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A New Year Awaits Us!
For many of us, a new year means excitement and anticipation of everything that the new 

year will bring. We make resolutions (maybe even writing some of them down) and plan to keep 
them throughout the year. (Well, okay, most of us are realistic enough to know we’ll be lucky to 
keep them until February, but isn’t every new year an opportunity to try again? Maybe this will 
be the year!) 

For QEX, we anticipate six issues filled with the technical content, projects, and theoretical 
discussions to which we all look forward. I know there are some excellent articles waiting to be 
published. I also know that some of our readers are planning to write an article about their favor-
ite topic, and submit it to QEX in the hopes of seeing it in print some day soon. Whether you are 
interested in presenting some ideas for a new technical development, reporting on some exper-
imentation you have done, or describing a new project that you want to share, QEX looks for-
ward to hearing from you!

Each of our readers and authors have the opportunity to help QEX maintain its reputation as 
the best Amateur Radio technical literature available anywhere. I have often encouraged our 
readers to submit articles for ARRL publications. We depend on you to share the technical mate-
rial that you like to read. I have talked with some authors who were reluctant to write for QEX 
because they believed that their article would not be technical enough for this magazine. There 
has been a perception that while much of the technical content of QST is written at a simpler 
level, with shorter articles that will appeal to neophytes and those with less technical back-
grounds, QEX articles must be much more advanced, or even complicated. Whenever I have 
been confronted by a potential author who has that attitude, I have tried to convince them that 
there is no “technical gap” between articles suitable for publication in QST and those suitable for 
publication in QEX. 

The ARRL technical editorial staff gives careful consideration to each article that is submitted 
for possible publication. Each article is reviewed by some of our ARRL Technical Advisors, and 
they provide feedback about the technical content and the accuracy of the information contained 
in the article. Then each article is examined to determine how to best make use of the material. 
Some articles are selected for publication in QST (even some articles that were submitted for 
QEX) and some are selected for publication in QEX (even some that were submitted for QST). 
The editorial staff may even suggest some articles for publication in NCJ, or occasionally even 
one of our books, such as The ARRL Handbook or The ARRL Antenna Book. Of course there 
are also some articles that just don’t fit the needs of ARRL publications at that time.

My point is that you should write your article and submit it for possible publication. Let the 
ARRL editorial staff determine the publication for which it may be best suited. I can assure you, 
however, that I have never seen an article that was considered too complex or technical for QST, 
but too simple for QEX.

I have recently had several discussions with a reader who expressed some concern that the 
content of QEX was becoming too focused on construction projects and articles describing how 
the author had built the project, often omitting details about how they developed that design. This 
reader was lamenting “the good old days” when the articles in QEX seemed much more focused 
on purely technical discussions and design considerations, perhaps from an engineering per-
spective. I’ll admit that I like construction projects, and I have enjoyed presenting many projects 
in the pages of QEX. The fact remains, however, that you, our readers drive the content of QEX 
by what you submit for publication. If most of the articles submitted are detailed construction 
projects, then there will be more of those printed. If more articles with detailed technical discus-
sions are submitted, then there will be more of that type of article to present. 

The continued success of QEX depends on you, our readers, and our authors. I truly hope 
QEX can continue to be strong technical publication. Unfortunately, I will no longer be guiding 
QEX as its Editor. With the change from 2015 to 2016, I will no longer be a member of the ARRL 
Headquarters Staff. I have enjoyed 34 ½ years on the staff, first as an Assistant Technical Editor 
and then as a Senior Assistant Technical Editor. For the last 8 ½ years I have served as QEX 
Editor. I have enjoyed working with all of the authors, and I have also enjoyed meeting many 
authors and readers in person, at various conferences and conventions. If our paths cross at 
some future date, I hope you will pause and say hello. Please continue to support QEX, and 
help it remain a strong technical publication.

73,

Larry Wolfgang, WR1B
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Rua Cel Manuel de Moraes 204, Campinas, SP 13073-022, Brazil; codigocerto@yahoo.com.br

Digitally Tunable Band-Pass Filter

Computer control tunes this versatile band-pass filter to 
meet changing requirements. 

1Notes appear on page 8

Band-pass filters have always been 
important, but new hardware technology has 
made them even more significant. In environ-
ments with large amounts of electromagnetic 
pollution, this new type of band-pass filter 
can be very helpful.

To construct the digitally tunable band-
pass filter, I used digitally tunable capacitors 
(DTC). These components have a variable 
capacitance that can be controlled digitally. 
The digitally tunable band-pass filter in this 
article covers a frequency range of 132 MHz 
to 148 MHz, and can handle up to 26 dBm 
of RF power. It can be integrated into dif-
ferent projects, including software defined 
radio (SDR) projects, where the band-pass 
filters are of fundamental importance to the 
end result.

Digitally Tunable Capacitors (DTCs)
The key parts of the band-pass filter 

described in this article are digitally tunable 
capacitors (DTCs), which are made up of 
several high-Q-factor metal-insulator-metal 
(MIM) capacitors, which are digitally con-
trolled FET switches. Figure 1 is a functional 
block diagram of a DTC.

The DTC used in the design of this proj-
ect is the Peregrine PE64102, which has a 
capacitance range of 1.88 pF to 14.0 pF in 
steps of 391 fF, totaling 32 states that are con-
trolled with 5 bits through a serial peripheral 
interface (SPI) bus.1 The Peregrine PE64102 
works at 100 MHz to 3 GHz, and can handle 
up to 26 dBm of RF power.

Design the Filter
Basically, a band-pass filter is used to 

attenuate all signals having frequencies out-

Euclides Lourenço Chuma, PY2EAJ

The Computer, Arduino Uno and band-pass filter circuit board.

QX1601-Chuma01

RF+

Serial
Interface

CMOS Control
Driver and ESD

RF–

ESD ESD

Figure 1 — This is a functional block diagram of the digitally tunable capacitors.
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QX1601-Chuma02

–3 dB
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QX1601-Chuma03

X

X
(A)

Generator And Load

Rs

RL

VL2
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(B)
Generator, Filter And Load

Rs

RL
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Figure 2 — This is an idealized response 
curve of a band-pass filter.

Figure 3 — Here is a block diagram that 
explains filter insertion loss.

Figure 4 — This is a screen shot of the filter simulation using the Agilent Genesys 2010 
software.

Figure 5 — This photo shows the completed filter circuit board.



  QEX  January/February 2016   5 

side the band of interest. Figure 2 shows the 
frequency response of a real band-pass filter, 
where fc is the center frequency and the band-
width is the difference between frequencies 
f1 and f2, where the attenuation is 3 dB com-
pared with the magnitude of fc.

To develop a band-pass filter, we need to 
know several filter details, such the center 
frequency, bandwidth, terminating resis-
tance, type of filter response (Butterworth, 
Chebychev, Elliptical, and so on), and fil-
ter order. With these parameters, we can 
design our filter using simulation software 
or through manual calculations (hard work).

Several criteria are used to measure the 
performance of a filter, but the ones used 
most are the insertion loss and return loss. 
Insertion loss is the loss of signal power 
resulting from the insertion of a filter in the 
transmission line. In Figure 3, if RL = Rs then 
VL1 is half of Vs. If you add a filter between 
the generator and the load at position X-X, 
then any additional loss is the result of the 
insertion loss of the filter.

For the band-pass filter development of 
this article I used the Genesys 2010 software 
from Agilent. I chose the band-pass filter 
“Top C Coupled” and Chebyshev type, of 
order 4 and with 5 MHz of bandwidth. After 
the first tests, it became clear that there was 
a downshift of the frequency range, and so I 
made some changes in component values to 
achieve the frequency range of 132 MHz to 
148 MHz.

The model “Top C Coupled” filter was 
chosen to use fewer inductors (where Q is 
critical), and also to come up with a design 
that uses component values that are available 
on the market.

Building It
The biggest challenge in building the fil-

ter was the size of the digitally tunable capac-
itors. They are available as a quad flat-pack, 
no-lead 12-pin package with dimensions of 
2 × 2 mm and 0.5 mm pin spacing! 

The circuit board design was done in 
Kicad software and the manufacture was 
made with common characteristics (2-Layer 
FR4 1.6 mm).

The capacitors used are commonly avail-
able, with 5% tolerance, but the ideal would 
be to use pre-selected NP0 capacitors. The 
inductors are manufactured by Coilcraft, 
and have a Q of about 40 at 150 MHz. The 
inductors also offer a certain challenge to be 
soldered in place on the circuit board. The 
finished circuit board is shown in Figure 5. 
Figure 6 is the schematic diagram of the digi-
tally tunable band-pass filter.

Controls
I adapted an Arduino Uno circuit board 
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QX1601-Chuma07

Software In
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USB Arduino

Uno

SPI Bandpass
Filter

Figure 7 — This block diagram shows the control of the band-pass filter.

Figure 8 — This is a screen shot of the filter 
control software.

QX1601-Chuma09

VDD
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RF+

VDD
SDA

SCL

SEN

GNDDGND

DTC2

RF–

RF+

VDD
SDA

SCL

SEN

GNDDGND

DTC1

RF–

QX1601-Chuma10

RF Signal Generator
Rohde Schwarz SMT 03

(Sweep Mode)

Spectrum Analyzer
HP 8562A

(Trace -> Max Hold)

Bandpass
Filter

Figure 9 — Here is the serial peripheral interface (SPI) bus sharing to control the digitally 
tunable capacitors.

Figure 10 — This diagram shows the test set-up for the filter.
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for the control of the digitally tunable capaci-
tors.2 The Arduino Uno board is controlled 
by software on a PC that sends commands 
through a serial-over-USB interface. The 
lead photo shows the complete set-up, with 
a laptop computer, the Arduino Uno board 
and the band-pass filter. Figure 7 is a block 
diagram of the system.

I adopted this control configuration 
because it is simple, inexpensive, and allows 
various filter settings with few hardware 
changes. The choice of the Arduino Uno was 
motivated because it is simple to program 
and has low cost.

The software on the computer was 
programmed in C# with Microsoft Visual 
Studio, using the CmdMessenger library.3 
The software for the Arduino Uno was pro-
grammed in Arduino language, which is 
relatively simple. Figure 8 is a screen shot 
of the control software for the tunable band-
pass filter.

The four PE64102 digitally tunable 
capacitors use a 3-wire serial 8-bit interface 
compatible with a serial peripheral interface 
(SPI) bus, to be controlled by the Arduino 
Uno board. The digitally tunable capacitor 
selection is made through the serial enable 
signal to each capacitor, and then shared on 
the same bus between all of the capacitors. 
See the schematic of Figure 9.

The PE64102 digitally tunable capacitors 
operate with 2.3 V to 3.6 V, and the Arduino 
Uno board takes 5 V. Thus, I modified the 
Arduino Uno board to operate with 3.3 V, 
and thereby the serial peripheral interface 
bus signals are compatible with these capaci-
tors.4 There are also other options to convert 
the serial peripheral interface bus signals of 
5 V to 3.3 V.

Results
Although the most appropriate piece of 

test equipment to adjust the filter would be a 
vector network analyzer, I did not have one 
available. Instead, for testing, I used a Rohde 
& Schwarz SMT 03 RF signal generator 
with the sweep function enabled and plugged 
into the filter connector. At the other end 
was an HP 8562A spectrum analyzer with 
the “Trace -> Max Hold” function enabled. 
Figure 10 illustrates these connections.

The results are satisfactory, as can be seen 
in Figures 11, 12, and 13. For a more detailed 
analysis a vector network analyzer is needed.

The results point to a downshift of fre-
quency compared to the simulation software. 
One of the possible causes could be the para-
sitic capacitance of the circuit board, which 
was developed with simple software and 
common materials. Another possible cause 
is the tolerances of capacitors and inductors. 
Parasitic capacitances, parasitic resistances, 
and parasitic inductances of the PE64102 

Figure 11 — This spectrum analyzer photo shows the results of the filter test. There are two 
scans, with center frequencies of 132 MHz and 148 MHz. 

Figure 12 — This spectrum analyzer photo shows a scan of the filter, with the center 
frequency at 148 MHz.
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digitally tunable capacitors may also contrib-
ute to this frequency shift. Figure 14 shows 
a model of the filter circuit, with all of the 
parasitic components.

Conclusions
The positive points of this project are the 

linearity of the tuning center frequency, low 
cost, simplicity and small size. This design is a 
starting point for more complex projects, such 
as a set of digitally controlled filters for mul-
tiple bands, or even to form part of an SDR 
design with an adjustable band-pass filter 
that is controlled digitally by the same SDR 
software. Then, when the SDR frequency is 
changed, the software automatically changes 
the frequency of the band-pass filter.

Euclides Lourenço Chuma, PY2EAJ, earned 
a degree in mathematics from Unicamp, and 
a graduate degree in software engineering. 
Currently, he is working on a graduate degree 
in network and telecommunications systems in 
the INATEL. He has been a licensed Amateur 
Radio operator since 2008, and lives in Brazil. 
He works in software development, and is 
interested in everything about RF. He is also 
interested in antennas, microwaves, SDR and 
cognitive radio.

Notes
1You can find the Peregrine PE64102 data-

sheet at: www.psemi.com/pdf/datasheets/
pe64102ds.pdf.

2For details about the Arduino Uno, go to: 
arduino.cc/en/main/arduinoBoardUno

3To learn more about the Arduino Uno 
CmdMessenger and to download the files, 
go to: playground.arduino.cc/Code/
CmdMessenger.

4Details about converting the Arduino Uno to 
operate from 3.3 V are available at: https://
learn.adafruit.com/arduino-tips-tricks-and-
techniques/3-3v-conversion. Software and 
circuit board files are available at: www.
chumalab.com.br/digitally-tunable-
bandpass-filter/

Figure 14 — This is a model of the equivalent circuit of the PE64102 digitally tunable 
capacitor.

Figure 13 — This spectrum analyzer photo shows a scan of the filter, with the center 
frequency at 132 MHz.
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Letters to the Editor
A Frequency Standard for 
Today’s WWVB (Nov/Dec 2015)
Hi Larry,

After the Nov/Dec 2015 issue went to press, I 
discovered several errors in the text and draw-
ings. In several places, WWVB signal levels 
expressed in mV/m were printed as mV/m. 
These occurred on pages 14 (caption to Figure 
3), 16 (bottom of middle text column), and 
29 (e = local field strength (mV/m)).

Several of the schematic diagrams also had 
some errors. In Figure 7, there is a missing con-
nection between U2 pin 7 and the right side of 
R10. On Figure 12b, U38 is mislabeled. U38 
should be an LMC6484N. Figure 13 had several 

wiring errors around U14B and U15A. Also 
there is no connection between U17 pin 7 and 
the BCD Switch. That pin should connect to 
ground. The Output Frequency Selector should 
have listed signals at 25 kHz and 10 kHz. On 
Figure 16, op-amps U1D and U6D should be 
labeled as LM837N devices. 

— 73, John Magliacane, KD2BD, 1320 
Willow Dr, Sea Girt, NJ 08750; kd2bd@
amsat.org

Hi John,

My apologies for all of those errors. We con-
tinue to be plagued by Greek characters in the 
Symbol font changing back to normal text at 
times, and no one noticed those Greek mu char-
acters (m) were replaced by the normal letter m. 

I don’t believe we have ever had that many 
errors on schematic diagrams in a single article. 
That is embarrassing! I learned later that the 
QEX contract graphics artist was having some 
personal issues, and he did not do his normally 
careful drawing work on your article. We have 
corrected all of the errors that you have called to 
my attention. Your article is the Sample Article 
for the Nov/Dec 2015 issue. The fully corrected 
article is available for viewing and download on 
the “This Month in QEX” page on the ARRL 
website. Readers can go to www.arrl.org/files/
file/QEX_Next_Issue/2015/Nov-Dec_2015/
Magliacane.pdf.

 
— 73, Larry Wolfgang, WR1B, QEX Editor; lwolf-
gang@arrl.org
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David L. Hershberger, W9GR

10373 Pine Flat Way, Nevada City, CA 95959: w9gr@arrl.net

External Processing for Controlled 
Envelope Single Sideband

It is now possible to separate the CESSB processing 
from the transmitter. 

1Notes appear on page 12

In my Nov/Dec 2014 QEX article on con-
trolled envelope single sideband (CESSB), I 
stated that generation of the CESSB signal is 
best integrated into the SSB modulator of a 
radio, rather than being done in an external 
box.1 It is possible to separate CESSB gen-
eration from a radio, however, if the radio 
SSB modulator is designed with this in mind.

The SSB modulator must be linear phase, 
and must have a bandwidth sufficient to pass 
the CESSB spectrum, including its spectral 
skirts. If an otherwise conventional SSB 
modulator meets these requirements, then the 
peak control obtained by the CESSB process 
will be preserved.

This will make it possible to use external 
processing to create CESSB. The radio may 
be used for conventional SSB if an external 
CESSB processor is not available.

The envelope control problem with single 
sideband is that limiting audio peaks does 
not accurately limit SSB envelope peaks. The 
envelope of an SSB signal is basically the 
vector magnitude of the modulating audio 
signal plus its Hilbert Transform. The Hilbert 
Transform is an audio phase shift of 90° for 
all frequencies within its bandwidth. The 
Hilbert Transform overshoots, making RF 
envelope amplitude control difficult.

