

NATIONAL CONTEST

November/December 2004

Volume 32 Number 6

Visit our Web Site:

www.ncjweb.com

O.C

- SNØHQ in the 2004 IARU HF World Championship
- Vertical Antennas with Top Loading
- The Anti-Murphy Box
- January 2004 North American QSO Party Results—CW and Phone
- July 2004 North American RTTY QSO Party Results

tappy Holidays

from **N5YA** in Bonham, Texas!

NCJ: The National Contest Journal American Radio Relay League 225 Main Street • Newington, CT 06111-1494

Contesting and DXing Products from Array Solutions PRO.SIS.TEL. Array Solutions is the **Exclusive Amateur Radio BIG BOY ROTATORS Distributor for Nello** The Most Powerful and Accurate Amateur/ **Corporation's "G-Series" Commercial/Military/Industrial Antenna** Reproduction Tower **Rotators Available – Just Got Better!** Sections and Accessories! All models of ProSisTel rotators now employ DC motors for increased torque and unparalleled controllability. The N E L L O new "Controller D" control box features a built-in computer interface. Fully control Features: the rotator via software. or Fully interchangeable with existing G-series sections. program in custom "manual" Hot-dip galvanized. operating parameters such as Complimented with a long list of accessories. stop points, calibration, soft start/stop, reverse delay, rotation Produced in compliance with TIA/EIA-222 design standards. **Controller D** range, and more! Backed by a full manufacturer's warranty against broken welds and early corrosion. Compare With: Model: Price: Ham IV. V (or less), G-400, G-800 PST641D \$719 25N – Replaces Rohn 25G PST2051D T2X, RC5A-B, G-1000, Alfa-Spid \$914 45N – Replaces Rohn 45G Now PST61D HDR300, Orion 2800, G-2800 \$1,221 55N – Replaces Rohn 55G **Delivering!** 65N – Replaces Rohn 65G – 10' Section PST61DHP Twice the Specs of the Nearest Competition \$1,505 65N – Replaces Rohn 65G – 20' Section PST71D 2 to 3 Times the Specs of the Competition! \$2,288 StackMatch and StackMatch II **OB4-40** Antenna Stack Control Systems Stacking multiple antennas and dividing the signal between them can result in significant advantages over single antenna systems. WXØB StackMatches make it simple! High Quality. **Two Versions are Features: High Performance**, Available: Enjoy considerable gain and **Multi-Band Yagis** improved radiation pattern over single antenna systems. Select any antenna in a stack. MATCH **Quality Made in Germany!** or divide the signal between them! Model Elements Band(s) Steer the take-off angle, and StackMatch OB4-40 NEW! Δ 40 even beam in 2 (or 3) directions OB2-40 2 40 For two or three "stacked" antennas. at once! OB2-40M 2 40 (Moxon) 1.8 through 30 MHz / 3 kW CW OB1-40 1 40 (dipole) NEW (6 meter version also available). **OB8-4M** 8 40 (Moxon)-20-15-10 **OB17-4 NEW!** Not just for monobanders! Stack 17 40-20-15-10 MATCH triband/multband antennas, too! OB12-4 12 40-20-15-10 OB12-6 12 40-20-17-15-12-10 No complex phasing lines or OB16-3 20-15-10 16 switching networks required. StackMatch II Additional models are available Single knob desktop control box. For two-antenna stacks. for a wide range of frequencies-and for every budget. RAY SOLUTIO Antennas, Baluns, Vertical phasing, Stack Phasing controllers Towers, Big Bertha rotating mono-poles and fixed poles Special for November Antenna relay switches, Custom switching designs and December - Filters, bandpass, high pass, low pass, MARS, auto switching Contesting & DXing products and systems VSWR & RF Power meters Lightning and grounding systems

 5% Off WXØB Baluns
 Low band antennas, preamps, transformers
 Rotators and high strength antenna masts
 Antenna modeling software for mechanical and performance
 Propagation Software

WWW.arraysolutions.com Phone 972-203-2008 sales@arraysolutions.com Fax 972-203-8811

STANDARD OF www.tentec.com STANDARD OF COMPARISON

For 35 years, Ten-Tec has been the development pioneer in amateur radio. Our long tradition of 'firsts' continues into the 21st century with the Orion, Jupiter and our other transceivers plus a superb line of accessories. Come and see for yourself why more and more amateurs are choosing us over the competition.

This sophisticated HF transceiver uses a combination of selectable I-F roofing filters and DSP filtering to deliver unparalleled performance. ORION features dual 32-bit Analog Devices SHARC DSP's, high dynamic range and third order intercept numbers at very close signal spacing, two completely independent receivers, 3 antenna connectors, programmable AGC, Panoramic Stereo receive, real-time spectrum scope, 590 built-in DSP bandwidth filters, DSP noise reduction and voice and CW keyers. Flash-ROM upgradeable; download the latest version of the radio at any time from our website. The serious weak signal DXer and contester has all the tools necessary to hear and work the weak ones, even in the presence of the loudest signals. No other transceiver can top it!

ORION'S little brother is JUPITER, and it shares some of the same DSP receiver circuitry used in the ORION. JUPITER is the standard for great sounding audio on the HF bands. 18 selectable SSB transmit bandwidths to a maximum of 3.9 kHz deliver the finest sounding audio in amateur radio. Connect your favorite microphone and listen to the compliments roll in. On the receive side, 90 dB of dynamic range, 34 built-in receive filters, DSP noise reduction and DSP auto notch allow the operator maximum flexibility for suppression of offending QRM. Like Orion, Jupiter is Flash-ROM upgradeable; download the latest version of the radio at any time from our website. Jupiter owners everywhere were ready for 60 meters the day the band opened!

Looking for a compact, low power rig with great receiver performance? ARGONAUT V at \$795 fits the bill. Call us or see our website for more information

1185 Dolly Parton Parkway • Sevierville, TN 37862 Sales Dept: 800-833-7373 • Sales Dept: sales@tentec.com • Service Dept: service@tentec.com Monday - Friday 8:00 - 5:30 EST • We accept VISA, Mastercard, Discover, and American Express Office: (865) 453-7172 • FAX: (865) 428-4483 • Repair Dept.: (865) 428-0364 (8 - 5 EST) Shipping is additional. TN residents add 9.5% TN sales tax.

The National Contest Journal Volume 32 Number 6 November/December 2004

National Contest Journal (ISSN 0899-0131) is published bi-monthly in January, March, May, July, September and Novem-ber by the American Radio Relay League, 225 Main Street, Newington, CT 06111-1494, USA. Periodicals postage paid at Hartford, CT and at additional mailing offices. POSTMASTER: Send address changes to: National Contest Journal, 225 Main St, Newington, CT 06111-1494, USA.

Publisher

American Radio Relay League 225 Main Street, Newington, CT 06111 tel: 860-594-0200 fax: 860-594-0259 (24-hour direct line) Electronic Mail: *hq@arrl.org* World Wide Web: *www.arrl.org*/ Edito Carl Luetzelschwab, K9LA 1227 Pion Rd, Fort Wayne, IN 46845 editor@ncjweb.com Managing Editor Joel R. Hallas, W1ZR w1zr@arrl.org NCJ WWW Page Bruce Horn, WA7BNM, Webmaster www.ncjweb.com ARRL Officers President: Jim Haynie, W5JBP Executive Vice President: David Sumner, K1ZZ Contributing Editors Gary Sutcliffe, W9XT-Contest Tips, Tricks & Techniques Paul Schaffenberger, K5AF-Contesting on a Budget Paul Gentry, K9PG-NCJ Profiles Jon Jones, NØJK-VHF-UHF Contesting! Carl Luetzelschwab, K9LA-Propagation Joe Pontek, K8JP-The Contest Traveler John Fleming, WA9ALS-RTTY Contesting Brian Kassel, K7RE-Contesting for Fun Mark Beckwith, N5OT-Station Profile Bill Feidt, NG3K-DX Contest Activity Announcements

Bruce Horn, WA7BNM-Contest Calendar Pete Smith, N4ZR-Software for Contesters ARRL CAC Representative

Ned Stearns, AA7A 7038 E Aster Dr, Scottsdale, AZ 85254 aa7a@arrl.net

North American QSO Party, CW Bob Selbrede, K6ZZ 6200 Natoma Ave, Mojave, CA 93501 cwnaqp@ncjweb.com

North American QSO Party, Phone Bruce Horn, WA7BNM 4225 Farmdale Ave, Studio City, CA 91604 ssbnagp@ncjweb.com

North American QSO Party, RTTY Wayne Matlock, K7WM Rt 2, Box 102, Cibola, AZ 85328 rttynaqp@ncjweb.com

North American Sprint, CW Boring Amateur Radio Club 15125 Bartell Rd, Boring, OR 97009 cwsprint@ncjweb.com

North American Sprint, Phone Jim Stevens, K4MA 6609 Vardon Ct, Fuquay-Varina, NC 27526 ssbsprint@ncjweb.com North American Sprint, RTTY

Doug McDuff, W4OX 10380 SW 112th St, Miami, FL 33176 rttysprint@ncjweb.com

Advertising Information Contact: Joe Bottiglieri, AA1GW, tel 860-594-0207; fax 860-594-4285; ads@arrl.org

NCJ subscription orders, changes of address, and reports of missing or damaged copies should be addressed to ARRL, 225 Main St, Newington, CT 06111 and be marked **NCJ Circulation**. ARRL members are asked to include their membership control number or their *QST* mailing label.

Letters, articles, club newsletters and other editorial mate-rial should be submitted to NCJ, 1227 Pion Rd, Fort Wayne, IN 46845.

The NA Sprint and NA QSO Parties are not sponsored by ARRL. Yearly Subscription rates: In the US \$20

US by First Class Mail \$28

Elsewhere by Surface Mail \$32 (4-8 week delivery)

Canada by Airmail \$31; Elsewhere by Airmail \$40

All original material not attributed to another source is An original material not autobuted to another source is copyright ©2004 by The American Radio Relay League, Inc. Materials may be excerpted from the *NCJ* without prior permission provided that the original contributor is credited, and the *NCJ* is identified as the source.

In order to insure prompt delivery, we ask that you periodi-cally check the address information on your mailing label. If you find any inaccuracies, please contact the Circulation Department immediately. Thank you for your assistance.

TABLE OF CONTENTS

3 Editorial Carl Luetzelschwab, K9LA

FEATURES-

- **4** My Last Maximum-Effort Contest. When Is Yours? Henry G. Elwell, Jr., N4UH
- The Anti-Murphy Box Terry Zivney, N4TZ/9 6
- 8 Improved Stack Switching with Invisible Stubs Terry Zivney, N4TZ/9
- 11 Vertical Antennas with Top Loading AI Christman, K3LC
- 14 Food and the Single Operator John W. Thompson, MD, K3MD
- 15 The 3830 Reflector Michael (Dink) Dinkelman, N7WA
- 16 SNØHQ in the 2004 IARU HF World Championship Tom Barbachowski, SP5UAF
- 18 Back Into Contesting After 11 Years Claudio Astorri, I K2DZN
- **19** DXing = Connections = Friendships = World Peace? Cindy Howard
- 20 Attracting More Sheep to the Fold Garv Schmidt. W5ZL
- 22 NCJ Profiles Paul Gentry, K9PG

COLUMNS -

- 23 Contest Calendar Bruce Horn, WA7BNM
- Contest Tips, Trick and Techniques Gary Sutcliffe, W9XT 24
- Contesting on a Budget Paul Schaffenberger, K5AF 25
- 27 RTTY Contesting John Fleming, WA9ALS
- 29 DX Contest Activity Announcements Bill Feidt, NG3K
- 30 VHF-UHF Contesting! Jon K. Jones, NØJK

CONTESTS

- 32 Results, January 2004 NAQP CW Contest Bruce Horn, WA7BNM
- Results, January 2004 NAQP SSB Contest Bruce Horn, WA7BNM 36
- Results: July 2004 NCJ North American QSO Party RTTY Contest 40 Wayne Matlock, K7WM

ADVERTISING INDEX-

Alaska DX Vacation Rental: 26 Alfa Radio: 44 Array Solutions: Cov II ARRL: 23, 46, 48 Atomic Time: 28 BetterRF Co, The: 48 C.A.T.S./Rotor Doctor: 43 Clark Electronics: 46 ComTek Systems: 3 DX Engineering: 46 Elecraft: 47 Geo Distributing/TR Log: 43 ICOM America Inc: Cov IV Idiom Press: 44 IIX Equipment Ltd: 44

KØXG Systems: 17 microHAM: 3 N4XM, XMatch Ant Tuners: 26 Productivity Resources: 45 Radioware & Radio Bookstore: 10, 48 RF Parts: 43 Ten-Tec: 1 Teri Software: 28 Texas Towers: Cov III Top Ten Devices: 47 Unified Microsystems: 23 W2IHY Technologies: 26 W3FF Antennas: 5 Watts Unlimited: 44 Writelog for Windows: 7, 21

Editorial

Advertising Contesting

When I heard that the Central Texas DX and Contest Club was putting on a DX and contest forum at this year's Summerfest in Austin, I contacted Gary, W5ZL, to see if he'd write a story about the contest forum. He agreed, and the result is in this issue. His story is a good example of proactively going after new contesters. My guess is this type of forum happens more often than we think (hint, hint-NCJ would like to hear about your contest club's efforts to attract newcomers into contesting). If your contest club hasn't done something like this in the immediate past, I hope Gary's article gives you some ideas. Remember, NCJ will be glad to furnish sample NCJs for your activity.

Getting Old

The Contest Tips, Tricks and Techniques column by Gary, W9XT, in the September/October issue discussed what contesters are doing differently as they age (gracefully, of course). This issue of *NCJ* has a related "age" article by Henry, N4UH, titled "My Last Maximum Effort Contest: When Was Yours?" It's a realistic look at an event that all of us will face some day. Perhaps some of you have already passed this milestone. If so, I'd love to hear about it.

NAQP RTTY Contest Manager

Wayne, K7WM, our NAQP RTTY contest manager did the July 2004 NAQP RTTY contest results in this issue. These are his last results, as he's turning over the NAQP RTTY contest manager responsibilities to Shelby, K4WW. Thanks, Wayne, for all your efforts!

SP7HT's article

In the September/October issue, we ran an article by Tadek, SP7HT, titled "Use of Comparative Analysis to Estimate the DX Prowess of HF Receivers." Tadek's conclusion, although slanted toward DXing rather than contesting, generated some good comments from several contesters. What was interesting, in my opinion, is how these comments and Tadek's response were propagated—on the cq-contest and topband reflectors.

That got me thinking back to about 10 years ago. What probably would have happened then is *NCJ* would have taken the comments and published them in the next issue. Then Tadek would have responded and that would have been pub-

lished in the subsequent issue—two issues after the original article (four months or so elapsed time). This episode certainly shows how far we've come in the past 10 years. And more importantly, it says *NCJ* has to evolve to keep up with the times.

This Issue's Cover Photos

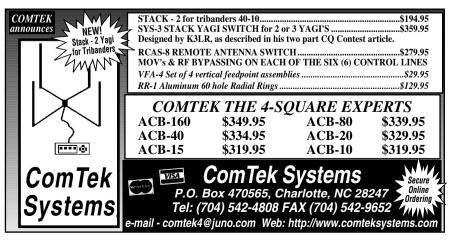

The cover photos for this issue come from Matt, W5LL. Both photos were taken during the CQ WPX RTTY contest at N5YA's contest station near Bonham, Texas. Matt says north Texas received about 4 inches of snow that day, which is a rare event for that part of the country. I can vouch for that, having lived in the Dallas/Fort Worth area from 1979 to 1988. The most snow I remember was about an inch—and it was gone the next day. Judging by the snowman photo, it sure looks like the N5YA crew had some fun with this rare event. I hope their snowman project didn't interfere with the contest too much!

Photo Credit

To give credit where credit is due, Hector, XE2K, took the photo of K6VVA and the US Tower gals on page 30 in the July/ August 2004 *NCJ*. Thanks, Hector!

NCJ

My Last Maximum-Effort Contest. When Is Yours?

Henry G. Elwell Jr, N4UH 2701 Rary Rd Cleveland NC 27013

Has the following question ever crossed your mind?

"How old will I be when I finally toss in the towel and no longer want to make a major contest effort?"

I asked myself that question at age 52 in 1971 when I began thinking of retirement, which occurred at age 58 in 1977. No one knows the answer, but I have learned that I can benefit from the experiences of those who have gone before me.

With that in mind, in 1971 I looked through my back issues of QST to 1936, and picked out the calls of DX contest winners, including those who were top scorers. I had to make sure they were still alive, and I came up with 140 calls. A form letter was created and sent, asking them what they were currently doing and how it affected their contesting activities, plus other questions to get background information. I received 60 replies, which I thought was good. Not all my returns were from retired men, and not all retired men were still enthusiastic about ham radio. A lot was learned about others, but the conclusion was that my future would have to be my own; it boils down to my basic philosophy. "People do what they want to do."

I am a second-level contester, which means that although I have won many Section awards while I was W2JKH/ W2MB in New Jersey and as N4UH in North Carolina, I am not a US Top-10 winner in the major contests. That takes a special talent and motivation, which brings up the question "Why do we do it?" You will have to answer that for yourself. Obviously, we enjoy the excitement of high-rate "runs," and the delight in finding that elusive multiplier, but winning out over the competition is the greatest satisfaction.

But in my case I've been contesting since 1938, and as my wife as a child would say, winning became a "crosseyed bear." (Translated to adult talk, she had heard her parents talk about their "cross to bear.") I have always felt I had to get good scores just to let the other guys know I still had it in me to do that; this was my cross-eyed bear. So in many of the 48-hour contests, in later years, I entered with some reluctance, thinking of the grueling hours ahead of me. But once committed, I settled down, and had a good time.

However, in July 1977, a new contest started called the IARU Radiosport

Championship. I had found my contest; a 36-hour competition for single operators and one I could handle in my late 50s. In addition, I felt sure it was not discovered by the Big Guns, or not important enough for them to bother with. I played around with it in 1977, coming in at number 40 in the nation. Because of the process of retiring, selling the house, removing antennas/towers and moving to North Carolina in December of that year, there was still a minimal station at W2MB. In July 1978, the reverse situation existed; my station was not set up in the Cleveland area of North Carolina, although I managed some activity from N4UH. That year I ended up at number 95 in the US.

By 1979 I had started using part of my 22 acres and had two towers with TH6 antennas on them and a 270-foot Zepp antenna at 70 feet. With those an-

N4UH at his station

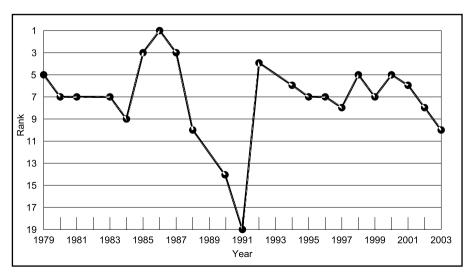


Figure 1—My ranking in the IARU contest from 1979 to 2003.

tennas, a TS520 transceiver, a homemade 4-1000 linear amplifier and probably minimum competition, I was able to rank number 5 in the country. Now I knew this was my contest, and I vowed to give it my maximum effort every time I was in it.

Retirement Dreams and Reality

One of my retirement dreams was to build a rhombic; not just any old rhombic, but one that I could use on all bands by changing its configuration for optimum operation on each band. That required designing and constructing a motor driven pulley system on the side towers, and a large weight on the end tower to keep the 271-foot-per-legantenna wires taut during and after a configuration change. Its beam was centered on London, England, with the Great Circle path going through the Arabian Peninsula. The antenna was operational by 1983. When reversed, the rhombic beamed into Easter. Pitcairn and Chatham Islands; I found little activity in that direction during a contest. Its operation has exceeded my dreams on 80 meters through 10 meters.

