
ARRL 225 Main Street
Newington, CT USA 06111-1494

The national association for
AMATEUR RADIO

TM

$5

QEX Jan Feb 2016 Cover.indd 1QEX Jan Feb 2016 Cover.indd 1 12/07/2015 10:38:19 AM12/07/2015 10:38:19 AM

The TS-480HX

Customer Support: (310) 639-4200
Fax: (310) 537-8235

ADS#27315

Scan with your phone to
download TS-480HX brochure.

TakingHFByStormQEX.qxp_Layout 1 7/17/15 2:38 PM Page 1

QEX January/February 2016 1

About the Cover

In order to ensure prompt delivery, we ask that
you periodically check the address information on
your mailing label. If you find any inaccura-
cies, please contact the Circulation Department
immediately. Thank you for your assistance.

Copyright © 2015 by the American
Radio Relay League Inc. For permission
to quote or reprint material from QEX
or any ARRL publication, send a written
request including the issue date (or
book title), article, page numbers and a
description of where you intend to use
the reprinted material. Send the request
to the office of the Publications Manager
(permission@arrl.org).

Features

Octave for Angles
Maynard A. Wright, W6PAP

 In This Issue

January/February 2016

QEX (ISSN: 0886-8093) is published bimonthly
in January, March, May, July, September, and
November by the American Radio Relay League,
225 Main Street, Newington, CT 06111-1494.
Periodicals postage paid at Hartford, CT and at
additional mailing offices.

POSTMASTER: Send address changes to:
QEX, 225 Main St, Newington, CT 06111-1494
Issue No 294

Harold Kramer, WJ1B
Publisher

Larry Wolfgang, WR1B
Editor

Lori Weinberg, KB1EIB
Assistant Editor

Zack Lau, W1VT
Ray Mack, W5IFS
Contributing Editors

Production Department

Steve Ford, WB8IMY
Publications Manager

Michelle Bloom, WB1ENT
Production Supervisor

Sue Fagan, KB1OKW
Graphic Design Supervisor

David Pingree, N1NAS
Senior Technical Illustrator

Brian Washing
Technical Illustrator

Advertising Information Contact:

Janet L. Rocco, W1JLR
Business Services
860-594-0203 – Direct
800-243-7768 – ARRL
860-594-4285 – Fax

Circulation Department

Cathy Stepina, QEX Circulation

Offices

225 Main St, Newington, CT 06111-1494 USA
Telephone: 860-594-0200
Fax: 860-594-0259 (24 hour direct line)
e-mail: qex@arrl.org

Subscription rate for 6 issues:

In the US: ARRL Member $24,
nonmember $36;

US by First Class Mail:
ARRL member $37, nonmember $49;

International and Canada by Airmail: ARRL member
$31, nonmember $43;

Members are asked to include their membership
control number or a label from their QST when
applying.

Index of Advertisers
ARRL ...Cover III
Down East Microwave Inc: 36
DX Engineering: ... 22
Kenwood Communications:Cover II

20

 3

M2: ..19
Nemal Electronics International, Inc:36
Quicksilver Radio Products................Cover IV
RF Parts:... 15, 17
Tucson Amateur Packet Radio: 36

Digitally Tunable Band-Pass Filter
Euclides Lourenço Chuma, PY2EAJ

External Processing for Controlled Envelope Single
Sideband
David L. Hershberger, W9GR

 9
Introducing AACTOR: A New Digital Mode
Joseph J. Roby, Jr, KØJJR13

8 Letters

 35 2015 QEX Index

Euclides Lourenço Chuma, PY2EAJ, designed
a digitally tunable band-pass filter using Peregrine
PE64102 digitally tunable capacitor ICs. He controls
the operating frequency of the filter with a program
on his computer that sends commands to an
Arduino Uno board, which then sets the capacitor
values.

Crystal Parameter Measurements Simplified
Chuck Adams, K7QO

23
Hands-On-SDR
Scotty Cowling, WA2DFI 28

The American Radio Relay League,
Inc, is a noncommercial association
of radio amateurs, organized for the
promotion of interest in Amateur Radio
communication and experimentation,
for the establishment of networks to
provide communications in the event of
disasters or other emergencies, for the advancement
of the radio art and of the public welfare, for the
representation of the radio amateur in legislative
matters, and for the maintenance of fraternalism and
a high standard of conduct.

ARRL is an incorporated association without
capital stock chartered under the laws of the state
of Connecticut, and is an exempt organization
under Section 501(c)(3) of the Internal Revenue
Code of 1986. Its affairs are governed by a Board
of Directors, whose voting members are elected
every three years by the general membership. The
officers are elected or appointed by the Directors.
The League is noncommercial, and no one who
could gain financially from the shaping of its
affairs is eligible for membership on its Board.

“Of, by, and for the radio amateur,” ARRL
numbers within its ranks the vast majority of active
amateurs in the nation and has a proud history of
achievement as the standard-bearer in amateur
affairs.

A bona fide interest in Amateur Radio is the only
essential qualification of membership; an Amateur
Radio license is not a prerequisite, although full
voting membership is granted only to licensed
amateurs in the US.

Membership inquiries and general corres-
pondence should be addressed to the
administrative headquarters:

ARRL
225 Main Street
Newington, CT 06111 USA
Telephone: 860-594-0200
FAX: 860-594-0259 (24-hour direct line)

Officers

President: KAY C. CRAIGIE, N3KN
570 Brush Mountain Rd, Blacksburg, VA 24060

Chief Executive Officer: DAVID SUMNER, K1ZZ

The purpose of QEX is to:

1) provide a medium for the exchange of ideas and
information among Amateur Radio experimenters,

2) document advanced technical work in the Amateur
Radio field, and

3) support efforts to advance the state of the
Amateur Radio art.

All correspondence concerning QEX should be
addressed to the American Radio Relay League,
225 Main Street, Newington, CT 06111 USA.
Envelopes containing manuscripts and letters for
publication in QEX should be marked Editor, QEX.

Both theoretical and practical technical articles are
welcomed. Manuscripts should be submitted in word-
processor format, if possible. We can redraw any
figures as long as their content is clear.
Photos should be glossy, color or black-and-white
prints of at least the size they are to appear in
QEX or high-resolution digital images (300 dots per
inch or higher at the printed size). Further
information for authors can be found on the Web at
www.arrl.org/qex/ or by e-mail to qex@arrl.org.

Any opinions expressed in QEX are those of
the authors, not necessarily those of the Editor or the
League. While we strive to ensure all material
is technically correct, authors are expected to
defend their own assertions. Products mentioned
are included for your information only; no
endorsement is implied. Readers are cautioned to
verify the availability of products before sending
money to vendors.

The American Radio
Relay League

Larry Wolfgang, WR1B

Empirical Outlook

2 QEX January/February 2016

A New Year Awaits Us!
For many of us, a new year means excitement and anticipation of everything that the new

year will bring. We make resolutions (maybe even writing some of them down) and plan to keep
them throughout the year. (Well, okay, most of us are realistic enough to know we’ll be lucky to
keep them until February, but isn’t every new year an opportunity to try again? Maybe this will
be the year!)

For QEX, we anticipate six issues filled with the technical content, projects, and theoretical
discussions to which we all look forward. I know there are some excellent articles waiting to be
published. I also know that some of our readers are planning to write an article about their favor-
ite topic, and submit it to QEX in the hopes of seeing it in print some day soon. Whether you are
interested in presenting some ideas for a new technical development, reporting on some exper-
imentation you have done, or describing a new project that you want to share, QEX looks for-
ward to hearing from you!

Each of our readers and authors have the opportunity to help QEX maintain its reputation as
the best Amateur Radio technical literature available anywhere. I have often encouraged our
readers to submit articles for ARRL publications. We depend on you to share the technical mate-
rial that you like to read. I have talked with some authors who were reluctant to write for QEX
because they believed that their article would not be technical enough for this magazine. There
has been a perception that while much of the technical content of QST is written at a simpler
level, with shorter articles that will appeal to neophytes and those with less technical back-
grounds, QEX articles must be much more advanced, or even complicated. Whenever I have
been confronted by a potential author who has that attitude, I have tried to convince them that
there is no “technical gap” between articles suitable for publication in QST and those suitable for
publication in QEX.

The ARRL technical editorial staff gives careful consideration to each article that is submitted
for possible publication. Each article is reviewed by some of our ARRL Technical Advisors, and
they provide feedback about the technical content and the accuracy of the information contained
in the article. Then each article is examined to determine how to best make use of the material.
Some articles are selected for publication in QST (even some articles that were submitted for
QEX) and some are selected for publication in QEX (even some that were submitted for QST).
The editorial staff may even suggest some articles for publication in NCJ, or occasionally even
one of our books, such as The ARRL Handbook or The ARRL Antenna Book. Of course there
are also some articles that just don’t fit the needs of ARRL publications at that time.

My point is that you should write your article and submit it for possible publication. Let the
ARRL editorial staff determine the publication for which it may be best suited. I can assure you,
however, that I have never seen an article that was considered too complex or technical for QST,
but too simple for QEX.

I have recently had several discussions with a reader who expressed some concern that the
content of QEX was becoming too focused on construction projects and articles describing how
the author had built the project, often omitting details about how they developed that design. This
reader was lamenting “the good old days” when the articles in QEX seemed much more focused
on purely technical discussions and design considerations, perhaps from an engineering per-
spective. I’ll admit that I like construction projects, and I have enjoyed presenting many projects
in the pages of QEX. The fact remains, however, that you, our readers drive the content of QEX
by what you submit for publication. If most of the articles submitted are detailed construction
projects, then there will be more of those printed. If more articles with detailed technical discus-
sions are submitted, then there will be more of that type of article to present.

The continued success of QEX depends on you, our readers, and our authors. I truly hope
QEX can continue to be strong technical publication. Unfortunately, I will no longer be guiding
QEX as its Editor. With the change from 2015 to 2016, I will no longer be a member of the ARRL
Headquarters Staff. I have enjoyed 34 ½ years on the staff, first as an Assistant Technical Editor
and then as a Senior Assistant Technical Editor. For the last 8 ½ years I have served as QEX
Editor. I have enjoyed working with all of the authors, and I have also enjoyed meeting many
authors and readers in person, at various conferences and conventions. If our paths cross at
some future date, I hope you will pause and say hello. Please continue to support QEX, and
help it remain a strong technical publication.

73,

Larry Wolfgang, WR1B

 QEX January/February 2016 3

Rua Cel Manuel de Moraes 204, Campinas, SP 13073-022, Brazil; codigocerto@yahoo.com.br

Digitally Tunable Band-Pass Filter

Computer control tunes this versatile band-pass filter to
meet changing requirements.

1Notes appear on page 8

Band-pass filters have always been
important, but new hardware technology has
made them even more significant. In environ-
ments with large amounts of electromagnetic
pollution, this new type of band-pass filter
can be very helpful.

To construct the digitally tunable band-
pass filter, I used digitally tunable capacitors
(DTC). These components have a variable
capacitance that can be controlled digitally.
The digitally tunable band-pass filter in this
article covers a frequency range of 132 MHz
to 148 MHz, and can handle up to 26 dBm
of RF power. It can be integrated into dif-
ferent projects, including software defined
radio (SDR) projects, where the band-pass
filters are of fundamental importance to the
end result.

Digitally Tunable Capacitors (DTCs)
The key parts of the band-pass filter

described in this article are digitally tunable
capacitors (DTCs), which are made up of
several high-Q-factor metal-insulator-metal
(MIM) capacitors, which are digitally con-
trolled FET switches. Figure 1 is a functional
block diagram of a DTC.

The DTC used in the design of this proj-
ect is the Peregrine PE64102, which has a
capacitance range of 1.88 pF to 14.0 pF in
steps of 391 fF, totaling 32 states that are con-
trolled with 5 bits through a serial peripheral
interface (SPI) bus.1 The Peregrine PE64102
works at 100 MHz to 3 GHz, and can handle
up to 26 dBm of RF power.

Design the Filter
Basically, a band-pass filter is used to

attenuate all signals having frequencies out-

Euclides Lourenço Chuma, PY2EAJ

The Computer, Arduino Uno and band-pass filter circuit board.

QX1601-Chuma01

RF+

Serial
Interface

CMOS Control
Driver and ESD

RF–

ESD ESD

Figure 1 — This is a functional block diagram of the digitally tunable capacitors.

4 QEX January/February 2016

QX1601-Chuma02

–3 dB

Bandwidth

QX1601-Chuma03

X

X
(A)

Generator And Load

Rs

RL

VL2

Vs Filter

(B)
Generator, Filter And Load

Rs

RL

VL1

Vs

Figure 2 — This is an idealized response
curve of a band-pass filter.

Figure 3 — Here is a block diagram that
explains filter insertion loss.

Figure 4 — This is a screen shot of the filter simulation using the Agilent Genesys 2010
software.

Figure 5 — This photo shows the completed filter circuit board.

 QEX January/February 2016 5

side the band of interest. Figure 2 shows the
frequency response of a real band-pass filter,
where fc is the center frequency and the band-
width is the difference between frequencies
f1 and f2, where the attenuation is 3 dB com-
pared with the magnitude of fc.

To develop a band-pass filter, we need to
know several filter details, such the center
frequency, bandwidth, terminating resis-
tance, type of filter response (Butterworth,
Chebychev, Elliptical, and so on), and fil-
ter order. With these parameters, we can
design our filter using simulation software
or through manual calculations (hard work).

Several criteria are used to measure the
performance of a filter, but the ones used
most are the insertion loss and return loss.
Insertion loss is the loss of signal power
resulting from the insertion of a filter in the
transmission line. In Figure 3, if RL = Rs then
VL1 is half of Vs. If you add a filter between
the generator and the load at position X-X,
then any additional loss is the result of the
insertion loss of the filter.

For the band-pass filter development of
this article I used the Genesys 2010 software
from Agilent. I chose the band-pass filter
“Top C Coupled” and Chebyshev type, of
order 4 and with 5 MHz of bandwidth. After
the first tests, it became clear that there was
a downshift of the frequency range, and so I
made some changes in component values to
achieve the frequency range of 132 MHz to
148 MHz.

The model “Top C Coupled” filter was
chosen to use fewer inductors (where Q is
critical), and also to come up with a design
that uses component values that are available
on the market.

Building It
The biggest challenge in building the fil-

ter was the size of the digitally tunable capac-
itors. They are available as a quad flat-pack,
no-lead 12-pin package with dimensions of
2 × 2 mm and 0.5 mm pin spacing!

The circuit board design was done in
Kicad software and the manufacture was
made with common characteristics (2-Layer
FR4 1.6 mm).

The capacitors used are commonly avail-
able, with 5% tolerance, but the ideal would
be to use pre-selected NP0 capacitors. The
inductors are manufactured by Coilcraft,
and have a Q of about 40 at 150 MHz. The
inductors also offer a certain challenge to be
soldered in place on the circuit board. The
finished circuit board is shown in Figure 5.
Figure 6 is the schematic diagram of the digi-
tally tunable band-pass filter.

Controls
I adapted an Arduino Uno circuit board

Fi
gu

re
 6

 —
 H

er
e

is
 th

e
sc

he
m

at
ic

 d
ia

gr
am

 o
f t

he
 d

ig
ita

lly
 tu

na
bl

e
ba

nd
-p

as
s

fil
te

r.

Q
X

16
01

-C
hu

m
a0

6

R
F+

10

R
F+

S
D

A
T

129
G

N
D

S
E

N
1

11

G
N

D

S
C

LK
3

8

R
F–

7

R
F–

6

G
N

D
5

G
N

D
2

P
E

64
10

2-
Q

FN
12

U
4

8

C
O

N
N

_0
1X

08

P
1

7 6 5 4 3 2 1

J1 S
M

A
J2 S
M

A
C

1
27

 p
F

L1
15

 n
H

C
2

39
 p

F

C
3

4.
7

pF

L2
15

 n
H

C
4

47
 p

F

C
5

1.
5

pF

L3
15

 n
H

C
6

47
 p

F

C
7

4.
7

pF

L4
15

 n
H

C
8

39
 p

F

C
9

27
 p

F

V
D

D
4

R
F+

10

R
F+

S
D

A
T

129
G

N
D

S
E

N
1

11

G
N

D

S
C

LK
3

8

R
F–

7

R
F–

6

G
N

D
5

G
N

D
2

P
E

64
10

2-
Q

FN
12

U
3

V
D

D
4

R
F+

10

R
F+

S
D

A
T

129
G

N
D

S
E

N
1

11

G
N

D

S
C

LK
3

8

R
F–

7

R
F–

6

G
N

D
5

G
N

D
2

P
E

64
10

2-
Q

FN
12

U
2

V
D

D
4

R
F+

10

R
F+

S
D

A
T

129
G

N
D

S
E

N
1

11

G
N

D

S
C

LK
3

8

R
F–

7

R
F–

6

G
N

D
5

G
N

D
2

P
E

64
10

2-
Q

FN
12

U
1

V
D

D
4

V
D

D

6 QEX January/February 2016

QX1601-Chuma07

Software In
Computer

Serial
Over
USB Arduino

Uno

SPI Bandpass
Filter

Figure 7 — This block diagram shows the control of the band-pass filter.

Figure 8 — This is a screen shot of the filter
control software.

QX1601-Chuma09

VDD

SDA

SCL

SEN1

SEN2

RF+

VDD
SDA

SCL

SEN

GNDDGND

DTC2

RF–

RF+

VDD
SDA

SCL

SEN

GNDDGND

DTC1

RF–

QX1601-Chuma10

RF Signal Generator
Rohde Schwarz SMT 03

(Sweep Mode)

Spectrum Analyzer
HP 8562A

(Trace -> Max Hold)

Bandpass
Filter

Figure 9 — Here is the serial peripheral interface (SPI) bus sharing to control the digitally
tunable capacitors.

Figure 10 — This diagram shows the test set-up for the filter.

 QEX January/February 2016 7

for the control of the digitally tunable capaci-
tors.2 The Arduino Uno board is controlled
by software on a PC that sends commands
through a serial-over-USB interface. The
lead photo shows the complete set-up, with
a laptop computer, the Arduino Uno board
and the band-pass filter. Figure 7 is a block
diagram of the system.

I adopted this control configuration
because it is simple, inexpensive, and allows
various filter settings with few hardware
changes. The choice of the Arduino Uno was
motivated because it is simple to program
and has low cost.

The software on the computer was
programmed in C# with Microsoft Visual
Studio, using the CmdMessenger library.3
The software for the Arduino Uno was pro-
grammed in Arduino language, which is
relatively simple. Figure 8 is a screen shot
of the control software for the tunable band-
pass filter.

The four PE64102 digitally tunable
capacitors use a 3-wire serial 8-bit interface
compatible with a serial peripheral interface
(SPI) bus, to be controlled by the Arduino
Uno board. The digitally tunable capacitor
selection is made through the serial enable
signal to each capacitor, and then shared on
the same bus between all of the capacitors.
See the schematic of Figure 9.

The PE64102 digitally tunable capacitors
operate with 2.3 V to 3.6 V, and the Arduino
Uno board takes 5 V. Thus, I modified the
Arduino Uno board to operate with 3.3 V,
and thereby the serial peripheral interface
bus signals are compatible with these capaci-
tors.4 There are also other options to convert
the serial peripheral interface bus signals of
5 V to 3.3 V.

Results
Although the most appropriate piece of

test equipment to adjust the filter would be a
vector network analyzer, I did not have one
available. Instead, for testing, I used a Rohde
& Schwarz SMT 03 RF signal generator
with the sweep function enabled and plugged
into the filter connector. At the other end
was an HP 8562A spectrum analyzer with
the “Trace -> Max Hold” function enabled.
Figure 10 illustrates these connections.