CESSB is a way of controlling the 
inevitable RF envelope overshoots caused 
by the Hilbert Transform. These Hilbert 
Transform overshoots occur regardless of 
the method used to generate SSB. A phasing 
method SSB modulator produces a Hilbert 
Transform directly, by means of audio 
phase shift networks. Filter and Weaver 
method SSB modulators produce the Hilbert 
Transform indirectly.

If the envelope overshoots are not 
reduced, then ALC or manual transmit gain 
control will reduce the SSB signal ampli-
tude, such that there is no flat-topping. This 
reduces average transmitted power.

Conversely, if the Hilbert Transform-
induced envelope peaks are reduced or elimi-
nated, then the average transmitted power of 
an SSB signal can be significantly increased. 
A 2.5 dB increase in average transmitted 
power is typical, compared with advanced 
look-ahead ALC systems.

Discussion
The intermediate output of the CESSB 

process is a pair of audio baseband signals. 
These are often known as “I” and “Q” sig-
nals, for in-phase and quadrature. If the I and 
Q audio signals are applied to a pair of mixers 
driven with quadrature RF, then the sum of 
the two mixer outputs will be SSB.

Another characteristic of the I and Q sig-
nals is that they are interrelated by a Hilbert 
Transform, or a negative Hilbert Transform. 
In other words, the audio signals are 90° out 
of phase between I and Q at all frequencies. 
In that regard, there is redundancy in I and Q.

One way to separate the CESSB process 
would be to pass the two baseband I and Q 
audio signals to a radio. It would be impor-
tant to maintain accurate amplitude and 
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Figure 1 — An externally processed CESSB signal, reproduced by a linear phase Hilbert 
Transform SSB modulator.
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phase matching for the two audio signals. It is 
not necessary to pass both audio signals into 
an SSB transmitter, however.

Because the two I and Q outputs of the 
CESSB system contain redundancy, you can 
throw one of them away and then regener-
ate it if necessary. The remaining signal has 
a special characteristic. The vector magni-
tude (or modulus) of itself plus its Hilbert 
Transform, is accurately amplitude limited. 
That vector magnitude function is propor-
tional to the RF envelope amplitude of the 
SSB signal.

( ) ( ) ( )2 2e t a t H a t = +    [Eq 1] 

where: 
e(t) is the envelope signal 
a(t) is the input audio signal 
H[a(t)] is the Hilbert Transform 
of the input audio signal.

What Equation 1 suggests is that we could 
discard either the I or the Q signal, and pass 
just one audio baseband signal as a(t) from 
the external CESSB processor to the radio. 
The radio could then regenerate the miss-
ing signal with a Hilbert Transform (either 
directly or indirectly). If this is done with 
linear phase and flat amplitude response, then 
the regeneration of the discarded signal will 
be perfect.

For this to work, the radio must have a 
linear phase response in its SSB modulator. 
That means flat time delay versus frequency. 
Also, the frequency response of the SSB 
modulator must be equal to or greater than 
the skirt bandwidth of the CESSB I and Q 
signals.

So, if the CESSB signal has a response 
of 300 to 3000 Hz, with descending filter 

skirts extending to 150 Hz at the low end and 
3150 Hz on the high end, then the SSB mod-
ulator in the radio should have flat amplitude 
and linear phase from 150 to 3150 Hz. As 
long as those conditions are met, the radio 
will transmit accurately controlled envelope 
peaks using an external CESSB processor.

Unfortunately, most of the analog SSB 
transmitters in use today do not have linear 
phase response. A conventional radio with 
a crystal or mechanical filter for SSB gen-
eration might be wide enough, but it will 
have group delay peaks near the band edges. 
On the other hand, some SSB transmitters 
using DSP may very well have linear phase 
response. Those radios, if they exist, could 
be converted to CESSB operation with an 
external CESSB processor.

Simulations
GNU Octave is an excellent simulation 

and signal processing tool.2 I have written 
some GNU Octave code that simulates the 
external CESSB system. My GNU Octave 
code is available for download from the 
ARRL QEX files web page.3 The Octave 
script reads in an audio WAV file, which has 
been accurately amplitude limited. CESSB 
processing is done first. Next, one of the 
two baseband audio signals produced by the 
CESSB process is discarded. (Actually, the 
script uses a linear combination of I and Q 
to produce a single output signal. Any linear 
combination will work, such as I + Q, I – Q, 
0.5 × I – 0.866 × Q, and other combinations). 
The remaining CESSB audio baseband sig-
nal is applied to the following modulators:

1) A linear phase filter type SSB modu-
lator.

2) A linear phase Hilbert Transform SSB 
modulator.

3) A linear phase Weaver method SSB 
modulator.

Each of these modulators produces an 
upper sideband signal at 12 kHz. The sam-
pling rate for all signals in the Octave code 
is 48 kHz.

The Octave code inserts a shaped 1 kHz 
tone, one second long, at the beginning of 
the speech audio. The purpose of the tone is 
to create an amplitude reference at the PEP 
limit of the transmitter power amplifier. A 
single tone does not create overshoot in any 
SSB modulator. (Simultaneous multiple fre-
quencies are required to produce overshoot.) 
Note that the amplitude of the tone is a nor-
malized 1.0 in each of the simulations that 
follow. If CESSB is accurately preserved, 
then the amplitude of the speech will not 
exceed 1.0 either.

All of these modulators reproduce the 
CESSB signal accurately, with tight envelope 
peak control. As a result, Figures 1, 2, and 3 
look almost identical, even though different 
SSB modulation methods were used to cre-
ate them.

SSB Modulators that Do Not Preserve 
CESSB

Next the same audio signal is applied to 
some inappropriate SSB modulators:

1) A nonlinear phase filter type SSB mod-
ulator, using a crystal or mechanical filter 
(such as a Heathkit SB-102, Collins KWM-
2, and similar transceivers).

2) A phasing type SSB modulator (such 
as the vintage Hallicrafters HT-37 transmit-
ter).

These SSB modulators, typical of analog 
SSB transmitters, introduce linear distortions 
to the CESSB audio baseband, and they over-
shoot. Accurate envelope peak control is lost.

The phasing-type modulator simulation 
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Figure 2 — An externally processed CESSB signal, reproduced by a 
linear phase bandpass filter SSB modulator.

Figure 3 — An externally processed CESSB signal, reproduced by a 
linear phase Weaver SSB modulator.
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uses the coefficient set II given by Theodor 
Prosch, DL8PT, in Table 1 of his Sep/Oct 
2012 QEX article.4

A Hilbert Transform filter, referred to a 
compensating delay line, has a dφ/dω char-
acteristic (phase slope) of zero. The phase 
shift remains at 90° for all frequencies. So, 
the group delay of a Hilbert Transform is also 
zero when referred to a compensating delay 
line. The compensating delay and the Hilbert 
Transform filter constitute a pair of phase dif-
ference networks. Their phase difference is 
90° for all frequencies for which the Hilbert 
Transform filter is designed. Yet, there is no 
time delay variation versus frequency for 
either path.

But traditional analog or digital IIR all-
pass filter phase difference networks do have 
time delay variations versus frequency and 
that is what makes a “phasing” type SSB 
modulator unsuitable for CESSB. The all-
pass network pair has the following phase 
shifts:

Φ(ω) + π / 2, and Φ(ω)
So, it is the Φ(ω) phase function that 

introduces phase distortion and causes 
overshoot in a phasing-type SSB modula-
tor. Theodor (DL8PT) Prosch’s Figure 4 
shows the Φ(ω) phase function. (See Note 
4.) In a true Hilbert Transform modulator, 
the Φ(ω) function is zero, however, a Hilbert 

Transform modulator requires more com-
putation than a phase-difference network 
“phasing” type SSB modulator.

The minimum-phase, elliptic type band-
pass filter does not work for CESSB because 
of its group delay variations. The same is 
true for the phase-difference network SSB 
modulator. It also has group delay variations.

Using CESSB Processing With 
Older Analog Radios

While the examples of Figure 4 and 
Figure 5 show some overshoot when used 
with CESSB-processed input audio, the 
overshoot is considerably worse with ordi-
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Figure 4 — An externally processed CESSB signal, reproduced by a 
nonlinear phase filter SSB modulator.

Figure 5 — An externally processed CESSB signal, reproduced by a 
nonlinear phase phasing method SSB modulator.
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Figure 6 — A peak limited audio signal (not CESSB) applied to a 
nonlinear phase filter SSB modulator.
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nonlinear phase, phase-difference network SSB modulator.
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nary peak-limited audio. The same nonlinear 
phase elliptic filter SSB modulator, when 
driven from the peak limited audio (no 
CESSB audio processing) produces the RF 
envelope shown in Figure 6.

With CESSB audio processing, overshoot 
is 24.64% instead of 48.23%. Compare 
Figure 6 to Figure 4. So, even though there 
is overshoot, there is still some advantage 
obtained by using a CESSB processor in 
front of a conventional nonlinear phase filter-
type SSB transmitter. With this example, RF 
power output would be about 1.5 dB greater.

Now let’s look at the nonlinear phase, 
phase-difference network modulator. With 
conventionally processed audio instead of 
CESSB audio, Figure 7 shows the RF enve-
lope.

Again, CESSB processing reduces the 
overshoot from 49.82% to 24.64%. Compare 
Figure 7 to Figure 5. So even though older 
nonlinear phase transmitters do not produce 
true CESSB output from a CESSB audio 
input, they do benefit from CESSB process-
ing.

Phase equalization (in DSP) of the partic-
ular crystal filter, mechanical filter, or phase 
difference network could certainly reduce 
the overshoot of these older types of SSB 
modulators.

Is Your Rig “CESSB-Ready?”
If your rig is a FlexRadio 6000 series, it 

already has CESSB built-in.
If your transmitter is older or nonlinear 

phase, it can probably partially benefit from 
CESSB audio processing.

If you have a modern DSP based trans-
mitter, it might already be fully “CESSB-
ready.” To find out, you just need to connect a 
CESSB processor to its audio input and then 
look at the RF envelope on an oscilloscope.

As of this writing, there are no external 
CESSB processors available in hardware, but 
there is still a way to test your rig. The WAV 
files used to generate the figures in this article 
are available from the ARRL QEX files web-
site. (See Note 3.) All you have to do is play 
the WAV file (CESSB-ready-test-audio.wav) 
into your rig and look at the RF envelope 
coming out. Here are some suggestions:

1) Turn off any equalizers, audio com-
pressors, or other audio processors.

2) If possible, turn off ALC.
3) Run the transmitter power down to 

about 25% of normal by reducing audio 
(mic) gain, so you can see any overshoots.

4) If your transmitter has adjustable trans-
mit bandwidth, increase it to about 3.5 kHz 
or more.

5) Use a dummy load! The audio test files 
contain my call sign, and you wouldn’t want 
to misidentify your station!

The WAV file contains the reference tone 
as a maximum PEP reference. If all of the 
speech peaks stay at or below the reference 
tone amplitude and look like Figures 1 to 3, 
congratulations, your rig is CESSB-ready! 
If the voice peaks visibly exceed the refer-
ence tone, and look like Figures 4 through 7, 
then your rig is not CESSB-ready, but it still 
may benefit from the use of a CESSB audio 
processor.

You may also wish to test with the peak-
limited-audio.wav file. This file does not 
contain CESSB processing. It only contains 
simple audio peak limiting. This file will 
cause SSB modulator overshoot.

The file externalcessb.m is the GNU 
Octave script. Externalcessbmc.m is an 
edited script that is compatible with Matlab®. 
Both scripts will create many plots of SSB 
envelopes, spectra, and filter characteristics.

Conclusions
Although the most convenient way to 

generate CESSB may be to build it into each 
radio, CESSB processing can be done with 
an external box, and radio manufacturers 
could make radios that are “CESSB-ready.” 
If you just plug in a mic, you don’t get 
CESSB. You get plain old SSB. If you have 
an external CESSB audio processor, how-
ever, then you will get CESSB from a radio 
that is “CESSB-Ready.” Some of the modern 
DSP rigs might already be “CESSB-ready.” 
Many older analog SSB modulators are not 
going to preserve CESSB, since they are not 
linear phase.

If radios that are “CESSB-ready” are 
made, along with external CESSB proces-

sors, then hams will have the option to “mix 
and match” processors and transmitters. As 
speech processing algorithms improve, the 
external CESSB processor can be replaced 
or upgraded, and the same radio can continue 
to be used.

The CESSB processor-to-radio interface 
is a single audio signal. The audio signal path 
needs to be flat amplitude and linear phase. 
The SSB modulator also needs to be flat 
amplitude and linear phase.

Although nonlinear phase transmitters 
cannot fully preserve the CESSB signal, 
they do obtain a partial benefit from external 
CESSB processing.
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Notes
1David L. Hershberger, W9GR, “Controlled 

Envelope Single Sideband,” QEX, Nov/Dec 
2014, pp 3 – 13. You can download a copy 
of this article at: www.arrl.org/files/file/
QEX_Next_Issue/2014/Nov-Dec_2014/
Hershberger_QEX_11_14.pdf

2There is more information about GNU 
Octave on the Octave home page at www.
gnu.org/software/octave. You can also 
download the latest version of GNU Octave 
from that website.

3The GNU Octave files and WAV files are 
available for download from the ARRL QEX 
files website. Go to www.arrl.org/qexfiles 
and look for the file 1x16_Hershberger.zip.

4Theodore A Prosch, DL8PT, “A Minimalist 
Approximation of the Hilbert Transform,” 
QEX, Sep/Oct 2012, pp 25 – 31.
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Introducing AACTOR: 
A New Digital Mode

The combination of Adaptive Arithmetic Coding and a Modified 
Version of Radioteletype Results in a Fast Digital Mode. 

1Notes appear on page 19

Radioteletype (RTTY), can be made 
faster at any baud by combining a data 
compression and decompression technique 
called adaptive arithmetic coding (AAC) 
with a modified version of RTTY called 
RTTY-AAC.1, 2, 3, 4, 5The increase in speed 
is achieved by using AAC to significantly 
reduce the number of bits in the message to 
be sent and received, which, in turn, signifi-
cantly reduces the number of RTTY Mark 
and Space tones to be sent and received. 
This new digital mode is called Adaptive 
Arithmetic Coding Teleprinting Over Radio, 
AACTOR (pronounced `ak-tor).

In this article I will first explain how 
AAC compression and decompression work. 
Then, I will review the basics of RTTY and 
how RTTY can be modified into RTTY-
AAC. I will then present data comparing the 
speed of RTTY with the speed of AACTOR. 
I will conclude with a discussion of some 
practical considerations. 

AAC Compression
As the word “arithmetic” in the name 

“adaptive arithmetic coding” implies, AAC 
must have something to do with numbers. 
In fact, AAC compresses a message into a 
single numeric fraction f, as expressed in 
Equation 1.

0.0 ≤ f <1.0 [Eq 1]

The process may be viewed as the itera-
tive subdividing of a number line, with the 
subdivision proportional at each iteration to 

the number of times each symbol appears in 
the message up to that point. After the last 
symbol is processed, f can be any fraction 
satisfying Equation 2.

low boundary of last subdivision ≤ f 
<high boundary of last subdivision [Eq 2]

In other words, any f satisfying Equation 
2 can be decompressed uniquely by AAC to 
recreate the original message.

The fraction f must be expressed in such 
a way that it can be modulated and demodu-
lated with RTTY binary protocols, which 
are based on Mark and Space audio tones 
(explained further later). Expressing f with 
decimal notation will not work. Instead, 
f must be expressed with binary notation, 
which, just like decimal notation, can express 
any fraction.

In binary notation, the first digit to the 
right of the decimal point represents one-half, 
the second one-fourth, the third one-eighth, 
and so on. Thus, 0.1111111111… equals 
½+¼+⅛+…, which sums to 1.0. Any frac-
tion can be expressed this way. For example, 
the decimal fraction 0.375 is 0.011 in binary 
notation, and the decimal fraction 0.1 is 
0.00011001100110011… in binary nota-
tion. In binary notation, Equation 1 becomes 
Equation 3.

0.0 ≤ f < 0.1111111111… [Eq 3]

By using binary notation, and by disre-
garding the 0 to the left of the decimal point 
as well as the decimal point itself, f simply 
becomes a stream of binary ones and zeroes. 
When a fixed-length message is compressed 
with AAC, the stream will also have a fixed 

length. Using binary notation and the integer 
technique explained later, there is no theoreti-
cal limit to the precision of f. As measured 
by bit count, f will always be shorter than the 
original message, as measured by its RTTY 
bit count. 

To create f with binary notation, first 
identify the symbol set needed to compose 
the desired messages. The symbols may be 
any combination of ASCII characters, such 
as letters (upper case, lower case, or both), 
digits, special characters (for example, punc-
tuation), and control characters (for example, 
carriage return). The symbol set should be as 
small as possible, however, and should not 
include any symbols not needed to compose 
the desired messages. Experimentation indi-
cated that the smaller the symbol set needed 
to compose the desired messages, the shorter 
f will be, as measured by bit count.

