 Tune SSB Automatically

 By Robert Dick, rdick@idt.net

	Now it is possible for your personal computer to tune SSB

voice signals using a high-level language and standard digital signal processing (DSP) techniques.

 First you must tune to within about plus or minus one kHz, and

�
then your computer can finish the job with an accuracy of about plus or minus three Hertz. The tuning method is based on the property of human speech that most of the time it is periodic--and this period varies with time. This article will describe the entire DSP process and will give code in C that does the core

of the signal processing. To do the whole job you will need, in addition, real-time A/D and either D/A or a way to let your computer tune your receiver.

	I discovered the method while doing US Government sponsored research trying to remove voice-on-voice interference. This was

one of those cases where a byproduct of research was more successful than trying to accomplish the main aim. Reference 1 reports on

�
my work, and contains code in FORTRAN that goes most of the way to estimating SSB mistuning. It also contains code for SSB retuning via DSP which I have improved upon for the present article.

�

 Human speech is made up of two types of sounds: voiced and unvoiced, depending on whether or not the speaker's vocal cords are engaged while producing a certain sound. Unvoiced speech is generally

much lower in volume than voiced speech, and, in the 3 kHz bandwidth of amateur radio, much of unvoiced sounds are filtered out. Voiced speech is nearly periodic over the short term (tens to hundreds of milliseconds), with a period that varies over time.

A periodic sound when viewed in the frequency domain shows

a series of peaks (harmonics). The frequency difference between

neighboring peaks is the reciprocal of the time period of repetition.

 This range of peaks has one significant property for our purposes:

 If the range of peaks is extrapolated downward in frequency there will always be a resultant peak at zero frequency (DC). When

�
the pitch changes, all the peaks shift position, except the (resultant) one at zero Hz. When SSB speech is mistuned, there will be one and only one (resultant) peak at some nonzero frequency which does not shift

with time. This represents the mistuning.

	Figure 1 shows a "waterfall" plot giving an evolution of (properly tuned) speech square-root-of-power spectra versus time.

 Each line shows a spectrum of zero to 3200 Hz. A series of peaks is evident in most lines. There are no peaks at zero Hz on the left, of course, but if each "comb" of peaks were continued to the left it would have a tooth at zero Hz.

Note that each spectrum line in the waterfall plot contains

an envelope which resembles a sinusoid. This key fact enables us to use the fast Fourier transform (FFT) to estimate the period and phase of the series of frequency-domain peaks. This estimator FFT goes from the frequency domain back to the time domain. I call this process of going from time to frequency and back to time complex correlation. The key to complex correlation is what is done in the frequency domain between the two FFTs: The square root of the power spectrum is taken, and the negative

frequency portion is zeroed. Then the inverse FFT is taken. Because the inverse FFT's input was not symmetric, its output

is complex. This is an essential part of the signal processing.

The complex correlation has a peak in its magnitude at the

time interval corresponding to the period of repetition of the speech waveform put into it. The phase at this magnitude-peak represents something of the mistuning of the speech. If the speech is exactly properly tuned the phase will be zero at the peak and the complex correlation will be pure real and positive there.

 If zero frequency is exactly halfway between (resultant frequency-domain) peaks the complex correlation will be pure real and negative at its magnitude-peak. Other conditions will result in other complex phases at the peak.

�

	Figure 2 shows another waterfall plot, this time of the magnitude of the complex correlation. All the horizontal plots

are normalized to have equal power. On the left of the waterfall

is a vertical wavy line showing by its shape the power in the waterfall.

 The farther to the left is this vertical line the greater is

�
the power in the horizontal line. The maximum magnitude of each complex correlation line occurs at t = 0, on the left, but another (local) maximum occurs at the speech period. This waterfall plot shows the speech period peak wavering down the page. On certain lines, corresponding to unvoiced speech, the peak disappears.

 However, note that the magnitude-trace on the left shows that at these times there is little power in the speech.

	After the complex correlation, a histogram is incremented at each point in the frequency domain where there was a peak (or resultant peak) in the magnitude spectrum. The best value to use for an increment is the magnitude squared of the complex correlation at its speaker-pitch local peak.

 Because of the properties of voiced versus unvoiced speech a

common problem in speech processing can simply be finessed. This

is the problem of distinguishing between voiced and unvoiced speech.

 Unvoiced speech is useless for estimating mistuning. However,

�
if we use as a histogram increment the squared magnitude of the complex-correlation peak this increment will be doubly small during unvoiced speech: first, because the total power is small for unvoiced speech. Second, since this speech is not periodic, the magnitude-squared of the complex-correlation peak will be small, even relative to the total power, which itself is small.

	Figure 3 shows the results of incrementing a set of histograms.