My next thought was to repeat the installation centered on Japan, and its reverse direction would cover South America. However, the cost of erecting another rhombic made me drop that idea. I would have to be satisfied with my acquired TH7 beam at 60 feet rotatable for Asia, and my TH6 fixed on South America.

The contest gave me a boost in 1986 when it changed its name to IARU HF World Championship and became a 24hour contest. At that time, it added multipliers to the ITU Zones in the form of Headquarters stations, making it more interesting.

From 1979 through 2004, I missed operating in '82, '89 and '93 IARU contests because I was away from home. Although I dropped to rank 14 in 1990 and rank 19 in 1991, I maintained a record for the other 20 years of being in the Top Ten, actually being number 1 in 1986 (see Figure 1).

Finally Feeling the Effects of Age

As I went into my ninth decade of life at age 80, I started to feel the affects of a 24-hour grueling contest. After the 2002 contest at age 83, I felt nauseous and went right to bed, sleeping fitfully with hot and cold flashes. In the 2003 contest, I could not stay awake by the time 3 AM came around and had to sleep for two hours.

It was the 2004 contest, at age 85, that marked the end maximum-effort contesting for me. I drank a bottle of Boost at midnight local time, the halfway point, and was able to stay awake for the entire contest. But so what? There was no activity and I was just wasting my time. So I filled out QSL cards from 0800Z until 0930Z, and then went back to CQing, working only 32 contacts until the contest end at 1200Z came up. I was delighted to have the rhombic give me my last contact with one call through the European pileup with A71EM.

I did not go right to bed after the contest, but stayed up until lunchtime so I could take a nap at the same time that my wife did. I slept in the guest room for about an hour and awoke with terrifically painful leg cramps, which made me get up and walk around for a while. I lay down again, slept for an hour and awoke with terrifically painful leg cramps, which made me get up and walk around for a while. No, that's not a typo; it's *two incidents*. I decided to stay up and went to bed in the evening, sleeping peacefully through the night; there were no bad affects the following day.

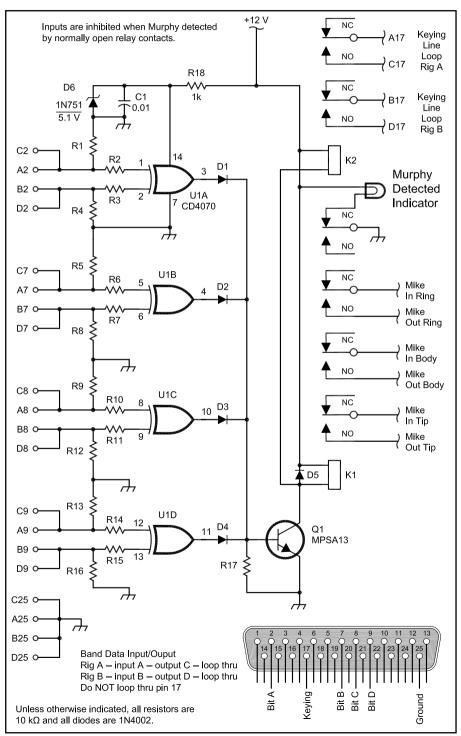
So I ended my IARU contest career with 805 contacts, and a score 135,000 points better than 2003, when I took number 10 in the US. The conditions in 2004 were much better, and more toplevel operators were heard. Writing this in August 2004 leaves me in the dark, as the results won't be published until early in 2005. But I would like to go out in the Top 10!

So, what can younger operators learn from this dissertation? Not much; it's just the experience of one senior citizen. Remember what I said earlier about people doing what they want to do? I'd like to make another maximum effort in 2005, but I also want to live healthily for as long as possible. So, I will play around in the IARU contest next year and get my proper rest. I'll be in there trying to give you a contact so you can be in the Top 10.

The Anti-Murphy Box

Terry Zivney, N4TZ/9 8843 W CR 950 North Middletown, IN 47356 n4tz@arrl.net

Like many contesters, I have added a second radio in an effort to improve both my scores and my fun. Both of my radios are connected to my logging computer so that I don't have to worry about keeping track of which band I make a contact on. In turn, the computer controls the selection of antennas with a home-brew six-pack equivalent (it uses 24 relavs-does that make it a "case"?). Switching of keying lines, keyer paddle, microphone and digital voice keyer is also handled by the computer. In general, this degree of automation reduces the chance of operator error late in the contest.


Murphy, however, has twice outwitted all of this automation! In two separate contests, I have managed to put both radios on the same band and then transmit. Fortunately, my low power rigs survived the excitement (although the power supply circuit breaker snapped each time) but I'm not sure whether my heart could take a third occurrence. Thus, I designed the "Anti-Murphy Box" to prevent the problem from recurring.

Murphy Visits

Like many contesters choosing their first logging program, I originally chose CT. I found it to be very solid, until I tried two-radio operation. I found that it had three drawbacks for two-radio operating in my station: 1) the band data was not reliably available for the second radio from LPT2; 2) it has an annoying extra "dit" (dubbed the "Acom" dit by many) when changing active radio from the keyboard; and 3) there was no way to lock out both radios from being on the same band.¹

I briefly tried NA, but it seemed way too slow on my trailing edge computer, a finding confirmed in the hallways at Dayton 2000 by several prominent contesters. Therefore, I switched to TRLog, which many hailed as the ultimate two-radio logging software. It appeared to handle the three problems I had identified with CT. However, in the 2000 CQWW I found that the "SKIP ACTIVE BAND" command was not foolproof. I tried to move a station to another band. The other op sent "14125" so I dutifully typed in "14125" and hit EN-**TER**. Yep, I heard him calling so I hit my paddle. Poof! The rig shut down. Then I noticed that both radios are on 20 meters. The "SKIP ACTIVE BAND" command only applies to the band change keys, ALT-V and ALT-B. It does not lock out direct frequency entry from the computer keyboard. Since the author did not seem inclined to modify his program to handle this problem (I was not the only one on the product's reflector requesting such a change), I reinvestigated using CT with two computers for two radios (another approach recommended to get around the first two of *CT's* faults mentioned above). Still, there seemed no easy was to prevent both radios from being on the same band so I resolved to "be more careful."

I managed to make it through both the 2001 ARRL CW and Phone weekends without a problem, but just as I was get-

ting comfortable with *TRLog*, I again had the two-radios-on-the-same-band problem while entering a split frequency during the WPX SSB contest. Enough was enough!

I set out to design a foolproof lockout that would be both easy to construct and connect into my station. Both Array Solution's Six-Pack and Top Ten Devices' A/B switches, as well as W9RE's homebrew switch², have less-than-bulletproof lockouts for preventing both rigs from being on the same antenna. In each case, the first-to-arrive rig is granted access to the antenna, while the second is literally left hanging-in an open circuit! Thus, if (or should I say when) you inadvertently send on the second radio, you could be applying the legal limit to the open relay contacts. This could be very exciting and potentially very expensive, depending upon the degree of protection your amplifier has.

The Anti-Murphy Box

The Anti-Murphy Box (AMB) is guite simple to build, install and operate. It continually monitors the band-data from each rig or computer LPT. If both rigs are on the same band, the AMB's internal relays break the keying and microphone lines that go to your two-radio control box. In my specific case, I get the band data from LPT1 and LPT2 under control of the TRLog program, which I understand emulates the interface of the popular Yaesu FT1000MP series.³ I currently route the band data to a pair of Top Ten Band Decoders that I already had to control my antenna relays. If I were constructing this box again, I would probably incorporate W9XT's BCD-10 band decoder boards inside the box, saving on cabling and the cost of two external band decoders.

Taking a page from K4OJ's *NCJ* article,⁴ I found a computer switch box that had four DB25 connectors installed. The one I used has a very large switch occupying much of the interior of the box. By clipping the wires from the connectors right at the body of the switch, I ended up with four connectors already provided with hookup wire for connection to the AMB circuitry. The hole in the front panel that held the switch now contains a large red warning lamp. The box received a couple of coats of gray paint to blend in with the Top Ten boxes and my Ten Tec station.

The AMB circuitry is built on a Radioshack IC prototyping board (276-168). In order to avoid adding extra connectors to the box, I used a $1/_8$ -inch stereo adapter cord (RS 42-2492), cut in half, to provide the microphone in and out cable. Installing the AMB into the shack merely requires plugging the DB25 connector that formerly went to

the Top Ten Band Decoder "A" into AMB connector "A-in" and running a stock 25pin double male computer cable from the AMB "A-out" connector to the Top Ten Band Decoder "A." I did the same with the second Band Decoder's cable. Phone operators will want to hook up their microphone/DVK as described at the end of the article.

Circuit Description

The band data for each radio consists of four logic lines. These 4 lines are pairwise compared with a quad gate exclusive-or (XOR) integrated circuit, CD4070. Each gate gives a high level output if the two inputs are different and a low level output if the two inputs are the same. Since we want the two radios to be on different bands, we are looking for at least one of the four XOR gates to have a high output. The outputs of the four gates are OR-ed using diodes. If any of the gates have a high output, the switching transistor will be turned on, pulling in a relay which enables the microphone and keying lines to the radios. In addition, a large red warning lamp is turned off. If both radios are on the same band, then all four gates will have low voltage outputs, which will disable the microphone and keying lines as well as turning on the warning lamp.

As shown in the schematic, I use a 4PDT relay and a DPDT relay. The AMB is fail-safe in that if Murphy dislodges the power to the AMB, the relays are not energized and the rigs will not key. The 4PDT relay switches the mike and/or keyer paddle, as well as the Murphy Detected Indicator. My old two-radio box switched my keyer paddle between the two radio's internal keyers. I used the same 1/8-inch stereo connector for the keyer paddle and mike (Heil Proset), so I merely unplugged the keyer paddle and replaced it with the mike when going from CW to SSB weekends.

Because I use a single W9XT Contest Card DVK, the actual audio connection flow is from the mike to the DVK then to the Anti-Murphy Box and finally to the DX Doubler SO2R box. I also used the Band Decoder's CW keying output to key each rig, thus the AMB's DPDT relay is used to disable the Band Decoders' keying lines. These same keying lines, pin 17 on the parallel port connectors, are used by the Top Ten DX Doubler. Nowadays, I keep my paddle connected to my new DX Doubler and use TRLog's internal keyer emulation so I can work mixed mode contests without having to unplug anything. Of course, additional relays could be driven to enable other functions the builder may desire.

The IC, diodes and transistor are readily available from online sources, such as **Jameco.com**. Suitable relays and computer switch boxes are also available from these sources. In my case, all the parts except for the protoboard were obtained at a hamfest for under \$10. The AMB took me about an hour to build in its final form.

Now, maybe I can quit listing "Murphy" as the second op at my station.

Notes:

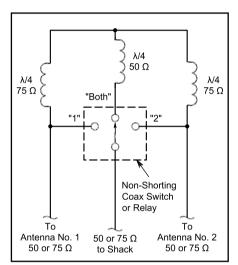
- ¹Of course, the exact "features" that work in any logging program vary from update to update. That's another reason why hardware lockouts are so important.
- ²Mike Wetzel, W9RE, Single-Op Two Radio Station Automation at W9RE, *National Contest Journal*, Nov/Dec 1999, pp. 12-16.
- ³By the way, I highly recommend that users set their stations up for the switching to be done by the logging computer, rather than using rig-specific switching. My second radio has gone from a Corsair II, that had no band data available, to an OMNI VI+, that had band dedicated pins that go high when a band is selected, to an Orion, that also has band dedicated pins, but active low! However, the AMB and antenna switching has never needed changing because I have always used the LPT data from the logging computer.
- ⁴Jim White, K4OJ, Station Automation, National Contest Journal, Sept/Oct 1998, pp. 4-7.

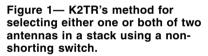
Improved Stack Switching with Invisible Stubs

Terry Zivney, N4TZ/9 8843 W CR 950 North Middletown, IN 47356 n4tz@arrl.net

Most active contesters are aware of the interference-reducing power of tuned transmission-line stubs. These generally consist of quarter-wavelength long pieces of coax which are connected across the antenna feedline. Depending upon whether the far end of the coax is opencircuited or short-circuited, either a frequency is shorted to ground or passed through unattenuated. In addition to several articles in *NCJ*, W2VJN has written a comprehensive book on the topic.¹

Most contesters are also aware of the advantages of stacking multiple antennas. Traditionally this was done with intricately interconnected quarter and half wavelength phasing sections of coax surrounding a multi-position coax switch. Several articles have appeared over the years in *NCJ* presenting different ways of connecting these parts, with K8CC's 1988 article probably being the most comprehensive.²


However, most of the previously described stack-switching methods have not made the optimal use of material; i.e., they use more parts and cost more than is necessary for a given level of performance. Furthermore, the previous literature has failed to note that phasing lines, when properly connected and switched, provide the rejection power of tuned stubs with no additional cost. This paper reviews the previous suggestions on switching stacks and presents an alternative that minimizes the number of coax tees and barrels while always providing some degree of stub action.


Figure 1 comes from K8CC's January/ February 1988 NCJ summary paper. This shows K2TR's method for selecting either one or both of two antennas in a stack using a non-shorting switch (i.e., the unused contacts are open). This uses three quarter-wavelength sections of coax, three coax tees and a barrel. When antenna 1 is selected, the unselected positions "both" and "2" reflect the open to a short one-quarter wavelength away which is then transformed by the remaining phasing line to an open, thus isolating antenna 2 when it is not used. When "both" is selected. the two 75 Ω phasing lines transform the 50 Ω antennas to 100 Ω , which are then paralleled and presented to the 50 Ω line connected to the "both" terminal. An important feature of this configuration, and all of those presented in this paper, is

¹Notes appear on page 10.

that the length of coax in the signal path is constant no matter which antenna is selected. This is necessary to keep amplifier loading consistent even with less than perfect SWR at the individual antennas.

Because many commonly available coax switches ground the unselected

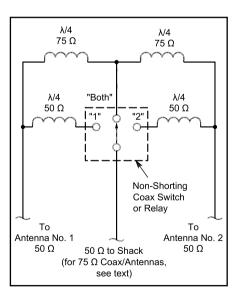


Figure 2—This configuration has the advantage that when antenna 1 or 2 is selected, the phasing line tee'd between the both connector and the selected antenna connector is shorted to ground at the far end, thus enabling the phasing line to act like a stub. connectors, N4SA suggested the configuration in Figure 2, also taken from K8CC's article. This requires a fourth guarter-wavelength of coax but just needs 3 tees with no barrel. This configuration has the advantage that when antenna 1 or 2 is selected, the phasing line tee'd between the both connector and the selected antenna connector is shorted to ground at the far end, thus enabling the phasing line to act like a stub. I refer to this as an "invisible stub" because the intended purpose of the coax line is a phasing line to transform an impedance, not to provide frequency selectivity. In the "both" position, each of the phasing lines from antenna connectors 1 and 2 are grounded, producing a guarter-wave shorted stub across each antenna. An additional 6 dB increase in rejection of the 28 MHz harmonic on a 20 meter stack should be expected when both antennas are selected in place of either one because of the additional invisible stub.

For completeness, K8CC presents KY1H's U/L/BIP/BOP system. This has quite a bit more complexity, requiring five quarter-wave and one three-quarter wave phasing lines, four tees and two barrels. K8CC also presents a version using a shorting switch, which requires the same amount of coax and adapters. I do not believe that the BIP/BOP design adds much in practice based on my observation that the top contesters generally do not use it. Therefore, I have not tested these configurations for the presence of an invisible stub.

K8CC presents a system attributed to K1EA for switching more than two antennas in a stack. This system, as described by K8CC, is overly complex, however, as it requires two relays to switch each end of a phasing line. K3LR published a version of this scheme for three antennas in *CQ Contest*, which also uses relays at each end of each phasing line.³ ComTek Systems produces a commercial version of K3LR's system for a 3-high stack. His schematic from *CQ Contest* is shown in Figure 3.

An improved system is presented in Figure 4. This system is optimal for two, three or four antennas in that it uses the least number of coax phasing lines and adapters. Unlike the K1EA/K3LR designs, it presents at all times at least one invisible stub for the band in use. It relies upon the ability of modern remote switch boxes such as those made by

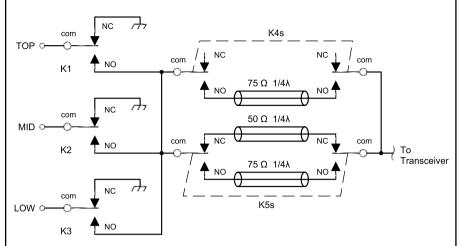


Figure 3—K3LR's scheme for switching three antennas in a stack.

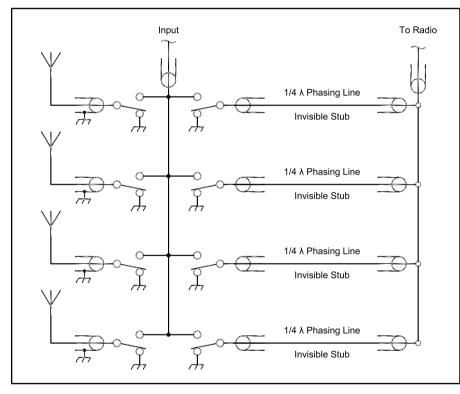


Figure 4— This system is optimal for two, three or four antennas in that it uses the least number of coax phasing lines and adapters. Unlike the K1EA/K3LR designs, it presents at all times at least one invisible stub for the band in use.

Ameritron, Top Ten Devices and DX Engineering to select multiple connectors at the same time. All of the following circuits require the unused connectors to be grounded when not selected. All selected connectors are connected together inside the relay box to the nominal input terminal. Note that the "normal" input connector may not be used in some configurations. Because the quarter-wave phasing lines are physically in series between the radio and relay box, the main feedline will be one quarter wavelength shorter than with the other stack switching methods.

The simplest case is for a stack of two antennas. The first antenna is connected to connector 1 and the second to connector 2. Then, three quarter-wavelength phasing lines are used. One, with $50-\Omega$

Table1 <i>Configuration</i> Antenna 1 Antenna 2 Both	<i>Energize relays</i> 1, 3 2, 3 1, 2, 4, 5
Table 2ConfigurationTop antennaMiddle antennaBottom antennaTop and MiddleTop and BottomMiddle and Bottom	<i>Energize relays</i> 1, 4 2, 4 3, 4 1, 2, 5, 6 1, 3, 5, 6 2, 3, 5, 6

Table 3	
Configuration	Energize relays
Тор	1
Middle	2
Bottom	3
Top and Middle	1, 2, 4
Top and Bottom	1, 3, 4
Middle and Bottom	2, 3, 4
All 3 antennas	1, 2, 3, 4

characteristic impedance, is attached to connector 3, while the other two, each with 75 Ω characteristic impedance, are attached to connectors 4 and 5. No connection is made to the normal input connector. The three ends of the phasing lines that are not connected to the relay box are connected together with the feedline to the radio using two coax tees and one barrel connector. The relays are operated according to the logic of Table 1.

When one antenna is used, the two 75 Ω lines act as an invisible pair of shorted stubs. When both antennas are used, the 50- Ω line acts as an invisible single stub. The 6 dB difference in attenuation of the second harmonic is confirmed by actual measurement. This configuration uses one less phasing line and one less adapter than the standard N4SA arrangement. This system does away with the extra relay box required by the K1EA/K3LR approach. I used this with an Ameritron RCS-8V in my first two-high stack in 1999.

The system may be extended to 3 or 4 antennas in the stack. For three antennas, a six-position relay box is needed. The antennas are connected to terminals 1, 2 and 3. A 50 Ω phasing line goes to terminal 4, while 75 Ω phasing lines are attached to terminals 5 and 6. Again, the other ends of the three phasing lines are connected together with the radio feed line with two tees and one barrel. The relay selection logic is per Table 2.

