3315.pdf

10For information about the UserPort interface,
used to control I/O hardware in Windows,
see: http://hem.passagen.se/tomasf/
UserPort/

11http://pdfserv.maximintegrated.com/en/
an/AN3317.pdf

12I used a Pomona Model 3754 shielded case
to shield the ADL5513 logarithmic detector
IC from the rest of the circuit. See www.
pomonaelectronics.com/pdf/d3754_1_01.
pdf

13For small quantities of circuit boards, I use
Express PCB. See their website for details:
www.expresspcb.com

14Dr Thomas C. Baier, DG8SAQ, “A Low-Cost,
Flexible USB Interface,” QEX, Jan/Feb
2008, pp 11-15.

15All of the files associated with this article are
available for download from the ARRL QEX
files website. Go to www.arrl.org/qexfiles
and look for the file 7x14_Green.zip.

16You can read the full text of the GNU Public
License at: www.gnu.org/licenses/

4402 N. Selland Ave.
Fresno, CA 93722

Phone (559) 432-8873
http://www.m2inc.com

sales@m2inc.com

M2 offers a complete line of top quality amateur, commercial and military grade antennas, positioners
and accessories. We produce the finest off-the-shelf and custom radio frequency products available.

For high frequency, VHF, UHF and microwave, we are your source for high performance RF needs. M2

also offers a diverse range of heavy duty, high accuracy antenna positioning systems.

For communications across town, around the world or beyond, M2 has World Class Products and
Engineering Services to suit your application.

M2 products are proudly
‘Made in the USA’

M2 makes more than just high quality off-the-shelf
products. We also build custom antenna systems
using innovative designs to meet our customers’
demanding specifications.

From simple amateur radio installations to complete
government and commercial projects, we have
solutions for nearly every budget.

Directional HF and small satellite tracking stations
are our specialties.

Contact us today to find out how we can build a
complete antenna system to meet your needs!

Our high-performing products cover high frequency,
VHF, UHF and microwave.
Ask us about our custom dish feeds.

16 QEX – July/August 2014

Thomas M. Alldread, VA7TA

7056 Railway Ave, Courtenay, BC V9J 1N4, Canada; VA7TA@telus.net

Android Wireless Project Control
Part 2 — Example Application:

NimbleSig III RF Sweep Generator
Wireless Tablet Controller

This installment describes the Android tablet controller application,
focusing on the graphical use interface (GUI) features.

1Notes appear on page 22.

Part 2 of this series will provide an
overview description of the NimbleSig
sweep generator tablet controller application,
which forms the basis for the series. This
application has proven to be a rewarding
project for the author’s first attempt at
Android software development. It was
chosen mainly because the benefits describe
in Part 1 of the article are particularly
appealing for this type of application. The
thought of the ability to easily document
and share swept frequency test results was
particularly appealing. As the NimbleSig
III module was developed previously, I had
freedom to focus my attention on breaching
the new frontiers of Bluetooth and Android.1
A controller application complex enough
to use many of the features offered by the
Android operating system was desired and
this application fulfilled that wish. I think it
should be an interesting reference project for
those who wish to make something similar.

The Main NimbleSig GUI Control
Panel

Figure 1 is a screen capture of the main
GUI control panel. It permits the setting
of the two RF carrier frequencies, phase
and level along with the modulation type,
modulation index, modulation frequency

for each of the two RF outputs from my
NimbleSig generator. It also provides power
meter calibration control, an RF power
measurement display and a button for
invoking the sweep generator function.

NimbleSig Controller Application
Components

Figure 2 is a block diagram of the various

source files that comprise this controller app.
The upper half of Figure 2 shows the various
Java source code files used to define the
12 activities used by the app. Although the
large number of source code files may seem
like a lot of complexity that would involve
a lot of time to write, many of the activities
associated with the buttons are very similar.
Thus, once the first activity was defined and

Figure 1 — Main NimbleSig controller graphic user interface.

 QEX – July/August 2014 17

Figure 2 — NimbleSig sweep generator android application block diagram.

Figure 3 — Bluetooth connect dialogue.

18 QEX – July/August 2014

tested, many of the same logic statements
were used to form JAVA statements for the
other buttons. In many cases only the variable
names needed to be changed to adapt the
same code for reuse. Thus the time required
to write code for the activities needed to
support additional buttons was significantly
reduced compared to the initial endeavors
where all the logic needed to be thought out
and tested.

The NimbleSigSweepGenMain.java file,
as the name implies, defines the main activity
for the app. It supports the main GUI screen
shown in Figure 1. The buttons within this
GUI launch sub activities, which carry out
the various control functions such as setting
levels and frequencies. The SweepGen
button launches the SweepControl sub
activity, which in turn launches sub activities
for setting up the sweep parameters and
graphically displaying the swept frequency
response results.

The NS3_App.java application file
provides a central storage container for
application status variables that need to be
shared by multiple activities.

The AndroidManifest.xml file, which
is external to the program code execution
flow, is shown at the bottom center. All
the app components and services must be
registered within the manifest file. Additional
app specifications, such as the previously
mentioned styles, are also declared in the
manifest file.2

The app resource files are shown in the
lower half of Figure 2. The XML files in
the lower left section of Figure 2 are layout
definitions files, which are stored in the res/
layout part of the app source code directory
tree. These files contain the definitions for
the various screens used by the app activities.

The values section, shown to the right
of the layout, contains files that store
constant data for the app. The strings.xml
file contains text definitions for the various
alpha/numeric constants used in the app.
Rather than having the actual text character
strings defined within the source code,
Android supports the assignment of names
to string data that refer to the associated text
data declared within the string.xml resource
file. This approach eases the adaptation
of apps to the international market place
as support for multiple languages can be
implemented by just changing the resource
file text string data. This simplifies adopting
apps to new languages as the program code
files do not need to be modified. This feature,
which I think is a great idea for commercial
applications, is optional. For this application,
in the interest of simplification and to save
some time, I chose to define the majority
of text strings within the source code. The
definitions could be shifted into resource files

in the future without too much effort, should
the need arise.

As the file name implies, the styles.xml
file is where the app style is declared.

The files shown in the menu section are
where the action bar (see action bar below)
menu items are defined.3

The bottom right hand corner of Figure 2
identifies the additional services declared
in the manifest file that are needed by this
application.

BlueTooth Link Connection
Sequence and Program Flow

When the NimbleSig app is first started,
the Bluetooth link to the NS3 module is not
connected.

BLUETOOTH CONNECT REQUEST buttons
are located on the tool bar, which is called
the Action Bar, located along the top of the
screen shot shown in Figure 3. When either
of the CONNECT A DEVICE buttons, located on
the right side of the Action Bar, are pressed
the select a device to connect pop up window
appears with a list of the previously paired
Bluetooth devices. Note that the Bluetooth
transceiver and the Bluetooth interface within
the tablet must be paired prior to starting the
NS3 controller app. This is done via the
tablet Settings menu and will be described
in detail in Part 3 of this article. The source
code for this pop up window list is located in
the DeviceListActivity.java file shown under
services in Figure 2. In this case I had named

Figure 4 — State diagram — Set output level of VFO A function.

 QEX – July/August 2014 19

the NimbleSig module Bluetooth transceiver
TABT01 and had previously paired it with
my tablet. As shown, TABT01 appears as
the bottom item in the list. When selected,
the pop up list disappears and the wireless
connection is typically established within a
few seconds. Once connected, a connection
status label will appear under the title in the
Action Bar (see Figure 1) to confirm the
link establishment. In addition, momentary
pop up notification messages (accompanied
with audible beeps if the tablet volume
controls are turned up) appear, advising of
the Bluetooth connection status changes. At
this point the app is connected and ready to
control the NimbleSig module.

Figure 4 is a simplified state diagram,
which illustrates the program flow from
initialization through to the execution of a
basic user command. As shown, when the
NimbleSig app is first started in response
to the user’s tapping of the NimbleSig icon
on the tablet home screen, the onCreate
method is called when the app is called
by the Android operating system. The
onCreate method first checks that the tablet is
Bluetooth equipped, and if so it continues by
building the GUI shown in Figure 1. Should
the tablet not be equipped with the Bluetooth
option or should the Bluetooth function be
disabled, then the app is immediately aborted
by branching down to the onPause method,
followed by the onStopped and finally
onDestroy lifecycle methods to close the app.

It should be noted that all Android activities
follow the Created, Started, Resumed,
Paused, Stopped and Destroyed lifecycle
steps, which are discussed in detail on the
Android Developers website.4

Once the GUI is built and initialized by
onCreate, control is passed to the onStart
method, which initializes the Bluetooth link.
Control is then passed to onResume, which
initializes the Bluetooth service, restores
settings from the previous session and makes
the GUI graphics visible to the user.

The onResume method is in essence the
idle loop for the app. The program sits here
awaiting commands from the user or data
from the Bluetooth link. The RF power meter
is polled periodically to provide a continuous
RF power detection update. Should the user
decide to do something else with the tablet,
such as browsing the Internet, the NimbleSig
app will be placed in the background. As
long as the tablet doesn’t need any of the
resources used by the NimbleSig app, which
is typically the case, then the NimbleSig app
will remain intact until the user re-selects this
app, which brings it back to the foreground.
When the user returns to this task the system
typically re-enters where it left off via the
currently focused onResume method.

If the user presses the VFO A LEVEL button,
when back at the main GUI (Figure 1), the
setLevelA activity is called via its onCreate
method. The associated program flow for
this action is shown in the center of Figure

4. When the setLevelA activity onResume
lifecycle method is executed, a smaller
GUI user data entry window pops up into
the foreground as shown in Figure 5. Both
course and fine volume control type sliders
are provided for setting the level. In this case
only two sliders are needed as the range of
adjustment is just from –10.0 to –20.0 dBm.
The fine adjustment easily accommodates
setting the level in 0.1 dB increments.

Ratchet Slider Tuning
For other functions with a wider

adjustment range requirement more sliders
are provided. For example the modulation
frequency range is 1 Hz to 20 kHz with a
1 Hz resolution. In this case, as shown in
Figure 6, four sliders are provided. The top
slider covers the whole 0 to 20 khz range
in 1 khz steps while the finer sliders have
resolutions of 100 Hz, 10 Hz, and 1 Hz,
which have a range of ± 1 kHz, 100 Hz
and 10 Hz respectively. Note that the finer
sliders are elastic in feel and automatically
hop back to center scale when the touch is
lifted. The course slider is first used to set
the approximate frequency. The finer sliders
are then used in a progressive manner to set
the exact frequency down to 1 Hz resolution.
Since these self centering, finer resolution
sliders pop back to center when released they
can be used quite conveniently to “ratchet”
the frequency up or down.

Figure 5 — VFO A output level adjustment sliders.

20 QEX – July/August 2014

Once the frequency is set to the desired
value, pressing the Set button exits the
setting change activity, and the new value
is returned back to the main activity by
calling the onActivityResult method. The
onActivityResult method extracts the
requested new value, sends the new value
to the signal generator module and updates
the main GUI display. Once complete,
the program flows back to the onResume
method, where the main activity returns to
the idle state. The program flow is similar for
the majority of the buttons.

RF Carrier Frequency Entry

The method of entry for the RF carrier
frequencies is an exception to the use of
ratchet sliders. In these cases the built in
capability of the Android Edit widget is used.
For these entries, you double tap the existing
frequency value and the keyboard pops up
allowing direct digit entry. To switch to a
specific frequency, enter the desired value in
either MHz, kHz or Hz resolution, and then
presses the corresponding MHz, kHz or Hz
button. This saves key strokes. So to go to
10 MHz all you need to type is “10” and then
press the MHz button. Similarly to switch
to a frequency with kHz resolution, such as
14,140 kHz, just type 14140 and press the
kHz button.

Figure 6 — Modulation frequency adjustment slider bank.

Figure 7 — Swept frequency response of a 45 MHz IF crystal filter intended for a NBFM
application.

NimbleSig III Sweep Generator
Figure 7 is a screen shot of a 45 MHz

IF filter frequency response. The Android
tablet lends itself nicely to the provision of
a self-documented grid display for swept
frequency measurements. As shown there
is room to label the screen with all the

significant sweep generator parameters.
Start, stop and center frequency as well
as the full span width and the span per
horizontal division parameters are all
labelled. The additional Step Frequency and
Step Level parameters change dynamically
as the sweep progresses. The Step Level of
–70.2 dBm shown in Figure 7 corresponds

 QEX – July/August 2014 21

to the level that was measured when the
generator Step Frequency was at 44,873 kHz
during the frequency sweep. Note that the
sweep response shown in Figure 7 has been
normalized to directly show filter insertion
loss in dB. In contrast, the Step Level value
is the absolute power level that is presented
in units of dBm. This explains why the
44.8 MHz insertion loss trace level shown in
Figure 7 is about 8 dB higher than the Step
Level value.

Marker A in Figure 7 reports the near
passband center frequency of 45,004,464 Hz
with an insertion loss of 6.8 dB. Marker B
shows a passband null in the 45,068 kHz
region that according to the B – A calculation
is 52.2 dB down from marker A. The
frequency difference between the center of
the passband and the null is shown at the
bottom center of the screen as 63,616 Hz.
The position of the markers can be changed
just by touching the screen at the desired
point. Once the user is ready, the screen can
be captured by a long touch on the stack
history widget located towards the left side
of the bottom tool bar. The screen shot can
then be shared with others via available
connectivity options, such as e-mail.

Prior to the connection of the 45 MHz IF
crystal filter used for the Figure 7 example,

the sweep display had been normalized by
looping the generator output directly back
to the detector via the test cables. This
calibration compensates for any loss in the
test leads and normalizes the sweep reference
to 0 dB. Thus the –6.8 dB value shown for
marker A corresponds to the actual insertion
loss of the filter within the passband.

Sweep Generator Setup GUI
Figure 8 is a screen shot of the sweep

generator setup GUI. As shown, there are
eight slider bars that provide a wide selection
of adjustment resolutions. The slider bar
colors follow the standard resistors color
code according to coarseness. When a
frequency button in the upper section of the
screen is touched it is highlighted in green
indicating it is selected for control. For
example if the user were to touch the Center
Frequency Hz button it would turn green, at
which time the sliders could be used to set the
center frequency.