 Using a set of histograms like this instead of just one histogram

is not necessary to my method, but here it illustrates the properties of speech signals. Note that the complex correlation provides

a series of estimates of speaker pitch, along the way to estimating mistuning. Therefore we may divide up the histogram into a set

�
of sub-histograms sorted by speaker pitch. Figure 3 resulted from ten seconds of amateur radio SSB which had not been exactly tuned. Zero Hz (after only approximate tuning) is represented by the vertical line in the center. Each sub-histogram resulted from a ten Hz range of speaker pitch. The histograms are noisy, but they clearly show the mistuning. Sighting up and down the figure, we see that the histogram peaks form slanting lines in most portions of the spectrum. For example, one slanting-line of peaks cuts through zero Hz going from the lower left to the

upper right. The next series of peaks to the right of this forms a vertical line. This line shows the correct estimate of the mistuning. To the right of the actual mistuning value the peaks form a line from the lower right to the upper left.

	Thus, when a single histogram is formed, a single peak will stand out--if the frequency resolution is coarse. However, for maximum resolution in the estimate a fine resolution may be used.

 There will not in general in this case be a single big peak, but rather there will be a small cluster of (more or less) large values in the histogram bordered on both sides by valleys. For example, in Figure 3 we see not only that the peaks line up at the actual mistuning, but also that on both sides of the actual

mistuning there are valleys. Therefore looking for a concentration in the histogram will allow finer resolution and a more accurate estimate than looking for a single peak.

One method that works well is to find the narrowest region

�
of the histogram containing (say) 80 percent of the total of increments to date. Then estimate the mistuning to be halfway between the

lower and upper limits of this region.

This is the basis of my method. The principle of operation

is straightforward. First speech transmitted by SSB is roughly demodulated. As figure 3 shows, a mistuning of up to plus or

�
minus 400 Hz can be tolerated easily. Even greater mistunings are tolerable. The critical limit is reached where too much of

the signal is excluded or if the signal is not properly filtered for anti-aliasing. In the latter case the signal spectrum is folded over onto itself and the "comb" structure is jumbled. Given proper filtering, I expect that a mistuning of up to plus or minus 1 kHz can generally be tolerated.

	Second, the roughly tuned signal is digitized, preferably

�
at a rate only somewhat greater than 6 kHz. Of course, the usual rule must be followed when digitizing of lowpass anti-aliasing filtering the signal with a cutoff somewhat less than half the sampling rate.

 In addition, the signal should be highpassed at about 300 Hz (AC coupled). In particular, the signal must have very little DC component. Next successive sections of the digitized signal stream are selected. Each section is multiplied by a "window" that has a maximum in its middle and tapers to zero at each end. I use the raised-cosine window.

What length of window is suitable? Each window must have a number of samples that is a power of 2. In addition, preferably, each window should have three or four periods of voiced speech in it.

 In the figures shown above I used a sampling rate of 6400 Hz

and a window of 512 samples/6400 Hz = 80 milliseconds. This window may have been a little long. I suggest a window somewhere in

the range of 40 to 100 milliseconds.

The windows selected may have gaps between them. How long

the gaps will be depends on how long it takes your computer to perform a complex correlation and update a histogram. I would estimate that a rate of selection as low as one window per second can be tolerated. What if you have a very fast computer and do not need to leave any gaps? Then you can let the windows overlap.

 However, it is best not to let the windows overlap by more than 50 percent, so they are not too redundant.

The Software

	I have put together functions written in C which do all the steps described above, and also functions which do SSB retuning within the computer. They compiled and ran successfully under Borland Turbo C 1.5 for DOS, an old compiler, but serviceable. I also compiled and ran some of the software under Borland Turbo C++ for Windows.

�
I used the fastest method I was aware of several years ago for doing

the computations

in a high-level language. (I have since become aware of reference 3, which presents a faster FFT than the ones I used.) What I did requires a little explanation.

�
Making a complex correlation requires two successive FFTs. Each FFT comes in two parts: one a series of so-called "butterfly" computations, and the other a shuffling of the data. This shuffling has the property that doing it twice is a no-op, the same as no shuffling at all. Since it is done in both FFTs, there is a way of skipping both data shufflings. This requires two different

FFT methods for the two FFTs. I have encoded the two methods separately. The omitted data shuffling is represented in the "bitrev" function. As a result of omitting the shufflings,

the frequency domain is scrambled. Positive frequencies are represented by the even-numbered locations. Those wishing to experiment to

�
see what things look like in the frequency domain, apply "bitrev" to unscramble it and then you can plot it.

 I have included a little function called "srss." This is an approximation to computing the square root of the sum of two squares without having to compute square roots. The estimate

in the listing of the approximation error was produced by a little calculus and can be verified by experiment.