This approach uses the single $50 \cdot \Omega$ line for matching one antenna, the pair of 75 Ω lines to match two antennas, and the 50 Ω and a 75- Ω line to match 3 antennas. A six-position relay box, such as that made by Top Ten Devices, is ideal.

For those wanting to use their old Ameritron 5 position box, a variation of this theme can still provide an adequate match. WXØB's StackMatch does not attempt to provide a perfect match for either 2 or 3 antennas. Rather, it uses a 2.25:1 unun to provide a theoretical SWR of 1.13 for 2 antennas (2.25/2) or 1.33 for 3 antennas (3/2.25). Experience has shown that many operators are quite satisfied with this level of mismatch. To implement this with the invisible stub system. connect the antennas to terminals 1, 2 and 3, and one 75 Ω phasing line to terminal 4. The 50- Ω guarter-wave phasing line is connected to the relay box input terminal. The other ends of the two phasing lines are connected with the main feed line with one tee and one barrel. Now, if the 75 Ω line is not selected, the single antenna has a perfect match, while if 2 or 3 antennas are chosen, the 75 Ω line in parallel with the always used 50 Ω input line provides an effective 30 Ω phasing line. This results in a 1.39:1 SWR with 2 antennas and an excellent 1.08:1 SWR with 3 antennas. Potentially more problematic than the slightly less-than-perfect match, however, is the loss of the invisible stub when two or three antennas are selected. The relay selection logic that needs to be implemented is in Table 3.

Finally, the invisible stub system is easily expanded to a four high stack. I use this on both 10 and 15 meters at N4TZ with Top Ten Devices 6 way switches. Because four of the terminals are of necessity used by the four antennas, only two additional switched stub inputs are available. However, we can borrow the same concept used to simplify the 3 high switch and connect a single 50 Ω phasing line to the switch box input. A second 50- Ω line is connected to terminal 5 while one 75- Ω line is connected to terminal 6. When 3 antennas are selected, the combination of one 50 and one 75 Ω cable provide a very good match, 1.08:1, while with all four antennas the theoretical match is perfect. As with the simplified 3 high switch, the two-antenna match is 1.39:1. Again, these are very similar to those provided by the popular StackMatch, which only accommodates 3 antennas. If one had the newly released DX Engineering 8 way box, then nearly perfect matches for all configurations could be provided by connecting two 50 Ω phasing lines to terminals 5 and 6, and two 75 Ω phasing lines to terminals 7 and 8. The simplified (6 way box) provides one invisible stub with multiple antennas while the 8-way box allows two invisible stubs

ConfigurationEnergize Relays (6 way box)Energize (8 way box)Top11, 5Second22, 5Third33, 5Bottom44, 5Any 22 antennas + 63 antennas + 7 + 8Any 33 antennas + 63 antennas + 5 + 7All 4 antennas1, 2, 3, 4, 5	Table 4		
	Top	1	1, 5
	Second	2	2, 5
	Third	3	3, 5
	Bottom	4	4, 5
	Any 2	2 antennas + 6	2 antennas + 7 + 8

to be available for all configurations. Table 4 shows the relay selection logic.

In summary, the invisible stub stack switching system in general uses the least amount of coax and associated adapters of any published design. Furthermore, all but the simplified 3 high switch provide an additional measure of suppression of out of band signals because the unused phasing lines are shorted to ground by the switch, creating invisible stubs. Perhaps this is the first published example of a free lunch, based on the savings on those genuine Amphenol tee and barrel connectors that are no longer needed. The lunch will taste even better knowing that the resulting stack switching system provides additional frequency selectivity at no additional cost.

Notes:

- ¹George Cutsogeorge, W2VJN, "Band Switching Stubs for the Single-Op Two Radio Station," NCJ, Sep/Oct 1996, pp. 8-10. George Cutsogeorge, W2VJN, "Using Double 1/8 Wave Stubs," NCJ, Jan/Feb 1998, p 7. George Cutsogeorge, W2VJN, Managing Interstation Interference: Coaxial Stubs and Filters, 2003.
- ²K2TR, "Tricks with Coax, Upper-Lower-Both," NCJ, Jul/Aug 1980, p. 9. N4SA, "More Tricks with Coax, Upper-Lower-Both," NCJ, Sep/ Oct 1980, p.7. Bill Myers, K1GQ, "Upper-Lower-BIP-BOP Switch," NCJ, Nov/Dec 1980, pp. 12-13. Dave Robbins, KY1H, "U-L BIP-BOP Box," NCJ, Sep/Oct 1987, p. 25. Dave Pruett, K8CC, "Switching Stacked Antennas," NCJ, Jan/Feb 1988, reprinted in NCJ, Jan/Feb 1992, pp. 26-27, 29.
- ³Tim Duffy, K3LR, "The 3-High Stack Switch at K3LR," *CQ Contest*, November 1998, pp. 17-19. **NCJ**

Vertical Antennas with Top Loading

Al Christman, K3LC Grove City College 100 Campus Dr Grove City, PA 16127-2104

I recently was asked by a W7 in Montana about the optimum design for a toploaded vertical antenna. This topic seems well suited to computer analysis, so I decided to simulate a simple antenna in which the height of the vertical portion was varied, along with the down-slope angle of the top hat wires. The results indicate that the gain of the antenna is essentially constant, independent of the antenna height and the slope-angle of the wires. However, the shorter antennas have less bandwidth, as one would expect. These conclusions support the fine experimental work of Dr Jerry Sevick, W2FMI, which was performed back in the 1970s using horizontal top hats.¹⁻⁵ However, the information reported here extends his studies to include sloping top hats, which are easier to build.

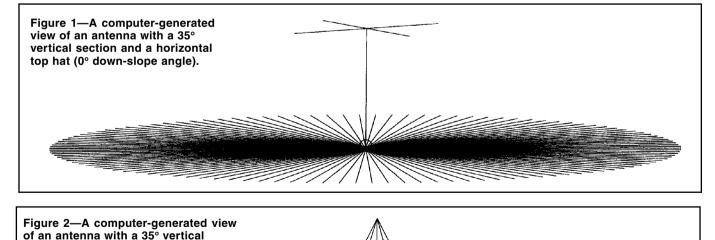
Reference Antenna

A frequency of 3.65 MHz in the 80 meter band was selected for the computer analysis, which was performed using *EZNEC*-4.⁶ The first antenna to be studied was a full-size quarter-wave vertical element, which serves as a standard of reference. The monopole is composed of #10 AWG wire, and is placed over "average" soil where the conductivity is 5 milliSiemens per meter and the dielectric constant is 13. The ground system consists of 120 quarter-

section and a top hat whose wires

slope downward at 60°.

wave radials made from #12 AWG wire and buried to a depth of 3 inches. All of these wires were assumed to be lossless (that is, perfect conductors) in order to remove this variable from the analysis. I trimmed the vertical element until resonance was achieved (zero input reactance), which occurred when the length was 65.68 feet. The initial length of this wire was 67.368 feet, or 0.25 WL, so the full-size vertical monopole has a resonant length of about 87.7°, rather than 90°. The peak gain of the antenna was 0.66 dBi at a take-off angle of 24°, and the input resistance at resonance was 35.37 Ω . Using this impedance value as a reference, the 2:1 SWR bandwidth is approximately 220 kHz.


Procedure

For the computer analysis, I varied the height of the vertical portion of the antenna in 5° increments from 35° to 80°, to cover a wide range of possible lengths. The top hat was made from four equal length #12 AWG wires that were symmetrically spaced in azimuth around the top of the vertical element. The down-slope angle of these top-loading wires was varied in 10° increments from 0° (horizontal top hat) to 60°. Figure 1 shows a 35° vertical whose top-hat wires have a 0° down-slope angle, while Figure 2 illustrates the same vertical when the down-slope angle of the top hat

wires is 60° . The same ground system described earlier (120 buried quarter-wave radials) was utilized for each test. As the down-slope angle was changed, the length of the four top hat wires was always readjusted to maintain resonance at the operating frequency of 3.65 MHz. (I assumed that an input reactance value of 0.025 Ω , or less, was equivalent to resonance.)

Results

Table 1 shows the outcome when the vertical element is only 35° tall (roughly 26.2 feet). Although very short, this antenna has a peak gain that is slightly higher than that of the full size radiator. However, the difference is so small that it would be undetectable in practice. The elevation angle where peak gain occurs is also slightly higher than for the reference antenna, by about 3 degrees. The input resistance (at resonance) changes markedly as the down-slope angle of the top loading wires increases, spanning the range from 13.4 Ω when the wires are horizontal, to only 4.89 Ω when the downslope angle is 60°. In a similar fashion, the resonant length of the top hat wires continually increases as these wires are sloped more steeply downward. Tables 2 through 10 display the results for the other cases, in which the height of the vertical monopole is varied from 40° to 80°.

NCJ November/December 2004 11

Table 11 lists the 2:1 SWR bandwidth for some of the antennas that were examined. As the height of the antenna is reduced, the bandwidth narrows in a corresponding manner. When the monopole is relatively tall, changing the down-slope angle of the top hat wires has only a small impact upon the bandwidth. However, if the vertical element is very short, the bandwidth decreases sharply as the down-slope angle increases. In every case, the broadest bandwidth was achieved with a horizontal top hat.

Conclusions

Table 12 contains the average values for the gain, takeoff

Table 1

Performance characteristics of a top-loaded vertical antenna whose electrical height is 35 degrees (26.199 feet at 3.65 MHz). As the down-slope angle of the four top-loading wires is varied, their length is also adjusted to maintain resonance.

Down- Slope Angle (deg)	Peak Ga Takeoff		Input Resistance (Ohms)	Top-Load Wire Length (feet)
0 10	0.67 0.67	27 27	13.40 11.90	18.027 18.474
20	0.67	27	10.41	19.032
30	0.68	27	8.95	19.723
40	0.67	27	7.60	20.453
50	0.69	27	6.24	21.589
60	0.73	27	4.89	23.141

Table 2

Performance characteristics of a top-loaded vertical antenna whose electrical height is 40 degrees (29.941 feet at 3.65 MHz). As the down-slope angle of the four top-loading wires is varied, their length is also adjusted to maintain resonance.

Down- Slope Angle (deg)	Elevation Peak Gai Takeoff A (dBi and	n and ngle	Input Resistance (Ohms)	Top-Load Wire Length (feet)
0	0.67	27	16.62	15.388
10	0.67	27	15.31	15.785
20	0.67	27	13.98	16.291
30	0.67	27	12.64	16.934
40	0.68	27	11.29	17.769
50	0.70	27	9.91	18.892
60	0.68	26	8.61	20.275

Table 3

Performance characteristics of a top-loaded vertical antenna whose electrical height is 45 degrees (33.684 feet at 3.65 MHz). As the down-slope angle of the four top-loading wires is varied, their length is also adjusted to maintain resonance.

Down- Slope Angle (deg)	Elevation Peak Gai Takeoff A (dBi and	n and Ingle	Input Resistance (Ohms)	Top-Load Wire Length (feet)
0	0.67	26	19.84	13.21
10	0.67	26	18.72	13.56
20	0.67	26	17.58	14.01
30	0.67	26	16.41	14.59
40	0.68	26	15.20	15.35
50	0.68	26	14.11	16.102
50	0.66	26	14.11	16.102
60	0.67	26	12.78	17.562

angle, input resistance at resonance, and 2:1 SWR bandwidth, for the antennas that were analyzed in this study. Notice that the gain was virtually constant throughout the range of antenna heights that were simulated, although the takeoff angle did rise slightly as the antenna was shortened. Further, there was a continual reduction in the input resistance and SWR bandwidth as the height of the antenna decreased. If this loss of bandwidth is not a problem, then a short top loaded vertical monopole, equipped with a good impedance matching network and an extensive ground screen, can compete well with a full size quarter-wave antenna. To quote Jerry, W2FMI: "With lowloss matching and loading techniques, short verticals over a

Table 4

Performance characteristics of a top-loaded vertical antenna whose electrical height is 50 degrees (37.427 feet at 3.65 MHz). As the down-slope angle of the four top-loading wires is varied, their length is also adjusted to maintain resonance.

Down- Slope Angle (deg)	Elevation- Peak Gair Takeoff Ar (dBi and c	n and ngle	Input Resistance (Ohms)	Top-Load Wire Length (feet)
0 10 20 30 40 50 60	0.66 0.66 0.66 0.66 0.66 0.67 0.66	26 26 26 26 26 26 26 26	22.99 22.10 21.17 20.21 19.21 18.14 17.08	11.122 11.422 11.811 12.313 12.976 13.886 15.037

Table 5

Performance characteristics of a top-loaded vertical antenna whose electrical height is 55 degrees (41.169 feet at 3.65 MHz). As the down-slope angle of the four top-loading wires is varied, their length is also adjusted to maintain resonance.

Down- Slope Angle (deg)	Elevation- Peak Gair Takeoff Ar (dBi and c	n and ngle	Input Resistance (Ohms)	Top-Load Wire Length (feet)
0 10	0.66 0.66	26 26	25.88 25.19	9.419 9.678
20	0.66	26	24.46	10.016
30	0.66	26	23.71	10.454
40	0.66	25	22.91	11.031
50	0.66	26	22.17	11.621
60	0.66	26	21.23	12.756

Table 6

Performance characteristics of a top-loaded vertical antenna whose electrical height is 60 degrees (44.912 feet at 3.65 MHz). As the down-slope angle of the four top-loading wires is varied, their length is also adjusted to maintain resonance.

Down- Slope Angle (deg)	Peak Ga Takeoff		Input Resistance (Ohms)	Top-Load Wire Length (feet)
0	0.66	25	28.50	7.732
10	0.66	26	27.99	7.951
20	0.66	26	27.47	8.238
30	0.66	26	26.92	8.61
40	0.66	26	26.34	9.099
50	0.66	25	25.70	9.775
60	0.67	26	24.95	10.772

large ground system suffer only in bandwidth."7

Notes

- ¹Jerry Sevick, "The Ground-Image Vertical Antenna," *QST*, July 1971. ²Jerry Sevick, "The W2FMI 20-Meter Vertical Beam," *QST*, June 1972.
- ²Jerry Sevick, "The W2FMI 20-Meter Vertical Beam," QST, June 1972.
 ³Jerry Sevick, "The W2FMI Ground-Mounted Short Vertical," QST, March 1973.
- ⁴Jerry Sevick, "A High-Performance 20, 40, and 80-Meter Vertical System," *QST*, December 1973.
- ⁵Jerry Sevick, "The Constant Impedance Trap Vertical," *QST*, March 1973.
- ⁶EZNEC is available from Roy Llewellyn, W7EL, PO Box 6658, Beaverton, OR 97007.
- ⁷Jerry Sevick, "Short Ground-Radial Systems for Short Verticals," QST, April 1978, page 33.

Table 7

Performance characteristics of a top-loaded vertical antenna whose electrical height is 65 degrees (48.655 feet at 3.65 MHz). As the down-slope angle of the four top-loading wires is varied, their length is also adjusted to maintain resonance.

Down- Slope Angle (deg)	Elevatio Peak Ga Takeoff (dBi and	ain and	Input Resistance (Ohms)	Top-Load Wire Length (feet)
0	0.65	25	30.75	6.207
10	0.65	25	30.41	6.39
20	0.65	25	30.06	6.629
30	0.65	25	29.69	6.938
40	0.65	25	29.29	7.343
50	0.66	26	28.85	7.902
60	0.66	25	28.33	8.73

Table 8

Performance characteristics of a top-loaded vertical antenna whose electrical height is 70 degrees (52.397 feet at 3.65 MHz). As the down-slope angle of the four top-loading wires is varied, their length is also adjusted to maintain resonance.

Down-Elevation-PlaneTop-LoSlopePeak Gain andInputWireAngleTakeoff AngleResistanceLength(deg)(dBi and degrees)(Ohms)(feet)	
0 0.65 24 32.59 4.966	
10 0.65 24 32.37 5.122	
20 0.65 24 32.15 5.329	
30 0.66 25 31.90 5.592	
40 0.66 25 31.64 5.922	
50 0.65 25 31.44 6.096	
60 0.65 25 31.12 6.769	

Table 9

Performance characteristics of a top-loaded vertical antenna whose electrical height is 75 degrees (56.140 feet at 3.65 MHz). As the down-slope angle of the four top-loading wires is varied, their length is also adjusted to maintain resonance.

Down- Slope Angle (deg)	Elevatio Peak Ga Takeoff (dBi and	ain and	Input Resistance (Ohms)	Top-Load Wire Length (feet)
0	0.66	25	33.97	3.455
10	0.66	25	33.87	3.576
20	0.65	24	33.75	3.745
30	0.65	24	33.64	3.969
40	0.65	24	33.50	4.242
50	0.65	24	33.35	4.551
60	0.66	25	33.19	4.90

Table 10

Performance characteristics of a top-loaded vertical antenna whose electrical height is 80 degrees (59.883 feet at 3.65 MHz). As the down-slope angle of the four top-loading wires is varied, their length is also adjusted to maintain resonance.

Down- Slope Angle (deg)	Elevation- Peak Gain Takeoff Ar (dBi and o	and ngle	Input Resistance (Ohms)	Top-Load Wire Length (feet)
0 10 20 30 40 50	0.65 0.65 0.65 0.65 0.65 0.65	24 24 25 25 25	34.93 34.89 34.85 34.81 34.76 34.70	2.062 2.137 2.255 2.429 2.663 2.934
60	0.65	25	34.63	3.192

Table 11

Approximate 2:1 SWR bandwidth for various top-loaded vertical antennas, as a function of antenna height and top hot slope angle. In each case, the reference impedance used for calculating the SWR is the value of input resistance given previously in the corresponding tables. Recall that the full-height antenna has a bandwidth of about 220 kHz.

Vertical Monopole	Vertical 2:1 SWR Bandwidth (kHz) Monopole								
Height (degrees)	0-degree slope angle	30-degree slope angle	60-degree slope angle						
35	120	80	55						
40	135	105	75						
45	150	125	95						
50	165	145	125						
55	175	160	145						
60	185	180	165						
65	190	185	180						
70	205	200	190						
75	210	205	200						
80	215	212	210						

Table 12

Average values of the main performance characteristics for top-loaded vertical antennas, as a function of antenna height. Values for the full-size (resonant quarterwave) element are shown at the bottom.

,				
Vertical Monopole Height (degrees)	Elevation Peak Gai Take-off (dBi and	n and Angle	Input Resistance (Ohms)	2:1 SWR Bandwidth (kHz)
35	0.683	27.0	9.06	85
40	0.677	26.9	12.62	105
45	0.670	26.0	16.38	123
50	0.661	26.0	20.13	145
55	0.660	25.9	23.65	167
60	0.661	25.7	26.84	176
65	0.653	25.1	29.63	186
70	0.653	24.6	31.89	198
75	0.654	24.4	33.61	207
80	0.650	24.6	34.80	213
full-size	0.660	24.0	35.37	220 NCJ

Food And The Single Operator

John W. Thompson MD, K3MD jwt105@yahoo.com

There have been a number of previous discussions on this topic, notably by KQ2M and to a lesser extent by N2RM. However, most discussions have to do with the necessity for a good food supply in the multi-operator category. Generally the single operator falls into the supported or unsupported type of classification. In the supported category, a significant other (Figure 1) provides food that is served to the single operator in an appealing and neat manner. Unfortunately, in today's world, often the significant other will say "I am going to my sister's (or mother's) house, see you on Monday." This puts the single operator, packet or not, into the unsupported category.

There are a few cautions for the single operator in the supported or unsupported category. First, and most important, is the proper way of keeping coffee hot in the shack. Figure 2 show the improper way of heating coffee in the shack, as it has been associated with electrocution, cracked 3-500ZG tube chimneys, etc. Coffee brought to the shack should be placed on the operating table and not on the linear. This is still true with the old-fashioned 3-hole 8874 finals — they can short out. This also applies to the 3CX800A7 and 4CX800 models.

