

NATIONAL CONTEST July/A JOURNAL

July/August 2004

Volume 32 Number 4

CQ Worldwide in The Gambia

- Compact 4-Squares
- How to Build a Rover
- February 2004 CW and Phone Sprint Results
- February 2004 NAQP RTTY Results

Top Photo: Preparing for CQ Worldwide in The Gambia. Bottom Left Photo: **John**, **K6AM**, of the C5Z team works 75 meters. Bottom Right Photo: **Bill Fisher**, **W4AN**, SK

NCJ: The National Contest Journal American Radio Relay League 225 Main Street • Newington, CT 06111-1494

Contesting and DXing Products from Array Solutions PRO.SIS.TEL. Array Solutions is the **Exclusive Amateur Radio BIG BOY ROTATORS Distributor for Nello** The Most Powerful and Accurate Amateur/ Corporation's "G-Series" **Commercial/Military/Industrial Antenna** Reproduction Tower **Rotators Available – Just Got Better!** Sections and Accessories! All models of ProSisTel rotators now employ DC motors for increased torque and unparalleled controllability. The N E L L D new "Controller D" control box features a built-in NEW computer interface. Fully control Features: the rotator via software. or Fully interchangeable with existing G-series sections. program in custom "manual" Hot-dip galvanized. operating parameters such as Complimented with a long list of accessories. stop points, calibration, soft start/stop, reverse delay, rotation Produced in compliance with TIA/EIA-222 design standards. **Controller D** range, and more! Backed by a full manufacturer's warranty against broken welds and early corrosion. Compare With: Model: Price: Ham IV, V (or less), G-400, G-800 PST641D \$719 25N – Replaces Rohn 25G PST2051D T2X, RC5A-B, G-1000, Alfa-Spid \$914 45N – Replaces Rohn 45G Now PST61D HDR300, Orion 2800, G-2800 \$1,221 55N – Replaces Rohn 55G **Delivering!** 65N – Replaces Rohn 65G – 10' Section PST61DHP Twice the Specs of the Nearest Competition \$1,505 2 to 3 Times the Specs of the Competition! 65N – Replaces Rohn 65G – 20' Section PST71D \$2,288 StackMatch and StackMatch II **OB4-40** Antenna Stack Control Systems Stacking multiple antennas and dividing the signal between them can result in significant advantages over single antenna systems. WXØB StackMatches make it simple! High Quality, **Two Versions are Features: High Performance**, Available: Enjoy considerable gain and **Multi-Band Yagis** improved radiation pattern over single antenna systems. Select any antenna in a stack. **Quality Made in Germany!** or divide the signal between them! Model Elements Band(s) Steer the take-off angle, and StackMatch OB4-40 NEW! Δ 40 even beam in 2 (or 3) directions OB2-40 2 40 For two or three "stacked" antennas. at once! OB2-40M 2 40 (Moxon) 1.8 through 30 MHz / 3 kW CW OB1-40 1 40 (dipole) NEW (6 meter version also available). **OB8-4M** 8 40 (Moxon)-20-15-10 **OB17-4 NEW!** Not just for monobanders! Stack 17 40-20-15-10 triband/multband antennas, too! OB12-4 12 40-20-15-10 OB12-6 12 40-20-17-15-12-10 No complex phasing lines or OB16-3 20-15-10 16 switching networks required. StackMatch II Additional models are available Single knob desktop control box. For two-antenna stacks. for a wide range of frequencies-and for every budget.

- Antennas, Baluns, Vertical phasing, Stack Phasing controllers
- Towers, Big Bertha rotating mono-poles and fixed poles Antenna relay switches, Custom switching designs
- Filters, bandpass, high pass, low pass, MARS, auto switching
- Contesting & DXing products and systems VSWR & RF Power meters
- Lightning and grounding systems
- Low band antennas, preamps, transformers
- Rotators and high strength antenna masts
- Antenna modeling software for mechanical and performance
- **Propagation Software**

Rain & Salt Spray Cover

www.arraysolutions.com Phone 972-203-2008 sales@arraysolutions.com Fax 972-203-8811

QUALITY begins **PEOPLE**

Quality products begin with quality people. Our equipment is designed for hams, by hams, because we're as devoted to the hobby as you are. Ten-Tec has 35 years of amateur radio manufacturing experience and hundreds of years of cumulative engineering design expertise among our employees. The Ten-Tec transceiver that is the center of your ham shack is a small piece of all of us that work here. We're proud of what we do, and proud that the best amateur radio equipment in the world is MADE IN AMERICA.

Front (L-R): Lee Jones, WB4JTR, Chief Technical Officer; Gary Barbour, AC4DL, VP/Engineering Director; Jeff Parton, Enclosure Product Manager. Rear (L-R): Staff engineers Boyd Lichlyter, KE4MCF; Eric Guinn, AC4LS; Bill Curb, WA4CDM; Mike Webber, KE4VSQ.

Nothing tops ORION for high-performance applications like weak signal DXing and contesting. Mode-appropriate roofing filters down to a minimum of 250 Hz, 100+ dB of dynamic range and superior sensitivity allow uncompromised receiver performance in any on-air situation.

- **Dual 32 bit ADI SHARC DSP processors**
- Very high RX intercept points, superior dynamic range and the industry's best RX phase noise performance.
- Mode-appropriate roofing filters. 7 total. 4 standard, 3 optional to a minimum of 250 Hz, assuring maximum rejection of undesirable signals from negative impact on overall receiver performance.
- Full dual receive capability including diversity control of both receivers with one tuning knob, if desired.
- 590 IF-DSP RX filters and fully programmable AGC available independently on both receivers.
- Real-time spectrum scope.
- Flash-ROM updatable. Always have the latest version of the transceiver.
- 30 day risk-free trial, 1 year factory warranty.
- Extended financing available

For complete information on the ORION, call our sales department at (800) 833-7373 or visit our website at www.tentec.com.

DVD or VHS \$10 refundable w/purchase

1185 Dolly Parton Parkway • Sevierville, TN 37862 • USA Sales Dept: 800-833-7373 • Sales Dept: sales@tentec.com • Service Dept: service@tentec.com Monday - Friday 8:00 - 5:30 EST • We accept VISA, Mastercard, Discover, and American Express Office: (865) 453-7172 • FAX: (865) 428-4483 • Repair Dept.: (865) 428-0364 (8 - 5 EST) Shipping is additional. TN residents add 9.5% TN sales tax.

The National Contest Journal

Volume 32 Number 4 July/August 2004

National Contest Journal (ISSN 0899-0131) is published bimonthly in January, March, May, July, September and Novem-ber by the American Radio Relay League, 225 Main Street, Newington, CT 06111-1494, USA. Periodicals postage paid at Hartford, CT and at additional mailing offices. POSTMASTER: Send address changes to: National Contest Journal, 225 Main St, Newington, CT 06111-1494, USA.

Publisher

American Radio Relay League 225 Main Street, Newington, CT 06111 tel: 860-594-0200 fax: 860-594-0259 (24-hour direct line) Electronic Mail: *hq@arrl.org* World Wide Web: *www.arrl.org*/

Editor Carl Luetzelschwab, K9LA 1227 Pion Rd, Fort Wayne, IN 46845 editor@ncjweb.com

Managing Editor Joel R. Hallas, W1ZR w1zr@arrl.org

NCJ WWW Page Bruce Horn, WA7BNM, Webmaster www.ncjweb.com

ARRL Officers President: Jim Haynie, W5JBP Executive Vice President: David Sumner, K1ZZ

Contributing Editors

Gary Sutcliffe, W9XT-Contest Tips, Tricks & Techniques Paul Schaffenberger, K5AF-Contesting on a Budget Paul Gentry, K9PG-NCJ Profiles Jon Jones, NØJK-VHF-UHF Contesting! Carl Luetzelschwab, K9LA-Propagation Joe Pontek, K8JP-The Contest Traveler John Fleming, WA9ALS-RTTY Contesting Brian Kassel, K7RE-Contesting for Fun Mark Beckwith, N5OT-Station Profile Bill Feidt, NG3K—DX Contest Activity Announcements Bruce Horn, WA7BNM—Contest Calendar ARRL CAC Representative Ned Stearns, AA7A 7038 E Aster Dr, Scottsdale, AZ 85254 aa7a@arrl.net North American QSO Party, CW Bob Selbrede, K6ZZ 6200 Natoma Ave, Mojave, CA 93501

cwnaqp@ncjweb.com

North American QSO Party, Phone Bruce Horn, WA7BNM 4225 Farmdale Ave, Studio City, CA 91604 ssbnaq@ncjweb.com

- North American QSO Party, RTTY Wayne Matlock, K7WM Rt 2, Box 102, Cibola, AZ 85328 rttynaqp@ncjweb.com
- North American Sprint, CW Boring Amateur Radio Club 15125 Bartell Rd, Boring, OR 97009 cwsprint@ncjweb.com North American Sprint, Phone
- Jim Stevens, K4MA 6609 Vardon Ct, Fuquay-Varina, NC 27526 ssbsprint@ncjweb.com

North American Sprint, RTTY Doug McDuff, W4OX 10380 SW 112th St, Miami, FL 33176 *rttysprint@ncjweb.com*

Advertising Information Contact: Joe Bottiglieri, AA1GW, tel 860-594-0207; fax 860-594-4285; ads@arrl.org

NCJ subscription orders, changes of address, and reports of missing or damaged copies should be addressed to ARRL, 225 Main St, Newington, CT 06111 and be marked NCJ Circulation. ARRL members are asked to include their membership control number or their QST mailing label.

Letters, articles, club newsletters and other editorial mateial should be submitted to NCJ, 1227 Pion Rd, Fort Wayne, IN 46845.

The NA Sprint and NA QSO Parties are not sponsored by the ARRI

Yearly Subscription rates: In the US \$20 US by First Class Mail \$28

Elsewhere by Surface Mail \$32 (4-8 week delivery)

Canada by Airmail \$31; Elsewhere by Airmail \$40 All original material not attributed to another source is An original material not attributed to another source is copyright (© 2004 by The American Radio Relay League, Inc. Materials may be excerpted from the *NCJ* without prior permission provided that the original contributor is credited, and the *NCJ* is identified as the source.

In order to insure prompt delivery, we ask that you periodi-cally check the address information on your mailing label. If you find any inaccuracies, please contact the Circulation Department immediately. Thank you for your assistance.

TABLE OF CONTENTS

3 Editorial Carl Luetzelschwab, K9LA

FEATURES-

- 4 Clone Team Vertical Goes to West Africa Henryk Kotowski, SMØJHF/C56JHF
- 6 How I Built a Rover Chris Hoffman, K1KC
- 9 The 100 W Contest Final—Revisited Mike Dormann. W7DRA
- 10 Compact Four-Squares Al Christman, K3LC
- **13** Bill Fisher, W4AN, Silent Key Rick Lindauist. N1RL
- 14 Visalia 2004 Ward Silver, NØAX
- 15 The VHF QRP Portable Category—Into the Second Decade Kevein Kaufhold, W9GKA
- 19 SO2R Station Design Considerations Part 2: Hal Kennedy, N4GG
- 21 Voice Techniques for Contesters Don Daso, K4ZA
- 23 Dayton Hamvention Contest Forum Report Doug Grant, K1DG
- 25 The 12th Annual Dayton Contest Dinner Tim Duffy, K3LR
- **26** N3FJP Contesting Software—Comments from K3MD John W. Thompson, MD, K3MD
- 27 An Open Letter: The Ethics of Contesting Dr Seppo Sisatto, OH1VR/AE6PP

COLUMNS

- 28 VHF-UHF Contesting! Jon K. Jones, NØJK
- 30 Contest Calendar Bruce Horn, WA7BNM
- 30 Adventures in Contesting
- 31 RTTY Contesting John Fleming, WA9ALS
- 34 Contesting for Fun Brian Kassel, K7RE
- 35 Contest Tips, Trick and Techniques Garv Sutcliffe, W9XT
- 36 Contesting on a Budget Paul Shaffenberger, K5AF

SCORES-

- 38 Results, February 2004 NCJ NAQP RTTY Contest Wayne Matlock, K7WM
- 40 Results, February 2004 Phone Sprint Jim Stevens, K4MA
- 47 Results, February 2004 CW Sprint Boring Amateur Radio Club

Advertising Index-

Alfa Radio: 3 Array Solutions: Cover II Atomic Time: 8 BetterRF Co, The: 24 C.A.T.S./Rotor Doctor: 13 Clark Electronics: 12 ComTek Systems: 14 DX Engineering: 5 HAMlet Rental QTH: 27 ICOM America Inc: Cover IV Idiom Press: 26 IIX Equipment Ltd: 33 KØXG Systems: 42

Lewallen, Roy, W7EL: 48 NCDXF: 37 Productivity Resources: 29 Radioware/NA: 33 Ten-Tec: 1 Teri Software: 48 Texas Towers: Cover III Top Ten Devices: 24 Unified Microsystems: 48 W2IHY Technologies: 48 Watts Unlimited: 48 Writelog for Windows: 18, 42

Editorial

Carl Luetzelschwab, K9LA

W4AN, SK

Right on the heels of the news of K4OJ becoming a Silent Key came the news that we lost another great contester-Bill, W4AN. As with K4OJ, I did not know Bill personally. But I sure can cite many things that he influenced in contesting.

CQ Contest Hall of Fame

In case you missed the announcement, former NCJ Editor Trey, N5KO, was inducted into the CQ Contest Hall of Fame at the Dayton Contest Dinner. Steve, N8BJQ, of CQ Worldwide contest fame, was also inducted into the Hall of Fame. Congratulations, guys!

SO2R

We have two SO2R articles in this issue. Hal, N4GG, continues with Part 2 of his three-part series discussing audio switching. Additionally, in WA9ALS's RTTY Contesting column, Don, AA5AU, talks about his efforts to set up an SO2R RTTY station. Although Don is known for his RTTY contesting efforts, the problems he had and the decisions he made are equally applicable to the other modes.

Baltic Contest Results

I received a little booklet in the mail from the Lithuanian Radio Sport Federation (see the accompanying photo). Eleven of the 12 pages are devoted to the results of the 2003 Baltic Contest and the other page has the rules for 2004 event. The main purpose in mentioning this is not to promote activity in the contest (it's a tough contest for those of us in North America-it's in May, it's only 5 hours, and it's only on 75 and 80 meters). The main purpose is the fact that a little 6×8 -inch booklet is put together with the results and mailed to participants. I think this adds a nice touch to the contest. Perhaps this would be a way to increase participation in some of the smaller contests-like the State QSO parties. Something to think about.

K3NA's Antenna Interactions Series

In my editorial in the May/June issue, I said that Part 6 of Eric's series would be in this issue. There's been a change in plans-it will be in the September/October issue.

ZA Donations

With 39 news amateurs licensed in ZA as a result of Project Goodwill Albania 2003 and most of them being universitylevel students, it's tough for them to acguire a rig and get on the air. If you have a functional rig lying around gathering dust, please consider donating it to this cause. For more information, check out www.za1a.com or contact me at k9la@arrl.net NCI

Baltic Contest Results booklet.

AlfaSpid Rotator

Alfa Radio Ltd 11211 154 St Edmonton, AB T5M 1X8 PHONE (780) 466-5779 FAX (780) 466-4956 www.alfaradio.ca

Cloned Team Vertical Goes to West Africa

Going on a contest DXpedition always involves confrontations with the elements, Mr. Murphy, local authorities and unreliable transportation—just to mention a few of the unexpected happenings. A successful DXpedition, at the planning stage, must devote more time to the unknown and unexpected rather than the obvious and known.

I personally have not participated in any DXpeditions, but I've been able to watch a few multi-operator efforts at proximity. I was once asked to go on a DXpedition to Cuba in 1997, but when I saw that the majority of the participants would be a burden instead of an asset, I refused to join them. My intuition was correct, I learned later.

The episode I wish to describe here took place in the West African country of Gambia in late October 2003 (for CQ WW PH-Ed). The group consisted of nine operators, the majority of them from California in the USA. The team's liaison was Phil. N6ZZ. He is no longer a Californian, but remains a member of the Southern California Contest Club. Phil has the peculiar goal of participating in CQ WW contests from all 40 CQ zones. He needed zone 35 and contacted me in the summer of 2003 and wanted to know my experience with The Gambia and Cape Verde. I offered him my assistance with The Gambia and suggested the call sign C5Z. The person responsible for Amateur Radio licenses in The Gambia is open-minded and cooperative and I was able to send Phil the C5Z license in September 2003.

The owners of a lifeless broadcast station in Banjul, the capital city, agreed to rent their premises to the team. Air transportation was a pain in the neck, but I can only write about things I witnessed myself. On October 15, Phil called me on 10 MHz as N6ZZ/3 operating from the QTH of Fred, K3ZO. "We're coming soon" was the message. Two days later the first part of the group actually arrived in Banjul. They immediately became disappointed with the coast protection operation. The Force12 verticals worked great for Team Vertical on the shores of Jamaica, but here the waterfront had been relocated 100 meters away from the house just a fortnight earlier. These verticals must be placed very close to the sea in order to perform better than average.

I wasn't the only person with experience of The Gambia that Phil had asked for advice. Juha, OH9MM, who had been here a year earlier, told Phil about coax cables his team left somewhere. Dick. N6AA, immediately decided to organize a search party-we drove to the hotel that Juha had stayed in. "Yes, we remember some Finnish guys with radios, but they did not leave any cables here" was the answer from the hotel owner. There are cyber cafes in Banjul and Phil got the name and phone number from Juha in Finland of the local coax cable caretaker. Another search party and we came back with the goods. The cables were buried in the mud in the caretaker's backyard so I considered him to be more an undertaker than caretaker. Now the cables are stowed under the roof of Radio Syd for any future needy visitors to The Gambia.

The first antennas could be placed temporarily a few feet from the water. This was temporary, as the coast protection project was not completed. The crew spreading and leveling the sand estimated these works were to be finished by Friday noon. In the meantime, Marty, N6VI, and John, K6AM, joined the group taking the same Baltimore flight a week later. They also brought some more cable and their radios. Jorma, OH2KI, came from Finland through Brussels without a radio, but brought a brand-new ACOM 1000 amplifier instead.

The majority of team members have known each other for years and all of them have been on all kinds of DXpeditions. I estimated their combined accumulated involvement in Amateur Radio in excess of 250 years. Unfortunately, none of them were willing to confess for me so I virtually know nothing about their background and experience. Either I am not a trusted person, or these guys are non-brag people.

When all the hardware and software passed the operational test and everybody looked forward to a relaxed countdown of the hours, the Evil attacked Radio Syd. All antennas were swept down by a tropical storm just two shakes of a lamb's tail before the zero hour. Earlier in the afternoon a power line surge burned everything that was connected to the mains—transceiver power supplies, amplifiers, computer battery chargers, bulbs, and fans. Anyone sensible enough would have given up, or at least postponed the activity. But sensible people don't win contests.

According to the preliminary results, the C5Z team won their Multi-Multi category. This was in spite of so many disadvantages compared to permanent well equipped and high-powered stations elsewhere. The antennas were extremely simple, most of the contacts during the

Figure 1—Assembling the 40 meter vertical. From left in the foreground: John, AB6BH, Art, W6XD, (kneeling) and Dick, N6AA.

Figure 2—The 160 meter antenna being rigged. From left: John, AB6BH, Terry, K6JL, Art, W6XD, (the official photographer of the DXpedition) and Marty, N6VI.

Figure 3—John, K6AM, on 75 meters in Studio A.

Figure 4—John, AB6BH, on 15 meters.

Figure 5—The team being photographed by Mary Ellen, wife of Art, W6XD. The team, from left: John, K6AM, Marty, N6VI, Terry, K6JL, Dick, N6AA, Jorma, OH2KI, Art, W6XD, Phil, N6ZZ, John, AB6BH, and Larry, K5OT. photographs by Henryk Kotowski SMØJHF copyright Permission granted for National Contest Journal to reproduce these photographs in print and electronic media, 12 February 2004

contest were conducted using low power (100 W) and numerous disasters havocked the ambiance of an enjoyable operation. The advantages of being in a place close to the ocean, relatively close to the Equator and consequently enjoying good propagation even at times of solar disturbances, being the only station on the air from this country in the contest, weighed more than the disadvantages. On the other hand, I hope, nobody is ignorant enough to directly compare contest scores of a station in Saskatchewan with another one in Aruba. The process of selecting a location and executing the operation plays a more important role than the amount of money. hardware and publicity involved.

Jorma told me about a very costly failure in the West Indies some ten years ago involving a large crowd without proper guidance. The approach of the C5Z team is commendable: low profile, low cost, high skills, and high score.

I predict increased use of relatively simple antennas and low power on contest DXpeditions — it works! And I recommend joining experienced groups, at home or trekking, to learn faster.

My own definition of a *professional* is someone who made his mistakes and

learned from them. An *amateur* is someone making his first mistakes, or who did not learn from the previous ones. Some people can be *professional* amateurs those who do something for pleasure only, but do it well. **NCJ**

Chris Hoffman, K1KC

How I Built a Rover

This is how I built a mobile "rover" station for the 2004 January VHF Sweepstakes. Obviously, it began with a desire. Mine came from the terrific fun I had casually operating in the January 2003 contest. I had operated in VHF contests from home before, but this would be my first serious rover effort. Once the desire was noticed, the next thing to do was to have a look at the rules. The rules would give me an idea what I could and could not do.

Types of Rover Stations

As for the rover category, there are no sub-categories. However, there are generally two types of rovers: *run-n-gun* and *shoot-n-scoot*. They may be known by different names in different locales, but the idea is the same. A run-n-gun mostly keeps moving, although there is no rule to prevent him from stopping to make contacts. They accumulate points mainly by exposing themselves to stations they would not have been able to contact had they remained in only a few grids. The run-n-gun generally uses antennas that do not have to be continually set up and taken down.

On the other hand, the shoot-n-scoot typically does setup, then partially disassembles his antennas before moving. This is because the antennas most likely cannot be used while in motion due to their size and the inability to rotate them while moving. They generally accumulate points by using higher gain directional antennas, finding high ground and perhaps by using masts or towers, and possibly higher gain amplification. After a preset time, or after mining most of the contacts from a given grid, the shoot-nscoot rover moves to the next grid.

My choice for this contest was the runn-gun style. With that settled, the next decision became the number of operators—one or two? Since I found it distracting to make contacts, log them and drive all at the same time, I chose safety. It would be a two person effort. The nondriving person would be the principal operator. WA4UJY was chosen as the second op. Now I had someone to consult with and to garner suggestions from.

Rover Station Design

Now comes the concept/design phase. This is not always as straightforward as it would seem. Be prepared to make many changes along the way. There are so many factors to be considered, and many of them do not surface until the project is well underway. Since it was already established as a two-op effort, we had to decide on which bands would be activated, with what modes. That would dictate the type of antennas that we would need. We used horizontal loops and turnstile antennas for SSB and CW. The verticals were already in place for any possible FM contacts.

The decision was made to construct a hitch-mounted device to support the majority of the antennas. This would allow a tilt-over design, giving us access to the antennas if necessary. It would also allow us to lower our 12-plus-foot structure in the event of low-flying aircraft! Safety and stability were paramount, so it was braced off the roof rack of my SUV in four places. I also made quick-disconnect devices to allow the lowering to be fairly rapid, and included a method of carrying the structure in the lowered mode for short distances (like from one end of the gas pump island to the other end). Our band choices were 6 meters, 2 meters, 1.25 meters, 70 cm and 23 cm. X-band and 33 cm were briefly considered, but not included in the final product. We'll save them for another day!

So now I had to figure out we were going to get everything (ourselves and our equipment) into the truck. I had already removed the third row of seats in

Figure 1—Technician's area.

Figure 3—Navigator's position.

order to mount a marine battery and one of my transceivers. The rest were under the second row of seats. My idea was to remove the front passenger seat and construct a workstation there. The second op would sit in the back seat on the passenger side. It soon became obvious that the workstation would have to be bigger, *lots* bigger! I stretched it out as much as I could and built different layers into it. Some equipment was run remotely.

Needless to say, the entire construction was a work in progress until contest day. We would take off in one direction, only to learn that the equipment would not do this, or the software would not do that, or whatever. We had to be flexible. What if a piece of equipment fails in mid-contest? You learn to be flexible whether you want to or not! We tried to plan for as many eventualities as we could, but who knows what might happen? Bring your tools, your test equipment and backup radios and hope for the best. I kept a paper and pen handy at all times because ideas would pop up and I might forget them later.

Acquisition Phase

Next came what I term the acquisition phase! Beside the basic construction materials, I needed a 1296 MHz horizontal omnidirectional antenna, a second GPS, audio control equipment and so forth. No, every rover does not have to have all of this stuff and a good argument could be made for leaving it behind. My concept was to automate several functions, leaving the operator to talk and log call signs and grid squares. Well, I did a lot of acquiring, but I fell far short of the automation I'd hoped for. What it did accomplish was to put together a competent five-band rover. You could say that some phases of putting together this rover never ended, like the concept/design phase and the acquisition phase. That just makes it fun!

Let me tell you about the computers. Ah, the computers. I'm not a computer person, but I had this idea that we would use three computers and they would continually show our position (aided by GPS), run logging programs and perform some other tasks. My expectation was that the logging programs would read band and mode data from the radios, the grid square from the GPS, time from the GPS or internal clock, store CW and voice memories and shine my shoes. Heck! They do everything else, why not these functions, minus the shoes? It was not to be. I could not find the software that read the grid from the GPS and read the band/mode data from the radio. Additionally, only two of the four main radios would actually send band/mode data to a computer. One that didn't was the only radio that operated on 222 and 1296 MHz. This set me back. I vacillated between letting the computers track the grid square or read the band/mode data from the radio that did report. I settled on the grid square.

Gathering the Pieces

Now, how do I put all this together and make it work? Well, I did lots of looking, thinking, scratching my bald spot and physically putting stuff here and there to see how it would fit. The ergonomics of a 30 plus hour trip had to figure into it as well. Things had to be easy to reach, see and operate. I put in nightlights for the keyboards, for the equipment faces, and for the rear of the radios, too. A fair amount of the operating would be done at night.

Not all of the work is done outside on

the rover itself. One job that could be done inside was route planning. Good for those inclement days! Contacting as many grid squares as possible generally means taking a North/South route. This is because, theoretically, you can cover the "squares" twice as fast as an East/West route. Elevation counts for something, too, especially in a VHF/UHF rover! Population density is also a factor.

Population density to me means the availability of many hams with VHF/UHF capability. So we would want to be near population centers. Put all these together in a brown paper bag, shake it up and you have a route! But what if the weather is poor where your magic route says to go? Then you have a backup route. I made up four routes, all with their special usefulness. I put those in the driver's computer in a mapping program. It shows my grid square as well as the map, so that when I call CQ, I can announce my grid square. This is very important because I can work a station again from a new grid. If you hear me in a grid you have not worked me in, contact me again for some extra points!

Like most folks, I pride myself on being able to put together a plan from scratch and make it work, but I did get ideas from other contesters and manufacturers. To that end I'd like to recognize ND2X, W6OAL, K4SWJ and KB6KQ for their contributions. Thanks guys! And thanks to WA4UJY for all the computer work.

Adequate and safe power delivery was a major factor in building the rover. Basically, there is the 12 V dc system and the 120 V ac system. A secondary deep cycle battery was kept afloat by the 130 A alternator. I figure it was good for handling power surges from the amplifiers. Some of them were capable of drawing 50 to 60 A. This was not a place to get sloppy and have a rat's nest of wires and cables. I took it seriously, used heavy gauge wire, carefully routed the wires and used tight, protected connections. Remember to fuse everything and to fuse it near the battery. Fuse both the positive and negative leads. Keep those fires to a minimum! I included a 1.0 kW modified square wave inverter and a 150 W true sine wave inverter, a smaller inverter and a medium-sized fire extinguisher!

The Final Phases

Next comes what I would call the connection phase. This phase can be very tricky and can really get you to scratching your bald spot. It did me! The more equipment you run and the more sophisticated your setup, the more difficult the connection phase. It presented it's own sets of problems which kept me turning in many directions. Did we want one radio in one ear and one radio in another? Or maybe two radios in two ears? Did we want to control the volume from the radios themselves or from the audio control center? Did we want one footswitch for each radio, or each footswitch to control all radios? The possibilities are endless. Quite often I recalled what my friend ND2X said, "KISS" (keep it simple stupid!).

Closer to the end came the antenna phase. This was when I put the antennas on for the last time before the contest and wired them up. Plus, I had to build mounts for my 23 cm FM and SSB antennas. Oh yeah, there were the external GPS antennas too! Every time I turned around there was a new task staring me in the face, but I loved it! I really felt a sense of accomplishment, and the contest hadn't even started yet! What more could I ask for?

Not to be forgotten is the testing phase. Here I made adjustments to antennas, transmit audio levels, transmitter drive levels, checked coax and connectors, looked for feedback and hum and noise, checked power connections, tested switches and radios for proper function and more. Better to get this done now than while on the road.

After that it was time to throw all that stuff in the truck that we probably wouldn't need, but would hate to leave at home if we did! Time, too, for checking the condition of our conveyance oil, tire pressure, fluid levels and all that good stuff, clean the glass, adjust the seats and so forth. I brought along all the manuals to the equipment we were using and extra audio and coax cables, fuses, test equipment, cameras and a spare 6 meter halo. It was the only antenna I could not stack. Why? Because

Figure 4—Main operator's position at night.

the minimum separation between 6 meter halos was 9 feet!

Having read all this you'd know I was pulling your leg to suggest I did this on \$2 and some parts from my junk box. I opted in advance to put some resources into this project, and time was the biggest resource. But I was proud of it and am glad I did it. Now you know how I built a rover! **NCJ**

The 100 W Contest Final—Revisited Mike Dormann, W7DRA

Do you like the Low Power category in contests? Do you like rolling your own amps—especially tube-type amps? If so, W7DRA offers some advice for your designs. But watch it — some advice here is tongue-in-cheek, so pay attention!

The article *100-Watt Contest Final* in the November 1956 issue of *CQ Magazine*¹ showed how to design amplifiers that ran 100 W input. Nowadays most American contests (CQ WPX, CQ WW, ARRL DX, etc) have gone to 100 W output for their Low Power class. Thus a bit of redesign from the original article is required.

Contest amplifier specifications have not changed much over the years, other than now a full 100 W output is needed (regardless of shorted coax, fallen towers, etc). The final also must be capable of being driven by normal station equipment—a Johnson Viking II, Heathkit DX-100, Collins 32V2, etc.

Design Characteristics

Danny, K7SS, along with the Pacific Northwest Contest Community, thinks concern for perfect neutralization is unnecessary, with which I agree. Neutralization should be accomplished using the simplest high voltage components possible. Grid neutralizing (*1953 ARRL Handbook*, page 143) allows the use of a single-ended output coil, easily wound on a plastic wire bobbin or on a piece of 3 inch diameter PVC pipe.

Selection of tubes for the final is not an issue; the availability of tube sockets is. Many tubes are found in swap meets, garage sales, and the like, where actual tube sockets are much harder to find, and thus making sockets the deciding factor. A 3 /₈ inch thick Plexiglas sheet, a 100 W soldering iron and a hank of #10 wire can alleviate some of the need for sockets. In Figure 1, Plexiglas is used instead of a socket for the station's main 40 meter 100 W contest final. Note: the fan is used to keep the Plexiglas from melting.

One medium power tube (810, 805, 806, 100TH, etc) is better than 15 or so parallel 1625s or smaller tubes, since this minimizes the amplifier parts count.

One example of a 100 W contest amplifier built by Paul, K7CW, is shown in Figure 2. The liquid nitrogen pump and cooling tubes have been removed from the amplifier to better show the placement of the 100 W tube and associated tuning apparatus.

Barry, ZL1DD, a noted Down Under

Figure 1—W7DRA's 40 meter, 100 W amp.

Figure 2—K7CW's 100 W amp.

Figure 3—W7DRA's 80 meter, 100 W amp.

Figure 4—W7DRA's 100 W portable amp.

low power contester, feels meters are unnecessary, and only take up panel space. A portable output power meter is all that is required to check actual power to the antenna feed line. Even exciter meters are frowned upon, since monitoring the color of the screen grids of the driver is all that is needed to check exciter resonance. A low valued (100 Ω) screen resister makes screen color a good resonance indicator.

Figure 3 shows the main station final for 80 meters. Please ignore the meters shown, as they were only used during initial amplifier checkout.

The 100 W contest final can take on many shapes, and another one constructed for portable use by the author is shown in Figure 4. This one also utilizes an 810, and was used during the 2003 CQ WPX contest at W7DRA/7.

With the advent of old microwave ovens available at thrift shops, the power transformer problem is solved! In the original CQ article, Freddy, HB9MS, suggests using a "bridge rectifier" (1950 ARRL Handbook, page 226). This is the perfect circuit for a microwave transformer, as it requires no center tap. I and with Ken Gordon, W7EKB, of the University of Idaho's College of Science, concur with using four 866s as Freddy's use of the 872A tubes in the bridge is a bit over-kill. A 25 amp 120 volt Variac is also needed to set the exact value of the high voltage required for the 100 W contest final.

There are a few major contests (such as the Minnesota QSO party) that require a 150 W contest final. If one cannot find a single tube of sufficient ruggedness, two may be used in a circuit that is described in the popular, well-referenced *1941 ARRL Handbook* (page 232), which uses a "push-push" circuit requiring no neutralization. Now with a mere pair of 8877s or 4- 250s, one can construct a 150 W contest final that can be driven by the 100 W contest final to good success (yes—K7CW did this under some rather unusual circumstances).

The author hopes that this article brings some information and understanding to the low power contesting community.

Notes

¹Rich, W2VU, CQ Editor, advises that the byline for this article was "Ol' Smoke". It's not clear who the real author was, but we do know that Wayne, W2NSD, took the pictures and the equipment belonged to Sam, W1FZJ.

Compact Four-Squares

Introduction

The four-square phased vertical array is very popular for use as a low-band contest or DX antenna. Unfortunately, it requires a lot of space to install the four vertical elements and the associated ground system. This article describes several designs for compact foursquares, suitable for operation on the 80 meter DX phone band, which will fit within an area of real estate measuring less than 50 feet by 50 feet.

Background

None of these arrays have actually been constructed, but all were simulated on the computer, using *EZNEC4*¹. The operating frequency is 3.79 MHz, and the soil is assumed to have an electrical conductivity of 0.005 Siemens per meter, with a dielectric constant of 13. In order to minimize the amount of area occupied by the antennas, each computer model utilizes a free-standing central mast, with a diameter of 8 inches. This structure could be a self-supporting tower or metal pole. These are available from a variety of manufacturers.

First Four-Square Design

Figure 1 is a computer-generated drawing of the first design, which is the smaller of the two. This antenna utilizes an 80 foot tower as the central support, with an 8 foot ground rod at the bottom. Each side of the "square" is 48.08 feet long, which places the feed-points of the 4 elements exactly 34 feet from the axis of the tower. At a height of 15 feet above the ground, four 32 foot horizontal "arms" extend outward at 90° intervals. These arms are metallic, but an additional two foot length of non-conductive material must project beyond the end of each metal arm to the actual feed-points of the elements. These four long horizontal arms may be supported by over-head guys, as well as side-guys, if needed. The individual feed-lines for the elements should be run along these arms, with a current balun or choke at each feed-point.

The elements in the computer model of the four-square are constructed from #12 AWG copper wire; each element has a single vertical radiator and two horizontal radials. The radiator wires are 69 feet long, but are not perfectly vertical; instead, they slope inward toward the

¹Notes appear on page 12.

Figure 1—A computer drawing of the first compact four-square design, which utilizes an 80 foot central mast to support the antenna.

Figure 2—Elevation plane radiation patterns for the first compact foursquare design—solid trace: firing through the corner of the square, using current phase-angles of 0°, -125° and -250°—dashed trace: firing through the side of the square, using current phase-angles of 0° and -125°.

tower axis, at an angle of 21.8° from the vertical. Four short non-conductive horizontal arms, each projecting outward 8 feet from the center-line of the tower, can provide anchorage for the upper ends of these vertical elements.

The radials, which make up the "sides" of the four-square, are all 43.5 feet long, but are "bent" so that two radials (one from each adjacent element) can "share" one side of the square. From each feedpoint, two radials extend horizontally, perpendicular to each other, for a distance of 23.5 feet, and then bend inward at a 90° angle (directly toward the central mast) for another 20 feet. All of the radials are shorter than a full quarter-

Figure 3—Azimuthal plane radiation patterns for the first compact foursquare design—solid trace: firing through the corner of the square, using current phase-angles of 0°, -125°, and -250°—dashed trace: firing through the side of the square, using current phase-angles of 0° and -125°.

wavelength, so a loading coil must be placed at each feed-point to reduce the input reactance. In Figure 1, notice that the extreme ends of adjacent radials run parallel to each other, at a spacing of just over one foot. Thus, to avoid computational errors in the model, segment lengths of roughly one foot were used for all of the antenna wires.

Eight Directions of Fire

The parameters of the system were then adjusted to provide the best combination of gain, front-to-back ratio, beam width, and input impedance, when firing through the corners of the array. The final design utilizes equal-magnitude currents for all elements, with a phase-angle of 0° for the rear element, -125° for the two side elements, and -250° for the front element.

The resulting elevation plane radiation pattern is displayed as the solid trace in Figure 2. The peak forward gain is 4.32 dBi at a take-off angle (TOA) of 21°, and the front-to-back ratio (F/B) is 16.34 dB. In the azimuthal plane (the solid trace in Figure 3 shows the pattern) the F/B is also 16.34 dB, while the half-power beam width (HPBW) is 86.6°. Each loading coil has an inductance of 1.26 μ H, or a reactance of 30 Ω at 3.79 MHz. A series loss resistance of 0.3 Ω was assumed for each coil, yielding a Q of 100. The corresponding input impedances are $34.3+j18.6 \Omega$ for the front element, 12.9-j15.5 Ω for the two side elements, and -24.7-j10.0 Ω for the rear element.

Using these input currents, the beam width of the antenna is less than 90°. which means it is also necessary to drive the array so that it fires through the sides of the square. As before, equal-magnitude currents are used for all four elements, but now there are two "rear" elements and two "front" elements. The phase angle for the rear-element currents is 0°, and -125° is used for the front elements. Now the maximum forward gain is 3.37 dBi at 22° TOA, with an elevation plane F/B of 14.53 dB. In the azimuthal plane, the F/B is 14.57 dB and the HPBW is 122.2°. The dashed traces in Figures 2 and 3 are the corresponding radiation patterns. The driving-point impedances are 62.6-j23.6 Ω for the two front elements, and -11.8-j56.7 Ω for the rear pair of elements.

