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Introducing the TH-D74A for the ultimate in APRS and D-STAR
performance. KENWOOD has already garnered an enviable
reputation with the TH-D72A handheld APRS amateur radio
transceiver. And now it has raised the bar even further with
the new TH-D74A, adding support for D-STAR, the digital
voice & data protocol developed by the JARL, and enabling
simultaneous APRS and D-STAR operation – an industry first.

New

APRS® / D-STAR®

TH-D74A 144/220/430 MHz Tribander

t APRS compliance using packet communication to exchange real-time
    GPS position information and messages
t Compliant with digital/voice mode D-STAR digital amateur radio networks
t Built-in high performance GPS unit with Auto Clock Setting
t Wide-band and multi-mode reception
t 1.74” (240 x 180 pixel) Transflective color TFT display
t IF Filtering for improved SSB/CW/AM reception
t High performance DSP-based audio processing & voice recording
t Compliant with Bluetooth, microSD & Micro-USB standards
t External Decode function (PC Decode 12kHz IF Output, BW:15 kHz)
t Free software for Memory and Frequency Control Program
t Data Import / Export (Digital Repeater List, Call sign, Memory Channel)
t Four TX Power selections (5/2/0.5/0.05 W)
t Dust and Water resistant IP54/55 standards

APRS (The Automatic Packet Reporting System) is a registered American trademark of WB4APR (Mr. Bob Bruninga). 
D-Star is a digital radio protocol developed by JARL (Japan Amateur Radio League).
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300 QEX Issues and Going Strong
QEX was first published in December 1981 as the “ARRL Experimenter’s Exchange,” with 

Founding Editor Paul Rinaldo, W4RI. We celebrate QEX issue #300 by reprinting the entire con-
tents of QEX issue #1. Over the years, QEX has partnered with the AMSAT Satellite Journal, and 
later hosted Gateway, the ARRL packet radio newsletter. The conductors of these two publications, 
as well as several Contributing Editors, have sustained the quality of the magazine. 

Jon Bloom, KE3Z, became Editor in 1992. His considerable expertise built QEX into one of 
the most respected technical publications in its field. This was a time when Amateur Radio, and 
radio technology in general, were undergoing rapid changes.

Zack Lau, W1VT, the award-winning ARRL Senior Laboratory Engineer, came aboard with 
his “RF” column, detailing advanced work across the RF spectrum. The “RF” column ran from 
August 1992 through January 2005.

Rudy Severns, N6LF, took over the editorial reins in 1997. On his watch, the magazine went 
from monthly to bimonthly publication. The number and depth of articles increased dramatically. 
QEX took on a new look as well, with full-color covers and enhanced content. Rudy’s talent for 
soliciting top-quality articles from the leading technical authors in Amateur Radio took the 
magazine to a higher plateau.

Bob Schetgen, KU7G, known for his editorship of The ARRL Handbook and for his columns 
in QST, also began work on QEX in 1997. Bob served as Managing Editor until his sudden 
passing in December 2005.

In January 2000, ARRL purchased the Amateur Radio technical journal Communications 
Quarterly from CQ Communications and merged it with QEX, creating the combined QEX/
Communications Quarterly. Published for the preceding nine years under the editorship of Terry 
Littlefield, KA1STC, Communications Quarterly billed itself as the philosophical successor to 
ham radio magazine, which was founded by “Skip” Tenney, W1NLB, and Jim Fisk, W1HR. 
Littlefield was Editor of Ham Radio when CQ Communications purchased it in 1990.

Ray Mack, W5IFS, joined as Contributing Editor with the January/February 2002 issue. Ray 
conducts his column “Out of the Box,” about new product availability and also serves as our 
proofreader. With the January/February 2009 issue, Ray also began a new column, “SDR: 
Simplified,” presenting hands-on experiments and investigations into the world of software 
defined radio (SDR) and digital signal processing (DSP).

L.B. Cebik, W4RNL, came aboard as Contributing Editor as of July/August 2004. His column 
“Antenna Options” covered antenna design, performance and construction until his passing in 
April 2008. The final “Antenna Options” column appeared in the July/August 2008 issue.

Doug Smith, KF6DX, became QEX Editor with the September/October 1998 issue. His 
enthusiasm and technical expertise continued to improve the magazine’s technical content.

Larry Wolfgang, WR1B, began work on QEX in late 2005 and became Managing Editor for 
the March/April 2006 issue. Larry became the QEX Editor with the September/October 2007. 

Kazimierz “Kai” Siwiak, KE4PT, stepped in as QEX Editor with the March/April 2016 issue. 
Kai also edits QST technical articles (since the July 2013 issue of QST), and serves on the 
ARRL RF Safety Committee. 

In this Issue
We’ve increased the cover thickness to 50# stock to help it better survive the postal mail. Our 

QEX authors describe propagation measurements and modes, filter characteristics, and tuning 
an L-network. Help determine the content of future QEX issues by putting your favorite topic or 
innovative measurement on paper. Share it on these pages with fellow readers. Just follow the 
details on the www.arrl.org/qex-author-guide web page, and contact us at qex@arrl.org. We 
value your feedback, comments and opinions about these pages.

In this issue, we’ve recreated the entire first issue of QEX. Flavio Egano, IK3XTV, followed long 
term observations that suggest long path echoes might propagate with low attenuation by iono-
spheric ducts; Bill Kaune, W7IEQ, details the inductor losses in Pi-network; Tom C. McDermott, 
N5EG, describes hardware and software for ionospheric sounding; Scott Roleson, KC7CJ, re-
purposes an enclosure from obsolete equipment; and Robert J. Zavrel, W7SX, presents a differ-
ent approach to a multi-band Yagi-Uda design.  

Please continue to support QEX, and help it remain a strong technical publication. Submit 
articles via e-mail to qex@arrl.org or via US Mail to QEX, ARRL HQ, 225 Main St, Newington, 
CT 06111. 

73,
Kazimierz “Kai” Siwiak, KE4PT			   Maty Weinberg, KB1EIB 

    Editor			   Assistant Editor
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Scott Roleson, KC7CJ

14938 Amso St., Poway, CA 92064; kc7cj@arrl.net

Re-Purposing an Obsolete 
Instrument Enclosure

Recovered obsolete test equipment becomes a rugged and attractive new 
project enclosure.

 

While searching for an enclosure for a new 
project, I was not impressed by the folded 
sheet-metal boxes typically available. I wanted 
something better that wouldn’t cost much more 
than those typical boxes but would be rugged 

and relatively easy to modify. Searching the 
Internet, I stumbled on an advertisement for 
an HP-436A Power Meter “non-working, parts 
only” for US$20 from an industrial liquidation 
firm just across town. I found they had two units 

available. Both had obviously seen a lot of use, 
but I happily handed over the $20 for the one that 
appeared least abused. It was about the right size 
for my project, if I could strip out the innards and 
if the instrument’s “bones” were recoverable. 

Figure 1 — Disassembled HP-436A power meter.
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Background
The HP-436A Power Meter dates from 

the mid-1970s, and its industrial design 
was based on the rugged Hewlett-Packard 
System II instrument enclosure.1 This 
cabinet design was used with many HP 
laboratory instruments and was compatible 
with standard 19-in equipment racks. The 
cabinets could easily nest together to form 
rack-mountable systems, or could be used 

Figure 3 — Instrument frame with new brackets installed.

Figure 2 — Recovered instrument frame and new brackets.

individually on a lab bench. The HP-436A 
was a half-rack wide — about 8-5/8 in — and 
had a standard 4-EIA height — just under 
6  in with feet attached — and a depth just 
under 11 in. Its cast-aluminum internal front 
and back frames, and the two horizontal side 
frames, were designed to form a very rigid 
frame held together by 8 flat-head #8-32 
machine screws in threaded holes. With 
the top and bottom covers installed, the 

enclosure also provided some degree of RF 
shielding.

Disassembly
Just to make sure it really was non-

working, I plugged it in, and saw that some, 
but not all, of the display digits lit up. I saw 
no smoke, but I didn’t leave it turned on very 
long just in case. As advertised, it was “non-
working.” Having satisfied my lingering guilt 
that I might destroy a repairable instrument, 
I began a careful disassembly. I took my 
time because they don’t build stuff like this 
anymore. 

Several pleasant hours later I had 
recovered the cast-aluminum front and rear 
panel frames, two cast-aluminum horizontal 
frame parts, the outer enclosure shell (top and 
bottom painted sheet aluminum covers), and 
some useful screws. I set the rest aside for 
recycling, including the original front panel 
and rear panel with integral power supply 
(Figure 1). While potentially useful, I didn’t 
need this power supply for my intended 
project, and the holes in the front and rear 
panels were not where I wanted them. I also 
set aside a pair of printed circuit card support 
frames that were not suitable for my new 
project.

Clearly the result of superb industrial 
design, I was pleased to find this instrument 
case in reasonably good physical condition. 
There was clear evidence of heavy use and 
possibly some abuse. The slightly indented 
front panel in the area of a type-N connector 
suggested that the instrument had once 
been dropped on its face. I was planning 
to make a new front panel anyway so this 
minor damage didn’t matter. Liquid stain 
marks on the inside surface of the shell, 
along with some dried, brown sludge on the 
horizontal frame parts, implied that perhaps 
a small quantity of heavily-sugared coffee 
or brown soft drink had been spilled into 
the instrument long ago. A dish-soap warm 
water scrub of the disassembled structural 
components removed these remnants of a 
hard prior life.

Reassembly
I then got busy cutting new flat sheet 

aluminum front and rear panels, and an 
internal electronics deck to hold the new 
project.2 The original design for the front 
and rear panels used sheet metal with bent 
integral brackets screwed directly into the 
frame. It’s a great design if you are building 
lots of these, but this was more than I wanted 
to tackle for my one-off job. Figure 2 shows 
six L brackets, each several inches long, that 
I cut from 1/2 by 3/4-in extruded aluminum 
angle stock bought at a local home supply 
store. This angle stock came in 48-in long 
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Table 1
Re-purposed instrument materials list.