The most often-quoted food remedy for the single operator is the three-full-sizedmeatball-hoagie solution. These taste good either hot or cold, and this will decrease the amount of dead time you have while getting food. This is most important. They should be procured 2 hours prior to the start of the contest. Alternatively, the two-full-sized-pepperoni-extra-cheesepizza solution has been used.

Figure 1—K3MD's wife Shirley—John's significant other in the "supported category."

The question of beverages comes to mind. In saying this, we mean the type that can be used on bands other than 160 or 80. Most of the dedicated single operators will claim that only water and diet coke are acceptable. Coffee is also good, but beware of the so-called "10cup jitters." Some of the old-old timers are beer aficionados. However, this has been shown to only increase the rate temporarily with a disastrous effect over 48 hours, so it is not recommended. Gin and whiskey are definitely not recommended although used by some contesters. They can be of use at 3 AM Sunday when the sleep-wake cycle is totally screwed up.

One of the sad facts of life is that con-

testing is not an aerobic sport, and that you are going to have to overeat somewhat in order to stay awake. This accounts for the shape of some of our top contesters. You will find that at 3 AM, when 40 and 80 are wide open on the East coast, it is a necessity (not a choice) to have some candy bars on hand. The correct in-between contest diet, Atkins or Nutri-System, is a very complex issue and beyond the scope of this discussion.

One of the most vexing problems concerning contesting and food in general is the computer keyboard problem. One must not attempt to drink while leaning over the keyboard. If you do, you must have the spare keyboard on hand that you got from the local hamfest for \$5. Figure 3 shows the proper method of removing old encrusted food from the keyboard.

N2RM is a big proponent of Italian food for contesting, something I really haven't tried. KQ2M is a proponent of the mini-refrigerator-in-the-shack method, something that is a personal choice. I personally enjoy walking 25 feet to the kitchen, as it helps prevent a pulmonary embolus (i.e., instant death). An often-voiced complaint about this is the possibility of "losing your frequency" for CQing. If you are concerned about this, your antenna is too small, and, furthermore, you don't have a frequency. This is ham radio—you have the use of a VFO.

Much more could be said about food and the single operator. However, the number of solutions would be greater than the number of single operators. I hope this has helped the number of operators who fall into the unsupported category.

Figure 2—How not to heat coffee in the shack.

Figure 3—Cleaning the keyboard.

The 3830 Reflector

Reflectors (aka e-mail lists) have become a fixture of the Internet, and Amateur Radio operators have created more than their share. One that has become a central resource to contesters is the 3830 Score Reflector.

In today's fast paced Internet world, we have become used to getting contest results (albeit unofficial) within a matter of days following the end of a contest. It's getting hard to remember what it was like when the 3830 Score reflector didn't exist and we had to wait up to 12 months to see how we performed in any particular contest. Sure, maybe you could try to get on the post-contest net on 3830 kHz. But if you didn't have propagation, or were just too tired after the test to get back on the radio, you were out of luck. The CQ-Contest reflector first addressed this back in the early 1990s.

Unofficial score postings on the Internet first began in the earliest days of the CQ-Contest reflector, which was sponsored by the late Bill Fisher, W4AN: Trey Garlough, N5KO; Dave Pascoe, KM3T; Jim Reisert, AD1C and Randy Thompson, K5ZD. This was back in 1992 when e-mail was truly text based and Web browsers were just a dream. Still, the CQ-Contest reflector was much as it is today with a wide range of discussions taking place and the occasional posted score with comments. Of course, the volume of mail was not as great back then and scores weren't the major highlight of the reflector. Occasionally someone would take the scores off the air from 3830 kHz and post them as well-the first score summaries.

As the use of the Internet grew, so did the number of score postings on the CQ-Contest reflector. Score summaries began to include the postings made to the reflector as well as offair reports from 3830 KHz. It should be mentioned that many individuals produced contest summaries in those early days-it was the kind of duty that someone would volunteer to take on as each contest came around. Eventually, though, the volume of score related mail on CQ-Contest became so great that towards the end of 1995, it became necessary to split out the posting of scores and the 3830 reflector was born. Of course, the name was based on that original onthe-air frequency of 3830 kHz. These days, 600-700 e-mails can be generated from a single popular contest

Dink, N7WA-the 3830 guy-at his station.

such as a CQWW event, but even results from smaller tests are posted to the 3830 reflector.

One of a Kind

So, what makes 3830 rather unique among the world of e-mail lists? Well, while most reflectors are designed for discussions (threads) on a certain topic, discussions are *discouraged* on the 3830 reflector. The general rule is that if you want to post a score, do it on 3830. If you want to discuss anything related to contests, including scores, do it on CQ-Contest.

Another unique aspect of 3830 is that a good many of the contesters who use it do not actually belong as subscribers. Yet only subscribers can officially post to the list. This unusual property is the result of the 3830 Web Scoring page sponsored by Bruce Horn, WA7BNM. Bruce's page allows contesters to submit score rumors to a central database using a Web browser. His Web page then formats the data into a plain text message devoid of HTML, and sends it to the 3830 reflector. In this manner, many non-subscribers can contribute to 3830 without having to deal with the great deal of mail that is generated. Also,

because of the central database, there is no need for a volunteer to collect all the data to produce summaries. Of course, contesters can still post directly to 3830 if they prefer.

The Future?

What will the future bring for the 3830 reflector? I hope to see greater usage by Amateur Radio operators around the world as time goes by. There has been good growth in the number of European users as they find out about the list and the connection to the 3830 Web Scoring page, but postings from Asian operators have been relatively rare. Personally, I would also like to see a relationship or link develop between the raw claimed scores and the officially verified results. That may be a bit much for an e-mail list per se and would require the cooperation of contest sponsors, but maybe another Web-type association could be developed.

If you are interested in checking out the 3830 reflector, you can browse the archives back through 1996 at **lists.contesting.com/pipermail/3830**/. For information on subscribing please visit **lists.contesting.com/mailman/ listinfo/3830**. **INCJ**

SNØHQ in the 2004 IARU HF World Championship

This year's SNØHQ operation was a great success, with many new changes this year since our first operation in 1994 as 3ZØHQ.

The most significant improvement was that for the first time in the SNØHQ operation all operating positions were networked together. This was made possible primarily by the tremendous effort of the SP3KEY club: SQ3JPM, SP3RBR, SP3DWQ and SP3HRN. It was their initiative and execution, with software written by Marek, SQ3JPM.

In March 2004, we had our first technical gathering for all those involved in making this project possible. Shortly after, we began software testing that lasted right up until the start of the contest. Although testing was done with SN0HQ operators for several months, it was not until the contest that we actually had every one of the operating positions on the network simultaneously.

In June of this year, we had the first of several pre-contest gatherings of all SNØHQ operators, this one at the home of Janusz, SP6IXF. As usual, we dedicated our time to discussing operating strategy and assigning bands/modes to individual stations. The deciding factor was, of course, the antennas available at each station, followed by the geographical location (Poland is a big country!) and the operating teams.

The software we developed allowed connecting CT in a network at each of the individual locations throughout Poland. We made continuous improvements and changes to the network over a period of several months, thanks to the intensive effort of Marek, SQ3JPM. We used the TCP/IP protocol and client-server software to connect all operating positions. Each operating position had the client software installed in the computer with CT. Prior to starting CT it was necessary to run the client software and establish a connection with the server. Next, CT was run and configured and was in fact connected to the client software. All data entered in CT (QSOs, messages, passes, etc.) were transferred to the server via the client. The server software was processing all received data batches and distributing them to other networked clients. There, on each computer, the client software was transferring them to CT and we could see them as QSOs, Alt-G messages, passes, etc.

The Moment of Truth

When the start of the contest finally came, it was our moment of truth. If all

The 40-meter SSB team: (from the front) SP6DNS, SP6IXF, SP9P, SP6A.

The 20-meter SSB team: (I to r in back) SQ2BZW, SP2BZW (father of SQ2BZW), SO0WDX (US5WDX), SP4ZO; (I to r in front): SQ2CFB, DJØIF (SP8RX), SP2FAX.

else failed, we'd go back to individual logs like we had done in previous years.

It worked! We did have stations that would lose their local network connections, and upon reconnecting, they would not have QSOs logged by other stations during the interruption. Unlike *WriteLog, CT* does not update other logs during such an interruption. But despite this flaw, everything else worked flawlessly and was stable throughout the contest period. Our efforts paid off!

Operating in a network during the

contest was an emotional experience—we had the opportunity to immediately see the results on all bands. For the first time we had a feeling of operating "live," that this was really a group operation—the result of the combined efforts of the whole team.

The first hour saw 1300 QSOs flash by on our screens, the next few hours were not much worse. In addition, spots from the DX Cluster, the band maps, "Alt-G" (intra-station talk) and "Alt-=" (show pass window) appeared on our screens like a kaleidoscope. For many of us that had never operated multi with CT, it was quite an experience. Did you see the movie The Matrix? At the start of the movie, there are millions of numbers that scroll on the screen. The same thing was appearing on our CT screens.

Despite our extensive preparations, during the contest we discovered some weaknesses in our programming that we will certainly fix before our next operation. Nevertheless, it was a big improvement in our score from SN0HQ. We ended up with a claimed score of 19,861,240 points (18,788 Qs for 44,632 points with a zone multiplier of 210 and an HQ multiplier of 235).

This is the best score ever from our HQ station in the IARU. But we realize that we haven't reached our potential yet. We still have a ways to go, primarily in improving the skills of our operators and taking more advantage of what a networked log has to offer. We're satisfied, but at the same time, we know we can do better!

This year's effort was record-breaking in the number of people who participated in the operation at all the various stations. We had a total of 70 operators involved: SP-0404-JG: SP2BZW: SP2FAX: SP3DOI; SP3DWQ; SP3GEM; SP3HRN; SP3HUU; SP3J; SP3RBR; SP3VT; SP4-17-001; SP4DZT; SP4GFG; SP4JCQ; SP4R; SP4Z; SP4ZO; SP5HNK; SP5UAF; SP5XVY; SP6A; SP6BBE; SP6CZ; SP6DNS; SP6EKS; SP6GCU; SP6HEQ; SP6IXF; SP6M; SP6ML; SP6RZ; SP6T; SP6TGD; SP7GIQ; SP7MTF; SP7NJX; SP7SP; SP7VC; SP8ATI; SP8BRQ; SP8FHK; SP8FUX; SP8GQU; SP8GWI; SP8GXA; SP8LBK; SP8NFE; SP8NR; SP8QED; SP8RX (DJ0IF); SP8SRZ; SP8TJU; SP9ENV (DL1EKO); SP9H; SP9HVV; SP9P; SP9XCN; SQ2BZW; SQ2CFB; SQ3A; SQ3JPM; SQ3TQM; SQ6ELV; SQ6MS; SQ8J; SQ8JLA; SQ8JX; SQ9IET; SQ9UM and US5WDX (SOØWDX).

To this list we need to add those who provided logistical support-mostly family and friends. On an optimistic note, we have to report that this year we had many young hams involved in our operation, mostly members of the WWYC (World Wide Young Contesters). The opportunity to operate under the watchful eyes of experienced contesters is one we hope will bring us further rewards in the future.

Our stations this year were located at the QTH of the following individuals:

1.8 CW SP6EKS 1.8 SSB SP6CZ 3.5 CW SP3GEM 3.5 SSB SP8BRQ 7 CW SP4Z 7 SSB SP6IXF 14 CW SP7GIQ 14 SSB SP2FAX

- 21 CW SP8YMM 21 SSB SP3GEM SP3KEY 28 CW
- 28 SSB SP6CZ (antennas, equipment, etc. prepared by SP7VC)

Over the past few years of operation in IARU, we've created a strong and integrated team. It was not an easy task. Every operator has his own approach and strategy in the contest. Those who offered their stations for the SNØHQ are individualists - you have to be an individualist to build and maintain a big station. As part of Team SNØHQ, we learned to put priority on the results of the multi instead of on individual results. There is always much discussion on our mailing list and during our periodic meetings on how to accomplish this.

Sharing Knowledge

H

The efforts of Team SNØHQ have extended beyond the IARU contest. We recently published our first "contest handbook" for Polish hams. The first edition of the handbook became available a few weeks before the IARU contest. It is on the Web as a PDF file and is constantly being updated and revised. One of the chapters is a translation (with NCJ permission) of "How Much Is A dB?" by Jürgen, OE5CWL, from the September/October 2003 NCJ. It is our contribution to introduce contesting to the large number of hams who are entering the HF bands, which is happening in Poland as well as elsewhere.

Following the contest this year, for the second year in a row, we've been exchanging logs with HQ stations in other countries. For years we have been doing it with DAØHQ, which has helped both stations in improving scores. Last year we exchanged logs with DAØHQ. OH2HQ and R7HQ. For us it has been very instructive. We have published some comparative analysis of these which is available logs, at www.sn0hq.org/files/hq_logs.zip (it is a zipped MS Excel file).

At the time of this writing, we will be having a post-contest meeting of Team SNØHQ at the annual SPDX Club gathering in October. We will summarize our SNØHQ operation to the SPDX Club and the PZK leaders.

We hope to work you in the 2005 IARU HF World Championship! NCI

k0xg@k0xg.co	om – (563) 355-7451
	Rotate those VHF/UHF st Don't waste money on useles masts and pipe that you canno climb. With one guy ring bear and our elevated tower rotor y can rotate 50 feet of tower. Th gives you the ability to add, remove or service any or all of your antennas without having remove the lower beams. Inst
	HE tri-hand beam stack 6 me

Rotating tower equipment for LF, HF, VHF and UHF applications.

- Guy ring bearings for all size towers.
- Ground or tower mount rotors.
- Boom to tower or tower to tower mounting brackets.

Complete range of hot dipped galvanized tower accessories.

Professional installations by: XX Towers - (603) 878-1102 **Rotate those VHF/UHF stacks**

KØXG Systems

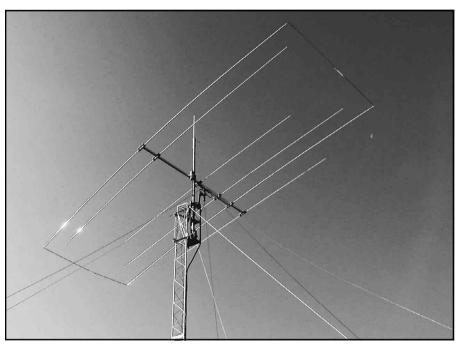
Bettendorf, IA 52722 USA

Don't waste money on useless masts and pipe that you cannot climb. With one guy ring bearing and our elevated tower rotor you can rotate 50 feet of tower. This gives you the ability to add, remove or service any or all of your antennas without having to remove the lower beams. Install an HF tri-band beam, stack 6 meter and VHF/UHF antennas on one tower and run the hard line all the way to the antennas where it should be, instead of high loss coax.

Systems available for rotating from 30 feet of Rohn 25G tower up to over 300 feet of Rohn 80 tower.

Dayton Booth #578

Visit our web site! www.k0xg.com


Back Into Contesting After 11 Years

Businesses and families are normally contesters' greatest enemies. They even tend to absorb the contesters' minds when they desperately need time to dream and think about larger antennas, better strategies and new solutions for efficient operations. Fortunately, in my case, my family was in favor of contesting, particularly after my wife Silvia felt the spiritual and cultural need in me for contests. So, she helped me create time and activities for contesting in order to take me away from my own business, PRO RADIO, the largest consulting and engineering radio broadcasting service in Italy. I am a radio broadcaster as a professional and an Amateur Radio operator as an enthusiast. Radio means verv much in my life.

In the late '80s and early '90s, I used to operate from a country site with a Hy-Gain TH7DXX at 67 meters (huge tower) and full-size wire dipoles for 40, 80 and 160 meters. I still own the CQWWDX 21 MHz Low-Power record for Zone 15, which was established in 1993. Now I restarted ham operations from the new city apartment with a relatively small but very efficient tri-band antenna, an Optibeam OB6-3M, and a PKW broadband wire dipole for the lower bands.

The IARU HF World Championship was a wonderful contest for my return. It is a very crowded one, with lots of participants from all over the world. The contest is not too long, 24 hours from mid Saturday to mid Sunday, and this allows a better focus and encourages full participation. In fact, I managed to operate for more than 16 hours. The "no spot" policy is another good point, probably the clearest choice that puts the IARU HF World Championship into the pure sport and open competition area. The exclusion of Top Band (160 meters) is another good message to contesters that have no room for monster antennas. One final mention of the rules concerns the Power Categories; it's nice to be able to participate in the Low Power category. The choice of Low Power is too often confused with no amplifier, or no money for it. In reality, Low Power means a philosophy, the search for better signals with fewer Watts in a less extreme environment than QRP. Running barefoot is a real good thing in cities, but it requires you to focus completely on the antenna system, the single highest priority on HF.

Before starting the contest I wanted to set a target; how many QSO or how many points would make me satisfied after 11

IK2DZN's Optibeam and inverted-vees.

Claudio, IK2DZN, at the operating position.

years of no contesting? I thought 1000 QSOs would be a nice target and I managed to make 1005—very good! There were good, but quite short, conditions on the bands. Ten meters had strong European signals for most of the time, with 3V8BB, UP9L, 5B/RW4WR and some good Asiatic Russians thrown in. Fifteen and 20 meters were frequently open also to North, Central and South America, while Japan and the Far East were less frequently reachable. Acceptable conditions were also on 40 and 80 meters.

It seems to me that even though 11 years

has passed since my last contest, the passion is really the same or even stronger. One new thing to me since older times is voice keying. You do not need to be a broadcaster to recognize those using keyboards and recorded sounds instead of live voices. I really like very much to say "Good Morning," "Good Night," "Hello, nice signal" or "Hey, you are 20dB over" depending on who is on the other end. Radio is a living being to me and Amateur Radio is no exception. So please forgive me if I extend our QSO by 1.82 seconds with a "Thank you for calling."

DXing = Connections = Friendships = World Peace?

I've lived in the shadows of radio antennas for over 25 years. My husband Geoff, WØCG, was on the radio chatting (in CW) with a fellow ham in Scotland while I was entering labor with our son. Adam, KB8KIA, grew up embracing the part of his heritage that is Scottish and even plays the bagpipes! (Coincidence? Who knows?) I've helped build towers, dig radial ditches, wrap dead-ends and pullropes to hoist antennas both in the States and on DX trips and in Curaçao. Why not? The benefits to me have been many.

Geoff and I have laughed over the vears at a sort of joke we share. He is of the opinion that "guys talk about things and women talk about people." I guess that's a simplified version of the Mars and Venus conundrum. At any rate, I do relish the "people" aspect of being a ham wife. Yes, there are plenty of hams who would, at first glance, appear to be not interested in the people aspect of the hobby. But by and large, the contest folks I've met over the years are the main reason I am, and will continue to be, a supportive and interested ham wife. They're just some of the most caring, interesting and fun people in the world!

The Proof is in the Experience

There are many ways in which I've met some of these great folks. I've traveled with Geoff and members of the pre-CCC group (CCC stands for Caribbean Contesting Consortium) on several DXpeditions, I've attended the Dayton Hamvention and experienced the presentations in the DX forums and dinner. I helped launch the PJ2T station on Curaçao and have enjoyed hosting numerous groups of contesters there. Through all those venues, I've been amazed at the variety of people who are represented in this hobby. And part of that amazement comes from the common bonds that people from all over the world can find or create through their interest in Amateur Radio contesting.

The first time we were involved in a contest operation on Curaçao was in October 1999. We exited the airport terminal and were surprised to be met (without any prearrangement) by two local hams—Jossy Cyntje, PJ2MI, and Brett Ruiz, PJ2BR—who gave much time and assistance to make that contest operation a success.