The results are satisfactory, as can be seen
in Figures 11, 12, and 13. For a more detailed
analysis a vector network analyzer is needed.

The results point to a downshift of fre-
quency compared to the simulation software.
One of the possible causes could be the para-
sitic capacitance of the circuit board, which
was developed with simple software and
common materials. Another possible cause
is the tolerances of capacitors and inductors.
Parasitic capacitances, parasitic resistances,
and parasitic inductances of the PE64102

Figure 11 — This spectrum analyzer photo shows the results of the filter test. There are two
scans, with center frequencies of 132 MHz and 148 MHz.

Figure 12 — This spectrum analyzer photo shows a scan of the filter, with the center
frequency at 148 MHz.

8 QEX January/February 2016

digitally tunable capacitors may also contrib-
ute to this frequency shift. Figure 14 shows
a model of the filter circuit, with all of the
parasitic components.

Conclusions
The positive points of this project are the

linearity of the tuning center frequency, low
cost, simplicity and small size. This design is a
starting point for more complex projects, such
as a set of digitally controlled filters for mul-
tiple bands, or even to form part of an SDR
design with an adjustable band-pass filter
that is controlled digitally by the same SDR
software. Then, when the SDR frequency is
changed, the software automatically changes
the frequency of the band-pass filter.

Euclides Lourenço Chuma, PY2EAJ, earned
a degree in mathematics from Unicamp, and
a graduate degree in software engineering.
Currently, he is working on a graduate degree
in network and telecommunications systems in
the INATEL. He has been a licensed Amateur
Radio operator since 2008, and lives in Brazil.
He works in software development, and is
interested in everything about RF. He is also
interested in antennas, microwaves, SDR and
cognitive radio.

Notes
1You can find the Peregrine PE64102 data-

sheet at: www.psemi.com/pdf/datasheets/
pe64102ds.pdf.

2For details about the Arduino Uno, go to:
arduino.cc/en/main/arduinoBoardUno

3To learn more about the Arduino Uno
CmdMessenger and to download the files,
go to: playground.arduino.cc/Code/
CmdMessenger.

4Details about converting the Arduino Uno to
operate from 3.3 V are available at: https://
learn.adafruit.com/arduino-tips-tricks-and-
techniques/3-3v-conversion. Software and
circuit board files are available at: www.
chumalab.com.br/digitally-tunable-
bandpass-filter/

Figure 14 — This is a model of the equivalent circuit of the PE64102 digitally tunable
capacitor.

Figure 13 — This spectrum analyzer photo shows a scan of the filter, with the center
frequency at 132 MHz.

QX1601-Chuma14

RF+

LS

RF+

LS

CP1

RP1

RP2

RS CS

CP2

RP1

RP2

RF GND

VP VM

Letters to the Editor
A Frequency Standard for
Today’s WWVB (Nov/Dec 2015)
Hi Larry,

After the Nov/Dec 2015 issue went to press, I
discovered several errors in the text and draw-
ings. In several places, WWVB signal levels
expressed in mV/m were printed as mV/m.
These occurred on pages 14 (caption to Figure
3), 16 (bottom of middle text column), and
29 (e = local field strength (mV/m)).

Several of the schematic diagrams also had
some errors. In Figure 7, there is a missing con-
nection between U2 pin 7 and the right side of
R10. On Figure 12b, U38 is mislabeled. U38
should be an LMC6484N. Figure 13 had several

wiring errors around U14B and U15A. Also
there is no connection between U17 pin 7 and
the BCD Switch. That pin should connect to
ground. The Output Frequency Selector should
have listed signals at 25 kHz and 10 kHz. On
Figure 16, op-amps U1D and U6D should be
labeled as LM837N devices.

— 73, John Magliacane, KD2BD, 1320
Willow Dr, Sea Girt, NJ 08750; kd2bd@
amsat.org

Hi John,

My apologies for all of those errors. We con-
tinue to be plagued by Greek characters in the
Symbol font changing back to normal text at
times, and no one noticed those Greek mu char-
acters (m) were replaced by the normal letter m.

I don’t believe we have ever had that many
errors on schematic diagrams in a single article.
That is embarrassing! I learned later that the
QEX contract graphics artist was having some
personal issues, and he did not do his normally
careful drawing work on your article. We have
corrected all of the errors that you have called to
my attention. Your article is the Sample Article
for the Nov/Dec 2015 issue. The fully corrected
article is available for viewing and download on
the “This Month in QEX” page on the ARRL
website. Readers can go to www.arrl.org/files/
file/QEX_Next_Issue/2015/Nov-Dec_2015/
Magliacane.pdf.

— 73, Larry Wolfgang, WR1B, QEX Editor; lwolf-
gang@arrl.org

 QEX January/February 2016 9

David L. Hershberger, W9GR

10373 Pine Flat Way, Nevada City, CA 95959: w9gr@arrl.net

External Processing for Controlled
Envelope Single Sideband

It is now possible to separate the CESSB processing
from the transmitter.

1Notes appear on page 12

In my Nov/Dec 2014 QEX article on con-
trolled envelope single sideband (CESSB), I
stated that generation of the CESSB signal is
best integrated into the SSB modulator of a
radio, rather than being done in an external
box.1 It is possible to separate CESSB gen-
eration from a radio, however, if the radio
SSB modulator is designed with this in mind.

The SSB modulator must be linear phase,
and must have a bandwidth sufficient to pass
the CESSB spectrum, including its spectral
skirts. If an otherwise conventional SSB
modulator meets these requirements, then the
peak control obtained by the CESSB process
will be preserved.

This will make it possible to use external
processing to create CESSB. The radio may
be used for conventional SSB if an external
CESSB processor is not available.

The envelope control problem with single
sideband is that limiting audio peaks does
not accurately limit SSB envelope peaks. The
envelope of an SSB signal is basically the
vector magnitude of the modulating audio
signal plus its Hilbert Transform. The Hilbert
Transform is an audio phase shift of 90° for
all frequencies within its bandwidth. The
Hilbert Transform overshoots, making RF
envelope amplitude control difficult.

CESSB is a way of controlling the
inevitable RF envelope overshoots caused
by the Hilbert Transform. These Hilbert
Transform overshoots occur regardless of
the method used to generate SSB. A phasing
method SSB modulator produces a Hilbert
Transform directly, by means of audio
phase shift networks. Filter and Weaver
method SSB modulators produce the Hilbert
Transform indirectly.

If the envelope overshoots are not
reduced, then ALC or manual transmit gain
control will reduce the SSB signal ampli-
tude, such that there is no flat-topping. This
reduces average transmitted power.

Conversely, if the Hilbert Transform-
induced envelope peaks are reduced or elimi-
nated, then the average transmitted power of
an SSB signal can be significantly increased.
A 2.5 dB increase in average transmitted
power is typical, compared with advanced
look-ahead ALC systems.

Discussion
The intermediate output of the CESSB

process is a pair of audio baseband signals.
These are often known as “I” and “Q” sig-
nals, for in-phase and quadrature. If the I and
Q audio signals are applied to a pair of mixers
driven with quadrature RF, then the sum of
the two mixer outputs will be SSB.

Another characteristic of the I and Q sig-
nals is that they are interrelated by a Hilbert
Transform, or a negative Hilbert Transform.
In other words, the audio signals are 90° out
of phase between I and Q at all frequencies.
In that regard, there is redundancy in I and Q.

One way to separate the CESSB process
would be to pass the two baseband I and Q
audio signals to a radio. It would be impor-
tant to maintain accurate amplitude and

QX1601-Hershberger01
Time (s)

A
m

pl
itu

de

–1.5

0 14

1.5

2 4 6 8 10 12

–1.0

–0.5

0

0.5

1.0

Figure 1 — An externally processed CESSB signal, reproduced by a linear phase Hilbert
Transform SSB modulator.

10 QEX January/February 2016

phase matching for the two audio signals. It is
not necessary to pass both audio signals into
an SSB transmitter, however.

Because the two I and Q outputs of the
CESSB system contain redundancy, you can
throw one of them away and then regener-
ate it if necessary. The remaining signal has
a special characteristic. The vector magni-
tude (or modulus) of itself plus its Hilbert
Transform, is accurately amplitude limited.
That vector magnitude function is propor-
tional to the RF envelope amplitude of the
SSB signal.

() () ()2 2e t a t H a t = + [Eq 1]

where:
e(t) is the envelope signal
a(t) is the input audio signal
H[a(t)] is the Hilbert Transform
of the input audio signal.

What Equation 1 suggests is that we could
discard either the I or the Q signal, and pass
just one audio baseband signal as a(t) from
the external CESSB processor to the radio.
The radio could then regenerate the miss-
ing signal with a Hilbert Transform (either
directly or indirectly). If this is done with
linear phase and flat amplitude response, then
the regeneration of the discarded signal will
be perfect.

For this to work, the radio must have a
linear phase response in its SSB modulator.
That means flat time delay versus frequency.
Also, the frequency response of the SSB
modulator must be equal to or greater than
the skirt bandwidth of the CESSB I and Q
signals.

So, if the CESSB signal has a response
of 300 to 3000 Hz, with descending filter

skirts extending to 150 Hz at the low end and
3150 Hz on the high end, then the SSB mod-
ulator in the radio should have flat amplitude
and linear phase from 150 to 3150 Hz. As
long as those conditions are met, the radio
will transmit accurately controlled envelope
peaks using an external CESSB processor.

Unfortunately, most of the analog SSB
transmitters in use today do not have linear
phase response. A conventional radio with
a crystal or mechanical filter for SSB gen-
eration might be wide enough, but it will
have group delay peaks near the band edges.
On the other hand, some SSB transmitters
using DSP may very well have linear phase
response. Those radios, if they exist, could
be converted to CESSB operation with an
external CESSB processor.

Simulations
GNU Octave is an excellent simulation

and signal processing tool.2 I have written
some GNU Octave code that simulates the
external CESSB system. My GNU Octave
code is available for download from the
ARRL QEX files web page.3 The Octave
script reads in an audio WAV file, which has
been accurately amplitude limited. CESSB
processing is done first. Next, one of the
two baseband audio signals produced by the
CESSB process is discarded. (Actually, the
script uses a linear combination of I and Q
to produce a single output signal. Any linear
combination will work, such as I + Q, I – Q,
0.5 × I – 0.866 × Q, and other combinations).
The remaining CESSB audio baseband sig-
nal is applied to the following modulators:

1) A linear phase filter type SSB modu-
lator.

2) A linear phase Hilbert Transform SSB
modulator.

3) A linear phase Weaver method SSB
modulator.

Each of these modulators produces an
upper sideband signal at 12 kHz. The sam-
pling rate for all signals in the Octave code
is 48 kHz.

The Octave code inserts a shaped 1 kHz
tone, one second long, at the beginning of
the speech audio. The purpose of the tone is
to create an amplitude reference at the PEP
limit of the transmitter power amplifier. A
single tone does not create overshoot in any
SSB modulator. (Simultaneous multiple fre-
quencies are required to produce overshoot.)
Note that the amplitude of the tone is a nor-
malized 1.0 in each of the simulations that
follow. If CESSB is accurately preserved,
then the amplitude of the speech will not
exceed 1.0 either.

All of these modulators reproduce the
CESSB signal accurately, with tight envelope
peak control. As a result, Figures 1, 2, and 3
look almost identical, even though different
SSB modulation methods were used to cre-
ate them.

SSB Modulators that Do Not Preserve
CESSB

Next the same audio signal is applied to
some inappropriate SSB modulators:

1) A nonlinear phase filter type SSB mod-
ulator, using a crystal or mechanical filter
(such as a Heathkit SB-102, Collins KWM-
2, and similar transceivers).

2) A phasing type SSB modulator (such
as the vintage Hallicrafters HT-37 transmit-
ter).

These SSB modulators, typical of analog
SSB transmitters, introduce linear distortions
to the CESSB audio baseband, and they over-
shoot. Accurate envelope peak control is lost.

The phasing-type modulator simulation

QX1601-Hershberger02
Time (s)

A
m

pl
itu

de

–1.5

0 14

1.5

2 4 6 8 10 12

–1.0

–0.5

0

0.5

1.0

QX1601-Hershberger03
Time (s)

A
m

pl
itu

de

–1.5

0 14

1.5

2 4 6 8 10 12

–1.0

–0.5

0

0.5

1.0

Figure 2 — An externally processed CESSB signal, reproduced by a
linear phase bandpass filter SSB modulator.

Figure 3 — An externally processed CESSB signal, reproduced by a
linear phase Weaver SSB modulator.

 QEX January/February 2016 11

uses the coefficient set II given by Theodor
Prosch, DL8PT, in Table 1 of his Sep/Oct
2012 QEX article.4

A Hilbert Transform filter, referred to a
compensating delay line, has a dφ/dω char-
acteristic (phase slope) of zero. The phase
shift remains at 90° for all frequencies. So,
the group delay of a Hilbert Transform is also
zero when referred to a compensating delay
line. The compensating delay and the Hilbert
Transform filter constitute a pair of phase dif-
ference networks. Their phase difference is
90° for all frequencies for which the Hilbert
Transform filter is designed. Yet, there is no
time delay variation versus frequency for
either path.

But traditional analog or digital IIR all-
pass filter phase difference networks do have
time delay variations versus frequency and
that is what makes a “phasing” type SSB
modulator unsuitable for CESSB. The all-
pass network pair has the following phase
shifts:

Φ(ω) + π / 2, and Φ(ω)
So, it is the Φ(ω) phase function that

introduces phase distortion and causes
overshoot in a phasing-type SSB modula-
tor. Theodor (DL8PT) Prosch’s Figure 4
shows the Φ(ω) phase function. (See Note
4.) In a true Hilbert Transform modulator,
the Φ(ω) function is zero, however, a Hilbert

Transform modulator requires more com-
putation than a phase-difference network
“phasing” type SSB modulator.

The minimum-phase, elliptic type band-
pass filter does not work for CESSB because
of its group delay variations. The same is
true for the phase-difference network SSB
modulator. It also has group delay variations.

Using CESSB Processing With
Older Analog Radios

While the examples of Figure 4 and
Figure 5 show some overshoot when used
with CESSB-processed input audio, the
overshoot is considerably worse with ordi-

QX1601-Hershberger04
Time (s)

A
m

pl
itu

de
21.14% Overshoot

–1.5

0 14

1.5

2 4 6 8 10 12

–1.0

–0.5

0

0.5

1.0

QX1601-Hershberger05
Time (s)

A
m

pl
itu

de

24.64% Overshoot

–1.5

0 14

1.5

2 4 6 8 10 12

–1.0

–0.5

0

0.5

1.0

Figure 4 — An externally processed CESSB signal, reproduced by a
nonlinear phase filter SSB modulator.

Figure 5 — An externally processed CESSB signal, reproduced by a
nonlinear phase phasing method SSB modulator.

QX1601-Hershberger06
Time (s)

A
m

pl
itu

de

48.23% Overshoot

–1.5

0 14

1.5

2 4 6 8 10 12

–1.0

–0.5

0

0.5

1.0

Figure 6 — A peak limited audio signal (not CESSB) applied to a
nonlinear phase filter SSB modulator.

QX1601-Hershberger07
Time (s)

A
m

pl
itu

de
49.82% Overshoot

–1.5

0 14

1.5

2 4 6 8 10 12

–1.0

–0.5

0

0.5

1.0

Figure 7 — A peak limited audio signal (not CESSB) applied to a
nonlinear phase, phase-difference network SSB modulator.

12 QEX January/February 2016

nary peak-limited audio. The same nonlinear
phase elliptic filter SSB modulator, when
driven from the peak limited audio (no
CESSB audio processing) produces the RF
envelope shown in Figure 6.

With CESSB audio processing, overshoot
is 24.64% instead of 48.23%. Compare
Figure 6 to Figure 4. So, even though there
is overshoot, there is still some advantage
obtained by using a CESSB processor in
front of a conventional nonlinear phase filter-
type SSB transmitter. With this example, RF
power output would be about 1.5 dB greater.

Now let’s look at the nonlinear phase,
phase-difference network modulator. With
conventionally processed audio instead of
CESSB audio, Figure 7 shows the RF enve-
lope.

Again, CESSB processing reduces the
overshoot from 49.82% to 24.64%. Compare
Figure 7 to Figure 5. So even though older
nonlinear phase transmitters do not produce
true CESSB output from a CESSB audio
input, they do benefit from CESSB process-
ing.

Phase equalization (in DSP) of the partic-
ular crystal filter, mechanical filter, or phase
difference network could certainly reduce
the overshoot of these older types of SSB
modulators.

Is Your Rig “CESSB-Ready?”
If your rig is a FlexRadio 6000 series, it

already has CESSB built-in.
If your transmitter is older or nonlinear

phase, it can probably partially benefit from
CESSB audio processing.

If you have a modern DSP based trans-
mitter, it might already be fully “CESSB-
ready.” To find out, you just need to connect a
CESSB processor to its audio input and then
look at the RF envelope on an oscilloscope.

As of this writing, there are no external
CESSB processors available in hardware, but
there is still a way to test your rig. The WAV
files used to generate the figures in this article
are available from the ARRL QEX files web-
site. (See Note 3.) All you have to do is play
the WAV file (CESSB-ready-test-audio.wav)
into your rig and look at the RF envelope
coming out. Here are some suggestions:

1) Turn off any equalizers, audio com-
pressors, or other audio processors.

2) If possible, turn off ALC.
3) Run the transmitter power down to

about 25% of normal by reducing audio
(mic) gain, so you can see any overshoots.

4) If your transmitter has adjustable trans-
mit bandwidth, increase it to about 3.5 kHz
or more.

5) Use a dummy load! The audio test files
contain my call sign, and you wouldn’t want
to misidentify your station!

The WAV file contains the reference tone
as a maximum PEP reference. If all of the
speech peaks stay at or below the reference
tone amplitude and look like Figures 1 to 3,
congratulations, your rig is CESSB-ready!
If the voice peaks visibly exceed the refer-
ence tone, and look like Figures 4 through 7,
then your rig is not CESSB-ready, but it still
may benefit from the use of a CESSB audio
processor.

You may also wish to test with the peak-
limited-audio.wav file. This file does not
contain CESSB processing. It only contains
simple audio peak limiting. This file will
cause SSB modulator overshoot.

The file externalcessb.m is the GNU
Octave script. Externalcessbmc.m is an
edited script that is compatible with Matlab®.
Both scripts will create many plots of SSB
envelopes, spectra, and filter characteristics.

Conclusions
Although the most convenient way to

generate CESSB may be to build it into each
radio, CESSB processing can be done with
an external box, and radio manufacturers
could make radios that are “CESSB-ready.”
If you just plug in a mic, you don’t get
CESSB. You get plain old SSB. If you have
an external CESSB audio processor, how-
ever, then you will get CESSB from a radio
that is “CESSB-Ready.” Some of the modern
DSP rigs might already be “CESSB-ready.”
Many older analog SSB modulators are not
going to preserve CESSB, since they are not
linear phase.

If radios that are “CESSB-ready” are
made, along with external CESSB proces-

sors, then hams will have the option to “mix
and match” processors and transmitters. As
speech processing algorithms improve, the
external CESSB processor can be replaced
or upgraded, and the same radio can continue
to be used.

The CESSB processor-to-radio interface
is a single audio signal. The audio signal path
needs to be flat amplitude and linear phase.
The SSB modulator also needs to be flat
amplitude and linear phase.