Item	 Qty	 Suggested source	 Cost, US$
HP-436A, non-working	 1	 See Note 4	 20
Aluminum, grade 5052, 12 by 24 in sheet, 0.063 in thick	 1	 amazon.com	 27
Aluminum angle stock, 0.75 x 0.5 inches, 0.063 in thick, 48 in long	 1	 www.homedepot.com	 6
Clinch nuts, #6-32-2	 30	  www.fastenal.com	 15
Total			   $68

Figure 4 — Finished enclosure showing sheet aluminum panels installed.

Figure 5 — Access slots in electronics deck facilitate wire/cable routing.

pieces, which easily allowed for the six 
brackets and some mistakes! 

To simplify assembly, I mounted #6-32 
swage or self-clinching nuts in the angle 
bracket mounting holes to avoid having to deal 
with nuts and washers.3 Swage nuts also allow 
quick removal of both the front and rear panels. 
Mounting these nuts was tricky — not having 
an arbor press, I managed to press them into the 
mounting holes with a small and a large vice. I 
clamped the small vice to a support so the jaws 
closed vertically and used it to make an initial 
set. Then I used the large vice with horizontally 
closing jaws to make the final set. This seemed 
to work reasonably well.

Figure 3 shows the new brackets ready to 
hold the front and rear panels to the front and 
rear frames and the internal deck to the side 
rails. I mounted the electronics deck brackets 
on the side rails such that the brackets were 
even with the upper edge of the side rails. 
This arrangement provided more than an 
inch of clearance below the deck and about 
3 inches above. The deck turned out to 
have just over 65 square inches of usable 
surface area. Figure 4 shows the completed 
frame with the front and rear panels and the 
electronics deck installed.

I thought about routing wires or cables 
between the upper and lower parts of this 
deck using simple holes and grommets. 
Instead, I punched 1/4-in diameter holes 
about an inch from each deck corner then 
used a metal nibbler to cut a connecting slot 
from the edges facing the nearby front and 
rear panels (Figure 5). A vinyl grommet cut 
in half provided abrasion relief. This way I 
don’t need to remove the electronics deck 
just to route some wires, but can access these 
slots by removing a panel. 

Table 1 shows that the finished material 
cost was just under $70. Figure 6 shows 
the final product, a rugged and attractive 
enclosure ready for my next project. 

Scott Roleson, KC7CJ, was licensed in 1964. 
He has a BSEE from Arizona State University, 
and MSEE from the University of Arizona, is 
a licensed professional engineer in California, 
and is a Life Senior Member of the IEEE. 
From 1993 to 1995 he was a Distinguished 
Lecturer of the IEEE EMC Society, and was 
the Distinguished Lecturer program chair 
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1995-1997. Scott retired after a 32-year career 
in electrical engineering where he worked on 
spectrum analyzer design, EMC and telecom 
regulatory engineering. Scott now gets to pick 
his own projects and maximize the fun return 
on investment.

Notes
1E. Allen Inhelder, “A New Instrument 

Enclosure with Greater Convenience, Better 
Accessibility, and Higher Attenuation of RF 
Interference,” Hewlett-Packard Journal, Vol. 
27, No. 1, Sept. 1975, pp. 19-24. [Online: 
www.hparchive.com/hp_journals.htm]

2Sheet aluminum is available from several 
online vendors. I bought a 12 by 24 in sheet of 
1/16 in grade-5052 aluminum from amazon.
com. This was more than sufficient for the 
front and rear panels and the internal deck.

3Swage or “self-clinching’’ nuts are designed 
to permanently anchor in sheet metal and 
provide load-bearing threads. They do 
away with the need for separate, loose 
nuts and washers. See www.pemnet.com/
fastening_products/pdf/Handbook.pdf 
and https://www.fastenal.com/content/
product_specifications/SCN.Z.pdf.

4Possible sources of surplus equipment 
include hamfests, swap meets, and ham 
estate sales, as well as, Sphere Research 
Corporation, www.sphere.bc.ca 
+1-250-769-1834, and Test Equipment 
Depot, www.testequipmentdepot.com. 

Figure 6 — Finished re-purposed enclosure is both rugged and attractive.
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Flavio Egano, IK3XTV

Via N. Sauro 20, Thiene (V) 36016, Italy; ik3xtv@gmail.com

A Study of Long Path Echoes
Long term observations by IK3XTV suggest that long path echoes might 

propagate with low attenuation by ionospheric ducts. 

 
Introduction

I’ve listened to many transmissions — 
both in telephony and telegraphy — that are 
characterized by a pronounced echo effect. 
Intrigued by this phenomenon, I enlisted 
the help of Annibale Malagoli, IK2GRA, 
and Loris Bonora, IK3PCZ, to make further 
measurements and to research the echo 
phenomenon on their transmissions. My 
papers (available online in Italian)1, 2 report 
some experimental reception of echoes on 
the 15 m and 10 m HF bands, that I believe 
are due to multiple reception via short and 
long path. Under the right conditions, the 
signal can be received via both the short path 
and the long path. The resulting multipath 
generates a significant echo effect. The time 
it takes a radio wave to make a complete 
revolution of the Earth’s circumference is 
40,021 / 299.792458=133 ms. The literature 
on the radio propagation reports long-path 
propagation delay of as much as 138 ms, 
since they take into account a further 
1400 km length of the route due to reflections 
between the Earth and the ionosphere 
(ionospheric jumps). In most cases we 
measured a consistent delay of 140 ms.

My belief is that this type of propagation 
is not via the classic ionospheric reflections, 
but by a the mechanism of ionospheric low-
attenuation ducting.

The Long Path Signal
Figure 1 shows a very short extract from 

a recording of a CW signal transmitted 
by Upcev Anton, YU5D, and received by 
Annibale Malagoli, IK2GRA. The first dash 
is the CW signal received via the short path 
distance of about 650 km. The second dash, 
slightly overlapping the first, is the echo of 
the first dash, that it is probably received from 

the long path with a very low attenuation of 
about 3 dB more than the short path signal. I 
have analyzed the audio track in great detail 
and speculate that it is possible that the signal 
of YU5D has made a further circuit round 
the Earth within an ionospheric duct. I can 
also detect another signal echo, that might 
be called Long Path+1 (LP + 1), starting 
at about 270 ms from the main short path 
signal. This LP +1 signal shows an additional 
3 dB attenuation and it is evident above the 
background noise. 

The Equipment
The station configuration for reception 

is a Kenwood TS930S transceiver with a 
Hy‑Gain AV‑640 vertical multiband antenna. 
The receiver AGC setting is zero. The MP3 
software program was QARTest by IK3QAR 
recorded by a PC with a sound card. The 
receiving frequencies were in the 28 and 
21 MHz bands.

Audio recordings were analyzed with 
Audacity, a free open-source cross-platform 

software for recording and editing sounds. 
The transmissions were on a frequency in 
the 28 MHz band on December 22, 2013 
at 11:00 UTC. The solar indices at the time 
were SFU 144 and Kp 1.

Ionospheric Ducts
I am convinced that the HF propagation 

in the ionosphere does not always occur 
according to the classical model of ionospheric/
ground reflections, but in some cases there is 
the phenomenon of ionospheric ducting. The 
high plasma density of the duct is capable 
of trapping radio signals. The radio waves 
may follow a spiraling motion within these 
ducts with very low attenuation. Moreover, 
propagation often occurs towards trans-
equatorial paths, considering that the lines of 
force of Earth’s magnetic field are oriented 
from north to south. It also appears possible 
that the signal can make more than one 
revolution within the duct. The formation and 
the efficiency of the ducts seems to be much 
greater when the geomagnetic field is quiet.

Figure 1 — Reception of YU5D by IK2GRA. This sample recording of a 28 MHz band CW 
dash signal was received via short path, and the first echo is received via long path with a 

delay of 130 ms. 
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The ducts form for certain frequencies, 
from long wave to short wave, the height 
of the ducts is variable and the delays are 
related to the frequency and height of the 
duct. I generally observed the event when the 
operating frequency was near the F2 critical 
frequency.

The existence of these geo-magnetically 
aligned structures is consistent with studies3 
conducted using the Murchison Widefield 
Array and published by Shyeh Tjing [Cleo] 
Loi, an Australian astrophysicist at the 
University of Sydney School of Physics. Loi 
is credited with the first imaging of Earth 
magnetic field aligned density ducts inside 
the Earth’s magnetosphere that extend into 
the plasmasphere. 

Attenuation
Signal attenuation is an important issue. 

All observations and recordings of echoes 
from long path show very low attenuation. 
In the case of Figure 1, YU5D short path is 
650 km, while the long path is 39,400 km, 
a ratio of 60:1. According to inverse square 
law propagation, the attenuation difference 
should be 20log60 = 35 dB. Instead it is 
3 dB. Clearly the propagation can not be 
free space propagation, but rather a duct 
mode propagation, similar to a microwave 
waveguide.
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impact in the low phase of the solar cycle to 
understand the role of the solar cycle in the 
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Incidence using Hermes, Alex and 

Munin Open HPSDR and Gnuradio
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This paper describes a monostatic method 
for measuring the virtual height and the 
vertical velocity of the F-layer of the 
ionosphere. The equipment uses the Open 
HPSDR Hermes transceiver module, Munin 
broadband power amplifier (PA), and Alex 
RF filter module. The antennas consist of a 
40 m dipole and antenna tuner for transmit 
and an active receive loop antenna. The 
software real-time processing is done using 
Gnuradio on a Linux PC, followed by post-
processing by a Python program.

Ionosphere
Figure 1 shows typical critical frequency 

for the E- and F-layers versus local time of 
day. While the MUF depends on the angle 
of incidence to the ionosphere, the critical 
frequency is defined at vertical incidence. 
Measuring the E-layer requires using the 
160 m band. Measuring the F2-layer critical 
frequency can be done on the 80 m band 
much of the day, and sometimes on the 
40 m band. When measuring the F-layer, the 
higher the frequency used the less the F-layer 

echo attenuation caused by transiting the 
E-layer twice.