Two years ago we invited members of the Curaço VERONA club to participate with CCC members in the IARU contest, signing PJ2HQ. We had a number of local hams join the CCC members to take part over the 24 hours of the contest, and some of their spouses and partners also came to view this intriguing new contest station and to share food and fellowship. We had such a terrific time that we did it again this year, and had more than 30 people visit and share food and good times throughout the day! Many of these hams are newly licensed and for many of them, this was an initial opportunity to actually take part in a contest. It was a phenomenal experience the first year to watch and listen as the experienced contesters helped the rookies learn to make contest contacts! This year more VERONA club members participated and it's obvious that their radio skills are improving and their interest in contesting is growing. A few of them are even gaining proficiency in code and hope to participate in that part of the contest in future years.

In between stints on the radio, the hams and their spouses relaxed around the table in the balmy breeze and enjoyed chatting. For 300 years the island of Curaçao has been populated by more than 50 nationalities, gradually learning to live together in peace and equality. There is a lot of what you might call native Antilleans, but also many Dutch and people from neighboring islands, South America or other countries in Europe. Part of what drew us to make a second home on Curaçao was the friendly people. They easily smile and know that your nationality doesn't matter—it's who you are inside.

Where else could I host an afternoon and evening of thirty people speaking Dutch, French, Papiamento, Portuguese, Spanish and English? Where else could I have experienced our caretaker, Zoom, teaching us Papiamento words on one side of the table in exchange for Leo Xhoko, S50R, from Slovenia, teaching us the same words in Russian on the other? Where in the US could you have such a wide range of people discuss world politics in a friendly manner?

Watching and listening to all the sons and daughters of Curaçao and those from the U S or other parts of the world share food and conversation and laughter is an absolute delight! As the conversations progress, we always find some common ground. There is always something to discuss or share, something to drink to, laugh about or help with. Geoff and I count ourselves lucky to have met many great people through this Curaçao ham radio venture.

Some hams just visit Curaçao for a day and it's a delight to meet them and show them a piece of our island home. Some come for one contest, to investigate this PJ2T phenomenon. Others come back again and again and are counted among our dearest friends. Still others are new friends—local or from afar—with whom we're waiting to share recipes, good food (or an Amstel!), travel stories, or further ham radio adventures.

So, at least for this "people person," contesting and DXing has been a way to make many new friends and hear, or experience, first-hand, what life is like in different corners of this planet. And if for each contest or DXpedition there is one new friendship forged through shared conversations or common interests, then life will be sweeter, more people will understand each other and, who knows, someday there *may* be world peace. It could happen! **NCJ**

Author Cindy (back to camera) with PJ2FF, PJ2DH and Curacao wives during IARU 2004.

Attracting More Sheep to the Fold

Gary Schmidt, W5ZL w5zl@arrl.net

We contesters tend to be passionate about our little corner of ham radio. Why else would we stay up 48 straight hours trying to dig that last elusive multiplier out of the din? Once bitten by the contesting bug we tend to be infected for life. But looking around the room at a meeting of the Central Texas DX and Contest Club last winter, it was brutally obvious that, nicely put, as a group we're not getting any younger. And worse, we're apparently doing a lousy job of mentoring in the next generation to take up the mantle. This is, of course, not just a contesting problem, but arguably the biggest threat to the future existence of

our hobby—maybe bigger than BPL! CTDXCC has provided contest-oriented programming to Austin's annual August hamfest for years, but mostly had put on sessions targeted to the experienced contester, bringing in hotshot contesting speakers who mostly preached to the choir. Excellent, informative programs to be sure, but not especially conducive to generating excitement in new hams or even old hams who never considered dabbling in the seemingly rarified air of contesting.

This year, we decided, would be a good time to depart from the old formula and to put on a "Contesting for Dummies" pro-

Figure 1—The first *PowerPoint* slide: Contesting—Join the Fun!

	RL	RTTY			
VI	HF.	ARRL			Sprint
RRL			CQ WPX		oprint
Id Day				NAQP	
		0.000	ARRL	IARU HF World Championships	
10.00		ca	WW DX		Sprin
ARRL	APPIS	ARRL	es		
	IRRL Id Day State 6 I	ild Day State CSO Faith (해외야) 가'그만	IRRL Id Day ARRL State 050 Fame: VHF Intanyi Jrup CQ	URRL DX CQ WPX ND Day ARRL State QSO Frame. VHF CQ WV DX JCLP ARRL	IRRL DX CQ WPX IRRL CQ WPX Id Day ARRL State Q3O Fains WHF ARRL Championships UHF ILAOF

Figure 2—The second *PowerPoint* slide: A Contest for Every Skill Level.

gram. Okay, to be honest, political correctness got the better of us and ultimately "An Introduction to Contesting" shared the podium with a similarly targeted "Introduction to DXing" at this year's Summerfest. Early returns indicate that both the DXing and contesting programs were a big hit. Going in we knew we probably wouldn't create an immediate explosion in newbie contest participation, but the first step was to light the fuse.

Promoting the Forum

The Club agonized over how best to get the word out, and whether to offer door prizes to lure and retain attendees to the bitter end. Ultimately, we chose to employ the cheapest form of advertising, the Internet, to do the heavy lifting, publicizing our forum to other DX clubs in the region through selective email announcements and cross-links to/ from their Web sites. The Summerfest committee provided CTDXCC with a table adjacent to the registration table, which we manned with club members throughout the weekend, encouraging interested passersby's to visit to the live forum. Five hundred one-page fliers were printed up and handed out both at the registration and the Club's tables.

We ultimately decided against in-fo-

Standing room only at the "An Introduction to Contesting" forum!

rum door prizes to blackmail attendees into staying until the bitter end. It was a good decision-we didn't need them. Though our time slot was in direct competition with a controversial and muchanticipated regional VHF society meeting, we drew nearly 100 to the room, making ours one of the best-attended forums of the weekend, and few, if any, left before it was over. The National Contest Journal Editor Carl, K9LA, was kind enough to send down a stack of the latest NCJs, which we passed out to those most aggressively waving their hands (thanks, Carl!), so we did have one very nice, but unadvertised, giveaway.

Know Thy Audience

Unlike the peer-to-peer talk to which we have become accustomed in contesting forums, this was from the outset to be a pitch to The Uninitiated and probably The Skeptical. A lot of non-contesters look at us as a bunch of wild-eved zealots and ne'er-do-wells who just sweep in, wreck their bands for a weekend and disappear back into the ozone. Perhaps at one level they're partly right, but that's not the whole story. We knew that this would be a great platform from which to preach the benefits of contesting to the masses-good contest operators tend to be great emergency operators, and in this use-it-or-lose-it spectrum environment in which we find ourselves, contest participants are sometimes the only sources of activity on the bands.

Given the intended audience, we stressed the fun aspects of contesting rather than the *winning*, noting that while there were a number of area "contest superstations" with massive aluminum farms—N3BB, K5NA, N5TW and W5KFT, to name just a few-there were also mere mortals like W5JAW who were amazingly competitive with modest wire antennas on normal city lots. The point to be taken from this (see Figure 1) was that "Even a Little Pistol can have a lot of fun competing with the Big Guns." Though I can't recall ever cracking a million points in any contest I've ever entered, I've gotten tremendous pleasure from playing the game, so it must be true!

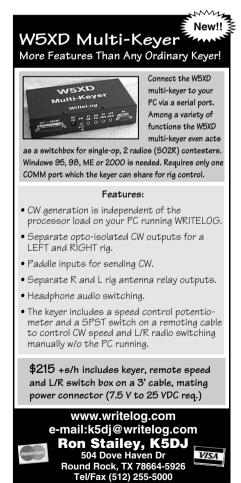
Packing 50 lb of Stuff into a 5-lb Bag

With the limited time available for the contesting segment (about 15 minutes) and the breadth of material to be covered, it was essential that the presentation be delivered at a near machine-gun cadence—too fast for anyone to take notes even if they were so disposed. Enter the CTDXCC Web site, which we announced early and often during the DX and contesting sessions would shortly host the presentations in their entirety, including hyperlinks to other websites with a cumu-

lative gold mine of information.

The www.ctdxcc.org URL was prominently displayed at the bottom of each PowerPoint slide—all an interested party would need to know to access the full presentation, and by Tuesday afternoon following Summerfest, thanks to CTDXCC's Webmaster Ken, WM5R, this was a reality. In the first month following the hamfest. Ken reported 303 hits on the main CTDXCC Summerfest page (CTDXCC Web site stats in excruciating detail are available at www.ctdxcc.org/stats/). The HTML version of the DXing and Contesting presentation was accessed 128 times, and the PowerPoint file was opened and/ or downloaded 126 times (the Contesting portion of the entire presentation is also in the Bonus Content on the NCJ Web site at www.ncjweb.com-Ed). It's unknown how many of these hits were from search engine robots and how many were "real" people, but it's fair to assume that a reasonable percentage were attendees following up. In addition to the Web follow-up, we encouraged those interested to attend a monthly club meeting or visit one of our members' stations during a contest to observe our special form of insanity.

To be sure, we didn't try to cover every aspect of contesting in the allotted time (impossible!), but instead concentrated on pointing the audience to resources they could tap at their own pace. Possibly one of the more useful slides in the presentation (see Figure 2) showed a sampling of contests as they are scheduled throughout the year against a blended color background that indicated which were geared more to beginners (e.g., SKN, state QSO Parties, etc.) and which were almost exclusively the domain of experienced contesters (e.g., Sprints). In the Web-based version of this non-comprehensive contest listing, the user can click on any of the contests to jump to the Web site for that particular event. Again, the idea here was to provide newbies with the impetus and information to try out contesting, but to let them be educated about which ones might be most compatible with their experience levels.


Wrapping up, we touted the Texas QSO Party (TQP) scheduled just a few weeks after Summerfest as a tailormade opportunity to get one's contesting feet wet. Since the session immediately following our "Introduction" was devoted to TQP, this made for a perfect handoff, and though we won't take all the credit, the TQP presenters had an undiminished full house for their excellent program as well.

Conclusion

Did we light any contesting fires? Only

time will tell, but this sort of grass roots soap boxing may be all that someday stands between contesting as we know it and extinction as we begin to age out.

If your club would like to make use of any of the CTDXCC presentation materials, feel free to download them from the club Web site and alter to your tastes. Since this is all about recruiting new players to our sport, as you make changes and improvements to the originals you are encouraged to share them with us.

NCJ Profiles

By Paul Gentry, K9PG

Having been to about 20 different DXCC entities, I consider myself a fairly well traveled person. Certainly not even close to the likes of N6AA and N6ZZ...and most definitely not in the same realm as this month's profile. One of the things that many of us contesters strive for is DXCC. Some try to get DXCC in a single contest weekend, while others try to get it over the course of many contests. How many of you can say that you've done DXCC the hard way...traveling to over 100 entities? Probably not very many of us. You're about to meet someone who has done just that.

My Story

By Paul Newberry N4PN

I was born in Macon, Georgia on November 1, 1937. Grew up in Macon and became interested in ham radio while a junior in high school. I took and passed the Novice test in late 1952 with some friends, and on January 8, 1953, I received WN4YWX. My friends got WN4YWV, WN4YWW, WN4YWY and WN4YWZ. All are still active except WN4YWZ. I upgraded to General in 1954 and dropped the "N."

After graduating from high school in 1955, I entered the Navy in September as a Seaman First Class and went right to boot camp. After boot camp, I went to Norfolk, Virginia to Class A Radio School. Bud, K4ASU, was a Chief Radioman at the school and we became friends and stayed in touch over the years. I did a lot of traveling during the four years in the Navy and operated from numerous countries with calls like OD5AU, VP4WI (that was Trinidad at that time), KP4KD, KV4AA, KG4AO, etc.

All of my Navy travels must have developed my "hobo blood," as I have always enjoyed traveling. In 1967, K4BAI and I traveled to Guatemala and operated M/S in CQ WW CW using TGØAA ... and that was the start of my contest traveling! The following years John and I operated from PJØCW, PJ9GIW, PJ9PN and various other calls from Chet's old place in Curacao along with the Vic, W4KFC, Bill, W4GF, Gene, W4BRB, etc.

In April 1979, I met Kit Carson, VP2KC, on the air and we quickly established a good friendship. I put together the team of 22 operators who went after and won the CQWW SSB Contest in 1979 in the Multi-Multi category-from a 2-point area. That was the world record for many years, and stood as the North American M/M record for 22 years until VP2E broke it in 2001. I went back for the same contest in 1980, 1981 and 1983 using my call, VP2KAA, and won the world in the single band category two years: 20 meters in '80 and 15 meters in '83. In 1981, I was the first ham to break 2 million points single band in the CQWW SSB Contest (all paper logging-no computers). Today,

Paul, N4PN, at Dayton in 2004.

that wouldn't even get a second look. Sadly, VP2KC died in 1984.

Over the next 10 years or so, I operated from several other places, including ZF, VS6 (now VR2), J3, J8 and many others. Then, in 1992, I bought a lot on St George Island, Florida about five miles off the coast of a small place called Eastpoint, Florida in the panhandle out in the Gulf of Mexico. I built a home there in 1994 and started assembling a contest station not too long after. Presently I have a 75-foot tower with a Force 12 C31XR. On an 88-foot crank-up tower. I have a 2-element 40-meter Yagi (given to me by Bill, W4AN, SK) and a Force 12 C19XR. Thanks to the five acres next to me, I have a pair of Force 12 80-meter verticals with elevated radials. Near the beach, I have a 1/4 wave linear-loaded vertical for 160 meters with 65 radials. There are four 500-foot Beverages and various other wire antennas for the "spotter" station. There's a total of 12 different antennas plus the Beverages.

The following is not even remotely related to contesting or even ham radio. In 1979 I was appointed and signed a contract with the National League/Major League Baseball to act as the "Official Scorer" for the Atlanta Braves beginning in 1980. It was a year-to-year contract that wound up lasting for fifteen full seasons. I still "work" a few games each year. My job was/is to decide whether a ball should be a hit or an error, or if a pitch should be a wild pitch or a passed ball. All of these decisions can and usually do affect batting averages, pitcher's ERA, etc. It opened many doors for me over those years and I got to know players like Dale Murphy, Phil Neikro, Jeff Treadway, Biff Pocoroba, Rick Camp and many others.

One of my best friends for most of those years was Don Sutton. We kept in touch after he retired, and have remained good friends through the years. He is still with the Braves today. As you might imagine, I have heard from many players over the years wanting me to change my decisions. I only made six changes in fifteen years, and only after reviewing video of the play. Because every batter thinks everything he hits is a hit and every fielder thinks every thing he misses is a hit and every pitcher thinks every ball hit is an error (to protect his ERA), there were times when I had "little discussions" with various players. About the only thing I never witnessed while I was working was a nohitter. I came close on many occasions. Steve Trout, pitching for the Chicago Cubs back in the late '80s, was within one out of a no-hitter...that was as close as I ever got.

Thanks, Paul! I wonder what kind of a plaque he got for his DXCC-V? I'd imagine getting Paul to change a call he made in a game would be similar to getting a contest sponsor to putting a mult back in the log that shouldn't have been removed. I'd be curious to know if any readers have been to, or know of anyone who has been to, over 100 entities? I know N6ZZ and N6AA are close, and NQ4I might be up there.

That's it for now. See everyone next time! And as always, if you'd like to do a guest profile on someone, or have someone in mind for a profile, drop me a note and let me know who you have in mind. In the meantime, be good to each other...and stay off my frequency!

"Imagine how many more people we would have to work if each one of us got just one other person involved in contesting!" W4AN (SK). **NCJ**

Contest Calendar Compiled by Bruce Horn, WA7BNM

Here's the list of major contests of possible interest to North American contesters to help you plan your contesting activity through February 2005. The Web version of this calendar is updated more frequently and lists contests for the next 12 months. It can be found at: www.hornucopia.com/contestcal/

As usual, please notify me of any corrections or additions to this calendar. I can be contacted at my callbook address, or via e-mail at: bhorn@hornucopia.com. Good luck and have fun!

November 2004

ARS Spartan Sprint IPARC Contest, CW Ukrainian DX Contest ARRL Sweepstakes Contest, CW NA Collegiate ARC Championship, CW IPARC Contest, SSB IPARC Contest, SSB High Speed Club CW Contest DARC 10-Meter Digital Contest WAE DX Contest, RTTY JIDX Phone Contest OK/OM DX Contest, CW LZ DX Contest All Austrian 160-Meter Contest ARRL Sweepstakes Contest, SSB NA Collegiate ARC Championship, SSB RSGB 2nd 1.8 MHz Contest, CW CQ Worldwide DX Contest, CW

December 2004

ARCI Topband Sprint ARRL 160-Meter Contest TARA RTTY Melee TARA RTTY Melee Wake-Up! QRP Sprint CIS DX Contest, CW ARCI Holiday Spirits Homebrew Sprint ARS Spartan Sprint ARRL 10-Meter Contest MDXA PSK DeathMatch OK DX RTTY Contest RAC Winter Contest Croatian CW Contest Stew Perry Tonband Challence Stew Perry Topband Challenge DARC Christmas Contest

January 2005 SARTG New Year RTTY Contest AGCW Happy New Year Contest Original QRP Contest WOF QRP Party Midwinter Contest, CW ARRL RTTY Roundup North American QSO Party, CW EUCW 160-Meter Contest NBALLBALIC Contest NRAU-Baltic Contest, CW Midwinter Contest, Phone NRAU-Baltic Contest, SSB DARC 10-Meter Contest Hunting Lions in the Air Contest LZ Open Contest MI QRP January CW Contest Hungarian DX Contest North American QSO Party, SSB BARTG RTTY Sprint ARRL January VHF Sweepstakes CQ 160-Meter Contest, CW REF Contest, CW UK DX Contest, RTTY URA DX Contest, RTTY UBA DX Contest, SSB

February 2005 Vermont QSO Party 10-10 Int Winter Contest, SSB Minnesota QSO Party AGCW Straight Key Party Delaware QSO Party Mexico RTTY International Contest North American Sprint, SSB ARCI Winter Fireside SSB Sprint ARRL School Club Roundup KC L Tonband Contest ARRL School Club Roundup KCJ Topband Contest CQ WW RTTY WPX Contest Asia-Pacific Spring Sprint, CW Dutch PACC Contest Louisiana QSO Party FISTS Winter Sprint RSGB 1st 1.8 MHz Contest, CW North American Sprint, CW AGCW Semi-Automatic Key Evening ARRL Inter. DX Contest, CW CQC Winter QSO Party Russian PSK WW Contest CQ 160-Meter Contest, SSB REF Contest, SSB UBA DX Contest, CW CZEBRIS Contest CZEBRIS Contest North American QSO Party, RTTY High Speed Club CW Contest North Carolina QSO Party

0200Z-0400Z, Nov 2 0600Z-1000Z, Nov 6 and 1400Z-1800Z, Nov 6 12002, Nov 6 to 12002, Nov 7 21002, Nov 6 to 03002, Nov 7 21002, Nov 6 to 03002, Nov 8 21002, Nov 6 to 03002, Nov 8 06002-10002, Nov 7 and 14002-18002, Nov 7 09002-11002, Nov 7 and 15002-17002, Nov 7 11002-17002, Nov 7 11002-17002, Nov 7 0000Z, Nov 13 to 2359Z, Nov 14 0700Z, Nov 13 to 1300Z, Nov 14 1200Z, Nov 13 to 1200Z, Nov 14 1200Z, Nov 20 to 1200Z, Nov 21 1600Z, Nov 20 to 0700Z, Nov 21 2100Z, Nov 20 to 0300Z, Nov 22 2100Z, Nov 20 to 0300Z, Nov 22 2100Z, Nov 20 to 0300Z, Nov 22 2100Z, Nov 20 to 0100Z, Nov 21 0000Z, Nov 27 to 2400Z, Nov 28