The collection of symbols, totaling n 
symbols, will comprise the symbol set S. 
Each symbol within S is identified as si, as 
defined by Equation 4.

0 ≤ i < n [Eq 4]

The si may be in any order, but once 
ordered, the ordering must remain fixed. 
Both the compressor and the decompressor 
must use the same S, with the si in the same 
order. 

For AACTOR, S contains a collection 
of n = 42 symbols si a specific order, which 
happens to be, but need not be, ASCII order. 
See Figure 1.

With this S, any RTTY-like message may 
be composed. A slash is included because 
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many Amateur Radio call signs include a 
slash. The end of text [EOT] character is 
included so that the AAC decompressor will 
know when it has reached the end of the mes-
sage, as explained later. Some punctuation is 
excluded from S, but unambiguous messages 
still can be composed. For example, to indi-
cate a new sentence, a [CR] can be used in 
lieu of a period. 

The second step in creating f is to define 
a way to track how often the si appear in the 
message being compressed. A “model” M 
handles this task. M contains a collection of 
n cumulative counters mi satisfying Equation 
4. Each mi will contain the cumulative count 
of all s from and including s0 and up to and 
including si. In other words, if ci is the count 
for the number of times si appears in the 
message at any given moment during the 
compressing of the message, then Equation 
5 applies.

  
mi = c j

j=0

j=1

å  [Eq 5]

The mi must be in the same order as the 
si, so that the cumulative count for any mi is 
always paired with the correct si. Like the si, 
the ordering of mi must remain fixed in both 
the compressor and the decompressor.

The high bound (hii) and low bound (loi) 
for each mi as they relate to the overall bounds 

of M (0.0 to 0.1111111111…) are given by 
Equations 6, 7, and 8.

hii = mi ÷ mn–1 [Eq 6]

lo0 = 0 [Eq 7]

loi = hii–1 = mi–1 ÷ mn–1 for 0 < i < n
 [Eq 8]

When the compressor initializes, it must 
act like it knows nothing about the message 
to be compressed. All the compressor can 
assume is that at least one si will appear at 
least once in the message. Because the com-
pressor must assume it does not know which 
si it will be, the compressor initially must 
assume that all si will appear in the message 
at least once, even if that assumption later 
turns out to be incorrect as to some or even 
most of the si. Thus, when the compressor 
initializes, each mi will be given by Equation 
9.

mi = i + 1 [Eq 9]

For AACTOR, this means that after ini-
tialization, M will be a collection of n = 42 
cumulative counters mi as shown in Figure 2.

During compression, M models the mes-
sage being compressed by updating (adapt-
ing) itself as it encounters each symbol in 
the message. The word “adaptive” appears 
in the name “adaptive arithmetic coding” 

s0 End of Transmission [EOT]

s1 Line Feed [LF]

s2 Carriage Return [CR]

s3 Space [SP]

s4 Slash “/”

s5 to s14 Digits 0 to 9

s15 Question Mark “?”

s16 to s41 Upper Case Letters A to Z

Figure 1 — These are the 42 symbols, si, 
contained in the AACTOR symbol set, S.

append [EOT] to message to be compressed
rlo = 0.0
rhi = 0.1111111111… 
do
 get next symbol
 r = rhi - rlo + 1
 find symbol in S and get its index i
 rhi = rlo + (r · hii) - 1
 rlo = rlo + (r · loi)
 do
  if rhi and rlo MSBs match
   process the MSBs (explained in text)
   process any pending underflow bits (explained in text)
  else if an underflow condition threatens in rhi and rlo

   accumulate and remove underflow bits (explained in text)
  else
   update (adapt) M based on i
   exit inner loop
  end if
 loop
 exit outer loop if no more symbols in message to be compressed
loop
flush rlo (explained in text)

m0 = 1

m1 = 2

m2 = 3

• •

• •

• •

m41 = 42

Figure 2 — For AACTOR, M is a set of 42 
counters, mi, as shown here.

Figure 3 — This is the Pseudo code for the AACTOR compression loop.

S
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for this reason.6 For example, if the first 
symbol encountered in the message being 
compressed is sj, M will adapt itself by add-
ing 1 to each mi for each i, as described by 
Equation 10.

j ≤ i < n [Eq 10]

The third step in creating f is to define a 
working range r initially having a low end 
and a high end as shown in Equations 11, 
12, and 13.

rlo = 0.0 [Eq 11]

rhi = 0.1111111111… [Eq 12]

r = rhi – rlo [Eq 13]

Fourth, we must define storage for f. 
As explained above, f cannot be expressed 
in decimal notation, and instead must be 
expressed in binary notation, so that rules out 
floating point storage for f. Integer storage 
can accommodate only a limited number of 
bits, so that too must be ruled out. AACTOR 
uses a string variable for f because strings can 
be very long and it is easy to append to them. 
String fstr is initialized to empty. When the 
compressor identifies a bit to be included in 
f, the bit is converted to a string of length one 
containing either “0” or “1.”The length-one 
string is appended to fstr. When the compres-
sor finishes creating fstr, RTTY-AAC pro-
cesses it left to right it by modulating a Space 
audio tone for each length-one string “0” and 
a Mark audio tone for each length-one string 
“1” (Marks and Spaces are explained later).

Fifth, enter the compression loop, where 
the compressor iterates through the symbols 
in the message, starting with the left-most 
symbol. Note that an [EOT] symbol must 
be appended to every message to be com-
pressed, or the decompressor will not know 
when to stop decompressing. Pseudo code 
for the compression loop is shown in Figure 
3.

As explained earlier, these calculations 
are performed with binary notation, which 
requires integer variables. After just a few 
symbols are processed, however, the preci-
sion needed for processing the remaining 
symbols in the message will exceed the 
precision limits of integer variables. For that 
reason, the binary notation calculations are 
performed with a clever integer technique 
using 32-bit unsigned integer variables as 
explained in Notes 2, 3, and 4.

As the symbols in the message are pro-
cessed by the compressor, rlo and rhi will 
converge. Their most-significant (left-most) 
bits (MSBs) will often come to be matched 
and, if so, will not change thereafter and will 
no longer contribute to the precision of the 
calculations. The string version of the match-
ing MSBs is appended to fstr. The compressor 
then processes any pending underflow bits 

(discussed next), left shifts rlo and rhi one 
bit, and sets the least-significant (right-most) 
bit (LSB) of rhi to one. This processing of 
matching most significant bits will occur 
multiple times during compression.

As symbols in the message are processed 
by the compressor, and as rlo and rhi con-
verge, they may be converging from below 
and above towards ½ (0.1 in binary nota-
tion), in which case their MSBs will never 
match and the compression will break down. 
When this “underflow condition” threatens, 
the compressor increments a running count 
of the underflow conditions, changes the 
next-to-MSBs in rlo and rhi to zero and one 
respectively, left shifts both rlo and rhi one 
bit, and sets the least significant bit of rhi to 
one. After the next occurrence of match-
ing MSBs in rlo and rhi, and after the string 
version of that matching MSB has been 
appended to fstr, the underflow bit(s) are 
processed. Based on the running count, each 
underflow bit is assigned a value opposite 
to the value of the matching MSBs. Their 
string versions are appended to fstr.

It is the accumulation of matching MSBs 
and underflow bits that comes to comprise 
f. In a broad sense, bits flow into rlo and rhi 
from the right, flow through rlo and rhi from 
right to left, are modified along the way by 
the arithmetic, and then are shifted out on the 
left. Thus, at any given time, rlo and rhi hold 
only a portion of what will turn out to be f. 
This is how a theoretically infinitely long f 
can be processed with fixed-length integer 
variables.

Finally, after all symbols in the message 
have been processed, there are a few bits 
remaining in rlo that are needed to complete 
f, so they are “flushed” out and their string 
versions are appended to fstr.

AAC Decompression
AACTOR’s decompressor initializes fstr 

to empty. As each Space and Mark tone is 
demodulated by RTTY-AAC, a length-one 
string “0” or “1,” respectively, is appended 
to fstr. (Marks and Spaces are explained 
later). When the incoming signal goes quiet, 
it is assumed fstr is completed and the AAC 
decompressor then processes fstr left to right. 
Alternatively, the decompressor could be 
programmed to process one bit at a time 
as each bit is demodulated by RTTY-AAC. 
In either case, as soon as the decompressor 
identifies an [EOT] symbol decompression 
ceases.

As explained above, an AAC decom-
pressor must use the same S, with the si in 
the same order, as was used by the AAC 
compressor. The decompressor must also 
use the same M, with the mi in the same 
order. When it initializes, the decompres-
sor knows nothing about the message, other 
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rlo = 0.0
rhi = 0.1111111111…
w = bit versions of first 32 length-one strings in fstr

do
 r = rhi - rlo + 1
 i = w - rlo + 1
 i = (i · mn-1) - 1
 i = i ÷ r 
 get si from S
 if si equals [EOT] 
  exit outer loop 
 display si

 rhi = rlo + (r · hii ) - 1
 rlo = rlo + (r · loi) 
 do
  if rhi and rlo MSBs match
   process the MSBs (explained in text)
   process any pending underflow bits (explained in text)
   update w (explained in text)
  else if an underflow condition threatens in rhi and rlo

   remove underflow bits (explained in text) 
   update w (explained in text)
  else
   update (adapt) M based on i
   exit inner loop
  end if
 loop

loop

Figure 4 — This is the Pseudo code for the AACTOR decompression loop.

 RTTY Baudot AACTOR

Message Bit Count f Bit Count       Resulting Size
QSL?[EOT] 48 28  58.33%
NR?[EOT] 40 23  57.50%
CQ TEST K0JJR CQ[EOT] 176 91  51.70% 
W1AW 599 JOE MN W1AW[EOT] 240 109  45.42%
W1AW TU K0JJR CQ[EOT] 192 92  47.92% 
RYRYRYRYRY TESTING DE K0JJR[EOT] 264 141  53.41%
A[EOT] 16 12  75.00%
AAAAAAAAAA[EOT] 88 40  45.45%
AB[EOT] 24 17  70.83%
ABABABABABABABABABAB[EOT] 168 76  45.24%
A 0 B 1 C 2 D 3 E 4 F 5 G 6 H 7 I 8 J 9 [EOT] 568 183  32.22% 
NOW IS THE TIME FOR ALL GOOD 672 328  48.81%
MEN TO COME TO THE AID OF
THEIR COUNTRY[EOT]

THE QUICK BROWN FOX JUMPS 416 237  56.97%
OVER THE LAZY DOG[EOT]

Lincoln’s Gettysburg address (excluding 13664 5848  42.80%
punctuation)

strings generated with random symbols from S
10 symbols 128 62 48.44%
100 symbols 1152 565 49.05%
250 symbols 2984 1377 46.15%
500 symbols 5824 2706 46.46%
1000 symbols 11496 5379 46.79%

Figure 5 — Here are some sample messages, along with the RTTY Baudot bit count and the AACTOR bit count for each message. You can see 
that the AACTOR bit counts are always significantly fewer than the RTTY Baudot counts.
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than that at least one si will appear at least 
once in the message. Because the decom-
pressor does not know which si it will be, the 
decompressor initially must assume that all 
si will appear in the message at least once, 
even if that assumption later turns out to be 
incorrect as to some or even most of the si. 
Thus, when the decompressor initializes, the 
mi will be the same as when the compressor 
initialized (Equations 5 and 9, and Figure 2). 
Similar to what happens during compres-
sion of a message, during decompression, M 
models the message being decompressed by 
adapting itself as it identifies each symbol in 
the message.

For the decompressor, r, rhi, rlo, hii, and 
loi are defined and initialized in the same 
way they are defined and initialized for the 
compressor (Equations 6, 7, 8, 11, 12, and 
13). The decompressor also requires a 32-bit 
unsigned integer working variable, w. The 
working integer variable w is loaded with the 
bit versions of the first 32 length-one strings 
in fstr. If less than 32 Mark and Space tones 
were demodulated, resulting in fstr containing 
fewer than 32 length-one strings, w is right-
padded with zero bits. Pseudo code for the 
decompression loop is shown in Figure 4.

As was true during compression, during 
decompression the decompressor watches 
for matching most significant bits in rlo and 
rhi. When it occurs, the MSBs are left-shifted 
out of rlo and rhi and discarded, and the least 
significant bit (LSB) of rhi is set to one. Also, 
w is left-shifted one bit and its LSB is set to 
the bit version of the next length-one string in 
fstr. This processing of matching MSBs will 
occur multiple times during decompression.

Underflow arithmetic will be required 
multiple times during decompression, as it 
was during compression. The decompressor 
addresses a threatened underflow condition 
in rlo and rhi the same way as the compressor, 
except that the decompressor discards the 
underflow bits removed from rlo and rhi and 
does not keep track of them. Also, the next-
to-MSB bit in w is toggled, w is then left-
shifted one bit, and the w LSB is set to the 
bit version of the next length-one string in fstr.

In a broad sense, the bits in the demodu-
lated compressed message flow into w from 
the right, flow through w from right to left, 
are modified along the way by the arithme-
tic, and then are shifted out on the left. Thus, 
at any given time, w holds only a portion 
of the bits in the demodulated compressed 
message. Again, this is how a theoretically 
infinitely long f can be processed with fixed-
length integer variables.

RTTY Basics
RTTY is based on the five-bit Baudot 

code named for its inventor, Jean-Maurice-
Emile Baudot, a French telegraph engineer.7 

With five bits, up to 32 symbols can be 
represented (25 = 32). If two of the Baudot 
code symbols are dedicated to “shift” and 
“unshift” symbols, up to 60 symbols can 
be represented [(25 – 2) × 2 = 60]. When 
the demodulating station encounters a shift 
symbol, all of the Baudot codes following 
it are treated as shifted Baudot codes, which 
correspond to the symbols 0 through 9, plus 
a variety of other special symbols. When the 
demodulating station encounters an unshift 
symbol, all of the Baudot codes following 
it are treated as unshifted Baudot codes, 
which correspond to the symbols A through 
Z (upper case only). In RTTY parlance, the 
shift symbol is called “Figures” ([FIGS]) 
and the unshift symbol is called “Letters” 
([LTRS]).

When modulated as an RTTY Baudot 
code, each five-bit Baudot code is preceded 
by one start bit, which is always a zero, and 
is followed by one or more stop bits (usually 
two), which are always ones.Thus, a total of 
eight bits comprise each RTTY Baudot code. 
Each RTTY Baudot code bit is immediately 
modulated on the heels of the preceding 
RTTY Baudot code bit. After the eighth bit in 
a RTTY Baudot code is modulated, the first 
bit of the next RTTY Baudot code is imme-
diately modulated. Therefore, an RTTY mes-
sage is simply a fixed-length stream of binary 
ones and zeroes. The embedded start and 
stop bits synchronize the RTTY demodulat-
ing station to each RTTY Baudot code.

RTTY employs a binary modulation 
and demodulation protocol using either 
frequency shift keying (FSK) or audio fre-
quency shift keying (AFSK). For FSK, the 
modulating station keys the transmitter at 
any given frequency for an RTTY Baudot 
code one bit. The modulating station keys the 
transmitter 170 Hz below that frequency for 
an RTTY Baudot code zero bit. In lower side-
band mode, the demodulating station will 
hear audio tones at 2125 Hz and 2295 Hz 
below the VFO setting. Lower sideband, 
the 170 Hz separation, and the 2125 Hz and 
2295 Hz audio frequencies are Amateur 
Radio specifications by agreement, although 
other specifications are possible and are 
sometimes used.

For AFSK, which also uses lower side-
band, an RTTY Baudot code one bit is 
modulated as an audio tone at 2125 Hz below 
the operating frequency. An RTTY Baudot 
code zero bit is modulated as an audio tone 
at 2295 Hz below the operating frequency. 
At the demodulating station, it cannot be 
determined whether the modulating station 
is using FSK or AFSK, and it makes no 
difference. The demodulating station will 
demodulate in the same way in either case.

The audio tones at 2125 Hz and 2295 Hz 
are called “Mark” and “Space” audio tones 
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in RTTY parlance. For both FSK and AFSK, 
the Mark and Space tones must have the 
same duration. With FSK, the modulating 
station must key the transmitter for that dura-
tion. With AFSK, the modulating station 
must sound the audio tone for that duration. 
Duration depends on the baud. Although 
RTTY recognizes several bauds, the most 
popular is 45.45, with some activity also at 
75. At 45.45 baud, the duration of each Mark 
and Space audio tone is given by Equation 14.

1 ÷ 45.45 = 0.022 = 22 milliseconds
[Eq 14]

The rapid mixture of Mark and Space 
tones gives RTTY its distinctive warbling 
sound.