Although nonlinear phase transmitters
cannot fully preserve the CESSB signal,
they do obtain a partial benefit from external
CESSB processing.

Dave Hershberger, W9GR, was first licensed
in 1965 at age 14 as WN9QCH. He is an ARRL
Life Member. Dave holds a bachelor’s degree
in math from Goshen College and bachelor’s
and master’s degrees in electrical engineer-
ing from the University of Illinois. He has
been awarded 19 US patents. Dave is Senior
Scientist at Continental Electronics. His recent
projects include two ATSC digital television
broadcast exciters with adaptive linear and
nonlinear precorrection, a DSP based FM/
HD Radio® exciter with adaptive precorrec-
tion, new high power uplink transmitters for
the JPL/NASA Deep Space Network, and a
2.4 megawatt VLF transmitter system.

Notes
1David L. Hershberger, W9GR, “Controlled

Envelope Single Sideband,” QEX, Nov/Dec
2014, pp 3 – 13. You can download a copy
of this article at: www.arrl.org/files/file/
QEX_Next_Issue/2014/Nov-Dec_2014/
Hershberger_QEX_11_14.pdf

2There is more information about GNU
Octave on the Octave home page at www.
gnu.org/software/octave. You can also
download the latest version of GNU Octave
from that website.

3The GNU Octave files and WAV files are
available for download from the ARRL QEX
files website. Go to www.arrl.org/qexfiles
and look for the file 1x16_Hershberger.zip.

4Theodore A Prosch, DL8PT, “A Minimalist
Approximation of the Hilbert Transform,”
QEX, Sep/Oct 2012, pp 25 – 31.

 QEX January/February 2016 13

Joseph J. Roby, Jr, KØJJR

2129 Bel Air Ave, Duluth, MN 55803: k0jjr@arrl.net

Introducing AACTOR:
A New Digital Mode

The combination of Adaptive Arithmetic Coding and a Modified
Version of Radioteletype Results in a Fast Digital Mode.

1Notes appear on page 19

Radioteletype (RTTY), can be made
faster at any baud by combining a data
compression and decompression technique
called adaptive arithmetic coding (AAC)
with a modified version of RTTY called
RTTY-AAC.1, 2, 3, 4, 5The increase in speed
is achieved by using AAC to significantly
reduce the number of bits in the message to
be sent and received, which, in turn, signifi-
cantly reduces the number of RTTY Mark
and Space tones to be sent and received.
This new digital mode is called Adaptive
Arithmetic Coding Teleprinting Over Radio,
AACTOR (pronounced `ak-tor).

In this article I will first explain how
AAC compression and decompression work.
Then, I will review the basics of RTTY and
how RTTY can be modified into RTTY-
AAC. I will then present data comparing the
speed of RTTY with the speed of AACTOR.
I will conclude with a discussion of some
practical considerations.

AAC Compression
As the word “arithmetic” in the name

“adaptive arithmetic coding” implies, AAC
must have something to do with numbers.
In fact, AAC compresses a message into a
single numeric fraction f, as expressed in
Equation 1.

0.0 ≤ f <1.0 [Eq 1]

The process may be viewed as the itera-
tive subdividing of a number line, with the
subdivision proportional at each iteration to

the number of times each symbol appears in
the message up to that point. After the last
symbol is processed, f can be any fraction
satisfying Equation 2.

low boundary of last subdivision ≤ f
<high boundary of last subdivision [Eq 2]

In other words, any f satisfying Equation
2 can be decompressed uniquely by AAC to
recreate the original message.

The fraction f must be expressed in such
a way that it can be modulated and demodu-
lated with RTTY binary protocols, which
are based on Mark and Space audio tones
(explained further later). Expressing f with
decimal notation will not work. Instead,
f must be expressed with binary notation,
which, just like decimal notation, can express
any fraction.

In binary notation, the first digit to the
right of the decimal point represents one-half,
the second one-fourth, the third one-eighth,
and so on. Thus, 0.1111111111… equals
½+¼+⅛+…, which sums to 1.0. Any frac-
tion can be expressed this way. For example,
the decimal fraction 0.375 is 0.011 in binary
notation, and the decimal fraction 0.1 is
0.00011001100110011… in binary nota-
tion. In binary notation, Equation 1 becomes
Equation 3.

0.0 ≤ f < 0.1111111111… [Eq 3]

By using binary notation, and by disre-
garding the 0 to the left of the decimal point
as well as the decimal point itself, f simply
becomes a stream of binary ones and zeroes.
When a fixed-length message is compressed
with AAC, the stream will also have a fixed

length. Using binary notation and the integer
technique explained later, there is no theoreti-
cal limit to the precision of f. As measured
by bit count, f will always be shorter than the
original message, as measured by its RTTY
bit count.

To create f with binary notation, first
identify the symbol set needed to compose
the desired messages. The symbols may be
any combination of ASCII characters, such
as letters (upper case, lower case, or both),
digits, special characters (for example, punc-
tuation), and control characters (for example,
carriage return). The symbol set should be as
small as possible, however, and should not
include any symbols not needed to compose
the desired messages. Experimentation indi-
cated that the smaller the symbol set needed
to compose the desired messages, the shorter
f will be, as measured by bit count.

The collection of symbols, totaling n
symbols, will comprise the symbol set S.
Each symbol within S is identified as si, as
defined by Equation 4.

0 ≤ i < n [Eq 4]

The si may be in any order, but once
ordered, the ordering must remain fixed.
Both the compressor and the decompressor
must use the same S, with the si in the same
order.

For AACTOR, S contains a collection
of n = 42 symbols si a specific order, which
happens to be, but need not be, ASCII order.
See Figure 1.

With this S, any RTTY-like message may
be composed. A slash is included because

14 QEX January/February 2016

many Amateur Radio call signs include a
slash. The end of text [EOT] character is
included so that the AAC decompressor will
know when it has reached the end of the mes-
sage, as explained later. Some punctuation is
excluded from S, but unambiguous messages
still can be composed. For example, to indi-
cate a new sentence, a [CR] can be used in
lieu of a period.

The second step in creating f is to define
a way to track how often the si appear in the
message being compressed. A “model” M
handles this task. M contains a collection of
n cumulative counters mi satisfying Equation
4. Each mi will contain the cumulative count
of all s from and including s0 and up to and
including si. In other words, if ci is the count
for the number of times si appears in the
message at any given moment during the
compressing of the message, then Equation
5 applies.

mi = c j

j=0

j=1

å [Eq 5]

The mi must be in the same order as the
si, so that the cumulative count for any mi is
always paired with the correct si. Like the si,
the ordering of mi must remain fixed in both
the compressor and the decompressor.

The high bound (hii) and low bound (loi)
for each mi as they relate to the overall bounds

of M (0.0 to 0.1111111111…) are given by
Equations 6, 7, and 8.

hii = mi ÷ mn–1 [Eq 6]

lo0 = 0 [Eq 7]

loi = hii–1 = mi–1 ÷ mn–1 for 0 < i < n
 [Eq 8]

When the compressor initializes, it must
act like it knows nothing about the message
to be compressed. All the compressor can
assume is that at least one si will appear at
least once in the message. Because the com-
pressor must assume it does not know which
si it will be, the compressor initially must
assume that all si will appear in the message
at least once, even if that assumption later
turns out to be incorrect as to some or even
most of the si. Thus, when the compressor
initializes, each mi will be given by Equation
9.

mi = i + 1 [Eq 9]

For AACTOR, this means that after ini-
tialization, M will be a collection of n = 42
cumulative counters mi as shown in Figure 2.

During compression, M models the mes-
sage being compressed by updating (adapt-
ing) itself as it encounters each symbol in
the message. The word “adaptive” appears
in the name “adaptive arithmetic coding”

s0 End of Transmission [EOT]

s1 Line Feed [LF]

s2 Carriage Return [CR]

s3 Space [SP]

s4 Slash “/”

s5 to s14 Digits 0 to 9

s15 Question Mark “?”

s16 to s41 Upper Case Letters A to Z

Figure 1 — These are the 42 symbols, si,
contained in the AACTOR symbol set, S.

append [EOT] to message to be compressed
rlo = 0.0
rhi = 0.1111111111…
do
 get next symbol
 r = rhi - rlo + 1
 find symbol in S and get its index i
 rhi = rlo + (r · hii) - 1
 rlo = rlo + (r · loi)
 do
 if rhi and rlo MSBs match
 process the MSBs (explained in text)
 process any pending underflow bits (explained in text)
 else if an underflow condition threatens in rhi and rlo

 accumulate and remove underflow bits (explained in text)
 else
 update (adapt) M based on i
 exit inner loop
 end if
 loop
 exit outer loop if no more symbols in message to be compressed
loop
flush rlo (explained in text)

m0 = 1

m1 = 2

m2 = 3

• •

• •

• •

m41 = 42

Figure 2 — For AACTOR, M is a set of 42
counters, mi, as shown here.

Figure 3 — This is the Pseudo code for the AACTOR compression loop.

S

 QEX November/December 2015 15

for this reason.6 For example, if the first
symbol encountered in the message being
compressed is sj, M will adapt itself by add-
ing 1 to each mi for each i, as described by
Equation 10.

j ≤ i < n [Eq 10]

The third step in creating f is to define a
working range r initially having a low end
and a high end as shown in Equations 11,
12, and 13.

rlo = 0.0 [Eq 11]

rhi = 0.1111111111… [Eq 12]

r = rhi – rlo [Eq 13]

Fourth, we must define storage for f.
As explained above, f cannot be expressed
in decimal notation, and instead must be
expressed in binary notation, so that rules out
floating point storage for f. Integer storage
can accommodate only a limited number of
bits, so that too must be ruled out. AACTOR
uses a string variable for f because strings can
be very long and it is easy to append to them.
String fstr is initialized to empty. When the
compressor identifies a bit to be included in
f, the bit is converted to a string of length one
containing either “0” or “1.”The length-one
string is appended to fstr. When the compres-
sor finishes creating fstr, RTTY-AAC pro-
cesses it left to right it by modulating a Space
audio tone for each length-one string “0” and
a Mark audio tone for each length-one string
“1” (Marks and Spaces are explained later).

Fifth, enter the compression loop, where
the compressor iterates through the symbols
in the message, starting with the left-most
symbol. Note that an [EOT] symbol must
be appended to every message to be com-
pressed, or the decompressor will not know
when to stop decompressing. Pseudo code
for the compression loop is shown in Figure
3.

As explained earlier, these calculations
are performed with binary notation, which
requires integer variables. After just a few
symbols are processed, however, the preci-
sion needed for processing the remaining
symbols in the message will exceed the
precision limits of integer variables. For that
reason, the binary notation calculations are
performed with a clever integer technique
using 32-bit unsigned integer variables as
explained in Notes 2, 3, and 4.

As the symbols in the message are pro-
cessed by the compressor, rlo and rhi will
converge. Their most-significant (left-most)
bits (MSBs) will often come to be matched
and, if so, will not change thereafter and will
no longer contribute to the precision of the
calculations. The string version of the match-
ing MSBs is appended to fstr. The compressor
then processes any pending underflow bits

(discussed next), left shifts rlo and rhi one
bit, and sets the least-significant (right-most)
bit (LSB) of rhi to one. This processing of
matching most significant bits will occur
multiple times during compression.

As symbols in the message are processed
by the compressor, and as rlo and rhi con-
verge, they may be converging from below
and above towards ½ (0.1 in binary nota-
tion), in which case their MSBs will never
match and the compression will break down.
When this “underflow condition” threatens,
the compressor increments a running count
of the underflow conditions, changes the
next-to-MSBs in rlo and rhi to zero and one
respectively, left shifts both rlo and rhi one
bit, and sets the least significant bit of rhi to
one. After the next occurrence of match-
ing MSBs in rlo and rhi, and after the string
version of that matching MSB has been
appended to fstr, the underflow bit(s) are
processed. Based on the running count, each
underflow bit is assigned a value opposite
to the value of the matching MSBs. Their
string versions are appended to fstr.

It is the accumulation of matching MSBs
and underflow bits that comes to comprise
f. In a broad sense, bits flow into rlo and rhi
from the right, flow through rlo and rhi from
right to left, are modified along the way by
the arithmetic, and then are shifted out on the
left. Thus, at any given time, rlo and rhi hold
only a portion of what will turn out to be f.
This is how a theoretically infinitely long f
can be processed with fixed-length integer
variables.

Finally, after all symbols in the message
have been processed, there are a few bits
remaining in rlo that are needed to complete
f, so they are “flushed” out and their string
versions are appended to fstr.

AAC Decompression
AACTOR’s decompressor initializes fstr

to empty. As each Space and Mark tone is
demodulated by RTTY-AAC, a length-one
string “0” or “1,” respectively, is appended
to fstr. (Marks and Spaces are explained
later). When the incoming signal goes quiet,
it is assumed fstr is completed and the AAC
decompressor then processes fstr left to right.
Alternatively, the decompressor could be
programmed to process one bit at a time
as each bit is demodulated by RTTY-AAC.
In either case, as soon as the decompressor
identifies an [EOT] symbol decompression
ceases.

As explained above, an AAC decom-
pressor must use the same S, with the si in
the same order, as was used by the AAC
compressor. The decompressor must also
use the same M, with the mi in the same
order. When it initializes, the decompres-
sor knows nothing about the message, other

• RF Modules
• Semiconductors
• Transmitter Tubes

MILLIWATTS
KILOWATTS

More Watts per Dollar

From

To SM

SM

Phone: 760-744-0700
Toll-Free: 800-737-2787
(Orders only) 800-RF PARTS
Website: www.rfparts.com
Fax: 760-744-1943

888-744-1943
Email: rfp@rfparts.com

Se Habla Español • We Export

In Stock Now!
Semiconductors

for Manufacturing
and Servicing

Communications
Equipment

16 QEX January/February 2016

rlo = 0.0
rhi = 0.1111111111…
w = bit versions of first 32 length-one strings in fstr

do
 r = rhi - rlo + 1
 i = w - rlo + 1
 i = (i · mn-1) - 1
 i = i ÷ r
 get si from S
 if si equals [EOT]
 exit outer loop
 display si

 rhi = rlo + (r · hii) - 1
 rlo = rlo + (r · loi)
 do
 if rhi and rlo MSBs match
 process the MSBs (explained in text)
 process any pending underflow bits (explained in text)
 update w (explained in text)
 else if an underflow condition threatens in rhi and rlo

 remove underflow bits (explained in text)
 update w (explained in text)
 else
 update (adapt) M based on i
 exit inner loop
 end if
 loop

loop

Figure 4 — This is the Pseudo code for the AACTOR decompression loop.

 RTTY Baudot AACTOR

Message Bit Count f Bit Count Resulting Size
QSL?[EOT] 48 28 58.33%
NR?[EOT] 40 23 57.50%
CQ TEST K0JJR CQ[EOT] 176 91 51.70%
W1AW 599 JOE MN W1AW[EOT] 240 109 45.42%
W1AW TU K0JJR CQ[EOT] 192 92 47.92%
RYRYRYRYRY TESTING DE K0JJR[EOT] 264 141 53.41%
A[EOT] 16 12 75.00%
AAAAAAAAAA[EOT] 88 40 45.45%
AB[EOT] 24 17 70.83%
ABABABABABABABABABAB[EOT] 168 76 45.24%
A 0 B 1 C 2 D 3 E 4 F 5 G 6 H 7 I 8 J 9 [EOT] 568 183 32.22%
NOW IS THE TIME FOR ALL GOOD 672 328 48.81%
MEN TO COME TO THE AID OF
THEIR COUNTRY[EOT]

THE QUICK BROWN FOX JUMPS 416 237 56.97%
OVER THE LAZY DOG[EOT]

Lincoln’s Gettysburg address (excluding 13664 5848 42.80%
punctuation)

strings generated with random symbols from S
10 symbols 128 62 48.44%
100 symbols 1152 565 49.05%
250 symbols 2984 1377 46.15%
500 symbols 5824 2706 46.46%
1000 symbols 11496 5379 46.79%

Figure 5 — Here are some sample messages, along with the RTTY Baudot bit count and the AACTOR bit count for each message. You can see
that the AACTOR bit counts are always significantly fewer than the RTTY Baudot counts.

 QEX November/December 2015 17

than that at least one si will appear at least
once in the message. Because the decom-
pressor does not know which si it will be, the
decompressor initially must assume that all
si will appear in the message at least once,
even if that assumption later turns out to be
incorrect as to some or even most of the si.
Thus, when the decompressor initializes, the
mi will be the same as when the compressor
initialized (Equations 5 and 9, and Figure 2).
Similar to what happens during compres-
sion of a message, during decompression, M
models the message being decompressed by
adapting itself as it identifies each symbol in
the message.

For the decompressor, r, rhi, rlo, hii, and
loi are defined and initialized in the same
way they are defined and initialized for the
compressor (Equations 6, 7, 8, 11, 12, and
13). The decompressor also requires a 32-bit
unsigned integer working variable, w. The
working integer variable w is loaded with the
bit versions of the first 32 length-one strings
in fstr. If less than 32 Mark and Space tones
were demodulated, resulting in fstr containing
fewer than 32 length-one strings, w is right-
padded with zero bits. Pseudo code for the
decompression loop is shown in Figure 4.

As was true during compression, during
decompression the decompressor watches
for matching most significant bits in rlo and
rhi. When it occurs, the MSBs are left-shifted
out of rlo and rhi and discarded, and the least
significant bit (LSB) of rhi is set to one. Also,
w is left-shifted one bit and its LSB is set to
the bit version of the next length-one string in
fstr. This processing of matching MSBs will
occur multiple times during decompression.

Underflow arithmetic will be required
multiple times during decompression, as it
was during compression. The decompressor
addresses a threatened underflow condition
in rlo and rhi the same way as the compressor,
except that the decompressor discards the
underflow bits removed from rlo and rhi and
does not keep track of them. Also, the next-
to-MSB bit in w is toggled, w is then left-
shifted one bit, and the w LSB is set to the
bit version of the next length-one string in fstr.

In a broad sense, the bits in the demodu-
lated compressed message flow into w from
the right, flow through w from right to left,
are modified along the way by the arithme-
tic, and then are shifted out on the left. Thus,
at any given time, w holds only a portion
of the bits in the demodulated compressed
message. Again, this is how a theoretically
infinitely long f can be processed with fixed-
length integer variables.

RTTY Basics
RTTY is based on the five-bit Baudot

code named for its inventor, Jean-Maurice-
Emile Baudot, a French telegraph engineer.7

With five bits, up to 32 symbols can be
represented (25 = 32). If two of the Baudot
code symbols are dedicated to “shift” and
“unshift” symbols, up to 60 symbols can
be represented [(25 – 2) × 2 = 60]. When
the demodulating station encounters a shift
symbol, all of the Baudot codes following
it are treated as shifted Baudot codes, which
correspond to the symbols 0 through 9, plus
a variety of other special symbols. When the
demodulating station encounters an unshift
symbol, all of the Baudot codes following
it are treated as unshifted Baudot codes,
which correspond to the symbols A through
Z (upper case only). In RTTY parlance, the
shift symbol is called “Figures” ([FIGS])
and the unshift symbol is called “Letters”
([LTRS]).

When modulated as an RTTY Baudot
code, each five-bit Baudot code is preceded
by one start bit, which is always a zero, and
is followed by one or more stop bits (usually
two), which are always ones.Thus, a total of
eight bits comprise each RTTY Baudot code.
Each RTTY Baudot code bit is immediately
modulated on the heels of the preceding
RTTY Baudot code bit. After the eighth bit in
a RTTY Baudot code is modulated, the first
bit of the next RTTY Baudot code is imme-
diately modulated. Therefore, an RTTY mes-
sage is simply a fixed-length stream of binary
ones and zeroes. The embedded start and
stop bits synchronize the RTTY demodulat-
ing station to each RTTY Baudot code.