0000Z-0600Z, Dec 2 2200Z, Dec 3 to 1600Z, Dec 5 0000Z-2400Z, Dec 4 0400Z-0600Z, Dec 4 0000Z-2400Z, Dec 5 2000Z-2400Z, Dec 5 2000Z-2400Z, Dec 5 0200Z-0400Z, Dec 7 0000Z, Dec 11 to 2400Z, Dec 12 0000Z, Dec 18 to 2400Z, Dec 19 0000Z-2400Z, Dec 18 0000Z-2400Z, Dec 18 1400Z, Dec 18 to 1400Z, Dec 19 1500Z, Dec 18 to 1500Z, Dec 19 0830Z-1059Z, Dec 26

0800Z-1100Z, Jan 1 0900Z-1200Z, Jan 1 0900Z-1200Z, Jan 1 1500Z, Jan 1 to 1500Z, Jan 2 0000Z-2400Z, Jan 7 1400Z-2000Z, Jan 8 1800Z, Jan 8 to 2400Z, Jan 9 1800Z, Jan 8 to 2400Z, Jan 9 2000Z-2300Z, Jan 8 and 0400Z-0700Z, Jan 9 0530Z-0730Z, Jan 9 0800Z-1400Z, Jan 9 0800Z-1059Z, Jan 9 0900Z, 1059Z, Jan 9 0000Z, Jan 15 to 2400Z, Jan 16 1200Z-2000Z, Jan 15 0000Z, Jan 15 to 2400Z, Jan 16 1200Z, Jan 15 to 2359Z, Jan 16 1200Z, Jan 15 to 2359Z, Jan 16 1200Z, Jan 15 to 1200Z, Jan 16 1200Z, Jan 15 to 0600Z, Jan 23 1900Z, Jan 22 to 1200Z, Jan 23 1900Z, Jan 29 to 1200Z, Jan 30 0600Z, Jan 29 to 1200Z, Jan 30 1200Z, Jan 29 to 1200Z, Jan 30 1300Z, Jan 29 to 1300Z, Jan 30

0000Z, Feb 5 to 2400Z, Feb 6 0001Z, Feb 5 to 2359Z, Feb 6 1400Z-2400Z, Feb 5 1600Z-1900Z, Feb 5 1602-1900Z, Feb 5 1602-1900Z, Feb 5 1700Z, Feb 5 to 0500Z, Feb 6 and 1300Z, Feb 6 to 0100Z, Feb 7 1800Z, Feb 5 to 1759Z, Feb 6 2000Z-2400Z, Feb 6 1300Z, Feb 7 to 0100Z, Feb 12 1200Z, Feb 10 to 1200Z, Feb 12 1200Z, Feb 12 to 2359Z, Feb 13 1100Z-1300Z, Feb 12 1200Z, Feb 12 to 1200Z, Feb 13 1500Z, Feb 12 to 0300Z, Feb 13 1700Z-2100Z, Feb 12 2100Z, Feb 12 to 0100Z, Feb 13 1000Z-0400Z, Feb 13 1900Z-2030Z, Feb 13 1900Z-2030Z, Feb 13 1900Z-2030Z, Feb 16 0000Z, Feb 19 to 2400Z, Feb 20 19002-20302, Feb 16 00002, Feb 19 to 24002, Feb 20 22002, Feb 20 to 03592, Feb 21 21002, Feb 26 to 03592, Feb 21 21002, Feb 26 to 23592, Feb 27 06002, Feb 26 to 18002, Feb 27 13002, Feb 26 to 14002, Feb 27 16002, Feb 26 to 04002, Feb 27 18002, Feb 26 to 06002, Feb 27 09002-11002, Feb 27 and 15002-17002, Feb 27 17002 Feb 27 to 03002 Feb 28 NCJ 1700Z, Feb 27 to 0300Z, Feb 28

VK-64 Combo Voice/CW Keyer Voice keyer and full feature CW memory keyer in a single package. Front panel operation or control through your laptop or PC printer port. The W9XT Contest Card This voice keyer and CW interface plugs into your PC's ISA slot. Four 15 second messages. BCD-10 Band Decoder Use band port signals from selected Yaesu® rigs or PC printer port for automatic antenna switching as you change bands.

XT-4 CW Memory Keyer Battery powered and small size for VHF rover, FD, DXpeditions and vacations. 4 memories. XT-4BEACON - CW Beacon IDer Easy to program IDer for VHF beacons. Low

power. Selectable speeds 5-25 WPM.

Visit our web site for new products.

Unified Microsystems PO Box 133 Slinger, WI 53086 262-644-9036 www.unifiedmicro.com

NCJ Subscription Order Card

The National Contest Journal features articles by top contesters, letters, hints, statistics, scores, NA Sprint, NA QSO Parties, and more. Big gun or small, the NCJ provides you with a valuable source of information on the active world of competitive radio.

Subscription rates for 6 issues (one year):

I 🗆 In the US, surface mail \$20 (\$28 First Class)

☐ In Canada by airmail \$31

Flsewhere	surface	mail \$32	(\$40 Airmail)
LISEWIICIC,	Sunace	man yoz	(ψ +0 Annan)

Name_

Call

Address_ City_

State or____ _ Zip or _

Province_ Postal Code

Mail to NCJCirculation, ARRL, 225 Main Street, Newington, CT 06111, USA.

Remittance must be in US funds and checks must be drawn on a bank in the US. Maximum term is 12 issues and prices are subject to change without notice.

Contest Tips, Tricks & Techniques

Single-band Contesting

Longtime readers of this column will note that I have often suggested doing single-band efforts. They allow operators to be competitive when they can't be competitive otherwise. This month we will look at what other single-band specialists have to say about the subject.

K4WI and others note that single-band contesting is an alternative when you don't have effective antennas on every band.

K9AY feels single-band contesting is an excellent way for a modest station to be highly competitive. "One good antenna, favorable propagation to your area, and an experienced single-band op can be a winner. My first Top Ten box and my highest contest finish were 40meter single-band efforts," says Gary.

Another reason to do a single-band effort is suggested by N3BB. Jim notes that a single-band competition is an option if the antennas on one band are temporarily out of order.

WØUO and others mention time off as a reason for doing a single-band effort. Ten and 15 meters close at night giving you time to sleep. The lower bands are open primarily at night giving you the day for other activities. However, die hard 40and 80-meter single-band ops, or the contesters who handle those bands for multi-ops in the northern part of the US, will scan the bands during day light hours for VE stations not in the contest to get extra points in CQWW.

Mel, KJ9C, often does single-band competitions when he is unable to put in a full time effort. He picks the higher bands when he feels he needs sleep. If his daytime activities, such as being a ski instructor, prevent a full-fledged push, Mel will do 160 or 80 meters and take a nap.

K9AY stresses the educational value of any single-band entry. A concentrated single-band effort helps you really learn about propagation, active stations and antenna performance.

K8IR finds it fascinating to follow the propagation around the globe through the course of the day. "After a while you get a pretty good feel for when certain paths should be open," notes Jim. "Sometimes you have only a few minutes into some areas of Asia and the Pacific."

K4WI is a big fan of 10 meters. He decided that doing something big on 10 meters would be much less expensive than for 20 meters. Cort built an array of four seven-element Yagis at 140/105/70/ 35 feet (see "A 4-High Stack of 7-Element 10-Meter Yagis" by K4WI in the May/June 2003 *NCJ*). Each one is independently selectable and rotatable. Cort feels this is a killer setup despite being in the southern part of the Black Hole.

K8IR prefers 10 meters at the top of the cycle. For the last couple of years Jim has done 15 meters. As the sunspots disappear, he expects to end up on 20 for a while if 15 meters doesn't provide the opportunity to work Europe.

Paul, K5AF, likes 160 and 10 meters for opposite reasons. On 10 meters, a lowpower antenna-challenged guy can run when conditions are good. On the other hand, Paul feels the quality of ops on 160 is generally so good that he has great success with S&P even with a puny signal.

W9RE usually works the bands 40 meters and above when he is assigned to a single band in a multi-op competition. Mike does not like 40 because of the QRM and QRN, though. His favorite is 15 meters because he gets out best on that band and likes the long European openings.

N8UX considers himself a bit of a masochist since he has always liked 40 meters and the challenge of interference from short wave broadcasters. Rich stresses the importance of being familiar with the various QRM-fighting tools in the shack—pass band tuning, IF and audio notches and external DSP devices. He says that they allow making QSOs out of otherwise impossible situations.

WØUO changes his picks throughout the cycle. Since he likes 160, 80 and 40 meters so much, Jim is more concerned with geomagnetic conditions than solar flux.

If you are limited by space and/or budget and decide to specialize on a single band, you might find it odd that your best chances might lie at opposite ends of the HF spectrum.

Ten meters offers many advantages. Antennas on the band are smaller than they are on lower frequencies. The band is very large, allowing you to move away from the big guns and QRM. When conditions are good, low power and small antennas can be amazingly effective. When I first moved to this location, we were heading towards the peak of the sunspot cycle. I decided to put together a small stack of a pair of four-element 10-meter Yagis at about 65 and 35 feet. I felt I ruled the band with that setup, vet in terms of price, size and complexity it was not much more than the same tower with a large tribander.

Unfortunately, 10 meters gets quiet when the sunspots disappear. Despite this, I still operate my favorite contest, the ARRL 10-Meter Contest — even at the bottom of the sun spot cycle. For the DX contests, a single-band 10-meter competition from the Black Hole is too much for even this 10-meter diehard. A migration to the bottom bands may be the solution.

Although there are some very large antenna systems on 80 and 160 (such as 4-squares) they are still relatively rare. A vertical or inverted L with an exceptional ground system will put you above average as noted by K9SD. For receiving, Beverage antennas are inexpensive if you have the space or understanding neighbors. Loops, EWE and K9AY arrays are an option for those with less space.

Doing a single-band effort has some down sides. It can get very boring late in the contest. From North America on Sunday afternoon on 10 or 15 meters during a DX contest, it is mainly a matter of looking for a new PY or LU to appear. I remember an 80-meter single-band push that I did in the ARRL DX contest during the mid-1990s. Friday night was great and I was way beyond where I had expected to be. I was hoping for a repeat Saturday night. Conditions were still great, but I only found a half-dozen new stations to work by midnight.

Single-band competitions also require less strategy than all-band efforts. Deciding what band to be on is something that must be constantly evaluated in an all band competition. In that respect, singleband competitions are less interesting.

Single-band efforts can be good alternatives for those with the inability to be competitive on multiple bands. They are also great educational experiences. If you want to move into the arena of major multi-op competitions, becoming known as an expert on a certain band can't hurt your chances of being invited to one.

That wraps up this installment of Contest Tips, Tricks and Techniques. Thanks as usual go out to our readers who sent in their comments, including K4WI, K5AF, K8IR, K9AY, K9SD, KJ9C, N3BB, N8UX, WØUO, W1WEF and W9RE.

Topic for Jan-Feb 2005 (deadline December 10, 2004)

What was the strangest or toughest problem you had with your station? How did you track it down, and what was the solution?

Send in your ideas on these subjects or suggestions for future topics. Postal mail: 3310 Bonnie Lane, Slinger, WI 53086. E-mail: w9xt@unifiedmicro.com. NCJ

Contesting on a Budget

Saving Money through Planning

During my 27 seven years in the Air Force, I've managed multiple long-term projects, and have gained a great appreciation for the importance of long and short-term planning. I now teach project management to corporations, and the biggest selling point for having a project plan is that it ultimately saves money.

The three principle variables in project management are scope, schedule and resources. Scope deals with *what* you intend to do, such as building a winning, single-tower, single-op low power HF contest station; or a world-class multimulti high-power station. Schedule deals with *when;* in other words, the time frame in which you intend to do it, five years, 10 years, etc. Resources deal with *how* you will accomplish the project, or the equipment, antennas, peripherals, etc that will help you reach the goal.

My call for inputs brought an immediate and very interesting mix of responses, with ample evidence that sound planning principles are being applied within the contesting community.

Why Plan?

Planning station improvements as a long-term project makes sense. By determining which improvements will yield the greatest increase in our overall contest performance, we can sequence these improvements as major phases of an overall plan, and develop detailed task lists of things to do to accomplish each phase. These tasks, in turn, can be sequenced in an efficient manner to ensure that we don't have to circle back to accomplish missed items.

By having visibility of our improvement efforts over the long run, we can start aligning needed resources (hardware, work crews, etc) against the plan. Typically, in the highly competitive corporate environment, schedules often drive projects. Most of us, however, don't have the luxury of buying everything new off the shelf and putting a monster station together in time to win the next contest. We are usually resource-constrained rather than time-constrained. This often means spending time searching for that good deal at a swap meet, or hiring tower installers during their off season when they can be engaged for a lower cost.

Long versus Short Term Planning

Short-term planning is typically considered to be planning for the next two to three years, while long-term planning is for the next four to 10 years. With these definitions in mind, the responses were quite varied and interesting. Given that many of us are still part of the "mobile society" and are still working our way up the real estate food chain, few have the long-term "visibility" to develop a long-term plan.

One of the few with a long-term design strategy was K5ZD, who had a plan for his towers that he finally competed over an 11-year period. If Randy's operating success is indicative of his planning, he obviously did a very good job! Gary, W9XT, has long-term capabilities, such as low-band and VHF capabilities that he rolls into a plan looking several years out. Jim, K1IR, notes that while most of his planning is short-term, his building efforts are always for the long term. He notes, "I do the installation as if it should be there 20 years." Billy, AA4NU, notes that his long-term planning is driven by the sunspot cycle. Obviously, there's no use in building big stacks for bands that are not likely to be open. Jim, WØUO, has a long-term plan, but executes it as time, space and resources allow.

Gary, KØBHC, just retired from the Army, and in true military fashion, put together a long and short-term plan for his new "retirement" station. He has "...a very detailed plan...including a list of items to be purchased, which is prioritized by how the items will affect the performance of my station." As an Infantry Sergeant First Class, Gary was familiar with importance of planning to carry an operation, so he's a "true believer."

Most respondents indicated that their planning was mostly short-term, typically one to two years forward. N4GG calls his planning "short to mid-term, with amplifier and SO2R switching systems in the works." Robert, K5PI, maintains the W5KFT station and usually plans about a year out. Doing so allows the 'KFT team to look for bargains, often saving a lot of money. Gary, W9XT and Jim, K1IR, have short-term plans that extend through the summer in preparation for the contesting season.

Identifying Gaps and Weaknesses in Capability

Gaps and/or weaknesses in capability need to be identified in order to drive planning efforts. Jim, K1IR, has his multi-op team assess the station performance and discuss both indoor and outdoor improvements to be made. They discuss upcoming propagation and attempt to configure the antenna mix accordingly. Considering the recent propagation conditions, they are stressing the low bands.

Jim, N3BB, has not yet run *TA* (Terrain Analysis) at his location to get a detailed analysis of his antenna capabilities, but his operating experience has indicated weaknesses on 80 and 160 meters, and he has addressed them. Bill, AA4LR and Billy, AA4NU, have a similar take on assessing gaps and weaknesses. They compare scores with other stations in the general geographical area and factor in differences in equipment and antennas to determine the potential of various alternatives.

Randy, K5ZD, addresses this area with his typical concise analysis. Randy writes "Put stuff up. Stuff that works, you keep. Stuff that doesn't, you replace. Try not to break anything that is working."

Perhaps the most insightful comments, though, addressed the human factor. Jim, WØUO, does a thorough analysis on how he performed after each contest and looks for performance gaps that he can improve upon. Hal. N4GG. touts the benefits of quest operating at the big stations and staying in touch with those interested in station design in order to find areas to improve. Grad Student and contester K8GU, Ethan, echoes that sentiment, stating that guest operating and visiting other stations afford him the opportunity to see what other operators and station builders are doing that will help him in his station planning. Bill, AA4LR, neatly summarizes the human factor, "...sometimes it is the station, sometimes it is luck. It's skill most of the time."

Hal, N4GG, and Brad, KØBHC, both support reading and evaluating everything on the subject of contesting that you can get your hands on. Brad recommends asking a lot of questions, and he praises the "Big Guns" for their consistent help with his queries. As Brad says, "knowledge is power."

Planning versus Budget Realities

Does the budget drive the plan, or vice-versa? Most of you are driven by budget constraints, some more than others. Even those with a long-term strategic plan in place like, Jim, N3BB, indicated, "...tactically, the expenditures must be in line with the basic family budget." Congratulations to Ethan, K8GU, who has a fiancé-approved station plan for when he gets out of graduate school. That's thinking ahead, Ethan! Jim, K1IR, prioritizes all the improvement projects by their value. Even a low-cost improvement like doubling the number of radials on a low-band inverted L has a high return in terms of mults and Qs. Prioritizing by value provides a roadmap that gives the best "bang for the buck" overall. The sudden appearance of a "good deal" on a needed value-driven resource may alter the overall priority list.

Hal, N4GG, wanted to build the best contest station possible independent of budget, but favored being frugal over being frivolous. He notes that some of the best gear ever made is only available on the used market, and some of

The W21HY 8 Band Audio Equalizer And Noise Gate brings professional audio processing technology to your shack ... affordably!

The W2IHY 8 Band Audio Equalizer And Noise Gate provides three powerful audiomanagement tools for your microphones and radios. Fine-tune your microphone with 8 Bands of Equalization. Customize your audio for that rich, full broadcast sound or penetrating, pileup busting contest and dx audio. Change from one audio "personality" to another instantly with smooth-action slide pots. The highly effective Noise Gate eliminates background noises picked up by your microphone. Increases signal clarity and presence.

Universal Microphone and Radio matching capabilities let you interface practically any microphone with any radio! Comprehensive impedance matching and signal level controls for input and output, 8-pin, XLR and RCA microphone jacks. Headphone monitor. Extensive RFI protection.

W2IHY 8 Band Audio Equalizer And Noise Gate \$249.99 (Kit \$204.99) Microphone Cable (specify radio make & model) \$20.00 W2IHY Dual Band Audio Equalizer And Noise Gate \$144.99 (Kit \$109.99) \$&H \$11.00 Three year parts & labor warranty. the best switching and interfacing gear is home-designed and built. One only has to be willing to invest the time. Gary, W9XT, also talked about the time versus budget tradeoff. He rescued a few miles of wire from the dumpster that will become the radial system for his 160meter antenna, but it will take a lot of time to make this inexpensive improvement. As Jim, N3BB, states, "...money is important, of course, but time is really important as well."

The Technology "Silver Bullet"

Technology is the food that fuels a contester's soul, and we're all looking for that one "silver bullet" that will give us the big score and put us in the box. Most respondents expressed excitement over new technology. The Ten-Tec Orion and the Yaesu FT-1000MP with the Inrad roofing filter mod were mentioned as important hardware advances, but most respondents expressed caution in too much reliance in new transceiver technology.

Gary, W9XT, referred to new technology, as "bleeding edge," an apparent reference to the high cost of the newest and best. He notes that a quantum leap in station performance is mostly limited to small pistols making major equipment upgrades. He recommends slow and steady improvements and attention to detail. As Randy, K5ZD, succinctly states, "There are no quantum leaps. Only small incremental improvements."

Impact on the Bottom Line

There was strong consensus on the benefits of planning. Benefits such as "avoids false starts", "helps quantify what needs to be done", "helps in finding the right bargain items", "you don't buy stuff you don't need", "...makes sure that each incremental change *adds* to and does not detract..." and "maximizes what can be done against constraints" deliver the message loud and clear.