RTTY-AAC
Because an RTTY message is simply a 

fixed-length stream of binary ones and zeroes, 
and because an AAC-compressed message 
is likewise nothing more than a fixed-length 
stream of binary ones and zeroes, RTTY is 
well-suited for processing AAC-compressed 
messages. The ones and zeroes in an AAC-
compressed message are modulated and 
demodulated as Mark and Space tones, 
respectively, just as is the case with the ones 
and zeroes in an RTTY message. But, RTTY 
requires some modification to process AAC-
compressed messages. Start and stop bits are 
indispensable to RTTY, and RTTY performs 
table lookups of Baudot codes, all of which 
are irrelevant to an AAC-compressed mes-
sage. RTTY would have to be modified so 
that it does nothing more than modulate and 
demodulate a fixed-length stream of binary 
ones and zeroes. These modifications distin-
guish RTTY-AAC from RTTY.

On the modulation end, the AAC com-
pressor creates a fixed-length stream of binary 
ones and zeroes from the original message 
and turns the stream over to RTTY-AAC 
for modulation. RTTY-AAC uses any baud 
supported by RTTY, RTTY Mark and Space 
tone frequencies, and any Mark and Space 
duration supported by RTTY (for example, 
22 milliseconds at 45.45 baud). Also, like 
RTTY, RTTY-AAC can be modulated using 
either FSK or AFSK. On the demodulating 
end, RTTY-AAC demodulates the stream and 
turns it over to the AAC decompressor for 
recreation of the original message.

Speed Comparisons
To determine the speed of AACTOR as 

compared to the speed of RTTY, the number 
of bits generated by each mode for the same 
message must be compared. For AACTOR, 
the number bits in f is determined simply by 
counting them. For RTTY, however, it is not 
so obvious. At first glance, the RTTY Baudot 

bit count appears to be simply the number of 
symbols in the message multiplied by eight 
bits per symbol. But the [FIGS], [LTRS], 
and [SP] symbols change the way the RTTY 
Baudot bits are counted. Consider this mes-
sage:

W1AW TU UR 599 MN K0JJR

This message seems to have 23 symbols 
(don’t forget to count the spaces), which would 
be 184 RTTY Baudot bits (23 × 8). To RTTY, 
however, the message actually looks like this: 

[LTRS]W[FIGS]1[LTRS]AW[LTRS]
[SP]TU[LTRS][SP]UR[LTRS][SP]
[FIGS]599[LTRS][SP]MN[LTRS][SP]
K[FIGS]0[LTRS]JJR

In addition to the [FIGS] and [LTRS] 
symbols, notice that every [SP] symbol is 
accompanied by a [LTRS] symbol due to the 
RTTY “unshift on space” protocol. Thus, to 
RTTY, the message has not 23 symbols, but 
rather 34, and not 184 RTTY Baudot bits, but 
rather 272 (34 × 8).

With the bits counted this way, many 
speed comparisons were simulated on a 
computer using common RTTY messages, 
prose messages, short and long messages, 
messages with few and many different 
symbols, and messages composed of ran-
dom symbols. In all cases, the bit count for 
AACTOR was significantly less than the 
RTTY Baudot bit count for the same mes-
sage. Figure 5 shows some examples ([LF] 
and [CR] are ignored).

As general propositions, the more often 
that RTTY switches back and forth between 
[FIGS] and [LTRS], the more often the [SP] 
symbol appears, and the longer the RTTY 
message as measured by bit count, the more 
favorably AACTOR compares to RTTY. 
As another general proposition, for typi-
cal RTTY contest messages, the AACTOR 
compressed message has approximately 
one-half the number of bits as compared to 
the same RTTY message. An RTTY contest 
message 200 bits long (approximately 17 to 
20 symbols) and modulated at 45.45 baud 
will have a duration of 4.4 seconds (200 × 
0.022 seconds). The same message will have 
a duration of only approximately 2.2 seconds 
with AACTOR. At 75 baud, the message 
will have a duration of only approximately 
1.3 seconds with AACTOR (200 ÷ 75 ÷ 2).

Practical Considerations
RTTY is self-synchronizing. An RTTY 

demodulator is constantly on the lookout 
for start and stop bits to determine when 
the five-bit Baudot codes start and stop. If 
bits are lost due to fade or interference, the 
RTTY demodulator can re-synchronize 
within the next succeeding few symbols. 
This self-synchronization is why a demodu-

lating station can tune to an RTTY message 
in progress and process the message from 
that point forward. If, however, the lost sym-
bol was a [FIGS] or [LTRS], the succeeding 
symbols will still be valid symbols, but their 
message will be nonsensical. For example, a 
lost [FIGS] symbol preceding the symbols 
123456 will cause those symbols to appear 
on the demodulating end as the unshifted 
symbols QWERTY. When the next [FIGS] 
or [LTRS] is encountered, the demodulating 
station will resynchronize and continue pro-
cessing the message correctly.

AACTOR cannot self-synchronize like 
RTTY. If bits are lost due to fading or inter-
ference, the balance of the message likely 
will be gibberish. There will be no oppor-
tunity to resynchronize. RTTY is a robust 
mode, however, not easily susceptible to fad-
ing or interference, and RTTY-AAC, when 
it goes out over the airways, is identical to 
RTTY and will benefit from that robustness. 
Also, an AAC-compressed message has sig-
nificantly fewer bits than an RTTY message, 
thus reducing the opportunities for fade or 
interference. Risk of losing bits occasionally 
is more than outweighed by the improved 
speed of every message.

RTTY is better suited for real-time 
keyboard-to-keyboard rag chewing than 
AACTOR. RTTY can modulate and demod-
ulate symbol-by-symbol with each key press 
at the modulating station. While the modulat-
ing station pauses in its key presses, RTTY 
will automatically send repetitive [LTRS] 
symbols (called “diddles” in this context) 
to keep the two stations synchronized. 
AACTOR, on the other hand, modulates 
and demodulates entire messages at a time 
without interrupting pauses. Rag chewing is 
possible, but the demodulating station must 
wait for the modulating station to finish all 
key presses and to send the entire message. 
For contesting with AACTOR, this is not 
an issue. Contesters compose their mes-
sages ahead of time and, using macros, send 
them with one key press or one mouse click. 
During contesting, there is very little real-
time keyboard-to-keyboard messaging.

Conclusion
AACTOR, the combination of AAC and 

RTTY-AAC, results in a faster version of 
RTTY that exploits the robustnessof RTTY. 
By compressing the message to be modu-
lated, fewer Mark and Space tones need to be 
modulated and demodulated to exchange the 
message, meaning that it will take less time 
to exchange messages.

Joseph J. Roby, Jr, is an Amateur Extra 
Class licensee, KØJJR. He has been active in 
Amateur Radio since 2002, with emphasis on 
contesting, DXing, and Amateur Radio soft-
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Octave for Angles
W6PAP gives us another Octave lesson, this time describing some 

of the unit conversion challenges we have to deal with.

1Notes appear on page 21

The engineering community has been 
plagued by unit conversion problems for 
many years. In 1492, Columbus miscalcu-
lated his position because of, in part, a confu-
sion between Roman and nautical miles.1 In 
1999, the Mars Orbiter failed because of a 
confusion between metric and English units.2 
The same sort of confusion caused an error 
in dimensioning a roller coaster axle, which 
resulted in a crash at Tokyo Disneyland’s 
Space Mountain in 2004.3

We Amateur Radio operators may be 
subject to some of the same sorts of errors 
while we design circuits or calculate compo-
nent values. Things may be made worse for 
us by the nature of some of the mathemati-
cal tools we use. Differences between the 
default dimensions for keystrokes on scien-
tific calculators and for software functions 
are listed in Table 1. If we are more familiar 
with one of these tool types than the other, we 
may be tempted to unconsciously substitute 
the wrong units when using the other tool, 
especially when we’re thinking about other 
aspects of a project as we make calculations.

There is considerable potential for con-
fusion between the meanings of LOG in 
software and on calculator keys, but the 
magnitude of the natural logarithm is more 
than two times the magnitude of the common 
logarithm for any argument. The difference 
should be noticeable and should alert us that 
something is wrong. Still, significant errors 
have gone unnoticed by skilled engineering 
teams, causing costly failures of space- and 
land-based vehicles and systems (see Notes 
2 and 3).

More subtle errors are possible when 
working with trigonometric functions. We’ll 

Table 1
Comparison of Calculator and Software Trig Function Conventions

 Function Name For Natural Logarithms Function Name For Common 
  Logarithms
Calculator ln  log
Software log  log10 or logten

 Default Argument for Trig Functions Default Return for Trig Functions
Calculator Degrees  Degrees
Software Radians  Radians
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Table 2
GNU Octave Code for 
Producing Curves in 
Figure 1
x = linspace(0, 45, 300000);
y1 = sin(x);
y2 = sind(x);
# y2 = sin(x * pi / 180);
plot(x, y1, x, y2);
axis([-5, 50, -1.1, 1.1]);
xlabel(“Angle (degrees)”);
ylabel(“Sine Of Angle”);
grid();
pause();

Figure 1 — This graph is a comparison of incorrect sin(x) 
with correct sind(x) when the abscissa is intended to be in 

degrees.

use the sine for our example here, but the 
same concerns apply to other trig functions.

Instead of maintaining a large constant 
error, as in the case of logarithms, the substi-
tution of a value in radians instead of degrees 
as the argument to a trig function will cause 

an error whose value cycles with the magni-
tude of the intended quantity. Octave code to 
plot the correct curve and the incorrect curve 
is listed in Table 2, and the resulting plot is 
shown in Figure 1. 

The large number of points specified in 
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the linspace() call is intended to provide a 
relatively smooth plot at the tops and bot-
toms of the sinusoids representing the errored 
curve and isn’t really essential to the purpose 
of the plots. Rather than calculate the maxi-
mum number of elements that our display 
can handle, we’ve simplified things by using 
a number that represents overkill.

We’ve used the function sind() in Figure 
1 to calculate values of y2 (in degrees). The 
commented out line shows a form that may 
be used when only functions designed to 
accept arguments in radians are available.

In Figure 1, let’s assume that we want 
to calculate the sine of an angle in degrees 
somewhere between 0° and 45°. The gradu-
ally increasing line represents a plot of the 
sines of angles in that range on the ordinate, 
as the function of angles in degrees on the 
abscissa. The multiple cycle sinusoid rep-
resents what happens when we input the 
angle in degrees to the sin() function in GNU 
Octave, Matlab, Python, C, C++, or any 
one of many other software tools.4, 5, 6 The 
software is expecting the argument in radi-
ans rather than degrees and returns a value 
accordingly.

Unlike the case with the logarithm, there 
are multiple ranges of angles where the cor-
rect value of the sine and the errored value 
are close enough to each other to elude 
intuitive detection, but are far enough apart 
to cause a flaw in a precise calculation. This 
would seem to provide a significant potential 
for serious calculation errors that cannot be 
detected by good engineering judgment or 
common sense.

Many calculators provide a keystroke 
option for changing to angular input and/or 
output to radians. It’s a little more difficult 
in software, though, to make the opposite 
change. Some math utilities such as GNU 
Octave (see Note 4), though, have provided 
functions to do just that. In recent revisions 
of Octave, we can append a lower case “d” 
to a trig function and it will expect inputs or 
produce outputs in degrees. Python  (see Note 
6) does not provide functions for use with 
degrees, although it provides functions for 
converting radians to degrees and vice versa.

Let’s consider, for example, Equations 
83 and 84 on page 2.45 and 2.46 of the 2016 
ARRL Handbook.7 

X = |Z| × sin θ (ohms)                     [Eq 83]

R = |Z| × cos θ (ohms)                     [Eq 84]

The Handbook illustration converts an 
impedance of Z = |12.0 W| ∠–42° into its 
rectangular components, R and X.8 We’ll 
plug the angle –42° into the function sin() 
and cos() in Octave, and we’ll see a sig-
nificant error that will mentally flag us that 

something is wrong. In addition to the differ-
ence in magnitudes of the sine and cosine, the 
signs of both returns will be incorrect. The 
correct and incorrect rectangular components 
are listed in Table 3.

The enormous percentage error reflects 
the change in magnitude, but even more 
so the change in sign, and indicates that 
any downstream calculation in which we 
use these numbers will be badly flawed. If, 
though, we are paying any attention to the 
nature of the calculations, the error ought to 
be apparent.

We can see the error in Figure 1 by 
observing both curves for an abscissa of 42°.9 
Note that the ordinates of the two curves at 
that point are on opposite sides of the zero 
line.

Let’s leave the magnitude at 12.0 W but 
change the angle to –32° to see what hap-
pens. Here the values are much closer to each 
other, as shown in Table 4.

These are much smaller, but still signifi-
cant, errors, especially for X. If we are work-
ing on a problem that requires a precision of 
three or more significant figures, these errors 
are certainly too high. They are not so high, 
though, as to raise an alarm in the minds of 
most of us. The solution here is to be very 
cautious, especially when moving back and 
forth between a calculator and software.

Returning to Figure 1, we can see that, 
in agreement with the calculations above, 
the two curves are much closer to each other 
for an abscissa of 32°. Although we haven’t 
plotted the cosine function as we did the sine 
function, we would find a similar situation 
if we did. 

The same concerns apply to all the trig 
functions, including the tangent and cotan-
gent functions. As those two functions fea-
ture periodic vertical asymptotes with infinite 
discontinuities, though, plots of those func-
tions would not be as helpful in understand-
ing the problem as is Figure 1.

Maynard Wright, W6PAP, was first licensed 
in 1957 as WN6PAP. He holds an FCC 
General Radiotelephone Operator’s License 
with Ship Radar Endorsement, is a Registered 
Professional Electrical Engineer in California, 
and is a Life Senior Member of IEEE. Maynard 
was involved in the telecommunications indus-
try for over 48 years. He has served as techni-
cal editor of several telecommunications stan-
dards and holds several patents. He is a Past 
Chairman of the Sacramento Section of IEEE. 
Maynard is an ARRL Member. He is Secretary 
Treasurer and Past President of the North Hills 
Radio Club in Sacramento, California.

Notes
1For 6 stories about miscalculations, go to: 

http://mentalfloss.com/article/25845/
quick-6-six-unit-conversion-disasters. 
Columbus’ error is a navigational error 
rather than an engineering error, but serves 
to indicate that such unit errors are not 
confined to our era.

2Kathy Sawyer, Staff Writer, “Mystery of 
Orbiter Crash Solved,” Washington Post, 
October 1, 1999: www.washingtonpost.
com/wp-srv/national/longterm/space/
stories/orbiter100199.htm.

3For more unit conversion errors, including 
the story about the Tokyo Disneyland 
roller coaster crash, see “Unit mixups 
— Colorado State University,” lamar.
colostate.edu/~hillger/unit-mixups.
html, and spacemath.gsfc.nasa.gov/
weekly/6Page53.pdf.

4You can learn more about GNU Octave, and 
download the latest version of Octave at: 
www.octave.org.

5For information about Matlab, and to down-
load a trial version of the software, go to: 
www.mathworks.com/products/matlab.

6Learn more about Python and download the 
software at: www.python.org.

7H. Ward Silver, NØAX, Ed. The ARRL 
Handbook for Radio Communications, 2016 
Edition, ARRL, 2015, Equations 83 and 
84 on pp 2.45 – 2.46. ISBN: 978-1-62595-
041-3; ARRL Publication Order No. 0413, 
$49.95. ARRL publications are available 
from your local ARRL dealer or from the 
ARRL Bookstore. Telephone toll free in the 
US: 888-277-5289, or call 860-594-0355, 
fax 860-594-0303; www.arrl.org/shop; 
pubsales@arrl.org.

8We’ll round to three significant figures for the 
purposes of this article.

9Although Figure 1 plots the sine in degrees 
in the first quadrant, for clarity, and the 
ARRL Handbook example involves angles 
in the fourth quadrant, the identity sin(–x) 
= –sin(x) allows the use of Figure 1 to com-
pare the returns of sin() and sind() for any 
angle in the fourth quadrant with a reversal 
of the signs of the returns. You can do this 
mentally by prefixing a negative sign to 
every Y axis value in Figure 1 while consid-
ering the example. If we were to plot cos() 
and cosd() curves, the identity cos(x) = 
cos(–x) would indicate that no sign reversal 
is required when moving between the first 
and fourth quadrants.

Table 3
Rectangular Components of 
|12 W| ∠–42° 

Correct Values Incorrect Values Error
R = 9.82 W R = –4.80 W 154%
X = –8.03 W X = 11.0 W 237%

Table 4
Rectangular Components of 
|12 W | ∠–32°
Correct Values Incorrect Values Error
R = 10.2 W R = 10.0 W 1.96%
X = –6.36 W X = –6.62 W 4.09%
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Receive Preamplifiers
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coverage, they are perfect 
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contesting. These preamps 
handle strong signals without overloading. 

Antenna Receive Interface
Connect an external receive-only antenna to your 
transceiver with this interface. It can also be used as a 
TX/RX switch for older gear, to insert a receive preamplifier, 
or to interface to phasing/noise cancelling systems. 
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and 5000HD
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against potentially 
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Chuck Adams, K7QO

27615 N 130th Ave, Peoria, AZ 85383-2860; chuck.adams.k7qo@gmail.com

Crystal Parameter 
Measurements Simplified

The author describes a procedure to make very accurate measurements 
on quartz crystals. You can do this with a simple fixture using four resistors, 

a capacitor and some RF connectors.