Four Directions of Fire

If the operator prefers to have an array that provides good performance with only four directions of fire (through the corners of the square), then the currents can be adjusted to produce a main lobe with less forward gain but greater beam width. To achieve this condition, the current phase angles of the "classic" foursquare work well: 0° for the rear element, -90° for the two side elements, and -180° for the front element. In this configuration the loading coils should have an inductance of 2.1 μ H, or 50 Ω of reactance at 3.79 MHz. The forward gain is 3.61 dBi at 22° TOA, with a F/B of 17.44 dB. In the azimuthal plane the F/B is 17.48 dB and the HPBW is 110.8°. The main radiation patterns are displayed in Figures 4 and 5. For the front element, the input impedance is $67.9+j28.1 \Omega$, with values of 27.2-j25.7 Ω for the two side elements and -37.8-j20.8 Ω for the rear element. If an even-broader main lobe is desired, the phase-angles can be decreased still further, with an accompanying reduction in gain.

Second Four-Square Design

Inspiration for the second design came from an on-line article by L. B. Cebik, W4RNL². This larger antenna (shown in Figure 6) requires a 120 foot tower as the central support, and again an 8 foot ground rod is installed at the base. As before, each side of the four-square is 48.08 feet long, placing the feed-points of the 4 elements 34 feet from the axis of the tower. In this design, full-size halfwave elements are used, with the feed-

ur- Figure 6—A computer drawing of the hase- second compact four-square design, produce which utilizes a 120 foot central mast -width. to support the antenna.

points located 64 feet above the ground. At this height, four 32 foot horizontal arms extend outward at 90-degree intervals. Again these "arms" are metallic, with an additional two foot length of non-conductive material projecting from the end of each metallic arm to the actual feed-point of the element. These arms will need to be supported by overhead guys, and probably by side-guys as well. The feed lines for the elements run along these "arms", with a current balun or choke at each feed point.

The elements of the four-square are constructed from #12 AWG copper wire. Each element is a half-wave vertical radiator that is fed in the center, and there are no radials. For this application each element-half is 61.5 feet long, but the wires are not perfectly vertical. Rather, they slope inward from the feed-point toward the tower axis, at an angle of about 29.5° from the vertical, so that the included angle between the two legs of the "vertical vee" is almost 121°. Four short non-conductive horizontal arms, each projecting outward 2.27 feet from the centerline of the tower, can provide anchorage for the upper ends of the vertical elements if installed at the apex height of 120 feet. Identical arms at a height of 8 feet will serve as tie-off points for the lower ends of the wires.

Eight Directions of Fire

The parameters of the system were then adjusted to provide the best combination of gain, F/B, beam width, and input impedance when firing through the corners of the array. The final design utilizes equal-magnitude currents for all elements, with a phase-angle of 0° for the rear element, -135° for the two side elements, and -270° for the front element. Because full-size elements are used in this larger antenna, no loading coils are needed.

The elevation plane radiation pattern for the array design is displayed as the solid trace in Figure 7. The peak forward gain is 5.48 dBi at a TOA of 18°, and the F/B is 23.54 dB. In the azimuthal plane, the F/B is 23.56 dB, while the HPBW is 86.8°. This radiation pattern is the solid trace shown in Figure 8. The input impedances are $4.8+j33.1 \Omega$ for the front element, $23.0-j17.7 \Omega$ for the two side elements, and $-7.8-j16.0 \Omega$ for the rear element.

When driven with these input currents, the beam width of the antenna is less than 90°, so it is also necessary to reconfigure this array to allow it to fire through the sides of the square. As before, equal-magnitude currents are used for all four elements. The phase-angle for the two rear element currents is 0°, with -135° used for the two front ele-

Figure 4— Elevation plane radiation pattern for the first compact foursquare design, using current phaseangles of 0° , -90°, and -180° to produce a main lobe with a broad beam-width.

Figure 5—Azimuthal plane radiation pattern for the first compact foursquare design, using current phaseangles of 0° , -90°, and -180° to produce a main lobe with a broad beam-width.

Figure 7—Elevation plane radiation patterns for the second compact foursquare design—solid trace: firing through the corner of the square, using current phase-angles of 0°, -135°, and -270°—dashed trace: firing through the side of the square, using current phase-angles of 0° and -135°.

Figure 8—Azimuthal plane radiation patterns for the second compact foursquare design—solid trace: firing through the corner of the square, using current phase-angles of 0°, -135°, and -270°—dashed trace: firing through the side of the square, using current phaseangles of 0° and -135°.

Figure 9—Elevation plane radiation pattern for the second compact foursquare design, using current phaseangles of 0° , -105°, and -210° to produce a main lobe with a broad beam-width.

Figure 10—Azimuthal plane radiation pattern for the second compact foursquare design, using current phaseangles of 0° , -105°, and -210° to produce a main lobe with a broad beam-width.

ments. Now the maximum forward gain is 4.57 dBi at 18° TOA, with an elevation plane F/B of 15.94 dB. In the azimuthal plane, the F/B is 15.98 dB and the HPBW is 122.0°. Figures 7 and 8 include the corresponding radiation patterns, shown as a dashed line. The driving-point impedances are 75.3+*j*29.7 Ω for the front pair of elements, and 5.7-*j*54.0 Ω for the two rear elements.

Four Directions of Fire

As was true with the first design, it is entirely possible to modify this larger array so it provides good performance

with only four directions of fire. Of course, the resulting main lobe will have less forward gain, but a larger beam width. In this scenario, the current phase-angles are selected as 0° for the rear element, -105° for the two side elements, and -210° for the front element. The forward gain is now 4.84 dBi at 18° TOA, with an elevation plane F/B of 17.64 dB. In the azimuthal plane the F/ B is 17.87 dB and the HPBW is 111.0°. The important radiation patterns are displayed in Figures 9 and 10. For the front element, the input impedance is $39.8 + i65.4 \Omega$, with values of 54.1 - i38.3 Ω for the two side elements and -22.9 $j44.2 \Omega$ for the rear element. Again, a broader main lobe can be produced by further decreasing the current phaseangles, although this reduces both the forward gain and the front-to-back ratio.

Conclusion

This article has shown how to construct several different compact foursquare phased-vertical arrays that fit into a 50x50-foot plot of land. Their performance is inferior to that of a conventional ground-mounted antenna, but only $1/_{16}$ as much space is required.

Notes

¹*EZNEC* is available from Roy Lewallen, W7EL, PO Box 6658, Beaverton OR 97007.

²L. B. Cebik, WARNL, "Pursuing the (Nearly) Perfect Parasitic Vertical Array for 160 Meters, Part 1: A Review of Design and Modeling Techniques," www.cebik.com/ 160sa.html NCJ

KB-5 Pennant, flag and delta antennas.

For more information, please check the www web site. Visa and Master Card accepted.

Clark Electronics

65 Patterson Hill Rd., Belfast, ME 04915 USA Tel (207) 338-0474 • www.qsl.net/k1fz/• k1fz@prexar.com

Rick Lindquist, N1RL

Bill Fisher, W4AN, Silent Key

The contesting community has lost another of its best. Bill Fisher, W4AN (ex-KM9P), of Alpharetta, Georgia, died unexpectedly April 4. He was 41.

Bill was an enthusiastic radio amateur whose call sign often graced the upper echelons of the contest results. Fisher and fellow Georgian John Laney, K4BAI, took the silver medal at World Radiosport Team Championship '96 in the San Francisco Bay area. The pair also competed in WRTC-02 in Finland as OJ3D. "It is with the deepest regret imaginable that I must report the unexpected death of my dear friend and fellow amateur, W4AN," Tom Rauch, W8JI, said in a posting to the CQ Contest Reflector. "Bill was a good friend of mine, and he was a great asset to the community." Fisher's death comes as the contesting community is still recovering from the untimely death of Jim White, K4OJ, in February.

In addition to his contesting activities, Fisher was the founder of the **Contesting.com** Web site. Along with Garth Hitchens, KG7GA, Randy Thompson, K5ZD, and Trey Garlough, N5KO, he helped to establish the popular **eHam.net** Amateur Radio site in 1999. In addition, he personally supported contesting reflectors via his own servers.

"I will miss his leadership," said eHam Site Manager Mike Gilmer, N2MG. "Bill had a way of low-pass filtering the noise from both the users of eHam and the site team and trying to maintain focus. Mostly I will miss him as a friend, fellow ham and contester, and straightforward guy."

During the 1980s and 1990s, he contributed more than a dozen articles to the *National Contest Journal*.

Dave Pascoe, KM3T, said his friendship with Fisher extends back more than 20 years. "I knew of nobody as generous with his time and with as unique a personal touch as Bill," he said. "Many will never know nor comprehend the amount of time and resources he poured into this hobby of ours." Pascoe said the world may never see a more accomplished CW contest operator than W4AN. "Bill's skills were uncanny, and he was always and will forever be an inspiration to me and I am sure many others."

Pete Smith, N4ZR, said he was stunned to learn of Fisher's death. "Like many of us, I never met Bill face-to-face, but we used to chase DX together on 80-meter CW, and I frequently found myself near him during contests," he said. "He was always a gentleman and a competitor, never just a competitor."

Fisher had established a top-flight contesting station on a hilltop in the mountains of north Georgia near Dahlonega that sported six towers plus a four-square array for 80 meters. When he was not contesting, he operated the station from his home via a telephone link, since antenna restrictions prevented him from putting up outdoor antennas.

"Not many know that Bill was a pioneer in the development of hardware and software for operating remote stations," said Ward Silver, NØAX, who edits the *ARRL Contester's Rate Sheet*. "In 1995 and 1996, Bill and a team including Garth, KG7GA, developed a remotely-operated, full kilowatt station sufficiently capable for K7SS to operate a sprint station by telephone—truly state of the art at the time." Silver said Fisher's legacy is not only dreaming about pushing the envelope, but making those dreams happen.

Fisher also occasionally operated vintage gear from home using attic antennas. More recently, he was said to be dismantling his contest station as part of a plan to combine forces with W8JI and establish a contest superstation.

Fisher was a member of the South East Contest Club, the South East DX Club, the First-Class CW Operators' Club (FOC) and the A-1 Operator Club. In addition to being a ham radio contester, he was an avid bicycle racer.

In his professional life, Fisher was founder and Vice President of Concentric Systems Inc of Alpharetta—a supplier of custom-built PCs to computer resellers. He also established and served as president of Akorn Access Inc—an Internet service provider and consulting company.

Survivors include his wife, Dana and their young sons Graeme and Erik.

The W4AN Memorial Fund for Graeme and Erik Fisher has been established to benefit Fisher's children. Donations are welcome to North Atlanta National Bank, 10500 Old Alabama Rd Connector, Alpharetta, GA 30022; tel 678-277-8400. Make checks payable to "W4AN Memorial Account" and include the account number, 20005913, on the check "memo" line. **NCJ**

By Ward Silver, NØAX

Visalia 2004

First: if you haven't "done" Visalia, put it on your list of ham events to attend at least once. All the Big Guns on the West Coast are there and many more from around the world—you'll enjoy putting a face with the calls. The programs are tiptop and the dinner banquet alone usually has more than 500 folks in attendance. Wow! You can drive down (easy two-day drive from the Northwest, or a few hours from Los Angeles or San Francisco) or fly in (Fresno is 30 miles away). Golfers can take in the tourney on Friday morning, too!

This year's event (www.scdxc.org/ visalia), hosted by the Southern California DX Club (SCDXC), was spectacular in the weather department—solid sun and clear skies for the entire weekend. Friday morning, Garry, NI6T, and I joined up with Tom, NW6P, and boogied across the state to Visalia. It's about a 3-1/2 hour drive from the San Francisco Bay area to Visalia through some visually stunning landscapes. Make the drive sometime and you'll really enjoy it. Afterwards, we all headed for poolside and an open bar, courtesy of RadioDan, the SCDXC and the Piña Colada Contest Club.

Attitudes adjusted, it was time for the Friday night Contesters Dinner, where yours truly was the featured speaker. Most folks seemed to overlook that misfortune and we all had a good time. My talk was on "What Makes a Good One?" in memory of the departing friends in the contest community like W7BX, W4AN and K4OJ this year. Friday night also features the FOC dinner, an IOTA dinner and a gathering of Topbanders at a local restaurant,

so whatever your cup of tea on the bands, there is an event for you.

On Saturday, you start by grabbing a quick breakfast and heading for the introductions. This year, an interesting feature was added-a forum for vendors to spend a few minutes introducing their new products. The two that caught my eye were the Force 12 Tornado antenna tuning unit and a new wattmeter by Alpha Power. (For a complete list of the vendors and their products, browse to www.scdxc.org/visalia/sponvend02.html) There is a substantial presence of serious vendors with their newest gear and generously supporting the convention with a great list of prizes. (Speaking of prizes, Herb, KG6OK, did another excellent job this year, but was diagnosed with a serious illness just before the convention-best wishes for a speedy recovery, Herb!)

The Contest Forum and DX Forums took the schedule up to lunchtime. One of the big pleasures of Visalia is the free BBQ hosted by US Towers, just a couple of miles away from the hotel. You can check out all of their latest products and

Coan	OMTEK nounces Stack - 2 Yagi for Tribanders	STACK - 2 for tri SYS-3 STACK Y. Designed by K3Ll RCAS-8 REMOT MOV's & RF BY VFA-4 Set of 4 ver RR-1 Aluminum 6	ibanders 40-10 AGI SWITCH for 2 o R, as described in his E ANTENNA SWITC PASSING ON EACH rtical feedpoint assemb 50 hole Radial Rings	r 3 YAGI'S two part CQ Contest : CH OF THE SIX (6) CO! lies	\$194.95 \$359.95 article. \$279.95 NTROL LINES \$29.95 \$129.95
		COMTE ACB-160 ACB-40 ACB-15	EK THE 4-SQ \$349.95 \$334.95 \$319.95	QUARE EXF ACB-80 ACB-20 ACB-10	PERTS \$339.95 \$329.95 \$319.95
	ComTek Systems	P.O. I FIC: (7 e-mail - comtek4	ComTek Box 470565, Cl 704) 542-4808 F @juno.com Web:	Systems harlotte, NC 28 FAX (704) 542-9 http://www.comte	247 0nline 0f52 0rdering 0ksystems.com

some mighty nice towers while munching on roast beef, potato salad and BBQ beans. It's very much appreciated by all and well attended.

After lunch, programs ranged from DXpedition coverage, to Topband mobiling by KH6DX, to antenna theory by N6BV. (For the list of programs, check out www.scdxc.org/visalia/ sched.html.) W6NL introduced his new Moxon-like 40-meter beam design. You will be hearing a lot more about this 2element antenna that has great performance and is mechanically superb. My own contribution was a presentation on "Trends in Contesters and Contesting" that discussed where we are today and hopefully made some thought-provoking suggestions about where the sport might meander in the coming decade. We have lots of opportunities and obligations to take care of our favorite activities as the elders of the tribe.

Saturday evening is the Big Show as there is another attitude adjustment opportunity hosted by HRO and the SCDXC. This is followed by the huge banquet attended by hundreds of people. The theme was "Hawaii Night" and you can only imagine the scene as nearly 600 aloha-shirted Big Guns packed the room. This year's featured speaker was Chip, K7JA, as he told the story of the COØUS/T42FD Field Day operation. Following the banquet, the Northern California Contest Club hosted a hospitality suite that lasted into the wee hours, as I can personally attest. Yes, things got just a little silly.

Sunday morning's breakfast was another food fest (I'm sure I put on a couple of pounds over the weekend) with a very interesting program. John, K6AM, hosted the finals of "Who Wants to Be a DX Millionaire" which is based on the TV show. That was followed by N7CQQ giving the details on the recently concluded 3B9C expedition. What an effort that was! It's an excellent program if you get the chance to see it. All too soon, it was checkout time and we scrambled for the exits. The hotel staff did an excellent job all weekend long and made the whole thing run extremely smoothly. SCDXC did a bang-up job playing host, keeping everything on time and exceeding everyone's expectations. A job well done by all the attendees!

Put next year's International DX Convention on your calendars now—April 15 through 17—and join the fun! **NCJ**

The VHF QRP Portable Category — Into the Second Decade

History of QRP

Portable activities on VHF have a long and rich history. As far back as the earliest days of 5-meter activity, amateurs took equipment to remote locations. The "UHF" first reported portable mountaintop expedition took place in April 1927 when tests were conducted between Schenectady, New York; Mt Whitcomb in Massachusetts: and Mt Mansfield in Vermont.¹ In 1931, ARRL technical staff designed 5-meter transmitters and receivers for portable use in car and airplane tests, and this equipment proved wildly successful, sparking further interest in UHF.² Using this portable equipment, one radio club in New Jersev even utilized several fire lookout towers for 5-meter tests conducted on Washington's Birthday in 1932.3

The first real VHF contest-oriented activity in the US was conducted in September 1939, and was styled as a "U.H.F. Relay." The event was notable for its high scorer, who operated from a Plymouth coupe! In an amazing portable effort, Goyn Reinhardt, W3AC/3, strapped a homemade 56 Mc. array to the side of an elevated deck at High Point State Park in New Jersey, and made a grand total of 308 points.⁴

Portable operations continued over the years. The first September QSO Party in 1948 was won by Jim Thayer, W1FZ, operating from the summit of Blue Job Mountain in New Hampshire. Driving a 180 pound, 500-W gasoline generator to a fire lookout tower at the mountain site, Thayer worked 130 contacts in 15 sections on 50, 144, and 235 Mc.⁵ Portable and mobile activity continued in popularity in subsequent contests, especially in the June VHF QSO Party where favorable weather and propagation conditions made portable efforts very enjoyable.

The QRP Portable category began as a separate class during an era marked by category expansion and increased contest variety. The QRP category made its debut in the September VHF QSO Party of 1986. Entries had to run 10 W PEP or less from a temporary location and with a portable power source, equipment, and antennas. The first QRP contest had 11 participants and 12 log entries, with a cumulative total of 17,665 points. K6LMN, running from Santa Clara Valley, won with 6,536 points. QRP was added to the June

¹Notes appear on page 18.

VHF QSO Party in 1987. Clarke, K1JX, of Connecticut won the category with an incredible score of 120,268 points. He would go on to establish further QRP records in both the September 1987 and June 1988 VHF events.⁶ The QRP class was added to the January VHF SS in 1989, and K6LMN, then operating from San Diego, also won this contest with a modest 4,800 points. The category was renamed in 2001 to "Single Operator Portable," but continued with the same basic QRP and portable rules.⁷

Data Analysis

The QRP category provides an ideal setting for basic data analysis, both due to its compact size and because the category has existed for over 15 years with no major changes in its composition. I have placed every single QRP entry since 1986 for the January VHF SS, the June VHF QSO Party and the September VHF QSO Party into an Excel spreadsheet, listing the call signs, scores and sections of all entries. The statistics and findings of this article are gleamed from output of that spreadsheet.

In developing the data for this article, a few strategic decisions were made regarding the appropriateness of certain scores. The numbers and statistics of this article are therefore dependent upon those decisions, and other writers could produce somewhat different totals by making alternate decisions. Specifically, the June 1986 QRP scores are not included, due to the QRP category becoming effective only in September 1986.⁸ Two-person and multi-op QRP scores are also excluded, as the League considers these entries to be in the multi-op category.⁹ Multiple QRP entries by one operator in the same contest are included, however, as such activities have been considered to be separate QRP entries.¹⁰ Another decision involved call signs utilized. Generally, the scores have been counted towards the guest operator's call sign, and not the station call sign or special event call sign used.

Verification of data is always important when dealing with the manual processing of numbers. The task of accuracy in the numbers is especially important here, since data collection and input was a painstakingly slow endeavor, prone to numerous mistakes. Considering these obstacles. I took several steps to internally and externally verify the data.¹¹ UItimately, some 578 call signs and / or line scores in the spreadsheet were ultimately cross-checked (representing over 40% of all QRP log entries in the spreadsheet). Only 19 call signs, or 3.3% of all calls in the spreadsheet, were found to be in error. Twenty-six logs (1.9% of all log entries) were in error as to the score, resulting in an increase of 5881 points in the score totals and an absolute value change in scores of 6105 points. This is less than 1% error in the line scores. This low error

Table 1 QRP Points, by Year and Contest

Year	Jan	June	Sept	Ttl Pts	Pts/Log	Pts/Op
1986			17,665	17,665	1,472	1,606
1987		162,609	61,876	224,485	6,803	8,634
1988		431,276	9,245	440,521	8,990	12,586
1989	10,608	68,984	22,425	102,017	1,342	2,267
1990	57,086	196,178	83,290	336,554	3,400	5,803
1991	62,423	215,641	107,762	385,826	3,937	5,434
1992	64,442	408,419	169,183	642,044	8,676	10,701
1993	77,785	231,963	183,308	493,056	5,540	7,044
1994	54,161	219,919	290,912	564,992	6,570	7,958
1995	115,700	347,239	292,127	755,066	6,991	8,989
1996	179,027	551,274	156,861	887,162	9,438	11,090
1997	177,978	306,279	392,639	876,896	8,858	10,826
1998	74,369	291,764	264,080	630,213	7,878	9,268
1999	27,658	148,799	87,070	263,527	3,875	4,972
2000	67,039	229,966	31,558	328,563	4,904	6,571
2001	47,926	381,748	114,177	543,851	8,117	10,071
2002	120,611	380,619	77,988	579,218	8,776	11,821
2003	35,289	439,427	200,372	675,088	8,767	10,889
2004						
Total	1,172,102	5,012,104	2,562,538	8,746,744		
Pts/Log	g 2,818	9,351	6,571	6,518		

rate in both the call signs and scores lends credibility to the overall numbers presented in this article.

The Numbers

A total of 8,746,744 QRP points have been scored in all ARRL VHF contests since 1986. That is a lot of points by any account! High scores and ratios in Table 1 are highlighted in bold.

As can be seen in the Table 1, the scores initially built up from modest levels, and then peaked in 1996 for the January and June contests and in 1997 for the September event. Cumulative yearly scores and the average points per log entry peaked in 1996. Because of enhanced propagation abilities, the June QSO Party has garnered the largest points per year, although the September VHF QSO Party has also produced produce significant results at times. Not surprisingly, the January VHF SS has the lowest QRP cumulative scores. Considering the bad weather conditions and poor propagation generally existing in January, it is amazing to see just how many QRP points can still be scored in the VHF Sweepstakes. The yearly cumulative totals are displayed in Figure 1.

Turning now to participation levels, 1342 QRP logs have been submitted in the three ARRL VHF contests having a QRP category. This is an incredible number of QRP logs, especially when one realizes that the large amount of entries have been generated by only 560 individuals. This demonstrates that a relatively small group of people has generated all QRP activity over the last 50 contests. In spite of the large aggregate totals, the number of QRP entries in any one contest is rather small. Having only 20 to 30 QRP entries in a single contest makes the category exceedingly tiny and almost insignificant compared with the total number of points scored in any one VHF contest. An increase in the QRP entry levels would certainly help firm up competitive levels and smooth out many of the large fluctuations in points and operator statistics. The QRP log entries for each contest are shown in Table 2.

The total number of cumulative log entries per year and the number of operators per year both peaked in 1995 at 108 logs and 84 operators, respectively. The number of entries in the January and September contests both peaked in the mid 1990s as well, while the popularity of the June contest reached a zenith much earlier in 1990.¹² In terms of log entry distribution between the contests, the June event enjoys the greatest popularity among QRP operators, although both January and September have good support, too. The number of log entries and the number of QRP operators supporting the contests on an annual basis can be seen in Figure 2.

Trends In The Numbers

Putting all of the numbers together, a clear and unmistakable trend can be ascertained. The total amount of yearly QRP points, log entries, and operators submitting QRP scores steadily increased from the start of the QRP category in 1986 until the 1995-1997 time frame. Since that time, all three critical indicators of cumulative points, the number of log entries, and the number of operators submitting log entries have fallen off considerably. Most recently, there have been small increases in the log entries and the number of operators submitting logs, and with the cumulative points greatly increasing since hitting a low in 1999. This fall-off in participation levels and point production is guite consistent with overall trends in the VHF contests.¹³ Indeed, the severe drop in annual QRP scores after 1997 may be more pronounced than the general trend in VHF contests, as there have been increases in total contacts and QSO points generated in all VHF contests over the last several years.¹³ The more recent build up of QRP points in spite of declining to stabilizing log entries is probably due to the increasing use of microwave frequencies by QRP enthusiasts, and this is also consistent with overall trends.

What really matters to the continuing success of any contest is the number of individuals regularly participating and supporting it, not the number of call signs submitting the logs, nor the number of log entries or cumulative points. Due to the compact nature of the QRP category, the *Excel* spreadsheet used to generate the information and numbers for this article has been able to identify not only participating call signs, but also the number of

Table 2

Log Entries and Operators, by Year and Contest

. 3						
Year	Jan	June	Sept	Total Logs	Total Ops	Lgs/Ops
1986		12	12	11	1.09	
1987		15	18	33	26	1.27
1988		38	11	49	35	1.40
1989	16	31	29	76	45	1.69
1990	29	48	22	99	58	1.71
1991	47	33	18	98	71	1.38
1992	15	31	28	74	60	1.23
1993	29	34	26	89	70	1.27
1994	24	30	32	86	71	1.21
1995	48	38	22	108	84	1.29
1996	33	38	23	94	80	1.18
1997	41	36	22	99	81	1.22
1998	32	29	19	80	68	1.18
1999	25	22	21	68	53	1.28
2000	18	29	20	67	50	1.34
2001	14	26	27	67	54	1.24
2002	20	27	19	66	49	1.35
2003	25	31	21	77	62	1.24
Total L	_ogs 416	536	390	1342		
Total C	Ops (across a	ll years)		560		
Total L	.og / Op (acro	ss all years)		2.40		

Note that 560 Total Ops represents the total number of unique operators submitting at least one QRP log entry across all years of VHF contesting, and will not sum to the number of ops submitting logs in any one year. This is because many of the same people will submit logs across several years.

Figure 1—Cumulative QRP Points, by Year

Figure 2—Cumulative Log Entries and Operators, by Year

individual operators who have actively supported the QRP category. This identification of individuals, as opposed to call signs, has been made possible through a cross check of past and current call signs in the FCC database, as well as by keeping a close track of the individuals who regularly operate in the QRP category.15 On an important note, the number of individuals supporting the category has risen and fallen in the same general fashion as has the number of log entries. This has been presumed to be the case with all VHF categories and in all VHF contests, but has never been statistically shown before to my knowledge. The actual number of individuals supporting the category initially swelled in the late 1980s but then topped out by the mid 1990s, with a sharp decline occurring thereafter. Most currently, the number of individual entrants in the QRP category shows some evidence of bottoming out and stabilizing, as displayed in Figure 2. 16

The search for reasons and causes producing the sharp increase and subsequent drop off in individual participation levels has become a most perplexing matter and the subject of great debate. A number of possible explanations have been proffered for the phenomenon, but no rationale has as of yet gained a consensus of support and belief within the VHF community. Some experienced contesters contend that the extensive rules set and all-inclusive nature of the ARRL contests may be keeping away many amateurs who have been recently testing out their HF + VHF rigs on 6 and 2 meters. Others cite to the contests developing into *de facto* microwave events coupled with the lack of award incentives for those contesters operating on only the VHF bands

I have written extensively on technological and demographic impacts being the driving forces for the vast swings and booms in operator participation since the start of VHF contesting in 1948 (see note14). Whatever the reasons for the trends, the general concern as to declining contest participation is actually heightened by my above finding that a decline in the number of individuals supporting the QRP category has essentially been behind the decline in the number of log entries, the number of call signs submitting logs and the number of cumulative points scored in the contests. If this finding can be extended beyond the QRP class and to all VHF categories, it is most troubling indeed. As individual interest waxes and wanes, so does all of contesting. The available data generates some other interesting observations, summarized below.

A Category Of Endurance And Fun

A recurring theme among all QRP contestants is the enormity of weather and equipment considerations. Many QRP Portable operators are much more concerned about Mother Nature and the working order of their equipment than they are about the other competitors in the class, or even their final scores. Just finishing a contest can be a major accomplishment at times, and category participants have routinely commented on their struggles and triumphs over weather and equipment alike. While participants of the category put up with any number of physical challenges, there is also a great sense of adventure and fun. Exotic and remote locations with impressive vistas and natural surrounding are regularly chosen for many QRP efforts.

Most Try The Category Only One Time

The number of regular contest operators is the critical determinant in the overall integrity and vitality of any class or category, as the more times that a person participates in a class over a number of years, the more solid the category's composition will be. Unfortunately, roughly twothirds of all QRP operators attempt the category only one time. Some 345 operators out of a total of 560 ops submitting QRP scores across all years have ran the class in only one event. This represents 61% of all entrants. The same pattern exists over the most recent five-year period, with 114 of 169 ops with QRP scores in the last five years running the category only once, or 67% of all participating individuals. This non-return rate across all years, and in the last five years, is quite high. This could be due to the harsh weather conditions and stringent equipment requirements that VHF QRP enthusiasts undertake.

Most of the operators posting only one log entry have had guite small scores. Three hundred and three operators with only one QRP entry across all years have submitted scores of fewer than 5000 points, and 207 of those individuals have generated scores of under 1000 points. While the vast majority of the operators trying out the QRP category only once had small to tiny scores, a few posted tremendous efforts. Thirteen operators who operated QRP only one time in the past 50 VHF contests had a single contest score of over 20,000 points, and two amateurs ran over 50,000 points. Given the right location and good band conditions, a major QRP score can certainly occur even with a one-time only entry, swiftly propelling the operator into the status of a "QRP superstar."

Impressive Point Totals Can Be Had

Even though the category is limited to 10 W, experiences Field Day like conditions in summer and blizzard-like conditions in the winter, and requires all the equipment, power, antennas, and locations to be temporary and portable in nature, the scores can be quite large upon occasion. Many ops will produce high scores by staking out very high ground, and this makes the hunt for great locations a critical feature of the portable category.

Since the start of the category in the 1980s. 54 entries with scores of 5000 or more points have occurred in the January VHF SS, and two even went over 50,000 points. Seventy-four QRP entries have topped 20,000 points in the June event and six have exceeded 100,000 points. Fifty-six entries have had at least 10,000 points in the September contest, and three went over 100,000 points. Many people would be ecstatic to have these kinds of scores for either the SO or Multi-ops categories. The fact that these results have occurred in the QRP category shows that operators with limited equipment and power levels can still run huge numbers. Who says that armchair contesting with kilowatts is the only way to go on VHF! Operator skill levels shine through and are readily apparent in the QRP category.

Geographic Dispersion Exists

No one section or division has a lock on the top QRP scores. In fact, the category has had large scores from 37 separate ARRL sections since 1986, and there has at least been some activity in most of the sections. This is quite curious, since one would think that the North East Corridor would dominate the QRP category. Tall mountain locations coupled with a high population density and great VHF activity should presumably make for ideal QRP conditions. To be sure, the North East has had some great operators cranking out wonderful scores and contest records. Individuals in Connecticut have been responsible for 24 top QRP scores from that one section alone. while operators in Vermont have produced 13 top scores. Right from the start of the category however, the West Coast has run some great numbers. Ops in various sections of California have pushed out 31 very high scores over the category's life, with four of those scores being national records.

Operators from low population density areas such as Arizona, Montana, Arkansas and British Columbia have even been able to post strong contest results. In my own section, Illinois, four operators are currently among the "55 regulars" actively supporting the category. Even the League's initial prediction that the January VHF SS would pose too many hurdles for amateurs in northern climates was recently proved wrong, with one operator from Minnesota claiming the highest score in the nation for the 2004 January contest.¹⁷

A Few Regulars Sustain The Category

Fifty-five individuals have run two or more QRP contests in the last five years. These "55 regulars" form the real core and nucleus of the category, as they have been responsible for most of the recent QRP log entries, total points, and section, division and top national scores. In a very real sense, these ops are the QRP class. While others may try out the category from time to time, these few ops have been consistently driving the competitive fires of the category.

In any one contest, however, even the regulars are few in number. Over the last five years, the January VHF SS has had between 14 and 25 QRP entries, averaging 20.4 QRP entries per contest. The June VHF QSO Party has experienced between 22 and 31 entries, averaging 27.0 entries. The September event has seen between 19 to 27 entries, with a mean average of 21.6 entries.

The regulars are a loyal and dedicated bunch. Over the most recent 15 contests, these 50 plus ops, comprising only 32.5% of the operators entering the QRP cat-

W5XD Multi-Keyer

More Features Than Any Ordinary Keyer!

Connect the W5XD multi-keyer to your PC via a serial port. Among a variety of functions the W5XD multi-keyer even acts

m

as a switchbox for single-op, 2 radios (502R) contesters. Windows 95, 98, ME or 2000 is needed. Requires only one COMM port which the keyer can share for rig control.

Features:

- CW generation is independent of the processor load on your PC running WRITELOG.
- Separate opto-isolated CW outputs for a LEFT and RIGHT rig.
- Paddle inputs for sending CW.
- Separate R and L rig antenna relay outputs.
- Headphone audio switching.
- The keyer includes a speed control potentiometer and a SPST switch on a remoting cable to control CW speed and L/R radio switching manually w/o the PC running.

\$215 +s/h includes keyer, remote speed and L/R switch box on a 3' cable, mating power connector (7.5 V to 25 VDC req.)

egory, had 231 contest log entries (66.9% of the total entries in the last five years) and were responsible for 1.797 million points (75.1% of all QRP points scored in the last five years). That is quite a collective accomplishment, since an individual or even a cumulative score of 5000 or more points is considered quite large for the category. As is the case with many other areas of contesting and amateur radio in general, a few highly motivated individuals account for the vast amount of activity and enthusiasm.

Notes

- ¹Over three weekends in April 1927, F.G. Patterson took a 5-meter receiver by car and by foot (in snow, too!) to both the Mt. Whitcomb observation tower and the Green Mountains in Vermont to hear 50-W transmissions from A.H. Turner, 10 miles north of Schenectady, NY. Received distances were 50 miles to 150 miles. "5-Meter Work at 2XM with Crystal Control," A.H. Turner, *QST*, June 1927, p.24-26.
- ²⁴Developments in Ultra-High Frequency Oscillators", *QST*, July 1931, p.9-20; "Five Meter" Receiving Progress, *QST*, July 1931, 21-25; "Duplex Phone on 56 Mc", August 1931, p. 9-13.
- ³"The Bloomfield Radio Club's "Five-Meter" Field Day", QST, May 1932, p.22-24. One of the locations was at High Point, NJ, soon to become famous in the 1939 UHF Relay as the site of the leading scorer in the event.
- ⁴See, "The U.H.F. Relay!" *QST*, Nov. 1939, p.26-27+. This first UHF event is considered the granddaddy of the VHF SS and QSO Party system. See, "20th ARRL VHF Sweepstakes Results," QST, June 1967, p.66-74, at 66. An interesting retrospective of the 1939 U.H.F. Relay is at "Echoes of the Past," *QST*, June 1995, p.48-49.
- ⁵Continuing with the portable nature of the effort, antennas were mounted on the side of the tower's windows and through a trap door in its roof. A total score of 2070 points was achieved. Taken from "September V.H.F. QSO Party," *QST*, Feb. 1949, p.69+, at 69.
- ⁶K1JX's 1988 June record of 137,409 points was only recently broken some 14 years later in 2002, by Pete, K9PW. Incredibly, K1JX has only entered the QRP category on the three occasions that he set records. Three entries, three records.
- ⁷Along with the name change, the rules were clarified to show the category was by then considered to be for only fixed-station portable efforts; that the operation must take place away from a permanent station location; and that the station could not change from a 500-meter diameter circle. See, "September 2000 VHF QSO Party Results," *QST*, March 2001, ARRL on-line posting.
- ⁸See, "Results, 1986 June VHF QSO Party," QST, Sept. 1986, p.94-98, at 94.
- ⁹An early contest write-up noted that the QRP Portable was for single ops only. See, "Results, 1987 June VHF QSO Party," *QST*, Sept. 1987, p.78-83, at 78. The League then asked for comments on whether two person QRP efforts should count. "Results, 1988 June VHF QSO Party", *QST*, Dec.

1988, p.95-100, at 96; and also in "Results, 1989 September VHF QSO Party," *QST*, Jan. 1990, p.76-79, at 77. No changes were ever made, and the occasional two-person QRP entry was classified as a multi-op entry.

- ¹⁰The practice of multiple QRP entries was quite common in the early years of the QRP category prior to the adoption of the rover rules in 1991. QRP grid mobiling declined dramatically after rovers became official.
- ¹¹Special thanks go to Curt Roseman, K9AKS, who provided access to his collection of calls and record section scores for all VHF categories, and gave valuable comments in the preparation of this article. Thanks also go to Bob Witte, K0NR, for reviewing a draft of this article for technical accuracy.
- ¹²This is due to the multiple entry mobiling activity much in vogue before the development of the rover category. If QRP grid mobiling is momentarily excluded from the data, the number of log entries in the June contest would also have peaked in the mid 1990s, just as is the case in January and September.
- ¹³For a discussion of cyclical booms in VHF contesting, see: "Trends in VHF Contesting," *NCJ*, Jan/Feb. 2004, p.6-8; and "Trends in VHF Contesting, Part II," *SMC Black Hole*, Jan. 2004, p.3+, available on line at www.w9smc.com/blackhole/04-01.PDF.
- ¹⁴Very nice graphical information on increases in QSO points between 1999 and 2003 on the 222 to 10GHZ bands can be found at "2003 September VHF QSO Party Results," QST, March 2004, p.104-105. The graphs in that article clearly show that per band QSO points aggregated across all categories have risen since 1999.
- ¹⁵Comparing the FCC database against the *Excel* spreadsheet identified 21 instances of the same person using two or more call signs for QRP entries in the various VHF contests. Additionally, close reviews of the line scores showed five instances of four different individuals using various station or special event calls in guest ops situations, as well as 125 multiple entries from 33 ops. The spreadsheet was thus able to identify 560 individuals who accounted for virtually all of the 1342 log entries and 8.7 + Million QRP points over all VHF contests since 1986.
- ¹⁶Comparing the actual contest logs against data used in this article would be ideal for ascertaining whether the trends in the numbers also exist with ops who run a contest but do not submit an entry. Unfortunately, such a comparison is not possible, as no review of actual log entries was done for this article.
- ¹⁷In announcing the expansion of the QRP category to the January VHF SS, it was noted that QRP in January "will probably appeal only to those in warm weather climes. Or do we have some hardy souls out there with snow shoes and dog sheds?" "Results, 1988 September VHF QSO Party", *QST*, Jan. 1989, p.97-101, at 99. Some 16 years after that rhetorical comment was made, KF0Q from Minnesota has now claimed 23,400 points in the latest January event. He has some interesting comments on his efforts at the ARRLWeb in the soapbox section of the 2004 January VHF SS contest.

NCJ July/August 19

SO2R Station Design Considerations Part 2—Audio Switchology —Is there a *Best* Approach?

By Hal Kennedy, N4GG

In Part 1 of this article we took a look at consciously laying out an SO2R station so as to allocate the most complex and most frequent manual tasks to the dominant hand. Here in Part 2 we will look at a more complex subject—allocating and switching the audio from two receivers to your ears. As in Part 1, the presented data is a compilation of responses received from SO2R contesters who responded to a survey on the *cq-contest* reflector at **contesting.com**.

Background—SO2R Audio Switching

It is possible to develop a simplistic view of the possibilities for audio switching. Two receivers and two ears—this is simple, yes?