RTTY employs a binary modulation
and demodulation protocol using either
frequency shift keying (FSK) or audio fre-
quency shift keying (AFSK). For FSK, the
modulating station keys the transmitter at
any given frequency for an RTTY Baudot
code one bit. The modulating station keys the
transmitter 170 Hz below that frequency for
an RTTY Baudot code zero bit. In lower side-
band mode, the demodulating station will
hear audio tones at 2125 Hz and 2295 Hz
below the VFO setting. Lower sideband,
the 170 Hz separation, and the 2125 Hz and
2295 Hz audio frequencies are Amateur
Radio specifications by agreement, although
other specifications are possible and are
sometimes used.

For AFSK, which also uses lower side-
band, an RTTY Baudot code one bit is
modulated as an audio tone at 2125 Hz below
the operating frequency. An RTTY Baudot
code zero bit is modulated as an audio tone
at 2295 Hz below the operating frequency.
At the demodulating station, it cannot be
determined whether the modulating station
is using FSK or AFSK, and it makes no
difference. The demodulating station will
demodulate in the same way in either case.

The audio tones at 2125 Hz and 2295 Hz
are called “Mark” and “Space” audio tones

3CPX800A7
3CPX1500A7
3CX400A7
3CX800A7
3CX1200A7
3CX1200D7
3CX1200Z7
3CX1500A7
3CX3000A7
3CX6000A7
3CX10000A7
3CX15000A7
3CX20000A7
4CX250B

4CX1000A
4CX1500B
4CX3500A
4CX5000A
4CX7500A
4CX10000A
4CX15000A
4CX20000B
4CX20000C
4CX20000D
4X150A
572B
805
807

810
811A
812A
833A
833C
845
6146B
3-500ZG
3-1000Z
4-400A
4-1000A
4PR400A
4PR1000A
...and more!

Phone: 760-744-0700
Toll-Free: 800-737-2787
(Orders only) RF PARTS

Website: www.rfparts.com
Fax: 760-744-1943

888-744-1943

Email: rfp@rfparts.com

Se Habla Español • We Export

COMMUNICATIONS
BROADCAST
INDUSTRY
AMATEUR

MILLIWATTS
KILOWATTS

More Watts per Dollar

From

To

®

Transmitting & Audio Tubes

Immediate Shipment from Stock

18 QEX January/February 2016

in RTTY parlance. For both FSK and AFSK,
the Mark and Space tones must have the
same duration. With FSK, the modulating
station must key the transmitter for that dura-
tion. With AFSK, the modulating station
must sound the audio tone for that duration.
Duration depends on the baud. Although
RTTY recognizes several bauds, the most
popular is 45.45, with some activity also at
75. At 45.45 baud, the duration of each Mark
and Space audio tone is given by Equation 14.

1 ÷ 45.45 = 0.022 = 22 milliseconds
[Eq 14]

The rapid mixture of Mark and Space
tones gives RTTY its distinctive warbling
sound.

RTTY-AAC
Because an RTTY message is simply a

fixed-length stream of binary ones and zeroes,
and because an AAC-compressed message
is likewise nothing more than a fixed-length
stream of binary ones and zeroes, RTTY is
well-suited for processing AAC-compressed
messages. The ones and zeroes in an AAC-
compressed message are modulated and
demodulated as Mark and Space tones,
respectively, just as is the case with the ones
and zeroes in an RTTY message. But, RTTY
requires some modification to process AAC-
compressed messages. Start and stop bits are
indispensable to RTTY, and RTTY performs
table lookups of Baudot codes, all of which
are irrelevant to an AAC-compressed mes-
sage. RTTY would have to be modified so
that it does nothing more than modulate and
demodulate a fixed-length stream of binary
ones and zeroes. These modifications distin-
guish RTTY-AAC from RTTY.

On the modulation end, the AAC com-
pressor creates a fixed-length stream of binary
ones and zeroes from the original message
and turns the stream over to RTTY-AAC
for modulation. RTTY-AAC uses any baud
supported by RTTY, RTTY Mark and Space
tone frequencies, and any Mark and Space
duration supported by RTTY (for example,
22 milliseconds at 45.45 baud). Also, like
RTTY, RTTY-AAC can be modulated using
either FSK or AFSK. On the demodulating
end, RTTY-AAC demodulates the stream and
turns it over to the AAC decompressor for
recreation of the original message.

Speed Comparisons
To determine the speed of AACTOR as

compared to the speed of RTTY, the number
of bits generated by each mode for the same
message must be compared. For AACTOR,
the number bits in f is determined simply by
counting them. For RTTY, however, it is not
so obvious. At first glance, the RTTY Baudot

bit count appears to be simply the number of
symbols in the message multiplied by eight
bits per symbol. But the [FIGS], [LTRS],
and [SP] symbols change the way the RTTY
Baudot bits are counted. Consider this mes-
sage:

W1AW TU UR 599 MN K0JJR

This message seems to have 23 symbols
(don’t forget to count the spaces), which would
be 184 RTTY Baudot bits (23 × 8). To RTTY,
however, the message actually looks like this:

[LTRS]W[FIGS]1[LTRS]AW[LTRS]
[SP]TU[LTRS][SP]UR[LTRS][SP]
[FIGS]599[LTRS][SP]MN[LTRS][SP]
K[FIGS]0[LTRS]JJR

In addition to the [FIGS] and [LTRS]
symbols, notice that every [SP] symbol is
accompanied by a [LTRS] symbol due to the
RTTY “unshift on space” protocol. Thus, to
RTTY, the message has not 23 symbols, but
rather 34, and not 184 RTTY Baudot bits, but
rather 272 (34 × 8).

With the bits counted this way, many
speed comparisons were simulated on a
computer using common RTTY messages,
prose messages, short and long messages,
messages with few and many different
symbols, and messages composed of ran-
dom symbols. In all cases, the bit count for
AACTOR was significantly less than the
RTTY Baudot bit count for the same mes-
sage. Figure 5 shows some examples ([LF]
and [CR] are ignored).

As general propositions, the more often
that RTTY switches back and forth between
[FIGS] and [LTRS], the more often the [SP]
symbol appears, and the longer the RTTY
message as measured by bit count, the more
favorably AACTOR compares to RTTY.
As another general proposition, for typi-
cal RTTY contest messages, the AACTOR
compressed message has approximately
one-half the number of bits as compared to
the same RTTY message. An RTTY contest
message 200 bits long (approximately 17 to
20 symbols) and modulated at 45.45 baud
will have a duration of 4.4 seconds (200 ×
0.022 seconds). The same message will have
a duration of only approximately 2.2 seconds
with AACTOR. At 75 baud, the message
will have a duration of only approximately
1.3 seconds with AACTOR (200 ÷ 75 ÷ 2).

Practical Considerations
RTTY is self-synchronizing. An RTTY

demodulator is constantly on the lookout
for start and stop bits to determine when
the five-bit Baudot codes start and stop. If
bits are lost due to fade or interference, the
RTTY demodulator can re-synchronize
within the next succeeding few symbols.
This self-synchronization is why a demodu-

lating station can tune to an RTTY message
in progress and process the message from
that point forward. If, however, the lost sym-
bol was a [FIGS] or [LTRS], the succeeding
symbols will still be valid symbols, but their
message will be nonsensical. For example, a
lost [FIGS] symbol preceding the symbols
123456 will cause those symbols to appear
on the demodulating end as the unshifted
symbols QWERTY. When the next [FIGS]
or [LTRS] is encountered, the demodulating
station will resynchronize and continue pro-
cessing the message correctly.

AACTOR cannot self-synchronize like
RTTY. If bits are lost due to fading or inter-
ference, the balance of the message likely
will be gibberish. There will be no oppor-
tunity to resynchronize. RTTY is a robust
mode, however, not easily susceptible to fad-
ing or interference, and RTTY-AAC, when
it goes out over the airways, is identical to
RTTY and will benefit from that robustness.
Also, an AAC-compressed message has sig-
nificantly fewer bits than an RTTY message,
thus reducing the opportunities for fade or
interference. Risk of losing bits occasionally
is more than outweighed by the improved
speed of every message.

RTTY is better suited for real-time
keyboard-to-keyboard rag chewing than
AACTOR. RTTY can modulate and demod-
ulate symbol-by-symbol with each key press
at the modulating station. While the modulat-
ing station pauses in its key presses, RTTY
will automatically send repetitive [LTRS]
symbols (called “diddles” in this context)
to keep the two stations synchronized.
AACTOR, on the other hand, modulates
and demodulates entire messages at a time
without interrupting pauses. Rag chewing is
possible, but the demodulating station must
wait for the modulating station to finish all
key presses and to send the entire message.
For contesting with AACTOR, this is not
an issue. Contesters compose their mes-
sages ahead of time and, using macros, send
them with one key press or one mouse click.
During contesting, there is very little real-
time keyboard-to-keyboard messaging.

Conclusion
AACTOR, the combination of AAC and

RTTY-AAC, results in a faster version of
RTTY that exploits the robustnessof RTTY.
By compressing the message to be modu-
lated, fewer Mark and Space tones need to be
modulated and demodulated to exchange the
message, meaning that it will take less time
to exchange messages.

Joseph J. Roby, Jr, is an Amateur Extra
Class licensee, KØJJR. He has been active in
Amateur Radio since 2002, with emphasis on
contesting, DXing, and Amateur Radio soft-

 QEX January/February 2016 19

ware development, including writing his own
logging and RTTY contesting programs. His
software work has been twice published previ-
ously, in the February 2005 edition of Popular
Communications (“Homebrewing Software
for a Computer-Controlled Radio”) and in the
September 2014 edition of The 33rd ARRL and
TAPR Digital Communications Conference
Proceedings (“A Radioteletype Over-Sampling
Software Decoder for Amateur Radio”). He is
a member of the ARRL, the Minnesota Wireless
Association, and the Arrowhead Radio
Amateurs Club.

Joe is a practicing lawyer located in Duluth,
Minnesota. His practice focuses on labor and
employment law and media law. He has a
Bachelor of Science degree in mathematics,
with highest honors, from the South Dakota
School of Mines & Technology in Rapid City,
South Dakota and a Juris Doctorate degree
from William Mitchell College of Law in St.
Paul, Minnesota. He participates in the ARRL’s
Volunteer Counsel Program.

Notes
1Various contributors, “Radioteletype,” 9

November 2014: http://en.wikipedia.org/
wiki/Radioteletype.

2Michael Dipperstein, Arithmetic Code
Discussion and Implementation, November
2014:http://michael.dipperstein.com/
arithmetic/.

3Mark Nelson,“Data Compression with
Arithmetic Coding,” 19October2014:http://
marknelson.us/2014/10/19/data-
compression-with-arithmetic-coding/.

4Mark Nelson and Jean-Loup Gailly, “Huffman
One Better: Arithmetic Coding,” in The Data
Compression Book, 2nd edition, New York,
M&T Books, 1996, Chapter 5, pp 113 –
152. This book is available as a PDF file
at http://lib.mdp.ac.id/ebook/Karya%20
Umum/The-Data-Compression-Book.pdf.

5Various contributors,“Arithmetic Coding,” 19
November 2014: http://en.wikipedia.org/
wiki/Arithmetic_coding#Adaptive_
arithmetic_coding.

6Static (non-adaptive) arithmetic coding works
differently. A pass is made through the

entire message to be compressed to con-
struct the full and final version of M before
the message is compressed. Using this M,
the message is then compressed, and M
remains unchanged (static) during com-
pression. Then, after the message is com-
pressed, M must be sent as a preface to the
compressed message because the decom-
pressor will need this M to decompress the
message. For very long messages, M is
relatively short as compared to the length
of the compressed message itself. For short
RTTY-like messages, M is relatively large as
compared to the length of the compressed
message itself, thus defeating the purpose
of creating a faster version of RTTY. The
adaptive feature of AAC dispenses with
any need to send anything other than the
compressed message itself.

7Various contributors,“Baudot Code,”
6December2014: http://en.wikipedia.org/
wiki/Baudot_code.

4402 N. Selland Ave.
Fresno, CA 93722

Phone (559) 432-8873
http://www.m2inc.com

sales@m2inc.com

M2 offers a complete line of top quality amateur, commercial and military grade antennas, positioners
and accessories. We produce the finest off-the-shelf and custom radio frequency products available.

For high frequency, VHF, UHF and microwave, we are your source for high performance RF needs. M2

also offers a diverse range of heavy duty, high accuracy antenna positioning systems.

For communications across town, around the world or beyond, M2 has World Class Products and
Engineering Services to suit your application.

M2 products are proudly
‘Made in the USA’

M2 makes more than just high quality off-the-shelf
products. We also build custom antenna systems
using innovative designs to meet our customers’
demanding specifications.

From simple amateur radio installations to complete
government and commercial projects, we have
solutions for nearly every budget.

Directional HF and small satellite tracking stations
are our specialties.

Contact us today to find out how we can build a
complete antenna system to meet your needs!

Our high-performing products cover high frequency,
VHF, UHF and microwave.
Ask us about our custom dish feeds.

20 QEX January/February 2016

Maynard A. Wright, W6PAP

6930 Enright Dr, Citrus Heights, CA 95621: w6pap@arrl.net

Octave for Angles
W6PAP gives us another Octave lesson, this time describing some

of the unit conversion challenges we have to deal with.

1Notes appear on page 21

The engineering community has been
plagued by unit conversion problems for
many years. In 1492, Columbus miscalcu-
lated his position because of, in part, a confu-
sion between Roman and nautical miles.1 In
1999, the Mars Orbiter failed because of a
confusion between metric and English units.2
The same sort of confusion caused an error
in dimensioning a roller coaster axle, which
resulted in a crash at Tokyo Disneyland’s
Space Mountain in 2004.3

We Amateur Radio operators may be
subject to some of the same sorts of errors
while we design circuits or calculate compo-
nent values. Things may be made worse for
us by the nature of some of the mathemati-
cal tools we use. Differences between the
default dimensions for keystrokes on scien-
tific calculators and for software functions
are listed in Table 1. If we are more familiar
with one of these tool types than the other, we
may be tempted to unconsciously substitute
the wrong units when using the other tool,
especially when we’re thinking about other
aspects of a project as we make calculations.

There is considerable potential for con-
fusion between the meanings of LOG in
software and on calculator keys, but the
magnitude of the natural logarithm is more
than two times the magnitude of the common
logarithm for any argument. The difference
should be noticeable and should alert us that
something is wrong. Still, significant errors
have gone unnoticed by skilled engineering
teams, causing costly failures of space- and
land-based vehicles and systems (see Notes
2 and 3).

More subtle errors are possible when
working with trigonometric functions. We’ll

Table 1
Comparison of Calculator and Software Trig Function Conventions

 Function Name For Natural Logarithms Function Name For Common
 Logarithms
Calculator ln log
Software log log10 or logten

 Default Argument for Trig Functions Default Return for Trig Functions
Calculator Degrees Degrees
Software Radians Radians

QX1601-Wright01
Angle (degrees)

S
in

e
O

f A
ng

le

–1.0

0 50

1.0

–0.5

0

0.5

10 20 30 40

Table 2
GNU Octave Code for
Producing Curves in
Figure 1
x = linspace(0, 45, 300000);
y1 = sin(x);
y2 = sind(x);
y2 = sin(x * pi / 180);
plot(x, y1, x, y2);
axis([-5, 50, -1.1, 1.1]);
xlabel(“Angle (degrees)”);
ylabel(“Sine Of Angle”);
grid();
pause();

Figure 1 — This graph is a comparison of incorrect sin(x)
with correct sind(x) when the abscissa is intended to be in

degrees.

use the sine for our example here, but the
same concerns apply to other trig functions.

Instead of maintaining a large constant
error, as in the case of logarithms, the substi-
tution of a value in radians instead of degrees
as the argument to a trig function will cause

an error whose value cycles with the magni-
tude of the intended quantity. Octave code to
plot the correct curve and the incorrect curve
is listed in Table 2, and the resulting plot is
shown in Figure 1.

The large number of points specified in

 QEX January/February 2016 21

the linspace() call is intended to provide a
relatively smooth plot at the tops and bot-
toms of the sinusoids representing the errored
curve and isn’t really essential to the purpose
of the plots. Rather than calculate the maxi-
mum number of elements that our display
can handle, we’ve simplified things by using
a number that represents overkill.

We’ve used the function sind() in Figure
1 to calculate values of y2 (in degrees). The
commented out line shows a form that may
be used when only functions designed to
accept arguments in radians are available.

In Figure 1, let’s assume that we want
to calculate the sine of an angle in degrees
somewhere between 0° and 45°. The gradu-
ally increasing line represents a plot of the
sines of angles in that range on the ordinate,
as the function of angles in degrees on the
abscissa. The multiple cycle sinusoid rep-
resents what happens when we input the
angle in degrees to the sin() function in GNU
Octave, Matlab, Python, C, C++, or any
one of many other software tools.4, 5, 6 The
software is expecting the argument in radi-
ans rather than degrees and returns a value
accordingly.

Unlike the case with the logarithm, there
are multiple ranges of angles where the cor-
rect value of the sine and the errored value
are close enough to each other to elude
intuitive detection, but are far enough apart
to cause a flaw in a precise calculation. This
would seem to provide a significant potential
for serious calculation errors that cannot be
detected by good engineering judgment or
common sense.

Many calculators provide a keystroke
option for changing to angular input and/or
output to radians. It’s a little more difficult
in software, though, to make the opposite
change. Some math utilities such as GNU
Octave (see Note 4), though, have provided
functions to do just that. In recent revisions
of Octave, we can append a lower case “d”
to a trig function and it will expect inputs or
produce outputs in degrees. Python (see Note
6) does not provide functions for use with
degrees, although it provides functions for
converting radians to degrees and vice versa.

Let’s consider, for example, Equations
83 and 84 on page 2.45 and 2.46 of the 2016
ARRL Handbook.7

X = |Z| × sin θ (ohms) [Eq 83]

R = |Z| × cos θ (ohms) [Eq 84]

The Handbook illustration converts an
impedance of Z = |12.0 W| ∠–42° into its
rectangular components, R and X.8 We’ll
plug the angle –42° into the function sin()
and cos() in Octave, and we’ll see a sig-
nificant error that will mentally flag us that

something is wrong. In addition to the differ-
ence in magnitudes of the sine and cosine, the
signs of both returns will be incorrect. The
correct and incorrect rectangular components
are listed in Table 3.

The enormous percentage error reflects
the change in magnitude, but even more
so the change in sign, and indicates that
any downstream calculation in which we
use these numbers will be badly flawed. If,
though, we are paying any attention to the
nature of the calculations, the error ought to
be apparent.

We can see the error in Figure 1 by
observing both curves for an abscissa of 42°.9
Note that the ordinates of the two curves at
that point are on opposite sides of the zero
line.

Let’s leave the magnitude at 12.0 W but
change the angle to –32° to see what hap-
pens. Here the values are much closer to each
other, as shown in Table 4.

These are much smaller, but still signifi-
cant, errors, especially for X. If we are work-
ing on a problem that requires a precision of
three or more significant figures, these errors
are certainly too high. They are not so high,
though, as to raise an alarm in the minds of
most of us. The solution here is to be very
cautious, especially when moving back and
forth between a calculator and software.