The data entry for the Sweep Steps and
2 dB/Div Ref dBm values are done using the
pop-up keyboard instead of the sliders. The
keyboard appears when either one of these
buttons is touched, and once the desired
value is entered the operation must be
completed by touching the done key in order

Figure 8 — Screen capture of the NimbleSig RF sweep generator setup GUI.

for the new value to be registered.
The Sweep Steps provides control over

the size of the frequency steps and the
speed of the sweep. Fewer steps results in
a faster sweep, but an increase in step size
reduces the horizontal resolution. If the
steps are too large it is possible to miss a
sharp change of frequency response. For
example if there happens to be a sharp null
in the frequency response that lies between
frequency steps the null might be stepped
over and consequently not displayed. With
my tablet, a 200 step sweep, which is usually
fine enough, takes less than 10 seconds but
it is noticeably course. A 1000 step sweep
takes about 45 seconds but provides a very
nice high resolution trace. Thus, if I wish
to save a response for documentation I
usually do a 1000 step sweep. A setting less
than 200 steps might be desirable when I
need a quick, repetitive trace refresh to see
immediate results while tuning a circuit for a
desired frequency response.

The sweep generator span is set up by
specifying the sweep width and the center
frequency. The start and stop frequencies are
then automatically calculated.

The Scale dB/Div button is simply a
toggle that switches between either 10 or
2 dB per division. Figure 9 illustrates the
close-up view obtainable with the 2 dB/

22 QEX – July/August 2014

div setting. A downside of this close-up
view is that the window dynamic range is
reduced from 100 dB to 20 dB, so if the
level reference is not set properly the trace
may be off screen. You must set the 2 dB/div
reference value to ensure the sweep appears
were desired within the reduced dynamic
range spectrum display grid. In Figure 9 the
reference level is shown as –18 dBm. Note
the normalization function is not provided
for the 2 dB/div display, because the ability
to set the reference level manually makes it
unnecessary.

Source Code
The open source code files for this app

have been posted on the ARRL QEX files
website for freedom of use.5 Note that
although this application is fully functional,
it is still under development and needs more
work to smooth out the edges. There are no
doubt bugs that will need to be ironed out
once identified. If someone wishes to do
something similar with an Android device,
I hope that this code is of some value to use
as a reference. It could be used in its present
under-development state for controlling a
NimbleSig III module if installed on a tablet
similar to mine.

Part 3 to Follow
In Part 3 of this article, I will describe how

an economical Bluetooth transceiver can be
used to provide a wireless link for controlling
a microcontroller based project.

Notes
1Thomas Alldread, VA7TA, “NimbleSig III —

Parts 1, 2, and 3,” QEX, Jan/Feb, Mar/Apr,
May/Jun 2009. The articles and more details
are available on the author’s website at:
www3.telus.net/ta/NimbleSig%20III/.

2Learn more about the manifest file at: https://
developer.android.com/guide/topics/manifest/
manifest-intro.html.

3For a tutorial on adding action buttons, go to:
https://developer.android.com/training/
basics/actionbar/adding-buttons.html.

4There is a tutorial about starting a lifecycle
activity at: https://developer.android.com/
training/basics/activity-lifecycle/starting.
html.

5The program files for this project are all open
source code files. They are available for
download from the ARRL QEX files website.
Go to www.arrl.org/qexfiles and look for
the file 7x14_Alldread.zip.

Figure 9 — Screen capture of a close-up swept frequency response of the 45 MHz IF crystal
filter. Note that this sweep uses a 50 kHz span, compared to the 500 kHz span of Figure 7.

We are your #1 source for 50MHz
to 10GHz components, kits and
assemblies for all your amateur

radio and Satellite projects.

Transverters & Down Converters,
Linear power amplifiers, Low Noise

preamps, coaxial components,
hybrid power modules, relays,

GaAsFET, PHEMT's, & FET's, MMIC's,
mixers, chip components,

and other hard to find items
for small signal and low noise

applications.

We can interface our transverters
with most radios.

Please call, write or
see our web site

for our Catalog, detailed Product
descriptions and

interfacing details.

Down East Microwave Inc.
19519 78th Terrace

Live Oak, FL 32060 USA
Tel. (386) 364-5529

www.downeastmicrowave.com

We Design And Manufacture
To Meet Your Requirements

800-522-2253
This Number May Not

Save Your Life...
But it could make it a lot easier!
Especia l ly when i t comes to
ordering non-standard connectors.

RF/MICROWAVE CONNECTORS,
CABLES AND ASSEMBLIES

• Specials our specialty. Virtually any SMA, N,
TNC, HN, LC, RP, BNC, SMB, or SMC
delivered in 2-4 weeks.

• Cross reference library to all major
manufacturers.

• Experts in supplying “hard to get” RF
connectors.

• Our adapters can satisfy virtually any
combination of requirements between series.

• Extensive inventory of passive RF/Microwave
components including attenuators,
terminations and dividers.

• No minimum order.

12240 N.E. 14TH AVENUE
NORTH MIAMI, FL 33161

TEL: 305-899-0900 • FAX: 305-895-8178
E-MAIL: INFO@NEMAL.COM

BRASIL: (011) 5535-2368

NEMAL ELECTRONICS INTERNATIONAL, INC.

*Protoype or Production Quantities

URL: WWW.NEMAL.COM

 QEX – July/August 2014 23

Don Dorward, VA3DDN

1363 Brands Ct, Pickering, ON L1V 2T2, Canada; ddorward@sympatico.ca

A Linear Scale Milliohm
Meter; Another Look

With a few basic components you can build a dedicated milliohm meter.

1Notes appear on page 26.

In the July/August 2012 issue of QEX,
Steve Whiteside, N2PON, described the
design and construction of a stand-alone
milliohm meter for general use.1 I had been
looking for something similar, to make it
easier to check some ground connections and
some coax connections on a group of older
ARES 2 m antennas built for emergency
deployment. I, too, had found that my trusty
Fluke Digital Multimeter (DMM) was
unreliable at the low end, for example when
trying to measure 1 or 2 W or less.

Like Steve, N2PON, I wanted a
no-nonsense, small, portable, milliohm
meter that I could pick up anytime and put
to use. Figure 1 shows my finished meter,
ready to use.

My main design goals were:
1) Use standard components as much as

possible.
2) Simplified design, with minimum

component count.
3) Temperature/drift independence.
4) AA battery power supply, 3 V

maximum.
5) Tolerant of up to 20% battery

discharge.
6) Single linear scale, 0 – 2.0 W

Design
At first thought, I planned to use the

old reliable LM317T adjustable voltage
regulator IC. One popular adaptation of
this device is use it as a constant current
source, and this is well described in various
manufacturers’ data sheets. For example, see
Figure 2.

This simple circuit with just the two

Figure 1 — Here is the completed milliohm meter, ready for use.

QX1407-Dorward02

Vin
Constant Current Out
Iout = 1.25 V/R1

R1
LM317T

3

1

2OutIn
Adjust

Figure 2 — This simple circuit uses only two components to produce a stable constant
current source.

24 QEX – July/August 2014

QX1407-Dorward04

BT1
3 V
(2 AA Cells)

U1
LM1117T

TO220

3

1

2
VOUTVIN

ADJ

SW1
Power On/Off

Test leads, twisted pair
or flat 2C ribbon wire,

similar to UL2468.

D2
1N5819

D1
1N5819UA

M1
500 μA

Meter

Copper Croc Clip
Mueller BU-60CS

C1
10 μF
tantalum

R1
100 Ω, 1%

R2
100 Ω, 1%

R3
100 Ω, 1%

Rcal **

R4
1.0 Ω

SW2
Cal. 1 Ω

On/Off

NOTE:
1. Meter scale must be re-labelled, 0–2 Ω fsd.
2. **Rcal: Choose to set center scale, 1.0 Ω in CAL.
3. U1, R1–R4, Rcal can be mounted on a small piece of stripboard.
4. C1 recommended for stability.
5. D1, D2 are Schottky diodes, 1N5819 or equivalent (meter protection).

+

–

Figure 3 — Here is another view of the completed milliohm meter. The two AA batteries are
mounted on the top of the project case.

Figure 4 — This is the full schematic diagram of the milliohm meter circuit.

components shown, is capable of providing a
surprisingly accurate and drift-free constant
current source, despite varying input voltage
or ambient temperature. The catch, however,
is that the minimum input voltage, Vin for the
LM317T is 3 V, most of which is lost in this
configuration to the combination of drop-out

drop-out voltage of only 1.2 V. In this case
Vdrop-out + Vref is 1.2 V + 1.25 V = 2.45 V.
Therefore, using a 3 V double AA cell power
source, there is adequate margin for battery
aging and the maximum 0.078 V full-scale
meter voltage. I mounted the batteries on top
of the case, as shown in Figure 3.

The final circuit is shown in Figure 4.
It consists of a simplified constant current
source using the LM1117T. The constant
current source drives the unknown resistance
to be measured, and the resultant voltage drop
is displayed on a small moving coil meter
movement. Other than just the simplicity,
an advantage of using this type of IC is the
stability of the regulated output. Constant
current variation due to temperature over the
range of 0 to 50ºC is negligible. The circuit
maintains regulation until the battery voltage
drops to about 2.5 V, as tested on my bench.

The design actually starts with the meter
movement that is chosen, and requires us to
first determine the full scale voltage. This
can be done in several ways, but I took the
direct approach and used a digital voltmeter
to measure the meter terminal voltage while
I connected a 10 kW resistor in series with a
5 V adjustable power supply and the meter.
I adjusted the power supply carefully so that
the meter read its full scale value of 500 mA,
and noted the DVM reading. With the meter
movement I used, the full scale voltage was
approximately 0.078 V.

Since I wanted my milliohm meter to
have a 2.0 W full scale reading, the constant
test current needed is calculated as:

Iconst = 0.078 V / 2.0 W, or approximately
39 mA.

voltage and the forced Vref voltage of 1.25 V
across R1.

I eventually chose to use the LM1117T,
which is a low drop-out regulator, and has
the same pin-out and TO-220 package as the
LM317T.

The LM1117T has a specified maximum

 QEX – July/August 2014 25

Figure 5 — This view into the back of the project case shows the circuit wired on the
Veroboard. You can see the heat sink and LM1117T regulator on the left side of the board.

Construction Notes and Details
Many of the parts I found in my junk

box, with the exception of the LM1117T.
None of the other parts are especially critical.
The regulator and the resistors are mounted
on a small piece of Veroboard epoxy fiber
copper strip board. Since the regulator power
dissipation is very low, it doesn’t really need
a heat sink, but I thought it would be useful
in assuring thermal stability. A square inch of
aluminum would likely do just as well. Figure
5 shows a view of the construction inside the
project box. You can see the Veroboard with
the components, including the heat sink and
LM1117T near the left side of the photo.

I included C1 on the schematic because
the IC manufacturer recommends it, but I
found the circuit operated fine without it. The
photo also shows a screw terminal connector
strip I mounted on the Veroboard, but direct
wiring works too.

D1 and D2 are Schottky diodes with a
voltage drop of about 0.30 V. They serve to
protect the meter movement should you turn
the power on with no test resistor or the Cal
switch on.

The current setting resistors are made
of three 100 W, 1%, ¼ watt metal film
resistors connected in parallel, thereby acting
as a single 33.3 W part. Without further
adjustment, this would program a constant
current of 1.25 Vref / 33.3 W, or 37.5 mA.

Recall that we actually need about
39 mA, so it is necessary to add a fourth
parallel resistor, which I called Rcal. The
easiest way to find this value, is to connect a
decade resistance box across the R1, R2, R3
combination, and switch the 1.0 W Cal test
resistor into the circuit. Adjust the decade
box for best center scale reading, and solder
a resistor with that value across R1, R2, R3.
In my unit, a value of 1000 W turned out to
be perfect.

R4, the 1.0 W resistor used to check the
1.0 W center scale, is ideally a 1% part. I
had difficulty finding such a part, however,
and ended up using a 5% 1 W device I had
on hand.

New Meter Scale
I laid out the custom scale with the easy to

use program “Meter,” from Tonne software.2
Figure 6 shows the scale I created. Printed on
good quality paper, it is glued to the back of
the aluminum scale panel in the meter and
then carefully re-installed.

Test clips
I first used a pair of ordinary plated-steel

alligator clips from my junk box. They
did work ok but I thought that for the long
term, copper clips would be better. Figure
7 shows the clips I used. A ribbon wire pair
was stripped, bare copper ends twisted, then
inserted into the screw hole in the copper clip,
and soldered.

• RF Modules
• Semiconductors
• Transmitter Tubes

MILLIWATTS
KILOWATTS

More Watts per Dollar

From

To SM

SM

Phone: 760-744-0700
Toll-Free: 800-737-2787
(Orders only) 800-RF PARTS
Website: www.rfparts.com
Fax: 760-744-1943

888-744-1943
Email: rfp@rfparts.com

Se Habla Español • We Export

In Stock Now!
Semiconductors

for Manufacturing
and Servicing

Communications
Equipment

26 QEX – July/August 2014

This has been fine with the 2.0 W scale
I used, which has a single “tic” resolution
of 0.04 W. I suspect that if you choose to
change or add a scale where the resolution is
greater, say 0.01 W per “tic,” you may want to
consider separating the soldering point of the
2 leads, with the meter wires closer to the clip
tips. Should you choose to use the steel clips
instead, I would recommend this method of
connection to minimize the small resistance
of the clip in your measurements.

Last, a note on the wire used for the
test leads. Wire gauge is not particularly
important. I ended up using some two
conductor zip wire cut-offs that came from a
wall-wart power supply. They happen to be
#18, and are fairly robust, but several wire
gauge sizes smaller should work as well.
Some might argue that a twisted pair might
be better in avoiding unwanted noise pick up.
I have not seen that as an issue.

Don Dorward, VA3DDN, is a 1963 Ryerson
Electronics Technology graduate. Career
positions have included: management of
Research and Development, ISO9001 and
ISO13485 Quality Systems, Regulatory Affairs,
in the areas of electronic components and
materials technical support, environmental
testing and instrument calibration, automotive
electronics product development, switch mode
power supply development, medical electronics,
UL/CSA and EU product safety testing and
certification, including conducted and radiated
EMI compliance.

Don developed programs for accelerated
life testing methods such as HALT and HASS,
in-house training for Quality Systems, ESD
prevention, IPC Workmanship Standards for
the Acceptability of electronic equipment. He
shares 2 patents.

Don has been licenced as VA3DDN since
2002, with basic and advanced certification. He
retired in 2006. He is a Life Member IEEE, a
member of Radio Amateurs of Canada and an
ARRL member.

Notes
1Steve Whiteside, N2PON, “A Linear Scale

Milliohm Meter,” QEX, Jul/Aug 2012, pp
33-38.

2James Tonne, W4ENE, Meter and MeterBasic
are meter scale drawing programs available
for download at http://tonnesoftware.com/.
Meter requires the purchase of a text key to
activate the program, while MeterBasic is
free. The free version has some limitations,
but is suitable for most simple meter scales.
MeterBasic is included on the CD that
comes with The ARRL Handbook.