	The module with the function "ccor" contains, in addition, a timing routine to estimate how fast your computer can perform complex correlations. (The preprocessor directive “#define MAIN” enables this routine) I used it by timing with a digital watch the time from the "Enter" command until 1000 complex correlations

were completed. My 486 DX2 PC with a 66 MHz clock (running Windows) can do one "ccor" in about 25 milliseconds for 256 points and about 54 milliseconds for 512 points. Under DOS it took 33 ms for 512 points. It turns out that using brute force methods in "ccor" adds about 20 percent to the computing time. My Pentium MMX with a 200 MHz clock did 512 points in about 6 ms under DOS. A word of caution, if you write your own timing experiment: using all zeros data gives an unrealistically optimistic speed

�
of computation. That is why my timing programs use (admittedly nonsensical) nonzero data.

�

 The module “timproc” puts the whole process together and illustrates how to call the various functions I wrote. For timing purposes I simulated an 8 kHz sampling rate, 512-point CCORs, 8 CCORs per second, and mistuning estimate once per second. On my 486 it took 0.6 second of processing per one second of data. On the Pentium it took 0.1 second. Both numbers are for DOS. Of course with ever more powerful computers being made timing may soon not even be an issue.

The subroutine called "est" takes the output of ccor and

estimates speaker pitch and one possible mistuning. Then each other possible mistuning is a multiple of the pitch frequency away from this first estimate. Most of the code in est is the

computation of parabolic interpolation. You need this interpolation to get the maximum resolution of mistuning estimates. This is especially needed when tuning high-pitched speech. For high pitch even a fairly large change in pitch results in only a small shift

in the ccor peak. Further, the same mistuning delta is more accurately measured at low pitch than at high pitch. An appendix shows the

math of parabolic interpolation.

	Updating and reading the histogram are the final stages of

�
the mistuning-estimator code. I have represented them by key functions. "inchist" increments a histogram with number of

bins of nbins. "srchist" searches the histogram for the minimum-width portion containing some fraction (say 80 percent) of the sum of

�
the increments to date. The only tricky thing about this code is watching out for going off the end of the histogram. As you can see, “srchist” does the test for this repeatedly.

	The histogram should be zeroed at the start of mistuning estimation and should only be searched after at least several increments have been added. You will probably need to adjust parameters in your estimator to operate best with your sampling rate and rate of choosing windows. About five seconds of speech is all you need generally to refine the tuning of the speech signal to two or three Hz accuracy.

 The method of retuning is standard for DSP, and I present it here with no claim to having invented it. Function “retune” runs the process. Given a waveform to be retuned, it is first anti-alias filtered to prevent spectrum folding after the retuning. Function “aafilt” passes the waveform through one of several highpass “fir” filters for a large downshift; through a bandpass for a small shift; or one of several lowpasses for a large upshift. The filters were designed using the “remez” program included with reference 3. The function “fir” is also from reference 3. A single-channel waveform at baseband is always double sideband. To make it single sideband one attaches as an imaginary channel the negative of what is known as the Hilbert transform of the waveform. This is done using function “hilb.” Then multiplying this complex waveform by a complex exponential retunes it. Only one channel of the result need be saved for output.

References

�

1. Dick, R. J., "Cochannel Interference Separation," RADC-TR-80-365, Rome Air Development Center, 1980. Available for $19.50 as document ADA096059 from the National Technical Information Service, NTIS,

US Department of Commerce, Springfield, VA 22161.

2. Oppenheim, A. V. and R. W. Schafer, Digital Signal Processing. Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

3. Embree, P. M., “C Algorithms for Real-Time DSP.”x Prentice-Hall PTR, Upper Saddle River, New Jersey, 1995. Includes diskette.

Appendix: Parabolic Interpolation and Peak-Finding

Here is how to interpolate three equally-spaced data points

using a second-order polynomial, i.e. a quadratic/parabola.

For x = -1, 0 1 and y = ym, yz, yp we have the three points

(-1,ym), (0,yz), (1,yp).

For polynomial coefficients cf0, cf1, and cf2 the formula

y = cf0 + cf1*x + cf2*x*x

may be written

y = cf0 + x*(cf1 + x*cf2).

	It is easy to show that

cf0 = yz, cf1 = (yp - ym)/2, and cf2 = (ym + yp)/2 - yz

fits a curve to our three (x,y) points. This curve may be variously called a second-order curve, or a quadratic, or a parabola.

For ym < yz and yz > yp the peak of this curve is at x =

xm, where

xm = 0.5*(yp - ym)/(2*yz - ym - yp),

which is the direct formula for xm = -cf1/(2*cf2). This

�
is a standard result of analytic geometry (you may have seen it as xm = -b/(2a) for y = a*x*x + b*x + c).