Returning to Figure 1, we can see that,
in agreement with the calculations above,
the two curves are much closer to each other
for an abscissa of 32°. Although we haven’t
plotted the cosine function as we did the sine
function, we would find a similar situation
if we did.

The same concerns apply to all the trig
functions, including the tangent and cotan-
gent functions. As those two functions fea-
ture periodic vertical asymptotes with infinite
discontinuities, though, plots of those func-
tions would not be as helpful in understand-
ing the problem as is Figure 1.

Maynard Wright, W6PAP, was first licensed
in 1957 as WN6PAP. He holds an FCC
General Radiotelephone Operator’s License
with Ship Radar Endorsement, is a Registered
Professional Electrical Engineer in California,
and is a Life Senior Member of IEEE. Maynard
was involved in the telecommunications indus-
try for over 48 years. He has served as techni-
cal editor of several telecommunications stan-
dards and holds several patents. He is a Past
Chairman of the Sacramento Section of IEEE.
Maynard is an ARRL Member. He is Secretary
Treasurer and Past President of the North Hills
Radio Club in Sacramento, California.

Notes
1For 6 stories about miscalculations, go to:

http://mentalfloss.com/article/25845/
quick-6-six-unit-conversion-disasters.
Columbus’ error is a navigational error
rather than an engineering error, but serves
to indicate that such unit errors are not
confined to our era.

2Kathy Sawyer, Staff Writer, “Mystery of
Orbiter Crash Solved,” Washington Post,
October 1, 1999: www.washingtonpost.
com/wp-srv/national/longterm/space/
stories/orbiter100199.htm.

3For more unit conversion errors, including
the story about the Tokyo Disneyland
roller coaster crash, see “Unit mixups
— Colorado State University,” lamar.
colostate.edu/~hillger/unit-mixups.
html, and spacemath.gsfc.nasa.gov/
weekly/6Page53.pdf.

4You can learn more about GNU Octave, and
download the latest version of Octave at:
www.octave.org.

5For information about Matlab, and to down-
load a trial version of the software, go to:
www.mathworks.com/products/matlab.

6Learn more about Python and download the
software at: www.python.org.

7H. Ward Silver, NØAX, Ed. The ARRL
Handbook for Radio Communications, 2016
Edition, ARRL, 2015, Equations 83 and
84 on pp 2.45 – 2.46. ISBN: 978-1-62595-
041-3; ARRL Publication Order No. 0413,
$49.95. ARRL publications are available
from your local ARRL dealer or from the
ARRL Bookstore. Telephone toll free in the
US: 888-277-5289, or call 860-594-0355,
fax 860-594-0303; www.arrl.org/shop;
pubsales@arrl.org.

8We’ll round to three significant figures for the
purposes of this article.

9Although Figure 1 plots the sine in degrees
in the first quadrant, for clarity, and the
ARRL Handbook example involves angles
in the fourth quadrant, the identity sin(–x)
= –sin(x) allows the use of Figure 1 to com-
pare the returns of sin() and sind() for any
angle in the fourth quadrant with a reversal
of the signs of the returns. You can do this
mentally by prefixing a negative sign to
every Y axis value in Figure 1 while consid-
ering the example. If we were to plot cos()
and cosd() curves, the identity cos(x) =
cos(–x) would indicate that no sign reversal
is required when moving between the first
and fourth quadrants.

Table 3
Rectangular Components of
|12 W| ∠–42°

Correct Values Incorrect Values Error
R = 9.82 W R = –4.80 W 154%
X = –8.03 W X = 11.0 W 237%

Table 4
Rectangular Components of
|12 W | ∠–32°
Correct Values Incorrect Values Error
R = 10.2 W R = 10.0 W 1.96%
X = –6.36 W X = –6.62 W 4.09%

8:30 am to midnight ET, Monday-Friday
1230 to 0400 UTC March-October
8:30 am to 5 pm ET, Weekends
1230 to 2100 UTC March-October
International/Tech: 330-572-3200
8:30 am to 7 pm ET, Monday-Friday
Country Code: +1 Sale Code: 1601QEX

Mon-Fri, 10 pm ET
In-Stock Items

800-777-0703 I DXEngineering.com

Sign up at DXEngineering.com. Get news & specials by email. Request a FREE Catalog.

Shrink the Globe. Stay connected:

From the microphone to the tower, DX Engineering has the gear to build a competitive station,
along with the best support and fastest shipping in the industry. That means you’ll spend
more time on the air and less time waiting on your gear to arrive.

Receive Preamplifiers
An advanced push-pull
design eliminates harmonic
distortion to make these
the best low-noise
preamps on the market—
even better than many
radio front-ends.
With 300 kHz-35 MHz

coverage, they are perfect
for AM and HF DXing, SWL or

contesting. These preamps
handle strong signals without overloading.

Antenna Receive Interface
Connect an external receive-only antenna to your
transceiver with this interface. It can also be used as a
TX/RX switch for older gear, to insert a receive preamplifier,
or to interface to phasing/noise cancelling systems.

Receiver Guard 5000
and 5000HD
Protect your receiver
against potentially
dangerous levels of RF
from nearby transmit
signals. They work
automatically and
won’t aff ect station
performance. Select
the original Receiver Guard, or the new HD version made
for upper-tier, high-performance radios.

Pro 7 Headsets
With sonically-insulated ear pads
and an innovative acoustic design,
these headsets block out all the
background noise, leaving just you
and your radio. They also feature a
unique phase reversal switch to
really dig out weak signals.

Receive Antenna Variable
Phasing Controller
Combine two identical
receive antennas to
create a “virtual rotator”
directional array. It’s
adjustable, so you can
null-out unwanted
directional noise or
enhance distant signals.
This controller is the
ideal solution for imperfect antenna setups, giving you
great low band reception regardless of your landscape.
You’re also able to upgrade your NCC-1 with optional filter
sets for band-specific enhanced performance.

ZOOM Antenna and Cable
Analyzer, and NANUK
Equipment Case Combo
The AA-230 ZOOM is easy to
use, boasting a large color
display, intuitive hotkeys, and
straightforward user-interface.
The analyzer covers 100 kHz
to 230 MHz and can be used to
determine return loss and make
R/X/Z/L/C measurements on a
specific frequency. We’ve paired
it with a perfectly sized NANUK
Equipment Case to keep it
protected in the field.

 QEX January/February 2016 23

Chuck Adams, K7QO

27615 N 130th Ave, Peoria, AZ 85383-2860; chuck.adams.k7qo@gmail.com

Crystal Parameter
Measurements Simplified

The author describes a procedure to make very accurate measurements
on quartz crystals. You can do this with a simple fixture using four resistors,

a capacitor and some RF connectors.

This is a technique I derived in 1961 for measuring crystal param-
eters in a laboratory as an undergraduate student. Fifty years later
as radio amateurs, we have much better equipment available on our
workbench to do this.

Besides the fixture, the additional equipment needed consists of:
• A digital RF signal generator.
• A frequency counter.
• An RF voltmeter or RF probe.

Crystal Parameters
The quartz crystal unit, in an HC-49U package, consists of a cir-

cular quartz disc with aluminum or gold plating on opposite surfaces.
The crystal is mounted vertically inside the case. It is held by two sup-
ports on the edges of the crystal. Two leads exit the base to secure the
crystal in a circuit. Figure 1 is a photo of the internal structure of an
HC-49U crystal unit on the left, and the unit in the case on the right.

The quartz crystal unit is electrically represented by a series resis-
tor, R, an inductor, L, and a capacitor, C. A parallel capacitor, C0, is
needed because of the plating and the leads. Figure 2 is the equivalent
circuit diagram.

The parameters R, L, and C are referred to in technical publications
and books as Rm, Lm, and Cm. The inductance, capacitance and resis-
tance are referred to as the motional parameters of the quartz crystal,
thus the subscript m.

Derivation of the Resonant Frequency Formulas
The admittance, YAB, between the terminals A and B in the sche-

matic of Figure 2 is given by Equation 1.

0
1 1

(1 /)AB
AB

Y j C
Z R j L C

ω
ω ω

= = +
+ −

 [Eq 1]

where ω = 2pf.

By combining the two terms on the right, we get Equation 2.

2
0 0 0(1 /)
(1 /)AB

LC C C j RCY
R j L C

ω ω
ω ω

− + +
=

+ −
 [Eq 2]

Figure 1 — The internal structure of a quartz crystal unit is shown on
the left. The complete package in the metal HC-49U case is shown on

the right.

Figure 2 — This is an equivalent circuit for a quartz crystal unit.

and inverting both sides gives us Equation 3.

2
0 0 0

(1 /)
(1 /)AB

R j L CZ
LC C C j RC

ω ω
ω ω

+ −
=

− + +
 [Eq 3]

Multiplying both the numerator and the denominator by the com-
plex conjugate of the denominator gives us Equation 4.

QX1511-Adams02

A B

C0

L
R C

24 QEX January/February 2016

3 2 2 2
0 0 0 0

2 2 2 2 2 2 2 4 2 2
0 0 0 0 0 0

(1 / 2 / /)
/ 1 2 2 / 2 /AB

Real j L C L C LC C C C R CZ
C C LC C C R C LC C L C

ω ω ω ω ω ω
ω ω ω ω

+ − − + − −
=

+ − + + − +
 [Eq 4]

where Real is a real number with too many terms to fit on the line. We
are not going to use it anyway.

At resonance, the complex component of the above equation is
zero. That is the term following the j. We can simplify Equation 4 by
expressing the complex component as Equation 5.

3 2 2 2
0 0 0 01 / 2 / / 0L C L C LC C C C R Cω ω ω ω ω ω− − + − − =

[Eq 5]

Multiplying both sides of the equation by ωC2 to remove the fractions
gives us Equation 6.

2 2 4 2 2 2 2 2 2
0 0 0 02 0LC C L C C LCC C R C Cω ω ω ω− − + − − =

[Eq 6]

The last term is much smaller than the other terms combined, so we
eliminate it. The result is given in Equation 7.

4 2 2 2 2
0 0 0(2) () 0L C C LC LCC C Cω ω− + + + = [Eq 7]

We can solve this equation by finding the roots of the quadratic
equation with ω2 as the independent variable. There are any num-
ber of good mathematical software packages that can do this easily.
Wolfram Alpha is a free online calculator.1

There are two resulting resonant frequencies. The series resonant
frequency, fs, is given by Equation 8.

1 1
2sf LCπ

= [Eq 8]

The parallel resonant, or antiresonant frequency, fa, is given by
Equation 9.

0

1 1 1
2af LC LCπ

= + [Eq 9]

We can see that fa is always greater than fs.
The crystal is always connected to an external circuit, and C0 has

additional capacitance in parallel with it. We will call that additional
capacitance Cp. This will modify Equation 9, and the parallel resonant
frequency will be given by Equation 10.

1 1 1
2a

t

f
LC LCπ

= + [Eq 10]

where Ct = C0 + Cp. Crystal manufacturers specify the resonant
frequency of a crystal at this frequency with a particular load capaci-
tance, Cp.

Impedance at Resonant Frequencies
At the series resonant frequency, fs, we get ωs

2 = 1/LC, and by
plugging this expression into Equation 3 we get Equation 11.

2
01 ()AB

RZ R
RCω

= ≈
−

 [Eq 11]

We use the approximation because R is on the order of 10 to
100 Ω, and ω is on the order of 106, but C0 is just a few picofarads, and

on the order of 10–12. This makes the term very small compared to 1.
For the the parallel or antiresonant frequency we have

Equation 12.

2 1 1
a

tLC LC
ω = + [Eq 12]

Substituting the ω2 value into Equation 3, and using the impedance of
the capacitor, XC, we obtain Equation 13.

2

2 2

1 c
AB

t

XZ
C R Rω

= = [Eq 13]

The impedance for the parallel or antiresonant frequency is also
pure resistance and much greater than the series resonant impedance,
with a value typically between 100 kΩ and 1 MΩ.

In order to obtain Cm and Lm, we need only to measure the series
resonant frequency and the antiresonant frequency, and the capaci-
tance, C0. We then use the numbers in Equations 8 and 10 to solve for
Lm and Cm. We need a stable and accurate signal generator, an accurate
and precise frequency counter and a fairly sensitive RF voltmeter or RF
probe. The frequency counter should be able to measure and display
frequencies to within 1 Hz. The frequency counter may be built into
the signal generator.

The output level from the test fixture at the parallel resonant point
is going to be down as much as 110 dB from the peak voltage. This
makes this measurement very difficult. Let’s find an easier way.

Crystal in Series With A Capacitor
Let’s examine a crystal in series with a capacitor. Figure 3 shows

the schematic for this model.
The impedance between terminals A and B of the circuit is given

by Equation 14.

2
0 0 0

(1 /) 1
1 /AB

X

R j L CZ
LC C C j RC j C

ω ω
ω ω ω

+ −
= +

− + +
 [Eq 14]

We wade through some lengthy arithmetic to find the two reso-
nant frequencies. This is more tedious than the previous derivation,
resulting in an expression with more than 20 terms. I will not bore
you with the details and leave it as an exercise, if you are interested
in a challenge. The two resulting resonant frequencies are given by
Equations 15 and 16.

1 1
c

tLC LC
ω = + [Eq 15]

0

1 1
a LC LC

ω = + [Eq 16]

where Ct = C0 + CX and ω = 2π f.
We have shifted the previous series resonant point, now repre-

sented as ωc, up in frequency. The antiresonant frequency remains
exactly the same.

We now use Equations 8 and 15 to determine Lm and Cm of the
crystal. This is a system of two equations with three unknowns. We
measure C0 directly with an L/C meter. Take Equation 8 and rewrite
it as Equation 17.

2 1
s LC

ω = [Eq 17]

1Notes appear on page 26

 QEX January/February 2016 25

We will also rewrite Equation 15 as Equation 18.

2 1 1
c

tLC LC
ω = + [Eq 18]

The subscript c indicates that this is a measurement with CX in
series with the crystal.

Subtracting Equation 17 from Equation 18 gives us Equation 19.

2 2 1
c s

tLC
ω ω− = [Eq 19]

This now becomes Equation 20.

2 2 2 14 ()c s
t

f f
LC

π − = [Eq 20]

At this point, everyone wants to make an approximation for the
difference of the two squares. Let’s use the equation x2 – y2 = (x + y)
(x – y) and get more precise results. This will give us Equation 21,
solved for Lm.

2
0

1
4 ()()()m

c s c s X

L
f f f f C Cπ

=
+ − +

 [Eq 21]

We can measure the two resonant frequencies using a signal gen-
erator and frequency counter. Measure C0 and CX using a capacitance
meter, and then crunch the numbers.

Test Fixture
In order to make the measurements we use a test fixture. Other test

measurements in publications and on the Internet use more complex
circuits. This test circuit is very simple. Figure 4 shows the schematic
diagram for the circuit. You can see how simple and inexpensive it
can be.

The input and output impedance of the fixture is close to 50 Ω, but
is not critical. R2 and R3 should be kept small to reduce the loaded
Q on the crystal, but not too small to attenuate the output RF voltage
of the fixture to a very small value. The resonant frequencies are not
affected by these values. If the values are large, the resonant peak
spreads out and it is more difficult to home in on the exact peak. The
small values of R2 and R3 also serve to swamp any effects of stray
capacitance in the fixture.

Figure 5 is a photograph of the test fixture that I use for this pro-
cedure.

Here are the steps to measure the data needed.
1) With the RF generator voltage connected to the fixture, find

the series resonant frequency with capacitor CX shorted. Start the
frequency generator a few kilohertz below the marked frequency of
the crystal and slowly increase the frequency while watching the RF
output level. Write down the frequency at which the peak output volt-
age occurs. This is fs.

2) Remove the short across capacitor CX. Find the new output volt-

age peak at a slightly higher frequency. This will be fc.
3) When you build the fixture measure CX before installing it and

again in the circuit without a crystal in the socket to determine the
extra stray capacitance caused by the shorting terminals. I used a
47 pF disc capacitor, but any value near this should do nicely. I recom-
mend an NPØ capacitor.

4) Measure C0 of the crystal using an accurate L/C meter, such as
the Almost All Digital Electronics (AADE) L/C Meter II.2

Now you have all the data needed to calculate Lm. We obtain Cm from
the series resonant frequency, Equation 8, by using the Lm value and fs.

Crystal Motional Resistance
Here are the steps to measure the motional resistance, Rm, or the

effective series resistance (ESR) of the crystal.
1) Short CX and again find the series resonant frequency. Make

note of the output voltage as accurately as possible.
2) Remove the crystal, leaving everything else as is.
3) Replace the crystal with a variable resistor of 100 Ω. I use a 25

turn variable resistor that has 0.2 inch lead spacing, to fit the crystal
socket. Adjust the resistor for the exact same RF voltage output we
had with the crystal in the socket.

4) Remove the variable resistor and measure the resistance. This
is Rm.

QX1511-Adams03

A B

C0

L
R C

CX

QX1511-Adams04

RF In RF Out

JMP

R1
47 Ω

R4
47 Ω

R2
10 Ω

R3
10 Ω

CXY1

JMP

Figure 3 — This schematic diagram is the model circuit for a crystal
in series with capacitor CX.

Figure 4 — Here is the schematic diagram for the author’s crystal test
fixture. R1 = R4 = 47 Ω, R2 = R3 = 10 Ω, Y1 is the crystal under test,

and CX = 47 pF. JMP is a jumper to short out CX.

Figure 5 — This photo shows the author’s crystal test fixture. It was
built using a circuit board layout with parts labeled. The center pin
of the crystal socket is grounded to reduce the socket capacitance

across the crystal.

26 QEX January/February 2016

Congratulations. You have all four crystal parameters. You have
Lm, Cm, Rm, and C0. These values may be used to determine the circuit
for a crystal IF filter with a specific bandwidth.

You can determine the quality factor, Q, of the crystal by taking
the series resonant frequency, fs, motional inductance, Lm, and series
resistance, Rs, and use Equation 22.

2s m s mL

m m m

L f LXQ
R R R

ω π
= = = [Eq 22]

This is the inductive reactance at the resonant frequency divided by
the motional resistance, Rm, of the crystal.

I have written some Python code to perform the calculations for
the parameters of the crystal under test. This code carries out the com-
putations to the full 64 bit precision of the computer processor. My
code is available for download from the ARRL QEX files web page.3

Procedure Verification
In order to verify that this procedure is both useful and accurate I

picked at random nine crystals from my collection. I then sent these to
Tom Thomson, WØIVJ, in Colorado to measure their characteristics
by using an AIM Model 4170 Vector Network Analyzer. He also had
Larry Benko, WØQE, do the same measurements with another 4170
VNA. Table 1 shows the results, with their measurements and mine.
As you can see, the agreement on the crystal parameters is excellent.

SPICE Simulation
As a check of all my theoretical work, I ran a SPICE simulation

using ngspice. I set up an input RF voltage of 1.00 V and swept a
crystal model from 4.190 MHz to 4.210 MHz. The voltage output
was plotted in dB to show the null depth.

The important thing to note is that the null, corresponding to the
parallel resonant mode, remains at the same frequency, but varies in
magnitude. This agrees with the theoretical derivation and resulting
formula.

Matching Crystals
Using the technique discussed to match crystals is going to be a

long and tedious task. One of the things that I want to demonstrate
is how a Colpitts crystal oscillator can be used to match crystals and
get excellent results.