Table 1
Parts List
Parts used: Component 	 Description 	 Source
BT1 battery 	 1.5 V AA alkaline cells 	 Any good quality cell.
Battery holder 	 BC12AAL or equiv. 	 Digikey BC12AAL-ND
SW1, SW2 	 Mini toggle switch 	 3 A min., Silver contacts
Meter 	 0 – 500 mA, 2.5 inch wide 	 eBay
D1, D2 	 1N5819 Schottky diodes 	 Digikey, various mfrs.
C1 (optional) 	 10 mf, 10 V Tantalum cap. 	 Digikey 478-1838-ND
R1, R2, R3 	 100 W 1% Metal Film ¼ W 	 Digikey 100XBK-ND
Rcal 	 TBA (I used 1 kW, 5%, 	 Junkbox
	  Carbon Film)
R4 	 1.0 W 1%, 1 W, Metal Film 	 VishayCPF11R0000FKEE6
		 Digikey CPF100CTR-ND
U1 	 LM1117T, Adjustable 	 Digikey LM1117T-ADJ/NOPB-ND
Heat Sink for U1 	 Avid, 20ºC/W, 5070 type 	 Digikey HS112-ND
Alligator clips, 2 	 Mueller BU-60CS 	 314-1034-ND
Case 	 4.7 x 3.1 x 2.3 inches	 Hammond 1591TSBK
		 Digikey HM110-ND

Figure 6 — This is the new meter scale printed using Jim Tonne’s Meter software. See Note 2.

Figure 7 — The meter leads are soldered to the back ends of the alligator clips. You
could also solder the wires closer to the mouth of the clips to reduce any resistance

associated with the clips.

 QEX – July/August 2014 27

New Book

Radio Receiver
Technology: Principles,

Architectures and
Applications

In this book, the author introduces the
reader to the basic principles and theories of
present-day communications receiver tech-
nology. The first section of the book presents
realization concepts at the system level, tak-
ing into consideration the various types of
users. Details of the circuitry are described
providing the reader with an understanding
of fully digitized radio receivers, offering an
insight into the state-of-the-art.

Key Features:
♦ Introduces the basic principles and

theories of present-day technology
♦ Discusses concepts at system level
(aligned to the various types of users)
♦ Addresses (fully) digitized radio

receivers focusing on the state-of-the-art
♦ Close contacts to the industry were uti-

lized to show background information
♦ Enables the reader to comprehend and
evaluate the characteristic features and

the performance of such systems
♦ Examines the entire range of param-

eters that are characteristic of the technology
including the physical effect and measur-

ing techniques
♦ Includes results of experiences gained

in extended laboratory work and practical
testing with examples

♦ Provides a uniform and systematic
approach for ease of understanding e.g.
many didactic figures for the visual illustra-
tion have been newly created as well as com-
plete real-world examples

This book will be an excellent resource
to understand the principles of work, for
professionals developing and testing radio
receivers, for receiver users (e.g. at regula-
tory agencies, surveillance centers, secret
services, classical radio communications
services), technicians, engineers and tech-

nicians who work with RF-measurement
instruments, postgraduate students study-
ing in the field and university lecturers.
Chartered radio amateurs and handlers/
operators will also find this book insightful.
Due to high level of detail, it also serves as
a reference.

Hardbackback
320 pages
November 2013
1SBN 978-1-118-50320-1
£81.951 €99.40 1 $130.00

Wiley-Blackwell E-Books and
Online Books

Digital editions of the books featured are
available for download to your computer
or e-book reader.

Please visit wiley.com or your preferred
e-book retailer for further details.

Ralf Rudersdorfer, OE3RAA

3CPX800A7
3CPX1500A7
3CX400A7
3CX800A7
3CX1200A7
3CX1200D7
3CX1200Z7
3CX1500A7
3CX3000A7
3CX6000A7
3CX10000A7
3CX15000A7
3CX20000A7
4CX250B

4CX1000A
4CX1500B
4CX3500A
4CX5000A
4CX7500A
4CX10000A
4CX15000A
4CX20000B
4CX20000C
4CX20000D
4X150A
572B
805
807

810
811A
812A
833A
833C
845
6146B
3-500ZG
3-1000Z
4-400A
4-1000A
4PR400A
4PR1000A
...and more!

Phone: 760-744-0700
Toll-Free: 800-737-2787
(Orders only) RF PARTS

Website: www.rfparts.com
Fax: 760-744-1943

888-744-1943

Email: rfp@rfparts.com

Se Habla Español • We Export

COMMUNICATIONS
BROADCAST
INDUSTRY
AMATEUR

MILLIWATTS
KILOWATTS

More Watts per Dollar

From

To

®

Transmitting & Audio Tubes

Immediate Shipment from Stock

28 QEX – July/August 2014

Scotty Cowling, WA2DFI

P O Box 26843, Tempe, AZ 85285; scotty@tonks.com

Hardware Building Blocks
for High Performance

Software Defined Radios
The author explores some alternative hardware for software defined radio use.

Low-cost, highly capable digital
hardware is proliferating everywhere.
Do names like Arduino, Beagle Board,
Raspberry Pi, BeMicro or SoCkit mean
anything to you? Is this some kind of secret
code that has to do with very small Italian
dogs that eat spherical fruit for breakfast?
Not hardly! While the first three are names
of low-cost embedded microcontroller
(MCU) boards, the last two represent their
counterparts in the world of programmable
hardware. Wait, you say; microcontrollers
are programmable hardware. This is true,
but what makes BeMicro and SoCkit boards
different is that they each contain a Field

Programmable Gate Array (FPGA). See the
“MCU Versus FPGA” sidebar for a look
at the differences between an MCU and an
FPGA.

An MCU executes instructions from
a pre-defined instruction set in sequential
order; the hardware is fixed, but the sequence
of instructions is programmable. An FPGA,
on the other hand, has no fixed instruction
set or sequence of instructions, operates on
data in parallel and has programmable logic
and interconnections. Software defined
radio (SDR) implementations can benefit
greatly from the FPGA parallel hardware
architecture.

And Now for Something Completely
Different — A Software Defined
Radio!

A few RF boards can be added to
standard, off-the-shelf digital development
kits to build a high-performance software
defined radio. What these SDRs lack in
polish, they make up for in performance.
When you assemble a collection of
boards, some of which were designed for a
completely different purpose than building
an SDR, what you end up with may not look
pretty. If performance is your goal, however,
you will not be disappointed.

QX1407-Cowling01

Graphical
User

Interface

Ethernet NIC
or USB I/F

SDRstick TX2
Transmitter

SDRstick HF2
Receiver

BEMICROCV-A9
Data Engine

Antenna

Computer

Digital Data Packets
Digital Data Streams

User Interface (UI) Section Data Engine Section RF Section

Figure 1 — An example of functional SDR sections.

 QEX – July/August 2014 29

I will present a hardware overview of the
BeMicro series (BeMicro, BeMicroSDK,
BeMicroCV and BeMicroCV-A9) FPGA
development boards and the SoCkit System-
on-a-Chip (SoC) FPGA development board,
along with the SDRstickTM RF front-end
boards necessary to transform them into a
full-fledged digital down conversion receiver
or a digital up conversion transmitter, or both
at the same time!

Together, these boards make several
different configurations of very high-
performance digital down conversion/digital
up conversion radios possible for only
moderate cost.

System Functional Categories
We can break an SDR system down into

three main functional categories (see Figure
1 for an example), starting from the operator
and working our way toward the antenna:

1) User interface (UI)
2) Data engine
3) RF section (receiver front-end,

transmitter strip)
This is definitely a simplified view, but

still useful. Common SDR processes such as
decimation, modulation and demodulation,
digital filtering, data formatting and so on,
are not necessarily confined to any one of
the above broad functional categories. We
will touch on these processes later on, but
we will not dwell on the technical details.
We will piece together our SDR and leverage
the work others have already done to make
it work.

The User Interface — 31 Flavors?
The user interface comes in many varieties:

for different radios (such as openHPSDR, RF
Space SDR-IQTM, FlexRadio Systems Flex-
6000TM); for different operating systems
(Windows, Linux, MAC OS, Android); and
for different specialized uses (such as GNU
Radio, CW Skimmer, QtRadio). I have
lumped these all into one category because
they have one thing in common: they are the
interface between the human and the radio.
In reality, these software programs and the
computers that run them perform many
more tasks than just their one self-described
function. In general, the user interface also
performs modulation and demodulation,
digital filtering, time-domain to frequency-
domain conversion (for waterfall and
panadapter displays), and control of all radio
hardware and hardware DSP functions. As
we shall see, some of these functions may
be performed in the data engine, or split
between the user interface and data engine.
In either case, the functions are already coded
and working. All we have to do is connect
them properly.

The Data Engine — Heavy Lifting
The data engine is the bridge between

two data domains. On one side is the freshly
digitized data from the receive portion of the
RF section or the digital data stream destined
to be converted to analog RF in the transmit
portion of the RF section. On the other side
is the data to and from the user interface,
which is typically some type of computer.
Notice that there are no analog components
to the data; the conversion between analog
signals and digital data takes place in the RF
section (and sometimes in the user interface
section in the case of microphone or receiver
audio). The data engine deals strictly with
digital data.

Since the data coming from the RF section
(samples from the receiver’s ADC, for
example) is in a different format than the data
that is destined for the user interface section,
the data engine must perform this conversion.
The same is true for the outgoing data stream
coming from the user interface section and
ultimately destined for conversion to an
analog transmit signal by the transmit DAC.
The communications interface on the user
interface side of the data engine in common
SDRs today is either USB or Ethernet. Both
USB and Ethernet use packets to transfer
data, and since the raw data from ADCs or
to DACs are in streams, packetization and
de-packetization of the data must also be
performed by the data engine.

The data engine may simply re-format
raw data into packets (or packets into raw
data), but often times the available data
bandwidth on the user interface side does
not match the required bandwidth on the
RF section side. In the case of a low rate
receiver ADC sending data over a high speed
interface to the user interface, or a high speed
interface from the user interface sending data
to a low rate transmit DAC, the solution is
easy since the packetized nature of USB and
Ethernet allow idle periods where no data is
sent. In the opposite case (high rate ADC to
low speed interface or low speed interface
to high rate DAC), receive data will be lost
(user interface over-run), or the transmitter
DAC will be starved for data (RF interface
under-run). For example, in the HF2 digital
down conversion receiver described later,
the 16-bit ADC clocked at 122.88 MHz
produces almost 2 Gbit/s of raw data. This
data rate far exceeds the capacity of both high
speed USB 2.0 at 480 Mbit/s and Gigabit
Ethernet at 1 Gbit/s. The fact that both USB
and Ethernet have packet overhead only
makes the problem worse. The solution is
implemented in the data engine hardware.

In the receive path, the data engine simply
throws some of the data away. This is done
in the digital domain by a process known
as decimation. The key to building a useful

receiver is to know which data to keep. That
is determined by the center frequency of
the receiver display bandwidth. This is the
digital equivalent of the local oscillator in a
super heterodyne receiver. An explanation
of the mathematics behind decimation is
beyond the scope of this article, but there are
excellent references.1, 2

In the transmit path, the raw data from
the user interface is digitally up-converted to
a full-bandwidth data stream and sent to the
DAC in the RF section. This is accomplished
using digital mixing, again determined by the
center frequency of the transmit bandwidth.
This center frequency is analogous to the
local oscillator in a mixer type transmitter.

The RF Section — Still Analog After
All These Years

The RF section is the interface between
the outside world of RF and the digital world
of, well, the rest of the radio! Any receiver
front-end protection, filters or attenuators
are included in this section, along with
transmitter filters, power amplification and
antenna switching. Most of these functions
may also be performed in the digital portion
of the SDR, at least to a limited extent. There
are some things, however, that must be done
in the analog hardware. An SDR is supposed
to be a digital radio, so why can’t we do
everything digitally?

One reason is simple, and it also applies
to conventional all-analog radios. The
maximum ratings of the devices connected
to the antenna port of the radio must not
be exceeded. The other reason applies to
SDR receivers, but generally not to all-
analog receivers. Any signals above the
Nyquist frequency must be prevented from
reaching the input to the receiver ADC.
(The Nyquist frequency in a digital down
conversion receiver is half the ADC sample
clock frequency.) What happens when either
of these rules is violated depends on the
particular SDR design, but performance is
invariably compromised in some way.

Electrostatic discharge protection devices
should be used at the antenna input to
protect front-end components, and internal
analog attenuators can prevent large input
signals from overloading analog low-noise
amplifiers (LNAs) or ADC inputs. Of course,
attenuators reduce the amplitude of all
signals, making them less useful than filters
in some situations.

There are two reasons to use analog
filters in an SDR. The first and foremost is
to prevent any components in the front end
from saturating, including active attenuators,
low-noise amplifiers or ADC inputs. Once
saturation occurs, devices behave in a
non-linear fashion; no amount of digital

1Notes appear on page 40.

30 QEX – July/August 2014

processing is likely to correct this. Filters
used for this purpose can be either internal
or external, or both. SDRs operated in the
presence of strong in-band signals (such
as near a powerful broadcast station) or
connected to very large antennas may need
external filters to prevent front-end overload,
but many SDRs need no front-end overload
filtering at all.

The second reason to use analog filtering
is to prevent any signals above the Nyquist
frequency from reaching the input to the
ADC. Image signals above the Nyquist
frequency will fold back, or alias, onto
signals below the Nyquist frequency. Once
this happens, the two signals (the desired
signal and the image signal) will become
indistinguishable from each other. This type
of filter is called an anti-aliasing filter, and is
most often internal to the SDR.

Data Engines
The SDRstickTM RF boards currently

support three different data engines, and more
if you include other FPGA development
kits with HSMC expansion connectors.
The data engines that I will discuss are all
manufactured by Arrow Electronics.

BeMicro — Not Quite Enough
The introduction of the first Field

Programmable Gate Array (FPGA) System
Development Kit created the potential
for inexpensive, easy to build (read: plug
together) Software Defined Radios. While
I can only guess at which one was the first
one, the BeMicro FPGA development kit
(Figure 2) was one of the first.

The original BeMicro FPGA development
kit used an Altera EP3C16 Cyclone III FPGA
containing about 16 K logic elements (logic
elements). The small BeMicro PCB also
sported a 16 MHz clock oscillator, 256 K
× 16 bit static memory (SRAM), 8 user-
programmable LEDs, a USB programming/
power port and an 80 pin micro-edge

connector (MEC) for I/O. Arrow designed the
BeMicro as a showcase for the Altera NIOS
II embedded soft-core CPU (see the side
bar), and even provided lab materials with
design examples to help beginning FGPA
users get started quickly. The design tools
are all free and downloadable from
the Altera website: www.altera.com/
products/software/sfw-index.isp. The
major drawback of the original BeMicro
was the lack of any kind of high-speed
communications interface. The only two
external interfaces on the BeMicro are
the USB port and the 80 pin micro-edge
connector.