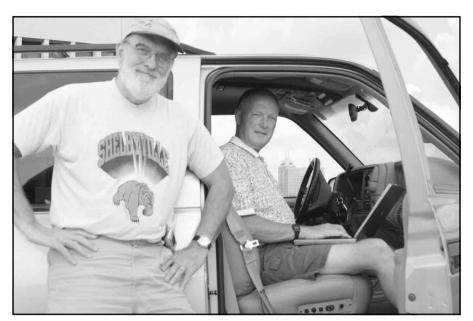
Ironically, those with limited resources are often the best planners. As Bill, AA4LR, says, "One aspect of having a constrained budget is that you tend to think about and make plans for station improvements." Based on these many positive responses, long and short term planning will hopefully become an integral part of contesting on a budget.

Thanks to K1IR, N3BB, N4GG, AA4LR, AA4NU, K5PI, K5ZD, K8GU, W9XT, KØBHC and WØUO for their great comments.

Topic for the Jan-Feb *NCJ*: Self-investment, the best investment? What type of investments do you make in yourself to improve your operating skills and technical competence? Guest op? Help design and build a super station? DXpeditions? Contest club memberships?

RTTY Contesting

NAQP RTTY Rover


Most RTTY ops don't seem to give much thought to operating mobile. I think that's understandable given that many come from a background of Model 25s. However, with the influx of tiny rigs, laptop computers and better mobile antennas, there's really no excuse for not giving RTTY mobile more consideration.

Should we be equipped with the sophistication of some VHF rovers? No. However, anyone with a rig like my IC-706MKIIG and a laptop should really give RTTY mobile a try. Whether it's operating while the wife or husband drives on a vacation, portable operating or contesting, RTTY mobile is great fun. In recent casual RTTY mobile operating, I've diddled from IN, KY, MI, TN, GA, AL and NC. But my original goal was to contest!

For the first casual try at RTTY mobile contesting, I asked Alan, WD9GMK, to help me. I figured we could take turns operating and driving. Of course, we wanted a short contest for the first mobile effort and the NAQP RTTY was just ahead. How would we make it interesting for a short run? We considered taking I-74 southeast to the Cincinnati area where we would be able to operate from IN, OH, and KY, but last-minute considerations kept us near home in the Indianapolis area. So, what did we do to make it more interesting? We decided to try to operate from several locations that we found "interesting" in one way or the other!

Our vehicle was my 1999 Chevy Suburban, offering adequate room and a ground-plane beneath a mag-mount HamStick antenna for 20 meters and an Iron Man vertical for 80 meters. Our rig was the IC-706MKIIG, which is rated at full power (100W) in full-duty cycle modes. The 706 is usually my second radio when operating SO2R in the shack. The computer was a Dell D-500 with the low-power-consuming Centrino technology, running on batteries to keep the noise level low. I would recommend against using an ac power converter. They add too much noise on most bands. I haven't tried one of the dc power cords available for most computers.

I picked Alan up at his home on the

The operators: John, WA9ALS (left) and Alan, WD9GMK (right).

The mobile antennas.

Making Qs from the Indianapolis Motor Speedway.

A picture is worth a thousand words...

ANTENNA MODEL

wire antenna analysis program for Windows® you get true 3D far field patterns that are far more informative than conventional 2D patterns or wire-frame pseudo-3D patterns.

Now you can have all the advantages of the MININEC code and Sommerfeld-Norton ground too, down to 0.02 wavelengths above ground. No split load, split source, or equivalent monotaper element approximations are needed. Enjoy superior graphing and 2D far field plot comparison capability.

Describe the antenna to the program in an easy-to-use spreadsheet-style format, and then with one mouse-click the program shows you the antenna pattern, front to back ratio, front to rear ratio, input impedance, efficiency, SWR, and more.

An optional **Symbols** window with formula evaluation capability can do your calculations for you. A **Match Wizard** designs Gamma, T, or Hairpin matches for Yagi antennas. A **Clamp Wizard** calculates the equivalent diameter of Yagi element clamps. **Yagi Optimization** finds Yagi dimensions that satisfy performance objectives you specify. Major antenna properties can be graphed as a function of frequency.

There is **no built-in segment limit**. Your models can be as large and complicated as your system permits.

ANTENNA MODEL is only \$85. This includes a Web site download **and** a permanent backup copy on CD-ROM. Visit our Web site for more information about **ANTENNA MODEL**.

Teri Software P.O. Box 277 Lincoln, TX 78948

www.antennamodel.com e-mail sales@antennamodel.com phone 979-542-7952

planes. With small radio receivers hidden inside our timepieces, they automatically syncronize to the U.S. Atomic Clock (which measures each second of time as 9,192,631,770 vibrations of a cesium 133 atom in a vacuum) and give time which is accurate to approx. 1 second every million years. Our timepieces even account automatically for daylight saving time, leap years, and leap seconds. \$7.95 Shipping & Handling via UPS. (Rush available at additional cost) Call M-F 9-5 CST for our free catalog.

east side of Indianapolis and we headed for the Indiana University Medical Center. Having done my medical residency there a few years ago, I was familiar with a nice parking garage that I thought would offer a great high-elevation spot. Of course, Alan was making contacts on the way to our first stop, too! The top of the parking garage was a great place, offering views of the Indianapolis skyline as well as the medical center. To RF, it was essentially an unlimited view of the horizon.

After awhile on the garage top, we headed out again, this time for the Indianapolis Motor Speedway. Here we operated from the Speedway Museum and from the front entrance to the track itself. By this time, it was raining, but we continued to make contacts and the rain didn't hamper our fun a bit.

However, Murphy did strike. As I turned a corner, Alan shouted, "Uh-oh, I just lost the log!" In disbelief, I darted into a gas station and stopped. All of the contacts showing in the log window had vanished! Thinking it was just a display problem, I reached over and saved the log, over Alan's verbal objections. I think he might've been right. We never did regain about 40 Qs that were lost. Our spirits were dampened by the log problem, but everything was still working, so we continued. Next on our agenda was the Indiana State Capital building. Of course, each stop was a photo opportunitv as well.

I finally dropped Alan off at home and went to my house and supper. Later in the evening, I sat in our driveway and made some 80-meter Qs during the last couple of hours of the contest.

Our first mobile contesting experience was great fun. We hope that more hams will consider taking the RTTY rig and supporting hardware with them the next time they travel. And if there's a contest on, so much the better! Consider traveling to a rare RTTY state for the next big contest. Finding a suitable place to stay and put up antennas is always a challenge on these sorts of contest expeditions, even in the US. However, if you're mobile, you always have a place to stay and a place to operate, complete with antennas. So, try it the next time you hit the highways!

For more photos of our operation, see w w w . w a 9 a l s . c o m / N A Q P / 2004NAQPRTTY.html. NCJ

DX Contest Activity Announcements

By Bill Feidt, NG3K

CQ World Wide DX SSB Contest (October 30-31, 2004)

<i>Call</i> 4XØWV 6W1RY 7P8Z A5	<i>Entity</i> Israel Senegal Lesotho Bhutan	<i>Class</i> M/S SOAB SOAB HP M/?	Operators KC8FS WA8WV F5VHJ ZS4TX F2VX F9DK GØLMX F5LMJ + other CDXC ops
A61AJ C5 C91Z CN2R CU DFØCG	UAE Gambia Mozambique Morocco Azores Germany	SOAB SOSB 20M SO HP SOAB HP M/S M/M	S53R ON4ACA ZS6WPX W7EJ DL1EK DH4JQ DL7AOS DB6JG DF3KV DF9ZP DH5HV DJ7EO DK6WL DL1MFL DL3DXX DL6FBL DL8NSB DL8WPX DO1ET
ED3SSB ES6Q	Spain Estonia	M/S M/2	EA3QP EA3IN ES5RY ES5RV ES5MC ES5JR ES5QX ES5RW
EY8MM FM FP/VE7SV FS/AH8DX GMØB HI3TEJ HS8AC IH9P ISØA	Tajikistan Martinique St Pierre Miq St Martin Scotland Scotland Dominican Re Thailand Italy (Africa) Sardinia	SOSB 20M SOAB M/2 SOAB SOAB LP M/M p??? M/S M/S M/M	EY8MM F5MUX VE7SV + VE/XE/W team AH8DX W3LEO Team H13TEJ E20HHK E21EIC IT9BLB + international team IS0GRB IS0MYN IS0CLA IS0XDA IS0ADZ IS0SEL IS0XSE IS0WBT
J3 J49Z J75J	Grenada Crete Dominica	??? M/S M/?	possibly 1 or 2 ops I2WIJ IK8UND IK8HCG W4WX W9AAZ W1LR N1WON N5VL
JW5NM LY7Z LZ9W	Svalbard Lithuania Bulgaria	M/S M/S M/M	JW5NM JW7FD + others LY2CY LY2TA LZ Contest Team

CQ World Wide DX CW Contest (November 27-28, 2004)

ou nonu			CI 21 20, 2004)
Call	Entity	Class	Operators
3D2	Fiji	M/M	K2KW N6BT KE7X
			+ others
9M6NA	East Malaysia	SOAB HP	JE1JKL
9Y4ZC	Trinidad Tobago	SOAB HP	DL6FBL
ATØB	India	SO LP	VK2BNG fm Vypin Is
C91F	Mozambique	M/S	AA4NN W4GMÝ
CN2R	Morocco	SOSB 80M	W7EJ
CN2KM	Morocco	SOSB 20M	SM2EKM
CW2A	Uruguay	SOSB 15M	SM4DHF
ES6Q	Estonia	M/2	ES5RY ES5RV ES5MC
			ES5JR ES5QX
EY8MM	Tajikistan	SOSB 20M	EY8MM
IH9P	African Italy	SOSB 80M	OL5Y
JW5NM	Svalbard	M/S	JW5NM JW7FD + others
LZ9W	Bulgaria	M/M	LZ Contest Team
MJ0ASP	Jersey	SOSB 15M	F5SHQ
OE4A	Austria	M/S	OE1EMS + others
OHØI	Aland Is	SOAB HP	YL2KL
OHØZ	Aland Is	SOAB HP	OH5DX
OM7M	Slovakia	M/S	Low Bands Contest Club
P4ØW	Aruba	TBD	W2GD
SU8BHI	Egypt	???	HA3JB
TO4A	Martinique	SOAB	N6TJ
VK9AA	Cocos (Keeling)		VK2IA
VP5W	Turks & Caicos	M/2	W7VV VE7XF KT7G
			K7BTW
VP8WWW	Falkland Is	M/?	WF5W NM5G W5MJ W5PF
WP2Z	Virgin Is	M/?	K3TEJ K3CT
XU7ADI	Cambodia	SO LP	SM5GMZ
ZS4TX	South Africa	SOAB HP	ZS4TX

Thanks to: 9M6NA, AA4NN, ES5RY, EY8MM, F5SHQ, JW5NM, K2KW, K3TEJ, LZ2CJ, N6TJ, NG3K, OE1EMS, OH5DX, OH9MM, OL5Y, OM5ZW, OPDX, SM2EKM, SM4DHF, SM5GMZ, VK2BNG, VK2IA, W2GD, W7EJ, W7VV, ZS4TX.

Call OE4A OH0I OH0Z OM7M P40A P40W PJ4/T93M PJ7/K7ZUM S79MH S79MH S79MH S79Y T30T T88QQ TI8M V26DX V63B VK9XD VK9XD VK9ZD	Entity Austria Aland Is Aland Is Slovakia Aruba Aruba Neth Antilles Sint Maarten Seychelles Crete W. Kiribati Palau Costa Rica Antigua Micronesia Christmas Anguilla	Class SOAB HP M/S SOAB HP M/S SOAB 20M TBD SOAB HP SOAB ??? M/S SOAB ??? M/2 M/? SOAB SOAB SOAB SOAB	Operators OE1EMS YL1ZF YL2KL YL2LY YL3CW OH5DX Low Bands Contest Club KK9A W2GD T93M K7ZUM HB9OCR SV9FBM SV9FBZ K7ZZ JA1KAJ fm Koror (OC-009) T12KAC W4BW K4UN W4KTR WW4LL N5VI W3CF + others TBA JA7HMZ VK2CZ KC5EA N5AU N5TJ K5MR
V26B VP5X	Antigua Turks & Caicos	M/2	VE3EJ K1DG N2NT Team Antigua KY1V WA4PGM K0RAY NØVD + others
VP9	Bermuda	M/?	K4UU K6CT K9VV
XU7ACE YV4A ZPØR	Cambodia Venezuela Paraguay	SOAB LP M/M SOAB	KI4CCO W4OV WD4R W4OV ES1FB Team ZP5AZL

Thanks to: 425DXN, AC8G, AH8DX, DL7AOS, E21EIC, EA3IN, ES1FB, ES5RY, EY8MM, F5MUX, F5VHJ, GMØEGI, HB9OCR, HI3TEJ, IK8UND, ISØGRB, IT9BLB, JA7HMZ, JW5NM, K7ZUM, K9VV, KA2AEV, KC8FS, KK9A, KY1V, LY2TA, LZ2CJ, N4AA, N5AU, NG3K, OE1EMS, OH5DX, OH9MM, OM5ZW, ON4ACA, OPDX, S53R, SV9FBM, T93M, VE7AVV, VK2CZ, W2GD, W3CF, W3LEO, W4BW, W7EJ, YV5LMW, ZP5AZL, ZS4TX, ZS6WPX.

ARRL 160 M Contest (December 3-5, 2004)

	•	· · ·	
Call	Entity	Class	Operators
P4ØTA	Aruba	SO HP	K6TA

Thanks to: K6TA

ARRL 10 M Contest (December 11-12, 2004)

			- /
Call	Entity	Class	Operators
LX5A	Luxembourg	M/S	KT8X LX1ER LX1RQ
MJØASP	Jersey	SO CW	F5SHQ
P40K	Aruba	M/S	K6KO K6TA
PJ4Z	Neth Antilles	M/S	WW4LL K4BAI
ZS6WPX	South Africa	SO HP	ZS6WPX
ZW2R	Brazil	???	PY5FB

Thanks to: F5SHQ, K6TA, LX1RQ, PY5FB, WW4LL, ZS6WPX.

VHF-UHF Contesting!

Aurora in VHF Contests

Aurora and geomagnetic storms often "spoil" propagation in the HF contests. But to VHFers, aurora is a great propagation mode that may add significantly to your QSO and grid totals in the VHF Contests. Aurora can and has appeared in all of the major VHF Contests. What is aurora and how can you use it to improve your score?

Aurora Borealis (Latin for "northern dawn") is a ring-shaped belt of ionization and light displays surrounding the Earth's geomagnetic poles. It is associated with geomagnetic activity. It is generally thought to be caused by high-speed particles knocked loose from the Van Allen belts by the solar wind, which are then guided Earthward by the geomagnetic field lines. When these high-speed particles collide with gas molecules in the Earth's upper atmosphere at an altitude of 100 km, the gases are ionized. As the ionized gases "relax" to their normal state, energy is released as colored light. That causes the visual aurora. The ionized gases in the aurora curtains can reflect radio signals, too. This is radio aurora. Aurora can reflect 50, 144, 222, 432 MHz and rarely 903 MHz signals when intense enough. Most aurora VHF QSOs are made on 50 and 144 MHz.

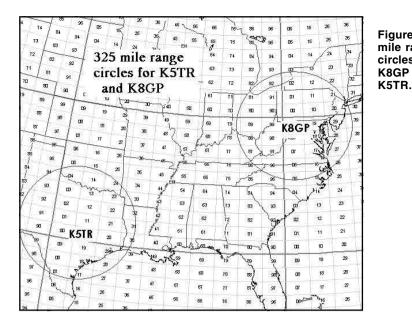
Aurora ionization occurs in the E laver. Thus, the maximum range possible for aurora QSOs is around 2000 km for an east-west path. The North American DX record for 144 MHz aurora is 2178 km set by WAØTKJ and KA1ZE on February 08, 1986. Most contacts are considerably shorter. Aurora typically favors the northern stations. During intense geomagnetic storms the aurora belt is pushed south. Stations as far south as TX, AZ, CA and FL have worked aurora during major geomagnetic storms, such as in October 2003. As I write this column (August 30), there is a minor aurora opening in progress. I see K9ZO spotted "55A" by K9MU EN44, NW7O DN47 working K7TNT DN73 on 144.200 MHz and WZ1V FN31 working K9MU EN44 on 2 meters. Most spots are CW, but K9MU notes W8GG EM88 is "vry strong on aurora 2M SSB!" at 2215 UTC.

Aurora-reflected radio signals are heavily distorted. SSB sounds like a very mushy voice in a steam hiss. CW is the preferred mode for Aurora. When aurora is strong, 50 MHz SSB can be worked if the stations speak slowly, and sometimes this even works on 144 MHz. Aurora tends to favor the high-power, bigantenna stations. You can quickly tell the difference between the big guns and the little pistols during aurora. The intensity of aurora reflections drops as you go higher in frequency. Thus, a QRP or lowpower, small antenna station will do better on 50 MHz during a contest aurora opening. If conditions are good, you may make 144 MHz aurora QSOs as well. Stations running 10 W and halos have made 144 MHz aurora contacts, but these are not common. Stations running 100 W or more and a good Yagi should be able to make plenty of QSOs up through 222 MHz during a good aurora.

Because a big aurora opening can reflect 50 through 432 MHz signals out to ranges of 2000 km, it can be a significant factor in a VHF contest. An aurora opening is unique in that it can be predicted to a certain degree. Solar coronal holes and CMEs (coronal mass ejections) are two events that cause geomagnetic storms that in turn cause aurora. The occurrence of these can be noted from solar observations. These can be found on the Internet at Web sites such as Spaceweather.com. Often there are forecasts for when the highenergy particles reach earth and may cause aurora. So, if a coronal hole or CME occurs about two days before a VHF Contest, there is a chance of aurora in the contest. There is more to having aurora actually occur, though. Even though high-energy particles arrive from the Sun, there may not be aurora. This is because the Earth's magnetic field and the Interplanetary (or Sun's) magnetic field must be aligned to "couple" the energy from the solar wind. The "Bz" vector of the IMF must point "south" so the terrestrial and solar magnetic fields can couple. In other words, for aurora to occur the Bz must be south. The Bz is measured by magnetometers on satellites. You can find the Bz in "real time" on the Internet at various Web pages such as Aurora Sentry.

A dramatic example of how Bz can affect aurora was in October 2003. There were several large geo-effective CMEs that month. When the massive clouds of charged particles arrived, the Bz was north. No aurora was noted for hours, to the disappointment of VHF DXers. Finally, the Bz swung south and aurora occurred.

Contest Tips For Using Aurora


Check **Spaceweather.com** and other Web sites a few days before the contest to see if a coronal hole was in position or CME occurred, and thus a chance of aurora. If so, be prepared. During the contest, watch the Bz. If it swings south, that means a good chance of aurora. Even a minor "gust" in the solar wind can cause some aurora if the Bz is strongly south.

During the aurora, move your antenna east and west of north. A mistake often made is to just "point the antenna north" during aurora. The longest east-west QSOs will be made by pointing your antenna east and west of north. Aurora is dynamic, and the "hot spot" will often move. During the aurora on July 27, 2004, I found the best reflections were at 30 degrees azimuth initially; they moved to 310 degrees later in the opening. Start on 50 MHz and move up the bands if the aurora is strong. Don't forget 222 MHz, as often aurora reflections there can be as strong as 144 MHz and the QSOs are two pointers. If you are a big gun, try 432 MHz aurora. Doppler shift can be significant. In the July 27 aurora I had 1 to 2 kHz Doppler shift on 144 MHz during a QSO with VE3AX. So, when calling a station, if you don't get a reply calling zero-beat, try calling up or down a kHz. When calling CQ, be sure to use the RIT and listen up and down for replies. Doppler shift increases with frequency, and can be up to 10 kHz or more on 903 MHz.