This is a technique I derived in 1961 for measuring crystal param-
eters in a laboratory as an undergraduate student. Fifty years later 
as radio amateurs, we have much better equipment available on our 
workbench to do this. 

Besides the fixture, the additional equipment needed consists of:
• A digital RF signal generator.
• A frequency counter. 
• An RF voltmeter or RF probe.

Crystal Parameters
The quartz crystal unit, in an HC-49U package, consists of a cir-

cular quartz disc with aluminum or gold plating on opposite surfaces. 
The crystal is mounted vertically inside the case. It is held by two sup-
ports on the edges of the crystal. Two leads exit the base to secure the 
crystal in a circuit. Figure 1 is a photo of the internal structure of an 
HC-49U crystal unit on the left, and the unit in the case on the right.

The quartz crystal unit is electrically represented by a series resis-
tor, R, an inductor, L, and a capacitor, C. A parallel capacitor, C0, is 
needed because of the plating and the leads. Figure 2 is the equivalent 
circuit diagram.

The parameters R, L, and C are referred to in technical publications 
and books as Rm, Lm, and Cm. The inductance, capacitance and resis-
tance are referred to as the motional parameters of the quartz crystal, 
thus the subscript m.

Derivation of the Resonant Frequency Formulas
The admittance, YAB, between the terminals A and B in the sche-

matic of Figure 2 is given by Equation 1.

0
1 1

( 1 / )AB
AB

Y j C
Z R j L C

ω
ω ω

= = +
+ −

 [Eq 1]
 

where ω = 2pf.

By combining the two terms on the right, we get Equation 2.

2
0 0 0(1 / )
( 1 / )AB

LC C C j RCY
R j L C

ω ω
ω ω

− + +
=

+ −
 [Eq 2]

 

Figure 1 — The internal structure of a quartz crystal unit is shown on 
the left. The complete package in the metal HC-49U case is shown on 

the right.

Figure 2 — This is an equivalent circuit for a quartz crystal unit.

and inverting both sides gives us Equation 3.

2
0 0 0

( 1 / )
(1 / )AB

R j L CZ
LC C C j RC

ω ω
ω ω

+ −
=

− + +
 [Eq 3]

Multiplying both the numerator and the denominator by the com-
plex conjugate of the denominator gives us Equation 4.
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A B

C0

L
R C



24   QEX  January/February 2016

3 2 2 2
0 0 0 0

2 2 2 2 2 2 2 4 2 2
0 0 0 0 0 0

( 1 / 2 / / )
/ 1 2 2 / 2 /AB

Real j L C L C LC C C C R CZ
C C LC C C R C LC C L C

ω ω ω ω ω ω
ω ω ω ω

+ − − + − −
=

+ − + + − +
 [Eq 4]

 
where Real is a real number with too many terms to fit on the line. We 
are not going to use it anyway.

At resonance, the complex component of the above equation is 
zero. That is the term following the j. We can simplify Equation 4 by 
expressing the complex component as Equation 5.

3 2 2 2
0 0 0 01 / 2 / / 0L C L C LC C C C R Cω ω ω ω ω ω− − + − − =  

[Eq 5]
 

Multiplying both sides of the equation by ωC2 to remove the fractions 
gives us Equation 6.

2 2 4 2 2 2 2 2 2
0 0 0 02 0LC C L C C LCC C R C Cω ω ω ω− − + − − =  

[Eq 6]
 

The last term is much smaller than the other terms combined, so we 
eliminate it. The result is given in Equation 7.

4 2 2 2 2
0 0 0( 2 ) ( ) 0L C C LC LCC C Cω ω− + + + =   [Eq 7]

We can solve this equation by finding the roots of the quadratic 
equation with ω2 as the independent variable. There are any num-
ber of good mathematical software packages that can do this easily. 
Wolfram Alpha is a free online calculator.1 

There are two resulting resonant frequencies. The series resonant 
frequency, fs, is given by Equation 8.

1 1
2sf LCπ

=  [Eq 8]
 

The parallel resonant, or antiresonant frequency, fa, is given by 
Equation 9.

0

1 1 1
2af LC LCπ

= +  [Eq 9] 

We can see that fa is always greater than fs.
The crystal is always connected to an external circuit, and C0 has 

additional capacitance in parallel with it. We will call that additional 
capacitance Cp. This will modify Equation 9, and the parallel resonant 
frequency will be given by Equation 10.

1 1 1
2a

t

f
LC LCπ

= +  [Eq 10]
 

where Ct = C0 + Cp. Crystal manufacturers specify the resonant 
frequency of a crystal at this frequency with a particular load capaci-
tance, Cp.

Impedance at Resonant Frequencies
At the series resonant frequency, fs, we get ωs

2 = 1/LC, and by 
plugging this expression into Equation 3 we get Equation 11.

2
01 ( )AB

RZ R
RCω

= ≈
−

 [Eq 11]

We use the approximation because R is on the order of 10 to 
100 Ω, and ω is on the order of 106, but C0 is just a few picofarads, and 

on the order of 10–12. This makes the term very small compared to 1.
For the the parallel or antiresonant frequency we have 

Equation 12.

2 1 1
a

tLC LC
ω = +  [Eq 12]
 

Substituting the ω2 value into Equation 3, and using the impedance of 
the capacitor, XC, we obtain Equation 13.

2

2 2

1 c
AB

t

XZ
C R Rω

= =  [Eq 13]

The impedance for the parallel or antiresonant frequency is also 
pure resistance and much greater than the series resonant impedance, 
with a value typically between 100 kΩ and 1 MΩ.

In order to obtain Cm and Lm, we need only to measure the series 
resonant frequency and the antiresonant frequency, and the capaci-
tance, C0. We then use the numbers in Equations 8 and 10 to solve for 
Lm and Cm. We need a stable and accurate signal generator, an accurate 
and precise frequency counter and a fairly sensitive RF voltmeter or RF 
probe. The frequency counter should be able to measure and display 
frequencies to within 1 Hz. The frequency counter may be built into 
the signal generator. 

The output level from the test fixture at the parallel resonant point 
is going to be down as much as 110 dB from the peak voltage. This 
makes this measurement very difficult. Let’s find an easier way.

Crystal in Series With A Capacitor
Let’s examine a crystal in series with a capacitor. Figure 3 shows 

the schematic for this model.
The impedance between terminals A and B of the circuit is given 

by Equation 14.

2
0 0 0

( 1 / ) 1
1 /AB

X

R j L CZ
LC C C j RC j C

ω ω
ω ω ω

+ −
= +

− + +
 [Eq 14]

We wade through some lengthy arithmetic to find the two reso-
nant frequencies. This is more tedious than the previous derivation, 
resulting in an expression with more than 20 terms. I will not bore 
you with the details and leave it as an exercise, if you are interested 
in a challenge. The two resulting resonant frequencies are given by 
Equations 15 and 16.

1 1
c

tLC LC
ω = +  [Eq 15]

0

1 1
a LC LC

ω = +  [Eq 16]
 

where Ct = C0 + CX and ω = 2π f.
We have shifted the previous series resonant point, now repre-

sented as ωc, up in frequency. The antiresonant frequency remains 
exactly the same.

We now use Equations 8 and 15 to determine Lm and Cm of the 
crystal. This is a system of two equations with three unknowns. We 
measure C0 directly with an L/C meter. Take Equation 8 and rewrite 
it as Equation 17.

2 1
s LC

ω =  [Eq 17]
 

1Notes appear on page 26
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We will also rewrite Equation 15 as Equation 18.

2 1 1
c

tLC LC
ω = +  [Eq 18]

The subscript c indicates that this is a measurement with CX in 
series with the crystal.

Subtracting Equation 17 from Equation 18 gives us Equation 19.

2 2 1
c s

tLC
ω ω− =  [Eq 19]

This now becomes Equation 20.

2 2 2 14 ( )c s
t

f f
LC

π − =  [Eq 20]

At this point, everyone wants to make an approximation for the 
difference of the two squares. Let’s use the equation x2 – y2 = (x + y) 
(x – y) and get more precise results. This will give us Equation 21, 
solved for Lm.

2
0

1
4 ( )( )( )m

c s c s X

L
f f f f C Cπ

=
+ − +

 [Eq 21]

We can measure the two resonant frequencies using a signal gen-
erator and frequency counter. Measure C0 and CX using a capacitance 
meter, and then crunch the numbers.

Test Fixture
In order to make the measurements we use a test fixture. Other test 

measurements in publications and on the Internet use more complex 
circuits. This test circuit is very simple. Figure 4 shows the schematic 
diagram for the circuit. You can see how simple and inexpensive it 
can be.

The input and output impedance of the fixture is close to 50 Ω, but 
is not critical. R2 and R3 should be kept small to reduce the loaded 
Q on the crystal, but not too small to attenuate the output RF voltage 
of the fixture to a very small value. The resonant frequencies are not 
affected by these values. If the values are large, the resonant peak 
spreads out and it is more difficult to home in on the exact peak. The 
small values of R2 and R3 also serve to swamp any effects of stray 
capacitance in the fixture.

Figure 5 is a photograph of the test fixture that I use for this pro-
cedure.

Here are the steps to measure the data needed.
1) With the RF generator voltage connected to the fixture, find 

the series resonant frequency with capacitor CX shorted. Start the 
frequency generator a few kilohertz below the marked frequency of 
the crystal and slowly increase the frequency while watching the RF 
output level. Write down the frequency at which the peak output volt-
age occurs. This is fs.

2) Remove the short across capacitor CX. Find the new output volt-

age peak at a slightly higher frequency. This will be fc.
3) When you build the fixture measure CX before installing it and 

again in the circuit without a crystal in the socket to determine the 
extra stray capacitance caused by the shorting terminals. I used a 
47 pF disc capacitor, but any value near this should do nicely. I recom-
mend an NPØ capacitor.

4) Measure C0 of the crystal using an accurate L/C meter, such as 
the Almost All Digital Electronics (AADE) L/C Meter II.2

Now you have all the data needed to calculate Lm. We obtain Cm from 
the series resonant frequency, Equation 8, by using the Lm value and fs.

Crystal Motional Resistance
Here are the steps to measure the motional resistance, Rm, or the 

effective series resistance (ESR) of the crystal. 
1) Short CX and again find the series resonant frequency. Make 

note of the output voltage as accurately as possible. 
2) Remove the crystal, leaving everything else as is. 
3) Replace the crystal with a variable resistor of 100 Ω. I use a 25 

turn variable resistor that has 0.2 inch lead spacing, to fit the crystal 
socket. Adjust the resistor for the exact same RF voltage output we 
had with the crystal in the socket.

4) Remove the variable resistor and measure the resistance. This 
is Rm.
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Figure 3 — This schematic diagram is the model circuit for a crystal 
in series with capacitor CX.

Figure 4 — Here is the schematic diagram for the author’s crystal test 
fixture. R1 = R4 = 47 Ω, R2 = R3 = 10 Ω, Y1 is the crystal under test, 

and CX = 47 pF. JMP is a jumper to short out CX.

Figure 5 — This photo shows the author’s crystal test fixture. It was 
built using a circuit board layout with parts labeled. The center pin 
of the crystal socket is grounded to reduce the socket capacitance 

across the crystal.
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Congratulations. You have all four crystal parameters. You have 
Lm, Cm, Rm, and C0. These values may be used to determine the circuit 
for a crystal IF filter with a specific bandwidth.

You can determine the quality factor, Q, of the crystal by taking 
the series resonant frequency, fs, motional inductance, Lm, and series 
resistance, Rs, and use Equation 22.

2s m s mL

m m m

L f LXQ
R R R

ω π
= = =  [Eq 22]

 
This is the inductive reactance at the resonant frequency divided by 
the motional resistance, Rm, of the crystal.

I have written some Python code to perform the calculations for 
the parameters of the crystal under test. This code carries out the com-
putations to the full 64 bit precision of the computer processor. My 
code is available for download from the ARRL QEX files web page.3

Procedure Verification
In order to verify that this procedure is both useful and accurate I 

picked at random nine crystals from my collection. I then sent these to 
Tom Thomson, WØIVJ, in Colorado to measure their characteristics 
by using an AIM Model 4170 Vector Network Analyzer. He also had 
Larry Benko, WØQE, do the same measurements with another 4170 
VNA. Table 1 shows the results, with their measurements and mine. 
As you can see, the agreement on the crystal parameters is excellent.

SPICE Simulation
As a check of all my theoretical work, I ran a SPICE simulation 

using ngspice. I set up an input RF voltage of 1.00 V and swept a 
crystal model from 4.190 MHz to 4.210 MHz. The voltage output 
was plotted in dB to show the null depth.

The important thing to note is that the null, corresponding to the 
parallel resonant mode, remains at the same frequency, but varies in 
magnitude. This agrees with the theoretical derivation and resulting 
formula.

Matching Crystals
Using the technique discussed to match crystals is going to be a 

long and tedious task. One of the  things that I want to demonstrate 
is how a Colpitts crystal oscillator can be used to match crystals and 
get excellent results. 

Suppose you have a number of crystals and you are looking for 
four crystals for a four pole crystal filter. You want the crystals to 
match within 10 Hz of each other. Then, using the oscillator and a 
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frequency counter you plug the crystals in and measure the output fre-
quency of each, and keep them ordered. Also note the output voltage 
from the oscillator. If we have two crystals with the same frequency, 
we will take the one with the higher output from the oscillator because 
it will have the lowest Rm.

I have a few hundred 4.096 MHz crystals that I won at an auc-
tion on eBay. I found four of them that matched within 5 Hz of each 
other in the oscillator. I then used the procedure outlined in this paper 
to measure their crystal parameters. My results are given in Table 2.

Depending upon what program you use to generate the compo-
nent values for your filters, you can match crystals using the Colpitts 
crystal oscillator, and then measure the parameters of just one crystal 
for use in the program. You could also measure a few of the matched 
crystals and average their parameter values to use in the program. 
Experimentation will determine which is the fastest method and just 
how well it meets your criteria for the resulting filter(s).

Conclusion
You now know how to measure crystal parameters accurately and 

how to easily match a set of crystals for a filter. The test fixture is sim-
ple and easy to contruct using any of a number of building techniques. 
I hope that you will find this test fixture and procedure to be a useful 
addition to your workbench, and that it will simplify the construction 
of many successful projects.

Chuck Adams, K7QO, was first licensed as KN5FJZ in the mid 1950s, 
during the greatest sunspot cycle in recorded history. He has held the 
calls K5FJZ, K5FO, and now K7QO. He is a retired professor of com-
puter sciences, electrical engineering, and physics. He holds a PhD in 
physics, with a specialization in radiative transfer and electromagnetics. 
He now spends his time experimenting and building his own equipment. 
From time to time, he even gets on the air.

Notes
1Wolfram Alpha is a free online calculator that will calculate a 

large variety of quantities from your input values. Go to 
www.wolframalpha.com. 

2The Almost All Digital Electronics website has had information about 
an array of kits, including the L/C Meter II at www.aade.com. 
[Unfortunately, when I checked this link prior to publication, the web-
site home page has a note informing us that Neil Heckt passed away 
on August 19, 2015. The note further indicates that we should be 
patient while his family determines the future of the company. — Ed.]