The BeMicro USB interface uses an
FTDI interface chip. The FTDI interface chip
can only operate at USB low or full-speed
bit rates (1.5 or 12 Mbps, respectively). It
connects directly to the dedicated FPGA
serial programming (JTAG) port rather than
general purpose FPGA pins. This makes it
difficult for the FPGA programmer to use
the USB port for a communications interface.

The BeMicro general-purpose I/O interface
on the 80-pin micro-edge connector could
be used for a high-speed communications
interface. As you will see later, however, we
need all 80 of these pins for the interface to
the RF portion of our SDR. All in all, the
BeMicro qualifies as a resounding “almost
enough” hardware platform.

Along comes BeMicroSDK
The successor to the BeMicro, called

the BeMicroSDK (the suffix stands for
System Development Kit), added enough
functionality to the somewhat limited
original BeMicro to advance it from the
“almost enough” to “now it is possible”
SDR data engine category.3 Let’s see what
the designers added to make BeMicroSDK
(Figure 3) a viable SDR data engine.

For starters, BeMicroSDK sports a
10M/100M Ethernet port. We now have
a relatively high-speed communications
interface, at least compared to full-speed
USB. Ethernet supports routable data
packets and is as ubiquitous as USB on
modern desktop and laptop computers. The
memory size is increased from 512 Kbytes to
64 Mbytes, and changed to DDR SDRAM.
A micro-SD memory card socket and a
temperature sensor have been added, as well
as three push-button and two slide switches.
These last few items are not of much use to
us in building an SDR data engine, but the
Ethernet and DDR memory sure are! In the
excitement, I almost forgot to mention the
FPGA upgrade: the 16 K logic elements
Cyclone III has been replaced by the newer
and larger 22 K logic elements Cyclone IV, an
EP4CE22 device. The BeMicroSDK became
the data engine for the first SDRstickTM SDR.

Figure 3 — The BeMicroSDK, with an Ethernet port, makes a good SDR data engine.

Figure 2 — The Original BeMicro board — not quite SDR material.

 QEX – July/August 2014 31

BeMicroCV-A9 - More Logic Elements,
Anyone?

The evolution of the BeMicro line
continued with the introduction of the
BeMicroCV (where the suffix stands for
Cyclone V).4 While this is an interesting
board (see Figure 4), in many ways it is a
step backwards from the BeMicroSDK. It
has a newer, but barely larger 25 K logic
elements Cyclone V 5CEA2 device in
place of the older Cyclone IV. The biggest
problem for SDR use is the substitution of
64 GPIO pins on two 40 pin headers for
the Ethernet port. While lots of I/O pins
are useful for many things, even 64 of them
cannot make up for the loss of the Ethernet
port. If the BeMicroCV is not suitable
for use as an SDR data engine, why do I
even mention it? The answer lies in the
successor to the BeMicroCV, called the
BeMicroCV-A9.

The BeMicroCV-A9 (Figure 5) is
different from the BeMicroCV in only two
ways, but these two differences make the A9
(as it is called for short) an ideal SDR data
engine. The first change is the re-purposing
of 19 of the GPIO pins to add a Gigabit
Ethernet port. This is a blazing fast channel
for communicating with the user interface.
The other change is to the FPGA. The A9
board uses (not surprisingly) a Cyclone V
5CEA9, with 301 K logic elements! It is the
largest member of the Cyclone V CE series,
and perfectly suited to the job of SDR data
engine. Now that we have two candidates for

the job of data engine, you might think that
we can move on to the RF section. But wait,
not so fast; we have one more board that has
something to offer the SDR builder.

CPU+FPGA - SoCkit to me!
There is more to life than bread alone,

and more to an SDR data engine than just
the raw number of logic elements in its
FPGA. There is a new kid on the block
that offers the best of both the FPGA world
and the MCU world. It is called the system
on a chip field programmable gate array,
mercifully abbreviated SoC FPGA. This
relatively new class of programmable device
integrates both an FPGA and an ARM
processor on the same silicon chip. The
processor portion of Altera’s SoC FPGA is
called the hard processor system, or HPS
for short. The term hard refers to the fact
that the processor is hard-coded into the
silicon, and not built by interconnecting
programmable logic elements the way a soft-
core processor is made. The hard processor
system runs much faster than a soft-core
processor and requires a smaller area on the
silicon die. The hard processor system of
the Cyclone V SoC FPGA in our next data
engine runs at 800 MHz, whereas most soft-
core processors are limited to a clock rate of
around 300 MHz.

In a clever combination of the SoC
abbreviation and the last word in the term
system development kit, Arrow Electronics’
SoC FPGA board is called SoCkit.5 This
somewhat obscure reference to a 1960s TV

comedy show sketch does not escape older
readers, I am sure. Young squirts can check
Note 6.

The SoCkit board is built on a much
larger form factor than the BeMicro series
of data engines (see Figure 6). SoCkit’s
larger physical size allows room for far more
features than we have seen so far on our
candidates for SDR data engine duty. Here is
a partial feature list:

• Altera Cyclone V SoC FPGA with
110 K logic elements and dual-core ARM
Cortex-A9 CPU

• Two banks of DDR3 SDRAM (2 GByte
total)

• Gigabit Ethernet port
• High Speed Mezzanine Connector

(HSMC) expansion connector
• MicroSD Card connector
• USB serial port
• USB 2.0 OTG port
• USB Blaster programmer
• 128 × 64 pixel LCD display
• Video DAC with VGA connector
• Audio CODEC with line out/line in/mic

in connectors
• 8 each: LEDs, pushbutton switches,

slide switches
This is an impressive list of features for

a board that costs under $300!7 Although
Gigabit Ethernet is included, as well as a
microSD card socket, there is no micro-
edge connector like there is on every
BeMicro series board. We will have to
connect our RF boards to the high speed

Figure 4 — BeMicroCV — No Ethernet port makes this one a non-starter for SDR.

32 QEX – July/August 2014

Figure 5 — BeMicroCV-A9, The Ultimate SDR data engine?

Figure 6 — SoCkit board with AD1 adapter, HF2 receiver and TX2 transmitter.

 QEX – July/August 2014 33

mezzanine connector (HSMC) instead. The
HSMCMEC-AD1 adapter card (AD1 for
short) was designed for this specific purpose
(see Figure 7). The AD1 adapter plugs onto
the high speed mezzanine connector port
of virtually any development board (many
off-the-shelf FPGA development boards
have them) and provides two micro-edge
connectors, one male and one female. The
male, or board-edge connector accepts HF1
or HF2 receiver boards, while the female
socket accepts the TX2 transmitter board.
(More on the RF boards in the next section.)
The AD1 performs level translation, since
high speed mezzanine connector voltage
levels can be 1.8 V, 2.5 V or 3.3 V, while
the micro-edge connector RF boards all use
3.3 V signaling. The AD1 also provides
separate receive and transmit connectors,
allowing the TX2 transmitter to be used with
the HF1 or HF2 receiver boards. Speaking of
receivers, let’s move on now to discuss the
RF section of our SDR.

Receivers
There are two models of SDRstickTM

micro-edge connector-compatible receiver
boards: UDPSDR-HF1 and UDPSDR-HF2.
The less expensive HF1 front-end (Figure 8
and Figure 9) performs decently, and employs
a 14 bit ADC sampling at 80 mega samples
per second. Paired with a BeMicroSDK
or BeMicroCV-A9, the HF1 makes a fully
functional 100 kHz to 30 MHz receiver. The
TX2 transmitter cannot be used to make the
system into a transceiver, since there is no
micro-edge connector expansion connector
on the HF1 receiver.

The high-performance HF2 receiver
(Figure 10 and Figure 11) incorporates the
same components and a similar architecture
to the receive section as the openHPSDR
Hermes board.8, 9 A Crystek CVHD-950
extremely low phase noise oscillator clocks
the 16-bit LTC2208 ADC at 122.88 MHz.
A programmable 0 to 31 dB step attenuator
(Mini-Circuits DAT-31-SP+) ahead of the
LTC6400-20 20 dB gain differential ADC
driver helps prevent overload. The HF2
receiver board has a transmit expansion
micro-edge connector for the TX2 transmitter
board described in the next section. The HF2/
TX2 combination (along with a suitable data
engine) makes a complete transceiver. Table
1 shows a comparison of the features of the
two receiver boards.

Transmitter
The TX2 transmitter (Figure 12 and

Figure 13) uses the same components and
a similar architecture to the transmit section
of the openHPSDR Hermes board (see
Note 9). The TX2 uses an Analog Devices

Figure 7 — The AD1 high speed mezzanine connector to micro-edge connector adapter
board.

Figure 8 — The HF1 100 kHz to 30 MHz receiver.

What is a Virtual Receiver?
SDR receivers are built from parallel FPGA logic and software programs that

perform mathematical operations (digital signal processing, or DSP) on a raw
stream of data from an ADC. The processed digital data stream can be routed to
client software for further processing or converted back to the analog domain to
drive a speaker. The same raw data stream may feed multiple instances of DSP
hardware and software, and each DSP instance can be independently configured
(for example, center frequency, modulation type, filtering, and so on). Each one
of these instances of DSP hardware and software is called a virtual receiver
(FlexRadio Systems calls it a “Slice Receiver.”) It is virtual because the receiver
exists as a series of programmed processes rather than analog hardware, such as
mixers and oscillators. Even though it is virtual, a virtual receiver is still implemented
in hardware; it uses digital logic in place of analog components.

34 QEX – July/August 2014

QX1407-Cowling09

30 MHz

ESD
PROT

20 dB

80 MHz

5 kHz
0 dB

External
Antenna

Low-Pass
Filter

Anti Alias
Filter

ADC

B
eM

ic
ro

S
D

K
 o

r B
eM

ic
ro

C
V

-A
9

or
 H

S
M

C
M

E
C

-A
D

1
(8

0
pi

ns
)

14

ADC
Driver 14b @ 80 MSPS

ADC

30 MHz

Reconstruction
Filter

Headphone
Driver

Audio
DAC

14b @ 50 KSPS
Serial DAC

PWR

SEL OSC

CLK IN

CLK OUT

P
ho

ne
s

UDPSDR-HF1 14 bits @ 80 MSPS

Figure 9 — HF1 receiver block diagram.

Figure 10 — The high-performance HF2 100 kHz to 55 MHz receiver board.

 QEX – July/August 2014 35

QX1407-Cowling11

ATTEN

ESD
PROT

20 dB

122.88 MHz

Audio
Codec

External
Antenna

31 dB Step
Attenuator

Low-Pass
Filter

B
eM

ic
ro

S
D

K
 o

r B
eM

ic
ro

C
V

-A
9

or
 H

S
M

C
M

E
C

-A
D

1
(8

0
pi

ns
)

ADC
Driver

16b @ 122.88 MSPS
ADC

40 MHz

CODEC

P
ho

ne
s

UDPSDR-HF2 16 bits @ 122.88 MSPS

SMA

5

LEFT

RIGHT

EXT_OSC_10 MHZ

ATN_SEL 3

BEMICRO_PWR

VCXO_CTL

DRV_CLK_OUT_N

122_88 MHZ

CTL
5

DATA
16

SINE TO
SQR

EXT
OSC

IN

SMA

ADC

DC
IN

5 V
REG 3.3 V A

REG 3.3 V D

Optional
LNA/LPF

Anti Alias
Filter

40 MHz

Figure 11 — HF2 receiver block diagram.

Figure 12 — The TX2 transmitter plugs into either the AD1 adapter or the HF2 receiver.

36 QEX – July/August 2014

AD9744ARU 14 bit, 210 mega samples per
second differential-output-current DAC. A
two-stage transformer-coupled differential
PA supplies 500 mW to the output connector
through a 52 MHz low pass filter and a PIN-
diode T/R switch. An on-board +5 V switch
mode power supply accepts a wide range
DC input (9 V to 18 V) and provides enough
current to power an HF2 receiver and
either a BeMicroSDK or BeMicroCV-A9
data engine. The TX2 sells for $179 from
iQuadLabs.10

Amplifiers
The QRPp level of 500 mW may be

enough some of the time, but there are other
times when you need to trade in your slippers
for a pair of boots (speaking in the RF sense,
of course). The two options that I describe
here are by no means the only viable ones.
The first QRO solution is the Hardrock-50
HF power amplifier kit.11 This kit (Figure
14) is a 5 W input, 50 W output 160 m
through 6 m amplifier, but you can add a
10 dB gain, 5 W pre-driver board to make
it a perfect match for the 500 mW output of
the TX2 transmitter. There is an internal auto
tuner in the works, and harmonic filtering is

Q
X

14
07

-C
ow

lin
g1

3

Audio
Codec

External
Antenna

T/R Switch

B
eM

ic
ro

S
D

K
 o

r B
eM

ic
ro

C
V

-A
9

or
 H

S
M

C
M

E
C

-A
D

1
(8

0
pi

ns
)

PA
14b @ 210 MSPS

DAC

T/R

CODEC

M
ic

UDPSDR-TX2 14 bits @ up to 210 MSPS

SMA

5

MIC AUD

MIC BIAS

DATA
14

DAC

13.8 V DC
PWR IN

REG

12VPA

Anti Alias
Filter

40 MHz

Low-Pass
Filter

52 MHz

CLK

PWM
DAC/ALCLVL

BEMICRO_PWR

TO
RX IN

SMA T/R

SMPS REG 3.3 V

5 V

PTT/PADDLE
3

JUMPER
BLOCK

PTT

2

K
ey

2
DOT/DASH

Figure 13 — TX2 transmitter block diagram.

Figure 14 — The Hardrock-50 HF power amplifier kit covers 160 m through 6 m.

 QEX – July/August 2014 37

already designed into the amplifier. The TX2
transmitter has an amplifier keying output
that can be used to switch the Hardrock-50,
or it can be done via RF detection (carrier
operated).

TAPR offers the Pennywhistle 18 W
power amplifier as a kit and the Alex TX low-
pass filter board assembled. Pennywhistle
(Figure 15) will produce 16 W to 20 W of
power from 500 mW of drive from 160 m
through 6 m.12 Pennywhistle requires
harmonic filtering at its output, which can be
provided by the Alex TX low-pass filter board
(Figure 16).13 The TX2 amplifier keying
output can be used to control Pennywhistle,
but there is no control port to control the Alex
filter selection. An external manual controller
or an interface to a computer or the data
engine must be built to perform this function.
Both the SoCkit and the BeMicroCV-A9
have extra I/O pins that can be used for
this purpose; the BeMicroSDK does not. If
you are clever, you can figure out a way to
re-purpose unused LED or switch I/O pins on
the BeMicroSDK, since you only need two
outputs to control Alex-TX.