The ionosphere reflects vertically incident 
signals below the critical frequency. The 
time-of-flight of the transmitted plus return 
signal indicates the height of the ionospheric 
layer. Additionally, the ionosphere layer may 
have a vertical velocity — either upwards 
or downwards — that induces Doppler shift 
onto the reflected signal. Figure 2 shows the 
basic setup. Transmit and receive antennas 
are located within about 100 ft of each other, 
and configured as a monostatic radar.
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Figure 1 — Typical critical frequencies for E- and F- layers, 
summertime, 40 degrees N, local solar time, Sunspot Number = 86.
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Chirp Measurement
Practical measurements pose some 

difficult requirements because the echo is 
delayed less than 1 ms for the E-layer, or 
about 1.6 ms for the F-layer. The monostatic 
approach also means that the transmit signal 
will be much stronger than the received 
signal, thus the receiver dynamic range must 
be large. 

We transmit a linear FM chirp signal 
and correlate the received signal against 
the signal used to drive the transmitter — a 
matched filter approach. The number of 
correlation taps is large in order to provide 
enough dynamic range and time resolution 
to see echoes 100 dB below the transmit 
signal. This approach requires full-duplex 
equipment. If the transmitter and receiver 
are co-located the transmit signal tends to 
overload the receiver. The present experiment 
uses co-located transmitter/receiver (Tx/
Rx) on the same circuit board, and Tx/Rx 
antennas separated by about 20 m. A similar 
experimental approach using 60 m antenna 
separation was previously demonstrated by 
the Institute of Solar-Terrestrial Physics.1 The 
low phase-noise and good ADC dynamic 
range performance of the Hermes receiver 
helps minimize receive noise that would 
otherwise obscure the desired receive echo.2 
Chirp modulation is discussed in some recent 
Amateur Radio literature.3 

A linear FM-chirp signal is a constant-
amplitude signal that sweeps in frequency 
at a constant rate. For example, an up-chirp 
could sweep from –fd kHz below the channel 
center frequency to +fd kHz above the 
channel center frequency, then ‘snap back 
to –fd kHz and start again. It’s possible to turn 
off the transmit signal for a period of time 
during the retrace. The turn-on and turn-off 
parts of the signal are amplitude ramped 
with a raised-cosine waveform to prevent 
spectral transients. A down chirp starts 

above the channel center and sweeps down 
at a constant sweep rate to below the channel 
center frequency.

The received signal is correlated against 
a stored version of the transmit signal. 
The DSP correlation filter is acting as a 
matched filter of the chirp signal. When 
using a chirp to measure the ionosphere 
we are searching for a weak replica of the 
chirp delayed by the propagation delay, 
equipment delay, and frequency shift due 
to the Doppler shift induced by the vertical 
movement of the ionosphere. Doppler shift 
of the received echo appears to alter the 
time delay — and thus the virtual height 
measurement — of the received signal. The 
effect of Doppler is equal and opposite for 
an up-chirp signal compared to a down-
chirp signal. By transmitting both kinds of 
chirps, and analyzing them independently, 
we can compensate for the Doppler-induced 
height range error and additionally, measure 
the amount of Doppler shift induced thus 
allowing computation of the vertical velocity 
of the ionosphere. Figure 3 shows reception 
of an up-chirped signal with no Doppler shift. 
Figure 4 shows reception of an up-chirped 
signal with (+) Doppler shift, and Figure 5 
shows reception of a Down-chirped signal 
with (+) Doppler shift. 

The up-chirp and down-chirp exhibit 
opposite range errors. This allows us to 
resolve the correct range and the Doppler 
shift. The amount of range error caused by 
Doppler shift is dependent on the chirp rate.

The range to the ionosphere is proportional 
to half of the round-trip time.

[ ] .
2

echotRange height c=
	 (1)

Where c m/s is the speed of light and t s is 
the time of the echo. The range error caused 
by Doppler shift is:

dRange Error c
s

= 	 (2)

where d is the Doppler shift, Hz, and s is 
the chirp sweep rate, Hz/s.

A chirp rate of 15 kHz/s implies an error 
of 19.9 km/Hz of Doppler shift. The vertical 
velocity of the ionosphere is measured by the 
induced Doppler shift, which we infer from 
the range error.

.Range ErrorDoppler shift s
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The vertical movement of the layer 
induces a doubled Doppler shift. The chirp 
signal hits a moving ionosphere layer, 
and is Doppler shifted as received by 
the ionospheric layer. Then the signal is 
re-emitted by the ionosphere and received 
back at the ground, inducing another Doppler 
shift. Doppler shift is related to the layer 
velocity and the frequency of the radio wave, 
adding the factor of two for reflection from a 
moving ionosphere.
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Range error is found by measuring the 
difference between the ranges determined by 
the up -and-down-chirp time measurements. 
Since each chirp introduces an equal and 
opposite error, the actual range error is the 
difference divided by two.
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A slower chirp rate yields higher 
sensitivity to Doppler shift allowing more 
resolution of the ionosphere Doppler shift 
and thus the ionosphere vertical velocity.

Signal Processing
The basic receive algorithm consists of 

cross-correlating the received signal against 
a stored replica copy of the transmit signal. 
This is known as a matched filter. It provides 
several benefits; (1) the actual transmit signal 
strongly correlates with its own replica 
providing a convenient way to compensate 
for fixed equipment delays, (2) a weak echo 
is easily seen above the background noise 
even in the presence of a strong transmit 
signal.

The delay of the echo signal is the 
difference in time between the received 
transmit peak and the received echo peak. 
This removes the requirement of knowing 
the absolute delay through the radio, Ethernet 
switch, and DSP processing. Such errors or 
unknowns are subtracted out.

The DSP algorithm that correlates the 
received signal with the replica is factored 
through several steps in order to improve the 

computational efficiency. We define the two 
signals, the transmit replica copy f(t), and the 
received signal and g(t). The convolution of 
f(t) with g(t) is,

( ) ( ) ( ) ( ) .f t g t f g t dτ τ τ
+∞

−∞
⊕ = −∫  	 (8)

Convolution is implemented in DSP 

using an FIR filter kernel, a ready-made DSP 
block exists within Gnuradio that directly 
implements an FIR filter. 

[ ]( ) ( ) ( ) .f g t f g t dτ τ τ
+∞

−∞
⊗ = − −∫ 	 (9)

We need only time-reverse the stored 
replica copy of the transmit chirp signal 
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before introducing it as the taps of the FIR 
filter. We can use the existing Gnuradio 
FIR filter and read in the taps from a file 
containing the stored time-reversed chirp 
signal.

Unfortunately an FIR filter requires on the 
order of N 2 operations, abbreviated O(N 2). 
This means that if we try to implement 
a correlation of 1 million taps (106), the 
correlation operation requires on the order of 
one trillion cycles, which is infeasible. Both 
the signal and the taps are complex numbers 
(I and Q), requiring at least four floating-
point multiplies and two additions per tap.

Fortunately there is a more efficient 
way to implement the FIR filter in the 
frequency domain using the Fast Fourier 
Transform (FFT). This FFT filter is also a 
built in block in Gnuradio. The correlation 
can be implemented by taking the FFT of 
f(‑t) and the FFT of g(t) and then pair-wise 
multiplying each element of f and g. Finally, 
take the inverse FFT of the result to get back 
to the time domain. The FFT operation is 
extremely efficient. The FFT filter requires far 
fewer computations, O(N log2 N) operations. 
For a 1-million element correlation, this is on 
the order of 18 million operations (2 FFT and 
1 IFFT) compared to one trillion operations 
using the direct FIR filter. For convolution,

( ) ( )
( ) ( )

      ( ) ( )  

f t g t IFFT

FFT f t FFT g t

⊕ =

  

	 (10)

Similarly to an FIR filter used for 
correlation, the FFT filter can be used for 
correlation by time-reversing the waveform 
used for the filter taps.

( ) ( )
( ) ( )

     ( ) ( ) .

f t g t IFFT

FFT f t FFT g t

− ⊗ =

 − 

	 (11)

Properly constructed linear chirp signals 
have several interesting symmetry properties. 
An up-chirp is the frequency conjugate of 
the down-chirp. An up-chirp is also the time 
reverse of a down-chirp. This means we don’t 
need to bother time-reversing the stored chirp 
signal. To correlate a receive echo, we load 
the FFT filter taps (or FIR filter taps) with the 
opposite type of stored transmit chirp.

( ) ( )
( ) ( )

     ( ) ( ) .

f t g t IFFT

FFT opposite chirp t FFT g t

⊗ =

  

	

(12)

This series of steps, leading to Eq (12), 
reduces the computational effort required 
to correlate the received signal against the 
stored transmit signal by a large amount. At 
384 ksps, a Core i7-3770 3.4 GHz processor 
can easily keep up with the one million point 
correlation in real time in Gnuradio. In fact, 
several can run in parallel to directly compare 
various algorithm tradeoffs.

Figure 6 is a block diagram of the DSP 
steps implemented in the flow graph. The 
FFT taps utilize a stored version of the 
chirp waveform created at 384 ksps, so no 
decimation is performed in the receive chain 
of the active flow graph. Very few steps are 
required. The time domain output of the 
correlation filter is stored as a file on disk 
(File Sink) for later post processing in Python 
(receive integration).

 
Receive Lowpass Shaping Filter 
(Windowing in the Time domain)

In Figure 6 the signal received from 
Hermes is first low pass filtered in frequency 
before being applied to the correlation 
function. This low pass filter has a gentle shape 
defined with a Blackman-Harris window. The 
shaping in the frequency domain results in 

the time-domain samples in the correlation 
filter being windowed because a linear chirp 
is being received. The frequencies at the 
extreme positive and negative ends of the 
chirp are the most attenuated. Without this 
windowing, spectral leakage would obscure 
the echoes. Figure 7 shows the correlator 
output side lobes with and without receive 
low pass filtering. The time delay of the 
Blackman-Harris filtered and the unfiltered 
signals have been approximately normalized 
with a delay element to roughly time-align 
the two to ease visual comparison in Figure 7.

Receive Integration
While the raw algorithm achieves about 

110 – 120 dB of dynamic range, overloading 
of the receive antenna amplifier and other 
parts of the receiver degrades the dynamic 
range to about 90 dB. In order to bring the 
received signal up out of the noise, about 10 
sweeps of the receive signal are recorded on 
disk. Then the signals are non-coherently 
averaged. This brings the F-layer echoes 
clearly up out of the noise level.