A review of the advertising for the commercially available SO2R station controllers can reinforce the belief that there is not much to it—the basic approach being to put the left receiver in the left ear, the right receiver in the right ear, and allow manual selection of a few options. Typical options include the allocation of both ears to one receiver and enabling the logging computer/software to move both ears to the receiving radio when the other radio is transmitting.

This view of the *obvious* approach left me with only one question: What did SO2R ops think was the value of switching both ears to the receiving radio when the other radio was transmitting? To find out, the following questions were sent via email to the 44 respondents to the survey presented in Part 1:

With regard to audio switching, do you: Question 1—Always have the left radio

in the left ear, right radio in the right ear, or, Question 2—Left in left ear, right in right ear when both are Rx, and both ears on the S&P radio when the run radio is calling CQ. or.

Question 3—Other?

Question 4—Comments appreciated In retrospect, this was an inelegant set of questions. Much of the useful information came in reply to Questions 3 and 4. As it turns out, choosing among the possibilities for allocating and switching the audio streams from two receivers is anything but simple.

The Data Set

There were 33 responses, 32 from the 44 operators who were sent the questions, and one that arrived unsolicited! One response was too vague and was set aside, leaving a data set of 32. Among the 32 are many frequent topten finishers and long-time SO2R operators.

It is important to note that unlike the data presented in Part 1, the sample size for this data set is small compared to what turned out to be a large sample space. Also, when an individual mentioned a particular practice in reply to Questions 3 or 4, it is not possible to know whether others use the same practice or simply failed to mention it.

As a result, most of these findings should be viewed as qualitative rather than statistically significant.

Results

Questions 1 and 2:

Thirty (30) of the 32 replies (94%) indicated at least some operation with LR=LE (left radio in left ear) and RR=RE, with audio either fully separated or with minor mixing (small amount of LR into RE and RR into LE). Two responses indicated both radios in both ears all the time together with "riding the AF gain(s)."

Of the 30 stations using LR=LE and RR=RE, 12 (40%) indicated they do not switch both ears to the Rx radio when the other is Tx. Sixteen (53%) indicated they do switch both ears to the Rx radio when the other is Tx at least some of the time, and two (7%) did not indicate.

Of the 30 stations using LR=LE and RR=RE, 7 (23%) specifically mentioned mixing a little of one channel into the other channel. The rest did not mention mixing.

Of the 30 stations using LR=LE and RR=RE, 11 (37%) mentioned at least occasionally shifting both ears to one radio for one or more of three reasons. Eight mentioned doing it to pull weak ones out of the noise, five mentioned doing it when run rates were so high they considered the S&P radio a distraction, and two mentioned dropping back to SO1R when fatigued or to "take a break."

Discussion

With regard to switching both ears to the Rx radio when the other is Tx, the population is about evenly split between those who do and those who don't. There were only two responses indicating non-switching because their gear didn't support it. The rest of the "nonswitchers" indicated or implied they had tried it and didn't like it. A typical comment from a nonswitcher: "I tried...having the CQ radio in both ears and then the S&P radio in both ears but personally I find that very disconcerting. The whole world is jumping in and out of my head and it drives me nuts."

A typical switcher's comment: "...automatically switches the second radio when the run radio is transmitting. That's a *necessary* feature IMHO for me!" [sic]

Using the raw data, it is not possible to conclude that one method is better than the other-the population is split and this practice appears to be a matter of personal preference. As conjecture, however, effective use of switching both ears to the Rx radio when the other radio is Tx is likely a learned ability. The majority of ops who do not use the technique indicated they found it difficult, as opposed to not useful. It is possible many of the SO2R ops that do not switch both ears to the Rx radio when the other is Tx can make effective use of the technique given enough practice. The commercial SO2R boxes provide the feature as a switch-selectable ontion

Whether to switch both ears to the Rx radio or not is not, however, simply a decision regarding trying to learn the technique. Responses to Questions 3 and 4 highlighted the fact that there are at least four additional considerations:

1. *Switching vs. pots* There are advocates of each, but I only received one strong pro-potentiometer reply. A proswitch comment: "Some folks like a panpot left and right control, but I find the switchbox focuses my attention nicely." The one pro-pot comment: "I have *both* radios in *both* ears all the time. I use a variable potentiometer to control the amount of audio from the right radio and audio from the left radio, which can vary from 100% right radio to 100% left radio."

2. *Mixing audio* With regard to mixing some LR into RE and vice versa, I suspect many more stations do so than indicated they do—as this was not specifically asked. Proponents of mixing like the fact that mixing in a small amount of opposite-channel audio makes both audio streams appear to be coming from somewhere inside your head.

3. *Transmit radio CW sidetone* Most ops want it—particularly for occasional manual sending—and some indicated they want it all the time. "...It helps my

rhythm," one op said. Two ops specifically did not want it: "...the sidetone coming back from the Tx radio will be confusing. Its easier to kill the sidetone...;" and, "...no sidetones for CQing for distraction!"

4. **QSK** [Two responses] When operating QSK, the operators want to hear "in-between" the sending, so these stations do not switch both ears to the Rx radio when the other is Tx.

More Considerations

If the above is insufficient to get you rethinking your SO2R audio switchology, then consider:

1. Software vs. Hardware Most respondents indicated their SO2R functions were implemented in hardware. Hardware approaches include homebrew, the TTD DXD and the WXØB SO2R master. Three respondents specifically mentioned Writelog's HEAD-PHONE LATCH + SPLIT commands, however, which provide significant operating flexibility via software when used together with the MK-1100 Multi-Keyer. Writelog provides software control of audio switching, including switching both ears to the Rx radio when the other radio is Tx from the F keys or keyboard, and inhibiting that switching if you are sending manually so that you can hear the sidetone.

2. *CW vs. Phone* This was mentioned several times without yielding any clear information - at least to me. Is there an advantage to making SO2R audio switchology different between CW and Phone? There is at least one obvious difference—manual CW sending requires hearing the sidetone. This is unnecessary for phone.

3. *Stateside vs. DX* One ZL mentioned he spends significant time running pile-ups of weak US signals—both ears on the run radio was a requirement. Where you are and exactly what you are trying to do does matter.

Some Interesting One-offs

"A 'code reader' remains the best utilization I've made in the shack—some way to determine the radio I no longer hear (the running rig) is 'doing the right thing' as it's transmitting while I am listening to something else."

This is the only response in which auditory monitoring of the transmit radio was replaced by visual monitoring a clever and scientifically sound idea. This response helped shape the design of the SO2R controller I use at N4GG it is shown in Figure 1. The center LED is keyed along with the transmitting rig, providing visual monitoring of the outgoing signal. This allows both ears to be on the Rx radio without having to hear the sidetone from the Tx radio. It is pos-

Figure 1—The home-brew SO2R audio controller at N4GG. Audio CW sidetone has been replaced by a keyed LED.

sible to read outgoing CW, even at 35 WPM, by watching the LED. Allocating tasks between auditory and visual brain functions will be discussed further in Part 3.

"The radio on the left is set to 'zero beat' at about 400 Hz (lower note) and the one on the right is set for about 700 Hz (higher note). I find it helpful to "stereo-ize" them in my head."

This is something I want to try.

"Ear matches radio location, left and right. God help me if I ever stack the radios vertically."

Interestingly, the operator who uses vertical stacking (see Part 1) does not find this to be a problem.

"I find that keeping the audio levels as constant as possible helps my brain function..."

This station does not switch audio when transmitting.

"Speakers, no switching" —You must be joking!

Wrap-Up

Let's return to the question in the title: Is there a best approach to SO2R audio switchology? The answer is no, there is no single best approach, and yes, there is likely a best approach for a given individual at a given point in time considering his/her inherent abilities, learned abilities, and operating circumstances.

With regard to inherent abilities, a perennial top-finisher said: "What works best for a given contest op is a very individual thing. Everyone's brain works a bit differently and everyone's ability to hear the frequency spectrum and distinguish audio from noise varies as well. You need to try everything and see what works best for you and makes you the most efficient."

This seems right to me. An example of a choice that may be rooted in inherent abilities is the one between using a pan-pot and using switching.

Some of our abilities, of course, change as rapidly as over the course of a contest, while others change slowly over time due to learning and conditioning.

The "best approach" to SO2R audio switchology is one that functions in accordance with one's inherent abilities, and, has sufficient flexibility to allow realtime tailoring to changes in ability and circumstances. As a minimum, this tailoring must include the ability to move to SO1R for mitigating fatigue, digging out the weak ones and maximizing run rate.

As a final consideration, stations hosting guest operators should consider providing a variety of audio switching functions from which their operators can choose.

Thanks to all who responded to the layout and the audio switching questions posted on the cq-contest reflector at **contesting.com**, and via follow-up email. It is a pleasure to note that sharing information continues to be the hallmark of top contester operators.

While Parts 1 and 2 of this article did not provide cookbook "best approaches," I hope they at least yielded up some food for thought. In the next issue of *NCJ*, Part 3 will examine how our brains handle multitasking, and speculate on how to allocate station functions to brain functions. **INCJ**

Voice Techniques for Contesters

Don Daso, K4ZA k4za@juno.com

Babies can scream for what seems like hours on end, without any apparent damage. You can shout yourself hoarse during an afternoon's football game. Or find yourself without voice at the end of the CQ WW contest. Why? What has happened? The answer involves understanding proper use of your voice, compared to the *misuse* of your voice. We are speaking, of course, of habitsthings that began as casual indulgences, methods of being socially acceptable, then slid into habitual behavior. So, our football fan might not be able to shout as loudly as he or she would like. Or perhaps you have saved yourself for just this contest weekend, and can't believe you can hardly speak Sunday morning, just when the bands are opening to Europe. Such examples may sound familiar. I will explain why such cases occur, and how to prevent those that relate directly to phone contest operating.

A Few Words About Technique

I've always liked the inherent value in the slogan (popular in police procedurals): "Work like you train; train like you work." Good voice technique is about giving vou freedom. Freedom comes from choices and confidence: choices about what kinds of sounds to make; confidence in the knowledge that whatever sounds you choose or want to make, you'll be able to do so, without effort or strain. Tiny muscle movements create your voice. Getting the muscles of your voice in shape can give you self-confidence. What do you do when you want to get in shape? You exercise! What happens with correct exercise? Your voice works effortlessly. So, when you step up to the mike, you have no worries about your voice. Singers and performers know and practice this. Phone contesters, cramming a year of "performing" into a single weekend, can benefit as well.

Some Common Mistakes

First, we have to cultivate an awareness of our own voice - how we are using it, and how our posture may interfere with good voice use. This means more than simply examining how the articulating organs work, or the throat, or how we breathe. We have to look at these, of course, but we must also look at the "whole body function" picture. Let's start with some common mistakes and some common misuses:

Try to watch yourself (maybe point your video camera at yourself) the next time you're in a pileup, calling. You may find yourself stretching out with your neck and head. This is great for demonstrating the "Reach Out and Touch Someone" idea, but bad posture for your voice. Try it. You will feel the strain. It's a natural reaction, but not good for the voice. In fact, a picture of it could simply be titled: *How To Get A Sore Throat*.

Pulling your head back, instead of dropping the jaw, when taking a breath to speak. This effectively closes part of the throat. It also puts your larynx in an improper relationship with your breathing. The movement may seem small, but inevitably, you end up losing control of the soft palate and sounding overly na-

Ergonomics

The information on posture contained in this article pertains to ergonomics—a term derived from two Greek words: *ergon*, which means work, and *nomoi*, which means natural laws. So, we are talking about human capabilities relating to work. In recent years, studies have been made to suggest postures that minimize unnecessary static work, and reduce forces acting on the body.

The guiding principles are:

• being able to use or adopt different, but equally healthy and safe, postures;

when force has to be exerted, the largest muscle groups should do it;
activities should be performed with the joints near the mid-point of their range of motion (especially head, trunk, and upper limbs). sal. Your jaw release is slowed down. You'll be short of breath, and, for want of a better term, you'll have a stiff tongue. Resonation and articulation suffer.

Pulling down is associated with pulling the head back. Your rib cage slumps toward your stomach; your shoulders are pulled forward, narrowing across the top of the chest. This all makes you feel low in energy - almost depressed. Breathing is overly constricted; the voice lacks adequate support. This often forces abdominal muscles to move too much, making your voice a monotone.

Pulling back in. Typically, this makes you breathe mostly in the upper chest. The relationship between vertebrae is such that the back loses much of its width at the place where your lungs are largest, making it difficult to speak long phrases. And if you get excited, under the least little bit of stress, too much adrenalin will be produced. Vocal control will almost disappear. This makes for a shrill voice.

Ways To Eliminate These Four Problems

A comfortable chair (one that fits your body size) and a boom microphone headset will do the most to guarantee proper posture during a contest. What's left, besides winning? Practice, in speaking correctly, that is.

Keep the joint of your jaw open and free at all times. Don't worry about how far apart the teeth are; just allow your jaw to move freely. Remember to think of your breath as a continuing flow from a tuned-up voice.

And keep the muscle activity in shaping consonants as light, yet as precise, as possible. This is simple. (Whether

Anatomy Of Speech

A few minutes examination of the anatomy involved should convince you that the process of speaking is more complicated than you perhaps thought:

That some practice may be in order to be a good voice op.
That your vocal cords, mouth and throat, nose and sinuses, and above all, your breathing, combine in unique and special ways to produce sound.

One key to success is a boom mike headset, so that only a conversational tone is needed as you speak.

they've learned it through research, or through practice, you can sometimes hear this in the voice of the seasoned Caribbean-contester's exchange. He's not fully articulating the FIVE-NINE thousands of times - those are all roughon-the-voice consonants— but rolling out a smoother and faster FIFE-NI litany instead.) Keep your neck loose and free, use a good chair and mike, and you eliminate most of the potential for voice strain while contesting.

The Mechanics

You can view the lungs, the throat, and the mouth and nose as a system of tubes and valves that simply regulate airflow. When speaking, you actually breathe out and direct air through your throat, mouth or nose, thereby creating different sounds. Such sounds largely depend on:

A. The vocal cords,

B. For vowels, the shape of the mouth (determined by the position of the tongue), and

C. For consonants, the obstruction of airflow (by valves, tongue or lips).

For instance, say "t-d-t-d" over and over, and you'll notice that your mouth is doing exactly the same thing to produce the t and the d. The only difference is that you switch the vocal cords on and off.

Your voice is produced by vibration of your vocal folds. Put simply, the vocal folds are two bands of smooth tissue that lie opposite each other. They are located in the larynx, commonly called the voice box. The larynx is positioned between the base of the tongue and the top of the trachea (windpipe), or the passageway to the lungs.

At rest, the vocal folds are open to allow an individual to breathe. To produce sound, our brain precisely coordinates a series of events. First, the folds come together in a firm but relaxed way. Once closed, air from the lungs then passes through them, causing vibration, thus making sound. The sound from this vibration then travels through the throat, nose and mouth (resonating cavities). The size and shape of these cavities, along with the size and shape of the vocal folds, helps determine our vocal quality.

Variety within an individual's voice is the result of lengthening or shortening and tensing or relaxing the vocal folds. Moving the cartilages, or soft, flexible bone-like tissues to which the folds are attached, makes these adjustments possible. For example, shortening and relaxing the vocal folds makes a deep voice; lengthening and tensing them produces a high-pitched voice.

Posture, practice and other mitigating circumstances (not all of which we can control) can all affect that vocal quality.

22 July/August 2004 NCJ

For the contest operator, the best options are proper practice, proper procedures and the best possible environment.

Some Thoughts On Voice Maintenance

Improper care usually results from ignorance. Remembering our crying baby, we might assume the voice to be tireless. And the stamina IS amazing, considering the abuse it can suffer. You speak from when you get out of bed until day's end, regardless of weather, in smoke-filled rooms, in cold or dry rooms, sometimes with a cold or allergies, and so on. The idea of maintenance may

The Operating Chair

A well-designed chair for you to sit in is one of the most important parts of a good contest station. It will favorably affect posture, circulation, as well as the amount of effort required to maintain a good comfort level, and the amount of pressure on the spine. Comfort *will* affect your rate, regardless of propagation.

The following recommendations should be followed:

- Your seat should adapt to you, not vice versa.
- Chairs should be stable and fully and easily adjustable while you are seated.
- Your chair's seat pan and backrests should be upholstered and covered in a material that absorbs perspiration.

• Your seat pan height should be adjustable and should transfer your weight through the buttocks, not the thighs.

• Your backrest should adjust up and down, as well as backward and forward, or flex with your body's movement for good lumbar support. A forward tilt of the seat may relieve stress in some applications (allowing the backrest to follow you movements in performing certain tasks).

• You should have wheels or casters on your chair (hard casters for soft floors and soft casters for hard floors). Your chair should then preferably have five legs. This offers improved stability and reduces the risk of you tipping over.

• The front of your seat should be of a "waterfall" design in order to provide sufficient clearance for your thighs and to prevent reducing your circulation.

• Your seat should swivel, especially since you'll probably be making many lateral movements.

 Staying in the same position for long periods causes fatigue. Knowing this, and being able to changes chairs or move around comfortably, will help lessen such fatigue.

You should be able to adjust the height of the seat—you didn't think secretaries put typewriters and workstations at lowers heights just for looks, did you?

• If seat height cannot be adjusted, you should have a footrest, which will help relieve pressure under the thigh. This should be angled and covered with a non-slip surface to provide comfortable support for your feet. (Perfect for incorporating a footswitch, too!)

• Set up your station to avoid unnatural postures. You shouldn't have to lean forward or backward unnecessarily to operate any gear or view any screen.

• Your station gear should be designed so that all gear or equipment requiring frequent access or adjustment is within acceptable reach distances.

To aid in your decision, spend a few minutes answering the questions about your chair use (designed to help you evaluate your needs) on the Web at **ergo.human.cornell.edu/Pub/AHquest/seatingeval.PDF**

Remember, no one chair will fit or work for all persons, regardless of what salesmen may tell you.

Dayton Hamvention Contest Forum Report

The 2004 Hamvention Contest Forum was held in a hot, crowded room at the Hara Arena. Instead of the usual curtained-off Room 4 with seating for 350-400 people, we were shoehorned into a small room with seating for only about 120. With every seat full, and many sitting on the floor, we needed a good program to prevent a riot.

And we had a great program.

First up was a preview of a new reality TV series, "The Contesting Apprentice." This was based on "The Apprentice" featuring Donald ("The Donald") Trump and his would-be employees, and starred K3LR in the role of "The Tim." Four contestants were chosen to compete for a special prize, with The Tim's special assistants K2RED and KL7RA observing and evaluating their performance on a variety of tasks. On Friday morning the contestants had been organized into two teams for the first task-obtaining the lowest-possible guotes for a WRTC-style station from dealers at the Hamvention. The K9PG/ N5RZ team was judged to have done a better job than K5NZ and WZ3AR. After careful consideration of the performance of each team member, Tim "fired" WZ3AR.

The remaining three players were each given 25 PL-259 coax connectors to sell. Proceeds from the sale of the connectors would go to the W4AN Memorial Fund to benefit Bill Fisher's children, and whoever sold the connectors for the most money would win the game. Later in the day, at the contest dinner, the results showed that K5NZ and N5RZ had both sold their connectors for over \$100, but the big winner was K9PG, who sold his first 24 connectors for over \$500! Confident that he had won, he offered the final PL-259 for auction at the Contest Dinner, where it sold for \$100. Congratulations to Paul on his victory, and to all who contributed to the fund-raising activity for W4AN's kids.

Next was a slide show by Jeff Briggs, K1ZM, telling the story of the design and construction of the VY2ZM contest station on Prince Edward Island. Amazing antennas, amazing location and amazing winter snowdrifts! Jeff noted that despite the harsh winters, the ocean is a pleasant 70 degrees in the summer, and great for swimming. And the station is enormously loud on the low bands into Europe, as evidenced by some recordings of 160-meter signals that Jeff played.

K3LR with special assistants K2RED and KL7RA previewing the new reality TV series The Contest Apprentice.

David Kopacz, KY1V/VP5X, and Daniel Bradke, W2AU, delivered a joint presentation. David founded the Young Ham Contest Program, designed to get more young hams into contesting. It is an essay contest that offers an all-expenses-paid trip to VP5X for the CQWW. Daniel, age 14, was the first winner of the program and gave an outstanding presentation on his trip. I am sure we will hear more from this fellow in years to come. David was also honored as Ham of the Year by the Hamvention for this project.

Rob Sherwood, NC0B, was up next with a discussion of the requirements for radios for contesting. The highlight of his talk was a comparison of the performance of a wide range of receivers, old and new. It showed that the Ten-Tec Orion lives up to its claim of having the best receiver performance for closespaced signals, as experienced in a contest environment. Full details are now Web Rob's posted on site www.sherweng.com.

NCJ Editor Carl Luetzelschwab, K9LA, gave a quick update on the past, present, and future of the *NCJ*. He acknowledged the previous editors, some of whom had served multiple times, and commented on the need for more article volunteers, especially for technical articles.

The final presentation of the 2004

Contest Forum was a panel discussion on the past 25 years of contesting. The panel consisted of the winners of the major contests of 1979: ARRL DX CW winner K1GQ; ARRL SS winner (both modes) K2TR (who operated from KP2A on CW and KP4Q-now NP4A-on SSB); ARRL SS CW #2 K7GM; CQWW SSB World Multi-multi winner N4PN of the VP2KC team; USA CQWW Multisingle winner K5RC, represented by K5KG; and CQWW SSB World-high single-op N6AA (operator of 9Y4VT). ARRL DX SSB winner K1PR and CQWW SSB USA winner N7DD were unable to be present, but submitted comments by e-mail.

It was an honor to moderate this panel, with many of the heroes of my early years of contesting present.

These guys, most of whom are still active to some degree, had numerous comments on what has allowed scores to skyrocket in the past 25 years. Looking back on the 1979 contest season, 2000 QSOs would win a DX contest, and 325 would win the Sprint. Radios have gotten better, antennas have gotten better, operating is more efficient with computer logging/duping, and there is simply more activity in most of the world. Packet was discussed, and K1GQ noted that he ran the second-ever packet node (which was connected to #1—AK1A). K2TR observed that the barriers to entry and developing a good station are actually lower now. Inflation-adjusted radio prices are lower, and even relatively inexperienced individuals can use software tools to design the "right" antenna for their location, while in 1979 it took years of experimenting to "aet it right." N4PN, reminiscing about the massive VP2KC operation, which spent \$350,000 1979 dollars (equivalent to over \$800k today) to win a \$35 plaque, including a huge long-distance phone bill for calling up rare multipliers to get them on the air and in the log.

K5KG noted that in 1979 multiops were literally smoke-filled rooms, while today almost none of the ops at a multiop

Transmit Voice & CW messages in your IC-756PROII while the SPECTRUM SCOPE stays alive. Ideal for chasing DX and contesting (746PRO CW only). Save the finals in your linear amp while tuning with the Tune button. Sends 30 wpm pulsed tone at 50% duty cycle for amp tuning. Saves stress on finals & power supply.

Standard 8-pin plug and jack for Heil Pro-Set.

800-653-9910 505-286-3333 FAX: 505-281-2820 www.BetterRF.com

The BetterRF Co. 44 Crestview Lane Edgewood NM 87015 The company that brought vou the 706 TUNE Control

\$74.95 + \$5.00 S/H (\$10 Foreign)

smoke, K1GQ offered his opinion that contesting is really about the people who do it, and he has always been impressed by the technical knowledge and willingness to help that characterizes contesters. N6AA read some of the notes from his 1979 logs, including some outrageous phonetics used by some DX stations. All of the panelists agreed with Dick that practices like excessive power, packet cheating, etc, are in the small minority, with cheaters quickly discovered and discredited.

Looking forward, the panel concluded that the East Coast was destined to continue to dominate DX contests, and the key to winning the Sweepstakes will continue to be a ticket to KP2 or KP4. K2TR's parting comment was that contesters are probably the best-equipped to fight BPL, since a multi-multi station with kilowatts and beams would likely cause enough degradation to BPL performance to result in customers turning to other means of Internet access, such as cable, DSL, satellite or broadband wireless in the UHF spectrum. And it was also noted that in 1979 that the only BPL we knew about was the Brass NCI Pounder's League.

Go SO2R in Minutes With The **DXDoubler** from Top Ten!

U

- Installs in 5 minutes with available prefab cables.
- Leave it installed permanently! No computer required.
- Handles 4 RX audio streams, mike, key, and footswitch.
- Heil Proset plugs in directly. Adapter available for DVP.
- High RF immunity. Relay switching for ground isolation.
- Works with CT, NA, TR, and WriteLog for Auto mode.
- Audio mix control to blend left and right headphones.
- Red and green LEDs provide visual feedback.

Prices: DXDoubler...\$195 DVP Adapter Cable...\$15

Radio Interface Cable...\$35

Other Products for Station Automation from Top Ten

Icom/Yaesu or LPT models. Source Driver mod controls Ameritron and WX0B 6Pak. Cables available for Icom and Yaesu transceivers

Also available: Six Way Relay Box (indoor model), Tower Six Way (outdoor), A/B Station Selector, band reject coax stubs. Visit the web site for prices, or call us at the number shown below.

Come Visit Our Web Site! Photos and Diagrams
 Application Notes
 On-line Order Form
 Full product details http://www.QTH.com/topten Dave N3RD: n3rd@arrl.net George W2VJN: w2vjn@rosenet.net TOP TEN Visa _ MC DEVICES, Inc 143 CAMP COUNCIL ROAD PHOENIXVILLE, PA 19460 610-935-2684

Complete info (incl. manual) at www.QTH.com/topten/dxd.htm

The 12th Annual Dayton Contest Dinner By Tim Duffy, K3LR www.k3lr.com

Wow, 12 years and going strong! The North Coast Contesters hosted contesters from all over the world in Dayton, Ohio this past May 15. The Contest Super Suite and the Dayton Contest Dinner are the best way to spend a weekend talking about our favorite hobby, radio contesting. This year almost 325 contesters enjoyed a prime rib dinner together at the Crowne Plaza Hotel in downtown Dayton. Every year this dinner gets bigger and better.

The Davton Contest dinner is home to the yearly induction of fellow contesters into the CQ Contest Hall of Fame. During the past years, over 40 contesters have been inducted. We were honored to have Trey, N5KO, and Steve, N8BJQ, join the CQ Contest Hall of Fame this year. The Contest Hall of Fame is the top honor a contester can ever receive. To be recognized by your peers as standing apart from the rest as an ambassador to our sport is the epitome of radio contesting. The award does not come about by winning contests, it happens because the CQ Hall of Fame contesters have contributed to our hobby in many varied ways. The first member into the hall was Buzz Reeves, K2GL (SK). Buzz received his award at his own restaurant during a birthday party where I was honored to be present along with many other K2GL operators.

Our dinner speaker this year was Atilano Oms, PY5EG. Oms discussed his outline for hosting WRTC 2006 in Brazil. It is clear that he has a personal mission to make sure everything goes smoothly. He also encouraged the dinner attendees to tell the WRTC committee what changes should be made to the rules. He wants this to be the best WRTC ever.

Bob Cox, K3EST, who is the director of the CQ WorldWide Contest, chairman of the CQ Contest Hall of fame and a member of the Hall himself, gave out the two Hall of Fame awards during the dinner.

Trey, N5KO/HC8N, is a world class contester, creator of the "CQ-Contest and 3830" Internet reflectors, cofounder of contesting.com and eHam.net Web sites, former editor of the *National Contest Journal* and behind-the-scenes developer of computerized log standards. PY5EG and XE1KK spoke on behalf of Trey.

Steve, N8BJQ, was a longtime director of the CQ World Wide WPX contests and an early advocate of computerized

Ellen, W1YL, remembering her son K4OJ (SK).

Trey, N5KO, receiving his CQ Contest Hall of Fame award from Bob, K3EST.

log checking. K3EST and K3LR spoke on behalf of Steve.

We also had the last "Board Room" session of the Contest Apprentice where Paul, K9PG, was hired. Paul managed to outpace his competitors in the task of selling PL-259s during Saturday at the hamfest. All of the proceeds (almost \$900) went to the W4AN memorial fund. Thanks to the Contest Apprentice entrants: WZ3AR, K5NZ, N5RZ and K9PG for playing along and special thanks to Gail, K2RED, and Rich, KL7RA, for helping me with the tasks.

The prize list was extensive this year. Almost 90 prizes were given to those in attendance. These prizes came from companies who consider contesters to be a substantial part of their business. I'd like to thank the following companies who donated great prizes: Force12; American Radio Relay League; Array

Steve, N8BJQ, receiving his CQ Contest Hall of Fame award from Bob, K3EST.

Solutions; KØXG Antenna Rotation Equipment; CAL-AV Labs; *ACE-HF*; TIC Ring; Champion Radio Products; *WriteLog*; *CQ Magazine*; AN Wireless Tower Company; AY Technologies; Comtek Systems; W1WEF CW Interfaces; W4MPY QSL Man; *The DX Magazine*; Radio Bookstore; Radio Ware; Top Ten Devices; DX Engineering; Alfa Spid; ZS4TX; YagiStress-K7NV; W3NQN Filters; OptiBeam; *National Contest Journal*; Prosistel; SlippNott; ICE; K5KA's FEL Equipment and RA Cheetos.

North Coast Contesters, Frankford Radio Club, The Mad River Radio Club and DX Engineering all sponsored the "Contest Super Suite," now in its 16th year at Dayton. K1TO, K8AZ, K8CC and K3LR sponsored the Pizza Party at midnight on Thursday night honoring Bill Fisher, W4AN, where 25 pizzas were enjoyed. Members of the Yankee Clipper Contest Club hosted the Pizza Party in the super suite at midnight on Friday night where 30 pizzas went down fast. The Florida Contest Group honored K4OJ during the midnight Saturday night Pizza Party that they sponsored, where 25 pizzas were consumed in 18 minutes!

Thanks to Jim Miller, K4SQR, for helping me coordinate the dinner. Also thanks to Tom Roscoe, K8CX, for all the pictures.

Preparations are already underway for the 13th Annual Dayton Contest Dinner.

Make your plans now to attend Dayton 2005 and enjoy the company of some of your best friends. Watch for announcements in this magazine, on Web sites, in the ARRL *Contest Rate Sheet*, and on the **cqcontest@contesting.com** reflector. Suggestions are always welcome. Send them to k3Ir@k3Ir.com. **NCI**

Serious Products for Serious Hams

SCAF-1 Audio Filter

Make your receiver listener friendly! Variable cut-off audio low-pass filter, 96 db rolloff per octave! Cut-off range frequency 450 Hertz to 3.5 kHz. Absolutely real time, NO delay perfect for QRQ CW and no monitor problems. Use for CW, Digital modes, and SSB, with headphones or speakers. Super-simple operation, yet wonderfully effective. Sample audio files on our web site. Available as a kit or preassembled.

Keyers: Logikey K3, Super CMOS-3, CMOS-4

Our keyers simply are the best keyers available — Period. More user friendly by far, more features. Extremely powerful memory functions, yet easy to learn. Extended paddle input timing reduces errors and increases your speed. Can emulate many earlier designs for timing feel, but with full feature set. Use with both positive and negative keyed rigs. Built-in monitor included. Full beacon capability.

For full details see our web site. Forget that built-in keyer in your transceiver. You deserve far better. We have one waiting for you.

Antenna Rotor Enhancements:

TailTwister & Ham-M

Do you own one of these fine rotors? Bring it into the 21st Century! Rotor-EZ adds a unique "Auto-Point" capability plus brake delay, endpoint protection, optional complete computercontrol capability for logging and contesting programs, and more!

See our web site for full details of this "must have" enhancement.

Yaesu DXA and SDX series rotors add affordable plug-in computer-control capability for far less. See our web site for full details!

N3FJP Contesting John W. Thompson, MD, K3MD Software—Comments TJwt105@aol.com from K3MD

I recently stumbled over the available N3FJP contesting software while surfing the Web. There are many separate programs available (*43 at the time of this article—Ed*) for a wide variety of contests, including the biggies: CQWW, ARRL DX, FD, Nov. SS, WPX, CQ and ARRL 160 Meters, down to some obscure contests such as FISTS sprints. It is very interesting that in the programs available for the state QSO parties, it is possible to log the county worked by using a pull-down menu such as would be used in ordering something from a website. This feature is appealing.

A general logging program called *Amateur Contact Log* (ACLog) is also available. It is roughly equivalent to *LogWindow*, but has a greater degree of flexibility in arranging what information you wish to have stored. All contests have import / export availability using .adi format, which makes interchangeability with existing logging programs very good. All programs have the availability of easily written Cabrillo output.

The programs are available in a large variety of methods. You can download a single program, pay a very small registration fee using PayPal, then use the program. The author is *very* attentive, and replies to e-mails and orders just before contests. All the programs are free to try and can be downloaded from **www.n3fjp.com**.

The cost of the software package, which includes all Amateur Radio software (as well as any programs added to the package in the future), is either \$39 downloaded from the website or \$49 on CD (shipping included). Upgrades to any existing programs are free to registered users.

The programs work on Windows-based systems only: Windows 95, 98, 2000, ME. XP and NT. It is of very great interest to me that these programs work with an LPT keying output for CW with Windows XP. This is a significant advantage for users of new laptop computers that don't include comm (serial) ports. Many have attempted to solve this (unsuccessfully) with a USB port to Comm port converter and have been frustrated in the process. Trying to get the Writelog program to work satisfactorily on LPT CW output with the available add-on programs is difficult and this may be a viable alternative. I really am not certain why they decided to eliminate

a conventional Com port on the newer laptops, but they did.

Interfacing the N3FJP programs with the existing popular rigs is extremely easy, and the interfacing seems to work flawlessly. The same is true for Internet packet. I did not check VHF packet, as I live too far out in the country to have good access to VHF packet.

A band map type display is available from the band you are on to an all-band type of display. This utilizes the feature that you see only the prefix of call-outs. To see the entire call, you place your mouse over the call-out. Ratemeter and QSO/hr graphs are available.

Use of the programs is largely intuitive. Documentation is a little sketchy, but made up for by the extremely cooperative nature of the author at **snkdavis@aol.com**.

I have been using *ACLog* (the main logging program) for three months, and find that I like it better than *LogWindow*. It is easier to use, it has a good search function, and it has an unbelievably fast import function from .adi logs. It has a good address lookup function from the popular disks or from a US/VE database maintained by N3FJP personally and available *free* via the Internet.

The strengths of the program packages are as follows:

- Many obscure contests that are not covered by other vendors are covered with N3FJP's software.
- The programs are very intuitive and easy to use and therefore good for the beginner.
- The author provides very competent and rapid technical support.
- The software is available at low cost.

The weakness of the program package is that it does not include the provision to utilize the K1EA based databases in the super-check-partial function. I find this feature to be an integral strength of the K1EA, N1MM, and *WriteLog* packages that is wanting on this set of programs. Although N3FJP says he has not received any other complaints about the lack of this feature, I think it needs to be included in any contest logging software

An Open Letter: The Ethics of Contesting

Contesting today is serious business. Many of us are investing substantial funds in building big stations with huge antennas, SO2R systems, etc. Some of us are travelling to exotic islands or countries to experience great pileups. Our goal is to *win*.

My first question is: Is the winner today always a real winner? Or is he or she someone who is using unfair methods and winning because of those methods?

My second question is: Where are our ethical rules? Should the IARU work to establish a written code of contest ethics? The ham spirit is an essential part of our ethics, but when was the last time you came away with a feeling of ham spirit in a contest? Maybe this was in the '50s?

My third question is: How do we deal with those who are not respecting the rules? Some are cheating year after year.

We cannot bypass the question of contest ethics any more. To avoid misunderstandings, I would like to emphasize the dilemma of ethics. I know such discussions can be uncomfortable, but something is wrong when we avoid the task altogether. Now is the time to do something. After all, any discussion is worthless without action as a result.

Here is a brief list of questionable contest tactics:

• Offering incentives such as a T-shirt, a bottle of wine, a special QSL, etc., to work a particular station on all available bands in the contest. I prefer to label this phenomena "contest corruption."

• The use of telephones for activating rare multipliers. This is a common part of today's contesting. Those who are living in exotic places know these callers.

 Organized cluster spotting. You can use simple methods in your research if you want to probe this dark area of contesting. Examining the relationships between various "friends" will open your eyes. The days of primitive self-spotting are almost history. There are more sophisticated methods today in use, as we know. One solution could be reprogramming clusters. As a serious participant of the contest, you could block your call from the cluster beforehand. There could even be a list of these blocked stations published on clusters before some contests. If you have not blocked your call, you cannot win. That's certainly a tough stance, but from my point of view it could be a fairplay practice.

• Intrusion on 40-meter CW. The narrow 40-meter phone band is a big problem in Region 1 during contests. Some stations use the CW band and create ill will among CW operators.

• Illegal output power. There are stations using as much as 10 kW output. If you have, let's say, a half of dozen of those super-high-power stations on the band, your operation with legal power is extremely difficult. Why do we allow this to happen?

• Transmitting a signal in two to three different directions with huge beams, but listening only in one direction. Of course, this ethically challenged operator usually has a high-power linear amplifier for each direction. This technique will guarantee that fewer stations will be able to use the bands. Is this really an acceptable practice?

 Contest log cooking—rewriting the log after the contest to screen for errors.

• "Advance promotion" where an announcement is sent several weeks in advance on the pretext that the group or individual is testing a new contest location. It's a clever way to pique interest for your own operation.

Too much power, organized spotting,

and contest corruption will kill the fun of serious contesting if we let this situation continue. We must do something to root out these cheaters. Of course, it's easy to declare that the goal is to root out all unethical practices, but this is almost impossible to do in real life. Still, it is worth discussing and trying.

When we submit our logs, we usually sign the following declaration:

"I have observed all competition rules as well as all regulations established for Amateur Radio in my country. My report is correct and true to the best of my knowledge. I agree to be bound by the decisions of the Awards Committee."

This declaration is not a joke. It is a more serious matter than contesting itself. If we have done everything possible to compete by the rules, and have employed good ethics along the way, we can be proud to sign this declaration. It says something about our moral values.

How do you feel after winning a contest with unfair methods? I would like to know the answer to this. Are you proud of your achievement?

Let's continue discussing contesting ethics. I would love to hear from you. I can be reached at **seppo.sisatto@uta.fi**.

NCJ

VHF-UHF Contesting!

More on The Moxon 6 Meter Antenna

The Moxon antenna, which was mentioned in the May/June 2004 *NCJ* in this column, generated a surprising amount of reader interest and feedback. Several readers had comments about the antenna pattern and stacking of the Moxon. From the May/June 2004 column:

"At the risk of helping my competition in the single op portable class, here is a suggestion for a big QRP Portable signal on 6 meters. Clarke says one can stack two Moxons at 10 and 20 feet. The gain will approach a 5 element Yagi at 20 feet, with a much broader pattern in the H plane."

A 6-meter Moxon by itself at 25 feet above ground has a forward gain of 11.4 dBi with a broad horizontal beam pattern. The – 3dB points are at 78 degrees. The front to back ratio is about 30 dB (from L. B. Cebik, W4RNL).