Systems

Making an SDR
Now that we have discussed all of the

pieces, let’s assemble them into an SDR.
I will examine three SDR configurations,
each built from the components described Figure 15 — The Pennywhistle power amplifier requires only 500 mW of drive for 18 W output.

Figure 16 — The Alex transmit low-pass filter board handles harmonic suppression.

above. To do this, we must focus not
on the individual blocks, but on section
interconnections, shown as horizontal lines
between the three sections shown in Figure 1.

In all three example SDRs, the physical
connection between the user interface and
the data engine is Ethernet cable. Physical
connection is easy, but to get the user
interface and the data engine to understand

each other over this connection requires a bit
more effort. To make this work, we will use
a standard protocol over the wire called User
Datagram Protocol (UDP). A datagram is
made up of a header (which contains routing
information and a checksum, among other
things) and a block of user data. It is up to the
originator of each datagram (the source) to
place the bytes of user data into the datagram

38 QEX – July/August 2014

in the order that the receiver of the datagram
(the destination) expects. For this to work,
the designers of the user interface and the
designers of the data engine agree to organize
the data within the block of user data in a
pre-defined order. Just to confuse things even
more, this definition is also called a protocol.
For example, the openHPSDR version of
PowerSDRTM uses openHPSDR Ethernet
Protocol formatted data blocks. The upshot
of all of this is that the data engine must
build UDP packets that the user interface can
understand. There are many different user
interfaces and many different data engines,
so how can this possibly work? As Paul
Simon said, “would you explain about the 50
ways…”14 Let’s look at three ways.

The ExtIO.dll Method
The High Definition Software Defined

Radio (HDSDR) software user interface is
a good example of a straightforward way
for a single user interface to talk to many
different data engines.15 The designers of
HDSDR defined their data block format and
wrote their user interface to recognize it.
They wrote their code to accept an extension
program called ExtIO.dll. This extension sits
logically in between their user interface and
the data engine and reformats data blocks
from the data engine into standard HDSDR
format data blocks. Each SDR designer
writes a simple ExtIO.dll to convert his data
format to HDSDR data format (and back)
and includes this software with the SDR.
The SDRstickTM radios come with an ExtIO.
dll for HDSDR.

Customize Your Data Engine
Another way for one data engine to

talk to many different user interfaces is to
just program it that way. The “P” in FPGA
stands for “programmable,” so just program
the data engine to format the data blocks
for whatever user interface you want to use
today. If the FPGA in the data engine has
enough resources (like the BeMicroCV-A9
has, for example), program it to recognize
the user interface and automatically format
the data for that particular program. The
SDRstickTM does this, too! When HDSDR or

Table 1
Comparison of the SDRstickTM HF1 and HF2 Receiver Boards

	 HF1	 HF2
Receive frequency range	 100 kHz to 30 MHz	 100 kHz to 55 MHz
Antenna connector	 SMA	 SMA
Front-end attenuator	 --	 0-31dB, 1dB steps
LPF	 RLP-30+ and anti-alias	 RLP-40+ and anti-alias
Pre-ADC gain	 20 dB	 20 dB
ADC	 LTC2249, 14-bit at 80 Msps	 LTC2208, 16-bit at 122.88 Msps
ADC clock source	 TCXO or FPGA	 Crystek CVHD-950 VCXO
Receive audio	 LTC2641 Audio DAC	 TLV320AIC23B CODEC
GPSDO reference input	 --	 10 MHz
Transmitter expansion
  micro-edge connector	 --	 yes
Cost10	 $169	 $399

Figure 17 — A complete cost-effective SDR receiver: BeMicroSDK with HF1.

PowerSDRTM user interfaces are started (other
user interfaces do this, too), they broadcast
a special packet to the network called a
Discovery Packet. SDR data engines are
designed to reply to this Discovery Packet by
returning their network address and radio ID
back to the user interface. Since the Discovery
Packet also identifies the user interface, (and
thus, the data format type that it understands),
the data engine can use this information
to decide what format to send back. For
example, if PowerSDRTM sends a Discovery
Packet to an SDRstickTM data engine,
SDRstickTM responds with openHPSDR
Ethernet format packets. If HDSDR sends
a Discovery Packet to an SDRstickTM data
engine, SDRstickTM responds with its native
format packets, which are then converted to
HDSDR native format by the SDRstickTM
ExtIO.dll converter.

Customize Your user interface
A third way to hook the data engine and

user interface together is to write your own
user interface. While this may seem like a
difficult solution (and it is not trivial), software
can come to the rescue. The GNU Radio
project might be the solution that you are
looking for. For a GNU Radio receiver, the
data engine formats data in its native mode.
The SDR designer writes some software called
a GNU Radio Source Block that converts the
native mode data format into a standard GNU

Radio format. Once the data is in this format,
it can be used anywhere within GNU Radio to
build custom radio software. (In the transmit
direction, the interface is called a Sink Block.)
GNU Radio has a learning curve to it, but
it is an extremely powerful tool with which
to build custom SDR user interfaces and
applications. SDRstickTM radios come with
GNU Radio Source and Sink Blocks. Please
refer to “Digital Signal Processing and GNU
Radio Companion” by John Petrich, W7FU,
and Tom McDermott, N5EG, in this issue of
QEX for Part 1 of an in-depth look at GNU
Radio.16

Data Engine to RF Hardware
Connecting the RF front ends to the

data engine is simple, since the boards are
designed to plug together. A brief description
of the interface follows. The HF1/HF2
receiver interface from the ADC is made
up of parallel data, an ADC clock and an
overflow bit. The TX2 transmitter interface
to the DAC is also parallel data and a DAC
clock. The CODEC (for receive audio) and
the RF step attenuator on the HF1/HF2
receivers and the CODEC (for microphone
audio) on the TX2 transmitter are each
digitally interfaced to the data engine. The
data engine uses several general purpose
input/output (GPIO) pins for things like PTT,
paddle dot and dash inputs and ADC and
clock buffer control. The HF1 (Figure 9),

 QEX – July/August 2014 39

HF2 (Figure 11) and TX2 (Figure 13) block
diagrams show the connections.

Receiver with BeMicroSDK and HF1
The most cost effective SDR platform is

the receive-only BeMicroSDK data engine
paired with the HF1 receiver (Figure 17).
This creates an Ethernet-based receiver that
covers 100 kHz to 30 MHz with 1.25 MHz
receive bandwidth. This is wide enough to
see the entire MW broadcast band on-screen
in the panadapter display. It is also wide
enough to fully display any of the Amateur
Radio bands below 28 MHz, or enough of
the 10 m band to display all of the activity on
any one mode. This receiver costs just over
$200, and is a good place to get your feet
wet in FPGA-based SDR. This is by far the
least expensive Ethernet-based, broadband
SDR available. The FPGA program available
for BeMicroSDK/HF1 does native UDP
format at 1.25 MHz and 384 kHz receive
bandwidths and Hermes UDP format at
384 kHz bandwidth, both receive only.

Transceiver with BeMicroCV-A9, HF2
and TX2

The most exciting SDR platform
is the High-performance HF2 receiver
married up with the TX2 transmitter and
the BeMicroCV-A9 data engine (Figure
18). Truly remarkable SDR functionality
becomes possible with the sheer amount of
logic present in the A9 data engine’s FPGA
and the Gigabit Ethernet interface to move
data. To put this into perspective, the A9
data engine contains nearly eight times as
many logic elements as the Hermes FPGA.
While Hermes is limited to about seven
virtual receivers, the A9 data engine has no
such limitation. (See the “What is a Virtual
Receiver?” sidebar.)

The current FPGA program available for
BeMicroCV-A9/HF2/TX2 does native UDP
format at 1.92 MHz and 384 kHz receive
bandwidths, and Hermes UDP format at

MCU Versus FPGA
An embedded microcontroller (MCU) consists of many logic building blocks

that are each designed to perform one function. For example, it has an Arithmetic
Logic Unit (ALU), which carries out the mathematical operations specified by the
instructions in the computer software. It has a Program Counter that keeps track of
where in memory the current instruction is located. It has a Memory Management
Unit (MMU) that controls accesses to main memory. There are many of these blocks,
and each block is a collection of logic gates, memory cells, and transistor switches,
each hard-wired to perform one function, and only that function. These small blocks
are wired up into a large structure in order to make a functional MCU. This is, of
course, a simplistic explanation of how millions of transistors are wired up to form a
microcontroller, but it illustrates one main point. The MCU logic and interconnections
between these pieces of logic are fixed. The hardware is designed to fetch an
instruction and carry it out, fetch the next instruction and carry it out, repeating this
process forever. Modern MCUs do this job very fast, but they can only perform the
operations hard coded into their fixed instruction set. For example, an MCU might
have instructions for addition, subtraction or writing to main memory, but it will not
have an instruction to perform every complex mathematical operation that might be
needed. The programmer writes software to break down these custom, complex
mathematical operations into small sequential steps that each can be performed by a
pre-defined instruction from the MCU’s instruction set.

An FPGA, on the other hand, has very little fixed logic and interconnections. To
illustrate this concept, let’s imagine that we can take all of the gates and memory
elements (small groups of these are called logic elements or LEs) that make up
the MCU, disconnect them from each other and spread them out in a “sea of logic
elements.” If we provide a way to connect these logic elements together in any order
we like (in other words, program the FPGA), we can create just about any function we
need. In fact, we can connect them back up just the way they were connected in the
MCU, and we have (guess what?): an MCU! This is what is called a soft-core processor.
One FPGA manufacturer — Altera — has a pre-programmed soft-core processor called
NIOS II, but it is not the only one that we can make out of our sea of gates. A soft-core
processor is not as efficient as an MCU, since all the logic interconnections take up
space on the FPGA chip, making it bigger, and thus, more expensive to make. All the
programmable logic interconnects also slow the soft-core processor down because they
introduce more delay than the fixed logic interconnects of the MCU.

Soft-core processors are interesting and useful, but they are not the main attraction
of FPGAs. Remember that MCUs execute instructions serially? FPGAs can perform
their logic functions in parallel. Imagine that I need to perform 10 additions. Even with
in-line coding (no loop), it will take the MCU 10 instructions to do this, and more if the
20 addends must be fetched from memory first. If the MCU runs at 100 MHz (10 ns
per clock cycle), and we assume that each instruction takes one clock cycle, it will
take at least 100 ns to perform the 10 additions. If I program 10 adders into the FPGA,
I can perform all 10 additions at the same time, requiring only one clock cycle to
obtain all 10 sums. This is a simplistic example, but consider that even small FPGAs
have tens of thousands of logic elements, and logic elements number in the millions in
large FPGAs. FPGA hardware parallelism creates remarkable capability to implement
algorithms that can benefit from this parallelism.

Figure 18 — A complete high-performance SDR transceiver: BeMicroCV-A9 with HF2/TX2.

40 QEX – July/August 2014

384 kHz receive bandwidth. This only hints
at what is possible. For instance, eleven
virtual receivers can be designed into the
FPGA logic, one for each of the Amateur
bands, 160 m through 6 m. The full spectrum
of every HF Amateur band (and the lowest
VHF one, too!) can be simultaneously
displayed. Using appropriate software,
eleven users could connect to this radio,
and each user would have a virtual receiver.
Admittedly, such FPGA code and software
does not yet exist. Now that hardware is
available to support such features, however,
the firmware and software are possible. The
BeMicroCV-A9 is a prototype now, but
should be available by the time you read this.

Transceiver with SoCkit, AD1, HF2
and TX2

The most flexible SDR platform
replaces the BeMicroCV-A9 with the
SoCkit development board and the AD1
adapter (Figure 6). The SoCkit board FPGA
contains fewer logic elements than the
A9 board (110 K versus 301 K), but it has
something the A9 does not: a dual-core ARM
processor. With this processor (and the other
SoCkit on-board resources), we can run an
embedded operating system, such as Linux.
Linux brings with it things like a full TCP/
IP stack, software control of packet data
formatting and easy application development
(compared to FPGA applications), among
other things. The current FPGA program
available for SoCkit/AD1/HF2/TX2 does
native UDP format at 1.92 MHz and 384 kHz
bandwidths, and Hermes UDP format at
384 kHz bandwidth.

The same virtual receiver scenario is
possible with the SoCkit data engine that is
possible with the A9, but other possibilities
open up with the addition of Linux to the
system. For example, we could write a
server application to serve data up directly to
remote clients. We can run this application
right on the SoCkit board’s local processor,
eliminating the computer normally necessary
to perform this task. We have made an
“NAR,” or Network Attached Radio! While
I have just coined this term, you can bet that
the concept is already here!

Conclusion
Advanced, high-performance hardware

is available off-the shelf at reasonable
cost. FPGA code is currently available
to perform basic functions, while more
advanced features are either planned or left
to the user to implement. Some open-source
FPGA example code is available, and can be
used as a starting point for developers and
experimenters.17 There are lots of SDR user
interfaces to choose from, many under current
development and some are open source.

Notes
1Steven W Smith, The Scientist and

Engineer’s Guide to Digital Signal
Processing, ISBN 0966017633, available for
free download at: dspguide.com.

2Many DSP references can be found here:
dspguru.com/dsp/links/books/online.

3Arrow Electronics BeMicroSDK information:
arrownac.com/solutions/bemicro-sdk.

4Arrow Electronics BeMicroCV information:
parts.arrow.com/item/detail/arrow-
development-tools/bemicrocv.

5Arrow Electronics SoCkit board information:
arrownac.com/solutions/sockit.

6Comedians on the TV show Rowan and
Martin’s Laugh-In used the term “sock it to
me,” typically followed by a dousing with a
bucket of water. See en.wikipedia.org/wiki/
Rowan_&_Martin%27s_Laugh-In.

7SoCkit ordering information: parts.arrow.
com/item/search/#st=sockit;renMeR.

8Scotty Cowling. WA2DFI, “The High
Performance Software Defined Radio
Project,” QEX, May/June 2014, pp 3-13.

9Hermes SDR information: openhpsdr.org/
wiki/index.php?title=HERMES.

 10HF1, HF2, TX2 and AD1 boards may be
purchased from iQuadlabs.com.

11Hardrock-50 amplifier information:
hobbypcb.com.