Figure 6 is the Gnuradio flow graph 
used to capture and real-time process the 
signal. A custom Gnuradio block generates 
a programmable chirp signal. Parameters are 
included to permit adjusting the frequency 
deviation, sweep rate, number of samples 
per sweep, and providing a raised-cosine 
start and stop shape. The Chirp block feeds 
the Hermes transmitter port. The HermesNB 
module was written to provide access to 
many features of Hermes and Alex, and has 
been previously described.4 

The Hermes FPGA code also filters 
the transmit signal, it limits the maximum 
frequency response of the transmitter to 
±20  kHz of the transmit center frequency. 
Echoes are non-coherently integrated. If 
coherently integrated, the echoes would 
average towards zero. Non-coherently, we 
just integrate the magnitude of each echo 
neglecting phase. A 3  dB improvement in 
SNR should be possible through echo phase 
de-rotation and coherent integration.

Block Diagram
Figure 8 is a block diagram of the test 

setup. The Alex module is used as the 
transmit band pass filter, however it is not 
used in the receiver path due to insufficient 
isolation between the transmitter and the 
separate receive connector on the Alex 
module. Input to the Hermes receiver had 
to completely bypass the Alex module. 
Gnuradio sends a FM chirp signal of constant 
amplitude to the transmit section of Hermes, 
and then to the Munin broadband PA, where 
it is amplified to about 20 W. The amplifier 
output is filtered by the Alex RF filters, and 
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Figure 8 — Block diagram of test setup. Boxes indicate functions implemented in hardware, Gnuradio software, and Python software.

Figure 9 — Test setup, 
showing dc power 

supply, Munin amplifier, 
active loop bias-T, 
Hermes board. Not 

shown: Alex RF band 
pass filter, computer 
(outside the photo).

Figure 10 — Homebrew dual active loop 
receive antenna. Only one of the two loops is 

used in this experiment.

sent to an antenna tuner and ladder line, and 
to a 40 m dipole. For F-layer echoes, the 
transmit signal is about 3.6 MHz. 

Because of high SWR on the ladder line, 
about 6  W of transmit power is actually 
radiated by the antenna. On receive a 
homebrew active loop antenna one meter in 
diameter feeds a differential amplifier and 
balanced-to-differential transformer through 
a common mode choke. The antenna is 
remotely powered over the RG-6 feed line. 
After reception, the Hermes signal is filtered 
in Gnuradio through a base band low pass 
shaping filter to window the samples in time 
before sending them to the FFT correlator.

Figure 9 shows some of the components 
of the experimental setup. The RF Alex band 
pass filters and the Core i7 Linux computer 
running Gnuradio are not shown.

Figure 10 is a photograph of the active 
receive loop antenna. Only one of the two 
loops are used in this experiment. The loop 
antenna is polarized parallel to the loop 
wire, vertically polarized at the horizon, 
helping to reduce coupling to the horizontally 
polarized transmit antenna. The antenna 
was constructed with future experiments 
in mind, where it should be possible to 
discriminate between the Ordinary-ray (O) 
and eXtraordinary-ray (X) waves reflected 
by the ionosphere.

Results
So far, measurements have been made on 

the F-layer at several times of day at 3.6 MHz 
channel center frequency. Before dawn in 
fall/winter this is above the critical frequency, 
and no vertical reflections were received. In 

the evening local time the critical frequency 
is usually higher than 3.6 MHz, and vertical 
reflections were received.

Figure 11 is a graph of the up-chirp 
(dashed line) and down-chirp (solid line) 
signals. Notice that the up- and down-chirps 
exhibit range differences due to the Doppler 
shift of the moving ionospheric F-layer. This 
Figure represents ten sweeps that have been 
non-coherently integrated. The vertical axis 
is the magnitude of the correlation while 
the horizontal axis is time. The transmit 
peak has been adjusted to zero time by the 
post-processing Python integration program. 
Primary reflections are seen at about 1.7 ms 
after the transmit peak. There is a spurious 
peak at 4 ms, as well as at multiples of 4 ms 
for both sweeps, the cause has not yet been 
determined.
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Figure 12 — F-layer reflection at 3.6 MHz showing Ordinary 
(O-wave) and Extraordinary (X-wave) reflection components from 
the F-layer near 1.7 ms. The signals at 3.06 and 4 ms are spurious 

artifacts.

Small peaks in the up- and down-chirps 
can be seen at 3.4 ms. These are double-
transit reflections. The signals traveled up to 
the ionosphere, down to ground, reflected by 
the ground back up to the ionosphere, and 
reflected back downward a second time. The 
Doppler range error is doubled as well.

Doppler induced range errors indicate 
that the F-layer is ascending at the time of 
this measurement. The average of the two 
time measurements is the F-layer height, 
while the difference between the two is 
proportional to 4 times the Doppler shift. 
The moving ionosphere reflects the signal, 
thus doubling the Doppler shift, and the up- 
and down-chirps have opposite range errors 
induced. Thus the measured range difference 
quadruples the Doppler shift.

Calculations from Figure 11 show the 
F-layer height at 254  km, and the layer 
upward velocity of +15.4 m/s. The Doppler 
shift is about ‑0.38  Hz. Both range and 
Doppler resolution are limited by the filters 
and the correlation width. The half-lobe 
width is about ±17 ms implying a range bin 
size of roughly 5 km.

Further Work
Figure 12 shows F-layer reflections that 

include reception of both the Ordinary (O) 
wave and the Extraordinary (X) wave. With a 
single receiver and linearly polarized receive 
antenna it is not possible to know which 
is O and which is X. The current single 
linearly polarized receive antenna sums 
the Right Hand Circular (RHC) and Left 
Hand Circular (LHC) components into one 
received signal. The dual-receive crossed 
linear loops, shown in Figure 10, plus two 
phase-coherent receivers could be used to 

capture two signals, one per loop antenna. 
Then the Gnuradio DSP software would be 
able to synthesize the RHC and LHC signals 
from the two linearly polarized received 
signal components. 

Circularly polarized signals identify 
which reflection is O and which is X. Since the 
transmit antenna is linearly polarized, it emits 
a RHC plus a LHC signal simultaneously. 
These two signals remain coupled as one 
linearly polarized signal until encountering 
the ionosphere undergoing magnetic bias 
from Earth’s magnetic field. This causes 
them to decouple into independent LHC and 
RHC components, which are the O and X 
waves. The effective ionospheric refractive 
index is different for the RHC and LHC 
components, which then propagate with 
different characteristics in the ionosphere and 
are received as two different reflections.

We can construct the RHC and LHC 
components from the two received signals. 
Designating these two received complex 
valued signals as RXa and RXb then,

2j
a bRCH RX e RXπ= +  	 (13)

2 .j
a bLCH RX e RXπ−= +  	 (14)

LHC and RHC can be generated at 
baseband using standard Gnuradio complex 
multiply blocks.

E-layer reflections have not been received 
at this time due to lack of appropriate 
transmit antenna.
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Figure 11 — F-layer reflection at 3.6 MHz in the evening local time 
shows the correlation integral output after post-processing and 

integrating about 10 sweeps with Python software. Vertical axis is 
decibels, horizontal axis is delay time. The signals near 1.7 ms are the 
F-layer reflections. Signals near 3.4 ms are double-transit reflections. 

The signals at 4.0 ms are system artifacts.
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A Different Approach to 
Yagi-Uda Antenna Design

This center-fed version of the Yagi-Uda antenna for 40 through 10 meters 
achieves better gain by using a new parasitic element design.

The Yagi-Uda antenna array is an 
exceptionally effective antenna over a 
narrow band of frequencies where matching, 
and optimum forward gain, and front-to-
back ratios can be achieved. The attraction 
of using this exceptional antenna has led to 
intense development for extending designs 
for multi-band operation. This development 
began soon after the invention came to 
light in the 1930s and continues in earnest 
today. The usual goal is to provide automatic 
matching — usually for 50 W feed-lines — 
while providing some level of optimized 
trade-offs for forward gain and front-to-back 
ratio over a number of bands. 

Various popular techniques have 
emerged for providing multi-band coverage: 
traps, inter-laced elements, log-periodic 
configurations, linear loading, and motor-
driven length adjustment of the elements. 
With the advent of the WARC bands, 
design complexity grew dramatically. This 
complexity led to the motor driven length 
as a near-optimum solution for providing 
continuous coverage over a wide frequency 
range, even 7 – 30  MHz. However, the 
complexity of the motor driven configuration 
results in a relatively high cost. 

There is yet another disadvantage to all 
the above solutions. Higher frequencies 
cannot take advantage of the potential 
aperture — and thus gain — made available 
by the large physical dimensions. For 
example, at 28 MHz, the typical tri-band 
Yagi-Uda antenna utilizes little more than 
one half of the potential gain made available 
by all the metal put up in the air. The 
main incentive for this compromise in 
performance is for automatic matching. An 

alternative is to simply “bite the bullet” and 
use open wire feed-line and a tuner. This 
provides exceptional flexibility in antenna 
design, providing more gain on each band by 
utilizing the total length of the elements on 
all bands, and lowering feeder loss by using 
open-wire line.

Yet another approach
An optimized 2-element Yagi-Uda 

antenna will yield about 5 dBd — 5 dB more 
than a half wave dipole — or about 7.15 dBi. 
Therefore, the goal will be to achieve 
5 dBd over the five amateur bands (14 – 
30  MHz) and also provide bi-directional 
patterns on 10.1 and 7  MHz. This will 
result in a seven-band rotatable array. Also, 
we want the boom length and number of 

elements to be minimum. This design uses 
a 7-ft boom (about 2.5 m) with 3 elements. 
Maximum gain from a center-fed linear 
antenna is achieved with a total length of 
1.25 wavelengths, the length of an extended 
double Zepp. Therefore we begin with 
approximately this length for the highest 
operating frequency (the 28  MHz band). 
The three elements consist of the driven 
element, a reflector for 20/15/10 m, and a 
reflector for 12/17 m. Only two traps are 
used in the array, one each at the centers of 
the parasitic elements. The driven element is 
a simple 40-ft center-fed dipole with open 
wire line. Calling these two “traps” is a bit 
misleading, on one band each is indeed a 
trap, but on other bands they provide critical 
reactance values to affect optimized parasitic 
responses. The advantages of this design are,

(1)  No traps or loading along any antenna 
element.