Stacking two Moxons at 15 and 25 feet will compress the vertical pattern of the antenna while essentially preserving the horizontal pattern. I estimate about 2 dB of gain is realized by stacking two of them for a total gain of around 13.5 dBi with the top antenna at 25 feet (which is do-able by a portable station). The stacked Moxons gain actually compares favorably with a 7 element Yagi on a 25-foot long boom! The 7 element Yagi has a narrower horizontal pattern of around 45 degrees. This means you will need to turn the Yagi more frequently during an opening to work stations from different directions. The wide forward pattern of the Moxon lets you point and set the antenna. You can leave it alone and concentrate on working the radio. For those using an "armstrong" rotator (moving the antenna by hand), this is a real advantage. What a great 6-meter antenna system for the portable operator!

There is a factor to consider with the Moxon, and that is the high front to back ratio. This is one reason the antenna has such high gain for the size. Usually a high "front to back" is considered a plus as it reduces QRM. But if you are in the mid section of the country with 6 meters open east and west, you will find the Moxon will need to be turned frequently to hear callers off the back of the antenna. A possible solution to this is to put up one Moxon facing east and another to the west, and switch between the two. After studying the Moxon more, I am considering trying one in the June 2004 VHF QSO Party. In the April 2004 issue of QST there is a great article by Allen Baker, KG4JJH, about building your own Moxon ("A 6 Meter Moxon Antenna," pp. 65). Allen

notes at 15 feet above ground his horizontal Moxon has a peak gain of 11.06 dBi at 18 degrees elevation.

Single Hop E_s Distance Versus Antenna Radiation Angle

Another reader had a question regarding the graph of E-layer single hop distance. The label was left off the Y-axis-it is the elevation in degrees of the signal leaving the antenna. At 5 degrees elevation, for example, a single E_s hop will be about 1000 miles. The maximum distance covered by a single E_s hop is about 1300 miles at zero degrees elevation. This is for the "classic" single-cloud model of Es propagation. In the real world, there are cloud-to-cloud Es, tilted Es clouds, and other phenomena that occur. But the point of the diagram that most Es hops on 6 meters involve a radiation angle of less than 15 degrees (and much is at 5 degrees or less) remains valid. Thus the recommendation of some old timers that "6 meter short skip" is best worked with a "low antenna" is not correct. This is because the Es clouds occur at a lower altitude than the F layer.

Just moving your 6-meter antenna from 10 to 20 or 25 feet high will make a significant improvement in your signal for E_s and ground wave contacts. For a portable operator, being on a high hill or near a cliff with a sharp drop off can put your antenna's effective height at many wavelengths on 6 and 2 meters. For tropo work on 6 and 2 meters, and even on the UHF and microwave bands, you will want to maximize your signal right at the horizon.

The 2004 Summer E_s Season—A Slow Start

As I write this column, the summer 2004 $\rm E_{s}$ season is underway. It has been slow

to get started. There was almost no E_s propagation anywhere in the 2004 6 Meter Spring Sprint held on May 8 and 9. In 2003 6 Meters was open several hours during the sprint. The fall 2003 6-meter sprint had far better conditions. Pat Dyer, WA5IYX, who is a longtime observer of VHF propagation from San Antonio, Texas, notes that as of May 19, 2004 there were only 75 minutes of "Es events for 88 - 108 MHz" since May 1. In 2003 there were 580 minutes of E_s events from May 1 to May 19. While Es events in May do not directly predict what will happen in June, in 2002 there was only 120 minutes of Es events for the whole month of May. As many of you will recall, Es in the June 2002 VHF QSO Party was dismal. So, are we in for a "tough" contest this June?

Despite the slow E_s season, there have been several days of good openings on 6 meters. May 11 had the band open in Kansas most of the evening from Michigan to VE5 on out to Washington State. Several transatlantic 6 meter openings between the eastern states and Europe/Africa occurred in mid May, a very unusual occurrence. On May 14, for example, W1s, W2s and W3s worked Morocco on 6 meters. A number of good double-hop Es openings have occurred between New England and the Pacific Northwest. Gene, W3ZZ, commented that the 2004 E_s season has favored more northerly stations at higher latitudes. Even tonight, as I write this column, VE6 is working WI and MN stations on 6 meter, continuing the "northern theme for Es." This could bode well for 6-meter Es openings to Europe and Japan from North America in the contest. There is always the possibility of a great contest weekend Es opening, even during a down year. In 1992, WA5IYX noted a slow overall summer season, but that year the June VHF QSO Party had one of the best contest Es openings ever. In 1993 there were only 25 minutes of observed Es events in May at Pat's location, but the June 1993 VHF QSO Party had outstanding Es both days of the contest. However, in 1997, as in 2002, a "slow May" predicted a slow VHF QSO Party on 6 Meters. So ... a poor May may or may not mean a slow June VHF QSO Party for 6 Meter enthusiasts.

For more on Pat WA5IYX's ${\sf E}_{\sf s}$ efforts, see his Web page at home.swbell.net/ pjdyer/.

But Tropo Has Been Great This Spring...

There have been a number of good

tropo openings for the VHF/UHF operators this spring. April 16-18 and May 5-6, for example, had strong tropo openings from the Midwest to the Gulf Coast and southeast states. On April 18, stations in south Texas worked to Indiana. Oklahoma worked to Ohio and Kansas worked to Georgia on 144, 222 and 432 MHz. These two openings were associated with "wave cyclone" weather systems. There have been outstanding widespread tropo openings during past June VHF QSO Parties. Nineteen eighty-seven and 1998 are two that come to mind. In 1987, stations in the Midwest worked all the way to W3 on 1296 MHz. W2DRZ on 222 MHz, and W2SZ/1 was heard on 432 MHz by

WBØDRL in central Kansas Sunday morning of the contest.

A widespread tropo opening often has a bigger impact on VHF contest scores than 6-meter openings. Tropo propagates VHF/ UHF and microwave signals over long distances. With the current scoring system rewarding UHF and microwave QSOs, a big tropo opening can really boost scores for contest stations equipped on the UHF and microwave bands. In 1998, there were a series of good tropo openings in April and May. The weather system responsible for them continued on into June with tropo for the contest. Thus, a good spring tropo season predicted tropo for the June VHF contest. Tropo can appear out of nowhere,

too, as excited contest operators found in the July 2003 CQ VHF Contest. A review and analysis of the July 2003 CQ WW VHF Contest tropo opening is in the November/ December 2003 NCJ starting on page 28.

The 2004 CQ WW VHF Contest will be held July 17-18. John Lindholm, W1XX, announced that the contest will start a new plaque program. He says, "These are really neat 9×12 inch walnut 2-color-on-polished-brass plaques." Too bad they didn't offer these for the 2003 contest! Those interested in sponsoring a plaque or for more information about the CQ VHF Contest see www.cqamateur-radio.com/.

NCJ

Rotators and most 2" antenna boom-to-mast brackets - \$79.95 plus S&H Other sizes coming soon. Also coming, Slipp-Nott clamps for boom-to-mast and for element-toboom mounting. <u>Complete specs on www.ConsultPR.com</u>. Call or email for details. 775-847-7929. SlippNott2@aol.com. www.consultpr.com PO Box 1126 Virginia City NV 89440 Visa – Master Card – Amex

Contest Calendar

Compiled by Bruce Horn, WA7BNM

Here's the list of major contests of possible interest to North American contesters to help you plan your contesting activity through October 2004. The Web version of this calendar is updated more frequently and lists contests for the next 12 months. It can be found at: www.hornucopia.com/contestcal/.

As usual, please notify me of any corrections or additions to this calendar. I can be contacted at my callbook address or via e-mail at: bhorn@hornucopia.com. Good luck and have fun!

July 2004

RAC Canada Day Contest Venezuelan Ind. Day Contest, SSB/CW DL-DX RTTY Contest Original QRP Contest DARC 10-Meter Digital Contest MI QRP July 4th CW Sprint ARS Spartan Sprint IARU HF World Championship UK DX Contest, RTTY FISTS Summer Sprint ARCI Summer Homebrew Sprint Mid-Summer Six Club Contest North American QSO Party, RTTY CQ Worldwide VHF Contest Russian RTTY WW Contest RSGB IOTA Contest

August 2004

SARL HF Phone Contest ARS Spartan Sprint TARA Grid Dip Contest 10-10 Int. Summer Contest, SSB European HF Championship North American QSO Party, CW ARRL UHF Contest WAE DX Contest, CW Maryland-DC QSO Party

SARTG WW RTTY Contest

ARRL 10 GHz and Up Contest

Keyman's Club of Japan Contest SEANET Contest North American QSO Party, SSB New Jersey QSO Party

ALARA Contest TOEC WW Grid Contest, CW YO DX HF Contest SCC RTTY Championship Ohio QSO Party SARL HF CW Contest

September 2004

All Asian DX Contest, Phone AGCW Straight Key Party DARC 10-Meter Digital Contest MI-QRP Labor Day CW Sprint ARS Spartan Sprint YLRL Howdy Days WAE DX Contest, SSB CIS DX Contest, RTTY ARRL September VHF QSO Party North American Sprint, CW Tennessee QSO Party ARCI End of Summer PSK31 Sprint ARRL 10 GHz and Up Contest

Scandinavian Activity Contest, CW **QRP** Afield Washington State Salmon Run

QCWA QSO Party North American Sprint, SSB CQ Worldwide DX Contest, RTTY Scandinavian Activity Contest, SSB Texas QSO Party

Alabama QSO Party Fall QRP Homebrewer Sprint

1230Z-1630Z, Aug 1 0100Z-0300Z, Aug 3 0000Z-2400Z, Aug 7 00012, Aug 7 to 23592, Aug 8 12002-23592, Aug 7 18002, Aug 7 to 06002, Aug 8 18002, Aug 7 to 18002, Aug 8 00002, Aug 14 to 23592, Aug 15 16002, Aug 14 to 04002, Aug 15 and 1600Z-2359Z, Aug 15 0000Z-0800Z, Aug 21 and 1600Z-2400Z, Aug 21 and 0800Z-1600Z, Aug 22 0600 local – 2400 local, Aug 21 and 0600 local – 2400 local, Alid 0000 local - 2400 local, Aug 22 12002, Aug 21 to 1200Z, Aug 22 1200Z, Aug 21 to 1200Z, Aug 22 1800Z, Aug 21 to 0600Z, Aug 22 2000Z, Aug 21 to 0700Z, Aug 22 and 1300Z, Aug 22 to 0200Z, and 1300Z, Aug 22 to 0200Z, Aug 23 0600Z, Aug 28 to 1159Z, Aug 29 1200Z, Aug 28 to 1200Z, Aug 29 1200Z, Aug 28 to 1200Z, Aug 29 1200Z, Aug 28 to 1200Z, Aug 29 1600Z, Aug 28 to 0400Z, Aug 29

0000Z-2359Z, Jul 1 0000Z, Jul 3 to 2400Z, Jul 4 1100Z, Jul 3 to 1059Z, Jul 4 1500Z, Jul 3 to 1500Z, Jul 4

1100Z-1700Z, Jul 4 2300Z, Jul 4 to 0300Z, Jul 5 0100Z-0300Z, Jul 6

01002-03002, Jul 6 1200Z, Jul 10 to 1200Z, Jul 11 1200Z, Jul 10 to 1200Z, Jul 11 1700Z-2100Z, Jul 10 2000Z-2400Z, Jul 11 2300Z, Jul 16 to 0300Z, Jul 18 1800Z, Jul 17 to 2100Z, Jul 18 1800Z, Jul 24 to 2400Z, Jul 25

0000Z, Jul 24 to 2400Z, Jul 25 1200Z, Jul 24 to 1200Z, Jul 25

0000Z, Sep 4 to 2400Z, Sep 5 1300Z-1600Z, Sep 4 1100Z-1700Z, Sep 5 2300Z, Sep 6 to 0300Z, Sep 7 0100Z-0300Z, Sep 7 01002-03002, Sep 7 1400Z, Sep 8 to 0200Z, Sep 10 0000Z, Sep 11 to 2359Z, Sep 12 1200Z, Sep 11 to 1200Z, Sep 12 1800Z, Sep 11 to 0300Z, Sep 13 10002, Sep 110 03002, Sep 13 00002-0400Z, Sep 12 1800Z, Sep 12 to 0100Z, Sep 13 2000Z-2400Z, Sep 12 0600 local – 2400 local, Sep 18 and 0600 local – 2400 local, Sep 19 1000Z, Sep 19 to 1000Z, Sep 19 and 0600 local – 2400 local, Sep 1200Z, Sep 18 to 1200Z, Sep 19 1500Z, Sep 18 to 0300Z, Sep 19 1600Z, Sep 18 to 0700Z, Sep 19 and 1600Z-2400Z, Sep 19 0000Z-0400Z, Sep 19 0000Z-0400Z, Sep 19 0000Z, Sep 25 to 2400Z, Sep 26 1200Z, Sep 25 to 0200Z, Sep 26 1400Z, Sep 25 to 0200Z, Sep 26 and 1400Z-2000Z, Sep 25 1800Z-2400Z, Sep 25 0000Z-0400Z, Sep 27

1230Z-1630Z, Aug 29

October 2004

TARA Rumble Contest Oceania DX Contest, Phone EU Autumn Sprint, SSB California QSO Party UBA ON Contest, SSB RSGB 21/28 MHz Contest, SSB ARS Spartan Sprint YLRL Anniversary Party, CW Makrothen RTTY Contest

Oceania DX Contest, CW EU Autumn Sprint, CW Pennsylvania QSO Party

FISTS Fall Sprint North American Sprint, RTTY 10-10 Int. 10-10 Sprint UBA ON Contest, CW YLRL Anniversary Contest, SSB JARTS WW RTTY Contest Worked All Germany Contest Asia-Pacific Fall Sprint, CW RSGB 21/28 MHz Contest, CW FISTS Coast to Coast Contest CQ Worldwide DX Contest, SSB 10-10 Int. Fall Contest, CW ARCI Fall QSO Party

0000Z-2400Z, Oct 2 0800Z, Oct 2 to 0800Z, Oct 3 1500Z-1859Z, Oct 2 16002-18392, Oct 2 1600Z, Oct 2 to 2200Z, Oct 3 0600Z-1000Z, Oct 3 0700Z-1900Z, Oct 3 0100Z-0300Z, Oct 5 14002, Oct 6 to 0200Z, Oct 8 0000Z-0800Z, Oct 9 and 1600Z-2400Z, Oct 9 and 0800Z-1600Z, Oct 10 08002-16002, Oct 10 08002, Oct 9 to 08002, Oct 10 15002-18592, Oct 9 16002, Oct 9 to 05002, Oct 10 and 13002-22002, Oct 10 17002-21002, Oct 9 00002-04002, Oct 10 06002-10002, Oct 10 14002, Oct 13 to 02002, Oct 15 00002, Oct 16 to 24002, Oct 17 15002, Oct 16 to 14592, Oct 17 00002-02002, Oct 17 00002-19002, Oct 17 00002-24002, Oct 17 00002-24002, Oct 24 00002, Oct 30 to 24002, Oct 31 00002, Oct 30 to 2400Z, Oct 31 0001Z, Oct 30 to 2359Z, Oct 31 1200Z, Oct 30 to 2400Z, Oct 31

NCJ

Adventures in Contesting

Last issue: Pierre, F5JFU, stands by the sign in the small village of Contest in western France. Yes, there really is a village in France named Contest. This brings up a good guestion. Is Pierre the first ever to go to Contest to contest?

Rick, K6VVA, introduces his fellow operators for the Team Competition in the NAQPs.

RTTY Contesting

If you've ever been in a RTTY contest, you probably already recognize the call sign of my guest columnist. It seems that Don has won more RTTY contests than Baudot has characters. He is a die-hard champion of SO2R contesting and has the woodwork to prove its utility. Don recently redesigned his station literally from scratch, with the goal of the most efficient SO2R operating configuration for all modes using networked computers. I think Don's article might just help some of us overcome the inertia keeping us from redesigning our own stations. (Be sure to visit www.aa5au.com and www.rttycontesting.com for Don's excellent RTTY Contesting how-tos.) Thanks Don!

Remodeling for Mode Independent SO2R Networked Stations

By Don Hill, AA5AU

Having started contesting over 30 years ago at age 16, I can remember my youthful days in Indiana running CW Multi's with the Indy DXers in the basements of Mike Koss (now W9SU) and Les Bannon (now WF5E). I remember elaborate contest station layouts and large homebrew amplifiers with names like "Miss Mibutu" and "The Purveyor of Doom." I always dreamed of having a station like theirs, but as a teenager, they were only dreams.

Soon after high school, life would take me to places more important than contesting. Eventually I would land in Louisiana and catch the contest bug again with those same dreams of having my own nice contest station layout.

I must have caught that bug in a big way. I evolved into an avid SO2R RTTY contester, operating in over 120 RTTY contests to date. And in the course of this evolution, instead of expanding my station layout, I kept piling equipment vertically on one main desk. This worked well enough and allowed me to win several major RTTY contests, but it wasn't very efficient. I knew all along that if something failed during a major contest, I'd be in big trouble. The desk was pushed all the way to the wall, which meant even though I had accumulated a good inventory of spares, changing anything in the heat of battle would be a major chore. The left radio's amplifier was located so far from the main desk that I had to stand to change bands and tune it. But for many years that is how I operated, throwing caution to the wind and riding a wave of luck.

That wave would crash during the March 2004 *NCJ* RTTY Sprint. Due to an error on my part, while running high power, I blew the receiver protection bulb in one of my transceivers just two hours into the contest. I had a spare radio sitting on the shelf, but when I realized the difficulty in changing it out, I quit the contest and shut the station down. As I sat there disgusted, mad at myself for

Don, AA5AU, at his re-designed SO2R station.

making a careless mistake, it didn't take any behavioral psychology to know change was necessary right away. It was time to remodel the station. And it would be built for any mode, not just RTTY.

Starting From Scratch

Without any plans, I started disconnecting equipment. In the next three days, I moved everything from the shack to the dining room floor except the main desk. I wondered how I ever got that monster in the room to begin with.

The first thing I did after removing everything was to paint the room. I put two coats of high-quality antique white paint on the walls and doors. I decided to stay with off-white in order to reflect as much light as possible in the room without being too bright. When the painting was finished, I sat at the desk in the empty room and started visualizing a general layout in my head. My vision was for a U-shaped operating position with everything within reach while *sitting* in the operator's chair. I would build horizontally around me and not vertically because experience told me this would be more comfortable and efficient. And I would take whatever time needed to make it right.

Objectives and Goals

I had two main objectives. The new station had to be *comfortable* and it had to be *efficient*. And if I was going to all the trouble of remodeling, it should at least look good, too. I made a list of goals that I used to obtain my objectives:

• All equipment arranged within arm's reach of the operator's chair.

• Allow ease of operation regardless of mode—SSB, CW or RTTY.

• The ability to work behind the desks.

• The ability to replace any piece of equipment quickly and easily.

New grounding system.

• New 12 Vdc system allowing easy connect and disconnect.

• 240 Vac run into the shack and distributed to all three amplifiers.

• All cabling neatly laid out and hidden.

• A position for a third radio and amplifier as an "on-line" spare.

 Room for expansion including controls for more antennas

Deciding What Goes Where

I thought about what I had to work with and what additional pieces I'd have to acquire. I had my main desk and a smaller desk. I moved them 20 inches away from the walls and put them together in an L shape with the small desk to the left of the main desk. I then decided to build one shelf along the top of the desks and make space underneath for the radios and other equipment. With a jigsaw and fine-toothed blade, I cut pieces from an old wall unit to make the shelf and support dividers. I measured the radios and mounted the shelf using L brackets and leftover brass wood screws from the wall unit. When finished. it came out much nicer than I had anticipated and the radios fit nicely under the shelf. It was a fun start for an experienced operator, but a novice carpenter.

I now needed to think about possible locations for other equipment like rotor controls, amplifiers, band filter switches, external audio filters, TNCs and the SixPak antenna switch. Deciding that rotor controls along with antenna and filter switches were items that needed to be closer to the operator, I arranged the equipment according to priority. I kept moving things around in the following weeks until I finally felt comfortable with the arrangement.

Because I run two networked PCs in my SO2R setup, one computer for each radio, I needed to locate the computers to allow easy access to the back of the PCs. And the computers had to be close enough to allow short cable runs from the sound card and serial ports to radios, TNCs and FSK/CW/PTT interfaces. To accomplish this, I removed the two drawers out of the left side of the main desk and installed one PC in the vacated space. This PC would control the left radio and the on-line spare. To gain access to the back of the PC, I cut out the back of the desk with a jigsaw. I then cut off the outer faces of the two drawers I'd removed and re-installed them on hinges to hide the PC. I was tempted to do the same thing for the right-radio PC, but decided to keep at least a couple drawers in the desk. This second PC

was placed under a third desk, purchased for about \$40 from a local office supply store, which completed the Ushape design I had first envisioned.

My SO2R philosophy has always been to run each station completely independent from the other. This way, if something fails with either setup, I'm not completely dead in the water. This means everything is separate. Each radio has its own networked PC, external DSP audio filter, FSK/CW/PTT interface, 12V supply and TNC (as a 2nd RTTY decoder). The only thing shared by the two radios is the SixPak antenna switch, antennas, headphone switch and ground system.

In keeping with my philosophy, everything for the left radio would go to the left and everything for the right radio would go to the right of the operating chair. When I finished with the desks and shelf, I had room on the left-hand desk for the on-line spare radio and room on the right-hand desk for future expansion.

PC Monitor Placement

In my previous SO2R setup, the radios were side-by-side in front of me and the PC monitors were all the way out to the left and right of the radios sitting down on the desk. I knew it would be more beneficial to have the monitors side-by-side directly in front of me. Since I wanted both the radios and monitors in front of me, I had to figure how to do it this way.

My first thought was to put the monitors on the shelf directly over the radios. When I did this, I realized I would have to look up to see the monitors. The idea of constantly looking up is not appealing at all to me. Perhaps having the monitors on the shelf would work for CW or SSB, but RTTY requires a great deal of concentration on the RTTY screens. Previously the monitors were on the same plane as my radios, so simple eye or head movements to the left or to the right allowed easy viewing of both radios and monitors. Looking down or straight ahead takes little or no effort. Looking upward over the course of a long contest would introduce a fatigue factor I wouldn't accept. Since one of my objectives was comfort. I put a lot of thought into monitor placement and it became a high priority. I realized I would probably have to spend some money to get it right.

I had one 19-inch CRT and one 17inch LCD monitor. The CRT is huge and takes up a lot of space. There was no way to lower it to a comfortable viewing height. I realized the answer was to replace the CRT with an LCD and to attach both LCD monitors to arms so I could move them to any comfortable viewing position. This way they could be placed directly in front of me during contests. Searching the Internet I found the most popular arms for LCD monitors were made by Ergotron. But at \$375 apiece new from Ergotron, I was discouraged because it was more than I was willing to pay for this solution. Browsing further, I found and purchased two brand new Ergotron model 300 arms from Mendelson's (of Dayton Hamvention fame) for \$150 each.

While looking for an LCD monitor to replace the CRT, I discovered there were too many to choose from. That same day, Dell put their 20-inch LCD monitor on sale. It was expensive, but I had to accept that there would be cost involved because of the high importance I'd put on monitor placement. With income tax refund money in hand, I purchased the Dell.

When the Dell LCD monitor and Ergotron arms arrived a few days later, I felt like I'd made a great deal. The Ergotron arms are impressive. They are extremely heavy-duty. Assembly and mounting the arms was easy. I mounted them to the back of the shelf allowing movement of the monitors to any position. Not only was this the ultimate solution, it looks cool. Solving the monitor problem was a major relief. By the end of March, the station was starting to take on a comfortable look and feel, but there was still much to do.

Ground and 12 Vdc System

I installed a new ground system by mounting a solid copper plate to the back of the desk and running ground wires to every piece of equipment. I then grounded the copper plate to a new 8foot ground rod outside the shack wall.

Twelve-volt dc power distribution was solved with the addition of two 4010S RIGrunners. In keeping with my philosophy, one RIGrunner was for the left station, the other for the right station, both mounted to the back of the desk. I found the RIGrunners to be nice additions to the shack. The PowerPole connectors were easy to install. I replaced each dc cable to every piece of equipment with red/black power cable custom cut to length back to the RIGrunners.

240 Vac System

I had always powered my AL-80A amplifiers on 110 Vac. However, with the addition of an Icom IC-PW1 to the station, I needed 240 Vac. Running 240V into the shack was made easy by the fact that there was a spare 240V breaker for an electric stove in the kitchen. Since my stove is gas, this breaker was unused and a stroke of luck since there was no room for additional breakers in the panel.

Running the cable through the attic was a breeze made easier when I found

an existing hole in the 2×4 leading down the wall to the opening where the antenna and rotor cables enter the shack.

Cleaning Up Loose Ends

One of the goals in rebuilding the station was to neaten the cabling and hide it from view when possible. I redid the cabling several times and it was the most difficult part of the job. I eventually came to realize it would never look perfect. The best I could hope for was to contain the nearly one hundred cables and wires in some sort of system of cable guides made from inexpensive utility racks mounted to the back of the desks. With the cables neatly routed, after six weeks of remodeling, the station was ready for testing.

The best way to test the station would be during an actual contest. So, in the course of remodeling, I made limited efforts in both the SP DX and VOLTA RTTY contests. During those tests, when I found something that needed to be changed, I made the adjustment.

Electing not to go to Dayton this year enabled me to operate the Anatolian RTTY contest in mid May. Knowing this is not a popular contest, I still decided to put in a serious effort. Despite barely making 400 contacts running high power, it was a good enough test to tell me the station was battle-ready. Was it finished? In reality, a contest station is never finished, is it? There always seems to be room for improvement that makes tinkering with details one of the fun aspects of tweaking our stations.

During the Anatolian test, I simulated a power supply failure by turning the dc supply off to the left station. With a spare power supply mounted to the rear of the desk, I simply unplugged the "failed" supply from the RIGrunner and plugged in the spare. The left station was back up in less than 30 seconds. With plenty of spare power supplies on-hand, this got me thinking. What if I installed a pair of heavy duty 12V relays to each RIGrunner, connecting one set of contacts to the main supplies and the other to a spare supply? If the main supply is lost on either station, the relay coil would de-energize sending the RIGrunner contacts to the spare supply automatically. This was a sweet idea that needed more thought and not the only one to come to me that weekend.

The first major test will be the NAQP RTTY contest in July. I'll probably miss ANARTS in June because something must be done about all the new aluminum in the backyard that needs to go up in the air. Sometimes it takes a while, but dreams can come true even though Miss Mibutu and the Purveyor of Doom are not part of them this time. **NCJ**

You take contesting seriously. When you sit down to operate, you want a logging program that is full of features and performance that will allow you to do your best. You also want a program that is flexible, easy-to-use, does not have a steep learning curve and capitalizes on your computer skills.

NA is designed with your needs in mind. You get two radio support, digital radio control, packet interface, CW and voice keyer support.

NA is flexible. It comes with tested template files for 22 different contests and has two templates for general logging! NA also has an easy-to-use editor that allows you to design your own contest template.

NA is easy to use. Operation is simple and most contesters are able to sit down and start having fun...right away! NA runs in MS-DOS and will work with virtually any computer made—from an old 8088 to a state-ofthe-art Pentium. You also get an illustrated manual that gives you hints, tips and techniques that will help you interface your station to NA with a minimum of hassle and a quick learning curve!

NA User support is provided by K8CC for quick, accurate and dependable answers via e-mail. When you buy NA, you also get one year (from date of purchase) of *FREE* internet updates of program and data files. They are available 24 hours per day at www.datomonline.com

NA is firmly committed to the future of contesting and ensuring that NA users have fun in each and every contest they enter. NA will continue to be upgraded and improved. We know you take contesting seriously. NA makes it easier.

radware@radio-ware.com

www.radiobooks.com

PO Box 209

VISA

Rindge, NH 03461

Ordering Information

NA Contest Logging Software Version 10.x \$60 Upgrade from Ver 9.x to latest Version I0.x \$40 Plus *\$5.95* shipping and handling US *\$9.95* Overseas

NA User Support

DATOM Engineering www.datomonline.com

Contesting for Fun

That Old Contest Itch—No, It Ain't Them Bugs Neither

As you read this, summer is at its peak, and the contest calendar looks mighty bleak. To add to our sorrows, those good old sunspots are disappearing at a rate that's even greater than I am losing my hair. Sure, we have sporadic E from time to time, but those good old daily openings to far away DX points are only a memory for the most part. So what to do?

Well, summer is also the time when us Northern types can get out and do a little communing with nature. QRP operation seems to go well with outdoor activities. Just a small gel cell and a few other accessories are all that's required to get on the air and have a blast.

For just getting on and having fun, I use my Elecraft K-1. I leave my two K-2s at home, as they are my serious contesting radios. The only time that they leave the nest is on my low-impact DXpeditions, usually to the Bahamas during the winter contest season.

The K-1 is ideal and small and is easily powered by internal as well as external 12 supplies for many hours of operating. I like to bring along a very small solar panel to prop up against the rig to shield it from the sun as well as to charge the batteries. A good place to look for cheap small panels is Electronic Goldmine at: sales.goldmine-elec.com. Also, check out www.allelectronics.com. They offer free catalogs, shopping and buying on line and have some great deals on surplus cell phone battery packs of the NiMH and Lithium Ion types. With a little elbow grease, and you can have a state-of-the art battery pack for mere pennies.

If you don't like the idea of building a kit or modifying existing accessories, though, the Yaesu 817 transceiver is a good choice. It is a lot harder on batteries, but offers VHF and UHF. If you plan to do CW, you will certainly need the optional filter. May and June are very active months for sporadic E openings on 6 and 10 meters. It sure is a kick to work a mini-pileup from a campground in neighboring Wyoming on 6 meters with a low dipole and few watts. I use an old IC-505 transceiver for that mission. It is a VXO controlled 3-W SSB/CW rig from the mid 1970s. It has no scanning capabilities, and it is easy on the wallet when found on the used market.

Another off-the-shelf radio of note is the IC-703. It is the QRP version of the very popular IC-706. I like the built-in antenna tuners that the newer radios offer as well. In the K-1, the tuner uses mechanically latched relays. This means that once the tuner figures out its settings, the relays are set to that position on every band with no power required to keep them energized, which is a big advantage when it comes to battery life.

I Need a Fix, Not a 12-Step Program

What of the contests, though? Well, one of my favorites is the "BUBBA" event held in August. I have mentioned this one last year at this time, but offer it up again as a just plain fun event. Everyone is QRP, and one's multipliers are based on the highest temperature recorded at the operating position. It is the opposite of the "FYBO" contest held in February, where the lowest temperature is part of the multiplier factor. BTW, the word "BUBBA" is an acronym for Burn your B_'s Off. "FYBO," of course, is broken down to Freeze Your B_'s Off. Hey, you can't say that QRP types don't have a sense of humor.

For more information such as the exact dates, etc., of most QRP and field oriented contests, see the American QRP Club contesting page at www.amqrp.org/contesting/ contesting.html.

I also want to remind you of the monthly Adventure Radio Society's Spartan Sprint. This is held on the first Monday of each month, but takes on special significance during the summer months when we are outdoors. This event is based on the weight of your rig, so the lighter the more bang per QSO. It is only 2 hours long, and special attention is paid to those who are in a fieldoperating situation. It is not unusual for many to make 50 to almost 100 QSOs during that very brief 2-hour period. The time *really* flies by. Many stations are amazingly strong with just 1 watt or less. Seems as though I always work at least a few stations at the milliwatt level. Look at their page at www.arsqrp.com. And specifically their outdoor oriented QRP contests at www.arsqrp.com/ars/ p a g e s / p a g e o n e _ m a t e r i a I / events_idx.html.

Also, look at their popular "Flight of the Bumblebees" contest held in July, as well as their "Top of the World" program. Their free Web-based ARS "Sojourner" newsletter is always fun reading.

After your time in the field, you may want to come back home and total all of those field QSOs to see if you might be eligible for an award or two. If you are into awards, as well as a lot of information about QRP and homebrewing in general, look at the QRP Amateur Radio Club International page at **www.qrparci.org**.

You're as Young as You Feel—On a Good Day

A word, too, about safety. I know that as I approach my 60th birthday, my body refuses to take the abuse that I used to inflict upon it just a few years ago. I'm not pointing any fingers, but we all know that the average age of hams is creeping upward. Let's be careful out there. One doesn't have to climb the highest mountain in the county to hook up a field radio and have some fun. A trip to the local park, a nearby lake or a trip out to a local forest with a field radio can yield more fun than many might imagine.

Tune in, Turn On, Get Infectious

If you do set up in a public place, don't forget to be prepared to do a little public relations for the hobby. In these days of threats to our hobby from outside forces, we can do a lot by setting a good example.

We are all doing this to have fun. A little transference of fun can go a long way in making a case for our very existence. Make your fun infectious. Take along a niece, or nephew, a neighbor kid, someone from your church, or social organization. Ham radio needs all the positive PR that we can muster these days. Let the fun continue...well after our keys fall silent.

Mode Specific Tips

Some contest tips are pretty generic, and can be applied to just about any mode, but this installment of CTT&T will look at tips, tricks & techniques that only apply to a single mode. Hopefully you will pick up a new one for your favorite contest mode: CW, phone or maybe one of the digital modes.

CW Tips

AA4LR passes on a tip he discovered while operating a multi-op WPX effort. Bill and his partner Rick, NQ4I, were trading off every hour or so. Every time they switched operators, their CQ rate would increase for about 5 minutes or so. Rick would have the keyer set to 32-36 WPM, while Bill preferred a more relaxed 24-26 WPM. Changing speeds would bring in a different set of callers. Based on this experience, Bill suggests changing your CW speed when your rate drops.

Peter, DL4FN, also has comments on varying CW speed, especially on the low bands. If he has trouble breaking the pile up, he will often send slowly, around 10 WPM to stand out from the other callers. If the other stations seem to be sending slowly, he speeds up.

If you are working stations over the pole, especially on 20 meters, be aware of possible flutter on your signal. This can cause the dits and dahs to run together if your CW speed is too high. You might find your rate will increase under these circumstances if you reduce your WPM.

Back in the days of paper logging DL4FN taught himself to send with his left hand. This allowed Peter to send with his left hand and write with the right hand. Even after converting to computer logging, Peter finds the flexibility of keying with his left hand to be useful in distributing the work between both hands. If you want to try to send with your other hand, reverse the paddle so that your thumb keys the same element as your normal thumb. It will be much easier to learn this way.

Selecting your transmit frequency can be critical when answering another station's CQ. Normally you will want to zero beat the other station to be sure you are in his pass band. If the other guy is using a very narrow filter he may not hear you if you are off frequency a bit. If the other station does not answer you or anyone else after a couple of calls, try shifting your transmit frequency up or down and give him another call. He may have left his RIT on from a previous QSO.

Phone Tips

Several commentators are die-hard CW operators who gave their suggestions for phone contests. KJ9C's suggestion is to stay out of phone contests, but he still operates some phone contests to help his club. K5ZD suggests using phone contest weekends to spend time with the family, and W2UP has to prepare for them by trying to find his microphone.

Most of the stations you work in a contest are not operating seriously. In a phone contest, especially a small contest or a state QSO party, a large number of the operators you work may not even be in the contest. You need to convince them to give you a contact. KG5U recommends keeping your voice sounding friendly while CQing. "You want the contest pros, but you also want to draw the non-contesting folks out of the woodwork, too" says Dale. During slow times, Dale's CQ is something like "CQ contest, you need not be in the contest to give me a point."

Along similar lines, I will make a big deal with new out-of-state multipliers while operating the Wisconsin QSO Party. "Gee thanks for California! That's a new multiplier!" The idea is that hopefully there is a Nevada or Vermont lurking in the weeds and this will convince him to call me and be the hero who gives me their rare state.

Exchanges including your state or county can be difficult to get through to those not familiar with them. Unless you live in New York or California you are often better off giving the abbreviation instead of saying the state. For example in ARRL DX or while working DX in the ARRL 10 Meter Contest I will normally say "59 Whiskey India."

Counties can be difficult in state QSO parties. Most QSO parties give recommended abbreviations that really help for CW but may be less useful for phone, especially when working stations that are not really in the contest. I try to come up with another gimmick. I live in Washington County and if someone is having trouble getting it I will repeat "Washington County, like George Washington." My last QTH was in Dodge County, and I would say "Dodge, like the car."

Working split is a fact of life on 40 meters in DX contests. Randy, K5ZD, recommends always announcing the call of the station you are working when you respond to give your report. It only takes an extra few seconds, yet will provide confirmation of whom you are working. Many times there are multiple stations listening on the same frequency so you don't want someone to log you in error, then have them not call you later!

NØAX has suggestions for mode appropriate food. For phone contests, Ward chooses food that you can eat while talking (soft or sippable) and that you can shovel into your mouth around a boom mike. Avoid crunchy foods that can cause intense local QRM.

RTTY Tips

W2UP checks out reception and transmission on each radio. Barry notes the cables sometimes get intermittent after months of disuse.

Billy, AA4NU, has a few suggestions for preparing for RTTY contests. First, clear your TNC/Software "defaults" for anything amiss. Then check connections for RFI and other problems. Finally, call a nearby friend and have them confirm all is 100% on your tones. I seem to see a pattern developing here.

That wraps up this installment of CTT&T. Thanks as always go to our readers who send in their tips for the topic. This time it includes AA4LR, AA4NU, DL4FN, K5ZD, KG5U, KJ9C, N0AX, N3BB, W2UP and W6ZZZ.

Topic for next time (Deadline July 12, 2004): Contesting in your golden years. It's no secret the average age of hams is going up. As the number of solar cycles you spend contesting increases, how has this affected or how do you expect it to affect your contesting activities? What changes have you made or expect to make to your station and antenna system?

Send in your ideas on these subjects or suggestions for future topics. By postal mail to 3310 Bonnie Lane, Slinger, WI 53086, or via e-mail to w9xt@qth.com. NCJ

Contesting on a Budget

Getting Power to the Antenna, Cheaply!

Many of us started out in ham radio not fully understanding or appreciating all the variables involved in getting power to the antenna. My approach in the 1960s was simple. Park the operating desk near a window, bring the end of the longwire antenna in through the window, plug it directly into the transmitter antenna jack and use the wide-ranging pi-network to tune it to resonance.

I remember buying my first roll of RG-58 in the late 1960s for the outrageous price of 10 cents a foot, wondering the whole time why I really needed this stuff. I think that Bill, AA4LR, probably speaks for all of us as he describes how his buying habits and understanding of feedlines have evolved:

"When I first started in Amateur Radio, I bought the cheapest feedline I could—RG-58A/U. Now I avoid the stuff.

"I used to use RG-8X to my antennas, but my longest run was 85 feet. At the new station, I have runs of 135 and 150 feet so I use RG-213. Better specs than RG-8X, although it is three times more expensive, but isn't as expensive as hardline.

"Basically, the feedline choice is a compromise between loss and expense. It's tempting to scrimp on feedlines, as I did when I started, but you're better off spending a bit more to get less loss."

Doin' the Math

Bill's analysis is right on, and reflects the theory behind feedline losses. There are three factors involved: feedline loss is the sum of resistive losses, radiation losses and dielectric losses. Resistive losses are the losses caused by the resistive properties of the conductors themselves, based on Ohm's law. Most quality transmission lines today use high-quality conductors that minimize these losses.