12TAPR Pennywhistle kits: tapr.org/kits_pw.
13TAPR Alex Filter boards: tapr.org/kits_alex.
14Paul Simon, 1975: en.wikipedia.org/

wiki/50_Ways_to_Leave_Your_Lover.
15HDSDR web page is: hdsdr.de.
16John Petrich, W7FU, and Tom McDermott,

N5EG, “Digital Signal Processing and GNU
Radio Companion: An Easy Way to Include
DSP in Your Radio Projects,” Part 1, QEX,
Jul/Aug, Part 2, QEX, Sep/Oct 2014.

17Hermes FPGA code is open-source:
svn.tapr.org.

Scotty Cowling, WA2DFI, was first
licensed in 1967 as WN2DFI, and has been
continuously active since that time. An Extra
Class licensee and ARRL Life Member, Scotty
is active while mobile on HF CW and on
APRS. He is an advisor for Explorer Post
599, a BSA affiliated ham club for teens in
the Phoenix, Arizona area. He also enjoys
minimalist QRP operating. He has participated
in every ARRL Field Day since 1968!

Scotty has been involved in the openHPSDR
project for the last 8 years, and has served
on the TAPR Board of Directors (2006-2012)
and as TAPR Vice President (2011-2012). He
is active in the production of openHPSDR
components and with other TAPR projects. He
is a co-founder of iQuadLabs, LLC, a supplier
of openHPSDR systems and other Software
Defined Radio components, and is President
of Zephyr Engineering, Inc, an engineering
consulting firm.

Scotty’s professional specialty is FPGA
and embedded systems hardware design. He
designed his first project with a microprocessor
in 1975 and his first FPGA project was in
1987. He holds a BSEE from Rensselaer
Polytechnic Institute and an MSEE from
Arizona State University.

Make your reservations now for three days of
learning and enjoyment at the Austin Marriott
South hotel. The Digital Communications
Conference schedule includes technical and
introductory forums, demonstrations, a
Saturday evening banquet and an in-depth
Sunday seminar. This conference is for
everyone with an interest in digital
communications—beginner to expert.

Call Tucson Amateur Packet
Radio at: 972-671-8277, or go
online to www.tapr.org/dcc

 QEX – July/August 2014 41

John Petrich, W7FU	 Tom McDermott, N5EG

1629 East Lake Sammamish Pkwy NE, Sammamish, WA 98074;	 3950 Southview Ter, Medford, OR 97504;
petrich@u.washington.edu	 n5eg@arrl.net

Digital Signal Processing and
GNU Radio Companion

The authors present an easy way to include DSP in your SDR radio projects.

1Notes appear on page 46.

Understanding the fundamental identity
of the analog and digital signal flow processes
makes it easy to apply practical knowledge
and hands on Amateur Radio experience
to author digital signal processing (DSP)
functions using the GNU Radio DSP library
with the user friendly graphical interface,
GNU Radio Companion (GNU Radio
Companion). Does authoring your own DSP
programs for your next SDR radio project,
interest you? Would you like to develop DSP
applications that permit real-time transmit
and receive capability as well as simulation
ability? Are the thoughts of learning a new
programing language and coping with the
complexity of DSP intimidating? Would
a free and easy to learn DSP software
development environment be something
you’d want to learn more about? If so, the
open source DSP software library, GNU
Radio, with the companion graphical user
interface, GNU Radio Companion, may be
the application for you.

How Complex is DSP?

DSP can be simplified and demystified
on a fundamental level by comparing analog
and digital signal processing. The signal flow
logic of a DSP system parallels the logic
of an analog signal flow. Both use similar
processing units. Multipliers (mixers),
multiply-accumulate (filters), multiplication
(amplifiers), and I/O devices, are used in
the same flow order to process signals. In
the analog realm, a simple, classic analog
super heterodyne receiver architecture might
involve inputting a signal to an analog mixer,
which in turn converts the signal flow to an
intermediate frequency (IF). That IF signal
is filtered in an analog filter, and then flows
to circuits to be detected/mixed to the audio
range with output to a speaker. A DSP

system signal flow is constructed in the
same manner using digitally implemented
mixers (multipliers), followed by digitally
implemented filters (multiply-accumulate),
digitally implemented demodulators, and
so on. The DSP signals are rendered in the
digital domain and processed at baseband (at
or near “0” Hz).

GNU Radio and the Companion
Graphical User Interface

With GNU Radio Companion, the
user’s focus is on rendering the DSP via
the graphical overlay rather than having
to write code and deal with algorithms
and data management issues. With GNU
Radio Companion, the user has access to
the full functional capabilities of the GNU
Radio DSP software library and the ability
to author DSP systems. GNU Radio is
an open source software library made up
of DSP signal processing units written
in Python and C++ code.1 GNU Radio
Companion is the graphical overlay on top
of the foundational GNU Radio code.2 With
GNU Radio Companion, it is not necessary
to learn these foundational codes. The user
has access to the full functional capabilities
of GNU Radio using only the GNU Radio
Companion graphical overlay. A DSP
system is comprised of a collection of signal
processing units. These units are simply
stages in processing a radio signal, rendered
in the digital domain. The GNU Radio
Companion user connects various signal
processing units, rendered as graphical
blocks, to author a DSP system. Different
blocks and/or arrangements of blocks
represent different algorithms and different

DSP signal flows. Underneath the GNU
Radio Companion overlay, GNU Radio
automates the real-time nature of DSP, the
handling of buffers, timing, multi-threading,
and other software tasks.

The Building Blocks of a DSP
System Using GNU Radio
Companion

The same familiar analog mixers, filters,
audio, I/O connections, and so on, rendered
in the digital domain, are examples of
DSP process units. It is the collection of
these process units to form a system that
enables the DSP to process information. To
author a DSP system, the digital domain
signal processing units are sequenced. To
build a radio, the sequence of DSP units is
connected to an SDR front end and forms
the back end of a practical Software Defined
Radio.

Within GNU Radio Companion, the
foundational signal processing units of
GNU Radio are graphically rendered as
rectangular boxes with I/O ports, and are
called “blocks.” There are more than 300
DSP blocks available in the GNU Radio
Companion DSP library, which can be used
to author DSP projects. These blocks are
collected into 46 broad library categories.

A selection of blocks that have
recognizable applications for typical
Amateur Radio DSP projects are presented
in Table 1. The list does not exhaust the
range of possible blocks of interest to the
creative user. An explanation of Table 1 will
help the user to understand the GNU Radio
library organization. The first column in
Table 1 lists some typical DSP processes,
such as a receiver input or GUI controls.
The middle column lists the GNU Radio
Companion names of the DSP blocks and

42 QEX – July/August 2014

the right hand column lists the GNU Radio
Companion library category in which the
particular DSP blocks are collected. The top
few rows of Table 1 list the signal sources
(such as front ends of SDR receivers) and
signal outputs or sinks (such as front ends
of SDR transmitters). The list of supported
sources and sinks include popular SDR front
ends such as the FUNcube Dongle, RTL
2832 TV Dongle, SDRstickTM, Hermes/
Metis, and the family of Ettus transceivers.3, 4,

Table 1
Selected DSP processes and corresponding GNU Radio Companion blocks

DSP process	 GNU Radio Companion block	 GNU Radio Companion library category
Receiver input	 FUNcube Dongle, RTL 2832 TV Dongle, Hermes NB SDRstickTM, 	 FCD, RTL, HPSDR,	source	 UHD
	  Ettus UHD
Audio input	 Audio source	 Audio
Transmitter output	 UHD sink, Hermes NB	 UHD, HPSDR
Audio output	 Audio sink	 Audio
Data recording	 File sink	 Audio
Filtering	 Bandpass, Low pass, High pass, Band Reject	 Filter
Mod/De-mod	 Rx or TX: WBFM, NBFM, AM, PSK, and others	 Modulators
GUI display/testing	 FFT, Histogram, scope, waterfall, and others	 Instrumentation
Networking	 TCP, UDP source and sink	 Networking Tools
Resampling	 Rational and Fractional Resampler	 Filters
GUI controls	 Radio button, Slider, Tab, and others	 Widgets
DSP flow control	 Valve, Selector, Null source	 Misc., Source

5, 6 Going down the rows:
• The Modulators library category is a

collection of standalone, drop in, DSP units
for either receiving or transmitting AM, FM,
PSK and other modulation modes.

• The Instrumentation library category
contains blocks that find dual use as tuning
aids in the operational GUI for a radio
application and use as trouble shooting tools
in the development of DSP projects.

• The Networking Tools category contains

blocks to network real world radios with local
and wide area networks, a rapidly evolving
aspect of radio communications technology.

• The Resampling process is a type of DSP
process that permits changing the sample
rate of a signal, increasing (interpolating)
or decreasing (decimating) the sample rate.
These Resampler blocks permit control
of sample rates for individual DSP blocks
including filters, real world I/O devices, and
instrumentation displays.

• Widgets provide the GUI controls for
real world operational interfaces. These
controls include radio buttons, sliders, and
GUI tabs, among others.

• The Miscellaneous category contains
selector, valve and null source blocks,
which make for practical software control
of transmit and receive functions within the
SDR transceiver flow graph.

Table 1 illustrates that each signal
processing unit performs a limited amount
of signal processing and that the blocks must
be linked to perform more complex DSP
processes. The function of each block is
determined by the underlying mathematical
algorithm for that DSP process. The algorithm
contained in each block is individually
programmable. The user programs the DSP
block with the mathematical parameters
(math variables) that define the desired
processing.

An example of user configurable GNU
Radio Companion block parameters is
depicted in Figure 1, a parameter box for a
DSP low pass filter block. The parameter
box is brought on screen by double clicking
the block of interest. This low pass filter
block has been programmed to process a
floating point digital connection between
blocks. The Cutoff Frequency — bandwidth
in this case — is user defined as 6 kHz.
The Transition Width — slope of the filter
roll off — was chosen to be 1 kHz. Sample
Rate, Decimation, and Gain are also user
configurable, depending on the particular
DSP process being authored.

Figure 1 — Low pass filter parameter box.

 QEX – July/August 2014 43

How Does the GNU Radio
Companion User Create DSP
Systems in Practice?

The GNU Radio Companion graphical
interface makes the authoring of DSP
systems easy and approachable. Using
GNU Radio Companion terminology, the
total DSP signal flow system, graphically
rendered by arrow linked blocks, is termed
the “flow graph.” The flow graph constitutes
the totality of the DSP that has been authored.
To construct a DSP system using GNU
Radio Companion, one moves the desired
signal processing block(s) from the on
screen library, on the right of the screen, into
the work space in the center of the screen.
The desired parameters are entered into
each block. The ports of all of the signal
processing blocks are linked serially with
arrow link connections by left clicking the
input and output ports of the blocks.

Figure 2 depicts the flow graph of a
GNU Radio Companion DSP that generates
a 1 kHz audio tone output to the user’s
computer speaker. A Waveform source
block, on the left side of the work area, is
connected with an arrow to the Audio sink
block (also known as a computer sound
card), on the right side of the work area. The
user-entered audio frequency parameter is
displayed in the Waveform source block as
a 1000 Hz cosine. The user selected sample
rate parameter for the sound card is displayed
in the audio sink block as 48000 Hz. The
“Options” box in the upper left corner of
Figure 2 identifies the flow graph file name
for display purposes and is not a GNU Radio
Companion DSP block. The smaller box,
labeled as a “Variable” block, is one way to
specify the system sample rate as 48000 Hz.

Flow graphs of this type are visually
s imple and faci l i ta te an intui t ive
understanding of the DSP system function.

The math variables that define the process,
entered as parameters, are displayed within
each block. Trouble shooting in a GNU
Radio Companion flow graph is as easy as
following the signal flow logic illustrated
by the arrows, and by visualizing whether
the parameters displayed in each block are
correct. GNU Radio Companion provides
automatic error messages if ports are not
properly connected and if parameters are not
entered correctly. GNU Radio Companion
also contains a category of instrument
tool blocks such as FFT, oscilloscope,
constellation and auto correlation displays
that can be used to troubleshoot and optimize
the DSP flow graph. The combination of the
GNU Radio Companion visualization of the
signal processing blocks, the automatic error
messages and the included instrument blocks
facilitate the rapid layout and validation of
your DSP flow graph.

Step By Step Guide to Get GNU
Radio With GNU Radio Companion
Up and Running

GNU Radio is a continuously evolving
open source DSP software library with GNU
Radio Companion (GRC) as the graphical
user interface. The entire DSP library and
graphical interface package is designated
by the GRC version number. Installation
of a GNU Radio Companion version
automatically installs the GNU Radio DSP
software library that supports the GNU
Radio Companion interface.

To get started with GNU Radio
Companion, there are four decisions:

1) The computer hardware platform,
2) The operating system (OS),
3) The GNU Radio Companion

installation method,
4) Deciding which version of GNU Radio

Companion to install

Computer Hardware Requirements
Consider your intended use of GNU

Radio Companion to decide how much
compute capability you need. Basic learning
with simple DSP systems is easy with
inexpensive computer systems such as a
single-core, 2 GB computers, and are used
successfully by the authors as starting points.
These computers are fine for learning and
demonstration projects, though the process
of down loading and installation of GNU
Radio Companion versions with this level of
computer can take several hours.

If your goals are to develop more elaborate
DSP systems where real time performance is
important, and to easily keep up with GNU
Radio Companion version updates, a high
performance computer is a wise choice.
Dual and quad core CPUs with clock
speeds above 2.5 GHz, and 4 GB or more of
RAM are preferred for more elaborate DSP
development, such as transceiver DSPs. High
performance transceivers implemented in
GNU Radio Companion typically consume
less than 2 GB of memory, and involve
no page file swaps. With this level of
computer the installation of the GNU Radio
Companion package can be completed in less
than an hour.

Choosing A Computer Operating
System (OS)

Linux Ubuntu is the preferred OS,
versions 12.04 and above, with the most
recent Ubuntu release 14.04 LTS preferred
for new installations. It is a small step to learn
Linux Ubuntu and implement GNU Radio
Companion in a Linux environment. GNU
Radio Companion can be installed on Linux
Ubuntu, Windows OS and Mac OS, but non-
Linux installs seem plagued by problems,
judging from Forum comments, though some
Windows and Mac users do claim success.7
Experienced Windows and Mac OS users

Figure 2 — GNU Radio Companion DSP Flow Graph: The signal source is a 1 kHz audio tone, which is connected to
the audio sink (output) to a computer speaker.

44 QEX – July/August 2014

may have good results at managing the GNU
Radio Companion installation process, while
less skilled users are probably wise to take
the path of least resistance and choose the
Linux Ubuntu OS.