Suppose you have a number of crystals and you are looking for
four crystals for a four pole crystal filter. You want the crystals to
match within 10 Hz of each other. Then, using the oscillator and a

QX1511-Adams06

Frequency (MHz)

V
ol

ta
ge

 (d
B

)

4.19 4.21

0

4.20

–100

–80

–60

–40

–20

frequency counter you plug the crystals in and measure the output fre-
quency of each, and keep them ordered. Also note the output voltage
from the oscillator. If we have two crystals with the same frequency,
we will take the one with the higher output from the oscillator because
it will have the lowest Rm.

I have a few hundred 4.096 MHz crystals that I won at an auc-
tion on eBay. I found four of them that matched within 5 Hz of each
other in the oscillator. I then used the procedure outlined in this paper
to measure their crystal parameters. My results are given in Table 2.

Depending upon what program you use to generate the compo-
nent values for your filters, you can match crystals using the Colpitts
crystal oscillator, and then measure the parameters of just one crystal
for use in the program. You could also measure a few of the matched
crystals and average their parameter values to use in the program.
Experimentation will determine which is the fastest method and just
how well it meets your criteria for the resulting filter(s).

Conclusion
You now know how to measure crystal parameters accurately and

how to easily match a set of crystals for a filter. The test fixture is sim-
ple and easy to contruct using any of a number of building techniques.
I hope that you will find this test fixture and procedure to be a useful
addition to your workbench, and that it will simplify the construction
of many successful projects.

Chuck Adams, K7QO, was first licensed as KN5FJZ in the mid 1950s,
during the greatest sunspot cycle in recorded history. He has held the
calls K5FJZ, K5FO, and now K7QO. He is a retired professor of com-
puter sciences, electrical engineering, and physics. He holds a PhD in
physics, with a specialization in radiative transfer and electromagnetics.
He now spends his time experimenting and building his own equipment.
From time to time, he even gets on the air.

Notes
1Wolfram Alpha is a free online calculator that will calculate a

large variety of quantities from your input values. Go to
www.wolframalpha.com.

2The Almost All Digital Electronics website has had information about
an array of kits, including the L/C Meter II at www.aade.com.
[Unfortunately, when I checked this link prior to publication, the web-
site home page has a note informing us that Neil Heckt passed away
on August 19, 2015. The note further indicates that we should be
patient while his family determines the future of the company. — Ed.]

3The author’s Python code for computing the crystal parameters from
the measured data is available for download from the ARRL QEX
files web page. Go to www.arrl.org/qexfiles and look for the file
1×16_Adams.Zip

Figure 6 — SPICE simulation
for sweeping a crystal. The
left-most curve is with no

series capacitor and then two
more curves for two different

values for CX.

 QEX January/February 2016 27

Table 1
Crystal Measurement Procedure Verification

Lab Crystal FSeries FParallel Rs Ls (mH) Cs (pf) Cp (pf) Qs Measuring
Tech Number Instrument

WØIVJ 1 3.578426 3.585154 49.822 139.418 0.0141885 3.780 65801 AIM 4170 VNA
WØQE 1 3.578427 3.585256 49.700 142.449 0.0138866 3.638 64443 AIM 4170 VNA
K7QO 1 3.578426 -------- 49.6 141.624 0.013968 3.65 64199 K7QO Fixture

WØIVJ 2 4.193154 4.200966 16.943 111.185 0.0129572 3.484 180122 AIM 4170 VNA
WØQE 2 4.193163 4.200894 17.159 115.719 0.0124495 3.376 177674 AIM 4170 VNA
K7QO 2 4.193159 -------- 15.4 114.234 0.012611 3.22 195432 K7QO Fixture

WØIVJ 3 4.031548 4.036547 40.962 309.640 0.0050332 2.032 211124 AIM 4170 VNA
WØQE 3 4.031552 4.036428 40.046 340.051 0.0045830 1.895 215101 AIM 4170 VNA
K7QO 3 4.031553 -------- 39.1 326.544 0.004773 1.57 211552 K7QO Fixture

WØIVJ 4 4.193152 4.201202 18.176 107.122 0.0134487 3.509 165524 AIM 4170 VNA
WØQE 4 4.193157 4.201100 18.432 112.633 0.0127907 3.376 160993 AIM 4170 VNA
K7QO 4 4.193154 -------- 17.5 112.514 0.012804 3.44 169390 K7QO Fixture

WØIVJ 5 4.094814 4.102963 23.238 134.404 0.0112398 2.830 147508 AIM 4170 VNA
WØQE 5 4.094819 4.103052 23.469 134.440 0.0112368 2.794 147386 AIM 4170 VNA
K7QO 5 4.094819 -------- 21.8 130.161 0.0130161 2.74 153616 K7QO Fixture

WØIVJ 6 3.998939 4.005005 22.484 132.716 0.0119351 3.940 153331 AIM 4170 VNA
WØQE 6 3.998953 4.005015 22.619 136.166 0.0116326 3.837 151261 AIM 4170 VNA
K7QO 6 3.998947 -------- 21.6 133.566 0.0133566 3.80 155370 K7QO Fixture

WØIVJ 7 11.055203 11.079818 7.407 11.640 0.0178059 4.007 109648 AIM 4170 VNA
WØQE 7 11.055211 11.079788 7.337 11.755 0.0176319 3.965 111282 AIM 4170 VNA
K7QO 7 11.055188 -------- 7.1 11.449 0.018102 3.99 112009 K7QO Fixture

WØIVJ 8 4.094873 4.102956 24.034 130.270 0.0115962 2.943 144651 AIM 4170 VNA
WØQE 8 4.094876 4.103023 24.476 134.745 0.0112110 2.818 141641 AIM 4170 VNA
K7QO 8 4.094880 -------- 24.1 132.374 0.011412 2.90 161414 K7QO Fixture

WØIVJ 9 13.499968 13.529170 4.063 5.074 0.0273900 6.345 100390 AIM 4170 VNA
WØQE 9 13.499973 13.529200 4.129 5.064 0.0274465 6.339 104041 AIM 4170 VNA
K7QO 9 13.499920 -------- 4.10 4.739 0.029329 6.10 98042 K7QO Fixture

Number Form Factor Crystal Identification Printed on Each Unit

1 HC-49U MPCO 3.579545
2 HC-49U HOSONIC 4.1943 B603
3 HC-49S 4.032
4 HC-49U HOSONIC 4.1943 B603
5 HC-49U MMD A18BA1 4.096JHz 9942G
6 HC-49U ABRACON 4.000 AB 0443
7 HC-49U FOX115-20 11.0592
8 HC-49U MMD A18BA1 4.096MHz
9 HC-49U 78941-1 13.500 KDS 5K

Table 2
Sample Crystal Measurements

Crystal fs (Hz) fc (Hz) Lm (mH) Cm (fF) C0 (pF)
 1 4094849 4095292 132.12 11.43 2.97
 2 4094849 4095287 133.94 11.28 2.85
 3 4094846 4095294 130.82 11.54 2.90
 4 4094849 4095301 129.62 11.65 2.92

28 QEX January/February 2016

Scotty Cowling, WA2DFI

PO Box 26843, Tempe, AZ 85285: scotty@tonks.com

Hands-On-SDR

1Notes appear on page 34

In this installment, we move back toward
the basics (I didn’t say simple!) and delve a
bit more into the inner workings of the magi-
cal, mystical field programmable gate array,
or FPGA. This column relies heavily on what
I covered in my Mar/Apr 2015 column.1 If
you have not read that, or can’t remember
reading it, now would be a good time for a
quick review. Since I can’t remember writ-
ing it, I need to take a short break and read it
again myself…

In the Mar/Apr 2015 column, I showed
you how to set up an FPGA coding environ-
ment with free development tools, walked
you through the code of an SDR design
example, showed you how to compile the
example code and run it on real hardware.
We did cover some SDR theory, but we
took much of the background as a given and
instead focused on how we implemented
functions inside the FPGA.

This time we will be taking the open-
source code written for a variant of the
high-performance software-defined radio
(HPSDR) Hermes single-board transceiver
(specifically the Apache Labs Anan-10e) and
port it to the BeMicroCVA9 development
board from Arrow Electronics. This board
is used in the Hermes Lite project as well as
in the IQ2 transceiver and is also compat-
ible with the SDRstick HF1, HF2 and TX2
RF boards. I am going to focus on the HF2
receiver and TX2 transmitter boards, but I
will include enough information for you to
port the Hermes code to almost any compat-
ible RF front-end board. Given the price and
performance of the BeMicroCVA9, I expect
that a bevy of hardware designs will surface
once the word gets out. So let’s start getting
the word out!

We owe many thanks to Phil Harman,
VK6PH, Kirk Weedman, KD7IRS, and Alex
Shovkoplyas, VE3NEA, who wrote the orig-
inal code that we will use as a starting point.
As you look through the code, I think you
will be grateful for their work. Without their
significant efforts, we would have to write all
of this complicated code ourselves!

What Do We Need to Get Started?
As with each of these columns, limited

space begs the questions: “What do I need to
know?” and “What equipment do I need?”

You will need a basic working knowl-
edge of the Verilog hardware description
language. If you followed my Mar/Apr
column, you are prepared enough. We will
not be deep diving into the intricacies of the
code, since we are just porting the code to a
new device. My assumption is that the exist-
ing code is working, and we will try not to
introduce any new bugs as we port to the new
device. Of course, my assumption may prove
to be false, but that is a topic for another day:
debugging FPGA code!

For hardware, you wil l need a
BeMicroCVA9 development kit.2 To actually
run the code that we are going to compile in
this column, you will also need an HF2 board
(to receive), or both HF2 and TX2 boards
(to transceive).3, 4 As a lower-performance
(and less expensive) alternative, you can
use an HF1 or Hermes-Lite board, but you
will need to make other modifications to the
code if you go that route.5, 6 I believe that the
Hermes-Lite group has ported their firmware
to the BeMicroCVA9. After wading through
this column, you should be expert enough to
compile their source code and run it on the
BeMicroCVA9. Even if you do not have the
hardware, you can still follow along with the
text and learn about porting FPGA code to
new devices.

Like my Mar/Apr column, you will need
some Verilog programming knowledge, but
SDR knowledge in general is not required.
We are targeting a new device, not designing
code from scratch.

For design software, there is good news
and bad news. The good news is that Altera
offers their Quartus II FPGA design soft-
ware as a free download from the Internet
for the FPGAs in their Cyclone® family of
parts. Both Linux and Windows versions are
available. We will need two versions of the
Quartus II design software to complete the
porting work. The first version is Quartus II
version 13.1, which is the version that was
used to create the code that we are going to

port. The second version is the latest (as of
this writing), version 15.0. The bad news
is that Quartus II version 15.0 requires a
64-bit operating system. You will need 64-bit
Windows XP, Windows 7 or later or 64-bit
Linux in order to run this new version.

All of the information from my Mar/Apr
column applies to both Quartus versions.
Before you continue, you will need to down-
load and install both of the free Quartus II
versions (13.1 and 15.0) from the Altera web
site.7 To save some download time, you only
need to download Cyclone III and Cyclone
V device support for Quartus II version
13.1, and only Cyclone V device support for
Quartus II version 15.0.

Why Two Quartus Versions?
Before we get down to the meat and

potatoes, I need to explain some problems
that we face that are unique to our task. You
might ask “Why do we need two versions of
Quartus?” The answer is tied to the capabili-
ties of each Quartus version and the FPGA
part that we are migrating from as well as the
part we are migrating to. The Hermes code
targets the Cyclone III EP3C25Q240C8 (our
from part number), while the BeMicroCVA9
uses a Cyclone V 5CEFA9F23C8 (our to part
number). Quartus II version 13.1 supports all
Cyclone III parts and some of the Cyclone
V parts, but unfortunately not our to part
number. Quartus II version 15.0 supports all
Cyclone V parts (including our to part num-
ber), but no Cyclone III parts at all!

While it is certainly possible to migrate
Quartus versions and part families in one
step (which was my original intent for this
column), doing it that way is difficult. We
will follow an easier course by changing part
families first and then upgrading to the latest
version of Quartus. If the complexity of this
method frustrates you, try to remember that
this is the easy way. To paraphrase a com-
mon saying: “There are only two ways to do
this. If you don’t like this one, you for sure
won’t like the other one!” Here is the flow
of part numbers and Quartus versions that
we will use:

3C25 with v13.1 5CEFA7 with v13.1

 QEX January/February 2016 29

 5CEFA7 with v15.0 5CEFA9 with
v15.0

Notice that Quartus II version 13.1 does
not support our 5CEFA9F23C8 part, so we
pick a dummy part (5CEFA7F23C8) that it
does support just to get us into the Cyclone
V family. After we migrate to Quartus II
version 15.0, we will pick our final, correct
5CEFA9F23C8 target. Also, notice that in
the flow above, we only change one item
in each step: either the part number or the
Quartus version, but never both.

FPGA Code Porting Tasks
Now that we understand the mess that we

have gotten ourselves into, here is an outline
of the WA2DFI 6-step program to successful
FPGA code porting:

1) Open the design in the original Quartus
version.

2) Update the wizard-generated modules.
3) Add code to hook in new signals and

remove unused old signals.
4) Add new location properties.
5) Update the SDC timing constraints file

with new signals, and remove old signals.
6) Compile-debug-repeat.
While none of these steps is fraught with

peril, some are a bit more involved than oth-
ers. Let’s look at each step in more detail.

Open the Design
To get a copy of the FPGA source code,

download a copy of the Quartus archive
from the SDRstick SVN webserver.8 The
archive not only contains the source files

(with a .v extension), but the pin assignment
file (.qsf extension), timing constraints file
(.sdc extension) and many other files needed
to successfully compile the complete project.

Once you have downloaded the archive
file, start the Quartus II version 13.1 soft-
ware and click on <file><open project…>.
Navigate to the .qar file that you downloaded
and click on it. From the dialog box that
opens, select the destination folder (usually
the default is good) and click OK. Quartus
will extract all of the files from the archive
and set up the project, all ready to go. I
recommend that you fire off a trial compile
now (yes, right now!) with no changes. This
will tell you if you have everything set up
correctly. The compile button is the small
right-facing triangle on the toolbar. If you
prefer menus, the <Start Compilation> but-
ton is also under the <Processing> menu.
You should get a bunch of warnings from
Quartus, but no errors. If Quartus reports
errors, you must fix them before you can
continue.

Now that we have a good compile, we
need to do a little project clean up. By proj-
ect, I am referring to the group of files that
comprise the entire design. The Hermes
design has changed and evolved over time.
Some functions were removed or superseded
by new and improved ones. Other pieces of
code were rewritten to be more efficient. The
net result is that there are files included in
the project that are unused. Since we don’t
need to update unused modules, it is best
to remove them now. There are about two

dozen unused files that you can remove. I
have listed them in a text file that you can
download.9

First, remove the files on the list from
the project directory or subdirectory. If you
are cautious, like I am, create a new direc-
tory outside of the Quartus project and
move the files there. That way Quartus will
not be able to find them, but if you make a
mistake and remove a needed file, you can
easily restore it. Next, in Quartus, under the
<Project><Add/Remove Files in Project>
menu, remove the files from the project. You
might think that deleting (or moving) the
file is sufficient, but Quartus keeps track of
the files that it knows are in the project. You
must remove these or Quartus will look for
them (in vain, since you moved them) and
not be happy about not finding them. After
you remove all of the dunsel files, make sure
to click <apply> and <OK>.10

Check the Files tab of the Project
Navigator window to see a list of files in the
project. See Figure 1. You should recompile
the project to make sure that you did not
accidentally remove something that is neces-
sary. Before you do this, however, you need
to remove the intermediate database files for
past compiles. This will ensure that all traces
of the files that you removed are gone from
Quartus “memory” of compiles past. Go
into the project directory and remove the two
directories db and incremental_db along
with their contents. Don’t worry; Quartus
will re-create them as soon as you run a com-
pile, which you should now do. As before,
Quartus should report some warnings, but
no errors.

Update Wizard-Generated Modules
The Altera MegaWizard Plug-In Manager

was used to generate some of the modules in
the Hermes code. The wizard, as I call it, is
software built into Quartus that helps you
set parameters for Altera functions such as
FIFO, RAM and ROM memories, phase-
locked loops (PLLs) and other functions.
The Hermes design uses four PLLs, four
FIFO memories, three ROM memories, one
RAM memory and one multiplier for a total
of 13 Wizard generated modules. Each of
these modules must be updated first to the
Cyclone V family under Quartus II version
13.1 before we can open them in Quartus II
version 15.0.

Let’s now move our design to the Cyclone
V family. With the design open, select
<Assignments><Device> from the menu
bar. Select Cyclone V in the Family field.
A dialog box will appear asking if you want
to remove all location assignments. This
tells Quartus to remove the old pin assign-
ments that will no longer be valid when we
change to a different part. This is important,
since the Cyclone III pin numbers have

Altera Part Numbers Explained, Sort Of
Just in case you are wondering what all those numbers mean in that long and

involved FPGA part number, look no further. Our FPGA part number can be bro-
ken into 9 sections:

5C E F A9 F 23 C 8 N
The 5C signifies that our part is in Altera’s Cyclone V family of parts. Examples

of other Altera part families are Stratix 5 (5S) and Arria 10 (10A). The E in our
part number signifies Enhanced logic/memory, in other words, no embedded
hard-processor or high-speed transceivers (the digital logic kind of transceiver, not
the Amateur Radio variety). The F signifies that we have a hard memory controller,
which is a DDR memory controller pre-built for us in silicon so we do not have to
design one out of the FPGA fabric ourselves. The A9 tells us that this is the larg-
est device in the family, with 301K Logic Elements (LEs). In contrast, the smallest
member of the family, the A2, has only 25K LEs.

Moving along, F23 represents the package type. F stands for Fine Line Ball
Grid Array and 23 stands for the square package side dimension, 23mm. This
package has 484 connections, each consisting of a solder ball on the bottom of
the chip. The solder balls are arranged in a 22mm by 22mm square grid on 1mm
centers. Don’t try to mount this part with your American Beauty soldering iron!15

The C stands for commercial temperature range (0ºC to 85ºC); there are two
wider temperature ranges if needed. The 8 represents the speed grade. There are
only three grades, 6 being the fastest (and most expensive). The 8 graded parts
are the slowest (and cheapest), but still plenty fast enough for our application. As
you would expect, grade 7 parts are in between 6 and 8 in performance. Last but
not least, the N indicates lead-free packaging. No Ethyl for us, thank you.16 More
information than you ever wanted to know is available in the reference.17

30 QEX January/February 2016

about the same chance of being the same as
the Cyclone V pin numbers as my dog has
of becoming President. (My cat agrees with
me on this one.) This is especially true since
the packages (QFP240 versus FBGA484)
are completely different. So click Yes to
remove them. To narrow your choices, select
FBGA in the Package field, 484 in the Pin
count field and 8 in the Speed grade field.
Now select 5CEFA7F23C8 under Available
Devices with a single click. Note that you
will again have to confirm that you want
to remove all location assignments, even
though they have already been removed!
Click Yes and then OK. That’s it! You are
now are using a Cyclone V part! Well, not
the right part, and we are still using Quartus
II version 13.1. We will fix both of these
problems after we finish updating the wizard-
generated modules.