3The author’s Python code for computing the crystal parameters from 
the measured data is available for download from the ARRL QEX 
files web page. Go to www.arrl.org/qexfiles and look for the file 
1×16_Adams.Zip

Figure 6 — SPICE simulation 
for sweeping a crystal. The 
left-most curve is with no 

series capacitor and then two 
more curves for two different 

values for CX.
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Table 1
Crystal Measurement Procedure Verification

Lab Crystal FSeries FParallel Rs Ls (mH) Cs (pf) Cp (pf) Qs Measuring
Tech Number        Instrument

WØIVJ 1 3.578426 3.585154 49.822 139.418 0.0141885 3.780 65801 AIM 4170 VNA
WØQE 1 3.578427 3.585256 49.700 142.449 0.0138866 3.638 64443 AIM 4170 VNA
K7QO 1 3.578426 -------- 49.6 141.624 0.013968 3.65 64199 K7QO Fixture

WØIVJ 2 4.193154 4.200966 16.943 111.185 0.0129572 3.484 180122 AIM 4170 VNA
WØQE 2 4.193163 4.200894 17.159 115.719 0.0124495 3.376 177674 AIM 4170 VNA
K7QO 2 4.193159 -------- 15.4 114.234 0.012611 3.22 195432 K7QO Fixture 

WØIVJ 3 4.031548 4.036547 40.962 309.640 0.0050332 2.032 211124 AIM 4170 VNA
WØQE 3 4.031552 4.036428 40.046 340.051 0.0045830 1.895 215101 AIM 4170 VNA
K7QO 3 4.031553 -------- 39.1 326.544 0.004773 1.57 211552 K7QO Fixture 

WØIVJ 4 4.193152 4.201202 18.176 107.122 0.0134487 3.509 165524 AIM 4170 VNA
WØQE 4 4.193157 4.201100 18.432 112.633 0.0127907 3.376 160993 AIM 4170 VNA
K7QO 4 4.193154 -------- 17.5 112.514 0.012804 3.44 169390 K7QO Fixture 

WØIVJ 5 4.094814 4.102963 23.238 134.404 0.0112398 2.830 147508 AIM 4170 VNA
WØQE 5 4.094819 4.103052 23.469 134.440 0.0112368 2.794 147386 AIM 4170 VNA
K7QO 5 4.094819 -------- 21.8 130.161 0.0130161 2.74 153616 K7QO Fixture 

WØIVJ 6 3.998939 4.005005 22.484 132.716 0.0119351 3.940 153331 AIM 4170 VNA
WØQE 6 3.998953 4.005015 22.619 136.166 0.0116326 3.837 151261 AIM 4170 VNA
K7QO 6 3.998947 -------- 21.6 133.566 0.0133566 3.80 155370 K7QO Fixture

WØIVJ 7 11.055203 11.079818 7.407 11.640 0.0178059 4.007 109648 AIM 4170 VNA
WØQE 7 11.055211 11.079788 7.337 11.755 0.0176319 3.965 111282 AIM 4170 VNA
K7QO 7 11.055188 -------- 7.1 11.449 0.018102 3.99 112009 K7QO Fixture

WØIVJ 8 4.094873 4.102956 24.034 130.270 0.0115962 2.943 144651 AIM 4170 VNA
WØQE 8 4.094876 4.103023 24.476 134.745 0.0112110 2.818 141641 AIM 4170 VNA
K7QO 8 4.094880 -------- 24.1 132.374 0.011412 2.90 161414 K7QO Fixture 

WØIVJ 9 13.499968 13.529170 4.063 5.074 0.0273900 6.345 100390 AIM 4170 VNA
WØQE 9 13.499973 13.529200 4.129 5.064 0.0274465 6.339 104041 AIM 4170 VNA
K7QO 9 13.499920 -------- 4.10 4.739 0.029329 6.10 98042 K7QO Fixture

Number Form Factor Crystal Identification Printed on Each Unit

1 HC-49U MPCO 3.579545
2 HC-49U HOSONIC 4.1943 B603
3 HC-49S 4.032
4 HC-49U HOSONIC 4.1943 B603
5 HC-49U MMD A18BA1 4.096JHz 9942G
6 HC-49U ABRACON 4.000 AB 0443
7 HC-49U FOX115-20 11.0592
8 HC-49U MMD A18BA1 4.096MHz
9 HC-49U 78941-1 13.500 KDS 5K

Table 2
Sample Crystal Measurements

Crystal fs (Hz) fc (Hz) Lm (mH) Cm (fF) C0 (pF)
 1 4094849 4095292 132.12 11.43 2.97
 2 4094849 4095287 133.94 11.28 2.85
 3 4094846 4095294 130.82 11.54 2.90
 4 4094849 4095301 129.62 11.65 2.92 
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Scotty Cowling, WA2DFI

PO Box 26843, Tempe, AZ 85285: scotty@tonks.com

Hands-On-SDR

1Notes appear on page 34

In this installment, we move back toward 
the basics (I didn’t say simple!) and delve a 
bit more into the inner workings of the magi-
cal, mystical field programmable gate array, 
or FPGA. This column relies heavily on what 
I covered in my Mar/Apr 2015 column.1 If 
you have not read that, or can’t remember 
reading it, now would be a good time for a 
quick review. Since I can’t remember writ-
ing it, I need to take a short break and read it 
again myself…

In the Mar/Apr 2015 column, I showed 
you how to set up an FPGA coding environ-
ment with free development tools, walked 
you through the code of an SDR design 
example, showed you how to compile the 
example code and run it on real hardware. 
We did cover some SDR theory, but we 
took much of the background as a given and 
instead focused on how we implemented 
functions inside the FPGA. 

This time we will be taking the open-
source code written for a variant of the 
high-performance software-defined radio 
(HPSDR) Hermes single-board transceiver 
(specifically the Apache Labs Anan-10e) and 
port it to the BeMicroCVA9 development 
board from Arrow Electronics. This board 
is used in the Hermes Lite project as well as 
in the IQ2 transceiver and is also compat-
ible with the SDRstick HF1, HF2 and TX2 
RF boards. I am going to focus on the HF2 
receiver and TX2 transmitter boards, but I 
will include enough information for you to 
port the Hermes code to almost any compat-
ible RF front-end board. Given the price and 
performance of the BeMicroCVA9, I expect 
that a bevy of hardware designs will surface 
once the word gets out. So let’s start getting 
the word out!

We owe many thanks to Phil Harman, 
VK6PH, Kirk Weedman, KD7IRS, and Alex 
Shovkoplyas, VE3NEA, who wrote the orig-
inal code that we will use as a starting point. 
As you look through the code, I think you 
will be grateful for their work. Without their 
significant efforts, we would have to write all 
of this complicated code ourselves! 

What Do We Need to Get Started?
As with each of these columns, limited 

space begs the questions: “What do I need to 
know?” and “What equipment do I need?” 

You will need a basic working knowl-
edge of the Verilog hardware description 
language. If you followed my Mar/Apr 
column, you are prepared enough. We will 
not be deep diving into the intricacies of the 
code, since we are just porting the code to a 
new device. My assumption is that the exist-
ing code is working, and we will try not to 
introduce any new bugs as we port to the new 
device. Of course, my assumption may prove 
to be false, but that is a topic for another day: 
debugging FPGA code!

For hardware,  you wil l  need a 
BeMicroCVA9 development kit.2 To actually 
run the code that we are going to compile in 
this column, you will also need an HF2 board 
(to receive), or both HF2 and TX2 boards 
(to transceive).3, 4 As a lower-performance 
(and less expensive) alternative, you can 
use an HF1 or Hermes-Lite board, but you 
will need to make other modifications to the 
code if you go that route.5, 6 I believe that the 
Hermes-Lite group has ported their firmware 
to the BeMicroCVA9. After wading through 
this column, you should be expert enough to 
compile their source code and run it on the 
BeMicroCVA9. Even if you do not have the 
hardware, you can still follow along with the 
text and learn about porting FPGA code to 
new devices. 

Like my Mar/Apr column, you will need 
some Verilog programming knowledge, but 
SDR knowledge in general is not required. 
We are targeting a new device, not designing 
code from scratch.

For design software, there is good news 
and bad news. The good news is that Altera 
offers their Quartus II FPGA design soft-
ware as a free download from the Internet 
for the FPGAs in their Cyclone® family of 
parts. Both Linux and Windows versions are 
available. We will need two versions of the 
Quartus II design software to complete the 
porting work. The first version is Quartus II 
version 13.1, which is the version that was 
used to create the code that we are going to 

port. The second version is the latest (as of 
this writing), version 15.0. The bad news 
is that Quartus II version 15.0 requires a 
64-bit operating system. You will need 64-bit 
Windows XP, Windows 7 or later or 64-bit 
Linux in order to run this new version. 

All of the information from my Mar/Apr 
column applies to both Quartus versions. 
Before you continue, you will need to down-
load and install both of the free Quartus II 
versions (13.1 and 15.0) from the Altera web 
site.7 To save some download time, you only 
need to download Cyclone III and Cyclone 
V device support for Quartus II version 
13.1, and only Cyclone V device support for 
Quartus II version 15.0.

Why Two Quartus Versions?
Before we get down to the meat and 

potatoes, I need to explain some problems 
that we face that are unique to our task. You 
might ask “Why do we need two versions of 
Quartus?” The answer is tied to the capabili-
ties of each Quartus version and the FPGA 
part that we are migrating from as well as the 
part we are migrating to. The Hermes code 
targets the Cyclone III EP3C25Q240C8 (our 
from part number), while the BeMicroCVA9 
uses a Cyclone V 5CEFA9F23C8 (our to part 
number). Quartus II version 13.1 supports all 
Cyclone III parts and some of the Cyclone 
V parts, but unfortunately not our to part 
number. Quartus II version 15.0 supports all 
Cyclone V parts (including our to part num-
ber), but no Cyclone III parts at all! 

While it is certainly possible to migrate 
Quartus versions and part families in one 
step (which was my original intent for this 
column), doing it that way is difficult. We 
will follow an easier course by changing part 
families first and then upgrading to the latest 
version of Quartus. If the complexity of this 
method frustrates you, try to remember that 
this is the easy way. To paraphrase a com-
mon saying: “There are only two ways to do 
this. If you don’t like this one, you for sure 
won’t like the other one!” Here is the flow 
of part numbers and Quartus versions that 
we will use:

3C25 with v13.1  5CEFA7 with v13.1 
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 5CEFA7 with v15.0  5CEFA9 with 
v15.0

Notice that Quartus II version 13.1 does 
not support our 5CEFA9F23C8 part, so we 
pick a dummy part (5CEFA7F23C8) that it 
does support just to get us into the Cyclone 
V family. After we migrate to Quartus II 
version 15.0, we will pick our final, correct 
5CEFA9F23C8 target. Also, notice that in 
the flow above, we only change one item 
in each step: either the part number or the 
Quartus version, but never both.

FPGA Code Porting Tasks
Now that we understand the mess that we 

have gotten ourselves into, here is an outline 
of the WA2DFI 6-step program to successful 
FPGA code porting:

1) Open the design in the original Quartus 
version.

2) Update the wizard-generated modules.
3) Add code to hook in new signals and 

remove unused old signals.
4) Add new location properties.
5) Update the SDC timing constraints file 

with new signals, and remove old signals.
6) Compile-debug-repeat.
While none of these steps is fraught with 

peril, some are a bit more involved than oth-
ers. Let’s look at each step in more detail.

Open the Design
To get a copy of the FPGA source code, 

download a copy of the Quartus archive 
from the SDRstick SVN webserver.8 The 
archive not only contains the source files 

(with a .v extension), but the pin assignment 
file (.qsf extension), timing constraints file 
(.sdc extension) and many other files needed 
to successfully compile the complete project. 

Once you have downloaded the archive 
file, start the Quartus II version 13.1 soft-
ware and click on <file><open project…>. 
Navigate to the .qar file that you downloaded 
and click on it. From the dialog box that 
opens, select the destination folder (usually 
the default is good) and click OK. Quartus 
will extract all of the files from the archive 
and set up the project, all ready to go. I 
recommend that you fire off a trial compile 
now (yes, right now!) with no changes. This 
will tell you if you have everything set up 
correctly. The compile button is the small 
right-facing triangle on the toolbar. If you 
prefer menus, the <Start Compilation> but-
ton is also under the <Processing> menu. 
You should get a bunch of warnings from 
Quartus, but no errors. If Quartus reports 
errors, you must fix them before you can 
continue.

Now that we have a good compile, we 
need to do a little project clean up. By proj-
ect, I am referring to the group of files that 
comprise the entire design. The Hermes 
design has changed and evolved over time. 
Some functions were removed or superseded 
by new and improved ones. Other pieces of 
code were rewritten to be more efficient. The 
net result is that there are files included in 
the project that are unused. Since we don’t 
need to update unused modules, it is best 
to remove them now. There are about two 

dozen unused files that you can remove. I 
have listed them in a text file that you can 
download.9 

First, remove the files on the list from 
the project directory or subdirectory. If you 
are cautious, like I am, create a new direc-
tory outside of the Quartus project and 
move the files there. That way Quartus will 
not be able to find them, but if you make a 
mistake and remove a needed file, you can 
easily restore it. Next, in Quartus, under the 
<Project><Add/Remove Files in Project> 
menu, remove the files from the project. You 
might think that deleting (or moving) the 
file is sufficient, but Quartus keeps track of 
the files that it knows are in the project. You 
must remove these or Quartus will look for 
them (in vain, since you moved them) and 
not be happy about not finding them. After 
you remove all of the dunsel files, make sure 
to click <apply> and <OK>.10 

Check the Files tab of the Project 
Navigator window to see a list of files in the 
project. See Figure 1. You should recompile 
the project to make sure that you did not 
accidentally remove something that is neces-
sary. Before you do this, however, you need 
to remove the intermediate database files for 
past compiles. This will ensure that all traces 
of the files that you removed are gone from 
Quartus “memory” of compiles past. Go 
into the project directory and remove the two 
directories db and incremental_db along 
with their contents. Don’t worry; Quartus 
will re-create them as soon as you run a com-
pile, which you should now do. As before, 
Quartus should report some warnings, but 
no errors. 

Update Wizard-Generated Modules
The Altera MegaWizard Plug-In Manager 

was used to generate some of the modules in 
the Hermes code. The wizard, as I call it, is 
software built into Quartus that helps you 
set parameters for Altera functions such as 
FIFO, RAM and ROM memories, phase-
locked loops (PLLs) and other functions. 
The Hermes design uses four PLLs, four 
FIFO memories, three ROM memories, one 
RAM memory and one multiplier for a total 
of 13 Wizard generated modules. Each of 
these modules must be updated first to the 
Cyclone V family under Quartus II version 
13.1 before we can open them in Quartus II 
version 15.0. 

Let’s now move our design to the Cyclone 
V family. With the design open, select 
<Assignments><Device> from the menu 
bar. Select Cyclone V in the Family field. 
A dialog box will appear asking if you want 
to remove all location assignments. This 
tells Quartus to remove the old pin assign-
ments that will no longer be valid when we 
change to a different part. This is important, 
since the Cyclone III pin numbers have 

Altera Part Numbers Explained, Sort Of
Just in case you are wondering what all those numbers mean in that long and 

involved FPGA part number, look no further. Our FPGA part number can be bro-
ken into 9 sections:

5C  E  F  A9  F 23  C  8  N
The 5C signifies that our part is in Altera’s Cyclone V family of parts. Examples 

of other Altera part families are Stratix 5 (5S) and Arria 10 (10A). The E in our 
part number signifies Enhanced logic/memory, in other words, no embedded 
hard-processor or high-speed transceivers (the digital logic kind of transceiver, not 
the Amateur Radio variety). The F signifies that we have a hard memory controller, 
which is a DDR memory controller pre-built for us in silicon so we do not have to 
design one out of the FPGA fabric ourselves. The A9 tells us that this is the larg-
est device in the family, with 301K Logic Elements (LEs). In contrast, the smallest 
member of the family, the A2, has only 25K LEs.

Moving along, F23 represents the package type. F stands for Fine Line Ball 
Grid Array and 23 stands for the square package side dimension, 23mm. This 
package has 484 connections, each consisting of a solder ball on the bottom of 
the chip. The solder balls are arranged in a 22mm by 22mm square grid on 1mm 
centers. Don’t try to mount this part with your American Beauty soldering iron!15 

The C stands for commercial temperature range (0ºC to 85ºC); there are two 
wider temperature ranges if needed. The 8 represents the speed grade. There are 
only three grades, 6 being the fastest (and most expensive). The 8 graded parts 
are the slowest (and cheapest), but still plenty fast enough for our application. As 
you would expect, grade 7 parts are in between 6 and 8 in performance. Last but 
not least, the N indicates lead-free packaging. No Ethyl for us, thank you.16 More 
information than you ever wanted to know is available in the reference.17 



30   QEX  January/February 2016

about the same chance of being the same as 
the Cyclone V pin numbers as my dog has 
of becoming President. (My cat agrees with 
me on this one.) This is especially true since 
the packages (QFP240 versus FBGA484) 
are completely different. So click Yes to 
remove them. To narrow your choices, select 
FBGA in the Package field, 484 in the Pin 
count field and 8 in the Speed grade field. 
Now select 5CEFA7F23C8 under Available 
Devices with a single click. Note that you 
will again have to confirm that you want 
to remove all location assignments, even 
though they have already been removed! 
Click Yes and then OK. That’s it! You are 
now are using a Cyclone V part! Well, not 
the right part, and we are still using Quartus 
II version 13.1. We will fix both of these 
problems after we finish updating the wizard-
generated modules.

To update the wizard-generated modules, 
we will use (are you ready for this?) the 
wizard itself! We will open each module in 
turn and tell the wizard to use the Cyclone V 
family and regenerate the module. This will 
work for all of the modules except the four 
PLLs and the ROM memory. We will handle 
them separately. To get started, click the IP 
Components tab of the Project Navigator. 
See Figure 2. You should see thirteen lines 
in the window. Leave the PLLs alone for 
now (PLL_IF, tx_pll, C122_PLL and 
C10_PLL) as well as the firromH module. 
Open sine_table_256 by double clicking on 
it. The MegaWizard Plug-In Manager will 
start. In the upper right corner, the Currently 
selected device family will be Cyclone III 
and the Match project/default box will be 
checked. Uncheck this box and then select 

Cyclone V from the Currently selected 
device family drop-down menu. Click Finish 
twice and the wizard will update the mod-
ule for you. Now repeat the same steps for 
the other 7 modules (profileROM, SP_fifo, 
firram48, Tx1_IQ_fifo, Rx_Audio_fifo, 
Multiply2 and Mic_fifo).