Some users are hesitant to learn a new
operating system. These concerns are greater
than they need be if the user allows for an
initial period of adjustment and occasional
reference to Ubuntu help resources.8 The
application installation in Linux is quite
simple and easily mastered. The installation
of GNU Radio Companion requires some
basic familiarity with a handful of simple
commands in the Linux Ubuntu terminal
application (see Note 8). In the end, Linux
Ubuntu has the look and feel of a late model
Windows operating system. Experienced
Windows users find Linux Ubuntu as logical,
business like, and as easy to understand as
Windows. Linux offers the same right click
functionality as Windows, which greatly
simplifies file manipulation. “Right click is
your friend” in Linux.

Choosing a GNU Radio Installation
Method

The third decision involves how to
install the Linux Ubuntu based GNU Radio
Companion application. Fortunately, several
possibilities exist. Table 1 shows some
common options. “Boot and go” is a great
approach for those with limited computer
skills, or for those who want to quickly install
GNU Radio Companion and experiment.
Bootable USB 2.0 memory sticks and
DVD discs are available and provide both
the Ubuntu operating system and the GNU
Radio Companion application in one simple
package. The “boot and go” approach, allows
the user to run GNU Radio Companion
in the Linux Ubuntu operating system
and avoid making any changes to the host
computer hard drive. The “live” GNU Radio
Companion / Linux bootable media limit
you to certain versions of Ubuntu and GNU
Radio Companion.

To “boot and go”, you insert the media

into the appropriate USB port or DVD
drive, and boot into Linux Ubuntu from that
media. Once booted into Linux, the user
can execute GNU Radio Companion or
use various available Ubuntu applications
such as an e-mail client or Internet browser.
Shutting down the computer closes the
Linux operating system. On restart, the
computer will automatically default to the
native operating system, unless commanded
by the user to again boot from the media
into Linux. A downside is the reduction in
performance due to the limited speed of the
USB or DVD data bus. As a consequence,
the Ubuntu boot process and the execution
of any applications are somewhat slower
than what one expects of the same process(s)
using a standard hard drive (HD). With
“boot and go,” the user cannot save DSP
files. Despite these limits, the “boot and go”
method makes it very easy to quickly get
started with GNU Radio Companion and
delay decisions regarding alternative GNU
Radio Companion installation approaches.

Alternatively, Ubuntu Linux and GNU
Radio Companion can be installed directly
on the user’s computer hard drive. A hard
drive installation is very efficient, and uses the
computer’s native processing performance.
A dual boot installation offers the flexibility
of changing the operating system as needed.
There are numerous resources, on-line and
text books that will help with this process.
The text by Helmke and Graner (see Note 8)
is a very helpful resource and is recommended
for those new to Linux Ubuntu. The book
is reasonably priced ($23 paperback, $15
Kindle), explains the Linux Ubuntu operating
system, and the command line terminal
application. The paperback book also includes
an installation CD of the latest Ubuntu
14.04 LTS operating system software, along
with a helpful hard drive partition utility.
With that book, and others like it, a trouble
free dual boot installation of Linux Ubuntu
and Windows operating systems is easily
accomplished. A free on-line source of
Ubuntu 14.04 LTS installation software is

available and works well.9

Choosing a GNU Radio Companion
Version

GNU Radio is automatically embedded
with GNU Radio Companion when one
installs any GNU Radio Companion version.
A GNU Radio Companion version choice
is a decision for those whose goals are to
fully exploit the potential of GNU Radio
Companion and prefer the GNU Radio
Companion installation to occur to their hard
drive —a choice not applicable to the “boot
and go” approach.

Typical of open source software
applications, GNU Radio and GNU Radio
Companion are in a state of continual
evolution. The current version 3.7.3 at the
time of this writing has become quite stable.
Blocks written for older versions of GNU
Radio (3.6 and earlier) may not function in
3.7, but most of the older blocks have now
been updated for 3.7 compatibility.

For a beginning user installing the latest
version GNU Radio Companion, 3.7.3
is the best choice. Installing the earlier
stable version, GNU Radio Companion
3.6.5.1, allows the user to easily exploit
the reservoir of previously published GNU
Radio Companion DSP projects that can
be found on the Internet. All GNU Radio
Companion versions are available via free
downloads. Table 2 shows how to find and
install the latest and legacy versions of GNU
Radio Companion.

Adding DSP Blocks to the GRC DSP
Library

GNU Radio Companion versions, even
the latest version GRC 3.7.3 doesn’t include
all of the blocks available for the GNU
Radio DSP software library. The DSP
library of GNU Radio can be updated
without changing GNU Radio Companion
versions. Of particular interest to Amateur
Radio operators, all GNU Radio Companion
versions natively include many common
radio interface blocks in the GNU Radio
DSP library. The radio interface blocks

Table2:
Methods to install Linux Ubuntu and GNU Radio Companion

Install Method	 Boot from:	 Where to find:	 Comments:
“Boot and Go”	 DVD and USB versions. Can boot on	 DVD:	 Slow operation due to
	 large range of computer hardware.	 http://gnuradio.org/redmine/news/36	 reduced media data
	 Allows user to use a Windows or 	 USB: 	 rates. Can only save
	 Mac computer to experiment in	 https://www.ettus.com/product/details/LIVEUSB	 designs to the boot
	 Linux without altering the hard drive.		 media.	
	 		
Native Linux and 	 Install Linux and GNU Radio (GRC)	 Linux Ubuntu: 	 Requires learning at
GNU Radio (GRC)	 to hard drive	 www.ubuntu.com/download/desktop/install-	 least a little Linux.
		 ubuntu-desktop	 (See text)

		 GNU Radio Companion:
		 http://sbrac.org/files/build-gnuradio

 QEX – July/August 2014 45

are used to link actual SDR hardware into
GNU Radio DSP, to build a complete SDR.
Updates can include radio interface DSP
blocks not natively installed in older GNU
Radio Companion versions or new radio
interface blocks as new SDR front ends
and interfaces become available. In GNU
Radio language, these uninstalled blocks are
referred to as “Out of Tree” (OOT) blocks.
The term “OOT blocks” refers to blocks not
automatically included in the GNU Radio
DSP software library. Installation details
are typically published with the blocks.
Examples of new radio interface blocks are
the TV Dongle, Hermes NB, the SDRstick
blocks, and Whitebox, which interface GNU
Radio with the TV Dongle, HPSDR Hermes/
Metis, SDRstickTM, and Whitebox SDR front
ends, respectively.10, 11, 12 Other DSP blocks
and package add-ons to the GNU Radio
library can be updated as well.

To install new blocks in GNU Radio
Companion, first locate and download the
block. Installation is completed with a short
series of commands in the Linux terminal
window to install the block into the GNU
Radio library. Locating a new block is as
simple as locating the block repository on
the Internet. Table 3 lists some repositories
for additional blocks.

Step-By-Step Procedure for
Installing Ubuntu Linux

The following procedure is one method
to install Ubuntu 14.04 LTS on a PC. Note
that this may irretrievably replace the existing
operating system.

1) Download and un-compress Ubuntu
14.04 LTS .iso to the desktop from this site:

www.ubuntu.com/download/
desktop/install-ubuntu-desktop.

2) Create a boot media by following the
instructions on the website.

3) Boot your computer from the boot
media. Access the boot menu on most PCs
by selecting F-12 at the splash screen.

4) Select “Install Ubuntu” and follow
the on-screen directions to complete the
installation. The boot medium contains a

user friendly partition utility. Selecting 30
to 50 GB of hard drive space for Ubuntu is
sufficient.

5) After the installation is complete,
remove the boot media and configure the
operating system following the on-screen
directions.

Step-By-Step Procedure for Installing
GNU Radio

The following procedure is recommended
as one reliable method to install GRC3.7.3
and above into Ubuntu 14.04. The procedure
consists of five steps:

1) This step (step 1) is not necessary if you
have not previously attempted to install GNU
Radio Companion onto your hard drive.
Otherwise you will need to remove prior
GNU Radio Companion installations and
residuals, including “distribution” versions
downloaded via the Ubuntu Software
Center. Even if you have “removed” GNU
Radio Companion via the Software Center,
follow this procedure. Copy and paste the
“Gnuradio_remove” script file into your
Ubuntu Home directory. http://svn.tapr.
org/filedetails.php?repname=OpenHPS
DR+Main&path=%2Ftrunk%2FN5EG
%2FGRC3.7%2FGnuradio_remove

2) Copy and paste the latest available
“build-gnuradio” script file provided by
Marcus Leech (http://sbrac.org/files/
build-gnuradio) into the Ubuntu Home
directory.

3) Make sure that GNU Compiler
Collection is installed.

4) Execute the “build-gnuradio” script
file.

5) Open the GNU Radio Companion
application and check that the application is
functional.

Step 1:
(Note: $ is the prompt character displayed

by the terminal, don’t type it yourself.) Open
the Terminal and at the “~$” prompt enter:

$ sudo apt-get purge gnuradio (and Enter)
Step 2:
1) Copy and paste the file “Gnuradio_

remove” to your Home directory as a “shell
script.”

2) Open your Home directory in the
graphical browser.

3) Right click the file “Gnuradio_remove”
and select “Properties”. A popup will open.

4) Select the “Permissions” tab.
5) Select the check-mark “Allow

executing file as a program”
6) Close the popup menu then close the

Home directory.
7) Open the Terminal. At the “~$” prompt

enter
~$ sudo ./Gnuradio_remove (and Enter)

(This command instructs the operating
system to execute the remove script located
in the Home directory.)

Step 3:
Determine if GCC (GNU Compiler

Collection) is installed on your system.
Using the Terminal, at the “~$” prompt enter:

~$ which gcc (and Enter)
If the result is a directory listing such as:

/usr/bin/gcc then GCC is installed and no
further action is necessary.

If the result is a blank line, then GCC is
not installed, and it is necessary to install
it for GNU Radio Companion to build.
The package “build-essential” includes the
compilers, linkers, make, and cmake. In the
Terminal, at the “~$” prompt enter:

~$ sudo apt-get install build-essential
or the alternative command:

$ sudo apt-get --reinstall install build-
essential (and Enter)

Step 4:
Execute the “build-gnuradio” script from

your Home directory.
At the Terminal “~$” prompt enter:
~$./build-gnuradio –m (and Enter) (This

command instructs the operating system to
execute the build script located in the Home
directory and get the latest version of GNU
Radio Companion.)

(Note: The build process can take a long
time depending on the capabilities of your
computer. Computers at the i7 level require
about 20 minutes to complete the build
process. Computers at the i3 level can take
several hours to complete the build and single
core computers longer yet. A number of “y”

Table3
Installing GNU Radio Companion Versions From Source

Recommended Installation Steps	 Source	 Command(s)
Download the Build GNU Radio (GRC) script,	 http://sbrac.org/files/build-gnuradio	 Download it using web browser.
and execute it. Can take 1-8 hours depending
on computer.

Install GNU Radio (GRC) 3.7.3 (latest version) 		 Use Linux Terminal command:
(recommended)		 ./build-gnuradio –m

Command to install GNU Radio (GRC)3.6.5.1		 Use Linux Terminal command:
(Older version that is compatible with legacy		 ./build-gnuradio –o
published DSP flow graphs.)

46 QEX – July/August 2014

Table4
Sources for Adding Selected “Out of Tree Modules” (Blocks) to the DSP Library

Out of Tree DSP Block	 Location
Hermes / Metis HPSDR interface.	 http://svn.tapr.org/repos_sdr_hpsdr/trunk/N5EG
SDRstickTM interface	 http://svn.sdrstick.com/listing.php?repname=
	 sdrstick-release

commands, for “yes”, are required in the
Terminal during the initial stages of the build
process, so pay attention.)

Step 5:
To open GNU Radio Companion after

the build is compete, open the Terminal, and
at “~$” enter:

~$ gnuradio-companion (Enter)

Step-by-Step Procedure for Installing
Out-Of-Tree Modules into GNU Radio

To install additional DSP block types, not
included in the official released version of
GNU Radio (called ‘out-of-tree’) there are
three steps:

1) Download and uncompress the source
code file for the desired block into a directory
(below the Home directory). In this example
we will refer to the gr-hpsdr Hermes NB
block. Your home directory is usually
identified as ~ and we want to uncompress
the complete structure into a subdirectory of
~. That complete new block will include files
and even deeper directories (for example,
build). Normally the uncompress program
takes care of setting it all up for us. For
example, you might create a new directory
~/gr-hpsdr and unzip the code into it. In
Linux, directory names can include the dot
character.

2) Enter a series of commands in the
Terminal that will compile and install the
source code into the GNU Radio DSP library.
The commands are those that follow the “$”
sign in this text, for example:

~/ gr-hpsdr/build/$ make
Open GNU Radio Companion and

confirm the presence of the block(s) in the
library.

Step 1:
Create a new directory and check to make

sure that the uncompressed block files are
present in the Home directory.

	 In the Terminal at “~$”enter:
	 ~$ mkdir gr-hpsdr (Enter)
	 ~$ cd gr-hpsdr (Enter)
	 ~/gr-hpsdr$
Use the graphical archive manager to

extract the source code into the newly created
directory.

	 ~/gr-hpsdr$ ls (Enter)
A list of the files in your new directory

will be listed, including the source directory
for the block you are intending to install, in
this example the directory: gr-hpsdr. It should

include some subdirectories, such as apps,
build, cmake, python, and others, and the file
CmakeLists.txt. Check to see if you have the
build subdirectory, if not create it.

~/gr-hpsdr$ mkdir build (Enter)
Step 2:
Open a Terminal, and at the “~$” prompt

enter the following series of commands:
	 ~$ cd ~/ gr-hpsdr/build (Enter)
	 ~/ gr-hpsdr/build/$ cmake ../ (Enter)
[Note the space after “cmake” and before

“../”]
	 ~/ gr-hpsdr/build/$ make clean (Enter)
	 ~/ gr-hpsdr/build/$ make (Enter)
	 ~/ gr-hpsdr/build/$ sudo make install

(Enter)
	~/ gr-hpsdr/build/$ sudo ldconfig (Enter)
	 ~/ gr-hpsdr/build/$ exit (Enter) and the

terminal will close.
Step 3:
Open the GNU Radio Companion

application and verify that the desired block
is installed in the DSP library list. If you
installed gr-hpsdr, for example, there would
now be an hpsdr selection on the panel with
all the gnuradio blocks, and inside that hpsdr
selection will be the hermesNB block. Other
out-of-tree modules will have other names
of course.

Congratulations. You now have a working
installation of GNU Radio Companion on
your computer. In Part 2 of this article we will
present several examples of what you can do
with GNU Radio.