To update the wizard-generated modules,
we will use (are you ready for this?) the
wizard itself! We will open each module in
turn and tell the wizard to use the Cyclone V
family and regenerate the module. This will
work for all of the modules except the four
PLLs and the ROM memory. We will handle
them separately. To get started, click the IP
Components tab of the Project Navigator.
See Figure 2. You should see thirteen lines
in the window. Leave the PLLs alone for
now (PLL_IF, tx_pll, C122_PLL and
C10_PLL) as well as the firromH module.
Open sine_table_256 by double clicking on
it. The MegaWizard Plug-In Manager will
start. In the upper right corner, the Currently
selected device family will be Cyclone III
and the Match project/default box will be
checked. Uncheck this box and then select

Cyclone V from the Currently selected
device family drop-down menu. Click Finish
twice and the wizard will update the mod-
ule for you. Now repeat the same steps for
the other 7 modules (profileROM, SP_fifo,
firram48, Tx1_IQ_fifo, Rx_Audio_fifo,
Multiply2 and Mic_fifo).

The firromH module must be handled dif-
ferently, mainly because the designers broke
one of the rules and modified the firromH.v
file that the wizard created. There are reasons
why they did this (which I am not going to
elaborate on), but the consequences are that
the new wizard-generated firromH.v file will
over-write the modified old version. We will
have to re-modify the new file with the old
changes to make it work. Go ahead and open
the firromH module in the wizard and con-
vert it to the Cyclone V family just like you
did with the other modules. After you do this,
click on the Mem Init tab in the toolbar. We
must specify an existing file name in order
to satisfy the wizard, so click on the Browse
button and select the Polyphase_FIR direc-
tory and pick any of the files that end in .mif.
You will have to change the selection to MIF
files in the drop-down Files of type box at
the bottom of the window to make the .mif
files visible. It does not matter which file
you choose, since we are going to manually
change it in the firromH.v file in the next step.

Now we are going to modify the
firromH.v file that the wizard created for us.
(Shh, don’t tell the wizard!) In the Quartus
Project Navigator pane, click on the Files
tab, find the firromH.v file (hint: it is called
“Polyphase_FIR/firromH.v” because it is in
a project sub-directory) and open it by dou-
ble-clicking on it. After line 43, add line 44:

parameter MifFile = “missing_file.mif”;
Follow this with a blank line 45 to make

things readable. Next go to line 88 and
change it to read:

altsyncram_component.init_file =
MifFile,

Make sure to type it exactly as shown,
since capitalization and punctuation matter.
Save it and close the file. We will delve more
into why we made this change in the next
column, when we dig into the code. Right
now we need to finish up with the wizard by
updating the PLL modules.

Unfortunately, Cyclone V PLLs are dif-
ferent from Cyclone III PLLs, so we cannot
just upgrade them using the wizard. We must
create new ones and replace the old ones with
the new ones. First, remove the old PLL_IF,
C10_PLL, C122_PLL and tx_pll files from
the project using the Add/Remove Files in
Project menu. Each of these modules will
have several files (typically .v and .qip files);
make sure that you remove all of them. Next
remove the files from the project directory
and sub-directories. (The tx_pll files are in
the Ethernet sub-directory.) While you are
at it, remove the db and incremental-db
directories and their contents, just like you
did before.

To create a new PLL module, open
the wizard using <Tools><MegaWizard
Plug-In Manager> and select Create a new
custom megafunction from the list. From
the list of functions, pick Altera PLL v13.1
from the PLL submenu. In the output file box
append the name (for example, PLL_IF_
new) after the string that represents the proj-
ect directory. This will name your module
and place it in the project directory. All four

Figure 1 — Project Navigator view of files in the project.

Figure 2 — Project Navigator view of IP components in the project.

 QEX January/February 2016 31

PLL modules have these common settings:
• Device Speed Grade: 8
• PLL Mode: Integer-N PLL
• Operation Mode: direct
• Enable locked output port: checked
• Enable physical output clock param-

eters: checked
Set the other parameters for each module

to what I have listed in Table 1. Leave all
other parameters set to their default settings.
When you click Finish and Exit after speci-
fying all the parameters, Quartus will ask
you if you want to add the new IP to the proj-
ect. Click Yes. Since the PLL modules need
to be added to the project eventually, this will
save you a step later.

The last step is to open the source file that
instantiates each PLL, update the module
name and check (and correct, if necessary)
the module connections. The tx_pll is used
in the rgmii_send.v file in the Ethernet sub-
directory. The other three are instantiated in
the top level Hermes.v file. I will guide you
through the first one, and you can follow the
same procedure on the other three on your
own. (You didn’t think I was going to do all
of it for you, did you?) Open the top level
Hermes.v file and also the C122_PLL_
new.v file. Go to line 1385 in Hermes.v and
you will see the instantiation of C122_PLL.
The instantiated name is PLL_inst, and
the port names are inclk0, c0 and locked.
Observe that port inclk0 is connected to
_122MHz, port c0 is connected to osc80khz
and port locked is not connected to anything.
Now look at the C122_PLL_new.v file. You
will see that there are now four ports instead
of three: inclk0 is now called refclk, c0 is

now called outclk_1 and locked remains
unchanged. The new input is called rst; we
will not use it. Change line 1385 to read:

C 1 2 2 _ P L L _ n e w P L L _
i n s t (. r e f c l k (_ 1 2 2 M H z) ,
.outclk_1(osc_80khz), .locked(), .rst());
The C10_PLL_new and PLL_IF_new mod-
ules will require similar changes.

The astute reader will notice that the wiz-
ard allows you to turn off the locked output
when it is unused, but the new PLLs all have
an rst input that cannot be disabled. Ideally
this input should be connected to reset logic;
however, we will save code improvements
for a later time. I need to call your attention to
one other change that I slipped in while you
were not looking. I changed the reference
clock of the tx_pll module from 125 MHz
to 50 MHz. I did this out of necessity, since
the CVA9 does not have a 125 MHz clock
input! It does have a 50 MHz clock input,
but since we have not added it to the top-
level Hermes.v source file yet, just leave it at
125 MHz. We will fix it shortly.

Now that you are experienced in match-
ing up old port names to new port names, this
would be a good time to go back and check
the other nine wizard-generated modules
that we updated to make sure that the port
definitions in each module’s .v file match
up with the ports called out at the module’s
instantiation. Here’s a quick hint: all of
them are instantiated in Hermes.v except
for sine_table_256 (sidetone.v), Multiply2
(sidetone.v), profile_ROM (profile.v) fir-
romH (Polyphase_FIR/firx2r2.v) and fir-
ram48 (Polyphase_FIR/firx2r2.v).

As a short aside, I keep a note pad handy
to write down things like “change 125M
clock to 50M” as a note to myself. When you
are updating the code, you will likely per-
form many tasks out of order and it is easy to
forget a simple change that you queued up in
your memory and then forgot about it.

At this point, we are finished with
Quartus II version 13.1. Close Quartus and
re-open the project in Quartus II version
15.0. The new version of Quartus will ask
you if it should overwrite the database with
the new format. You can safely answer Yes.
Change the part number to 5CEFA9F23C8
and run a compile to see if we broke any-
thing. Now we are using version 15.0 with
the correct FPGA part number. The light at
the end of the tunnel is coming into view, and
it is not an oncoming train!

Add and Remove Code and Signals
The next step in our 6-step program is to

match up the old design (Hermes) signals
with the new design (CVA9) signals. We
must account for every one of the Hermes
signals, whether it is to remove it, change
it to match the new CVA9 hardware or
just connect it to its counterpart in the new
design. We must also account for every one
of the new design pins (CVA9) by either
ignoring it, adding code to support it or just
connecting it to its counterpart from the old
design. In order to be able to do all of this
cross checking, we need to map the old pin
names (in this case from the Hermes board)
to our new pins on the BeMicroCVA9 board.
Some of these signals connect to parts on the
BeMicroCVA9, and some connect directly
to the HF2 and TX2 boards that are plugged
into the BeMicroCVA9.

What we need is a table that shows the
old name alongside the new name and the
new FPGA pin number. (We will use the pin
numbers in the next section.) You could figure
this out for yourself, but I have created a file
for you containing a table of all of the signal
names in the design to give you a head start.
This Hermes_6_to_IQ2_pins table will tell
us which pins map directly onto new pins and
which do not.11 An excerpt of this table (show-
ing only the signals that we need to change) is
shown in Table 2. All of the changes will be
made to the top level Hermes.v file.

A quick look at the full table will reveal
that most Hermes signals have equivalent
(although differently named) BeMicroCVA9
signals. We can leave these alone. The other
signals fall into three categories:

1) The Hermes signal has a different or
shared function than the CVA9 signal.

2) The Hermes signal does not exist in the
CVA9 design.

3) The CVA9 signal does not exist in the
Hermes design.

In the first case, we must modify the

Table 1
Wizard Settings for New PLL Modules

 PLL_IF_new tx_pll_new C10_PLL_new C122_PLL_new

Reference Clock 122.88 MHz 50.0 MHz 10.0 MHz 122.88 MHz
Number of clocks 4 4 2 2
Multiply Factor (M) 4 10 64 9
Divide Factor (N) 1 1 2 3

outclk0 cascade? N N Y Y
outclk0 Divide Factor (C) 40 4 32 192
outclk0 output 12.288 MHz 125 MHz n/a n/a
outclk0 phase shift 0° 0° 0° 0°

outclk1 cascade? N N N N
outclk1 Divide Factor (C) 160 4 125 24
outclk1 output 3.072 MHz 125 MHz 80 kHz 80 kHz
outclk1 phase shift 0° 90° 0° 0°

outclk2 cascade? Y N n/a n/a
outclk2 Divide Factor (C) 256 40 n/a n/a
outclk2 output n/a 12.5 MHz n/a n/a

outclk3 cascade? N N n/a n/a
outclk3 Divide Factor (C) 40 200 n/a n/a
outclk3 output 48 kHz 2.5 MHz n/a n/a

32 QEX January/February 2016

Hermes code to connect to the CVA9 hard-
ware that is different from the Hermes hard-
ware. As an alternative, we can choose to not
implement the Hermes function on the dif-
ferent CVA9 hardware. This involves remov-
ing (typically by commenting out) code that
connects to the removed pins. As we will
explain next, you have to be careful when
removing inputs.

In the second case, we can simply remove
Hermes code that does not have CVA9 hard-
ware associated with it. We must be careful
to follow Hermes inputs all the way to their
destinations and remove them cleanly. We do
not want any floating inputs. There may be
one or more required inputs to the Hermes
code that came from hardware that does not
exist on the CVA9. We will have to add new
code to create these signals and set them to a
valid state.

In the third case we must add code to
the Hermes design to connect to the CVA9
hardware that does not exist in the Hermes
design. As an alternative, we can choose to
ignore the new hardware, but we must still
drive any output pins to some known state to
avoid hardware problems later.

Here are the index numbers (from the
Hermes_6_to_IQ2_pins table) that belong
to each category:

Category 1: 4, 5, 50, 51, 52, 53
Category 2: 28, 49, 67, 70, 73-76, 78-85,

91-104, 113-115
Category 3: 21, 22, 116-120

Category 1 Changes
These 7 pins all revolve around a hard-

ware difference between the Hermes and
the CVA9/HF2/TX2 hardware. Hermes
has a 31 dB step RF attenuator and a single
audio CODEC for receive audio output and
microphone audio input. These two devices
have separate serial interfaces (3-wire for the
attenuator and 3-wire for the CODEC). The
HF2 receiver has the same attenuator and
CODEC (which is used for receive audio
output only), but they share clock and data
lines, each having a separate chip-select. This
makes the interface 4 lines to both parts. To
complicate things, the TX2 transmitter has
another CODEC (used only for microphone
audio input) that shares the same clock and
data lines, but with its own separate chip
select. So now the new five-line interface
must communicate with three parts over
common clock and data lines using three
different chip-selects. Rather than devise
logic to adapt the two Hermes ports to the
special five-line CVA9/HF2/TX2 interface, I
have opted to just disable the HF2 and TX2
CODECs by tying their chip-selects to the
inactive state. The PowerSDRTM software can
use the sound card in place of the CODECs,
so this does not create a hardship. We can go
back later and add the code in if we want to. Ta

b
le

 2
E

xc
er

p
t

o
f

th
e

H
er

m
es

_6
_S

ep
t_

to
_I

Q
2_

P
in

s
F

ile

In
de

x
H

er
m

es
 n

am
e

H
er

m
es

 F
P

G
A

 p
in

 H
F

2
N

am
e

T
X

2
N

am
e

C
V

A
9

J2
 p

in

C
V

A
9

na
m

e
C

V
A

9
F

P
G

A
 p

in

D
es

cr
ip

tio
n

4
AT

T
N

_D
AT

A

39

S
P

I_
D

AT
A

S

P
I_

D
AT

A

62
*

E
G

_P
58

V

20

D
at

a
O

ut
pu

t T
o

A
tte

nu
at

or

5
AT

T
N

_C
LK

22

S

P
I_

C
LK

S

P
I_

C
LK

64

*
E

G
_P

59

U
20

C

lo
ck

 O
ut

pu
t T

o
A

tte
nu

at
or

21

IN
A

14

IN

A
14

-

41

E
G

_P
17

A

B
20

In

pu
t D

at
a

Fr
om

 A
D

C
22

IN

A
15

IN
A

15

-
43

E

G
_P

18

Y
20

In

pu
t D

at
a

Fr
om

 A
D

C

28

S
H

D
N

19

4
-

-
-

-
-

S
hu

td
ow

n
O

ut
pu

t t
o

A
D

C

49

C
M

O
D

E

23
0

-
-

-
-

-
M

od
e

S
el

ec
t O

ut
pu

t T
o

C
O

D
E

C
 (

I2
C

 o
r

S
P

I)
50

nC

S

23
1

P
H

_C
O

D
E

C
_n

C
S

 -

60

E
G

_P
57

V

19

C
hi

p
S

el
ec

t O
ut

pu
t T

o
C

O
D

E
C

51

nC
S

23

1
-

M
IC

_C
O

D
E

C
_n

C
S

57

E

G
_P

24

Y
21

52

M
O

S
I

22
6

S
P

I_
D

AT
A

S

P
I_

D
AT

A

62
*

E
G

_P
58

V

20

S
P

I D
at

a
O

ut
pu

t T
o

C
O

D
E

C
53

S

S
C

K

22
4

S
P

I_
C

LK

S
P

I_
C

LK

64
*

E
G

_P
59

U

20

S
P

I C
lo

ck
 O

ut
pu

t t
o

C
O

D
E

C

67

P
H

Y
_C

LK
12

5
14

9
-

-
-

-

12
5

M
H

z
C

lo
ck

 In
pu

t F
ro

m
 P

H
Y

 P
LL

70

C
LK

_2
5M

H
Z

33

-

-
-

-
-

25
 M

H
z

C
lo

ck
 In

pu
t F

ro
m

 P
H

Y
 o

sc
ill

at
or

73

S
C

K

68

-
-

-
-

-
C

lo
ck

 O
ut

pu
t T

o
M

A
C

 E
E

P
R

O
M

74

S
I

38

-
-

-
-

-
D

at
a

O
ut

pu
t T

o
M

A
C

 E
E

P
R

O
M

 S
I p

in
75

S

O

70

-
-

-
-

-
D

at
a

In
pu

t F
ro

m
 M

A
C

 E
E

P
R

O
M

 S
O

 p
in

76

C
S

87

-

-
-

-
-

C
hi

p
S

el
ec

t O
ut

pu
t T

o
M

A
C

 E
E

P
R

O
M

77

N
C

O
N

F
IG

63

-

-
-

R
E

C
O

N
F

G

6
R

el
oa

d
F

P
G

A
 F

ro
m

 C
on

fig
 P

ro
m

 W
he

n
H

ig
h

11
6

-
-

D
R

V
_C

LK
_O

U
T

_N
 -

67

E
G

_P
29

U

21

O
ut

pu
t T

o
H

F
2:

 D
riv

e
12

2.
88

 M
H

z
to

 J
1

pi
n

5
11

7
-

-
-

D
A

C
_C

LK

3
R

E
S

E
T

_E
X

P
n

U
13

O

ut
pu

t T
o

T
X

2:
 C

lo
ck

 T
o

D
A

C
11

8
-

-
-

E
N

_R
X

_A
N

T

12

E
G

_P
37

M

7
O

ut
pu

t T
o

T
X

2:
 T

/R
 S

w
itc

h
11

9
-

-
-

-
-

D
D

R
3_

C
LK

_5
0M

H
Z

H

13

In
pu

t F
ro

m
 5

0
M

H
z

O
sc

ill
at

or
12

0
-

-
-

-
-

C
LK

_2
4M

H
Z

M

9
In

pu
t F

ro
m

 2
4M

H
Z

 O
sc

ill
at

or

*s
ha

re
d

pi
ns

 QEX January/February 2016 33

As they used to say in college, it is left as an
exercise for the student.

We will leave the signals at index 4
(ATTN_DATA) and index 5 (ATTN_CLK)
alone, which will allow normal control of the
RF attenuator. We will remove the signals at
index 50 and 51 (nCS), index 52 (MOSI) and
index 53 (SSCK). Open Hermes.v and look
at lines 154 to 156. Rather than delete the
lines of code that we might want to add back
in someday, just comment them out by add-
ing two slashes (//) at the beginning of each
line. To complete this change, we must also
remove the signals that drove these outputs.
Go to line 519 and delete the signals nCS,
MOSI and SSCK from inside the paren-
theses. (Yes, this will leave an empty field
between the parentheses. This is how you
specify no connection.) This effectively dis-
connects the .nCS, .MOSI and .SSCK ports
of the TLV320_SPI module from the top
level outputs that no longer exist. While this
is not a complete removal of the TLV320_
SPI module, it is close enough; Quartus will
remove the unused logic for us. We will still
have the ability to easily connect it back up at
a future date when we are ambitious enough
to combine its outputs with the attenuator
interface and make the CODECs work again.

Now that we have removed the signals
for the Hermes CODEC, we must define and
drive the two new CODEC chip selects to
their inactive state. Since they are active-low,
we will drive them high. Add these two lines
right after the SSCK port definition that you
just commented out:

output PH_CODEC_nCS,
output MIC_CODEC_nCS,

Insert the following lines of code in a
convenient place. Right after the module
definition around line 237 is a good place:

assign PH_CODEC_nCS = 1’b1;
assign MIC_CODEC_nCS = 1’b1;

Category 2 Changes
These are perhaps the easiest changes to

make. Inputs are handled differently than out-
puts. Outputs are handled as above: comment
out the output pin and remove (or comment
out) the source of the signal. Simply search
for each signal name in turn and comment out
its definition and its source. Inputs must be
tied to a known (typically inactive) state after
the input pin definition is commented out. We
must also define an internal pin to replace the
input pin definition that we commented out.
First, let’s identify the inputs from the list of
Category 2 changes listed above. They are
index numbers 67, 70, 75, 80, 91, 92, and
94 to 97. Find each of them in the full table,
locate the corresponding input pin definitions
in Hermes.v and comment them out. Note
that the inputs CLK_25MHZ, ANT_TUNE,

IO2, IO4, IO5, IO6 and IO8 are unused in the
code, so they require no further changes. The
signals SI and ADCMISO do need to be set
to a known state. To do this, insert the follow-
ing lines of code in a convenient place. Right
after the Category 1 lines you added above is
a good place:

wire SO;
assign SO = 1’b0;
wire ADCMISO;
assign ADCMISO = 1’b0;

The last input we need to handle is
special: the PHY_CLK125 clock input.
Remember from our scratchpad memo notes
that this clock does not exist in the CVA9.
We have already changed the tx_pll module
to use a 50 MHz clock, which we will now
add and connect up in place of the missing
125 MHz clock. Add the following code
after line 166 (just below the input PHY_
CLK125 line that you commented out:

input DDR3_CLK_50MHZ,

Now search for PHY_CLK125 (ctrl-F
opens a find window in Quartus) and change
it to DDR3_CLK_50MHZ in two places:
within the parentheses in the network mod-
ule instantiation (around line 400) and near
the end of the file in the always block heart-
beat LED definition. Yes, it will make the
heartbeat LED flash a bit slower, but that is
acceptable.