The firromH module must be handled dif-
ferently, mainly because the designers broke 
one of the rules and modified the firromH.v 
file that the wizard created. There are reasons 
why they did this (which I am not going to 
elaborate on), but the consequences are that 
the new wizard-generated firromH.v file will 
over-write the modified old version. We will 
have to re-modify the new file with the old 
changes to make it work. Go ahead and open 
the firromH module in the wizard and con-
vert it to the Cyclone V family just like you 
did with the other modules. After you do this, 
click on the Mem Init tab in the toolbar. We 
must specify an existing file name in order 
to satisfy the wizard, so click on the Browse 
button and select the Polyphase_FIR direc-
tory and pick any of the files that end in .mif. 
You will have to change the selection to MIF 
files in the drop-down Files of type box at 
the bottom of the window to make the .mif 
files visible. It does not matter which file 
you choose, since we are going to manually 
change it in the firromH.v file in the next step.

Now we are going to modify the 
firromH.v file that the wizard created for us. 
(Shh, don’t tell the wizard!) In the Quartus 
Project Navigator pane, click on the Files 
tab, find the firromH.v file (hint: it is called 
“Polyphase_FIR/firromH.v” because it is in 
a project sub-directory) and open it by dou-
ble-clicking on it. After line 43, add line 44:

parameter MifFile = “missing_file.mif”;
Follow this with a blank line 45 to make 

things readable. Next go to line 88 and 
change it to read:

altsyncram_component.init_file = 
MifFile,

Make sure to type it exactly as shown, 
since capitalization and punctuation matter. 
Save it and close the file. We will delve more 
into why we made this change in the next 
column, when we dig into the code. Right 
now we need to finish up with the wizard by 
updating the PLL modules.

Unfortunately, Cyclone V PLLs are dif-
ferent from Cyclone III PLLs, so we cannot 
just upgrade them using the wizard. We must 
create new ones and replace the old ones with 
the new ones. First, remove the old PLL_IF, 
C10_PLL, C122_PLL and tx_pll files from 
the project using the Add/Remove Files in 
Project menu. Each of these modules will 
have several files (typically .v and .qip files); 
make sure that you remove all of them. Next 
remove the files from the project directory 
and sub-directories. (The tx_pll files are in 
the Ethernet sub-directory.) While you are 
at it, remove the db and incremental-db 
directories and their contents, just like you 
did before. 

To create a new PLL module, open 
the wizard using <Tools><MegaWizard 
Plug-In Manager> and select Create a new 
custom megafunction from the list. From 
the list of functions, pick Altera PLL v13.1 
from the PLL submenu. In the output file box 
append the name (for example, PLL_IF_
new) after the string that represents the proj-
ect directory. This will name your module 
and place it in the project directory. All four 

Figure 1 — Project Navigator view of files in the project.

Figure 2 — Project Navigator view of IP components in the project.
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PLL modules have these common settings:
• Device Speed Grade: 8
• PLL Mode: Integer-N PLL
• Operation Mode: direct
• Enable locked output port: checked
• Enable physical output clock param-

eters: checked
Set the other parameters for each module 

to what I have listed in Table 1. Leave all 
other parameters set to their default settings. 
When you click Finish and Exit after speci-
fying all the parameters, Quartus will ask 
you if you want to add the new IP to the proj-
ect. Click Yes. Since the PLL modules need 
to be added to the project eventually, this will 
save you a step later.

The last step is to open the source file that 
instantiates each PLL, update the module 
name and check (and correct, if necessary) 
the module connections. The tx_pll is used 
in the rgmii_send.v file in the Ethernet sub-
directory. The other three are instantiated in 
the top level Hermes.v file. I will guide you 
through the first one, and you can follow the 
same procedure on the other three on your 
own. (You didn’t think I was going to do all 
of it for you, did you?) Open the top level 
Hermes.v file and also the C122_PLL_
new.v file. Go to line 1385 in Hermes.v and 
you will see the instantiation of C122_PLL. 
The instantiated name is PLL_inst, and 
the port names are inclk0, c0 and locked. 
Observe that port inclk0 is connected to 
_122MHz, port c0 is connected to osc80khz 
and port locked is not connected to anything. 
Now look at the C122_PLL_new.v file. You 
will see that there are now four ports instead 
of three: inclk0 is now called refclk, c0 is 

now called outclk_1 and locked remains 
unchanged. The new input is called rst; we 
will not use it. Change line 1385 to read:

C 1 2 2 _ P L L _ n e w  P L L _
i n s t  ( . r e f c l k ( _ 1 2 2 M H z ) , 
.outclk_1(osc_80khz), .locked( ), .rst( ) ); 
The C10_PLL_new and PLL_IF_new mod-
ules will require similar changes. 

The astute reader will notice that the wiz-
ard allows you to turn off the locked output 
when it is unused, but the new PLLs all have 
an rst input that cannot be disabled. Ideally 
this input should be connected to reset logic; 
however, we will save code improvements 
for a later time. I need to call your attention to 
one other change that I slipped in while you 
were not looking. I changed the reference 
clock of the tx_pll module from 125 MHz 
to 50 MHz. I did this out of necessity, since 
the CVA9 does not have a 125 MHz clock 
input! It does have a 50 MHz clock input, 
but since we have not added it to the top-
level Hermes.v source file yet, just leave it at 
125 MHz. We will fix it shortly.

Now that you are experienced in match-
ing up old port names to new port names, this 
would be a good time to go back and check 
the other nine wizard-generated modules 
that we updated to make sure that the port 
definitions in each module’s .v file match 
up with the ports called out at the module’s 
instantiation. Here’s a quick hint: all of 
them are instantiated in Hermes.v except 
for sine_table_256 (sidetone.v), Multiply2 
(sidetone.v), profile_ROM (profile.v) fir-
romH (Polyphase_FIR/firx2r2.v) and fir-
ram48 (Polyphase_FIR/firx2r2.v).

As a short aside, I keep a note pad handy 
to write down things like “change 125M 
clock to 50M” as a note to myself. When you 
are updating the code, you will likely per-
form many tasks out of order and it is easy to 
forget a simple change that you queued up in 
your memory and then forgot about it. 

At this point, we are finished with 
Quartus II version 13.1. Close Quartus and 
re-open the project in Quartus II version 
15.0. The new version of Quartus will ask 
you if it should overwrite the database with 
the new format. You can safely answer Yes. 
Change the part number to 5CEFA9F23C8 
and run a compile to see if we broke any-
thing. Now we are using version 15.0 with 
the correct FPGA part number. The light at 
the end of the tunnel is coming into view, and 
it is not an oncoming train!

Add and Remove Code and Signals
The next step in our 6-step program is to 

match up the old design (Hermes) signals 
with the new design (CVA9) signals. We 
must account for every one of the Hermes 
signals, whether it is to remove it, change 
it to match the new CVA9 hardware or 
just connect it to its counterpart in the new 
design. We must also account for every one 
of the new design pins (CVA9) by either 
ignoring it, adding code to support it or just 
connecting it to its counterpart from the old 
design. In order to be able to do all of this 
cross checking, we need to map the old pin 
names (in this case from the Hermes board) 
to our new pins on the BeMicroCVA9 board. 
Some of these signals connect to parts on the 
BeMicroCVA9, and some connect directly 
to the HF2 and TX2 boards that are plugged 
into the BeMicroCVA9. 

What we need is a table that shows the 
old name alongside the new name and the 
new FPGA pin number. (We will use the pin 
numbers in the next section.) You could figure 
this out for yourself, but I have created a file 
for you containing a table of all of the signal 
names in the design to give you a head start. 
This Hermes_6_to_IQ2_pins table will tell 
us which pins map directly onto new pins and 
which do not.11 An excerpt of this table (show-
ing only the signals that we need to change) is 
shown in Table 2. All of the changes will be 
made to the top level Hermes.v file.

A quick look at the full table will reveal 
that most Hermes signals have equivalent 
(although differently named) BeMicroCVA9 
signals. We can leave these alone. The other 
signals fall into three categories:

1) The Hermes signal has a different or 
shared function than the CVA9 signal.

2) The Hermes signal does not exist in the 
CVA9 design.

3) The CVA9 signal does not exist in the 
Hermes design.

In the first case, we must modify the 

Table 1
Wizard Settings for New PLL Modules

 PLL_IF_new tx_pll_new C10_PLL_new C122_PLL_new

Reference Clock 122.88 MHz 50.0 MHz 10.0 MHz 122.88 MHz
Number of clocks 4 4 2 2
Multiply Factor (M) 4 10 64 9
Divide Factor (N) 1 1 2 3

outclk0 cascade? N N Y Y
outclk0 Divide Factor (C) 40 4 32 192
outclk0 output 12.288 MHz 125 MHz n/a n/a
outclk0 phase shift 0° 0° 0° 0°

outclk1 cascade? N N N N
outclk1 Divide Factor (C) 160 4 125 24
outclk1 output 3.072 MHz 125 MHz 80 kHz 80 kHz
outclk1 phase shift 0° 90° 0° 0°

outclk2 cascade? Y N n/a n/a
outclk2 Divide Factor (C) 256 40 n/a n/a
outclk2 output n/a 12.5 MHz n/a n/a

outclk3 cascade? N N n/a n/a
outclk3 Divide Factor (C) 40 200 n/a n/a
outclk3 output 48 kHz 2.5 MHz n/a n/a
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Hermes code to connect to the CVA9 hard-
ware that is different from the Hermes hard-
ware. As an alternative, we can choose to not 
implement the Hermes function on the dif-
ferent CVA9 hardware. This involves remov-
ing (typically by commenting out) code that 
connects to the removed pins. As we will 
explain next, you have to be careful when 
removing inputs.

In the second case, we can simply remove 
Hermes code that does not have CVA9 hard-
ware associated with it. We must be careful 
to follow Hermes inputs all the way to their 
destinations and remove them cleanly. We do 
not want any floating inputs. There may be 
one or more required inputs to the Hermes 
code that came from hardware that does not 
exist on the CVA9. We will have to add new 
code to create these signals and set them to a 
valid state.

In the third case we must add code to 
the Hermes design to connect to the CVA9 
hardware that does not exist in the Hermes 
design. As an alternative, we can choose to 
ignore the new hardware, but we must still 
drive any output pins to some known state to 
avoid hardware problems later.

Here are the index numbers (from the 
Hermes_6_to_IQ2_pins  table) that belong 
to each category:

Category 1: 4, 5, 50, 51, 52, 53
Category 2: 28, 49, 67, 70, 73-76, 78-85, 

91-104, 113-115
Category 3: 21, 22, 116-120

Category 1 Changes
These 7 pins all revolve around a hard-

ware difference between the Hermes and 
the CVA9/HF2/TX2 hardware. Hermes 
has a 31 dB step RF attenuator and a single 
audio CODEC for receive audio output and 
microphone audio input. These two devices 
have separate serial interfaces (3-wire for the 
attenuator and 3-wire for the CODEC). The 
HF2 receiver has the same attenuator and 
CODEC (which is used for receive audio 
output only), but they share clock and data 
lines, each having a separate chip-select. This 
makes the interface 4 lines to both parts. To 
complicate things, the TX2 transmitter has 
another CODEC (used only for microphone 
audio input) that shares the same clock and 
data lines, but with its own separate chip 
select. So now the new five-line interface 
must communicate with three parts over 
common clock and data lines using three 
different chip-selects. Rather than devise 
logic to adapt the two Hermes ports to the 
special five-line CVA9/HF2/TX2 interface, I 
have opted to just disable the HF2 and TX2 
CODECs by tying their chip-selects to the 
inactive state. The PowerSDRTM software can 
use the sound card in place of the CODECs, 
so this does not create a hardship. We can go 
back later and add the code in if we want to. Ta
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As they used to say in college, it is left as an 
exercise for the student.

We will leave the signals at index 4 
(ATTN_DATA) and index 5 (ATTN_CLK) 
alone, which will allow normal control of the 
RF attenuator. We will remove the signals at 
index 50 and 51 (nCS), index 52 (MOSI) and 
index 53 (SSCK). Open Hermes.v and look 
at lines 154 to 156. Rather than delete the 
lines of code that we might want to add back 
in someday, just comment them out by add-
ing two slashes (//) at the beginning of each 
line. To complete this change, we must also 
remove the signals that drove these outputs. 
Go to line 519 and delete the signals nCS, 
MOSI and SSCK from inside the paren-
theses. (Yes, this will leave an empty field 
between the parentheses. This is how you 
specify no connection.) This effectively dis-
connects the .nCS, .MOSI and .SSCK ports 
of the TLV320_SPI module from the top 
level outputs that no longer exist. While this 
is not a complete removal of the TLV320_
SPI module, it is close enough; Quartus will 
remove the unused logic for us. We will still 
have the ability to easily connect it back up at 
a future date when we are ambitious enough 
to combine its outputs with the attenuator 
interface and make the CODECs work again.

Now that we have removed the signals 
for the Hermes CODEC, we must define and 
drive the two new CODEC chip selects to 
their inactive state. Since they are active-low, 
we will drive them high. Add these two lines 
right after the SSCK port definition that you 
just commented out:

output PH_CODEC_nCS,
output MIC_CODEC_nCS,

Insert the following lines of code in a 
convenient place. Right after the module 
definition around line 237 is a good place:

assign PH_CODEC_nCS = 1’b1;
assign MIC_CODEC_nCS = 1’b1;

Category 2 Changes
These are perhaps the easiest changes to 

make. Inputs are handled differently than out-
puts. Outputs are handled as above: comment 
out the output pin and remove (or comment 
out) the source of the signal. Simply search 
for each signal name in turn and comment out 
its definition and its source. Inputs must be 
tied to a known (typically inactive) state after 
the input pin definition is commented out. We 
must also define an internal pin to replace the 
input pin definition that we commented out. 
First, let’s identify the inputs from the list of 
Category 2 changes listed above. They are 
index numbers 67, 70, 75, 80, 91, 92, and 
94 to 97. Find each of them in the full table, 
locate the corresponding input pin definitions 
in Hermes.v and comment them out. Note 
that the inputs CLK_25MHZ, ANT_TUNE, 

IO2, IO4, IO5, IO6 and IO8 are unused in the 
code, so they require no further changes. The 
signals SI and ADCMISO do need to be set 
to a known state. To do this, insert the follow-
ing lines of code in a convenient place. Right 
after the Category 1 lines you added above is 
a good place:

wire SO;
assign SO = 1’b0;
wire ADCMISO;
assign ADCMISO = 1’b0;

The last input we need to handle is 
special: the PHY_CLK125 clock input. 
Remember from our scratchpad memo notes 
that this clock does not exist in the CVA9. 
We have already changed the tx_pll module 
to use a 50 MHz clock, which we will now 
add and connect up in place of the missing 
125 MHz clock. Add the following code 
after line 166 (just below the input PHY_
CLK125 line that you commented out:

input DDR3_CLK_50MHZ,

Now search for PHY_CLK125 (ctrl-F 
opens a find window in Quartus) and change 
it to DDR3_CLK_50MHZ in two places: 
within the parentheses in the network mod-
ule instantiation (around line 400) and near 
the end of the file in the always block heart-
beat LED definition. Yes, it will make the 
heartbeat LED flash a bit slower, but that is 
acceptable.

To remove the outputs, comment out 
each output line in the module pin defini-
tions at the beginning of the file (just like 
you did with the Category 1 outputs). 
In addition, remove the pin from inside 
the parentheses in a module instantiation 
(again, just like you did with the category 
1 outputs) or comment out the assignment 
statement in which it appears. The signals 
USEROUT0 – USEROUT7 are a special 
case because they are assigned to the signals 
Open_Collector[1] – Open_Collector[7], 
respectively. You must comment out the 
assignment (within the parentheses) of 
Open_Collector in the instantiation of the 
High_Priority_CC module (around line 
1200) as well as the following assignment 
(around line 1144):

wire [7:0] Open_Collector;

Category 3 Changes
The index 21 and 22 changes widen 

the ADC data bus from the Hermes code 
14 bit width to the HF2 receiver ADC width 
of 16 bits. We need to change the code in 
the always block that defines the variable 
temp_ADC. This variable is already 16 bits 
wide, but only the top 14 bits are connected 
to the 14 INA inputs from the ADC. Change 
line 135 to read:

input [15:0] INA,

Search for temp_ADC (around line 870) 
and change the always block to read as follows:

always @ (posedge C122_clk) begin
 temp_DACD     <=  {DACD, 2’b00};
 if (RAND) begin
  if (INA[0])
   temp_ADC <= {~INA[15:1], INA[0]};
  else
    temp_ADC  <=  INA;
 end
 else
   temp_ADC  <=  INA;
end

For indexes 116 and 118 we need to add 
two new output signals and assign values 
to them. Index 117 is the output clock to 
the transmit DAC. On the Hermes board, 
the 122.88 MHz oscillator feeds the DAC 
directly without FPGA involvement. The 
TX2 transmitter DAC requires a clock from 
the FPGA, so we must add it. Finally, index 
120 is an unused 24 MHZ oscillator input. 
Even though it is not currently used, we need 
to assign it to an input so we can fix the input 
pin location in the pin list. Add the following 
pin definitions to the Hermes module pin list 
at the beginning of the Hermes.v file:

output DRV_CLK_OUT_N,
output DAC_CLK,
output EN_RX_ANT,
input CLK_24MHZ,

If you insert these at the end of the pin 
list, remember that a comma separates each 
pin definition, and there is no comma after 
the last one. Now insert the following code 
in a convenient place (after your previous 
Category 2 code additions is a good place): 

assign DRV_CLK_OUT_N = 1’b1;
assign DAC_CLK = _122MHz;
assign EN_RX_ANT = 1’b1;

Go ahead and compile again, just to make 
sure that you didn’t forget a semicolon or 
make some other easy-to-fix syntax error.