(2)  Only two traps needed, one each at the 
reflector element centers.

(3)  A very short 7-ft boom.
(4)  Simple, single feed point.
(5)  All bands take full advantage of the 

complete physical length of the elements 
(more gain, especially at the higher 
frequencies).
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Figure 2 — Reflector for the 20, 15 and 10 m bands.

Figure 1 — Reflector for the 12 and 17 m 
bands.
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(6)  Tune a perfect match anywhere 
between 7 and 30 MHz.

The main disadvantage is the requirement 
for a tuner, however, with the development 
of auto-tune circuits this problem is or soon 
could be mitigated.

The new trap design (dual-band)
First I will explain the simpler two-band 

trap for 12/17 meters shown in Figure 1. 
We can optimize a reflector by actually 
configuring two co-linear reflectors on 
the same element. The optimum reflector 
element length for the 12 m band is about 
19 ft. So we simply build an element twice 
this length or 38 ft. However, it is necessary 
to break this element in two, which would 
be simple if we only needed a reflector at 
12 m. Instead we place a resonant parallel LC 
circuit at the center and affect the break. We 
now have two collinear reflectors on 12 m. 
On 17 m, this element now looks too long for 
a reflector, so we simply add two capacitors 
on either side of the 12 m trap. This “tunes” 
the longer element for optimum length at 
18.1 MHz, and we now have a very effective 
12/17 m reflector element. Figure 1 shows 
the component values. However, the current 
remains distributed over a longer-than-
required physical length, thus increasing the 
antenna gain.

Tri-band trap
We can extend the idea of the dual-band 

trap into a tri-band trap, as in Figure 2. In 
this case we start with the two-element 
collinear at 15 m, and as above, breaking 
the 44  ft length in two at 15  m using 
another parallel LC tank, thus providing two 
collinear reflectors. At 14 MHz, this creates 
a center-loaded 44 ft reflector, too long for a 
traditional 20 m parasitic array. At 10 m, the 
element is more than one wavelength. We 
can take full advantage of this extra length 
at both bands by using a proper series LC 
circuit on both sides of the 15 m trap, which 
tunes the element simultaneously for both 10 
and 20 m. 

I won’t duplicate the hand calculations 
I performed, but computer modeling tools 
such as MATLAB could be used to set up 
the necessary simultaneous equations and/
or a matrix to optimize the L and C values. 
I did not optimize, but I suspect these 
values are close enough. The front-to-back 
performance, in particular, may benefit more 
by such elaborate optimization efforts.

EZNEC model and results
Figure 3 shows the 3-element dipole/

Yagi antenna. The gain plots are taken in free 
space, and dBref is set to 2.15 dBi, the gain 
of a dipole. The gain of an optimized two 

QX1701-Zavrel03 Open wire feed to tuner(s)

40' Driven Element

8' Boom

38' 12/17 m Reflector

44' 20/15/10m Reflector

Traps

Figure 3 — Antenna dimensions for the 3-element 7-band dipole/Yagi antenna. The distance 
between the driven element and the 20/15/10 m reflector is 7 ft.

Figure 6 — EZNEC model L and C loads. 

Figure 5 — EZNEC model antenna wire details. 

Figure 4 — EZNEC model overview. 
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Figure 7 — Modeled current amplitudes on the wires at 28.3 MHz.

Figure 8 — Free space azimuth antenna pattern at 28.3 MHz.

Figure 9 — Free space azimuth
antenna pattern at 24.9 MHz. Figure 12 — Free space azimuth antenna pattern at 14.1 MHz. 

Figure 11 — Free space azimuth antenna pattern at 18.1 MHz. 

Figure 10 — Free space azimuth antenna pattern at 21.1 MHz. 

element Yagi-Uda is about 5 dBd, while that 
of an optimized three element Yagi-Uda is 
about 7 dBd. These plots compare favorably 
in that the higher frequencies see about the 
equivalent of a three-element response, but 
on an 8-ft boom. Figure 4 shows the EZNEC 
model overview, Figure 5 shows the antenna 
wire details, and Figure 6 shows the L and C 

loads. Finally, Figure 7 shows the modeled 
current amplitudes on the wires at 28.3 MHz. 

Figures 8 – 14 show the azimuth free 
space antenna patterns for the seven bands 
10  m through 40  m. Table 1 shows a 
summary of the performance, including 
free space gain, equivalent number of Yagi 
elements, feed-point impedance, and VSWR 

on the 450 W line. 

Conclusions
The VSWR values are included in 

Table 1 since very high values may 
become problematic. All frequencies show 
reasonable VSWR values for 450 W ladder 
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line with the possible exception of the high 
value at 40 m. However, losses generally 
decrease with lower frequencies, an obvious 
advantage at 7 MHz. In any event an open 
wire line will exhibit very high voltages at 
maximum points, and must be protected 
from accidental contact with people, animals 
and flammable objects. The antenna is, in 
effect, a rotatable dipole for 7 and 10.1 MHz, 
a 2-element Yagi for 14, 18.1, and 21 MHz, 
and a 3-element Yagi for 24.9 and 28 MHz. 
The result is a multi-band antenna with 
excellent gain for its physical size. I hope this 
paper will stimulate interest in more complex 
trap/loading designs for antennas. Contrary 
to widely held beliefs, there is no reason a 
parasitic or driven element must be limited 
to electrical lengths near a half wavelength. 
How much elevated aluminum and wire is 
wasted for the convenience of automatic 
matching?
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Table 1
Overall performance summary. 

Frequency	 Free space gain, dBd 	 Equivalent Yagi elements	 Feed point impedance	 VSWR on 450 W line
7.1	 –0.18	 1	 17 – j 472	 54
10.1	 +0.26	 1	 46 – j 153	 10.7
14.1	 +4.4	 2	 46 + j 239	 12.7
18.1	 +4.88	 2	 77 + j 700	 20.1
21.1	 +4.66	 2	 1978+ j 1525	 7.0
24.9	 +6.1	 3	 786 – j 2343	 17.8
28.3	 +6.2	 3	 174 – j 704 	 9.1

Figure 13 — Free space azimuth antenna pattern at 10.1 MHz. 

Figure 14 — Free space azimuth antenna pattern at 7.1 MHz. 
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Pi Networks with Loss
Inductor losses can substantially alter the behavior of a pi network 
and place strong constraints on the overall circuit quality factor.

In a recent QEX paper1 I examined the 
relation between the quality factor Q and 
bandwidth of pi networks. Several definitions 
of Q that appeared in the ARRL Handbook 
for Radio Communications2 were not good 
predictors of the bandwidth of pi networks, 
but a revision of one did predict bandwidth, 
especially for values of Q greater than about 
5. That paper assumed that any loss in the 
pi networks under consideration could be 
neglected. 

After the publication of the paper, I 
received an e-mail communication suggesting 
that I look at the loss in the inductor used in 
pi networks. I decided to extend my analysis 
to include inductive loss. Several months 
later, I finished this analysis, which turned 
out to be considerably more difficult than 
I expected. The results were interesting, 
and in some cases striking. Inductive loss 
can substantially alter the behavior of a pi 
network and place quite strong constraints on 
the overall circuit quality factor. 

There seems to be general agreement 
that losses in the inductors in pi networks 
are more significant than those in the 
capacitors. I discovered a paper online3 
which found that the Q’s for typical air 
variable capacitor are typically 500 or more. 
Q’s for practical inductors are considerably 
less. Consequently, I limited my analysis to 
inductor loss. 

The following sections of the paper 
develop equations for the values of the 
various components of a pi network and the 
Q and internal loss in this network. I also 
measured the actual loss of the rotary variable 
inductor in my antenna tuner and used these 
data to demonstrate how a pi network could 
be designed taking into account loss within 
the network itself.

 

Analysis of a Pi Network Including 
Inductive Loss

Figure 1 shows a pi network. Loss in 
the inductor is represented by the inductor’s 
“equivalent series resistance,” labeled R2. 
R2 will be referred to as the loss resistance 
in the remainder of this paper. Initially, the 
loss resistance will be assumed constant, 
regardless of the value of the inductance. 
This is a substantial limitation because, in 

reality, R2 will always vary as the inductance 
of L2 varies. At the end of this paper I will 
describe how data relating R2 to L2 can be 
used to overcome this limitation. 

Pi networks are used frequently in power 
amplifiers — especially those using electron 
tubes — to match a load resistance — often 
an antenna — to a much larger source 
resistance. Load matching is accomplished 
when the impedance looking into the input of 
the pi network equals the source impedance. 
Here, this condition means that that the 
resistance looking into the input must be 
equal to the source resistance, RS, and the 
reactance looking into the input must be 
0. To achieve these two requirements, we 
have three quantities that we can adjust, C1, 
L2, and C3. Thus, to uniquely specify the 
capacitances and the inductance, we need a 
third parameter to be specified. In my earlier 
paper the reactance of C1 was used as this 
parameter. However, I found after some 
experimentation that, when inductive loss is 
included, simpler results were obtained by 
dividing the pi network into two cascaded 
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adjusted to match RV to RS, and Network B is adjusted to match RL to RV. 
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L-type networks with a virtual resistance, 
RV, as the matched load of the first and the 
source of the second. RV then becomes the 
third parameter needed to uniquely specify 
the components that are labeled by their 
reactances in Figure 2. 

In Figure 2, the two sub-networks are A 
and B and the inductor L2 (with reactance 
X2) has been divided into two parts, L2A (X2A) 
and L2B (X2B). For a given value of RV, unique 
values of X1 and X2A can always be found 
that match RV to the source resistance RS, 
provided that RV satisfies certain criteria that 
will be derived shortly. And, X2B and X3 can 
also always be adjusted to obtain a match 
between RL and RV as long as RV satisfies 
additional constraints. 