Radiation losses occur when the feedline actually radiates instead of acting as a means of transferring power. Radiation losses can occur through leakage currents, when RF passes through the coaxial braid, but this is almost minimal in the HF range with even the cheapest coax. The far greater concern is radiation caused by induced currents on the outside braid of the coax. Choke baluns, ferrite sleeves and other means, however, can control these currents.

What we're left with in coax is primarily dielectric loss—essentially the loss caused by the insulating material between the conductors. Two important considerations: dielectric losses tend to increase with the age of the dielectric, and the losses are exacerbated exponentially by the SWR.

It is not unusual to see 3 dB difference between two similar-looking lengths of feedline. That may not seem like much, but it represents a 50% loss of power. It means that the guy with a \$1000 800-W amplifier feeding hardline into a low SWR load might actually see more power at the antenna than the guy with the \$3000 1.5-kW linear who is using an older coax run into a higher SWR load.

The balanced feeder model is somewhat more complex. Even with twinlead and slotted feedline with PVC insulation, the dielectric losses are often lower than even expensive hardline. Open feeders with good-quality spacers offer incredibly low losses, but are not without their challenges.

While open feeders offer low dielectric losses, radiation losses can be a factor. The radiation losses can occur because of an imbalance in the currents in the parallel lines. This can be caused by a poorly balanced load, by a balancing device (balun or balanced tuner) that is ineffective, or by disruptions to the balance, such as metallic objects in the field of the transmission line.

Other considerations that must be dealt with are the effects of weather on balanced feedlines and efficiency of the antenna tuner. The equation for losses for balanced feedlines therefore must include radiation loss, dielectric loss, tuning network loss and balancing device loss.

Measure, Measure, Measure

The only way to truly know what is going on with your feedline is to measure it both initially and periodically. Jukka, OH6LI and Gary, W9XT, both describe using an antenna analyzer to determine losses. This technique is described in the instructions for all the popular antenna analyzers out there, but it also comes with the caveat that it is approximate only.

I recommend actually measuring the power loss of a length of feedline by simply inserting it into the line ahead of the wattmeter before actually installing it. You can actually see the power loss into a dummy load, or you can see the added effects of SWR on loss by testing it into an actual antenna. The results can be sobering. I checked a 150-foot length of very high quality coax at 30 MHz. The loss was only about 1 dB per 100 feet, seemingly insignificant, but it actually represented a loss of 30 of my 100 W at the antenna and caused me to figure out a way to use a shorter run.

Initially checking your losses is certainly important, but the only way to ensure continuous efficiency is to have a periodic schedule for performing checks. Gary, W9XT and Bill, AA4LR, check their feedlines and antennas for changes and losses every couple of years. Jukka, OH6LI, plots the SWR curves of his antennas and looks for any changes over time. Billy, AA4NU, establishes a baseline for each of his antennas (i.e., 100W into the 80-meter array equals 92 W at the phasing network, etc). This allows him to check for problems, and also to observe the effects of time on the feedline.

Balanced feeders are not as prone to dielectric changes over time, but can be similarly checked. Usually a major change in tuner settings indicates a problem. Performance and balance can be measured using an RF ammeter both at the tuner output and at various points along the feedline.

Applying the Theory

Knowing that we have losses and knowing how to measure them, how do we inexpensively avoid them? Randy, K5ZD, provided a BFO (Blinding Flash of the Obvious) answer to this question keep the radio as close to the antenna as possible! Smart. Fifteen hundred watts through 300 feet of feedline at 1 db loss per hundred feet results in 750 W at the antenna. The same power through 150 feet of the same feedline will result in about 1150 W to the antenna. Quite a difference!

Several others—including K4XS, K1TTT, OH6LI, K1IR, K4ZA and W9XT suggest CATV hardline for minimizing losses. Despite the 75- Ω impedance and the problem with connectors, there are resources available to deal with these issues. Don, K4ZA, notes that sometimes CATV companies actually *pay* to have it hauled away. K1TTT likes getting the roll ends (often 300 feet or more) and suggests that the empty rolls make good "red-neck picnic tables." My kind of budget contester!

With the proliferation of cell phone towers and repeaters, more $50-\Omega$ hardline is becoming available. Jim, K1IR, suggests keeping your eyes open and being bold about asking for available freebies. Often contractors are interested in getting the job done fast and leftovers are a minor issue. Bill, K4XS, points out that a teardown operation is often a good place to find bargains. He got 1500 feet of 1⁵/₈inch heliax for just \$300 a few years ago. K4RO also prefers the used route.

What are the rewards for these efforts? Hardline will save up to a dB per 100 feet over mid-grade coax at 30 MHz. That becomes a significant decrease in losses when coax runs are in the hundreds of feet.

There are bargains to be had with balanced line as well. Mike, W7DRA, finds RadioShack twinlead to be very inexpensive and effective for use on his 160-meter verticals. Hal, N4GG, likes using Sexton open line, a $300-\Omega$ feedline that was used for TV in the 1950s and is still available at swap meets. Others, such as Don, K4ZA, "roll their own." Don used Teflon coated wire and EF Johnson spacers. I've made hundreds of feet of open feedline using spools of #18 coated wire and 6-inch plastic circuit board holders as spacers.

Some Practical Tradeoffs

We are a flexible and practical lot. Sometimes savings are only incremental, but still can have a positive impact on our overall operation. If "gifted" with a 100-foot piece of hardline, most of us would patch that into an existing coax run because it would reduce the cumulative losses. Some of us don't want to haul hardline up the tower and instead use a good-quality coax for that portion of the run. Still others are willing to use short runs of RG-58 because of the flexibility and small size it provides.

The important thing to realize is that all losses are cumulative. It is especially important to analyze where cutting losses could have the greatest impact. This is especially important for those runs utilizing remote switching to multiple antennas, as the decreased losses are felt at several destinations.

Billy, AA4NU, takes a very practical approach. His design philosophy is "the higher the frequency, the better the feedline to be used." He has no problem using RG-8X for 160 meters, while progressively using the better quality feedline for higher frequency antennas.

An incremental step in improving feedline performance is upgrading from older-style coax to the new "buryable" coax, which is lightweight, durable and compares quite favorably with hardline. I've used that with my low power setup and find it very low-loss and easy to work with.

The use of tuners and open feeders seems to be largely a low-power phenomenon. This is often because exposed feeders in the shack often cause RF problems. There are a couple of ways of mitigating the problem. Tom, K5RC, remoted the tuner for his 160-meter delta loop into his adjoining garage, because having it in the shack "...caused his linear to try to jump off the table." While this solution is not convenient for quick frequency changes, remoting the balun is a practical alternative. By using a short section of 50- or 75- Ω hardline or coax to the 1:4 balun, you

can sometimes eliminate the "RF in the shack" problem. KU8E and AA4LR recommend this approach. Be aware, however, that high SWR, even with a short length of low-loss cable, can result in significant losses.

Some find the advantages of tuners and open feedlines not worth the hassle. AA4NU doesn't use them anymore, as it is part of his Keep-It-Simple-Stupid (KISS) approach to station design—less things to adjust and go wrong. Everything is a tradeoff, and cost, performance and convenience are all factors in the final equation.

Thanks to K1IR, N4GG, AA4LR, K4RO, N4ZR, K4ZA, K5RC, K5ZD, OH6LI, W7DRA and W9XT for their excellent input. I am working on another guest columnist for the next issue who I believe will bring a unique perspective. Stay tuned. **NCJ**

Donate Estate, Used and Excess Equipment and Receive a Tax Write Off

Donations to the Northern California DX Foundation are tax deductible to the extent of the law.

Here is what you will support:

- DXPEDITIONS
- QSL ASSISTANCE TO FOREIGN HAMS
- A COLLEGE SCHOLARSHIP FUND
- THE NCDXF/IARU BEACON PROGRAM

Your support of NCDXF...with equipment donations... will continue to help maintain the integrity of DXing and related activities.

Contact: Chuck Ternes N6OJ@arrl.net 707-763-2528

Some NCDXF-Supported DXpeditions

3B7RF 3B9R 3C1AG 3DAØDF-3DAØFR 3DA6Z 3V8BB 3V8DJ 3XY7C 5A21PA 5H3US 5U1A 5U2K 5U4R 5U6W 5U7JK 5V7VJ 5Z4LI 5Z4WI 7P8AA 9L1US A22MN D68BT D68C E3ØHA FR/F6KDF/T FT5ZH SØ7V STØRY TS7N V51Z VKØIR XT2OW ZSØZ ZS8IR ZS8MI-ZS9IR ZS9Z VP8CTR 8Q7AA 8Q7XX 9K2/KB2DQE 9N1AA A52A BQ9P E44DX E44/HA1AG P51BH P5/4L4FN XU1A XY3C XZØA XZ1N YA5T YI/N2OBM 3A2K JW/DF6VI OJØ/K7BV CYØAA CYØMM CY9AA 3D2CI-3D2CY 3D2DX 3D2RW 4W/K7BV-4W/N7FF AH3D C21AN FOØAAA FOØPOM FOØWEG FO/DL1AWI FO/DL5XU FO/SP9FIH FW5FN H4ØAA H4ØDX H44RD K1B K5K T24DX TX4PG CEØZ P4ØK PVØF PWØS VP8GEO VP8THU XRØX

February 2004 *NCJ* NAQP RTTY Contest

Only two words can describe the February RTTY NAQP-my word! With decent propagation, a whole lot of new RTTYers, a whole lot of the regular ops. more teams than ever before, and more multi-two stations made the competition hot and heavy for the entire 10 hours for single ops and the full 12 hours for the multi-two stations. There were four multi-two teams this year and all finished the contest with some fantastic scores. The multi-two team of W6YK, with operators K6UFO, N6DE, N7MN, W6LD and W6GEM, finished with a score of 210,056 and that averages 175 QSOs an hour for the 12 hour period or 2.9 QSOs a minute. The top single operator was Don, AA5AU, finishing with a score of 143,058. He was chased hard by Chas, KI5XP, with a score of 141,688. This averages out to 143 QSOs an hour or 2.38 QSOs a minute for Don and 141.6 an hour or 2.36 QSOs a minute for Chas-pretty close.

Ten meters was open but no one would come up and stay for any period of time. For a single operator with a single radio, it wasn't productive enough to hang around and pick up the lookers when they would come up and make a contact or two. With 15/20 being as busy as they were, that made 10 meters less attractive than it was. If you check the score of the multi-two team of W6YK, 10 meters made the difference. The team of South West Arizona Contest Club (SWACC), comprised of K5AM, K6LL, KI6DY, W7WW, and K7WM, got on a roll and all members finished well, making the team score a whopping 560,772.

The gauntlet has been thrown in all classes and for each state high score for the next RTTY NAQP, with some great scores to be bested. Score deduction was minimal this test and was still primarily for off times. The NA islands are still not having the proper ID entered in the QTH field, resulting in Cabrillo kicking it out. I received approximately 11 logs for the ARRL CW, CQWW SSB WPX, and the *NCJ* CW NAQP. The operators were contacted and the correct log was returned. Numerous logs came in with no call or class entered in the subject area and required opening the

log to ascertain who it was and where it went and it was evident that not all operators had read the rules as I received numerous logs after the two week cutoff date. I included all received logs and overall the logs were in great shape.

I appreciated just receiving a .txt log when the op wasn't sure if their Cabrillo converter was correct. Makes it a lot easier to convert when it comes in rather than having to stop during the log checking process and convert it to something that Cabrillo will score.

That's it for this running of the RTTY NAQP. Hopefully the July contest will be somewhat similar but who knows what the propagation will do to us. In any event, thanks to all who participated and a special thanks to all who sent in their log.

TOP TEN					
	QSOs		MULTS		SCORE
KI5XP	712	K7WM	212	AA5AU	143,058
AA5AU	678	AA5AU	211	KI5XP	141,688
K6LL	631	W7WW	210	K6LL	129,986
W7WW	594	K6LL	206	W7WW	124,740
AB5K	577	KI5XP	199	K7WM	114,268
KI6DY	555	WØYK	196	AD6WL	103,545
K7WM	539	AD6WL	195	K5AM	99,640
AD6WL	531	K5AM	188	AB5K	98,667
N2WK	530	K5DU	177	KI6DY	92,138
K5AM	530	K6RIM	177	WØYK	86,240
NNØG	487	AB5K	171		

NCJ RT	TY NAQP TE	AM RESULT	S								
COCOS NP3D N2TA	OLO SIBICHI 18,912 <u>418</u> 19,330	TCG SAMBA KM4H N1WI WI8W K6DSP WA4OSD	A 2772 0 64,815 0 <u>11,808</u> 79,395	FLORIDA AF4Z K4PX KC4HW WB4EQS WO4D	A <i>BOYS</i> 62,062 65,031 82,203 6 44,388 <u>60,295</u> 31,3979	<i>SMC#1</i> K9JS WE9V K9WX AI9L W1TO	49,275 8316 46,550 0 <u>31,707</u> 135,848	<i>TCG WA</i> K4RO WO4O KE4OAR AD6WL K4WW	LTZ 4312 50,786 63,000 103,545 <u>25,750</u> 247,393	CONTEST VA3PC VE3ESH VE3RZ VE3HG VE3GSI	CLUB ONTARIC 40,920 0 26,269 <u>50,040</u> 117,229
<i>SWACC</i> K5AM K6LL KI6DY W7WW K7WM	99,640 129,986 92,138 124,740 <u>114,268</u> 560,772	<i>TCG RUMB/</i> W4LC W4BCG KW7N K5HP W9WI	4 44,744 48,280 42,296 67,236 <u>17,028</u> 219,584	<i>TCG TAN</i> N2WK AI9T VE1OP KI5XP W4GKM	VGO 84,800 73,386 68,452 14,1688 <u>55,044</u> 423,370	AUSTIN F AB5K KC5YKX KS5V NT5TU WA4PGM	20WERS #1 98,667 66,165 38,868 40,750 <u>56,771</u> 301,221	<i>NCCC #</i> WØYK K6RIM W6ZZZ N6RCE KJ6RA	1 86,240 76,287 16,910 3876 <u>31339</u> 377179	NCCC #2 ND2T NT6K W6IXP WK6I	58,065 0 <u>8496</u> 66,561
				TCG CH N9KO W4TDB K9MI K4BEV KSØM	ARLESTON 25,380 0 5372 0 <u>25,850</u> 56,602	<i>AUSTIN F</i> K5DU KG5U K9SEX	20WERS #2 81,951 0 <u>67,368</u> 149,319				

FEBR	UARY	2004	NCJ	RTT	(NAC	P R	ESUL	TS	SING	LE OPERATOR											
CALL KI6DY NNØG KØFX NØKE	NAME BOB DANA DON PHIL	80 m 145/44 108/41 85/38 67/32	40 m 122/40 130/41 133/43 74/35	20 m 171/44 149/41 108/37 109/37	15 m 108/34 98/37 84/35 72/29	10 m 0 9/4 2/1 11/8 19/11	2SO's ML 555 487 421 341	ULTS 166 161 161 145	SCORE 92,138 78,407 67,781 49,445	TEAM SWACC	CALL K6EP W6ZZZ WA6BOE AK6DV	NAME ERIC MARK BOB CHUCK	80 m 17/9 49/17 0/0 72/32	40 m 41/22 51/26 103/49 54/30	20 m 88/37 32/23 68/33 29/17 92/37	15 m 38/24 37/23 3/3 0/0 77/24	10 m 0 10/6 9/6 5/4 0/0 0/0	2SO's A 194 178 179 155	1ULTS 98 95 89 79 71	SCORE 19,012 16,910 15,931 12,245	TEAM NCCC #1
KØRFD KSØM KFØOH NØAT KFØUR WØKCF WØTY NØKBD KCØPIF WØHW WØRY	HALPH DICK BILL RON SHEL KEVIN TONY DAVE PAUL CHAZ BOB	73/35 50/28 64/35 4/4 0/0 30/14 54/33 17/11 26/17 0/0 0/0	60/31 70/34 57/29 58/32 32/20 31/18 74/36 54/28 39/21 41/24 38/19	98/40 94/33 50/24 95/37 136/41 68/32 19/11 78/28 38/19 53/24 38/23	37/22 16/11 21/12 44/20 64/25 55/24 0/0 6/4 32/20 45/21 25/15	6/5 5/4 13/3 10/3 0/0 0/0 0/0 0/0 0/0 4/2 2/1 3/3	274 235 205 211 232 184 147 155 139 141 104	133 110 103 96 86 88 80 71 79 70 60	36,442 25,850 21,115 20,256 19,952 16,192 11,760 11,005 10,981 9870 6240	TCG CHARLESTON	NC6P WK6I KF6PKG N6RCE K6OWL N6EE WB6TQG KQ6TW KE6QR	DALE DAVE JEFF ANDRE KEVIN MARK RON ARK RON ALA GARY	0/0 26/9 62/30 0/0 15/7 19/0 0/0 0/0 0/0	35/21 30/24 4/4 22/18 45/21 29/8 0/0 0/0 0/0	38/22 26/18 55/29 18/14 26/15 56/26 51/24 8/7 17/13	40/22 0/0 42/24 33/17 0/0 0/0 3/3 8/7 0/0	7/4 0/0 0/0 3/2 0/0 0/0 0/0 0/0 0/0 0/0	146 118 101 76 86 104 54 16 17	71 78 72 57 51 43 34 27 14 13	11,388 8496 5757 3876 3698 3536 1458 224 221	NCCC #2 NCCC #1
KØXU AAØCY KEØWW KØVG WYØV	JIM NAVAAD MIKE VERN GARY	40/25 0/0 0/0 22/15 0/0	37/25 28/22 23/13 7/6 6/5	17/10 41/20 20/11 0/0 15/11	0/0 22/10 15/9 0/0 9/6	0/0 2/2 9/3 4/1 0/0	94 93 67 33 30	60 54 36 22 22	5640 5022 2412 726 660		K6LL W7WW K7WM N7UVH WG7Y W7KB	DAVE RED WAYNE PAT BOB	72/32 89/36 102/40 98/39 96/38 61/31	164/45 156/50 125/49 86/38 87/34 60/27	158/48 186/47 153/49 132/35 155/44	156/49 106/47 108/47 77/30 78/28 86/26	81/32 57/30 51/27 21/13 2/1 20/13	631 594 539 414 418 378	206 2101 2121 155 145	129,986 24,740 14,268 64,170 60,610	SWACC SWACC SWACC
N1MGO KB1JZU W1TO K1DAN W0BR/1 AJ1M KB1HDO KT11 W1HY AB1CY	GORDON BOB TOM DAN BOB JAY JOHN CHARLIE PAUL JIM	1 109/39 84/37 86/35 129/44 89/39 80/33 2/2 24/18 0/0 9/7	102/36 93/35 77/35 32/19 55/28 80/33 42/35 39/23 1/1 11/8	106/37 83/34 74/30 110/35 52/20 40/23 70/29 63/27 36/22 25/18	79/22 20/12 28/13 11/8 37/17 30/16 36/15 8/7 41/13 0/0	5/1 4/2 6/4 0/0 8/6 0/0 2/1 0/0 8/4 6/4	401 284 271 281 241 230 152 134 86 51	135 120 117 106 110 105 72 75 40 37	54,135 34,080 31,707 29,786 26,510 24,150 10,944 10,050 3440 1887	SMC#1	WY7LL W6RLL KW7N WA7VNI K7GS K7MM N7ON KJ7NO K7VIT KR7X WG7X	LEO JOE STEVE PAT GARY DAN JOHN BRAD JERRY HANK GARY	61/30 39/22 75/38 51/24 16/11 44/24 35/15 75/33 31/13 7/3 3/2	107/40 36/23 70/31 52/23 29/20 30/20 40/26 50/25 53/29 22/16 17/14	145/42 120/43 88/31 94/37 127/44 50/24 84/43 40/20 39/22 46/20 53/25	67/31 82/37 59/25 74/33 75/31 117/39 36/21 51/23 18/14 38/24 29/22	20/13 30/21 19/11 22/11 28/15 0/0 20/13 8/7 4/4 0/0 0/0	380 307 311 293 275 241 215 224 145 113 102	143 146 136 128 121 107 118 108 82 63 63	54,340 44,822 42,296 37,504 33,275 25,787 25,370 24,192 11,890 7119 6426	TCG RUMBA
N2WK WA2ETU NO2T NP3D NA2M KF2XF W2OWL	WAYNE CARL JERRY ANDREI BILL DON HOOT	111/39 115/44 66/32 50/28 38/25 0/0 0/0	162/50 143/48 59/26 53/28 78/36 40/23 37/23	140/40 100/37 62/26 52/21 16/12 64/28 81/30	96/23 65/21 43/18 34/14 26/11 43/22 12/7	21/8 20/6 2/2 8/5 0/0 11/7 0/0	530 443 232 197 158 158 130	160 156 104 96 84 80 60	84,800 69,108 24,128 18,912 13,272 12,640 7800	TCG TANGO COCOSOLO SIBICHI	W7DPW K7KAR W1ZRV WI8W K8FC WG8Y	DAVE KEITH WILL THOM JOE MARK	0/0 0/0 0/0 103/39 153/47 71/31	0/0 9/5 0/0 149/49 123/46 71/33	71/28 28/23 15/10 119/34 107/40 99/37	16/11 20/15 0/0 58/17 43/25 63/22	13/8 2/2 0/0 18/6 1/1 16/7	100 59 15 447 427 320	47 45 10 145 159 130	4700 2655 150 64,815 67,893 41,600	TCG SAMBA
K2PH WA2AFD N2TA K3GP W4ZE	PAUL HOWARD SERGE GEO TED	11/10 0/0 11/11 136/44 46/40	20/12 13/10 11/8 106/44 100/43	35/17 55/26 0/0 76/28 83/31	15/7 2/2 0/0 42/12 56/19	0/0 0/0 0/0 4/3 11/6	81 70 22 364 296	46 38 19 131 139	3726 2660 418 47,684 41,144		W8UL K8AA N8TDL N2BJ WA8SDA NU8Z	JOHN DAVE GREG BARRY FRANCIS MARK	80/35 129/42 51/25 54/28 50/0 30/21	85/32 51/28 63/28 45/23 72/31 13/11	83/33 38/21 57/24 35/20 0/0 30/16	41/12 19/11 30/11 25/14 17/9 6/4	15/5 4/4 13/6 10/4 14/8 1/1	304 241 214 169 103 80	117 106 94 89 48 53	35,568 25,546 20,116 15,041 4944 4240	
W3BP N3NZ W3FQE K3FH	BRUCE NOEL LEE MIKE	64/32 0/0 0/0 5/5	125/41 38/22 0/0 0/0	107/33 109/33 90/30 25/16 0/0	19/11 30/12 25/12 0/0	9/4 8/6 3/3 0/0 0/0	325 161 50 5	123 67 28 5	40,002 39,975 10,787 1400 25		Al9T KE9S K9JS K9WX	STEVE JEFF JON TIM	0/0 134/44 91/41 82/41 72/39	2/2 121/46 142/47 149/46 101/37	14/11 114/39 142/40 68/31 122/38	5/3 59/21 81/21 56/14 41/16	2/1 25/12 8/2 10/3 14/3	453 464 365 350	162 151 135 133	73,386 70,064 49,275 46 550	TCG TANGO SMC#1 SMC#1
KC4HW WX4TM K4PX N2XD AD4EB KE4OAR AF4Z W04D	JIM TOM GEORGE JOHN JIM CHUCK DON ORRIN PICK	76/35 117/42 39/24 128/44 85/39 114/41 45/28 68/33 72/41	99/39 130/47 129/44 120/40 100/39 133/46 88/38 94/39 135/47	181/46 173/48 141/46 146/43 158/47 113/41 178/46 161/45	106/37 47/20 84/36 30/11 53/24 44/16 89/39 52/28 41/20	24/11 11/6 16/9 21/11 11/6 16/6 3/3 14/10	486 478 409 445 407 420 403 389 375	168 163 159 149 155 150 154 155	82,303 77,914 65,031 63,305 63,085 63,000 62,062 60,295 59,250	FLORIDA BOYS FLORIDA BOYS TCG WALTZ FLORIDA BOYS FLORIDA BOYS	W9HLY N9KO K9MI WD9GMI WE9V KB9DVC NØICV W9ISC	VERN CALVIN MIKE CALAN CHAD GEHL TONY JOHN	87/34 34/24 77/30 0/0 59/33 18/17 5/5	87/37 83/39 58/26 85/36 0/0 28/15 31/22 19/13 4/2	106/33 66/26 27/17 72/27 85/32 14/11 14/13 22/10	60/19 37/14 15/9 18/8 48/13 0/0 11/6 21/10	17/7 15/5 6/2 0/0 20/10 0/0 13/5 0/0	357 235 183 175 153 101 87 67	130 108 84 71 55 59 63 38	46,410 25,380 15,372 12,425 8316 5959 5481 2546	TCG CHARLESTON TCG CHARLESTON SMC#1
WA4PGN W4GKM	NICK	120/40 112/42	109/43 164/49	91/32 82/30	66/21 38/18	11/5 11/7 0/0	375 397 396	143 139	59,250 56771 55,044	AUSTIN POWERS #1 TCG TANGO	AH6HH	SID	53/30 0/0	4/3 41/21	0/0 26/15	0/0 30/17	2/2	57 99	33 55	1881 5445	
W4UK K4FJ WO4O	JERRY STEVE RIC	102/37 73/33 98/45	135/47 108/39 79/31	74/29 113/37 169/43	44/18 72/25 25/11	28/10 15/6 8/4	383 381 379	141 140 134	54,003 53,340 50,786	TCG WALTZ	KL7IWC	LARRY	17/10	13/6	1/1	0/0	0/0	31	17	527	
N4GVA W4BCG KE4KWE	SCOTT BILL TOM	32/23 100/37 79/31	120/46 106/44 106/40	127/43 119/37 101/34	44/23 25/15 47/20	17/7 4/3 23/10	340 354 356	142 136 135	48,280 48,144 48,060	TCG RUMBA	VE10P	SCOTT	63/33 68/36	100/43	186/46	71/28	16/7 0/0	436 210	157	68,452	TCG TANGO
WB4EQS W4LC K4WW	JIM DUC	33/27 128/45 35/24	80/35 108/47 74/34	139/47 54/28 101/31	63/23 27/11 31/10	9/5 12/5 9/4	324 329 250	137 136 103	44,388 44,744 25,750	FLORIDA BOYS TCG RUMBA TCG WALTZ	VE2OWL	STEF	0/0 80/37	0/0	14/11	27/16	0/0	41	27	1107	CC ONTABIO
K4IQJ K4SV W6IHG WB2RHN K4VU	DICK DAVE JERRY IBEN ROB	61/32 62/31 12/11 59/33 34/22	71/33 67/34 63/33 53/28 54/28	69/30 53/28 86/35 55/29 71/27	18/9 27/11 51/17 43/15 36/13	7/2 6/5 8/5 0/0 11/4	226 215 220 210 206	106 109 101 105 94	23,956 23,435 22,220 22,050 19,364		VA3PC VE3HG VE3UKR VA3KGB	PAUL PETER NICK CHIP	95/38 53/28 0/0 3/3	81/32 70/34 0/0 14/13	73/30 62/26 58/22 21/11	63/19 46/15 35/12 0/0	18/5 10/6 5/4 0/0	330 241 98 38	124 109 38 27	40,920 26,269 3724 1026	CC ONTARIO CC ONTARIO
K4BX W9WI W6DSQ	DOUG FRANK	15/14 17/14 68/38	63/40 59/28 85/35	78/35 93/28 20/12	29/13 21/11 0/0	15/16 8/5 0/0	200 198 173	98 86 85	19,600 17,028 14,705	TCG RUMBA	VE6YR *WB5EX VE6	BOB / CHARLE	39/19 S0/0	86/36 5/4	81/36 18/10	84/35 0/0	12/8 0/0	302 23	134 14	40,468 322	
WB6BW2 K4MA WA4OSD	JIM FRANK	19/12 22/16 29/21	71/34 52/21 46/26	51/23 36/25 40/20	23/11 26/10 21/11	9/5 13/9 8/4	173 149 144	85 81 82	14,532 12,069 11,808	TCG SAMBA	VA7AM VE7FO	DAVE OJ	17/12 24/15	111/44 37/22	124/36 175/45	102/37 54/24	26/16 32/18	380 322	145 124	55,100 39,928	
N4GN K4RO KM4H	TIM KIRK MIKE	53/30 0/0 6/6	67/27 0/0 10/9	0/0 63/26 21/14	0/0 24/13 29/13	0/0 11/5 0/0	120 98 66	57 44 42	6840 4312 2772	TCG WALTZ TCG SAMBA	VA7ST VE9DX	BUD ANDY	63/30 5/5	47/22 57/30	86/35 99/32	15/11 10/8	7/2 0/0	218 171	100 75	21,800 12,825	
W4NTI KV4CN	DAN DAVE	0/0 0/0	35/21 0/0	19/14 36/18	0/0 9/6	0/0 0/0	54 45	35 24	1890 1080		KP4JRS	JOSE	0/0	0/0	69/26	0/0	0/0	69	26	1794	
AA5AU KI5XP K5AM	DON CHAS MARK	120/45 129/44 116/43	177/53 213/51 133/43	193/50 195/51 148/43	152/49 153/43 112/46	36/14 22/10 21/13	678 712 530	211 199 188	143,058 141,688 99,640	TCG TANGO SWACC	NP4BM XE1XOE	VICTOR	9/9 0/0	24/16 16/7	0/0 80/37	8/6 50/28	1/1 25/10	42 171	32 82	1344 14,022	
AB5K K5DU K450Q K9SEX K5HP KC5YKX NA5U KE5OG WA0SXV KU5S	IERRY SUSAN CHARLES MIKE TERRY REID MICHAEL BILL BILL MIKE JIM	31/19 90/37 S50/30 69/38 101/38 75/33 - 95/37 38/26 85/35 88/39	176/52 115/46 138/51 105/40 107/44 103/42 104/39 68/36 105/43 89/38	184/47 128/39 161/43 102/39 127/41 112/39 110/39 145/45 86/37 72/35	16//43 107/40 74/30 94/37 93/31 79/34 98/38 110/45 54/18 46/22	19/10 23/15 21/10 31/14 3/2 32/17 6/4 19/10 1/1 6/3	577 463 444 401 431 401 413 380 331 301	171 177 164 168 156 165 157 162 134 137	98,667 81,951 72,816 67,368 67,236 66,165 64,841 61,560 44,354 41,237	AUSTIN POWERS #1 AUSTIN POWERS #2 AUSTIN POWERS #2 TCG RUMBA AUSTIN POWRS #1	DX STAT YV6BTF PY2SRB ON6LEO OK2BXW HB9BJJ MØCFV DL1ZBO JA1BWA	JOSE SILVIO LEO JAROMIF ROY BLAZEJ RAY TOSHI	1/1 0/0 0/0 8 0/0 5/5 0/0 0/0 0/0	123/42 0/0 5/5 0/0 41/23 0/0 9/8 0/0	148/43 0/0 54/29 26/20 0/0 12/10 9/8 17/10	44/23 43/27 0/0 16/13 0/0 21/16 6/5 10/5	54/27 67/60 0/0 0/0 0/0 0/0 0/0 0/0	370 110 59 42 46 33 24 27	136 60 34 33 28 26 21	50,320 6600 2006 1386 1288 858 504 405	
NT5TU K5WAF KS5V W5MK NI5F K5WW AD6G N5LBJ	AGGIE BILL ED CHRIS BILL GERT FRITZ DOUG	20/13 62/30 64/27 56/31 35/23 21/17 0/0 42/28	88/37 73/31 126/42 83/32 43/27 66/33 78/37 30/18	148/40 97/39 100/35 123/36 99/37 75/37 70/35 52/23	59/29 49/24 26/19 40/18 41/21 48/28 49/28 41/13	11/6 22/10 0/0 3/1 14/4 5/4 4/3 12/8	326 303 316 305 232 215 201 177	125 134 123 118 112 119 103 90	40,750 40,602 38,868 35,990 25,984 25,585 20,703 15,930	AUSTIN POWERS #1 AUSTIN POWERS #1	7L4IOU JA1BHK DK8EY JA1XRH JA7KM YC2ECG JA3MIB YU7AM	HISA MASA CHRISTC TAK YASU JON TOYO ARPAD	0/0 0/0 0/H 0/0 0/0 0/0 0/0 0/0 0/0	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	13/8 9/8 13/8 8/5 2/2 0/0 0/0 5/4	10/5 5/2 0/0 6/2 10/5 15/5 5/4 0/0	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	23 14 0/0 14 12 15 5 5	13 10 13 7 5 4 4	299 140 8 98 84 75 20 20	104
N5NJ N5PA N5BA W5BBR K5EJL	BOB ALAN BRIAN BILL JOE	57/32 0/0 8/7 3/3 0/0	73/35 42/36 23/17 10/8 0/0	14/10 51/26 5/5 16/11 11/6	0/0 22/12 7/6 7/5 9/8	0/0 0/0 0/0 0/0 2/2	144 115 43 36 22	77 64 35 27 16	11,088 7360 1505 972 352		MULTI-T W6YX W5KFT NN6NN NØNI	WO JOHN ED DOC BOB	130/46 169/48 136/43 178/50	216/56 225/57 194/57 218/52	198/52 226/49 201/51 229/48	207/51 158/45 158/49 118/41	117/37 34/16 69/27 18/11	868 812 758 761	242 215 227 202	210,056 174,580 172,066 153,722	
AD6WL WØYK K6RIM	JIM ED AL	63/31 72/38 59/30	108/43 105/48 110/45	176/50 105/43 123/42	121/45 102/45 91/34	63/26 56/22 48/25	531 440 431	195 196 177	103,545 86,240 76,287	TCG WALTZ NCCC #1 NCCC #1	DENOTE	'S QRP *									
KK6T ND2T N6PC KJ6RA W6WRT KE6RAD	TERRY TOM PAUL RICH BILL KEVIN	23/13 42/18 83/36 77/32 10/10 30/13	117/42 39/22 81/36 85/36 69/33 61/29	138/48 140/45 127/45 55/29 59/26 56/30	81/36 141/42 73/30 26/16 52/31 53/24	25/15 25/16 33/20 0/0 16/8 13/10 9/6	384 395 364 259 203 209	155 147 147 121 110 102	59,520 58,065 53,508 31,339 22,330 21,318	NCCC #2 NCCC #1	<i>MULTI-2</i> W6YX—ł W5KFT— NN6NN— NØNI—N	<i>OPERATO</i> (6UFO, N6 -K5PI, K5T -W6XK, N6 ØNI, NØA	<i>RS:</i> DE, N7M WJ SEE C, WØET	H, W6LE C), W6GE	M					

Results, February 2004 Phone Sprint

Jim Stevens, K4MA ssbsprint@ncjweb.com

This was the forty-third Phone Sprint, and a record 156 logs were received. Compared to a year ago, scores were very similar, thanks to the offsetting effect of more QSOs but less multipliers. For the first time in several Sprints, there were no DX logs submitted. In reading the HP and LP Top Ten listings, you will see a few changes. First, I have added error percentages. The error percentages show two different numbers: first is the you rate which is the error rate for that station's log and second is the them error rate which reports the percentages of busts of that station's info in another station's log. Additionally, I added QSOs Lost and hour-by-hour QSO totals for the LP Top Ten. Finally, I have added a new Top Ten stat category for those people who had no busted QSOs in other people's logs. I have dubbed this new stat as Reverse Golden Logs.

High Power

TOP 10 QSOS

K9PG (at WB9Z) notched his third victory. In doing so, Paul became only the second operator to surpass 400 QSOs in a Sprint. Paul has seemingly become Mr. February SSB Sprint, winning the last three February events. Kudos should also go to station owner Jerry, WB9Z, who has built a FB station that Paul has definitely figured out how to pilot in a Sprint.

TOP 10 GOLDEN

132

120

103

69

58

51 47

10

7

233

116

111

62

57

47

41

27

17

K9PG (@WB9Z) VA7RR W7WA W9RE N9RV KW8N K4XS K6LL K9NW	411 358 354 349 348 334 333 332 322	KI7Y 1 N6MJ 1 W4OC 1 K8MR 1 N4GI 1 K9C 1 N4GI 1 K0FT 1 NØICV 1 N4NTO 1
KA9FOX	307	
	19	TOP 10 REVERSE GOLDEN
VA7RR	40	W8TM 1
W7EJ	47	K1NQ 1
K7SV	47	NB7V
K9PG (@WB9Z)	46	K6OWL
K6LL	46	N6RT
NEVY (NEDE)	40	
K9NW	40	W4OGG
KA9FOX	45	
NX9T	45	TOP 10 Band Cha
W7WW	45	N9RV 1
		K9PG (@WB9Z)

TOP 10 QRP	
N8VW	6806
WB6BWZ	368
WA4FIB	198
KØUSN (WV7T)	135

Coming in second was one of the all time great SSB Sprinters who had been missing for a few years-VA7RR. Welcome back, Gary! Rounding out the HP Top Ten were K4XS, W7WA, W9RE, K6LL, KW8N, N9RV, K9NW, and KA9FOX. Congratulations to Dave, K6LL, who became the second person to notch 30 or more Top Ten finishes in SSB Sprint. Also Dan, W7WA, notched his 20th Top Ten finish.

Low Power

In the closest race of this Sprint, K5NZ edged K7SV for the LP crown by only 36 points. Mike had 18 more QSOs than Larry, which barely made up for Larry's 3 extra multipliers. It was Mike's fourth LP win while no one else has won more than one. Rounding out the LP Top Ten were a lot of the usual suspects with some newcomers thrown in. In order: N5DO, K6ZH, KU8E, N4LR, ACØW, NA4K, KL2A, and WA4PGM.

QRP

Pat, N8VW, became the first multiple winner in the QRP category. The remaining QRP scores are: WB6BWZ, WA4FIB, and KØUSN (WV7T).