To remove the outputs, comment out
each output line in the module pin defini-
tions at the beginning of the file (just like
you did with the Category 1 outputs).
In addition, remove the pin from inside
the parentheses in a module instantiation
(again, just like you did with the category
1 outputs) or comment out the assignment
statement in which it appears. The signals
USEROUT0 – USEROUT7 are a special
case because they are assigned to the signals
Open_Collector[1] – Open_Collector[7],
respectively. You must comment out the
assignment (within the parentheses) of
Open_Collector in the instantiation of the
High_Priority_CC module (around line
1200) as well as the following assignment
(around line 1144):

wire [7:0] Open_Collector;

Category 3 Changes
The index 21 and 22 changes widen

the ADC data bus from the Hermes code
14 bit width to the HF2 receiver ADC width
of 16 bits. We need to change the code in
the always block that defines the variable
temp_ADC. This variable is already 16 bits
wide, but only the top 14 bits are connected
to the 14 INA inputs from the ADC. Change
line 135 to read:

input [15:0] INA,

Search for temp_ADC (around line 870)
and change the always block to read as follows:

always @ (posedge C122_clk) begin
 temp_DACD <= {DACD, 2’b00};
 if (RAND) begin
 if (INA[0])
 temp_ADC <= {~INA[15:1], INA[0]};
 else
 temp_ADC <= INA;
 end
 else
 temp_ADC <= INA;
end

For indexes 116 and 118 we need to add
two new output signals and assign values
to them. Index 117 is the output clock to
the transmit DAC. On the Hermes board,
the 122.88 MHz oscillator feeds the DAC
directly without FPGA involvement. The
TX2 transmitter DAC requires a clock from
the FPGA, so we must add it. Finally, index
120 is an unused 24 MHZ oscillator input.
Even though it is not currently used, we need
to assign it to an input so we can fix the input
pin location in the pin list. Add the following
pin definitions to the Hermes module pin list
at the beginning of the Hermes.v file:

output DRV_CLK_OUT_N,
output DAC_CLK,
output EN_RX_ANT,
input CLK_24MHZ,

If you insert these at the end of the pin
list, remember that a comma separates each
pin definition, and there is no comma after
the last one. Now insert the following code
in a convenient place (after your previous
Category 2 code additions is a good place):

assign DRV_CLK_OUT_N = 1’b1;
assign DAC_CLK = _122MHz;
assign EN_RX_ANT = 1’b1;

Go ahead and compile again, just to make
sure that you didn’t forget a semicolon or
make some other easy-to-fix syntax error.

Add New Location Properties
Do you remember those location proper-

ties that we removed when we changed part
numbers? We now have to add them back
into the design, except that we want to add
the pin numbers for our new device in place
of the old numbers that we removed. This is
why I included the pin numbers in Table 2.

The best way to add new location proper-
ties to the design is to write a script file that
contains a line for each new location assign-
ment. The format for each line is:

set_location_assignment PIN_xxxx –to
signal_name

where:
xxxx is the device pin number, and
signal_name is the pin name from the top

34 QEX January/February 2016

design file (Hermes.v).
Again, I have created a file for you to save

you the effort of typing all those lines into
the script file. You can download it from the
SDRstick SVN webserver.12

To run the script, place the file in your
top directory (that is, the directory that con-
tains your Hermes.qsf file and all of your
Verilog source files). Now add it to your
project using <Project> <Add/Remove
Files in Project…>. Under <Tools> <Tcl
Scripts…>, select the file and click Run. All
of your pin locations from the script file have
now been added. If you want to check your
new assignments (or maybe you just don’t
believe me) you can open the Assignment
Editor from (where else) the <Assignments>
<Assignment Editor> menu. You should
see all of your new Location assignments
listed. Run another compile to make sure
things are as they should be.

Update SDC Timing Constraints
The last task we must undertake is to

review the Hermes.sdc timing constraints
file line by line to remove constraints for
signals that we have removed, add (or
expand existing) constraints for new signals
and update constraints for anything that we
changed. I will cover this in my next column.
In the meantime, take a look at the file to
become familiar with it. Did I just give you a
homework assignment? Sorry.

Compile-Debug-Repeat
The focus of our efforts has been on

obtaining a good compile of our code under
the new Quartus version while targeting
the new FPGA part. That said, a successful
compile does not necessarily mean we have
a working design. Now is the time to review
all of those Quartus warnings that we have so
blithely been ignoring all this time. Most (if
not all) of them can be ignored, but we must
make sure of this. The cause of the ones that
cannot be ignored must be fixed. The final
step, of course, is to load the compiled pro-
gramming file into the BeMicroCVA9 and
test it to make sure that it works. I will cover
review of warnings and how to fix them, tim-
ing constraints update and how to load and
run the code on real hardware in my next col-
umn. An updated Quartus archive contain-
ing all of the changes that we have made is
available on the SDRstick SVN webserver.13

What’s Next?
Now that you know how to port FPGA

code to new devices, what can you do with
this skill? The openHPSDR project is open
source, and the Apache Labs Anan series of
transceivers are all powered by open-source
FPGA firmware. The FPGA code to imple-
ment any or all of the features of these trans-
ceivers is available for your use. When a new
feature comes out, you can look at how it is
done and integrate that function into your
radio. Better yet, you can add your own fea-
ture and show everyone else how to improve
their own rigs. That is the true benefit of
open-source!

Each openHPSDR board has an on-board
FPGA and Verilog code to match. All of it is
available from the openHPSDR repository,
and you are now qualified to port it to any
new hardware that you can scrounge up.14
The tools that you have used today are the
very same tools that the developers use when
they write or update the code.

As always, please drop me an e-mail
if you have any suggestions for topics you
would like to see covered in future Hands-
On-SDR columns or even just to let me
know whether or not you found this discus-
sion useful.

Notes
1Scotty Cowling, WA2DFI, “Hands On SDR,”

QEX, Mar/Apr 2015, pp 9-19.
2The BeMicroCVA9 board is available from

from Arrow Electronics: parts.arrow.com/
item/detail/arrow-development-tools/
bemicrocva9.

3The UDPSDR-HF2 receiver board is avail-
able from Arrow Electronics: parts.arrow.
com/item/detail/arrow-development-
tools/udpsdr-hf2.

4The UDPSDR-TX2 transmitter board is avail-
able from Arrow Electronics: parts.arrow.
com/item/detail/arrow-development-
tools/udpsdr-tx2.

5The UDPSDR-HF1 receiver board is avail-
able from Arrow Electronics: parts.arrow.
com/item/detail/arrow-development-
tools/udpsdr-hf1.

6For more information about Hermes-Lite see:
github.com/softerhardware/Hermes-Lite/
wiki.

Table 3
Files
Quartus archive of original source code: Hermes_6_Sept.qar
Table of pin cross references: Hermes_6_Sept_to_IQ2_pins.pdf
List of unused files: Hermes_6_Sept_unused_files.txt
Tcl script to reassign location properties: Hermes_6_Sept_map_pins.tcl
Quartus archive of ported source code: Hermes_6_Sept_ported.qar

7To download the free Altera Web Edition soft-
ware, go to: dl.altera.com/?edition=web.

8The source code is available from the
SDRstick SVN at: svn.sdrstick.com under
the <sdrstick-release/BeMicroCV-A9/
Hermes-HF2-Port/firmware/source> direc-
tory. The file name is <Hermes_6_Sept.
qar>. It is also available for download
from the ARRL QEX files web page. Go to
www.arrl.org/qexfiles and look for the file
1x16_Cowling_Hands_On_SDR.zip.

9The list of unused files is available from
the SDRstick SVN in the same direc-
tory as listed in Note 8. The file name is
<Hermes_6_Sept_unused_files.txt>.
This file is also part of the 1x16_Cowling_
Hands_On_SDR.zip file, also as listed in
Note 8.

10dunsel, noun, (slang, from Star Trek) a part
that serves no useful purpose.

11The cross reference of Hermes to IQ2 pins
is available from the SDRstick SVN in the
same directory as given in Note 8. The file
name is <Hermes_6_Sept_to_IQ2_pins.
xls>. The file is also included in the
1x16_Cowling_Hands_On_SDR.zip as
given in Note 8.

12The pin location Tcl script file is available
from the SDRstick SVN in the same direc-
tory as given in Note 8. The file name is
<Hermes_6_Sept_map_pins.tcl>. The
file is also included in the 1x16_Cowling_
Hands_On_SDR.zip file.

13Source code containing all of the changes
outlined in this column is available from the
SDRstick SVN at svn.sdrstick.com under
the <sdrstick-release/BeMicroCV-A9/
Hermes-HF2-Port/firmware/source> direc-
tory. The file name is <Hermes_6_Sept_
ported.qar>. This file is also included in the
ZIP file, as listed in Note 8.

14For HPSDR firmware, look in the TAPR
repository, svn.tapr.org in <main/trunk>
under the board name.

15American Beauty soldering irons of old were
massive and the larger ones could solder
copper pipes. Like the term “boat anchor,”
the term is an affectionate name for a tool
of the past. Lo and behold, they are still
in business! I especially like the handheld
unit shown at americanbeautytools.com/
Soldering-Irons/19/features.

16An obscure and wholly unwarranted refer-
ence to tetraethyllead (CH3CH2)4Pb, an
octane booster added to gasoline from
about 1920 until the early 1990s in the USA.
Premium gasoline was referred to as “Ethyl”
to us old timers.

17More information on part numbers can be
found in Altera’s Cyclone V Device Overview
at altera.com/en_US/pdfs/literature/hb/
cyclone-v/cv_51001.pdf.

 QEX – January/February 2016 35

2015 QEX Index
Features
$25 10 GHz Signal Generator

(Wadsworth): May, p 34

2014 QEX Index: Jan, p 45

3D Simulation of a Feed Horn
for a Parabolic Antenna Using
Circular Polarization (Daout,
Grassin, Henaux, Holtzmer, Janon,
Paupert, Phelipon): Sep, p 23

A Digital Milliohm Meter
(Johnson): Jul, p 35

A Frequency Standard for Today’s
WWVB (Magliacane): Nov, p 13.

A High Performance 45 MHz IF
Amplifier for an Up-Conversion HF/
LF Receiver (Horrabin): May, p 25

A Low Frequency Adapter for
Your Vector Network Analyzer
(VNA) (Audet): Jan, p 10

A Selective Robust Weak-Signal UHF
Front End (Toledo): Jan, p 31

A Tridband Dipole for 30, 17, and
12 Meters (Lau): Mar, p 36

An Arduino Controlled GPS Corrected
VFO (Marcus): Jul, p 3

An Experimenter’s Variable Voltage
Transformer (Drell): Mar, p 3

Bob Zepp: A Low Band, Low Cost,
High Performance Antenna
-- Part 2 (Zavrel): Jan, p 3

EIRP and Radiated Power, Pi, From
Verticals (sidebar to Radiation and
Ground Loss Resistances In LF, MF and
HF Verticals: Part 1) (Severns): Jul, p 28

High Power Solid State Broadband
Linear Amplifiers, a Different
Approach (Carcia): Sep, p 3

Noise Power Ratio (NPR) Testing of
HF Receivers (Farson): Mar, p 20

Optimizing Magnetically Coupled
Loop Antennas (Post): Jan, p 17

Quality Factor, Bandwidth, and
Harmonic Attenuation of Pi
Networks (Kaune): Sep, p 29

Radiation and Ground Loss Resistances
In LF, MF and HF Verticals (Severns)
Part 1: Jul, p 28; Part 2: Sep, p 24

Some Thoughts in Designing
Very High Performance VHF

Oscillators (Rohde): Nov p 32

TAPR Looks to Advance the Work
of John Stephenson, KD6OZH
(Cowling, Testa): May, p 23

The DG5MK LCQ-Meter (Knitter): Jul, p 8

The Tricorder -- A Self-Contained
and Integrated 500 MHz RF Signal
Generator, Power Meter and Network
Analyzer (Fernandes): May, p 3

Using an Arduino to Automatically
Tune and MFJ-1788 Magnetic
Loop Antenna and Elecraft KX3
Transceiver (Downey): p 3

Wire Antennas for 80 Meter DXing
(Christman): Mar, p 28

About the Cover
A Low Frequency Adapter for your

Vector Network Analyzer (VNA): Jan,
p 1

An Arduino Controlled GPS Corrected
VFO: Jul, p 1

An Experimenter’s Variable Voltage
Transformer: Mar, p 1

Solid Sate Broadband Linear Amplifier:
Sep, p 1

The Tricoder: May, p 1

Using an Arduino to Automatically Tune
an MFJ-1788 Magnetic Loop Antenna
and an Elecraft KX3 Transceiver: Nov,
p 1

Empirical Outlook
Changes for QEX: May, p 2

Looking Forward to the New Year: Jan,
p 2

Readers React: Jul, p 2

Reflections on Another Year Gone By:
Nov, p 2

Summertime Operating: Jul, p 2

Warm Weather Plans: Mar, p 2

Where Will Our Next Amateur Radio
Operators Come From?: Oct, p 2

Hands-On-SDR (Cowling)
Field Programmable Gate Arrays: Mar,

p 9

HF0, HF1 and BeRadio (sidebar to
Hands-On SDR: Field Programmable
Gate Arrays): Mar, p 11

Sharing Radios on the Network: Jul, p 37

Letters to the Editor
Octave for SWR (Jan/Feb 2009) and

More Octave for SWR (Jan/Feb 2014)
(Wright): Sep, p 40

Octave for Transmission Linies (Jan/Feb
2007) (Wright): Sep, p 41

Optimizing Magnetically Coupled Loop
Antennas (Jan/Feb 2015) (Corey, Post,
Wolfgang): Sep, pp 41 – 42

QEX Editing Error (Joy, Wolfgang): Jan,
p 44

SDR Simplified (Mack)
SDR Simplified, Columns rebooted

— A look at Angle Modulation and
Decoding in an SDR (Mack): Jan, p 37

Step One towards a working SDR: May,
p 39

Step Two towards a working SDR: Sep,
p 36

Upcoming Conferences
2015 Annual Conference, Society of

Amateur Radio Astronomers: Mar, p 39

2015 Central States VHF Society: Mar, p
39; Jul, p 43

AMSAT Symposium 2015: Sep, p 43

ARRL/TAPR 34th Digital
Communications Conference, 2015:
Jul, p 43; Sep, p 43

Microwave Update 2015: Sep, p 43

36 QEX – January/February 2016

We Design And Manufacture
To Meet Your Requirements

800-522-2253
This Number May Not

Save Your Life...
But it could make it a lot easier!
Especia l ly when i t comes to
ordering non-standard connectors.

RF/MICROWAVE CONNECTORS,
CABLES AND ASSEMBLIES

• Specials our specialty. Virtually any SMA, N,
TNC, HN, LC, RP, BNC, SMB, or SMC
delivered in 2-4 weeks.

• Cross reference library to all major
manufacturers.

• Experts in supplying “hard to get” RF
connectors.

• Our adapters can satisfy virtually any
combination of requirements between series.

• Extensive inventory of passive RF/Microwave
components including attenuators,
terminations and dividers.

• No minimum order.

12240 N.E. 14TH AVENUE
NORTH MIAMI, FL 33161

TEL: 305-899-0900 • FAX: 305-895-8178
E-MAIL: INFO@NEMAL.COM

BRASIL: (011) 5535-2368

NEMAL ELECTRONICS INTERNATIONAL, INC.

*Protoype or Production Quantities

URL: WWW.NEMAL.COM

TA P R
PO BOX 852754 • Richardson, Texas • 75085-2754
Office: (972) 671-8277 • e-mail: taproffice@tapr.org
Internet: www.tapr.org • Non-Profit Research and Development Corporation

TAPR is proud to support the HPSDR project. TAPR offers
five HPSDR kits and three fully assembled HPSDR boards. The
assembled boards use SMT and are manufactured in quantity
by machine. They are individually tested by TAPR volunteers to
keep costs as low as possible. A completely assembled and
tested board from TAPR costs about the same as what a kit of
parts and a bare board would cost in single unit quantities.

HPSDR is an open source hardware and software project intended to be a "next
generation" Software Defined Radio (SDR). It is being designed and developed by
a group of enthusiasts with representation from interested experimenters
worldwide. The group hosts a web page, e-mail reflector, and a comprehensive
Wiki. Visit www.openhpsdr.org for more information.

TAPR is a non-profit amateur radio organization that develops new communications technology, provides useful/affordable
hardware, and promotes the advancement of the amateur art through publications, meetings, and standards. Membership
includes an e-subscription to the TAPR Packet Status Register quarterly newsletter, which provides up-to-date news and user/
technical information. Annual membership costs $25 worldwide. Visit www.tapr.org for more information.

+

• ATLAS Backplane kit
• LPU Power supply kit
• MAGISTER USB 2.0 interface
• JANUS A/D - D/A converter
• MERCURY Direct sampling receiver
• PENNYWHISTLE 20W HF/6M PA kit
• EXCALIBUR Frequency reference kit
• PANDORA HPSDR enclosure

PENNYWHISTLE
20W HF/6M POWER AMPLIFIER KIT

NEW!

HPSDR Kits
and Boards

™

We are your #1 source for 50MHz
to 10GHz components, kits and
assemblies for all your amateur

radio and Satellite projects.

Transverters & Down Converters,
Linear power amplifiers, Low Noise

preamps, coaxial components,
hybrid power modules, relays,

GaAsFET, PHEMT's, & FET's, MMIC's,
mixers, chip components,

and other hard to find items
for small signal and low noise

applications.

We can interface our transverters
with most radios.

Please call, write or
see our web site

for our Catalog, detailed Product
descriptions and

interfacing details.

Down East Microwave Inc.
19519 78th Terrace

Live Oak, FL 32060 USA
Tel. (386) 364-5529

www.downeastmicrowave.com

Amateur Radio operators have a long tradition of going
beyond operating, moving into technology development,
home construction, and experimentation. Designing
and building one’s own station equipment can be
rewarding, providing more in-depth knowledge and
excitement. There are a number of ways to make good
use of a properly equipped workshop for projects.
We will explore many of the options radio experimenters
choose to pursue.
The Radio Amateur’s Workshop is your guide to setting
up and maintaining an effi cient at-home laboratory and
work station. It describes the tools you’ll need for projects
ranging from assembling electronic kits to building and
testing antennas. Subsequent chapters look at a wide
variety of workshop test equipment, including an
explanation of how various instruments can be used to
develop, fabricate, and evaluate projects. Become part
of the do-it-yourself movement — discover fun and
creative ways to use radio technology at your
workshop today.

• Why Do We Need a Workshop?
• The Basic Workshop
• Soldering —The Connection Method of Choice
• Other Connection Methods
• Ratchet-Up for Antenna Projects
• Basic Measurements for the Workshop
• Advanced Measurement Systems
• The Personal Computer in the Workshop
 and Laboratory

The Radio Amateur’s Workshop
ARRL Item No. 0482
Special Member Price $19.95 (retail $22.95)
The digital edition is available in the Kindle format from Amazon.

Also Available:
DIY Magic of Amateur
Radio DVD
ARRL Item No. 6047
Only $10.95

DIY Flyer (pack of 25)
ARRL Item No. DIYF
Also available as
a free download

Chapters Include:

QST® – Devoted entirely to Amateur Radio www.arrl.org April 2015 1