Consider then Network A shown in 
Figure 3. This network can be simplified 
by replacing the series combination of X2A 

and RV with their parallel equivalents, X′2A 
and R′V, respectively. The parallel-equivalent 
quantities are related to the series value by 
the following well-known equations:

2 2
2V A

V
V

R XR
R
+′ =  	 (1)

and

2 2
2

2
2

.V A
A

A

R XX
X
+′ = 	 (2)

This reconfigured network is shown in 
Figure 4. It has become a simple parallel 
RLC network. In order for the load, R′V, 
to be matched to the source, the following 
equations must be satisfied:

S VR R′=  	 (3)

and

1 2 0 .AX X ′+ =  	 (4)

Now use Eq. (1) to eliminate R′V in Eq. (3) 
and Eq. (2) to eliminate X′2A in Eq. (4), and 
solve the resulting two equations for X2A and 
X1. The results are

1 ,V
S

S V

RX R
R R

= −
−

 	 (5)

( )2 .A V S vX R R R= −  	 (6)

Both X1 and X2A must be real numbers, 
which requires that 

.V SR R< 	 (7)

Turn to Network B in Figure 2. With RV 
matched to RS in Network A, its Thevenin 
equivalent is an ideal voltage source, VA, in 
series with a resistance RV. Thus, Network B 

and

2

3 3 2 2
3

.L

L

RX X
R X

′ =
+

	 (9)

The resulting simple series RLC network 
is shown in Figure 6. The load is R2 and R′L 
in series. To match this load to the source 
resistance RV the following two equations 
must be satisfied:

2 ,V LR R R′= + 	 (10)

and

2 3 0 .BX X ′+ = 	 (11)

Use Eq. (8) to eliminate R′L in Eq. (10), 
and Eq. (9) to eliminate X′3 in Eq. (11). Then 
solve the resulting two equations for X2B and 
X3. The results are:

( )( )2 2 2B V L VX R R R R R= − + −  	 (12)
	

2
3

2

.V
L

L V

R RX R
R R R

−
= −

+ −
 	 (13)

X2B and X3 must both be real numbers, 
which requires that

2 2 .V LR R R R≤ < +  	 (14)

The results so far are below:
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( )( )
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
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
= − 


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
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
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Quality Factor and Loss
The quality factor Q of a network is 

defined by the following equation.
 

Energy stored in network2 ,
Power dissipated in network

Q fπ= 	

(16)
where f is frequency. There are several 
definitions of Q in use, depending on 
which contributors to loss are included in 
the denominator. Since in this paper we are 
concerned with the behavior of the network 
(i.e. its bandwidth and harmonic attenuation) 
when it is used to match a load to a source, 
we will include all sources of power loss 
including the source and load resistances. 

(15)
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Figure 3 — Schematic of Network A.

Figure 4 — Network A with the series 
combination of X2A and RV shown in Figure 

3 replaced with their parallel equivalents X′2A 
and R′V.

Figure 5 — Schematic of Network B with 
Network A replaced with its Thevenin 

equivalent of an ideal voltage source VA in 
series with a resistance RV.
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Figure 6 — Network B with the parallel 
combination of X3 and RL shown in Figure 5 

replaced with its series equivalent X′3 and R′L.

can be diagrammed in Figure 5. Next convert 
the parallel pair of X3 and RL to an equivalent 
series pair, X′3 and R′L, where

2
3

2 2
3

,L L
L

XR R
R X

′ =
+

 	 (8)
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To calculate the Q of a pi network, first 
calculate the quality factors, QA and QB, of 
Networks A and B, respectively. Network 
A (Figure 3) was transformed into a simple 
parallel RLC network (Figure 4). The quality 
factor of this network is the net resistance 
in the network divided by the inductive (or 
capacitive) reactance. As shown in Figure 
4, the resistors RS and R′V are in parallel 
because the resistance of the ideal voltage 
source VS is 0. But, Eq. (3) states that the two 
resistances are equal, so the net resistance is 
RS/2. Consequently,

 

1

1 ,
2 2

S S V
A

V

R R RQ
X R

−
= =  	 (17)

where Eq. (5) has been used to eliminate |X1|. 
Network B (Figure 5) was transformed 

into a simple series RLC network (Figure 
6). The quality factor for this network is 
the reactance of the inductor (or capacitor) 
divided by the net resistance, RV + R2 + R′L, 
in the circuit. But Eq. (10) states that 
RV=R2 + R′L, so

( )( )2 22 ,
2 2

V L VB
B

V V

R R R R RXQ
R R

− + −
= = 	

(18)

where Eq. (12) has been used to eliminate 
X2B. 

What is the composite Q of the cascaded 
network consisting of Networks A and B 
given QA and QB, the Q’s of the component 
sub networks? I treated this problem [Note 
1] for the case where the two networks 
were lossless; the overall Q was obtained 

by simply adding the individual Q values 
of the constituent networks. In Appendix 
A, the case where the network has loss is 
analyzed, with the same result that the Q for 
the overall network is still obtained by adding 
the Q values for the constituent parts. (This 
is true only if the network loss occurs only 
in Network B. This is why I placed the loss 
resistor, R2, in Network B. R2 could have been 
placed in Network A, or it could have been 
divided in any way between the two networks 
with equivalent results.) Consequently, the 
system Q for the entire pi network is	

2 2

1
2

S V

V

V L V

V V

R R
R

Q
R R R R R

R R

 −
 
 

=  
  − + − +       

(19)

We now calculate the loss in the pi 
network. The loss, of course, occurs in 
the inductor loss resistance, R2. Since this 
resistance was placed entirely in Network B, 
there is no loss in Network A. Referring to 
Figure 6, we see that the current through the 
load, R′L, is the same as the current through 
R2. Consequently, the powers, PL and P2, 
dissipated in the load and inductor resistance, 
respectively, are proportional to R′L and R2. 
The efficiency, e, of the pi network to deliver 
power to its load is

2 2

.L L

L L

P R
P P R R

e
′

= =
′+ +

	 (20)

According to Eq. (10), R′L = RV – R2. 
Using this to eliminate R′L in Eq. (20), we 
arrive at the remarkably simple result

21 .VR Re = −  	 (21)	

It is conventional to express loss in 
decibels. Denote this quantity LdB. Then,

 
( )dB 10 210 log 1 .VL R R= − − 	 (22)

All of the quantities in Eqs. (15), (19), 
and (22) are functions of the parameter RV. 
In a later section we address the question of 
how to select values of RV to achieve either a 
desired Q or loss for a pi network.

 
Relationship between Q, Bandwidth, 
and Harmonic Attenuation

Previously (Note 1), I found that the 
following definition provided an accurate 
prediction of lossless network bandwidth and 
harmonic attenuation:

1 3

1 .
2

S LR RQ
X X

 
= +  

 
	                  (23)

For a pi network with loss, Q is given by 
Eq. (19) which appears different than Eq. 
(23). It can be recast into a form more like 
Eq. (23) using the expressions for X1 and X3 
in Eqs. (15) to eliminate the square roots that 
appear in Eq. (19).
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S VL

V

R R RRQ
X X R

  −
= +  

   
 	  (24)

In the no-loss case (i.e., R2 = 0), Eq. (24) 
reduces to Eq. (23). 

Figure 7 — Error when using calculated quality factor Q of a pi network to estimate its bandwidth, for source resistances of 2500 W (left), 50 W 
(center), and 5 W (right). The load resistance was 50 W in all cases. Curves are for loss resistances of the inductors of 0 W and for non-zero 

values selected to be about in the middle of the range of real inductors.

for R2 = 2.5 and 0 W
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Is Eq. (24) a good predictor of bandwidth 
and harmonic distortion? I wrote a computer 
program (in Visual Basic 2010) that calculated 
the frequency response of a specified pi 
network and from this determined bandwidth 
and harmonic attenuation. Figures 7 and 8 
summarize these results. 

Figure 7 shows the error resulting from 
the use of Q, given by Eq. (19), to estimate 
the bandwidth of a pi network. Graphs are 
given for a load resistance of 50 W and 
source resistances of 2500, 50, and 5 W. In 
each graph, I selected two values of the loss 
resistance, one was 0 W and the other a value 
that I thought might be in the middle of the 
range of loss resistances of actual inductors. 

For source resistances of 50 and 5 W, the 
curves were not distinguishable. The figure 
shows that bandwidths estimated using 
Eq. (19) are always smaller than the actual 
values. But, for Q values above 5, errors are 
less than 10% in magnitude. 

Pi networks are used not only to match 
a load to a source but also to attenuate 
harmonics of the design frequency (i.e., the 
frequency where the source and load are 
matched). Figure 8 shows the attenuations 
of the second, third, and fourth harmonics. 
As in Figure 7, graphs are given for source 
resistances of 2500, 50, and 5 W. The data 
in each graph are for the same two loss 
resistances used in Figure 7; the two curves 

were indistinguishable. For Q values above 
5, attenuation of the second, third, and fourth 
harmonics were greater than 27 dB.

 
Specifying Q to Determine RV

Equation (20) relates the network Q to the 
virtual resistance, RV. Values of RV are limited 
by the last of Eqs. (17). It is convenient to 
work with the ratio RV/R2 rather than RV. The 
limits on this ratio are

 

2 2 2

1 Min ,1 .V S LR R R
R R R

 
≤ < + 

 
 	 (25)

Figure 9 shows, for source resistances of 
2500, 50, and 5 W and a load resistance of 

Figure 9 — Quality factor Q as a function of ratio RV/R2 for source resistances of 2500 W (left), 50 W (center), and 5 W (right). The load resistance 
in all cases was 50 W. Each curve in a graph is labeled with its respective value of R2.

Figure 8 — Harmonic attenuation as a function of quality factor Q of a pi network, for source resistances of 2500 W (left), 50 W (center), and 5 W 
(right). The load resistance was 50 W in all cases. Curves are for loss resistances of the inductors of 0 W and for non-zero values selected to be 

about in the middle of the range of real inductors.
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Figure 8.  Harmonic attenuation as a function of quality factor (Q) of a pi network. Data are shown for source 
resistances of 2500 Ω (left graph), 50 Ω (center graph), and 5 Ω. The load resistance was 50 Ω in all 
cases. Curves are shown in each graph for loss resistances of the inductors of 0 Ω and for nonzero 
values selected to be about in the middle of the range of real inductors. 
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50 W, the relation between the quality factor 
of a pi network and RV/R2. Curves are shown 
for various values of the loss resistance, 
R2. These data indicate that, at least for the 
smaller values of R2, values of Q in excess 
of 10 can easily be reached. However, these 
values are obtained as the ratio RV/R2 tends 
towards 1, and loss also increases as RV/R2 
tends towards 1 as shown by Eq. (23). 