Golden Logs

The Top Ten Golden Loas were KI7Y. N6MJ, W4OC, K8MR, N4GI, KJ9C, N6RT, NØICV, and N4NTO. For the first time, here is the list of Top Ten Reverse Golden Logs (meaning there were no busts of these stations' sent info in the

TEAM SCORE	ES										
Dead Lizards CAN Talk NCCC #1 SCCC #1 Side Pocket Spr.											
K9PG (@WB9Z) W9RE KW8N N9RV K9NW KA9FOX K9ZO NX9T KØOU WA9IRV	18,906 15,356 14,696 14,616 14,490 13,815 13,064 12,420 11,137 <u>9360</u> 137,860	VA7RR W6YX (N6DE) W0YK K6IF K6LRN WX5S (@N6RC WK6I N6ZFO W6IXP ND2T	16,826 13,064 11,280 10,248 9282 0) 9030 7215 6847 6760 <u>4020</u> 94,572	K6LL K6LA W6CIT (N6AN) K6ZH W7WW W6TK N6MJ K6EY WA7BNM	15,272 12,814 11,088 10,062 9900 9711 4440 4004 <u>3180</u> 80,471	W7WA W7EJ K7RI (K7SS) N7LOX KL2A N9ADG KI7Y KL1V	15,576 13,630 13,455 10,701 7960 6401 4224 <u>2070</u> 74017				
5. Southeast Sprint Coalition: WC4E, K7SV, K4MA, KU8E, WA4PGM, N4CW, N8VW, K4NO, WB6BWZ 68,548 6. TCG TITANS: K4WX, W5TM, K4BP, W4NZ, NA4K, N4DW, W9WI, K4RO, KØEJ 59,921 7. NCCC #2: K6XX, K6III, KJ6RA, W6OAT, W6FRH, K6UFO, K6VVA, KE6QR, W6ZZZ 41,314 8. YCCC: KX1L, K5ZD, K1NQ, KE1FO, AJ1M 22,253 9. MWA # 1: ACØW, KTØR, WGØM, NØAT 20,796 10. NCCC #3: W6XU, KE6ZSN, K6ST, W7SW, N6AJR, NU6T, K6BBQ, AK6DV, WA4FIB 20,534 11. Grand Mesa: KO7X, NØKE, WØETT, NØSXX, KIØGQ, KØUSN 17,855 12. SCCC #2: W4EF, K6ZCL, N6RT 15,658											

TOP 10 LOW	PWR LOST	QSOs YOU	ERROF	R RATES	00Z	01Z	02Z	03Z
(5NZ	11880	5	1.8%	1.5%	79	75	55	61
K7SV	11844	3	1.2%	2.4%	84	64	48	56
15DO	10290	3	1.2%	3.7%	80	67	47	51
K6ZH	10062	4	1.7%	0.9%	58	53	63	60
KU8E	90405	1.7%	2.2%	75	57	40	55	
V4LR	90303	1.4%	1.9%	68	48	42	57	
ACØW	8680	2	0.9%	1.4%	63	64	46	44
VA4K	84056	1.9%	0.5%	76	38	49	44	
KL2A	79607	2.9%	3.5%	74	54	34	38	
VA4PGM	76803	1.5%	3.1%	62	41	41	48	

FOP 10 Band Changes CHANGES LOST YOU THEM \vert PV 125 K9PG 18906 90 2 0.5% 4.1% 120 102 81 108 (9PG (@WB9Z) 90 (@WB9Z) (@WB9Z) (@WB9Z) 90 2 0.5% 4.1% 120 102 81 108 (W8N 87 VA7RR 16826 2 3 0.6% 3.3% 100 76 98 85 (9ZO 54 K4XS 15984 4 3 0.9% 1.2% 84 73 89 87 (SNZ 51 W7WA 15576 4 7 1.9% 1.4% 104 72 89 89 4 44 2 0.8% 3.7% 98 79 90 84 VEAC VUTETU 2.4 K6L 15772 2 10 2.9% 81 75 98 79 90 84	
N9RV 125 K9PG 18906 90 2 0.5% 4.1% 120 102 81 108 (9PG (@WB9Z) 90 (@WB9Z) 90 (@WB9Z) 90 102 81 108 (W8N 87 VA7RR 16826 2 3 0.6% 3.3% 100 76 98 85 (9ZO 54 K4XS 15984 4 3 0.9% 1.2% 84 73 89 87 (SNZ 51 W7WA 15576 4 7 1.9% 1.4% 104 72 89 89 ACOW 40 W9RE 15356 32 5 0.8% 3.7% 98 79 90 84 VEAC (VITETU) 2.4 K6L 1572 2 10 2.0% 2.7% 88 81 75 90 84	
(9PG (@WB9Z) (@WB9Z) (W8N 87 VA7RR 16826 2 3 0.6% 3.3% 100 76 98 85 (y8Z) 54 K4XS 15984 4 3 0.9% 1.2% 84 73 89 87 (SNZ 51 W7WA 15576 4 7 1.9% 1.4% 104 72 89 89 ACOW 40 W9RE 15356 32 5 0.8% 3.7% 98 79 90 84 MEAC (UTETLI) 2.4 K6L 16272 2 10 2.0% 2.7% 88 81 75 90 84	
KW8N 87 VA7RR 16826 2 3 0.6% 3.3% 100 76 98 85 K9ZO 54 K4XS 15984 4 3 0.9% 1.2% 84 73 89 87 K5NZ 51 W7WA 15576 4 7 1.9% 1.4% 104 72 89 89 AC0W 40 W9RE 15356 32 5 0.8% 3.7% 98 79 90 84 VEAC (UTETLI) 2.4 K6L 15772 2 10 2.7% 89 81 75	
K9ZO 54 K4XS 15984 4 3 0.9% 1.2% 84 73 89 87 K5NZ 51 W7WA 15576 4 7 1.9% 1.4% 104 72 89 89 ACOW 40 W9RE 15356 32 5 0.8% 3.7% 98 79 90 84 MEAC (UTETLI) 2.4 K6L 15772 2 10 2.0% 2.7% 98 81 75 98	
K5NZ 51 W7WA 15576 4 7 1.9% 1.4% 104 72 89 89 ACOW 40 W9RE 153366 32 5 0.8% 3.7% 98 79 90 84 MEAC (UTETLI) 2.4 K6L 15772 2 10 2.0% 2.7% 98 81 75 98	
ACOW 40 W9RE 15356 32 5 0.8% 3.7% 98 79 90 84	
NEAC (NTETLI) 24 KOLL 15272 2 10 2.0% 2.7% 99 91 75 99	
NSAC (N1510) 54 ROLL 15272 2 10 2.5% 2.1% 66 61 75 66	
N9RE 32 KW8N 14696 87 8 1.8% 3.0% 95 89 67 85	
N5WMU 30 N9RV 14616 125 8 2.0% 5.4% 103 80 78 88	
(4MA 28 K9NW 14490 13 6 1.5% 7.7% 107 79 67 70	
(TØR 28 KA9FOX 13815 5 12 3.4% 2.6% 100 74 60 74	

KW8N

K9ZO

K5NZ

ACØW

W9RE W5WMU

K4MA

KTØR

receiving station's log): W4NZ, W8TM, K1NQ, NB7V, K6OWL, N6RT, NY3A, VE3UDK, and W4OGG. Congratulations on the accuracy! If you want a copy of your log checking report, please send an e-mail to **ssbsprint@ncjweb.com**.

Records

There were no new high power area records this time. New low power area records are from K1NQ in Vermont, AJ1M in Rhode Island, K7SV in Virginia, KU8E in Georgia, NB7V in Montana, and ACØW in Minnesota. A new QRP record was established by KØUSN (WV7T) in Colorado. The Phone Sprint records will soon be updated on the *NCJ* Web. Check them out at **www.ncjweb.com/ ssbsprintrecords.php**.

Teams

In the team competition, Dead Lizards CAN Talk picked up yet another win with NCCC #1 coming in second. Dead Lizards has now won five out of the last six team competitions. Rounding out the Top Five teams were—SCCC #1, Side Pocket Sprinters, and Southeast Sprint Coalition.

Notes

The September 2004 Phone Sprint will be held at 0000Z on September 19 (September 18 local time). Get on and join us in the fun!

Soapbox

This is my *last* Low-Power SSB Contest with no beam—K6VVA! Thanks for all the fun. I still need to figure out how *not* to get stuck hitting those "brick walls" that show up—NX9T! First time—man what a blast! Had some RF getting back into the mic, but had a great time. I *will* be back from Kansas—KØXM (*we sure hope so for that mult—editor*). I just happened to be installing a new FT-897 into my truck and low and behold the Sprint was going on. All contacts were made from the truck with 100 W and the ATAS 120 antenna. Thanks to all who dug out my weak signal! It was great to hear so many familiar calls. Building a new station in Colorado and Montana-WØMU. Nice to work K7RAT on phone—W6CIT! Condx on 20 much different than the cw event. Good signals from the West Coast and sporadic E for the closer stuff made 20 my best band. It's still a little frustrating to get beat out by the high power guys, but a lot of fun none-the-less-K7SV. Fun and only dipoles here with a couple hundred watts-W7SW. Last contest from this QTH. Moving to new QTH in two weeks-KA9FOX. Lotsa easy mults never heard like ME. NJ. and NM. Did work three AK stations-KØOU. My first SSB Sprint. Had a good time once I got into a rhythm-KE1FO. Because of the impending wedding of #1 daughter. I had to multiplex operating with painting the living room (single op, two brushes)-N6ER. Wish I could type-K4BP! My idea of hell is being forced to operate 75 in a SSB Sprint-N9RV.

Call	Name	QTH	20	40	80	QSO	Mlt	Score	Team
KK1L WB1GOB	RON	VT	89	86	64	239	41	9799	YCCC
(W1SJ) W1EQ K5ZD K1NQ KE1FO WG1Z AJ1M N1DS	MITCH *BOB RANDY *DAVE *AL *JOE *JAY *DENNIS	VT CT MA NH VT MA RI MA	83 61 110 49 38 16 17 7	47 38 42 37 21 34 15 4	66 42 0 25 36 10 23 0	196 141 152 111 95 60 55 11	40 37 30 29 33 28 28 9	7840 5217 4560 3219 3135 1680 1540 99	YCCC YCCC YCCC
W2EQ	*TOM	NJ	27	28	0	75	24	1800	
AJ3M NY3A	MASA STEVE	MD PA	5 0	7 0	42 41	134 41	35 23	4690 943	
K4XS WC4E NX9T K7SV K4WX K4MA W4NF K4BP W4NZ K4BP N4LR N4LR N4LR N4LR N4LR N4LR N44K WA4PGM N4CW K4AC K4AC NA4BW K14Q N4DW W9WI W40C K4RO N4GI K4RO N4GI KØEJ WB6BWZ KI4ASK W40GG N4NTO	BILL JEFF JEFF *LARRY DON JIM JACK ED *JEFF *DON PAUL *STEVE *KYLE BERT JIM BRIAN *STEVE DAVE DAVE DOUG *DON GREG *JOHN KIRK BLAKE *MARK **MATT *JOE DAVE	FL CVAN VAN TN GAAAN VAN TN GAAN VAN TN GAAAN VAN TN GAAAN VAN TN GAAN VAN TH TAAAN VAN TH TAAAN VAN TH TAAAN VAN THE TAAAAN VAN THE TAAAN VAN THE TAAAN VAN THE TAAAN VAN	204 125 120 102 79 66 102 89 7 104 113 86 95 73 53 88 68 63 0 99 388 7 30 88 63 0 93 88 7 30 88 19 388 7 30 0 19 38 7 0 0 0 0 0 0 0 0 0 0 0 10 2 0 0 0 0 0 0	$\begin{array}{c} 71\\ 990\\ 88\\ 1099\\ 87\\ 770\\ 54\\ 857\\ 567\\ 48\\ 60\\ 13\\ 14\\ 48\\ 927\\ 0\\ 11\\ 19\\ 0\\ 0\\ 7\\ \end{array}$	$\begin{array}{c} 581 \\ 662 \\ 762 \\ 757 \\ 659 \\ 570 \\ 223 \\ 943 \\ 225 \\ 80 \\ 417 \\ 00 \\ 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	333 295 2762 279 240 2266 215 192 211 205 192 211 180 162 137 131 123 103 865 555 58 857 29 19 17 7	48 445 471 411 42 389 40 410 380 380 380 380 380 380 380 380 380 38	15984 2980 (2,420) 11,844 11,439 9840 99492 9348 9087 9040 9030 84405 7680 7410 5832 5206 8440 5532 5206 1495 1495 1495 1495 1495 1276 1140 3399 2580 2540 2540 2540 2540 2540 2550 2550 255	SOUTHEAST SPRINT DEAD LIZARDS SOUTHEAST SPRINT TCG TITANS SOUTHEAST SPRINT TCG TITANS SOUTHEAST SPRINT TCG TITANS SOUTHEAST SPRINT SOUTHEAST SPRINT TCG TITANS SOUTHEAST SPRINT TCG TITANS TCG TITANS TCG TITANS
W5WMU K5NZ W5TM	PAT *MIKE	LA TX	122 132	88 92	73 46	283 270	431 441	12,169 11,880	
(W5AO) N5DO	DAVE *DAVE	OK TX	80 111	95 73	87 61	262 245	411 421	10,742 10,290	TCG TITANS
(W5ASP)	JOE	тх	101	76	62	239	39	9321	

<i>Call</i> K5YAA W5GN KE5OG W5AC	<i>Name</i> JERRY BARRY *BILL	<i>QTH</i> OK TX TX	<i>20</i> 77 88 90	<i>40</i> 76 59 21	<i>80</i> 39 38 26	QSO 192 185 137	<i>Mlt</i> 40 39 35	<i>Score</i> 7680 7215 4795	Team	
(NT5TU) W2MN KD5JXM	*AGGIE *TOM *ZAK	TX TX MS	92 51 50	33 20 7	0 7 0	125 78 57	35 27 23	4375 2106 1311		
W6YX (N6DE) K6LA W4EF WØYK W6CIT	BILL KEN MIKE ED	CA CA CA CA	127 143 1141 1031	98 98 121 106	59 57 67 73	284 298 302 282	461 431 421 401	13,064 12,814 12,684 11,280	NCCC SCCC SCCC NCCC	#1 #1 #2 #1
(N6AN) K6XX K6IF K6ZH W6TK K6LRN	REX BOB DAN *JIM DICK DICK	CA CA CA CA CA CA	134 115 114 102 04 88	75 73 77 84 83 81	43 59 53 48 62 52	252 247 244 234 249 221	441 421 421 431 39 42	11,088 10,374 10,248 10,062 9711 9282	SCCC NCCC NCCC SCCC SCCC NCCC	#1 #2 #1 #1 #1
WX5S (@N6RO K6III WK6I N6ZFO W6IXP KJ6RA W6XU W6CAT KE6ZSN W6FRH K6ST N6MJ KQ6RL ND2T K6EY N6ER WA7BNM K6UFO K6VVA W7SW K6ZCL N6AJR K6QRL N06X K6QWL	MATT ROMEO JEFF *BILL TOM RICH JOSH *RUSTY JOHN BOB BARRY *DAN DAVE *TOM *BBUCE *MORK *RUCE *MORK *RUCE *MORK *TED *TOM *GARY KEN *MARK	CA CA CA CA CA CA CA CA CA CA CA CA CA C	$\begin{array}{c} 102\\ 104\\ 101\\ 72\\ 68\\ 61\\ 73\\ 90\\ 76\\ 61\\ 66\\ 97\\ 52\\ 70\\ 47\\ 40\\ 15\\ 53\\ 31\\ 56\\ 45\\ 33\\ 30\\ 29\\ 9\\ 9\end{array}$	$\begin{array}{c} 66\\ 38\\ 51\\ 51\\ 53\\ 49\\ 23\\ 41\\ 29\\ 26\\ 58\\ 29\\ 30\\ 13\\ 6\\ 12\\ 28\\ 23\\ 13\\ 6\\ 12\\ 28\\ 23\\ 22\\ 58\\ 29\\ 30\\ 13\\ 6\\ 12\\ 28\\ 23\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28$	$\begin{array}{c} 47\\ 42\\ 46\\ 44\\ 50\\ 53\\ 0\\ 7\\ 34\\ 2\\ 0\\ 51\\ 330\\ 41\\ 8\\ 33\\ 23\\ 20\\ 19\\ 17\\ 0\\ 20\\ 17\\ 0\\ 20\\ 17\\ 0\\ 20\\ 10\\ 17\\ 0\\ 20\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$	$\begin{array}{c} 215\\ 184\\ 185\\ 167\\ 169\\ 195\\ 139\\ 130\\ 133\\ 130\\ 132\\ 134\\ 143\\ 136\\ 106\\ 115\\ 98\\ 92\\ 101\\ 68\\ 68\\ 57\\ 57\\ \end{array}$	$\begin{array}{c} 42\\ 40\\ 39\\ 41\\ 40\\ 37\\ 36\\ 35\\ 32\\ 37\\ 33\\ 28\\ 20\\ 226\\ 22\\ 24\\ 24\\ 14\\ 36\\ 226\\ 222\\ 24\\ 24\\ 14\\ 36\\ 26\\ 226\\ 22\\ 24\\ 24\\ 14\\ 36\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 2$	9030 7360 7215 6847 6760 6630 5513 5504 4760 4522 4448 4440 4020 4024 40356 4020 4024 40358 4020 25488 22548 22484 2222 1700 1632 2248 1368 278 278 278	NCCC NCCC NCCC NCCC NCCC NCCC NCCC NCC	######################################
NU6T K6BBQ	RICH	CA	6	19	12	37	15	555	NCCC	#2 #3
(@W6SG AK6DV W6ZZZ WA4FIB K6CSL) *REM *CHUCK *MARK **JACK BERT	CA CA CA CA CA	14 22 8 6 10	14 0 11 13 10	12 0 22 14 0	40 22 41 33 20	12 18 9 6 9	480 396 369 198 180	NCCC NCCC NCCC NCCC	#3 #3 #2 #3

Call	Name	QTH	20 40 80	QSO	Mlt Score	Team		Call	Name	QTH	20 4	0 80	QSO	MIt 3	Score	Team	
W7WA	DAN	WA	170112 72	354	4415,576	SIDE POCKET	SPRINTER	WI9WI	JIM	WI	59 89	9 61	209	42	8778		
K6LL	DAVE	AZ	140108 84	32	4615,272	SCCC #1		K9SG	DOC	IN	55 70) 38	163	37	6031		
W7EJ	JIM	OR	104127 59	290	4713,630	SIDE POCKET	SPRINTER	KX9DX	RICK	IL	52 38	3 38	128	32	4096		
K7RI								AA9RT	*LOU	IL	49 44	1 27	120	28	3360		
(K7SS)	DAN	WA	132 96 71	299	4513,455	SIDE POCKET	SPRINTER	N9KT	*DAVID	IN	32 48	3 18	98	31	3038		
N7LOX	BRIAN	WA	97100 64	261	4110,701	SIDE POCKET	SPRINTER	W9GIG	DICK	IL	38 23	32	63	27	1701		
W7WW	DAVE	AZ	105 71 44	220	45 9900	SCCC #1		KJ9C	MEL	IN	0 2	7 24	51	23	1173		
KL2A	*JOHN	WA	107 56 36	199	40 7960	SIDE POCKET	SPRINTER	NØICV	*TONY	IL	10 () ()	10	9	90		
N9ADG	*BRIAN	WA	71 59 43	173	37 401	SIDE POCKET	SPRINTER										
W7ZB	*MARK	OR	76 32 54	162	37 5994			KØOU	STEVE	MO	98 94	1 67	259	431	1,137	DEAD LIZ	ARDS
KO7X	*ALAN	WY	93 57 10	160	31 4960	GRAND MESA		ACØW	*BILL	MN	90 8	7 40	217	40	8680	MWA # 1	
KI7Y	*JIM	OR	84 30 18	132	32 4224	SIDE POCKET	SPRINTER	KTØR	DAVE	MN	50 8	59	190	43	8170	MWA # 1	
K9JF	JIM	WA	92 23 0	115	35 4025			KØXM	*CHUCK	KS	70 5	7 40	167	37	6179		
AL1G	KIM	AK	93 23 8	124	28 3472			KØHW	*JIM	SD	61 60) 25	146	38	5548		
N7WA	*MIKE	WA	56 27 19	102	33 3366			NØKE	*PHIL	CO	96 14	1 15	125	35	4375	GRAND N	IESA
KL1V	KENT	AK	69 0 21	90	23 2070	SIDE POCKET	SPRINTER	WØETT	*KEN	CO	71 3	10	112	36	4032	GRAND N	IESA
NB7V	*DAVE	MT	24 26 12	62	22 1364			NØSXX	*GARY	CO	80 52	2 3	135	29	3915	GRAND N	IESA
							_	WGØM	*MIKE	MN	43 24	1 2	69	30	2070	MWA # 1	
KW8N	BOB	OH	133129 72	334	4414,696	DEAD LIZARD	S	NØAT	*RON	MN	0 34	1 33	67	28	1876	MWA # 1	
N8VW	**PAT	ОН	56 55 5	166	41 6806	SOUTHEAST S	SPRINT COA	N4VI	*CHRIS	CO	18 40	0 (58	26	1508		
N8AA	*JOHN	OH	37 6 49	142	37 5254			WØMU	*MIKE	CO	33 40) ()	73	20	1460		
W8TM	*PAUL	OH	43 49 24	16	33 3828			WØZP	WAYNE	CO	44 4	1 0	48	18	864		
KA8HQL	*JEFF	OH	42 54 12	108	31 3348			KIØGQ	*VAL	CO	19 (5 I	26	17	442	GRAND N	IESA
K8MR	LEBRON	OH	0 0 69	69	34 2346			KØUSN	** 01 11 5 5	~~							
								(VVV/I)	CHIEF	CO	5 8	3 2	15	9	135	GRAND IV	IESA
K9PG			1 = 1 1 0 0 0 0		4040.000		0				10110	. 70	050	474	~ ~ ~ ~	N000 #4	
(@WB9Z	PAUL	IL	151162 98	411	4618,906	DEAD LIZARD	S		GARY		101124	+ /3	358	4/1	6,826	NCCC #1	
W9RE	NIKE		131118100	349	4415,356	DEAD LIZARD	5		KELLI *CAM			0 3/	170	30	6460		
N9RV	PAI		132134 82	348	4214,616	DEAD LIZARD	5	VEDOF	SAIVI	VED	67 90 E0 E0	1 1	1/0	35	0230		
K9NW	MIKE		134101 87	322	4514,490	DEAD LIZARD	5				59 50		121	27	3207		
KASFUX	SCOTI	VVI	100100 70	307	4513,815		5		*CREC		06 19	23	40	20	2132		
K9ZO			102103 79	284	4013,004	DEAD LIZARD	5			ves e	20 10	1 1 5	40	16	900		
K9J3			33 64 50 77 00 65	233	4410,232		0			2	0 10	10	29	16	404		
VIASION	NON	V V I	11 90 00	240	39 9300		0	VLOUDR		.0	0 1	0	21	10	702		

KØXG Systems Bettendorf, IA 52722 USA k0xg@k0xg.com - (563) 355-7451

Rotating tower equipment for LF, HF, VHF and UHF applications.

- Guy ring bearings for all size towers.
- Ground or tower mount rotors.
- Boom to tower or tower to tower mounting brackets.

Complete range of hot dipped galvanized tower accessories.

Professional installations by: XX Towers – (603) 878-1102

Rotate those VHF/UHF stacks

Don't waste money on useless masts and pipe that you cannot climb. With one guy ring bearing and our elevated tower rotor you can rotate 50 feet of tower. This gives you the ability to add, remove or service any or all of your antennas without having to remove the lower beams. Install an HF tri-band beam, stack 6 meter and VHF/UHF antennas on one tower and run the hard line all the way to the antennas where it should be, instead of high loss coax.

Systems available for rotating from 30 feet of Rohn 25G tower up to over 300 feet of Rohn 80 tower.

Dayton Booth #578

Visit our web site! www.k0xg.com

WriteLog for Windows with Rttvrite/WinRTTY/AFC One Package Handles All Your

CW, SSB, and RTTY Contesting Needs

NEW VERSION 10

for Windows, 95, 98, NT 2000 Operate 2 radios with one sound card on RTTY and SSB & Perfect CW transmission.

Tired of obsolete DOS logging packages that force you to use special configurations and don't use all of the power of your computer? WriteLog is the first contest logging software designed to fully deliver the convenience and ease of use of Windows 95, 98 & NT.

- WriteLog includes these battle-proven features: Super Check Partial
 Click and Go Mouse Support Work RTTY using any 16-bit
- (or better) sound card. No
- other hardware required! Opt. 2 sound cards and run 4 radios Full Radio Control Helpful Band Map
- Packet Interface Fast Ethernet Networking

Click and Go Mouse Support Perfect Log Submission Two Radio Support Supports All Major Contests in All Modes Only \$75.00 Vecourse unservice and \$20 Ver 9 users upgrade \$30. PLUS These NEW Features:

BTTY mode AFC - also known as Autotune.

Audio Compression - now you can save & play back your entire log after a contest, contact by contact from WAV files in your H.D., in CW, SSB, RTTY & PSK31 modes - Via

 CW Reader - print CW on screen like in a RTTY contest. We also added multi-channel CW reader capability. With a fast PC (350MHz Pentium or fast PC (Solvin2 Penduin of faster) WriteLog will decode CW at 6 different pitches on 2 radios simultaneously. Like having a backup operator looking over your shoulder

WAV file compression. "I made the first contest (non RTTY) with WriteLog, and it is FANTASTIC. It is such an improvement for me over CT...I really love it, and from now on anyone who operates from here will HAVE to use this program! I will twist their arms." John. ON4UN

February 2004 CW Sprint Results

Boring Amateur Radio Club

The 54th CW Sprint was held on February 1, 2004. Conditions started showing signs of the sunspot decline with few stations lasting more than an hour on 20. Some west coast stations were even heard on 80 meters before the second hour was over. Once again, we saw great activity and set a new high for the number logs received. It was also the third consecutive CW Sprint with a new QSO record with a total over 400 QSOs.

Sadly, it is also the first time that we are forced to declare the winner posthumously.

The high power winner, Bill Fisher, W4AN, operated the CW Sprint with the call sign K4AAA and edged out the competition by a scant QSO after the log checking. Bill's QSO total dropped off a little from his past two efforts and he failed to break 400 for the first time since 2002. However, his multiplier of 52 was enough to overcome the 14 QSO gap and win his fourth consecutive CW Sprint. This has not been done since N5TJ's string of 11 victories over 10 years ago.

Bill unexpectedly passed away on April 4 at the age of 41. We will all miss Bill's snappy CW exchanges during this contest.

Bill was very active encouraging stations with a 4 in their call to try the Sprint. He would typically register four or more teams from the Southeast for each Sprint. The Web site **contesting.com** was one of contributions to the sport, and he put together a Web page that many of you have used to sharpen your skills.

This year, when Bill asked K4OJ if he could be on a Sprint team, Jim was not sure he would be able to, as he had some surgery coming up that had not yet been scheduled. However, as it turned out, Jim was able to participate. Due to the shorter log deadline, we were able to send Jim his Log Check Report the evening before he went to the hospital, just 10 days after the contest. Unfortunately, Jim did not survive the surgery. Jim did get another contest in before the end however, putting in a strong effort in the FOC marathon. His energy and sense of humor are a loss for all of us.

Both of these gentlemen will be missed in the future sprints. In their memory – there will be a voluntary minute of silence at the start of the September 2004 CW Sprint (0000 to 0001 UTC).

And now for the scores...

QRP Top Ten

In the QRP category, we once again filled up a top ten box with one score to spare. Dale, KG5U used to be comfort-

Top 10 S	cores	Band Changes	QSOs Lost	00z	01z	02z	03z
K4AAA	20332	246	8	116	88	107	80
N6TR	20250	200	3	118	104	93	90
K5ZD	19136	60	0	107	90	90	81
N9RV	18772	188	0	100	78	100	83
W6EEN	18500	88	1	102	100	89	79
N2NT	18473	152	0	112	85	90	90
K5TR	18400	164	6	110	82	95	81
W6YX	17368	2	2	89	83	75	87
K6XX	17108	3	1	85	87	70	87
N6MJ	17050	94	3	101	87	77	76

Top 10 QS	305	Тор 10 Lo N6M.I	5w Power	Golden Lo	ogs	Top 10 Ba	nd
κάδαα	201	W6OAT	14560	NONT	277	Changes	046
N2NT	377	N5AW	13728		369		240
WEEEN	370	NGAA	13680	NODV	261		200
K5ZD	368	NOAX	12737	NSOT	312		100
K5TB	368	K7SV	12596	NACK	283	NONT	104
N9BV	361	N5DO	12195	KM4M	265		102
K3LB	342	NP4Z	12144	ΝØΔV	265	NT1V	134
N6MJ	341	NN1N	11564	K2UA	245	KSGN	115
NT1Y	338	N7LOX	11520	K1HT	218	AG9A	109
				K4MX	151	K1FA	99
				KØEJ	102	ICT EX	00
				N4FCG	100		
Тор 10 Мі	ılts	Top 10 Q	RP	N4VI	84		
N9RV	52	KG5U	6888	K1ZZ	22		
W6OAT	52	N8VW	6840	WB6BWZ	19		
K4AAA	52	K7UP	6622	K6ZCL	6		
K5ZD	52	NC7J	5145	N6MZ	1		
N5AW	52	KX6SUB	3960				
W6YX	52	N6WG	1836				
K6XX	52	W8TM	315				
N4OGW	52	K1ZZ	308				
K4XU	51	K7GS	220				
K1KI	51	WB6BWZ	190				

able as the only QRP entry. He has had a hard time coming out on top with all of the new activity. However, Dale was finally able to scratch his way back on top of the heap. Dale edge out Pat, N8VW and John, K7UP who both had impressive scores only about ten QSOs behind Dale. NC7J came in fourth place, handing out the Utah multiplier to those with good ears. K6III piloted the improbable call sign KX6SUB to a 5th place finish. Congrats again to all 11 of our QRP participants who were brave enough to jump into the fray armed with only 5 W.

Low Power Top Ten

The low power category continues to see stiff competition among those trying to make the top ten box. That would be the low power top ten box, right? Well, perhaps, but this year a standout effort by Dan Craig, N6MJ, took first place low power honors with a record-shattering score that would have also made the top ten in the high power category! While Dan is certainly one of the rising stars in contesting, some credit must be given to Dan's host, W6KP, who has an excellent station at a fantastic location. Sprint father, Rusty, W6OAT came in second place with a very respectable score for a mere mortal. Marv, N5AW, who has been operating sprints forever it seems, put in the 3rd place score-not bad for a five (or at least that's what his team was named). Another Sprint veteran, N6AA, had some amplifier troubles so he operated low power for a change and got close to 300 QSOs anyway. It was great to hear a real effort out of Puerto Rico with NP4Z making the box along with K7SV, NØAX, N5DO, NN1N and N7LOX.

High Power Top Ten

In the high power, mostly multi-transmitter category (SO2R), W4AN won his

Team Scores

NCCC #1		SSC #1		SCCC #1		SMC—CA	Τ
W6YX	17368	K4AAA	20332	W6EEN	18500	N9RV	18772
K6XX	17108	NT1Y	15886	N6MJ	17050	AG9A	16269
N6RO	16121	N4AF	15648	K6LL	16513	K9NW	16250
AE6Y	15300	K4BAI	13728	N6AN	16500	N9CK	13867
W6OAT	14560	K4RO	13583	AC6T	15850	KO0U	13034
AJ6V	14450	W4OC	12831	K6LA	15239	KA9FOX	11374
K7NV	13965	K7SV	12596	W6JPL	14950	K9AY	11319
W6EU	13821	K4NNN	12267	N6HC	9823	K9ZO	9045
W6RGG	13250	K4WX	11956	W6MVW	7869	WT9U	8580
NI6T	11924	K5KG	11790	K6XT	4800	WE9V	6248
_		_					
	147867	-	140617	1	37094	1	24758

6.	NCC #1 (N2NT, K3LR, W2R WW3S)	Q, K8AZ, K2UA, W8KIC, KL7WV,	W8CAR, 96447
7.	Corner Pocket (N6TR, K4XU	J. NØAX. N7LOX. N7WA. KI7Y. W	7ZRC. AL1G) 88051
8.	FRC & PVRC (K3NM, K3MM	AA3B. K3WW. N8NA. K3MD. N	(2ED, N3AD)
9.	YCCC #1 (K5ZD, K1KI, NN1	N. K1HT. N2GC. K2KQ. N1XS. V	V1JQ, K1ZZ)
10.	SSC #3 (K4NO, KM4M, W4N	NZ. K4AMC. N4ZR. N4CW. W1M	O. K4MA.
	N4FCG, N9GG)	, -, , - ,	
11.	Not bad for a five (K5TR, K5	GN, N5AW, WQ5L, N5DX, KT5V,	NO5W) 77016
12.	Austin Powers (N3BB, K5WA	A, N5DO, K5AF, NT5TU, W5ZL, K	G5U, K5IID) 73899
13.	NCCC #2 (WØYK, N6ZFO, K	6LRN, N6PN, WX5S, K6SRZ, NI	D2T, W6IXP,
	K6DGW)		
14.	CCO (VÉ3EJ, VE3DZ, VA3N	R, VE3JM, VO1AU, VE3IAY, VE3	KP,
	VE3RZ, VE3KZ)		
15.	Azen #2 (K5YAA, KY7M, N6	ZZ, W7YS, K5HP)	
16.	SSC #4 (N4OX, W3EF, WA4	TT, K4MX, W0UCE, W4SAA, K40	GA, W4ZW) 43342
17.	Azen #1 (N5OT, KC7V, K5K/	A, K7UP)	42492
18.	SCCC #2 (N6AA, K6NR, XE	2MX, K6EY, N6PE, K6ZCL)	37891
19.	Colo Contesters (KO7X, WØ	ETT, NØSXX, N4VI, WØNT, KØRI)	30111
20.	SMC (WI9WI, KE9I, K9KM).		27120
21.	YCCC #2 (K1EA, K2LE, K1N	NQ, W1EBI, AJ1M)	
22.	QSYers (W5GN, W5DDX, N	S3T, KC3M, KS1F)	17127
23.	YCCC #3 (K1DG)		
24.	NCCC #3 (KX6SUB, K6UFO), K6VVA, N6WG)	11567
25.	SSC #5 (AE4Y, W4ATL, AA4	ILR, WB6BWZ)	10230
Gui	ast One	WE9V (K9PG)	
K5F	PTC (N11 N)	WX5S (WX5S at AD6E)	W6YX (N7MH)
KI 7	WV (W3YO)	W6JPL (W4EF)	N6M.L (N6M.Lat
KM	1M (K9GY at K4.IA)	W6RGG (W6RGG at W6CS)	W6KP)
KO		K5TR (NSRZ)	K8AZ (N8AA)
KX	SUB (K6III)	W6EEN (N6RT)	XE2MX (N6KI)
N4F		AC6T (AC6T at N6VR)	K3NM (N2NC)

ninth CW Sprint by edging out Tree, N6TR, by a QSO and a half. Tree did manage to finally break in to the "Page Nine" club by ending up with 405 QSOs, a new CW Sprint record. Randy, K5ZD, pushed himself back into the top ten with a convincing effort well ahead of the pack and Pat, N9RV, continued to make everyone wonder what he greases his antennas with to overcome his QTH in the "black hole". N6RT (at W6EEN), N2NT and N5RZ (at K5TR) filled out the middle of the top ten. In 8th and 9th place, we find two newcomers to the top ten: N7MH (operating at W6YX) and K6XX. These two gentlemen had only five band changes between them. K1KI sneaks into the top ten on a technicality since N6MJ did beat his score with low power. Tom also appears to be using a single trans-

mitter as he "only" had 26 band changes. We should mention Scott, W4PA, who found himself in the Northeast for the Sprint due to our date change to avoid Valentine's Day. Scott made the best lemonade he could by operating from NT1Y in Vermont and set a new record there. He posted the 10th highest QSO total but didn't make the box for the first time in forever due to his lower than average multiplier. Scott has already reserved his spot in the next top ten, so the new members shouldn't get too comfortable.

Team Competition

The Northern California Contest Club put together a strong effort without any of the top scores and outdistanced the Southern Sprint Collation for their second Sprint team victory. The SCCC followed in third place with SMC-CAT and team two from the SSC also posting total scores over 100K. A total of 25 teams submitted scores and we thank all of you who organized, and participated on a team.

Golden Logs

Due to the high percentage of participants who send in their logs, and the quality of the exchanges, the CW Sprint is one of the toughest contests to get away with a logging error. For example, in the N6TR log, 99.5 percent of the calls/names and locations are verified. Another 80.7 percent of the QSOs were crosschecked to verify that they were in the other log and the received QSO number was correct. No fewer than 17 stations produced logs that had no score reductions and three of them were in the top ten. With the possible exception of N6MZ who only made one QSO (what's up with that?), you should all be very proud. K5ZD had his second consecutive golden log, which means he now has a running total of 738 perfect QSOs.

A new process was developed to automate the process of sending your log check report via e-mail. However, if you did not receive your report, you can still ask for one from **treeatkkn.net**.

Records

Once again, despite the shorter log deadline, we have set a new record for the number of logs received: 225. This is a substantial increase over the 206 logs we received just last September. Your support of this new concept is greatly appreciated.

In Vermont, W4PA piloted NT1Y to a new record, beating the one established by K1EA just last September. K4NO improved his Alabama record by adding seven QSOs and a multiplier. Tim, NP4Z, submitted the first serious effort from KP4, bettering his mark from February 2002.

Tree, N6TR, set a new QSO record with 405 QSOs, edging out the 404 mark that W4AN established last September. Dan, N6MJ, pummeled the low power record that was previously held by Dan, K7SS, from K7RI. The record of seventeen golden logs was set last September and was matched this time.

Next Time

The next *NCJ* CW Sprint will be held on September 12 UTC. Remember the minute of silence at the start. For team registration, use the *NCJ* Web page at **www.ncjweb.com**. Logs are submitted via e-mail to **cwsprintatkkn.net** and are due seven days after the contest.

Soapbox

Conditions were terrible on 20M, but rest of the bands were fine. Missed KY as well.— K4FXN

Worst conditions I've seen for a Sprint. 20

meters was worthless.—KØSR

Stealth Dipole Antenna—need I say more? —K2LE

Still with portable setup 9 months later. 20 worked for $^{1/2}$ hour only.—K3MD

Well, it has been two years since my last Sprint, and with this one in the record books, I have now played in three. Although my score will not set any records, it is an improvement over the previous two, so I am quite satisfied. Twenty meters was not as expected, but it did give me the opportunity to practice. By the time I moved through 40 and on to 80, I was feeling more confident and comfortable.....then it was over! Never felt very loud as I missed many search/pounce first calls. Congrats to the big score SO2R ops-still don't guite understand if I will ever be able to do that, but the equipment is on order. If not for me-then Bill, K5GA, will get to use it the next time he operates from my station.—Bruce, N1LN (K5PTC, Bob).