ARRL member, Official Observer, and
Amateur Extra class licensee John Petrich,
W7FU, was first licensed as K6OJV in 1955
and then as W7HQJ after moving to Seattle.
He is a practicing physician, and Clinical
Associate Professor of Psychiatry, School of
Medicine, University of Washington. John
is active in community affairs, enjoys family
life, sea kayaking and cycling. John’s radio
experience parallels the evolution of radio
communications technology over the past
century. He started with a homebrew crystal
receiver followed by a much loved and
modified single tube regenerative receiver in a
cardboard box. Upon earning his license, he
graduated to operating QRP using a crystal
controlled 6V6 tube transmitter constructed
on a wooden chassis. Subsequently his rigs
evolved from modified surplus gear to home
constructed to full featured analog receivers
and transmitters. John’s first love is CW,

the prototypical digital QRP mode. He
credits radio with endless opportunities for
engaging learning opportunities and long
lasting friendships. At present John’s rig is an
experimenter’s station built around the HPSDR
Atlas bus system. The station is supplemented
with back-up rigs using Ettus and SDRsticktm

SDR “front ends” and DSP “back ends”
built using GNU Radio Companion. John is
interested in communicating with others who
have similar interests.

ARRL Life Member, and Amateur Extra
class licensee Tom McDermott, N5EG, has
been licensed 45 years. He is a member of
TAPR, IEEE, and Internet2, and has been
involved in the development of fiber optic
transmission and switching systems since
the initial deployment of single-mode fiber
in positions ranging from ASIC designer to
CTO. He currently is a participant in the
IEEE 802.3 Ethernet 100GE and 400GE
standards projects. Tom has a BSEE degree
from the University of California, Berkeley,
and has written one textbook on wireless
digital communications. He’s been involved in
many computer-related ham projects, from the
TEXNET layer 3 packet radio system, to a VNA
project, network simulation, and other efforts.
His current interest is using a HPSDR Hermes
SDR transceiver and GNU Radio to experiment
with DSP algorithms.

Notes
1The GNU Radio Wikipedia page provides

more detailed information about this
software package: http://gnuradio.org/
redmine/projects/gnuradio/wiki

2The home page for GNU Radio
Companion is found at: http://gnuradio.
org/redmine/projects/gnuradio/wiki/
GNURadioCompanion

3For details about the Fun Cube Dongle, go
to: www.funcubedongle.com/

4There is more information about the
SDRstick at: http://sdrstick.com/

5The TAPR website has detailed information
about the High Performance Software
Defined Radio project, including the Atlas
backplane and the various cards that plug
into the backplane to create the radio: www.
tapr.org/

6To learn more about Ettus Research and
their universal software research peripheral
(USRP) hardware visit the Ettus website:
www.ettus.com/

7You can find a lot of information and answers
to common questions on the GNU Radio
forum at: https://www.ruby-forum.com/
forum/gnuradio

8Matthew Helmke and Amber Graner, The
Official Ubuntu Book, Seventh Edition,
Prentice Hall, ISBN -13: 978-0-13-301760-1.

9You can find on-line instructions and files to
install Ubuntu at: www.ubuntu.com/down-
load/desktop/install-ubuntu-desktop

10There is more information about the Hermes
and Metis hardware on the TAPR website:
www.tapr.org/kits_hermes.html and
www.tapr.org/kits_metis.html

11For information about the SDRStick hard-
ware, see: http://sdrstick.com/

12More information about the novel Whitebox
SDR project is available at: radio.testa.co/
index.html#document-faq

 QEX – July/August 2014 47

Upcoming Conferences

Central States VHF Society

July 25 – 27, 2014
Austin Marriott South

4415 South IH35
Austin, TX 78744

Hotel Reservation Phone
888-253-1628

The 48th Annual CSVHFS Conference will be
held July 25–27, 2014. There will be a
Conference Proceedings, which will be avail-
able at the conference.
Presentations and Posters at the conference
may be technical or non-technical but will cover
the full breadth of amateur weak signal VHF/
UHF activities. The presentations generally
vary from 15 to 45 minutes, covering the high-
lights with details in the Proceedings paper.
Topics of Interest include:
•  VHF/UHF Antennas, including modeling/
design, arrays and control
•  Construction of Equipment – such as trans-
mitters, receivers and transverters
•  RF power amplifiers – including single and
multi-band, vacuum tube and solid state
•  Preamplifiers (low noise)
•  Regulatory topics
•  Software defined radio (SDR)
•  Test equipment – including homebrew, using
and making measurements
•  Operating — including Contesting, Roving
and DXpeditions
•  Propagation – including ducting, sporadic E,
tropospheric and meteor scatter
•  Digital Modes – WSJT, JT65 and others
•  EME (Moon Bounce)
•  Digital Signal Processing (DSP)
Banquet Speaker
The Saturday evening Banquet Speaker will
be Jimmy Treybig, W6JKV.
Registration information and other details are
available at the Society website: www.csvhfs.
org/2014conference.

The 33rd Annual ARRL and
TAPR Digital Communications

Conference

September 5-7, 2014
Austin Marriott South

4415 South IH-35
Austin, TX 78704

Hotel Reservation Phone:
512-441-7900

Now is the time to start making plans to
attend the premier technical conference of
the year, the 33rd Annual ARRL and TAPR
Digital Communications Conference. This
year’s DCC will be held September 5 – 7,
2014 in Austin Texas, at the Austin Marriott

AMSAT Symposium

October 10-12, 2014
Double Tree by Hilton Baltimore

— BWI Airport
890 Elkridge Landing Rd

Linthicum, MD 21090
Hotel Reservation Phone:

410-859-8400
The 2014 AMSAT Symposium and General

Membership Meeting will be held in the
Baltimore/Washington DC area, at the Double
Tree by Hilton Baltimore — BWI Airport, on the
weekend of October 10-12 2014.

Whether you are a seasoned satellite
operator or think you might like to give it
a try, the Symposium will have plenty of
presentations of interest. Catch up on the
latest news about AMSAT’s various satellite
projects as well as presentations about
equipment and operating practices. The Call
For Papers has not been posted to the AMSAT
website at the time this column was being
prepared, but now is the time to start thinking
about any paper you might be interested in
writing, for presentation at the Symposium, or
for inclusion in the Proceedings book.

Check the AMSAT website (ww3.amsat.
org) for updated information. Mark those
dates on your calendar now, and plan to
attend.

Microwave Update

October 24-25, 2014
Rochester Marriott Airport

1890 Ridge Road West
Rochester, NY 14615

Hotel Reservation Phone: 585-
248-8640 or 800-228-9290

The Rochester VHF Group (RVHFG)
is hosting MUD 2014 at the Rochester
Marriott Airport Hotel. Microwave Update is
an annual technical conference and includes
presentations by leading Amateur Radio
microwave experimenters. Attendees from
all over the world have the opportunity to
discuss the latest technical developments
and operating achievements taking place
in the 902 MHz-and-up amateur radio
frequencies. There will be test equipment
for measurements, including noise figure
up to 47 GHz.

The conference will conclude with the
Saturday evening dinner banquet. For early
arrivals on Thursday, there will be a tour at
the nearby Antique Wireless Association
(AWA) Museum.

Microwave Update 2014
— Call For Papers

T h e M i c r o w a v e U p d a t e 2 0 1 4
program committee is calling for papers
and presentations on the technical and
operational aspects of microwave Amateur

South. This is the same hotel as the Central
States VHF Society Conference. Regular
attendees will note that the conference is a
couple of weeks earlier than normal this year.
It is the weekend after Labor Day.

The ARRL and TAPR Digital Communi-
cations Conference is an international forum
for radio amateurs to meet, publish their
work, and present new ideas and techniques.
Presenters and attendees will have the
opportunity to exchange ideas and learn about
recent hardware and software advances,
theories, experimental results, and practical
applications.

Topics include, but are not limited
to: Software defined radio (SDR), digital
voice (D-Star, P25, WinDRM, FDMDV,
G4GUO), digital satellite communications,
Global Position System (GPS), precision
timing, Automatic Packet Reporting System®
(APRS), short messaging (a mode of APRS),
Digital Signal Processing (DSP), HF digital
modes, Internet interoperability with Amateur
Radio networks, spread spectrum, IEEE
802.11 and other Part 15 license-exempt
systems adaptable for Amateur Radio, using
TCP/IP networking over Amateur Radio,
mesh and peer to peer wireless networking,
emergency and Homeland Defense backup
digital communications, using Linux in
Amateur Radio, updates on AX.25 and other
wireless networking protocols and any topics
that advance the Amateur Radio art.

This is a three-Day Conference (Friday,
Saturday, and Sunday). Technical sessions
will be presented all day Friday and Saturday.
In addition there will be introductory sessions
on various topics on Saturday.

Join others at the conference for a Friday
evening social get together. A Saturday
evening banquet features an invited speaker
and concludes with award presentations and
prize drawings.

The ever-popular Sunday Seminar has
not been finalized yet, but is sure to be an
excellent program. This is an in-depth four-
hour presentation, where attendees learn
from the experts. Check the TAPR website
for more information: www.tapr.org.

Call for Papers

Technical papers are solicited for
presentation and publication in the Digital
Communications Conference Proceedings.
Annual conference proceedings are published
by the ARRL. Presentation at the conference
is not required for publication. Submission of
papers are due by 15 July 2014 and should
be submitted to: Maty Weinberg, ARRL, 225
Main Street, Newington, CT 06111, or via
the Internet to maty@arrl.org. There are
full details and specifications about how to
format and submit your paper for publication
on the TAPR website.

Even if you are not presenting a paper
at the conference, plan to bring a project or
two to display and talk about in the popular
Demonstration Room, or “Play Room” as it
is commonly known.

48 QEX July/August 2014

•   A n t e n n a d e s i g n , s i mu l a t i o n ,
construction, measurement, application.

•  Microwave building blocks (LNAs, PAs,
LO chains, Mixers, Synthesizers, Filters,
and so on).

•  Transverters (single and multiband).
•  Fixed station, Rover and Beacon

design, packaging and operation.
•  Operating techniques, software and

other aids.
•  Weak signal propagation modes and

enhancements.
•  New or unusual emission modes

(ATV, digital modulation, wide area packet
networks, and similar topics).

•  Practical effects and limits of phase
noise, antennas, path characteristics on
various emission modes.

•  Microwave components (affordable and
available modern commercial components;
homebrewed; surplus).

•  Repeaters (microwave bands and/or
unusual modes like ATV, packet WAN).

•  Construct ion techniques (SMT,
wirebond, microstrip, waveguide, substrates,
homebrew).

•  Measurement equipment and techniques
(tuning amplifiers or filters, optimizing noise
figure, measuring phase noise, antenna

Radio communications. Papers will be
published in the conference proceedings
(print and CD). Many will also be selected
for presentation at the conference.

The deadline for proceedings paper
submissions is August 15, 2014. The Microsoft
Word file format (text) is preferred for these
papers. The deadline for the presentation
version of selected papers is September
1, 2014; Microsoft PowerPoint (slides) file
format is preferred for presentations.

Even if you will be doing a presentation
at the conference, please try to make your
proceedings paper submission more than
just the outline slides from the presentation.
We would like the published proceedings to
provide full content for people who are not
able to attend the conference presentations.

Detailed formatting information for
authors (margins, photos, other files) is
provided on the website.

Please e-mail your papers, as well
as questions or comments regarding the
technical program, to Bill Rogers K2TER:
k2ter@rochester.rr.com.

Solicited topic areas include:
•  Centimeter, millimeter, submillimeter

and light wavelengths.

patterns and gain; professional results on
homebrew/shoestring budgets).

•  CAD (preferably free or low cost) for
circuit, antenna, path and system simulation
and design.

•  Conversion of surplus microwave
equipment.

•  Or — suggest your own topics.
Submissions may range from short

notes to full length technical papers, original
research to hints and tips, new designs
to surplus conversions, professionally
engineered to hacked on a shoestring
budget.

Survey papers that summarize current
know-how and tutorials that help and
encourage newcomers are also welcome.
Some topics may be organized and presented
as workshops (for example, construction and
measurement techniques).

We are looking forward to seeing you and
your presentation at MUD 2014.

Bill Rogers K2TER: k2ter@rochester.
rr.com.

MUD 2014 Technical Program Chairman
For further details and registration, go to

the Microwave Update 2014 website www.
microwaveupdate.org.

Array Solutions Your Source for Outstanding Radio Products

Sunnyvale, Texas USA
Phone 214-954-7140
sales@arraysolutions.com
Fax 214-954-7142

Array Solutions’ products are in use at top DX and Contest stations worldwide as well as commercial and governmental installations.
We provide RF solutions to the DoD, FEMA, Emcomm, UN, WFO, FAA and the State Dept. for products and installation of antennas
systems, antenna selection, filtering, switching and grounding. We also offer RF engineering and PE consulting services.

www.arraysolutions.com

AN Wireless and Array Solutions –
Back Together Again

Taking Amateur Radio to New Heights
Free standing towers to 180 feet and complete
antenna systems!
Packages Include:
■ PE Stamped certifi cations for your state
■ Tower, Tower base and accessories
■ Rotators, plates, thrust bearings, certifi ed masts
■ Lightning arrestors and grounding products
■ Antennas, baluns
■ Antenna switches and phasing systems
■ Professional delivery at discounted prices
Call us to discuss your needs and we can engineer an economical, safe, and
effective system for you.

Professional Grade Equipment from Array Solutions

Array Solutions Half Page for JULY 2014.indd 1 5/2/2014 9:21:59 AM

QEX 7/2014

Amateur Radio Transceiver
Performance Testing
ARRL Order No. 0086
Special ARRL Member Price!
Only $19.95* (retail $22.95)

*plus shipping and handling

Amateur Radio Transceiver
Performance Testing

Understanding HF
Transceiver Data from
QST Product Reviews
By Bob Allison, WB1GCM

QST’s monthly “Product Review” column
has long been the most-read section of the
magazine. That’s not surprising as most radio
amateurs are interested in reading about the
latest station equipment — and product review
testing helps operators make informed
decisions based on their needs.

Amateur Radio Transceiver Performance
Testing explains in detail the performance
data tables from QST Product Reviews,
providing a valuable resource for Amateur
Radio operators who are looking to
purchase a transceiver. It discusses how
published laboratory data relates to actual
performance, how each major test is
performed, the signifi cance of each test,
and what the numbers mean. You’ll
gain a better understanding of the
extensive testing ARRL performs,
technical terms and parameters
presented in Product Review, and
develop the capability to reach your
own conclusion about which HF
transceiver is best for you.

QS7 2014 Digital Amateur Radio Transceivers Ad.indd 1QS7 2014 Digital Amateur Radio Transceivers Ad.indd 1 05/22/2014 10:17:51 AM05/22/2014 10:17:51 AM

QUICKSILVER Placed for Crops.indd 1QUICKSILVER Placed for Crops.indd 1 6/9/2014 10:26:27 AM6/9/2014 10:26:27 AM