The data in Figure 9 can be used to 
estimate a value for RV to obtain a specified 
value of Q. However, it would seem more 
convenient to have an analytic method for 
accomplishing this by solving Eq. (19) for RV 
as a function of Q. It turns out that inverting 
Eq. (19) is fairly complicated. Appendix B 
explains how this solution can be obtained. I 
do not think it is particularly useful because 

it seems a better choice is to start with an 
acceptable level of loss and see what range 
of Q’s can be achieved. The next section 
addresses this issue.

 
Specifying Loss to Determine RV

The relationship between loss, in dB, 
and RV is given by Eq. (22). This equation 
is easily inverted to express RV as a function 
of loss.

 

dB

2
10 .

1 10V L
RR −=

−
 	                   (26)

Once loss is specified, RV and Q are 
uniquely determined by Eqs. (26) and 
(19), respectively. Figure 10 shows this 
relationship for a source impedance of 
2500 W, 50 W, and 5 W. The load impedance 

is 50 W in all cases. Each graph contains a 
family of curves for selected values of the 
loss resistance R2 placed on the right edge of 
each graph. 

The graphs in Figure 10 show that there 
are potentially severe limits on the Q of 
a pi network if the loss is to be held to a 
manageable level. For example, suppose we 
wish to design a pi network whose loss is 
1 dB. This means that 20.6% of the power 
input to the pi network will not appear in 
the output but is absorbed by R2, the loss 
resistance of the inductor. If the transmitter 
output power is 100  W, this loss might 
result in warming of the inductor but would 
probably be acceptable. If the transmitter 
power is 1  kW, the power dissipation in 
the inductor would be 206  W, probably 

Figure 11 — Quality factor Q as a function of the inductor loss resistance R2. Data are shown for source resistances of 2500 W (left), 50 W (center), 
and 5 W (right). In all cases the load resistance was 50 W. Each curve in each graph is labeled with its respective value of loss in the pi network.

Figure 10 — Quality factor Q as a function of loss in a pi network. Data are shown for source resistances of 2500 W (left), 50 W (center), and 
5 W (right). In all cases the load resistance was 50 W. Each curve in each graph is labeled with its respective value of R2. 
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unacceptable. But to limit losses to 1 dB 
and achieve a Q of 10 to 15, a figure that is a 
typical design goal for transmitters, the data 
in Figure 10 show that the loss resistance 
R2 must be less than about 1 W if the source 
resistance is 2500 W, less than about 50 mW 
if the source resistance is 50 W, and less 
than about 20 mW for a source resistance of 
5 W. To achieve losses even less than 1 dB, 
the loss resistance of the inductor must be 
substantially less than the values listed in the 
preceding sentence. 

Figure 11 shows the same data in an 
alternate way that seems quite useful to me. 
In the three graphs in the figure, Q is plotted 

Figure 12 — Variable rotary inductor used in T-network tuner.

Figure 13 — Schematic diagram of a T 
network tuner. The wire between the input 

capacitor and the shunt inductor was 
disconnected to create a series circuit with 

the output capacitor and inductor.

Figure 14 — Experimental setup to measured loss resistance R2 of inductor shown in Figure 
12. The series capacitor and inductor were adjusted to resonance so that their reactances 

would cancel leaving only R2 in the circuit.
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as a function of the inductor loss resistance, 
R2. Families of curves are shown for losses 
of 0.1, 0.5, 1, 2, and 3 dB. As an example, 
suppose the source resistance is 2500 W 
and our goal is a pi network with a loss of 
0.5 dB (11% of input power dissipated in 
the inductor) and a Q of 10. The left-hand 
graph in Figure 11 shows that this can only be 
accomplished if R2 is less than about 0.84 W. 

The work described so far is theoretical. As 
I progressed, I decided that I needed to obtain 
some loss data on a real inductor. Therefore, 
I set out to measure the loss resistance of an 
actual rotary variable inductor that one might 
use in a pi network. The next section describes 
this measurement and the results.

 
Loss Resistance of a Rotary 
Variable Inductor

I have a T-network antenna tuner that I 
built using a rotary variable inductor and two 
air variable capacitors. Figure 12 shows a 
photograph of the inductor and part of one 
of its variable capacitors. Figure 13 is the 
circuit diagram of a basic T-network tuner. 
I disconnected the wire between the input 
capacitor and the shunt inductor; see Figure 
13. This change left the output capacitor 
and the inductor in series with the output 
connector. I then connected a HP 8640B 
signal generator to the output connector 
through a BNC-T. The other side of the T 
was connected to a Rigol DS1052D digital 
oscilloscope. Figure 14 shows the complete 
layout, including the 50 W output impedance 
of the HP signal generator, the 50 W input 
impedance of the oscilloscope (accomplished 
by placing a 50 W terminator at the input of 
the scope), and the loss resistance R2 of the 
inductor. I assume that the loss resistance of 
the variable capacitor is negligible compared 
to that of the inductor. 

The basic idea is to tune the series 
capacitor to minimize the voltage measured 
by the oscilloscope, at which point the 
reactances of the capacitor and the inductor 
will cancel each other leaving just R2, the 
loss resistance of the inductor. In practice, 
this is a little more difficult than it might at 
first sound. First of all, the dip in voltage as 
resonance is passed through is quite sharp, 
making it difficult to find the true minimum 
by adjusting the variable capacitor. I solved 
this by first adjusting the variable capacitor 
to as close to the minimum as possible, 
then using the vernier frequency adjustment 
on the signal generator to find the true 
minimum; typically this final adjustment 
involved a frequency change of no more 
than about 100  Hz. The second problem 
stems from the fact that the signal from 
the signal generator is not a pure sinusoid 
but contains both fundamental and small 
harmonic components. The series capacitor-

inductor can only be adjusted to null out 
one frequency, so the harmonic components 
pass through without attenuation. This 
problem was solved by using the ability of 
the Rigol oscilloscope (using its Fourier 
transform function) to separate a signal into 
its frequency components and measure the 
amplitude only of the fundamental.

A measurement occurred in three steps. 
(1) The inductor was set to a particular value 
of interest. (2) The series capacitor-inductor 
were removed from the circuit and the 
voltage V1 of the fundamental of the signal 
noted. (3) The series capacitor-inductor was 
returned to the circuit and the capacitor and 
signal generator frequency were adjusted to 
minimize the fundamental voltage V2, which 
was then noted. Referring once again to 
Figure 14, it is easy to show that
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 	 (27)

where Z0  =  50 W. Use the first of these 
equations to eliminate VS in the second and 
then solve the result for the loss resistance R2 
of the inductor. The final equation is 
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I took data at 3.75 MHz and 14.2 MHz. 
The results are in Tables 1 and 2 and show 

Table 1.
Measured loss resistances R2 at 
a frequency of 3.75 MHz for the 
inductor shown in Figure 13. 

L, mH	 R2, W	 Inductor Q
24.8	 7.49	 78
22.1	 6.32	 82
19.5	 4.83	 95
16.9	 3.88	 103
14.4	 3.17	 107
12.0	 2.52	 112
9.6	 2.01	 113
7.4	 1.60	 109
5.3	 1.26	 99
4.5	 1.15	 93
3.8	 1.04	 86

Table 3.
Example design of a pi network to match a source impedance of 2500 W to a 
load of 50 W at a frequency of 3.75 MHz and with a network loss of 0.5 dB. Each 
row in the table is a successive iteration, obtained from the row before it by 
using the value for L2 and the data in Table 1 to calculate an improved estimate 
of the loss resistance R2. 
Loss, dB	 R2, W	 C1, pF	 L2, mH	 C3, pF	 Q
0.5	 1.00	 279	 7.21	 1917	 9.2
0.5	 1.57	 222	 8.97	 1442	 7.3
0.5	 1.89	 203	 9.80	 1267	 6.6
0.5	 2.05	 195	 10.18	 1193	 6.4
0.5	 2.13	 191	 10.37	 1159	 6.2
0.5	 2.17	 189	 10.46	 1142	 6.2
0.5	 2.19	 188	 10.50	 1134	 6.1
0.5	 2.20	 188	 10.52	 1130	 6.1

Table 4.
Example design of a pi network to match a source impedance of 2500 W to a 
load of 50 W at a frequency of 3.75 MHz and with a network loss of 1 dB. Each 
row in the table is a successive iteration, obtained from the row before it by 
using the value for L2 and the data in Table 1 to calculate an improved estimate 
of the loss resistance R2. 
Loss, dB	 R2, W	 C1, pF	 L2, mH	 C3, pF	 Q
1.0	 1.00	 385	 5.24	 2934	 12.7
1.0	 1.25	 344	 5.85	 2596	 11.3
1.0	 1.35	 331	 6.08	 2488	 10.9
1.0	 1.39	 326	 6.17	 2448	 10.8
1.0	 1.40	 325	 6.19	 2438	 10.7

Table 2.
Measured loss resistances R2 at 
14.2 MHz for the inductor shown in 
Figure 13. 

L, mH	 R2, W	 Inductor Q
2.5	 5.80	 38
2.2	 4.13	 47
1.9	 2.96	 57
1.6	 2.22	 65
1.4	 1.70	 72
1.1	 1.36	 74
0.92	 1.12	 74
0.74	 0.93	 71
0.57	 0.79	 64
0.43	 0.69	 56
0.33	 0.62	 47
0.29	 0.61	 42
0.26	 0.58	 39
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inductance, the measured loss resistance, and 
the resulting Q of the inductor (2pfL/R2). 

I do not know enough about inductors to 
be able to say whether the data in Tables 1 
and 2 are typical of rotary variable inductors. 
The inductor Q values range from about 78 
to 113 at 3.75 MHz and from about 38 to 
74 at 14.2 MHz, which are similar to values 
I have read in various ham-radio-oriented 
publications.

 
Designing Pi Networks

All of the analysis presented so far 
has assumed that the loss resistance R2 is 
constant. But, the data in Tables 1 and 2 
demonstrate that R2 varies as the inductance 
of L2 varies. This complicates the design 
process and requires an iterative technique. 