The usual difficulties with low wire antennas and power line noise, but I made my goal of 100 contacts. Thanks!—K6UFO

Sprints are always fun and challenging!— KM4M

Everything on 20m was to the west. 40 and 80 played well. Lotsa mults. Worked ZF, NP4, KL7 and XE. Heard, but did not work SD and MO!—KO0U

Twenty did a swan dive after hour number one, but forty seemed to take up the slack pretty well, as did 80. No dead period between 0130 and 0230 like usually happens! With a little more second radio work, the 300 barrier may have fallen, but I was too scatter-brained to make the appropriate hay with it. Congrats to N6MJ for a really nice lowpower score from down south!—NØAX

Very long skip and some flaky radio problems, but this contest is too fun to whine about. Can't believe I missed Michigan. I have *never* missed Michigan in any contest that I remember. Great activity out of W3 this time.—N9RV

I love the intense concentration.-ND2T

I vote we either start a few hours earlier, or else move the contest to 40/80/160 until the sunspots return.—VA3NR

Got on too late for 20m and 80m was very noisy.—VO1AU

My first time in the Sprint. Won't be my last. What a challenge! Thanks to G4BUO for pushing this contest (although it took me a while to jump in) and to W4AN for signing me up on a team. Hope I didn't embarrass you guys! Apologies to VE3JM who shows in this log as #121 but was actually sent 119.— W3EF

Had a slow start on 20m, but I'm happy with the improved score, my best Sprint so far. Used 100 W and a 3-element tribander and 40/80m vertical. It was fun.—Joe, W4SAA

It doesn't get easier, but it sure continues to be great fun.—W6MVW

Fun contest for my little brain! Great CW fun!—W7SW

Checklog because of transmitter trouble. Apologies for dropped QSOs.—W8TM

Thanks, KL7WV, for the 40-meter QSO! Yaesu FT-897 transceiver, 5 W into a 5-MHz OCF 28-gauge insulated wire stealth antenna up 40 feet in trees next to I-75 in a downtown Atlanta industrial area. SGC SG-237 autotuner. Writelog 10.44b.-WB6BWZ

My first real effort at a Sprint. Very interesting! I'll be there next time.—W5EKF

First time to work a Sprint. Great fun, I'll be back for more.—K5HP

My best first hour ever—107! Happy to catch every multiplier I heard.—K5ZD

Wait till Sept. Better yet, how about another one in May?—K7SV

Amazingly, the third hour of the Sprint, usually the worst, was my best hour!—K8MR

Was 20 meters light on propagation/activity or what? It was the first time I ever went to 40m before the first hour was up. An inkling of things to come in the sunspot cycle, no doubt.—KG5U

My second Sprint—felt a little less like a LID this time. Maybe I'll get the hang of it by #3?—N5AW

Had real problems editing real time. Finally had to give it up after 2 hours and get some rest. Will go paper next time.—VE3KZ

If it seems like all of my contest results postings include news of some catastrophe that precluded my beating the world, or even just being respectable—W5ZL

Great to see all the activity, even with the disturbed conditions. Thanks to all for the QSOs, and to George for letting me abuse his station and call sign for four hours. – N5RZ

Jeez, what a humbling experience, but to quote the Governator, "I'll be back." —K6SRZ Good to be back on CW after being out of

contesting for a couple of years.—W7ZRC First Sprint with the QSY rule. I'm ex-

hausted. Wish I had had more time—K4GM My first Sprint, thanks to the encourage-

ment of K5TR. A humbling experience, but I will be back. It was great fun even with my limited station.—KT5V

Would someone please share a strategy for finding mults with a single radio?—NI6T

First timer. Had a fun time. Looking forward to the next one.—W1EQ

I put many eggs into the 20m basket, since our club station is not equipped for low bands. On 20 I haven't worked a single 8, only two 9s and two 4s, but more than a half of Qs were from CA. (I made more 20m Qs with my room dipole from downtown Houston a year and a half ago than I did this time). Can't wait for my next fix.—NT5TU

The name I sent was JULIE, in memory of Julius Hoffer, W1DL, who died in December. I met Julie because of our QSO in my first Sprint, September 1992. I had my lowest QSO total in a long time, thanks mainly to weird, spotty propagation on 20, where I managed only 37 QSOs. I heard loud signals on 20 from much of the South, from TX, and briefly from the Northwest, but mostly whispers from elsewhere. Despite the poor conditions, I was glad to hear a number of new-comers. I hope they'll come back in September! I copied K4MA's name as GO PAN-THERS but entered it without the space.— K1HT

Conditions on 20 meters were terrible! Still, I had a good time and I can't wait for the next one!—K2UA

80-meter QRP in the mountain west is just plain ugly!—K7UP

First time in Sprint. Learned I need practice!—KS1F

Always great fun!—KTØR

Fun! 20 meters?—N5QQ

First time working 4 full hrs!-WØZP

Great contest. It was especially nice to see all the new Sprint participants and so many multipliers well represented. Not heard: MT, UT, KS, ND, NE, VE2, VE6 or VE7—W2RQ

First time ever over 300! Twenty sucked, but 40 more than made up for it.—AE6Y

My 1st Sprint and poor location. Next year will be better.—K6VVA

First time in this contest in a while. Took some getting use to and by then it was about over...work 'em and haul butt. It was fun!— N4PN

Operating with 5 W to a piece of wire on the wrong side of a big building is a recipe for frustration, even from KP4! -K1ZZ

Best 4 hours in ham radio. I just need to find more mults next time!—K5AF

CT software worked great, Thanks Ken.— N2GC

Poor conditions-N5OT

In the previous Sprint I did 180 QSOs with a dipole from home. It took a real station to make 153 in this one. Thanks to K8MK for the use of the station.—N8VW

Low bands made it a breeze with LP.--NP4Z

My first Sprint! Hope I didn't bust too many calls.—W1JQ

Fun—a little better than last year, still trying to improve it—W6IXP

Very strange Sprint for me. Going away party for Dennis, W5KU, in the afternoon he's off to rebuild Iraqi oil. He leaves, line noise arrives coming from the NE—S8 on 20, S7 on 40, S9+ on 80. So, the backscatter Qs were awful and since my mind was more on my friend's departure, I never got the rhythm going well. At least the new 80-meter vertical seemed to work fairly well. Looking forward now to September! —K5GN

I had trouble at the beginning, a 2-minute dead spot between my 1st and 2nd QSOs. Then things picked up nicely. I had 181 at the half, then lost concentration for the 3rd hour, dropping to a 70 hour. The last hour on 80 picked up to 82. At 0317 I had to take a bathroom break and lost 3 minutes. Darn! Overall, my 2nd best effort ever and second time over 300 QSOs. Not being SO2R proficient. I stuck to 1 radio/amp and 4 antennas. a monobander and tribander on 20, a 4 el KLM on 40 and a wire on 80. A grand total of four band changes. I snagged one mult on 80 and six on 40. Obviously, 20 is the multiplier band from California. Thanks to all for the QSOs. My apologies to those I stepped on inadvertently with an ill-timed "N6AN." And congratulations to Tree for cracking the 400 QSO ceiling. Yes!-N6AN

Well it was not a good effort on my partthe effort was good but the results were not! Started on 40 and had good rate (60/hr) after the first half hour and then decided I should try 20. Well, 20 was the pits-all I could hear were a few west coast stations and I could not hear the other side of the QSO. Strange. After probably too long trying to do something on 20, I went back to 40, but by that time 40 was much more crowded and I got beat out a lot when I called. And after getting the frequency I couldn't seem to raise anyone so I wound up S&Ping again. Then I decided to go to 80 and on the first call to K5GN the USB to RS232 port expander blew-couldn't stand the RF, I guess. So, I spent 20-30 minutes troubleshooting and then re-cabling and got back on 80 where I had decent last hour. The highlight was only needing to ask for one repeat of GOPANTHERS! Still the best four hours in radio. Listen for me again in August.—NO5W

New to this contest. Needed better antennas and more power to compete. Limited time available between household chores.—

K3CQ

Wow, I really suck at the CW Sprint! That must be why I look forward to it so much! By the end of the contest, I've finally gotten the rhythm down. Kudos to those who can do it right out of the block.—K6OWL

Really enjoyed this Sprint, as always. Actually did better in September, though. Still struggling my way up the learning curve. It's humbling to see the station you are about to call go back to the a station that just overpowers your own signal. I guess that's why we QRPers have to live by our wits, what we have left. Looking forward to the next lesson in humility.—N6WG

Got frustrated after calling CQ and tuning on 40m for 20 minutes with no Qs. Maybe conditions will be better next time.—AA4LR

QTH Date Call QSO Mult Score WV Feb-2002 N42H 286 48 13,728 IA Sep-2003 NXDII (AG9A) 331 43 15,093 IL Sep-2003 AG9A 962 52 16,890 IN Feb-2003 K0SR 308 50 15,400 WI Feb-2000 K9AA (K9PG) 302 55 16,610 ND Sep-2003 KUO 244 44 15,276 WI Feb-2000 K(SAC) 183 40 7,320 SD Feb-2003 KUO 347 7 16,309 VE1 Sep-2000 VEBLOD 270 50 13,300 AF Feb-2003 KIKI 365 16,350 VE7 Feb-2000 VATRIR 316 42 1,703 ME Sep-2003 KIKI 310 47 1,4570 VY1/VE8 Feb-2000 VYTIA 36 2 7,92 ME Sep-2003 N	Records	Updated for	or February 2004	4								
IA Sep-2003 NONI (AGSIA) 331 43 15,093 L Sep-2003 AGSIA 362 52 18,800 MIN Feb-2003 KOSR GOSR	QTH CO	<i>Date</i> Feb-2003	<i>Call</i> N2IC	QSO I 389	Mult 52	<i>Score</i> 20,228	WV	Feb-2002	N4ZR	286	48	13,728
NN Feb-2003 Feb-2003 Kinspire (KSAA (K9PG) Support SD NSPV Feb-2003 NSPV SPV Support SD Support Feb-2003 KSAA (K9PG) Support SD Support Feb-2003 KSAA Support SD Support SD Support SD Support SD Support SD Support SD Support SD Support SD Support SD Support SD	IA	Sep-2000	NØNI (AG9A)	331	43	15,093	IL	Sep-2003	AG9A	362	52	18,980
ND Sep-1936 K47X00 (WX3N) 332 46 15,272 WI Feb-2000 K68AA (K9PG) 302 55 16,610 ND Feb-2002 WB00 204 34 6,336 VE1 Sep-2000 VE3DX (KSNZ) 183 40 7,320 ND Feb-2003 KSZD 365 54 19,710 VE3 Sep-2003 VE3DX (KSNZ) 183 40 7,320 CT Sep-2003 KSZD 365 54 19,710 VE5 Feb-2003 VESS 27,722 14 18,930 ME Sep-1988 K1KI 218 41 8,933 VE5 Feb-2000 V71AA 36 22 792 NI Feb-2003 K1DG 310 47 14,570 V71/VE8 Feb-2000 V71AA 36 48 15,610 NV Feb-2003 K2UA 321 50 16,050 C6 Feb-1985 4/1UN (W2TO) 70 23 1,610	MN	Sep-1902 Feb-2003	KØSB	308	42 50	15 400	IN	Sep-2003	N9RV	389	53	20,617
ND Feb-2002 WBOC 318 47 14,946 SD Feb-2003 WDOT 347 47 16,396 VE12 Sep-2003 VESDX (KSNZ) 183 40 7,320 CT Sep-2003 K1KI 369 50 18,450 VE1 Sep-2003 VESDX (KSNZ) 183 40 7,320 CT Sep-2003 K1KI 369 50 18,450 VE1 Sep-2000 VESDX (KSNZ) 183 40 7,320 MA Feb-2003 K1KI 369 51 19,710 VE6 Feb-2000 VESSF 223 43 16,16 NJ Feb-2004 K11G 318 47 15,886 411 Feb-2002 40110N (W2TO) 70 23 1,610 NJ Feb-2004 N2NT 380 51 16,050 C6 Feb-1985 40110N (W2TO) 70 23 1,610 NJ Feb-2004 KN5H/3 272 46 12,512 </td <td>MO</td> <td>Sep-1996</td> <td>K4VX/Ø (WX3N)</td> <td>332</td> <td>46</td> <td>15,272</td> <td>WI</td> <td>Feb-2000</td> <td>K9AA (K9PG)</td> <td>302</td> <td>55</td> <td>16,610</td>	MO	Sep-1996	K4VX/Ø (WX3N)	332	46	15,272	WI	Feb-2000	K9AA (K9PG)	302	55	16,610
NE Feb-1991 KV01 244 347 47 16,330 VE1 Sep-2000 VEOX VE3 Sep-2000 VE3ZP 124 41 37,74 CT Sep-2003 K1KI 369 50 18,450 VE3 Feb-2003 VE3/VES 270 50 13,800 ME Sep-2003 K1KI 216 41 8,338 VE7 Feb-2000 VE3/FE 237 49 11,813 ME Sep-1988 K1KI 216 41 8,338 VE7 Feb-2000 VZTR 316 45 71,820 NT Feb-2003 K1B 310 47 14,570 VT1/VE Feb-2000 VZTR 23 1,610 NY Feb-2003 N2NT 380 51 19,380 C6 Feb-1985 4U1UN (W2TO) 70 23 1,610 NY Feb-2003 N2NT 380 51 19,380 C6 Feb-1986 HUUN (W2TO) 70	ND	Feb-2002	WBØO	318	47	14,946						
SD Feb-2003 WD0T 347 47 16.009 VE2 Sep-1088 VE2 214 41 8,774 CT Sep-2003 K1KI 369 50 18,450 VE4 Sep-2003 VE4MBOD 266 45 11,813 MA Feb-2003 K1KI 218 41 8,338 VE7 Feb-2000 VE2 228 43 9,804 NH Feb-2002 K1KI 218 41 8,338 VE7 Feb-2000 VY1JA 36 22 792 VT Feb-2004 NTIY (W4PA) 338 47 1,670 VY1/VE8 Feb-2000 VY1JA 36 22 792 VT Feb-2004 NZNT 380 51 19,650 C6 Feb-2000 VY1JA 36 4,587 NY Feb-2003 NA2NT 320 50 16,000 TG Sep-1986 W1UN (W2TO) 70 23 1,610 NY Feb-2004	NE	Feb-1991	KVØI	204	34	6,936	VF1	Sen-2000		183	40	7 320
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SD	Feb-2003	WDØT	347	47	16,309	VE2	Sep-1988	VE2ZP	214	41	8.774
CT Sep-2003 KIKI Sep							VE3	Feb-2000	VE3EJ	270	50	13,500
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	СТ	Sen-2003	K1KI	369	50	18 450	VE4	Sep-2003	VE4/WB0O	266	45	11,970
ME Sep-1988 K1KI 216 41 6,938 VE-6 Peb-2000 VA7RR 216 43 9,804 RI Feb-2003 K10G 310 47 14,570 VT Feb-2000 VA7RR 316 48 15,168 VT Feb-2004 NT1Y (W4PA) 338 47 15,886 4U1UN (W2TO) 70 23 1,610 NJ Feb-2002 K2UA 321 50 16,050 C6 Feb-1999 C6AKP 21 14 294 NY Feb-2002 K2UA 321 50 16,050 C6 Feb-1999 GKNKO 27 46 12,512 MD Sep-1989 KNSH'/3 272 46 12,512 HP Feb-2004 NP42 253 48 12,144 PA Feb-2003 AA3B 320 50 16,000 TG Sep-2001 TG/MNKO 154 12,242 12,242 Feb-2003 KAAA MWA	MA	Feb-2003	K5ZD	365	54	19,710	VE5	Feb-2003	VE5SF	237	49	11,613
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ME	Sep-1988	K1KI	218	41	8,938		Feb-2000		228	43	9,804
RI Feb-2002 K11G 310 47 14,570 K111G 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 110 100 100 100 100 110 100 </td <td>NH</td> <td>Feb-2003</td> <td>K1DG</td> <td>331</td> <td>50</td> <td>16,550</td> <td></td> <td>Feb-2000</td> <td></td> <td>36</td> <td>40 22</td> <td>792</td>	NH	Feb-2003	K1DG	331	50	16,550		Feb-2000		36	40 22	792
VI Feb-2004 NTTY (W4PA) 338 4.7 15,856 NJ Feb-2003 N2NT 380 51 19,360 64 4U1 Feb-1985 4U1UN (W2TO) 70 23 1,610 NY Feb-2002 K2UA 321 50 16,050 67 Feb-1993 GAKP 214 294 MD Sep-1989 KNSH/3 272 46 12,512 HP Feb-2004 HPIAC 64 30 1,920 MD Sep-1989 W3LPL 310 47 14,570 KP4 Feb-2004 HPIAC 64 30 1,920 PA Feb-2004 K4NO 280 48 13,440 VP2E Feb-1986 VA2Z (AA7VB) 54 2,300 42 6,300 FL Feb-2003 NAAA W4C 289 46 13,708 27 55 1,242 Sep-2003 WAAC 289 46 13,708 54 20,432 CT	RI	Feb-2002	KI1G	310	47	14,570	VII/VLO	100 2000	V110/(00	~~	102
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VI	Feb-2004	NIIY (W4PA)	338	47	15,886						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							4U1	Feb-1985	4U1UN (W2TO)	70	23	1,610
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NJ	Feb-2003	N2NT	380	51	19,380	8P	Sep-2002	8P9JG (N5KO)	277	42	11,634
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NY	Feb-2002	K2UA	321	50	16,050		Feb-1999		120	14	294
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							пп НІ	Sep-1990 Feb-1991		40	33 19	4,567
DE Sep:19s9 NNOH/3 2/2 46 12.142 Feb-2004 NP4Z 253 48 12.144 MD Sep:19s9 NVALPL 310 47 14.570 TG Sep-2001 NP4Z 253 48 12.142 PA Feb-2003 AA3B 320 50 16.000 V4 Feb-1996 V40Z (AA7VB) 54 23 1.242 VP2E Feb-1996 V92E/KJ4HN 68 30 2.040 VP2E Feb-1996 V92E/KJ4HN 68 30 2.040 K4L Feb-2003 K4AA 12.144 12.364 VP3 Sep-1998 XE2XA (WN4KKN)305 47 14.335 Sep-2003 W4AC 298 46 13.708 CT Sep-1998 CT1BOH 225 49 9.000 TN Sep-2003 W4AC 393 51 20.043 ET Sep-1998 CT1BOH 25 4.900 VA Sep-2003 K4EO 375 <t< td=""><td></td><td>0.000</td><td></td><td>070</td><td>40</td><td>10 510</td><td>HP</td><td>Feb-2000</td><td>HP1AC</td><td>64</td><td>30</td><td>1,920</td></t<>		0.000		070	40	10 510	HP	Feb-2000	HP1AC	64	30	1,920
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Sep-1989		2/2	46 47	12,512	KP4	Feb-2004	NP4Z	253	48	12,144
N.N. Problem P	PA	Feb-2003	AA3B	320	50	16,000	TG	Sep-2001	TG9/N5KO	150	42	6,300
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				020		. 0,000	V4	Feb-1996	V4ØZ (AA7VB)	54	23	1,242
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							VP2E	Feb-1996		68	30	2,040
FL Feb-2003 N2NL 357 55 19,635 ZE Sep-1992 ZEZKI (K1KI) 251 49 12,299 KY Sep-2003 K4AAA (W4AN) 44 12,364 24 9 16,758 9A Sep-2000 9A6XX 29 19 551 SC Sep-2003 W4AF 342 49 16,758 9A Sep-1999 CT1BOH 2254 49 0,000 TN Sep-2003 W4AF 393 51 20,043 EA8 Feb-1994 EA1AK/EA8 36 21 756 VA Sep-1999 K7SV 300 52 15,600 F Sep-1999 FNGTR 196 38 7,448 G Feb-2000 K5GO 278 50 13,900 I Sep-1991 FNIARI 100 35 3,500 LA Feb-2000 KSGO 278 50 13,900 I Sep-1991 FIAIAI 13 9 117 NM Feb-2003 NGZZ 351 52 18,252 KH6 <t< td=""><td>AL</td><td>Feb-2004</td><td>K4NO</td><td>280</td><td>48</td><td>13,440</td><td>VF9 XF</td><td>Sen-1990</td><td>XF2XA (WN4KKN</td><td>202</td><td>31 47</td><td>14 335</td></t<>	AL	Feb-2004	K4NO	280	48	13,440	VF9 XF	Sen-1990	XF2XA (WN4KKN	202	31 47	14 335
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	FL	Feb-2003	N2NL	357	55	19,635	ZF	Sep-1992	ZF2KI (K1KI)	251	49	12.299
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GA	Sep-2003	K4AAA (W4AN)	404 281	54 44	21,816			()			,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NC	Sep-2003	N4AF	342	49	16,758		_				
NN Sep-2003 Sep-1989 W4PA 393 51 20,043 C1 Sep-1996 C118UH 225 40 9,000 VA Sep-1989 K7SV 300 52 15,600 EA8 Feb-1996 EA1AK/EA8 36 21 756 AR Feb-2000 K5GO 278 50 13,900 I Sep-1990 F/N6TR 196 38 7,448 G Feb-2000 MCSL 317 49 15,533 JA Feb-1991 7J1AAI 13 9 117 NM Feb-2003 NGZZ 351 52 18,252 LU Feb-2003 LU1FAM 92 35 3,200 TX Feb-2000 N5TJ 381 52 19,812 UY Sep-1998 P41NOA 56 22 1,232 TX Feb-2003 W6EEN (N6RT) 378 54 20,412 UA Feb-2000 RU2SA 13 10 130 13 13	SC	Sep-2003	W4OC	298	46	13,708	9A	Sep-2000	9A6XX	29	19	551
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TN	Sep-2003	W4PA	393	51	20,043		Sep-1998		225	40 21	9,000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VA	Sep-1989	K7SV	300	52	15,600	F	Sep-1990	E/N6TB	196	38	7.448
AR Feb-2000 K5GO 278 50 13,900 HC8 Feb-2000 HC8N (N5KO) 271 52 14,092 LA Feb-1995 W5WMU (K5GA) 306 48 14,688 JA Feb-1998 IKØHBN 100 35 3,500 MS Feb-2000 WQ5L 317 49 15,533 KH6 Sep-1998 IKØHBN 100 35 3,630 NM Feb-2003 K3LR 352 48 16,896 LU Feb-2000 LU1FAM 92 35 3,220 CK Sep-2003 K3LR 381 52 19,812 OH Sep-1988 OH1NOA 56 22 1,232 PY Sep-1980 PY8ZPJ 29 14 406 CA Feb-2003 W6EEN (N6RT) 378 54 20,412 UA9 Feb-2000 RU0SN 15 13 195 AK Feb-2000 KL9A 202 47 9,494 ZS Feb-2000 UP6F 13 10 130 D Feb-2000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td>Feb-2002</td> <td>G4BUO</td> <td>160</td> <td>40</td> <td>6,400</td>							G	Feb-2002	G4BUO	160	40	6,400
IA Feb-1995 WSWMU (K5GA) 306 48 14,688 I Sep-1998 IKØHBN 100 35 3,500 MS Feb-2000 WQSL 317 49 15,533 JA Feb-1991 7J1AAI 13 9 117 NM Feb-2003 N6ZZ 351 52 18,252 KH6 Sep-1998 KH6NO 121 30 3,630 OK Sep-2003 K3LR 352 48 16,896 LU Feb-2003 LU1FAM 92 35 3,220 TX Feb-2000 NSTJ 381 52 19,812 OH Sep-1998 OH1NOA 56 22 1,232 PY Sep-1998 OH1NOA 56 22 1,232 PY Sep-1998 OH3NN 15 13 195 CA Feb-2003 W6EEN (N6RT) 378 54 20,412 UA9 Feb-2000 RUØSN 15 13 10 130 VK Sep-1994 VK5GN (N6AA) 48 22 1,056 UN Sep-1994	AR	Feb-2000	K5GO	278	50	13 900	HC8	Feb-2000	HC8N (N5KO)	271	52	14,092
MS Feb-2000 WQ5L 317 49 15,533 JA Feb-1991 /J1AAI 13 9 11/ NM Feb-2003 N6ZZ 351 52 18,252 18,252 LU Feb-2003 LU1FAM 92 35 3,220 OK Sep-2003 K3LR 352 48 16,896 LV Sep-2000 LV4AA 163 38 6,194 TX Feb-2000 NSTJ 381 52 19,812 OH Sep-1998 OH1NOA 56 22 1,232 PY Sep-1998 OH1NOA 56 22 1,232 PY Sep-1980 PY8ZPJ 29 14 406 CA Feb-2003 W6EEN (N6RT) 378 54 20,412 UA9 Feb-2000 RU0SN 15 13 10 130 KK Feb-2000 K6LL 364 50 18,200 ZS Feb-2000 ZS1ESC (N6AJ) 228 43 9,804 DI Feb-2003 W7UQ (KL9A) 283 46 13,018 ZS	LA	Feb-1995	W5WMU (K5GA)	306	48	14,688	I .	Sep-1998	IKØHBN	100	35	3,500
NM Feb-2003 N6ZZ 351 52 18,252 NR b Sep-1931 NR b000 121 30 3,230 OK Sep-2003 K3LR 352 48 16,896 LU Feb-2001 LU1FAM 92 35 3,220 TX Feb-2000 N5TJ 381 52 19,812 U Feb-2000 L/Y Sep-1998 OH1NOA 56 22 1,232 PY Sep-1980 PY8ZPJ 29 14 406 CA Feb-2003 W6EEN (N6RT) 378 54 20,412 UN Sep-1998 OH1NOA 56 22 1,232 AK Feb-2000 KL9A 202 47 9,494 ZS Feb-2000 RU0SN 15 13 10 130 VK Sep-1994 VK5GN (N6AA) 48 22 1,056 DID Feb-2003 K7BG 273 43 11,739 NV Feb-2003 N6TR	MS	Feb-2000	WQ5L `	317	49	15,533	JA	Feb-1991		13	9	2 6 2 0
OK Sep-2003 K3LR 352 48 16,896 Los Los <thlos< th=""> Los Los L</thlos<>	NM	Feb-2003	N6ZZ	351	52	18,252		Feb-2003	LU1FAM	92	35	3,030
TX Feb-2000 NSTJ 381 52 19,812 OH Sep-1998 OH1NOA 56 22 1,232 CA Feb-2003 W6EEN (N6RT) 378 54 20,412 UA9 Feb-2000 RU0SN 15 13 195 AK Feb-2000 KL9A 202 47 9,494 2D8 Sep-1994 VKSGN (N6AA) 48 22 1,056 AK Feb-2000 K6LL 364 50 18,200 ZS Feb-2000 ZS1ESC (N6AA) 51 18 918 ID Feb-2003 W7UQ (KL9A) 283 46 13,018 ZS Feb-2000 ZS1ESC (N6AA) 51 18 918 NV Feb-2003 K7BQ 273 43 11,739 Highest core Feb-2003 S67200 21,306 K4AAA (W4AN) UT Sep-1999 K7RU 290 50 14,500 Highest core Feb-2003 21,306 K4AAA (W4AN) WA Feb-2003 K7RI (K7SS) 297 53 15,741 Highest core Feb-2003	OK	Sep-2003	K3LR	352	48	16,896	LY	Sep-2000	LY4AA	163	38	6,194
CA Feb-2003 W6EEN (N6RT) 378 54 20,412 PY Sep-1980 PY8ZPJ 29 14 406 CA Feb-2003 W6EEN (N6RT) 378 54 20,412 UA9 Feb-2000 RUØSN 15 13 195 AK Feb-2000 KL9A 202 47 9,494 ZB YK Sep-1990 UP6F 13 10 130 AZ Feb-2000 K6LL 364 50 18,200 ZD8 Sep-1990 ZD8Z (N6TJ) 228 43 9,804 D Feb-2003 W7UQ (KL9A) 283 46 13,018 ZS Feb-2000 ZS1ESC (N6AA) 51 18 918 NV Feb-2003 N6TR 393 52 20,436 Highest Score Feb-2003 21,306 K4AAA (W4AN) WA Feb-2003 K7RI (K7SS) 297 53 15,741 Highest Leam score Feb-2002 163,373 SCCC #1 WY Sep-1999 K7KU (N2IC) 312 48 14,976 Highest Leam score Feb-2002 <td>IX</td> <td>Feb-2000</td> <td>INDIJ</td> <td>381</td> <td>52</td> <td>19,812</td> <td>OH</td> <td>Sep-1998</td> <td>OH1NOA</td> <td>56</td> <td>22</td> <td>1,232</td>	IX	Feb-2000	INDIJ	381	52	19,812	OH	Sep-1998	OH1NOA	56	22	1,232
CA Feb-2003 W6EEN (N6RT) 378 54 20,412 UA9 Feb-2000 RUØSN 15 13 195 AK Feb-2000 KL9A 202 47 9,494 ZB8 Sep-1994 VK5GN (N6AA) 48 22 1,056 AK Feb-2000 KL9A 202 47 9,494 ZS Feb-2000 VK5GN (N6AA) 48 22 1,056 AZ Feb-2000 KGLL 364 50 18,200 ZS Feb-2000 ZSIESC (N6AA) 51 18 918 MT Feb-2003 M7UQ (KL9A) 283 46 13,018 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>PY</td><td>Sep-1980</td><td>PY8ZPJ</td><td>29</td><td>14</td><td>406</td></td<>							PY	Sep-1980	PY8ZPJ	29	14	406
AK Feb-2000 KL9A 202 47 9,494 ZD8 Sep-1994 VK5GN (N6AA) 48 22 1,056 AZ Feb-2000 K6LL 364 50 18,200 ZS Feb-2000 ZS1ESC (N6AA) 51 18 918 ID Feb-2003 W7UQ (KL9A) 283 46 13,018 ZS Feb-2000 ZS1ESC (N6AA) 51 18 918 NV Feb-2003 K7BG 273 43 11,739 Highest multiplier Feb-2000 55 K9AA (K9PG) NV Feb-2003 N6TR 393 52 20,436 Highest score Feb-2003 21,306 K4AAA (W4AN) WA Feb-2003 K7RI (K7SS) 297 53 15,741 Highest Low Power Feb-2002 163,373 SCCC #1 WY Sep-1999 K7KU (N2IC) 312 48 14,976 Highest Low Power Feb-2002 163,373 SCCC #1 WY Sep-1999 K7KU (N2IC) 312 48 14,976 Highest Low Power Feb-2002 163,0373 SCCC #1	CA	Feb-2003	W6EEN (N6RT)	378	54	20,412	UA9	Feb-2000	RUØSN	15	13	195
AK Feb-2000 KL9A 202 47 9,494 ZD8 Sep-1990 ZD8Z (N6TJ) 228 43 9,804 AZ Feb-2000 K6LL 364 50 18,200 ZS Feb-2000 ZS1ESC (N6AA) 51 18 918 MT Feb-2003 W7UQ (KL9A) 283 46 13,018 YK Sep-1990 ZS1ESC (N6AA) 51 18 918 NV Feb-2000 K7BV 290 50 14,500 Highest Multiplier Feb-2004 405 N6TR/7 OR Feb-2003 N6TR 393 52 20,436 Highest score Feb-2003 21,306 K4AAA (W4AN) WA Feb-2003 K7RI (K7SS) 297 53 15,741 Highest Low Power Feb-2002 163,373 SCCC #1 WY Sep-1999 K7KU (N2IC) 312 48 14,976 Highest Low Power Feb-2002 163,373 SCCC #1 WY Sep-1999 K7KU (N2IC) 312 48 14,976 Highest Low Power Feb-2004 225			· · · · ·					Sep-2000	UP6F	13	10	130
AK Feb-2000 KL9A 202 47 9,494 ZS Feb-2000 ZS1ESC (N6AA) 51 18 918 AZ Feb-2003 W7UQ (KL9A) 283 46 13,018 ZS Feb-2000 ZS1ESC (N6AA) 51 18 918 MT Feb-2003 W7UQ (KL9A) 283 46 13,018 Highest multiplier Feb-2000 55 K9AA (K9PG) NV Feb-2003 N6TR 393 52 20,436 Highest score Feb-2003 21,306 K4AAA (W4AN) VA Feb-2003 K7RI (K7SS) 297 53 15,741 Highest Low Power Feb-2002 163,373 SCCC #1 WY Sep-1999 K7KU (N2IC) 312 48 14,976 Highest Low Power Feb-2002 10,800 K7RI (K7SS) WY Sep-1999 K7KU (N2IC) 312 48 14,976 Highest Low Power Feb-2002 10,800 K7RI (K7SS) UGS received Feb-2003 N8EA 331 52 17,212 Number golden logs Sep-2003 17 <t< td=""><td></td><td></td><td></td><td></td><td>. –</td><td></td><td>ZD8</td><td>Sep-1994</td><td>ZD8Z (N6TJ)</td><td>228</td><td>43</td><td>9.804</td></t<>					. –		ZD8	Sep-1994	ZD8Z (N6TJ)	228	43	9.804
A2 Feb-2000 KoLL 364 50 16,200 ID Feb-2003 W7UQ (KL9A) 283 46 13,018 MT Feb-1998 K7BG 273 43 11,739 NV Feb-2000 K7BV 290 50 14,500 OR Feb-2003 N6TR 393 52 20,436 UT Sep-1991 K6XO 263 44 11,572 WA Feb-2003 K7RI (K7SS) 297 53 15,741 WY Sep-1999 K7KU (N2IC) 312 48 14,976 MI Feb-2003 N8EA 331 52 17,212 OH Feb-2003 K8MR 309 52 16,068	AK	Feb-2000	KL9A	202	47	9,494	ZS	Feb-2000	ZS1ESC (N6AA)	51	18	918
MT Feb-1998 K7BG 273 43 11,739 NV Feb-2000 K7BV 290 50 14,500 OR Feb-2003 N6TR 393 52 20,436 UT Sep-1991 K6XO 263 44 11,572 WA Feb-2003 K7RI (K7SS) 297 53 15,741 WY Sep-1999 K7KU (N2IC) 312 48 14,976 MI Feb-2003 N8EA 331 52 17,212 MI Feb-2003 K8MR 309 52 17,212 Mumber golden logs Sep-2003 17 7050 N6MJ (k7SS)		Feb-2000	NOLL (KI 94)	304 283	50 46	13,200						
NV Feb-2000 K7BV 290 50 14,500 Highest multiplier Feb-2000 55 K9AA (K9PG) OR Feb-2003 N6TR 393 52 20,436 Highest multiplier Feb-2004 405 N6TR/7 UT Sep-1991 K6XO 263 44 11,572 Highest score Feb-2003 21,306 K4AAA (W4AN) WA Feb-2003 K7RI (K7SS) 297 53 15,741 Highest leam score Feb-2002 163,373 SCCC #1 WY Sep-1999 K7KU (N2IC) 312 48 14,976 Highest QRP Power Feb-2002 10,800 K7RI (K7SS) MI Feb-2003 N8EA 331 52 17,212 Number golden logs Sep-2003 17 OH Feb-2003 K8MR 309 52 16,068 Number logs >=300 Feb-2003 52	MT	Feb-1998	K7BG	273	43	11.739						(((2.5.0))
OR Feb-2003 N6TR 393 52 20,436 Highest GSO total Feb-2004 405 N6TR/7 UT Sep-1991 K6XO 263 44 11,572 Highest GSO total Feb-2003 21,306 K4AAA (W4AN) WA Feb-2003 K7RI (K7SS) 297 53 15,741 Highest GRP Power Feb-2002 163,373 SCCC #1 WY Sep-1999 K7KU (N2IC) 312 48 14,976 Highest QRP Power Feb-2002 10,800 K7RI (K7SS) MI Feb-2003 N8EA 331 52 17,212 Number golden logs Sep-2003 17 OH Feb-2003 K8MR 309 52 16,068 Number logs >=300 Feb-2003 52	NV	Feb-2000	K7BV	290	50	14,500	Highest m	nultiplier	Feb-2000	55	K9AA	(K9PG)
UT Sep-1991 K6XO 263 44 11,572 Highest score Feb-2003 21,500 K4AAR (WAAR) WA Feb-2003 K7RI (K7SS) 297 53 15,741 Highest score Feb-2002 163,373 SCCC #1 WY Sep-1999 K7KU (N2IC) 312 48 14,976 Highest QRP Power Feb-2004 17,050 N6MJ (at W6KP) MI Feb-2003 N8EA 331 52 17,212 Number golden logs Sep-2003 17 OH Feb-2003 K8MR 309 52 16,068 Number logs >=300 Feb-2003 52	OR	Feb-2003	N6TR	393	52	20,436	Highest C	150 total	Feb-2004 4	72 72		(M/AAN)
WA Feb-2003 K/FI (K/SS) 297 53 15,741 Highest Low Power Feb-2004 17,050 N6MJ (at W6KP) WY Sep-1999 K7KU (N2IC) 312 48 14,976 Highest Low Power Feb-2004 17,050 N6MJ (at W6KP) MI Feb-2003 N8EA 331 52 17,212 Number golden logs Sep-2003 17 OH Feb-2003 K8MR 309 52 16,068 Number logs >=300 Feb-2003 52	UT	Sep-1991	K6XO	263	44	11,572	Highest te	eam score	Feb-2002 163.3	73	SCCC	#1
With Sep-1999 K/KO (N2IC) S12 46 14,976 Highest QRP Power Feb-2002 10,800 K7RI (K7SS) MI Feb-2003 N8EA 331 52 17,212 Number golden logs Sep-2003 17 OH Feb-2003 K8MR 309 52 16,068 Number logs >=300 Feb-2003 52	WA	Feb-2003	K/RI (K/SS)	297	53	15,741	Highest L	ow Power	Feb-2004 17,0	50	N6MJ	(at W6KP)
MI Feb-2003 N8EA 331 52 17,212 Logs received Feb-2003 225 OH Feb-2003 K8MR 309 52 16,068 Number logs >=300 Feb-2003 17	VVI	9eh-1999	(1)	512	40	14,370	Highest C	RP Power	Feb-2002 10,8	00	K7RI ((K7SS)
MI Feb-2003 N8EA 331 52 17,212 Number golden logs Sep-2003 17 OH Feb-2003 K8MR 309 52 16,068 Number logs >=300 Feb-2003 52							Logs rece	eived	Feb-2004 22	5		
OH Feb-2003 K8MR 309 52 16,068 Number logs >=300 Feb-2003 52	MI	Feb-2003	N8EA	331	52	17,212	Number g	loiden logs	Sep-2003	1/		
	OH	Feb-2003	K8MR	309	52	16,068		Jys >=300	1 60-2003	2		