Add New Location Properties
Do you remember those location proper-

ties that we removed when we changed part 
numbers? We now have to add them back 
into the design, except that we want to add 
the pin numbers for our new device in place 
of the old numbers that we removed. This is 
why I included the pin numbers in Table 2. 

The best way to add new location proper-
ties to the design is to write a script file that 
contains a line for each new location assign-
ment. The format for each line is:

set_location_assignment PIN_xxxx –to 
signal_name

where:
xxxx is the device pin number, and
signal_name is the pin name from the top 
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design file (Hermes.v).
Again, I have created a file for you to save 

you the effort of typing all those lines into 
the script file. You can download it from the 
SDRstick SVN webserver.12 

To run the script, place the file in your 
top directory (that is, the directory that con-
tains your Hermes.qsf file and all of your 
Verilog source files). Now add it to your 
project using <Project> <Add/Remove 
Files in Project…>. Under <Tools> <Tcl 
Scripts…>, select the file and click Run. All 
of your pin locations from the script file have 
now been added. If you want to check your 
new assignments (or maybe you just don’t 
believe me) you can open the Assignment 
Editor from (where else) the <Assignments> 
<Assignment Editor> menu. You should 
see all of your new Location assignments 
listed. Run another compile to make sure 
things are as they should be.

Update SDC Timing Constraints
The last task we must undertake is to 

review the Hermes.sdc timing constraints 
file line by line to remove constraints for 
signals that we have removed, add (or 
expand existing) constraints for new signals 
and update constraints for anything that we 
changed. I will cover this in my next column. 
In the meantime, take a look at the file to 
become familiar with it. Did I just give you a 
homework assignment? Sorry.

Compile-Debug-Repeat
The focus of our efforts has been on 

obtaining a good compile of our code under 
the new Quartus version while targeting 
the new FPGA part. That said, a successful 
compile does not necessarily mean we have 
a working design. Now is the time to review 
all of those Quartus warnings that we have so 
blithely been ignoring all this time. Most (if 
not all) of them can be ignored, but we must 
make sure of this. The cause of the ones that 
cannot be ignored must be fixed. The final 
step, of course, is to load the compiled pro-
gramming file into the BeMicroCVA9 and 
test it to make sure that it works. I will cover 
review of warnings and how to fix them, tim-
ing constraints update and how to load and 
run the code on real hardware in my next col-
umn. An updated Quartus archive contain-
ing all of the changes that we have made is 
available on the SDRstick SVN webserver.13

What’s Next?
Now that you know how to port FPGA 

code to new devices, what can you do with 
this skill? The openHPSDR project is open 
source, and the Apache Labs Anan series of 
transceivers are all powered by open-source 
FPGA firmware. The FPGA code to imple-
ment any or all of the features of these trans-
ceivers is available for your use. When a new 
feature comes out, you can look at how it is 
done and integrate that function into your 
radio. Better yet, you can add your own fea-
ture and show everyone else how to improve 
their own rigs. That is the true benefit of 
open-source!

Each openHPSDR board has an on-board 
FPGA and Verilog code to match. All of it is 
available from the openHPSDR repository, 
and you are now qualified to port it to any 
new hardware that you can scrounge up.14 
The tools that you have used today are the 
very same tools that the developers use when 
they write or update the code.

As always, please drop me an e-mail 
if you have any suggestions for topics you 
would like to see covered in future Hands-
On-SDR columns or even just to let me 
know whether or not you found this discus-
sion useful.

Notes
1Scotty Cowling, WA2DFI, “Hands On SDR,” 

QEX, Mar/Apr 2015, pp 9-19.
2The BeMicroCVA9 board is available from 

from Arrow Electronics: parts.arrow.com/
item/detail/arrow-development-tools/
bemicrocva9.

3The UDPSDR-HF2 receiver board is avail-
able from Arrow Electronics: parts.arrow.
com/item/detail/arrow-development-
tools/udpsdr-hf2.

4The UDPSDR-TX2 transmitter board is avail-
able from Arrow Electronics: parts.arrow.
com/item/detail/arrow-development-
tools/udpsdr-tx2.

5The UDPSDR-HF1 receiver board is avail-
able from Arrow Electronics: parts.arrow.
com/item/detail/arrow-development-
tools/udpsdr-hf1.

6For more information about Hermes-Lite see: 
github.com/softerhardware/Hermes-Lite/
wiki.

Table 3
Files
Quartus archive of original source code: Hermes_6_Sept.qar
Table of pin cross references: Hermes_6_Sept_to_IQ2_pins.pdf
List of unused files: Hermes_6_Sept_unused_files.txt
Tcl script to reassign location properties: Hermes_6_Sept_map_pins.tcl
Quartus archive of ported source code: Hermes_6_Sept_ported.qar

7To download the free Altera Web Edition soft-
ware, go to: dl.altera.com/?edition=web.

8The source code is available from the 
SDRstick SVN at: svn.sdrstick.com under 
the <sdrstick-release/BeMicroCV-A9/
Hermes-HF2-Port/firmware/source> direc-
tory. The file name is <Hermes_6_Sept.
qar>. It is also available for download 
from the ARRL QEX files web page. Go to 
www.arrl.org/qexfiles and look for the file 
1x16_Cowling_Hands_On_SDR.zip.

9The list of unused files is available from 
the SDRstick SVN in the same direc-
tory as listed in Note 8. The file name is 
<Hermes_6_Sept_unused_files.txt>. 
This file is also part of the 1x16_Cowling_
Hands_On_SDR.zip file, also as listed in 
Note 8.

10dunsel, noun, (slang, from Star Trek) a part 
that serves no useful purpose.

11The cross reference of Hermes to IQ2 pins 
is available from the SDRstick SVN in the 
same directory as given in Note 8. The file 
name is <Hermes_6_Sept_to_IQ2_pins.
xls>. The file is also included in the 
1x16_Cowling_Hands_On_SDR.zip as 
given in Note 8.

12The pin location Tcl script file is available 
from the SDRstick SVN in the same direc-
tory as given in Note 8. The file name is 
<Hermes_6_Sept_map_pins.tcl>. The 
file is also included in the 1x16_Cowling_
Hands_On_SDR.zip file.

13Source code containing all of the changes 
outlined in this column is available from the 
SDRstick SVN at svn.sdrstick.com under 
the <sdrstick-release/BeMicroCV-A9/
Hermes-HF2-Port/firmware/source> direc-
tory. The file name is <Hermes_6_Sept_
ported.qar>. This file is also included in the 
ZIP file, as listed in Note 8.

14For HPSDR firmware, look in the TAPR 
repository, svn.tapr.org in <main/trunk> 
under the board name.

15American Beauty soldering irons of old were 
massive and the larger ones could solder 
copper pipes. Like the term “boat anchor,” 
the term is an affectionate name for a tool 
of the past. Lo and behold, they are still 
in business! I especially like the handheld 
unit shown at americanbeautytools.com/
Soldering-Irons/19/features.

16An obscure and wholly unwarranted refer-
ence to tetraethyllead (CH3CH2)4Pb, an 
octane booster added to gasoline from 
about 1920 until the early 1990s in the USA. 
Premium gasoline was referred to as “Ethyl” 
to us old timers.

17More information on part numbers can be 
found in Altera’s Cyclone V Device Overview 
at altera.com/en_US/pdfs/literature/hb/
cyclone-v/cv_51001.pdf. 
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Amplifier for an Up-Conversion HF/
LF Receiver (Horrabin): May, p 25

A Low Frequency Adapter for 
Your Vector Network Analyzer 
(VNA) (Audet): Jan, p 10

A Selective Robust Weak-Signal UHF 
Front End (Toledo): Jan, p 31

A Tridband Dipole for 30, 17, and 
12 Meters (Lau): Mar, p 36

An Arduino Controlled GPS Corrected 
VFO (Marcus): Jul, p 3

An Experimenter’s Variable Voltage 
Transformer (Drell): Mar, p 3

Bob Zepp: A Low Band, Low Cost, 
High Performance Antenna 
-- Part 2 (Zavrel): Jan, p 3

EIRP and Radiated Power, Pi, From 
Verticals (sidebar to Radiation and 
Ground Loss Resistances In LF, MF and 
HF Verticals: Part 1) (Severns): Jul, p 28

High Power Solid State Broadband 
Linear Amplifiers, a Different 
Approach (Carcia): Sep, p 3

Noise Power Ratio (NPR) Testing of 
HF Receivers (Farson): Mar, p 20

Optimizing Magnetically Coupled 
Loop Antennas (Post): Jan, p 17

Quality Factor, Bandwidth, and 
Harmonic Attenuation of Pi 
Networks (Kaune): Sep, p 29

Radiation and Ground Loss Resistances 
In LF, MF and HF Verticals (Severns) 
Part 1: Jul, p 28; Part 2: Sep, p 24

Some Thoughts in Designing 
Very High Performance VHF 

Oscillators (Rohde): Nov p 32

TAPR Looks to Advance the Work 
of John Stephenson, KD6OZH 
(Cowling, Testa): May, p 23

The DG5MK LCQ-Meter (Knitter): Jul, p 8

The Tricorder -- A Self-Contained 
and Integrated 500 MHz RF Signal 
Generator, Power Meter and Network 
Analyzer (Fernandes): May, p 3

Using an Arduino to Automatically 
Tune and MFJ-1788 Magnetic 
Loop Antenna and Elecraft KX3 
Transceiver (Downey): p 3

Wire Antennas for 80 Meter DXing 
(Christman): Mar, p 28

About the Cover 
A Low Frequency Adapter for your 

Vector Network Analyzer (VNA): Jan, 
p 1

An Arduino Controlled GPS Corrected 
VFO: Jul, p 1

An Experimenter’s Variable Voltage 
Transformer: Mar, p 1

Solid Sate Broadband Linear Amplifier: 
Sep, p 1

The Tricoder: May, p 1

Using an Arduino to Automatically Tune 
an MFJ-1788 Magnetic Loop Antenna 
and an Elecraft KX3 Transceiver: Nov, 
p 1

Empirical Outlook 
Changes for QEX: May, p 2

Looking Forward to the New Year: Jan, 
p 2

Readers React: Jul, p 2

Reflections on Another Year Gone By: 
Nov, p 2

Summertime Operating: Jul, p 2

Warm Weather Plans: Mar, p 2

Where Will Our Next Amateur Radio 
Operators  Come From?: Oct, p 2

Hands-On-SDR (Cowling)
Field Programmable Gate Arrays: Mar, 

p 9

HF0, HF1 and BeRadio (sidebar to 
Hands-On SDR: Field Programmable 
Gate Arrays): Mar, p 11

Sharing Radios on the Network: Jul, p 37

Letters to the Editor
Octave for SWR (Jan/Feb 2009) and 

More Octave for SWR (Jan/Feb 2014) 
(Wright): Sep, p 40

Octave for Transmission Linies (Jan/Feb 
2007) (Wright): Sep, p 41

Optimizing Magnetically Coupled Loop 
Antennas (Jan/Feb 2015) (Corey, Post, 
Wolfgang): Sep, pp 41 – 42

QEX Editing Error (Joy, Wolfgang): Jan, 
p 44

SDR Simplified (Mack)
SDR Simplified, Columns rebooted 

— A look at Angle Modulation and 
Decoding in an SDR (Mack): Jan, p 37

Step One towards a working SDR: May, 
p 39

Step Two towards a working SDR: Sep, 
p 36

Upcoming Conferences
2015 Annual Conference, Society of 

Amateur Radio Astronomers: Mar, p 39

2015 Central States VHF Society: Mar, p 
39; Jul, p 43

AMSAT Symposium 2015: Sep, p 43

ARRL/TAPR 34th Digital 
Communications Conference, 2015: 
Jul, p 43; Sep, p 43

Microwave Update 2015: Sep, p 43
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We Design And Manufacture
To Meet Your Requirements

800-522-2253
This Number May Not

Save Your Life...
But it could make it a lot easier!
Especia l ly  when i t  comes to
ordering non-standard connectors.

RF/MICROWAVE CONNECTORS,
CABLES AND ASSEMBLIES

• Specials our specialty. Virtually any SMA, N,
TNC, HN, LC, RP, BNC, SMB, or SMC
delivered in 2-4 weeks.

• Cross reference library to all major
manufacturers.

• Experts in supplying “hard to get” RF
connectors.

• Our adapters can satisfy virtually any
combination of requirements between series.

• Extensive inventory of passive RF/Microwave
components including attenuators,
terminations and dividers.

• No minimum order.

12240 N.E. 14TH AVENUE
NORTH MIAMI, FL 33161

TEL: 305-899-0900 • FAX: 305-895-8178
E-MAIL: INFO@NEMAL.COM

BRASIL: (011) 5535-2368

NEMAL ELECTRONICS INTERNATIONAL, INC.

*Protoype or Production Quantities

URL: WWW.NEMAL.COM

TA P R 
PO BOX 852754 • Richardson, Texas • 75085-2754 
Office: (972) 671-8277 • e-mail: taproffice@tapr.org 
Internet: www.tapr.org • Non-Profit Research and Development Corporation 

TAPR is proud to support the HPSDR project. TAPR offers 
five HPSDR kits and three fully assembled HPSDR boards. The 
assembled boards use SMT and are manufactured in quantity 
by machine. They are individually tested by TAPR volunteers to 
keep costs as low as possible. A completely assembled and 
tested board from TAPR costs about the same as what a kit of 
parts and a bare board would cost in single unit quantities. 

HPSDR is an open source hardware and software project intended to be a "next 
generation" Software Defined Radio (SDR). It is being designed and developed by 
a group of enthusiasts with representation from interested experimenters 
worldwide. The group hosts a web page, e-mail reflector, and a comprehensive 
Wiki. Visit www.openhpsdr.org for more information. 

TAPR is a non-profit amateur radio organization that develops new communications technology, provides useful/affordable 
hardware, and promotes the advancement of the amateur art through publications, meetings, and standards. Membership 
includes an e-subscription to the TAPR Packet Status Register quarterly newsletter, which provides up-to-date news and user/
technical information. Annual membership costs $25 worldwide. Visit www.tapr.org for more information. 

+ 

• ATLAS Backplane kit 
• LPU Power supply kit 
• MAGISTER USB 2.0 interface 
• JANUS A/D - D/A converter 
• MERCURY Direct sampling receiver 
• PENNYWHISTLE 20W HF/6M PA kit 
• EXCALIBUR Frequency reference kit 
• PANDORA HPSDR enclosure 

PENNYWHISTLE 
20W HF/6M POWER AMPLIFIER KIT 

NEW! 

HPSDR Kits 
and Boards 

™

We are your #1 source for 50MHz
to 10GHz components, kits and
assemblies for all your amateur

radio and Satellite projects.

Transverters & Down Converters,
Linear power amplifiers, Low Noise

preamps, coaxial components,
hybrid power modules, relays,

GaAsFET, PHEMT's, & FET's, MMIC's,
mixers, chip components,

and other hard to find items
for small signal and low noise

applications.

We can interface our transverters
with most radios.

Please call, write or
see our web site

for our Catalog, detailed Product
descriptions and

interfacing details.

Down East Microwave Inc.
19519 78th Terrace

Live Oak, FL 32060 USA
Tel. (386) 364-5529

www.downeastmicrowave.com



Amateur Radio operators have a long tradition of going 
beyond operating, moving into technology development, 
home construction, and experimentation. Designing 
and building one’s own station equipment can be 
rewarding, providing more in-depth knowledge and 
excitement. There are a number of ways to make good 
use of a properly equipped workshop for projects. 
We will explore many of the options radio experimenters 
choose to pursue.
The Radio Amateur’s Workshop is your guide to setting 
up and maintaining an effi cient at-home laboratory and 
work station. It describes the tools you’ll need for projects 
ranging from assembling electronic kits to building and 
testing antennas. Subsequent chapters look at a wide 
variety of workshop test equipment, including an 
explanation of how various instruments can be used to 
develop, fabricate, and evaluate projects. Become part 
of the do-it-yourself movement — discover fun and 
creative ways to use radio technology at your 
workshop today.

• Why Do We Need a Workshop?
• The Basic Workshop
• Soldering —The Connection Method of Choice
• Other Connection Methods
• Ratchet-Up for Antenna Projects
• Basic Measurements for the Workshop
• Advanced Measurement Systems
• The Personal Computer in the Workshop 
   and Laboratory

The Radio Amateur’s Workshop
ARRL Item No. 0482 
Special Member Price $19.95 (retail $22.95)
The digital edition is available in the Kindle format from Amazon.

Also Available: 
DIY Magic of Amateur
Radio DVD
ARRL Item No. 6047 
Only $10.95               

DIY Flyer (pack of 25)
ARRL Item No. DIYF
Also available as 
a free download

Chapters Include:
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