Suppose we wish to design a pi network, 
using my variable rotary inductor, for 
operation at 3.75 MHz with a loss of 0.5 dB 
and a Q of about 10. As a first step, the left 
graph in Figure 10 indicates that the loss 
resistance must be 1 W (or less) to limit loss 
to 0.5 dB. Thus as a starting point, assume 
R2 = 1 W. Then use Eq. (26) to calculate RV, 
Eqs. (15) to calculate C1, L2, and C3, and 
Eq. (19) to calculate Q. Results are listed 
in the first row of Table 3. The calculated 
inductance is 7.21 mH. Referring to Table 
1, we see this inductance is associated with 
a loss resistance around 1.57 W, estimated 
using linear extrapolation. Now repeat the 
calculations listed above using R2 = 1.57 W. 
The second row in the table gives the results. 
Note that the inductance has increased to a 
value of 8.97 mH which, according to Table 
1, is associated with a loss resistance of 
1.89 W. The remaining rows in Table 3 give 
additional iterations, continuing until there is 
little change from one to the next iteration. 
The final result shows that with a loss of 
0.5 dB, Q = 6.1. This Q is significantly less 
than our design goal of 10. I find it surprising, 
and striking, that a loss resistance as small as 
2.2 W limits so strongly the overall Q of the 
pi network. 

I believe it is generally the case when 
using a pi network to match the output of a 
power amplifier to an antenna that one would 
like to have a Q near 10. To accomplish this, 
we are evidently going to have to accept a 
higher loss. Table 4 contains data similar to 
that in Table 3 but for a loss of 1 dB. After 
five iterations, we find Q = 10.7. These two 
examples demonstrate that there is tradeoff 
between Q and loss. Higher values of Q are 
associated with larger losses. This is easy to 
understand. Higher values of Q are a result 
of a larger storage of energy in the reactive 
elements of a pi network, and larger stored 
energy means a larger current circulating 
between the inductor and the two capacitors. 
But, this larger current must pass through the 

loss resistance of the inductor, which leads 
to larger loss.

 
Conclusions

Inductor loss plays a substantial role in 
the design of pi networks. The use of my 
rotary inductor in a pi network would place 
substantial constraints on loss and Q: A Q of 
10 at 3.75 MHz would require the acceptance 
of a loss of 1 dB. Lowering loss to 0.5 dB 
would limit Q to about 6. In designing a 
pi network, one would want to use a high 
quality (high Q) inductor. The inductor in 
Figure 12 is not of sufficient high quality and 
would not be a good choice for a pi network 
design. 

I developed a computer program that I 
use to analyze pi networks with inductive 
loss. This program allows a user to enter 
source and load resistances, the frequency at 
which the pi network will be used, the loss 
resistance R2, and any one of the following 
parameters: virtual resistance RV; Q defined 
by Eq. (19); Q defined by bandwidth, 
reactance of C1, or the network loss in dB. 
The program calculates the values of C1, L2, 
and C3, the attenuation of the second through 
10th harmonics, and a graph of the frequency 
response of the network. I would be happy 
to share this program with interested parties.

 
APPENDIX A: Q of a Cascaded 
Network

According to Eq. (16), the Q of any 
network is 

2 ,
S L

WQ f
D D D

p=
+ +

 	 (A-1)

where W is the energy stored in the reactive 
elements, DS is the power dissipated in the 
source resistance, D is the power dissipated 
internally within the network, and DL is the 
power dissipated in the load resistance. We 
assume that the network is used to match a 
load resistance to a source resistance. This 
means that the resistance looking into the 
input of the network will equal the source 
resistance, which means that the power 
dissipated in the source resistance will be 
the same as the power dissipated internally 
within the network and in the load. That is, 
DS = D + DL. Consequently, Eq. (A-1) can 
be rewritten as

2 .
2 S

WQ f
D

p=  	 (A-2)

Now suppose the network can be broken 
into two cascaded networks, A and B, so 
that the first network A matches the source 
resistance RS to a virtual resistance RV and 
the second network B matches RV to the 
final load resistance, RL. Let DA and DB be 
the powers dissipated internally by networks 
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A and B, respectively, and DV the power 
dissipated by the virtual load resistance RV. 
Then the quality factors, QA and QB, for the 
two networks are

2 A
A
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WQ f
D D D

π=
+ +

	 (A-3)

and 
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The source resistance is matched by 
network A to the virtual load so DS = DA + DV. 
Similarly, the virtual resistance is matched by 
network B to the load resistance so DV = DB 
+ DL. Using these two results, Eqs. (A-3) and 
(A-4) can be rewritten

2
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and
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The energy, W, stored in the entire 
network is the sum of the energies stored 
in networks A and B, that is, W = WA + WB. 
Using this result in Eq. (A-2), we get

2 2
2 2

A B

S S

W WQ f f
D D

π π= + 	 (A-7)

Now insert Eqs. (A-5) and (A-6) into 
(A-7). The result is 

.V
A B

S

DQ Q Q
D

= + 	 (A-8)

The ratio DV/DS is just the efficiency, eA, 
of network A to deliver power to its load. The 
final result is, then, 

A A BQ Q Qe= +  	 (A-9)

In the pi network case treated in this 
paper, the loss occurred only in network B 
so eA=1

 

APPENDIX B: Calculate RV from Q
The calculation of RV from a specification 

of Q starts with Eq. (19) which expresses Q 
as a function of RV. This equation is
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(B-1)

Inverting this equation involves 
considerable algebra. It must be squared 
twice to eliminate the square roots. The result 
is a polynomial equation in RV:
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	 (B-2)
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There are four roots to equations like (B-2). 
To calculate these roots, I used a method on 
a website.4 Some (or all) of the roots may 
be complex numbers that we can reject 
immediately. If there are two or four real roots, 
some may not satisfy Eq. (B-1) and can be 
rejected. Others may not satisfy the inequality 
listed last in Eqs. (15). If there are two 
remaining roots, select the larger of the two 
because it will involve less loss in the network. 

Consider this example: RS = 2500 W, 
RL = 50 W, R2 = 2 W, and Q = 10. Use 
Eqs. (B-3) to calculate the coefficients A 
through E, and calculate the roots of Eq. 
(B-2) using the method mentioned above. 
The four solutions for RV are 7.74 W, 
4.98 W, (‑0.0411  +  j  0.00683) W, and 
(‑0.0411 – j 0.00683) W. The latter two are 
complex and can be discarded. When placed 
in Eq. (B-1), the second solution yields a 
value for Q of 12.4, not the target value of 10. 
The first solution, 7.74 W, yields Q of 10 and 
is the desired value. 

Bill Kaune, W7IEQ, is a retired physicist 
(BS, PhD). He is married and has two grown 
daughters and four grandchildren. Bill spent 
most of his career collaborating with biologists 
and epidemiologists researching the biological 
effects of power-frequency electric and magnetic 
fields. Along with Amateur Radio, Bill spends 
his time hiking, backpacking, and doing some 
volunteer work. Bill was first licensed in 1956 
as a novice and then a general, but became 
inactive while in college. He was licensed again 
in 1998 and upgraded to the Amateur Extra 
class in 2000. Bill is a member of the Jefferson 
County Amateur Radio Club and the ARRL.

Notes
1Bill Kaune, W7IEQ, “Quality Factor, 

Bandwidth and Harmonic Attenuation of Pi 
Networks”, QEX, Sep 2015, p. 2.

2The ARRL Handbook Book, 2016 Edition. 
ARRL item no. 0413, available from your 
ARRL dealer, or from the ARRL Store, 
Telephone toll-free in the US 888-277-5289, 
or 860-594-0355, fax 860-594-0303; www.
arrl.org/shop/; pubsales@arrl.org, ARRL, 
Newington, CT. 

3Alan Payne, “Measuring the Loss in Variable 
Air Capacitors”, g3rbj.co.uk, 2013. 

4jwilson.coe.uga.edu/EMAT6680Fa09/
Davenport/Solving%20Quartic%20
Equations.pdf 
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Letters to the Editor
How to Tune an L-network Matchbox, Charles R. MacCluer, W8MQW (Nov/Dec 2016)
Dear Editor,

It looks like the latter part of W8MQW’s article is missing. — Bob Wilson, WA9D. 
[Others also noticed that we inadvertently omitted page 3, reproduced here. A full copy is at www.arrl.org/this-month-in-qex, and 

www.arrl.org/QEXfiles — Ed.] 
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Figure 7 — A phase detector employing a 
MiniCircuits SBL-1.

But even with the minor interaction of 
the L and C controls, convergence to match 
is much quicker because of the added 
information available from the phase voltage. 
If phase voltage is negative, decrease C; if 
phase voltage is positive, increase C. Thus 
the 50 W real part is matched immediately. 
Then proceed in the usual way to a one-to-
one match by adjusting L. 

Some Final Thoughts
To save space, the current sampler 

of Figures 2 and 6 could possibly be 
incorporated into the tandem coupler of 
Figure 5 by adding its toroid as a second 
toroid on the through line. I did not try this.

Both meter A and B can be any 100 mA 
or smaller ammeters. The meter A must be 
a center-zero meter since the phase detector 
reports both positive and negative voltages. 
Select by trial and error the current limiting 
resistors, marked ‘*’, for your particular 
meters. As a starting point try 1 kW.

The fortuitous levels of the sampled 
voltages require no active devices. This 
permitted all signals to be piped about with 
my favorite coax, RG402 semi-rigid coax 
with SMA connectors, lending a microwave 
look to the construction.

This algorithm is valid for any L network 

matchbox, whether it is a balanced network 
preceded by a balun or an unbalanced 
network followed by a balun. 

It would be easy to add an outboard 
current sampler and phase detector plus 
meter to existing manual L-network tuners to 
achieve expedited two-step tuning.

Displaying Vr (horizontal input) against 
Vf – Vr (vertical input) as an oscilloscope 
Lissajous diagram is an exceptionally 
efficient aid in finding a match — one adjusts 
C to rotate the ellipse vertical, then L to 
shrink the ellipse to a vertical line.

An outboard current sampler/phase 
detector/meter might also speed T-match 
tuning. 

The above matchbox construction details 
were merely sketched. Instead the thrust of 
this note is to reveal that tuning an L network 
need not be a tedious iterative process. It can 
in theory be done in two steps by carefully 
observing two simple-to-measure voltages.
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