	(* indicate	s low power; *	* indica	ates C	(RP)														
Name Name <th< td=""><td>Call K5ZD K1KI NT1Y K1EA NN1N K1EA NY1S W1EQ N1XS K1NQ W1EBI W1JQ W1JQ W1JQ W1JQ</td><td>Name RANDY TOM ED DOUG KEN *CAT *JOLIE *JOE *BOB CHRIS *BOB CHRIS *DAVE *GEO *MIKE *JOE *JOE *JAY</td><td>QTH MA CT VT NH CT MA CT MA CT MA RI</td><td>20 77 91 47 68 53 38 37 5 8 32 23 13 11 0 0</td><td>40 160 136 175 145 145 118 113 100 69 44 47 41 33 29 6</td><td>$\begin{array}{cccc} 80 & QSO \\ 131 & 368 \\ 105 & 332 \\ 116 & 338 \\ 108 & 321 \\ 116 & 271 \\ 80 & 236 \\ 68 & 218 \\ 55 & 160 \\ 55 & 160 \\ 71 & 148 \\ 39 & 115 \\ 42 & 112 \\ 55 & 109 \\ 36 & 80 \\ 18 & 47 \\ 7 & 13 \\ \end{array}$</td><td>Mlt 52 51 47 48 44 49 47 41 397 37 33 28 23 13</td><td>Score 19136 16932 15886 15408 11924 11564 10246 6560 5772 4255 4144 3597 2240 1081 169</td><td>Team YCCC #1 SCC #1 SCC #1 YCCC #3 YCCC #2 YCCC #1 YCCC #1 YCCC #1 YCCC #2 YCCC #1 YCCC #1</td><td>Call W6EEN W6YX K6XX N6MJ N6RO AC6T AE6Y K6LA W60AT AJ6V W60AT AJ6V W6EU N6AA W6RGG NI6T</td><td>Name DOUG MIKE BOB "DAN REX KEN STEVE ANDY KEN MIKE "RUSTY ED JIM "DICK BOB GARRY</td><td>QTH CA CA CA CA CA CA CA CA CA CA CA CA CA</td><td>20 104 106 110 106 110 100 73 97 113 98 94 97 86 118 84 77</td><td>40 159 144 136 158 142 136 168 155 135 144 120 123 112 112</td><td>80 (107 84 83 77 78 93 76 54 63 57 52 46 65 44 69 82</td><td>2SO 370 334 329 341 329 341 329 317 306 311 299 280 280 280 281 285 271 285 265 271</td><td><i>Mlt</i> 50 52 50 50 49 50 50 50 50 50 50 50 50 50 50 50 50 50</td><td>Score 18500 17368 17108 17050 16500 16500 16121 15850 15239 14950 14560 14560 13821 13680 13250 11924</td><td>Team SCCC #1 NCCC #1 SCCC #1 SCCC #1 SCCC #1 SCCC #1 SCCC #1 SCCC #1 SCCC #1 NCCC #1 NCCC #1 NCCC #1 NCCC #1 NCCC #1 NCCC #1 NCCC #1 NCCC #1</td></th<>	Call K5ZD K1KI NT1Y K1EA NN1N K1EA NY1S W1EQ N1XS K1NQ W1EBI W1JQ W1JQ W1JQ W1JQ	Name RANDY TOM ED DOUG KEN *CAT *JOLIE *JOE *BOB CHRIS *BOB CHRIS *DAVE *GEO *MIKE *JOE *JOE *JAY	QTH MA CT VT NH CT MA CT MA CT MA RI	20 77 91 47 68 53 38 37 5 8 32 23 13 11 0 0	40 160 136 175 145 145 118 113 100 69 44 47 41 33 29 6	$\begin{array}{cccc} 80 & QSO \\ 131 & 368 \\ 105 & 332 \\ 116 & 338 \\ 108 & 321 \\ 116 & 271 \\ 80 & 236 \\ 68 & 218 \\ 55 & 160 \\ 55 & 160 \\ 71 & 148 \\ 39 & 115 \\ 42 & 112 \\ 55 & 109 \\ 36 & 80 \\ 18 & 47 \\ 7 & 13 \\ \end{array}$	Mlt 52 51 47 48 44 49 47 41 397 37 33 28 23 13	Score 19136 16932 15886 15408 11924 11564 10246 6560 5772 4255 4144 3597 2240 1081 169	Team YCCC #1 SCC #1 SCC #1 YCCC #3 YCCC #2 YCCC #1 YCCC #1 YCCC #1 YCCC #2 YCCC #1 YCCC #1	Call W6EEN W6YX K6XX N6MJ N6RO AC6T AE6Y K6LA W60AT AJ6V W60AT AJ6V W6EU N6AA W6RGG NI6T	Name DOUG MIKE BOB "DAN REX KEN STEVE ANDY KEN MIKE "RUSTY ED JIM "DICK BOB GARRY	QTH CA CA CA CA CA CA CA CA CA CA CA CA CA	20 104 106 110 106 110 100 73 97 113 98 94 97 86 118 84 77	40 159 144 136 158 142 136 168 155 135 144 120 123 112 112	80 (107 84 83 77 78 93 76 54 63 57 52 46 65 44 69 82	2SO 370 334 329 341 329 341 329 317 306 311 299 280 280 280 281 285 271 285 265 271	<i>Mlt</i> 50 52 50 50 49 50 50 50 50 50 50 50 50 50 50 50 50 50	Score 18500 17368 17108 17050 16500 16500 16121 15850 15239 14950 14560 14560 13821 13680 13250 11924	Team SCCC #1 NCCC #1 SCCC #1 SCCC #1 SCCC #1 SCCC #1 SCCC #1 SCCC #1 SCCC #1 NCCC #1 NCCC #1 NCCC #1 NCCC #1 NCCC #1 NCCC #1 NCCC #1 NCCC #1
No-D DUB UE 0 10 10 30 22 0.80 Sol + 3 NETR TREE OP 10 171 123 405 50 20220 Comper Power AKAAA BLL GG SS 111 120 220 SS SS 111 120 220 120 111 120 220 120 120 220 220 120 120 200 220 220 22	N2NT W2RQ K2UA V2GC K2KQ V2ED K2LE WB2AA K3MM K3MM N3AD W35F N3AD W35F N3AD W35F N3AD W33S N5AT KC3M K31F	ANDY BILL RUS MIKE *DON ED *ANDY *ALEX JOHN TY BUD CHAS *KARL JOHN JOHN JOHN JOHN JOHN JAY *JACK *PHIL *DAVE	NJ NY NY NY NY NY NY NY NY NY NY NY NY NY N	86 50 217 346 127 65 78 60 60 322 52 02 02 02 02 02	$\begin{array}{c} 169\\ 115\\ 121\\ 82\\ 97\\ 35\\ 51\\ 147\\ 138\\ 142\\ 120\\ 110\\ 84\\ 121\\ 656\\ 10\\ 21\\ 8\\ 24\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49 47 444 41 379 47 40 466 43 41 444 307 22642 22642	18473 14664 10780 10076 8610 7872 5254 4836 14382 13600 13248 12236 10074 9503 81503 8140 6864 4200 1740 1620 1740 1622 1352	NCC #1 NCC #1 YCCC #1 YCCC #1 FRC & PVRC YCCC #2 FRC & PVRC FRC & PVRC SSC #4 FRC & PVRC SSC #4 FRC & PVRC SSC #4 SSC #4	W0YK K6NR N6ZFO K6LRN N6HC N6HC N6HC N6XS W6MVW K6SRZ ND2T K6XY K6XY K6XY K6XY K6XY K6EY K6UFO K6VVA N6PE N6WG K6OWL K6DGW W7SW K6CSL K6ZCL	ED DANA 'BILL DICK 'ARNIE 'MATT DICK 'ALAN 'TOM 'ALAN 'TOM 'ALAN 'TOM 'ART TOM 'ART 'BECKY 'BECKY 'BECKY 'RICK 'RICK 'ARK 'RICK 'ARK 'TICK 'TED	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	$74 \\ 105 \\ 274 \\ 544 \\ 744 \\ 614 \\ 450 \\ 297 \\ 326 \\ 10 \\ 332 \\ 10 \\ 332 \\ 10 \\ 6 \\ 332 \\ 10 \\ 6 \\ 332 \\ 10 \\ 10 \\ 332 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	$119 \\ 996 \\ 135 \\ 89 \\ 106 \\ 78 \\ 77 \\ 83 \\ 57 \\ 38 \\ 60 \\ 537 \\ 28 \\ 35 \\ 28 \\ 39 \\ 30 \\ 7 \\ 23 \\ 0$	62 385 40 46 48 40 37 86 7 45 19 112 02 1 0 10	$\begin{array}{c} 255\\ 242\\ 201\\ 209\\ 221\\ 200\\ 183\\ 155\\ 120\\ 130\\ 100\\ 993\\ 68\\ 43\\ 37\\ 41\\ 36\\ 6\end{array}$	466474947240033612992271891775	11730 11130 9849 9823 8000 7869 6280 6280 4800 4550 3960 2900 2871 2117 1836 774 703 697 2117 1836 370 30	NGCC #2 SCCC #2 NCCC #2 SCCC #2 SCCC #1 NCCC #2 SCCC #1 NCCC #2 NCCC #2 NCCC #2 NCCC #2 NCCC #3 SCCC #3 SCCC #3 NCCC #3 NCCC #3 SCCC #3 NCCC #2
MACW BERT NC 64 112 40 216 44 9504 SSC #3 KBMR JIM OH 66 100 104 270 49 13220 NCC #1 VAGAL JAY FL 43 98 57 116 44 8654 SSC #3 KBMR JIM OH 51 126 233 46 1262 NCC #1 VACU JAY FL 43 98 50 71 152 45 1262 NCC #1 VACU JAY FL 43 86 55C #1 NWECAR TDAIN OH 76 71 152 45 8457 NCC #1	V9GG (4AAA V4AF (4BAI (4RO) (4RO) (4RO) (4NO) N40C (7SV (4NNN (4NNN (4NNN (4NNN (4NNN (4NN (4AVX) (4AVX) <	BILL AL JOHN KIRK GREG DON "LARRY ELMER ACE ED DON GEO DAVE TED JIM TED JIM DAN "DOUG "PAUL	DE GNCANASCALANT FLNNASCALANT	8 8725567767408 8427722756303210 431200	16 188 151 91 98 124 88 134 120 97 146 73 97 146 73 97 107 107 107 107 107	14 38 115 391 103 326 120 286 131 289 115 281 95 273 106 268 85 261 73 270 75 244 14 262 106 236 86 246 122 249 80 221 100 242 80 221 75 212	22 5288 487 477 476 459 458 445 454 45 447 45	836 20332 15648 13728 13583 13440 12831 12596 12267 12190 12150 12150 12150 11790 11328 11316 11205 10755 10648 10359 9540	SSC #3 SSC #1 SSC #1 SS	N6TR K6LL K4XU K7NV KY7M N7LOX K9JF N7WA K07X K07X K07X K17Y W7ZRC W7YS NC7J KH6SH ALIG K7GS N6MZ	TREE DAVE DICK ULEE *ED *BRIAN JIM *DINK MIKE *JIM TIM TIM TIM TIM TIM TIM TIM TIM TIM T	OR AZ NV AZ WA WA WA AVY AK ID Z UT KA WA	$\begin{array}{c} 103 \\ 125 \\ 82 \\ 75 \\ 89 \\ 68 \\ 89 \\ 657 \\ 66 \\ 28 \\ 39 \\ 29 \\ 30 \\ 18 \\ 15 \\ 0 \end{array}$	$179 \\ 137 \\ 134 \\ 142 \\ 131 \\ 134 \\ 117 \\ 108 \\ 97 \\ 87 \\ 142 \\ 95 \\ 141 \\ 106 \\ 80 \\ 73 \\ 70 \\ 13 \\ 5 \\ 0$	$\begin{array}{c} 123\\75\\92\\68\\70\\55\\61\\40\\52\\82\\42\\0\\315\\45\\16\\1\\0\\1\end{array}$	405 337 308 285 290 271 256 234 238 243 227 203 167 174 134 147 134 147 116 32 20 1	$50\\49\\51\\49\\47\\45\\49\\48\\46\\41\\39\\40\\329\\9\\11\\1$	20250 16513 15708 13965 12737 11520 11424 11520 11464 11424 11478 10669 9338 6847 6786 5360 5360 288 220 1	Corner Pocket SCCC #1 Azen #2 Corner Pocket Corner Pocket Corner Pocket Azen #1 Colo Contesters Corner Pocket NCC #1 Corner Pocket Azen #2 Corner Pocket
VEVI VIANIL GA 23 24 25 100 25 120 25 127 25 SGC CAT IN 85 156 120 361 52 18772 SMC-CAT W42W JON FL 0 38 0 38 26 988 SSC #4 KABW CAT IN 16 101 131 325 50 16220 SMC-CAT VALUE Y GRA 0 25 6 31 19 589 KABFOX CAT IN 65 105 107 24 44 81 323 49 11319 SMC-CAT K4GBW YGEORGE GA 0 16 16 10 20 SSC #5 WI9WI IIM 16 13 205 SMC-CAT III 133 79 89 201 44 80 SMC-CAT SMC-CAT III 133 79 89 201 44 80 SMC-CAT III 131 132 24 46 80 SMC-CAT	N4CW AA4GA K4IQJ N4OX WA4X W4MX W0UCE AE4Y W1MO K4MA W4SAA W4SAA W4SAA W4ATL N4FCG K4EL	BERT *LEE *DICK JAY JOHN 'JERI JACK *KENT *NORM GOPANTHERS *JOE *BOGER *BOB *MABK	NC GA FL GA FL GA FL GA FL GA FL	64 36 18 43 7 0 24 18 39 14 20 26 0	112 83 104 96 94 63 83 53 65 78 63 54 100	40 216 87 206 75 197 57 196 63 164 88 151 38 145 70 141 32 136 37 129 26 109 36 116 0 100	44 46 45 44 39 40 41 40 37 36 39 32 37	9504 9476 8865 8624 6396 6040 5945 5640 5032 4644 4251 3712 3700 2672	SSC #3 SSC #2 SSC #2 SSC #4 SSC #4 SSC #4 SSC #4 SSC #4 SSC #5 SSC #3 SSC #3 SSC #4 SSC #4 SSC #4 SSC #3 SSC #3 SSC #3 SSC #3 SSC #3	K8MR K8AZ N4ZR W8KIC N8VW W8CAR K3JT AD8P K8JQ W8WTS K8DD K5IID W8TM	JIM JOHN PETE *VAL *DAN TERRY *BILL STEVE *JIM *DUCK *TOM **PAUL	OH WH OH WH OH WH OH WH Mii V OH	66 51 37 14 20 27 5 19 0 3 0	100 126 104 88 68 53 77 41 60 36 12 23 21	104 62 105 80 70 42 0 45 32 34 38 22 0	270 239 221 205 152 115 104 93 97 89 50 48 21	49 48 45 38 36 38 32 31 25 24 15	13230 11472 10608 9225 6840 3744 3534 3104 2759 1250 1152 315	NCC #1 SSC #3 NCC #1 NCC #1 Austin Powers
KGBN DAVE TX 83 147 98 28 48 15744 No bad for a five KdBN CHOCK L 0 15 22 37 21 177 VAOGW TOR MS TX 85 1144 73 302 50 15100 Austin Powers K0SR STEVE MN 47 119 134 300 48 14400 VSOT MARK K0K 79 119 62 240 48 13024 Azen #1 N0AV JMN 40 60 98 107 265 51 1106 Azen #1 N0AV JMN 41 107 92 240 46 10956 44 10956 44 10956 44 10956 44 10956 48 1400 48 1400 48 1400 48 1400 48 1400 48 1400 48 1400 148 10296 48 1400 148 10296 48 1400 148 10296 148 148 10296	KUEJ NSVI K4GA W4ZW AA4LR KT4Q AF4QZ WB6BWZ K4GM K3CQ K5TR K3LR	*VAN *VAN *DIL JON *BILL *STEVE ADAM **MATT *GEORGE *BILL GEO TIM	GA GA FL GA GA SCA VN TX OK	0 23 14 0 28 0 0 0 0 0 0 0 0 0 0 0 0	65 47 29 38 15 25 0 14 12 0 161 154	17 102 29 99 44 87 0 38 0 43 6 31 16 16 5 19 0 12 11 11 107 368 128 342	36 36 34 26 16 19 13 10 10 8 50 48	3564 2958 988 688 589 208 190 120 88 18400 16416	SSC #4 SSC #4 SSC #5 SSC #5 Not bad for a five NCC #1	N9RV AG9A K9NW N9CK KA9FOX K9AY W19W1 KE91 K9ZO WT9U WE9V K9KM	PAT CAT CAT SCOTT CAT JIM CAT *JIM CAT *AIM CAT *CAT *CAT		85 72 81 55 30 53 65 40 33 28 40 10	156 136 107 97 105 85 91 69 79 75 96 75 96 70	120 111 137 131 107 93 78 113 89 92 0 52	361 319 325 283 242 231 234 222 201 195 142 132	52 51 50 49 47 49 48 46 45 44 43 21	18772 16269 16250 13867 11374 11319 11232 10212 9045 8580 6248 5676	SMC—CAT SMC—CAT SMC—CAT SMC—CAT SMC—CAT SMC SMC SMC SMC SMC SMC—CAT SMC—CAT SMC—CAT SMC
X5AF TPAUL TX 62 95 100 1	<pre><5GN V3BB V4OGW V5OT <5YAA V5AW <5VA <5SWA <25D N5DO WQ5L N6ZZ N5DO W5QQ W50WU K5PTC N5DQ W5DX</pre>	DAVE JIM TOR MARK JERRY *MARV BOB ART *DAVE RAY PHIL LEE RON PAT BOB KEVIN	TX TX MS OK TX LA TX MM TX LA TX LA XA B	83 85 79 42 75 55 63 67 41 365 59 50	147 144 119 131 134 123 134 98 118 115 129 101 99 99 81 83	98 328 73 302 96 290 102 312 112 288 74 264 8 297 105 258 90 271 73 244 55 231 98 240 99 234 78 232 82 2222 82 2222 113 246	48 50 52 47 48 52 46 48 45 46 48 45 46 46 48 42	15744 15100 15080 14664 13824 13728 13662 12384 12195 11468 11319 10800 10764 10672 10656	Not bad for a five Austin Powers SSC #2 Azen #1 Azen #2 Not bad for a five Austin Powers SSC #2 Austin Powers Not bad for a five Azen #2 SSC #2 Not bad for a five	KOSR KOOU NOAV NAON WOZP NOAT KTOR WOETTT NOSXX N4VI KSOT KOHW WONT KORI	STEVE CAT JIM *PAT WAYNE *RON DAVE *KEN *GARY *CHRIS *MIKE *JIM *PETE **LOU	IL MN MO IA MN CO CO MN SD CO CO	47 54 60 47 50 32 53 28 32 30	15 119 111 98 107 121 92 85 118 84 56 80 20 29 7	22 134 101 107 92 56 92 73 27 55 0 1 23 0 7	300 266 265 240 249 234 190 192 84 84 45 32 14	21 48 49 45 46 44 44 44 44 41 30 23 15 9	14400 13034 11925 11040 10956 8360 8360 7872 2604 2520 1035 480 126	SMC—CAT Colo Contesters Colo Contesters Colo Contesters Colo Contesters Colo Contesters
	K5AF K5KA W5GN NT5TU W5ZL K65U K7UP N5TW W5EKF W5EKF W5DDX KT5V K5HP N05W	*PAUL KEN BARRY *DENNIS *DALE **JOHN *JOHN *BILL *BO *DAVID *TERRY *CHUCK	TX OX TX TX TX TX TX LA LA TX K TX	50 62 63 63 55 97 56 89 57 68 29 52 5 32 5 52 5 52 52 53 55 55 55 55 55 55 55 55 55 55 55 55	95 105 99 75 70 70 63 67 40 74 38 66	$\begin{array}{c} 1.5 \\ 97 \\ 250 \\ 218 \\ 29 \\ 191 \\ 41 \\ 179 \\ 42 \\ 172 \\ 45 \\ 164 \\ 27 \\ 154 \\ 44 \\ 143 \\ 43 \\ 128 \\ 46 \\ 115 \\ 0 \\ 109 \\ 49 \\ 119 \\ 35 \\ 106 \end{array}$	43 40 46 45 42 42 42 42 43 40 36 34 31 32	10160 10028 8595 7518 7224 6888 6622 5720 5120 4140 3706 3689 3392	Austin Powers Azen #1 QSYers Austin Powers Austin Powers Austin Powers Austin Powers Azen #1 QSYers Not bad for a five Azen #2 Not bad for a five	VE3EJ VE5SF VE3DZ VA3NR VE3JM VO1AU VE3IAY VE3KP VE3KZ VE3KZ VA7ST NP4Z XE2MX	JOHN *SAM *YURI CHRIS *VLAD DAVE *RICH *KEN *TONY *BOB *BUD *PHIL *DOVC	VE3 VE5 VE3 VE3 VE3 VE3 VE3 VE3 VE3 VE3 VE7 KP4 XE	46 53 22 19 0 11 15 7 18 39 54 72	102 139 102 113 78 79 55 48 63 35 4 150 81	111 39 59 74 36 65 49 11 21 49 25	259 231 227 174 171 115 131 112 81 54 64 253 178	46 45 46 41 40 34 36 27 22 17 48 44	11914 10395 10215 8004 7011 4600 4454 2187 1188 1088 12144 7832	CCO CCO CCO CCO CCO CCO CCO CCO CCO CCO

Scores

Awesome Audio Demonstration

Toll-Free 877-739-2449 845-889-4933 W2IHY Technologies 19 Vanessa Lane • Staatsburg, NY 12580 email: Julius@W2IHY.COM WWW.W2IHY.COM

Your Transmit Audio Is *Outstanding!*

The W2IHY 8 Band Audio Equalizer And Noise Gate brings professional audio processing technology to your shack ... affordably!

The W2IHY 8 Band Audio Equalizer And Noise Gate provides three powerful audiomanagement tools for your microphones and radios. Fine-tune your microphone with 8 Bands of Equalization. Customize your audio for that rich, tul broadcast sound or penetrating, pileup busting contest and dx audio. Change from one audio "personality" to another instantly with smooth-action slide pots. The highly effective Noise Gate eliminates background noises picked up by your microphone. Increases signal clarity and presence.

Universal Microphone and Radio matching capabilities let you interface practically any microphone with any radio! Comprehensive impedance matching and signal level controls for input and output, 8-pin, XLR and RCA microphone jacks. Headphone monitor. Extensive RFI protection.

W2IHY 8 Band Audio Equalizer And Noise Gate \$249.99 (Kit \$204.99) Microphone Cable (specify racio make & model) \$20.00 W2IHY Dual Band Audio Equalizer And Noise Gate \$144.99 (Kit \$109.99) S&H \$11.00 Three year parts & labor warranty.

All New *Windows* Antenna Software by W7EL

EZNEC 3.0 is an all-new antenna analysis program for Windows 95/98/NT/2000. It incorporates all the features that have made **EZNEC** the standard program for antenna modeling, plus the power and convenience of a full Windows interface.

EZNEC 3.0 can analyze most types of antennas in a realistic operating environment. You describe the antenna to the program, and with the click of a mouse, **EZNEC 3.0** shows you the antenna pattern, front/back ratio, input impedance, SWR, and much more. Use **EZNEC 3.0** to analyze antenna interactions as well as any changes you want to try. **EZNEC 3.0** also includes near field analysis for FCC RF exposure analysis.

See for yourself

The **EZNEC** 3.0 demo is the complete program, with on-line manual and all features, just limited in antenna complexity. It's free, and there's no time limit. Download it from the web site below.

<u>Prices</u> - Web site download only: \$89. CD-ROM \$99 (+ \$3 outside U.S./Canada). VISA, MasterCard, and American Express accepted.

Roy Lewallen, W7EL	phone	503-646-2885
P.O. Box 6658	fax	503-671-9046
Beaverton, OR 97007	email	w7el@eznec.com

http://eznec.com

ARE YOU BUILDING A HIGH POWER AMPLIFIER? DO YOU WANT TO TAKE A LIGHT-WEIGHT ON A TRIP?

You must check out the PS-2500A High Voltage Power Supply

- 240VAC IN/2.5KVDC @ 1.1A OUT
- WEIGHT: 10 LBS
- Size: 11 3/4 X 5 5/8 X 5 INCHES
- RF "QUIET"
- FOR BUILT-IN OR OUTBOARD USE
- NEW CONSTRUCTION OR RETROFIT
- TWO MAY BE CONNECTED IN OUTPUT SERIES AND PARALLEL FOR HIGHER V AND I

\$585 KIT/\$698 BUILT AND TESTED (POSTPAID IN CNTL US) FOR FULL SPECS AND EASY ONLINE ORDERING, VISIT WWW.WATTSUNLIMITED.COM

VK-64 Combo Voice/CW Keyer

Voice keyer and full feature CW memory keyer in a single package. Front panel operation or control through your laptop or PC printer port. \$249.95 The W9XT Contest Card

This voice keyer and CW interface plugs into your PC's ISA slot. Four 15 second messages. \$149.95 BCD-10 Band Decoder

Use band port signals from selected Yaesu® rigs or PC printer port for automatic antenna switching. \$18.95

XT-4 CW Memory Keyer Battery powered and small size for VHF rover, FD and DXpeditions. 4 memories. \$69.95

XT-4BEACON - CW Beacon IDer Easy to program IDer for VHF beacons. Low power. Selectable speeds 5-25 WPM. \$29.95

> Unified Microsystems Gary Sutcliffe, W9XT PO Box 133 Slinger, WI 53086 262-644-9036 www.qth.com/w9xt

wire antenna analysis program for Windows you get true 3D far field patterns that are far more informative than conventional 2D patterns or wire-frame pseudo-3D patterns.

Describe the antenna to the program in an easyto-use spreadsheet-style format, and then with one mouse-click the program shows you the antenna pattern, front/back ratio, front/rear ratio, input impedance, efficiency, SWR, and more.

An optional **Symbols** window with formula evaluation capability can do your computations for you. A **Match Wizard** designs Gamma, T, or Hairpin matches for Yagi antennas. A **Clamp Wizard** calculates the equivalent diameter of Yagi element clamps. A **Yagi Optimizer** finds Yagi dimensions that satisfy performance objectives you specify. Major antenna properties can be graphed as a function of frequency.

There is **no built-in segment limit**. Your models can be as large and complicated as your system permits.

ANTENNA MODEL is only \$85US. This includes a Web site download and a permanent backup copy on CD-ROM. Visit our Web site for more information about ANTENNA MODEL.

> Teri Software P.O. Box 277 Lincoln, TX 78948

e-mail sales@antennamodel.com phone 979-542-7952

SAVE BIG ON ANTENNAS, TOWERS & CABLE

TELESCOPING ALUMINUM TUBING

DRAWN 6063-T832	1.250"\$1.55/ft
.375\$.70/ft	1.375" \$1.75/ft
.500"\$.80/ft	1.500"\$1.95/ft
.625"\$.90/ft	1.625"\$2.25/ft
.750" \$1.00/ft	1.750" \$2.50/ft
.875"\$1.10/ft	1.875"\$2.75/ft
1.000" \$1.20/ft	2.000" \$3.00/ft
1.125" \$1.35/ft	2.125" \$3.50/ft
IN 6' OR 12' LENG	THS, 6' LENGTHS
SHIP UPS. CALL FOR	3/16"AND 1/4" ROD,
BAR STOCK, AND EX	XTRUDED TUBING.

BENCHER / BUTTERNUT

Skybowk Triband Boom	¢1120
Зкупаwк, тпрапо веат	
HF2V, 2 Band Vertical	\$249
HF5B, 5 Band Minibeam	\$359
HF6VX, 6 Band Vertical	\$339
HF9VX, 9 Band Vertical	\$369
A1712, 12/17m Kit	\$54
CPK, Counterpoise Kit	\$129
RMKII, Roof Mount Kit	\$159
STRII, Roof Radial Kit	\$125
TBR160S, 160m Kit	\$139
More Bencher/Butternu	it–call

COMET ANTENNAS

GP15, 6m/2m/70cm Vertical	\$159
GP6, 2m/70cm Vertical	\$149
GP9, 2m/70cm Vertical	\$189
B10NMO, 2m/70cm Mobile	\$39
SB14, 6m/2m/70cm Mobile	\$59
SBB224NMO,2m/220/70cm	\$69
SBB2NMO, 2m/70cm Mobile	\$39
SBB5NMO, 2m/70cm Mobile	\$55
SBB7NMO, 2m/70cm Mobile	\$69
UHV4/UHV6	\$109/149
MORE COMET ITEMS IN STOCK	-CALL.

DIAMOND ANTENNAS

	¢70/120
D 130J/DFGH02	
F22A/F23A	\$89/119
NR72BNMO/NR73BNMO	\$39/54
NR770HBNMO/NR770RA	\$55/49
X200A, 2m/70cm Vertical	\$129
X500HNA/X700HNA	\$229/369
X510MA/510NA	\$189/189
X50A/V2000A	\$99/149
CR627B/SG2000HD	\$99/79
SG7500NMO/SG7900A	\$75/112
MORE DIAMOND ANTENNA	SIN STOCK.

GAP ANTENNAS

Challenger DX	\$289
Challenger Counterpoise	\$29
Challenger Guy Kit	\$19
Eagle DX	\$299
Eagle Guy Kit	\$29
Titan DX	\$329
Titan Guy Kit	\$29
Voyager DX	\$409
Voyager Counterpoise	\$49
Voyager Guy Kit	\$45
PLEASE CALL FOR DELIVERY	INFO.

WEEKDAY HOURS: 9 AM-5 PM CST

SATURDAY HOURS: 9 AM–12 NOON CST

CREDIT CARDS: M/C, VISA, DISCOVER

CUSHCRAFT ANTENNAS

13B2/A148-10S	\$159/89	
A270-6S/A270-10S	\$79/99	
A3S/A4S	\$459/549	
A50-3S/5S/6S	\$99/169/269	
A6270-13S	\$199	
AR2/ARX2B	\$55/69	
AR270/AR270B	\$89/99	
R6000/R8	\$309/459	
X7/X740	\$649/269	
XM240	\$679	
CALL FOR MORE CURREDAET ITEMS		

CALL FOR MORE CUSHCRAFT ITEMS.

M2 VHF/UHF ANTENNAS

144-148 MINZ				
2M4/2M7/2M9	\$95/109/129			
2M12/2M5WL	\$165/209			
2M5-440XP, 2m/70cm	\$179			
420–450 MHz				
440-470-5W/420-450-11	\$139/95			
432-9WL/432-13WLA	\$179/239			
440-18/440-21ATV	\$129/149			
SATELLITE ANTENNAS				
2MCP14/2MCP22	\$169/239			
436CP30/436CP42UG	\$239/279			

M2 ANTENNAS 50-54 MHZ

•• • • • • • • • • • • • • • • • • • • •	
6M5X/6M7JHV	\$209/269
6M2WLC/6M9KHW	\$459/499

10/12/15/17/20M MONO

0M4DX, 4 Element 10m	.\$399
2M4DX, 4 Element 12m	.\$399
5M4DX, 4 Element 15m	.\$449
7M3DX, 3 Element 17m	.\$399
0M4DX, 4 Element 20m	.\$529
IORE M2 IN STOCK-PLEASE (CALL.

MFJ	
259B, Antenna Analyzer	. \$219
269, Antenna Analyzer	.\$299
941E, Antenna Tuner	. \$109
945E, Antenna Tuner	\$99
949E, Antenna Tuner	. \$139
969, Antenna Tuner	. \$169
986, Antenna Tuner	\$289
989C, Antenna Tuner	\$309
1798, 80–2m Vertical	. \$249
1796, 40/20/15/10/6/2m Vert	. \$199
BIG MFJ INVENTORY— PLEASE (CALL.

LAKEVIEW HAMSTICKS

9106	. 6m	9115	15m	9130	30m
9110	10m	9117	17m	9140	40m
9112	12m	9120	20m	9175	75m
All han	dle	600W,	7' ap	proxi	mate
length,	2:1	typica	al VSV	NR .\$	24.95

HUSTLER ANTENNAS

4BTV/5BTV/6BTV	\$129/169/199
G6-270R, 2m/70cm Ver	tical\$169
G6-144B/G7-144B	\$109/179
HUSTLER RESONAT	ORS IN STOCK.

A Division of Texas RF Distributors, Inc.

EXAS TOWER

(800) <u>272-3467</u>

FORCE 12–MULTIBAND

C3	10/12/15/17/20m, 7 el\$659	
C3E	10/12/15/17/20m, 8 el\$699	Т
C3S	10/12/15/17/20m, 6 el\$579	Т
C3SS	10/12/15/17/20m, 6 el\$599	Т
C4	10/12/15/17/20/40m, 8 el\$799	Т
C4S	10/12/15/17/20/40m, 7 el\$719	Т
C4SXL	10/12/15/17/20/40m, 8 el \$1019	Т
C4XL	10/12/15/17/20/40m, 9 el \$1189	Т
C19XR	10/15/20m, 11 el\$999	Т
C31XR	10/15/20m, 14 el\$1389	Т
CALL F	OR MORE FORCE 12 ANTENNAS	N

ROHN TOWER

25G/45G/55G	\$89/189/239
25AG2/3/4	\$109/109/119
45AG2/4	\$209/225
AS25G/AS455G	\$39/89
BPC25G/45G/55G	\$75/99/110
BPL25G/45G/55G	\$85/109/125
GA25GD/45/55	\$68/89/115
GAR30/GAS604	\$35/24
SB25G/45/55	\$39/89/109
TB3/TB4	\$85/99
PLEASE CALL FOR MO	RE ROHN PRICES

GLEN MARTIN ENGINEERING UAZED ELEVATORS FOR 25

HAZER ELEVATORS FOR 250	3
2, Aluminum Hazer, 12 sq ft	.\$359
13, Aluminum Hazer, 8 sq ft	.\$269
4, HD Steel Hazer, 16 sq ft	.\$339

ALUMINUM ROOF TOWERS

RT424, 4 Foot, 6 sg ft	\$159
RT832, 8 Foot, 8 sq ft	\$239
RT936, 9 Foot, 18 sq ft	\$389
RT1832, 17 Foot, 12 sg ft	\$519
RT2632, 26 Foot, 9 sq ft	\$869

COAX CABLE

RG-213/U, (#8267 Equiv.)	\$.36/ft
RG-8X, Mini RG-8 Foam	\$.19/ft
RG-213/U Jumpers	Please Call
RG-8X Jumpers	Please Call
CALL FOR MORE COAX/CO	NNECTORS.

TIMES MICROWAVE LMR® COAX

LMR-400	\$.59/ft
LMR-400 Ultraflex	\$.89/ft
LMR-600	\$1.19/ft
LMR600 Ultraflex	\$1.95/ft

ANTENNA ROTATORS

M2 OR-2800P	\$1249
Yaesu G-450A	\$249
Yaesu G-800SA/DXA	\$329/409
Yaesu G-1000DXA	\$499
Yaesu G-2800SDX	\$1089
Yaesu G-550/G-5500	\$299/599

ROTATOR CABLE

R62 (#18)	\$.32/ft.
R81/82	\$.25/ft./.39/ft.
R84	\$.85/ft

1108 Summit Avenue, Suite #4 • Plano, TX 75074

TRYLON "TITAN" TOWERS SELE-SUPPORTING STEEL TOWERS

JELF	OFFORTING STEEL TO	VERO
T200-64	64', 15 square feet	\$1209
T200-72	72', 15 square feet	\$1429
T200-80	80', 15 square feet	\$1649
T200-88	88', 15 square feet	\$1949
T200-96	96', 15 square feet	\$2249
T300-88	88', 22 square feet	\$2189
T400-80	80', 34 square feet	\$2089
T500-72	72', 45 square feet	\$1979
T600-64	64', 60 square feet	\$1869
MANYMOR	ETRYLON TOWERS IN	STOCK.

US TOWER

MA40/MA550	\$1079/1669
MA770/MA850	\$2789/4269
TMM433SS/HD	\$1459/1759
TMM541SS	\$1899
TX438/TX455	\$1399/1899
TX472/TX489MDPL	\$3099/7929
HDX538/HDX555	\$1599/2799
HDX572MDPL	\$7249
PLEASE CALL FOR HE	LP SELECTING A
US TOWER FOR YOUR	NEEDS. SHIPPED
FACTORY DIRECT TO SA	AVE YOU MONEY

UNIVERSAL ALUMINUM TOWERS

4 -40'/50'/60'	\$539/769/1089
7 -50'/60'/70'	\$979/1429/1869
9 -40'/50'/60'	\$759/1089/1529
12- 30'/40'	\$579/899
15 -40'/50'	\$1019/1449
23 -30'/40'	\$899/1339
35- 40'	\$1569
BOLD IN PART NUM	BER SHOWS WIND
LOAD CAPACITY. P	LEASE CALL FOR
MORE UNIVERSAL	MODELS. SHIPPED
DIRECT TO YOU TO	SAVE YOU MONEY.

TOWER HARDWARE

B/8"EE / EJ Turnbuckle	\$11/12
/2"x9"EE / EJ Turnbuckle	\$18/19
/2"x12"EE / EJ Turnbuckle	\$21/22
3/16" / 1/4" Big Grips	\$5/6
DI EASE CALL EOD MODE HAD	
LEASE GALL FOR MORE HAD	VUWARE.
HIGH CARBON STEEL M	ASTS
HIGH CARBON STEEL M	ASTS \$35/59
HIGH CARBON STEEL M 5 FT x .12" / 5 FT x .18" 0 FT x .18" / 11 FT x .12"	ASTS \$35/59 \$129/80

IUFIX.18 / 11 FIX.12	
16 FT x .18" / 17 FT x .12"	\$179/129
19 FT x .12" / 21 FT x .18"	\$129/235
22 FT x .25" / 24 FT x .25"	\$349/379

PHILLYSTRAN GUY CABLE

HPTG1200I	\$.45/ft
HPTG2100I	\$.59/ft
PLP2738 Big Grip (2100)	\$6.00
HPTG40001	\$.89/ft
PLP2739 Big Grip (4000)	\$8.50
HPTG67001	\$1.29/ft
PLP2755 Big Grip (6700)	\$12.00
HPTG11200	\$1.89/ft
PLP2758 Big Grip (11200)	\$18.00
PLEASE CALL FOR HELP SEL	ECTING THE
PHILLYSTRAN SIZE FOR YOU	R PROJECT.

LOCAL CALLS: (972) 422-7306

EMAIL ADDRESS: sales@texastowers.com

INTERNET ADDRESS: www.texastowers.com Multiple Meter Readouts See the latest in meter technology with the '7800's virtual meter system. These digital meters are visually superior to and of a higher performance than analog. Don't believe it? Log on to www.icomamerica.com/7800 and see for yourself!

Multiple Spectrum Displays You can select a standard spectrum display either centered on your operating frequency or a fixed range to view the band! Choose how you want to SEE the band, and then tune to what signals you see. (Photo shows the fixed range spectrum display.)

IC-7800 The Ultimate HF!

Gentlemen, start your engines. All four of them!

Power your way to front of the pack with Icom's new IC-7800. Cutting edge digital meets the best of world class analog, resulting in an amazing 110dB of receiver dynamic range and a +40dBm IP3 in the *HF bands*! But that's not all. The '7800 has two identical, independent receiver circuits. Receive two different bands simultaneously on different antennas, with no adverse effects from one receiver to the other — take your band hopping and contesting to the next level! There are four 32-bit floating point DSP units with 24-bit AD/DA converters, one each for the main RX, second RX, TX, and spectrum scope, to accelerate data processing to whiplash speeds! Newly designed power amplifiers provide a powerful 200W of output power at full duty cycle and low transmit IMD. So what are you waiting for? Make your move. See your authorized Icom dealer!

Dual Receive Controls Separate key receiver controls are available for each receiver. Controls for volume, RF gain, and DSP controls, the '7800 also has independent controls for the Digital Twin PassBand tuning as well as the 70 dB Manual Notch filters. Whether in a contest, or just hopping around the bands, easy access to receiver controls such as volume, RF gain, and AGC adjustments are at your fingertips.

Dual Digital Twin PassBand Tuning Only Icom brings you Digital Twin PassBand tuning. Adjustments can be made for each receiver without affecting the other receiver.

Independent Digi-Sel Controls Incorporated into the IC-7800 is a newly designed digital pre-selector, with separate controls for each receiver.

Independent Auto Tune Automatically zero beat your CW or AM carrier signals. The '7800 makes sure you're right on the proper frequency for these modes. Each receiver has a separate control.

Independent AGC Settings Multiple AGC settings for each receiver. On-the-fly adjustment for either preset AGC settings, or a completely variable AGC control.

©2004 Icom America Inc. The Icom logo is a registered trademark of Icom Inc. All specifications are subject to change without notice or obligation. 6707