Watch for aurora Es while the aurora is in progress and when it breaks up. Sometimes, on 2 meters, you will be working a station a thousand miles away with loud auroral hiss, and the tone changes in seconds to clear. This is E_s. Auroral E_s is most common on 6 meters, but has been worked on 2 meters as well. The range is typically "single hop" out to 2200 km, but as auroral Es occurs higher in altitude than "regular" E_s, the range can be further. Sometimes double hop auroral Es is worked, such as Alaska to W1, W9, WØ and OX, TF to W1. F2 can sometimes appear on 6 meters during and just after an aurora. This will be more likely in the September and January VHF Contests. Possible 6-meter F2 contacts are to Central and South America, Hawaii and Australia.

More On K8GP's High 6-Meter Score In The 2004 June VHF QSO Party

K8GP reported "210 E_s QSOs out of 900 total contacts on 6" for the June 2004 VHF QSO Party (see *QST*, Sep-

tember 2004, pp.79). That implies 690 6-meter contacts via ground wave, tropo, scatter and other modes. K8GP's location in FM08 is within ground wave/tropo/ scatter distance of the high population centers of the northeast corridor. Their high location on Spruce Mountain helped, too. Thus, K8GP could continue to make many 6-meter contest QSOs under the "dead band" conditions of this year's contest. Compare K8GP's location with K5TR (an outstanding VHF contest station in Texas) in EM10. Draw range circles at 200, 300 and 400 miles around EM10 and FM08 and note what is within "ground wave" range of K8GP and K5TR (see Figure 1). Contesting on VHF from the northeast corridor is a whole different world than out in KS or TX when the "band is dead." W3ZZ notes from K8GP's mountain top site in FM08 they can work just about "anyone within 500 miles, so we do work a lot of W8s, W9s, and W4s besides stations in the northeast (corridor)."

K8GP's 210 E_s QSOs are still good for this year's contest, as was their 172 Grids. W3ZZ noted K8GP picked up some rare grids on 6 meters including CM87, DM03, 04, 10, 11, 12, 14, 43, 44, 73, 84, 90, 93, 94, 95, DN30 and DN33, EM00, 02, 04, 05, 06, and 08, and EN08, 18 and 19. Quite a few "double hop E_s " grids for "an otherwise bad weekend." K8GP worked many "mini- E_s " openings. These were short 1-2 minute openings where 1-3 stations from 700 to 1000 miles away would be worked, then nothing. Great operators help, too. The K8GP 6-meter bullpen includes Rich Zwirko, K1HTV, his son Andy, K1RA, Dave, KM3T and Gene, W3ZZ, who are all seasoned and experienced contest operators.

The 6-meter station at K8GP consists of a TS-850 HF transceiver for the IF, a Downeast Microwave transverter, a Teletec 60 W intermediate amp and a 1.5 kW Henry type final amplifier. Using an HF transceiver with a transverter results in much better receive performance than one of the "HF + 6M radios" such as the IC-706, etc. At WBØDRL we used the Kenwood TS-920 HF transceiver for the IF, an SSB Electronic 6-meter transverter, a Mirage 150 W intermediate amp and an 8877 1.5 kW final amp. The Elecraft transceivers also make great IF rigs for VHF/UHF transverters.

As discussed in my Sept/Oct 2004 column, K8GP uses the C3I C5 Yagis on 6 meters. The K8GP main stack consists of four C5 Yagis with the lowest Yagi about 18 feet high. A second stack of C5s is located about 125 feet from the main stack on a 24-foot high mast. The bottom Yagis are fixed to the northeast. while the top two rotate. The Yagis can be phased in various combinations on receive, but transmit is on all three pairs of Yagis. On receive one can listen to the bottom fixed pair of northeast Yagis, the top rotary pair of Yagis, the remote pair of Yagis or the 4-stack at once. Stations 1000 miles away in VE1 report K8GP can be heard 24/7 on 6 meters.

So, what is the secret to K8GP's 900

Figure 1—325 2004 VHI mile radius (both on circles around high pop K8GP and tors, and K5TR. nas." Tha ing this b

6-meter contest contacts in the June 2004 VHF QSO Party? "Super location (both on a mountain top and close to high population centers), good operators, and decent equipment and antennas." Thanks to Gene, W3ZZ, for sharing this behind-the-scenes information on K8GP.

Report on the September 2004 VHF QSO Party

Many stations were hoping for a big tropo opening in the VHF QSO Party. On Wednesday and Thursday before the contest, stations in the Midwest were working up to 1000 mile tropo paths on 144 and 222 MHz. Typical paths were TX-MN, OK-MI, KS-WI and AL-IL. Hepburn's tropo forecast page hinted at a possible repeat of the big tropo opening in September 2003. But as the weather in the Midwest heated up over the contest weekend, the VHF bands cooled off. It was 94 degrees Sunday afternoon in Wichita. hotter than in July! I saw few tropo contacts reported on the loggers. There was some tropo reported in the northeast by N3FZ and others. One of the better 2-meter tropo QSOs I saw was between W1QK in FN31 and WA9KRT in EN61 (690 miles) at 0336 UTC on September 12. From EM18, I worked K5QE EM31 with 10 W over a 500-mile path on 2 meters at 0053 UTC on September 13. Switching to CW got me this one.

I did not see aurora, E_s or F2 DX spotted on 6 meters by any W/VE. There was some decent 6-meter scatter on Sunday. K0HA in EN10 spotted W3SO, K8EP, K1WHS, K2EY, AA4ZZ, K8MD, K3YTL, W4NH, K8ROX, K5QE, N3DB, K5IX and K3EAR among others via scatter on 6 meters. As for F2 on 6 meters, K4RX heard "CE FM Music," a commercial broadcast on 48.2 MHz on September 12 around 2050 UTC. Despite the low solar flux, TEP (trans-equatorial propagation) still occurs, with PY2SRB in Brazil hearing the 2-W V44KAI/b beacon on 50.054 MHz at 0130 UTC on September 13. If a KP4 had been active on 6 meters in the contest, he may have been able to make some 6-meter TEP QSOs to LU and PY.

The big gun stations on 6 meters were able to grind out scatter QSOs. On 2 meters, alert operators (who used CW) made some long haul tropo scatter QSOs. The digital mode enthusiasts using JT6M and JT-44 were able to complete some skeds. The rest was groundwave. Overall, it was a slow contest for most participants. **NCJ**

Results, January 2004 NAQP CW Contest

Once again, the January edition of the NAQP CW Contest proved to be record setting. ZF2NT used his Caribbean location to his advantage on the high bands to take first place and set a new single-op record for total QSOs (1312), broke his old Cayman Islands record by more than 50 percent, and came within a few hundred points of the all-time single-op record. N6MJ, operating what turned out to be his last NAQP CW from W6KP's superb QTH before it was sold, was a strong second and set a new California record, N9RV was third, while N6ZZ set a new New Mexico record for fourth. W4PA was fifth, followed closely by K6LL with a new Arizona record. N2NC took seventh, while W7RN, operated by K5RC, set a new Nevada record and squeaked by fellow NCCC teammate, N6RO, for eighth. N3BB rounded out the top ten.

For those single-ops running QRP power, KG5U was the winner by a wide margin over second-place K7RE. WB8RTJ took third, while K3WWP squeaked by K7UP for fourth.

With a slight edge in both total Qs and mults, K5KA took first place in the multitwo category and set a new record of 598,689 points. Old record-holder, W5NN, took second, while WE9V captured third.

Once again, the Southern California Contest Club #1 team used top-ten single-op finishes by two of its members to power to first place in the team competition by a comfortable margin over the second-place Tennessee Contest Group #1 team. With three team members having top-ten single op scores, but only four of its five team members submitting logs, the Northern California Contest Club #1 team captured third.

In addition to the new records noted above, N4AF broke his own North Carolina record, N5OT smashed his own Oklahoma record and N4OGW exceeded his own Mississippi record. K5GO captured the Arkansas record, while AA5AU broke the record for Louisiana. In the West, W7CT nudged the Utah record upward and KO7X almost doubled the old Wyoming record. WD0T broke his own South Dakota record, NP3A operated NP4Z's station to break NP4Z's Puerto Rico record, and N6KI once again operated XE2MX to a new Mexico record.

Team Scores 1. SCCC #1 2. TCG #1 3. NCCC #1 ZF2NT N6MJ 363,938 W4PA 314,550 367,360 K6LL 312,872 KØEJ 272,745 W7RN 285,740 K6LA 263,130 K4WX 236,880 N6RO 284,566 228,448 K7NV AC6T K4RO 196,186 175.055 K6AM 219,936 NA4K 165,946 1,186,307 1.112.721 Total 1,388,324 Total Total 3 SMC #1(N9RV,N9CK,N9FH,N9CO,WT9U) 1,094,223 Austin Powers #1(N3BB,K5NA,K5WA,K5TR,KG5U) 1,062,861 4. 5. SECC #1(R4NO, K4BAI, W4OC, K4OGG, K03E) C41,100 TCG #2(W04O, K4AMC, W4NZ, K4LTA, N4IR) 832,708 PVRC #1(N4AF, K7SV, KD4D, NY3A) 775,026 SCCC #2(AA6PW, K6NR, XE2MX, N6HC, W6TK) 763,149 6. 7. 8. Florida Contest Group Team #1(N4FCG,K4FCG,K5KG,WD4AHZ) 745,336 CCO #1(VE3EJ,VE3DZ,VE3KZ,VE3KP,VE3IAY) 721,766 GMC's Rocky Mountain Contesters #1(W7UT,N0SXX,KO7X,N4VI,K0UK) 684,288 9 10 11. MWA #1(NØAT,NAØN,KMØO,KØAD) 668,313 NCCC #2(KX7M,K6RIM,AD6E,WZ6Z) 643,902 Azenmokers 3(N6ZZ,N5UL,KC7V,K7UP) 617,835 12. 13. 14 FRC(AA3B,N3AD,K3MD,W7OM) 596,309 Team Mississippi(N4OGW,W5XX,WQ5L,KB5IXI) 582,425 Azenmokers 1(N5OT,K8IA,N7MAL,NEØP) 582,646 Mad River Radio Club #1(K9NW,N8EA,W8MJ,K5IID,AF8A) 571,090 15. 16. 17. 18. 19. 20. Ozark Contest Club(K5GO,KM5G,W5MK) 482,944 Azenmokers 2(N2IC,KY7M,W7YS) 449,352 SMC #2(K9MMS,WA9IRV,W9IU,NØAV) 446,102 21. 22 23. 24. 25. 26. SLOC #2(WAFFGM,AL4, , Maple N, WAFT) 524,540 Florida Contest Group Team #2(K9OM,K4LQ) 312,158 NCCC #5(K6XX,N6EE,N6WG,K6OWL,AD6TF) 308,977 PVRC #2(W4AU,K3MM,N4ZR) 287,807 Mad River Radio Club #3(NY1S,K8MR,N8IW,N8VW) 284,245 27. 28. 29 30. 31. 32. SMC-IL(K9QVB,N9BOR,AA9KH,N9GUN) 253,432 Austin Powers #2(W5ZL,W5JAW,NX5M,K5PI/KH6) 251,783 TCG #3(N4DW,K4BEV,NY4N,W9WI,NY4T) 248,481 CCO #2(VA3NR,VE3SMA,VA3DF,VE3FU,VE3MGY) 238,781 Order of Boiled Owls(N2GA,KW2O,W2OWL,NA2M,W2YK) 230,977 NCCC #3(K6LRN,NT6K,AE6Y) 224,142 CMC IN/KOWKY & IOC A LOC KA0E KOMU 222,152 33. 34. 35. 36. 37. 38. CWrocks (WA3HAE,N3FR,WA3SES) 184,218 Team CCO #3(VA3DX,VE3NBJ,VE3AGC,VE3XD/W4,VE3UKR) 173,249 Score Reductions Greater Than 10%(N4YDU,AF4QZ,KE9R,K3ASK) 166,640 39. 40. 41. 42. Mad River Radio Club #4(KT8X,K8DD,W8RU) 160,364 Austin Powers #3(AC5AA,N5XU,KI5DR) 154,975 Mad River Radio Club #2(NU8Z,ND8DX) 151,276 43. 44. 45. CTRI Contest Group(KS1J,N3KCJ,N1HRA,AJ1M) 150,398 46. CTRI Contest Group (NS13,NSC0,NTRA,AJTM) 150,536 NCCC #4(N6ZFO,KO6LU) 138,579 Florida Contest Group Team #4(W4SAA,W4EBA,K4LW) 132,535 PVRC #3(K4QPL,N3XL) 131,382 SCCC #3(W7WW,W6KY,N6RT,W4EF) 127,071 TCG #4(K3CQ,W4RK,K1GU,N4UW,KG4PKQ) 122,031 Mad River Radio Club #5(WX3M,K8GT) 106,022 SCCC #2(N177,K01) 104,407 47. 48. 49 50. 51. 52 53. 54. MWA #3(K0HB, WG0M, AA0AW, K0VG) 97, 175 NCCC #7(K6SRZ, W6ZZZ) 93,058 SECC #4(K2UFT, AA4LR, WB4SQ, NJ8J) 70,458 TCG #6(KY4L, W0ETC, KM4H, AA0BA) 69,983 Florida Contest Group Team #3(KN4Y, N4GI, KB4N) 69,591 SCCC #4(WA6BOB, K6EY, K6ZCL, ZL/W3SE) 62,388 TCG #5(WHZD, KE4OAR, W4TYU, N9GG, N5NW) 60,555 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65.

By Bruce Horn, WA7BNM bhorn@hornucopia.com

Single Op T	op Ten l	Breakd	owns	S									
Call	Score	QSC	Os	Mults	160	80	40	20	15	10		Team	
ZF2NT N6MJ N9RV	367,360 363,938 351,900	131: 128 127	6 5	280 283 276	80/36 91/34 210/42	124/39 187/41 294/46	240/48 327/53 270/50	245/52 198/52 220/46	358/51 251/52 134/47		2/51 7/45	NCCC # SCCC # SMC #1	‡1
N6ZZ W4PA K6LL	323,361 314,550 312,872	115 116 120	5 8	279 270 259	99/33 137/40 32/19	164/45 267/45 127/40	206/51 244/47 317/51	192/50 245/50 210/49	280/50 163/47 281/52	109 241	/48	Azmkr 3 TCG #1 SCCC #	
N2NC W7RN (K5RC) N6RO	292,672 285,740 284,566	108 109 108	9 2	269 260 263	95/33 81/28 88/35	177/46 205/46 133/40	346/51 227/50 192/47	183/49 153/44 184/44	180/48 159/43 259/49	274 226	7/42 1/49 5/48		¥1
N3BB	276,000	110		250	74/28	143/42	307/50	184/44	172/44	224	/42	APwr #	1
Single Op C	-											_	
<i>Call</i> KG5U	<i>Score</i> 113,176	<i>QS</i> (602		<i>Mults</i> 188	<i>160</i> 0/0	<i>80</i> 143/36	<i>40</i> 81/35	<i>20</i> 83/36	<i>15</i> 135/42	10)/39	<i>Team</i> APwr #	1
K7RE WB8RTJ K3WWP	74,036 51,888 47,640	446 368 397		166 141 120	0/0 27/15 28/19 21/9	74/29 64/22 114/30	88/36 85/35 83/29	82/31 80/29 68/24	135/42 111/30 58/20 80/21	64/: 53/ 31/	25 16 7	APWI #	I
K7UP	47,460	420		113	0/0	0/0	12/9	96/35	154/36	158	8/33	Azmkr 3	3
Multi-Two E	Breakdov	wns											
Call	Score	QSC		Mults	160	80	40	20	15	10			
K5KA W5NN	598,689 590,139	198 198		301 297	220/41 161/33	421/48 379/50	450/54 471/56	394/55 375/55	302/53 332/53	202 269	2/50		
WE9V	524,030			297 290	251/43	379/50 378/49	471/56 470/54	375/55	196/48		//42		
Single Operato				070	-		0-1		0	000-		OTU	T
<i>Call</i> NY1S	<i>Score</i> 113,031	<i>QSOs</i> 661	Mults 171	<i>QTH</i> ME	<i>Team</i> MRRC #3		Cal W42		<i>Score</i> 9,380	<i>QSOs</i> 140	Mults 67	<i>QTH</i> PA	Team
KS1J	109,011	609	179	RI		test Group	W3I	РΤ	8,514	129	66	PA	
K5ZD W2JU	84,525 80,012	483 482	175 166	MA CT			*K3 N3F	AS ICN	7,056 5,700	112 100	63 57	DE MD	
K1HT	45,780	327	140	MA			K3E	SP	3,871	79	49	MD	
WG1Z K1JB	38,571 26,196	299 236	129 111	MA ME			N90 *W3	àG SZMN	3,713 456	79 24	47 19	DE PA	TCG #5
W1END	25,750	250	103	NH			K3F	Ή	384	24	16	PA	
K1DAN N3KCJ W1NK	23,484 18,860 18,326	228 205 187	103 92 98	NH MA CT	CTRI Con	test Group	K3A		154	14	11	MD	Score Reductions Greater Than 10%
N1HRA	11,583	143	81	RI	CTRI Cont		W4I N4F	PA CG(N4BP)	314,550 273,053	1165 1133	270 241	TN FL	TCG #1 FCG Team #1
AJ1M K1EP	10,944 9,271	144 127	76 73	RI MA	CTRI Cont	test Group	KØE	JÍ	272,745	1045	261	TN	TCG #1
W1TO	8,832	128	69	MA			N4A K9C	NH M	247,434 239,014	978 941	253 254	NC FL	PVRC #1 FCG Team #2
W1JQ N1MD	7,910 7,888	113 116	70 68	CT CT			K4V	VX	236,880	1008	235	TN	TCG #1
KA1VMG	4,704	96	49	СТ			N4F		221,364 204,057	858 861	258 237	FL GA	FCG Team #1
N2NC N2GA	292,672 117,845	1088 637	269 185	NJ NY	Order of B	oiled Owls	K4N (K/	A1DWX)	202,050	898	225	AL	SECC #1
KW2O WB2AA	78,474	451 462	174 157	NY NJ	Order of B	oiled Owls	KAF K7S	io V	196,186 192,066	842 807	233 238	TN VA	TCG #1 PVRC #1
WB2AA N2CU	72,534 41,374	462 302	157	NJ NY			K4E	AI	191,400	825	232	GA	SECC #1
NJ3C	22,908	249	92	NJ			K5K W40	G	188,571 184,070	789 790	239 233	FL SC	FCG Team #1 SECC #1
W2LE W2OWL(N2FF)	19,928 16,560	212 184	94 90	NJ NY	Order of B	oiled Owls	WO	40	179,424	801	224	TN	TCG #2
N2DBI	10,650	150	71	NY			N40 K4A	àG MC	178,425 178,314	793 789	225 226	GA TN	SECC #3 TCG #2
NA2M W2YK	9,128 8,970	163 130	56 69	NY NY		oiled Owls	K4C)GG	171.275	775	221	GA	SECC #1
WA2MCR	6,372	108	59	NY		0.000 0 1010	W4I	νZ	169,694	782	217	TN	TCG #2
W2QOB N2GC	4,992 4,532	96 103	52 44	NJ NY			NA4 K4L		165,946 164,031	794 749	209 219	TN TN	TCG #1 TCG #2
*KD2HE	3,280	80	44	NY			N4K		158,232	694	228	AL	0500 #0

WA2MCR	6,372	108	59	NY		W4NZ	169,694	782	217	ΤN	TCG #2
W2QOB	4,992	96	52	NJ		NA4K	165,946	794	209	ΤN	TCG #1
N2GC	4,532	103	44	NY		K4LTA	164,031	749	219	ΤN	TCG #2
*KD2HE	3,280	80	41	NY		N4KG	158,232	694	228	AL	
N2BZP	960	32	30	NY		WA4PGM	153,080	712	215	VA	SECC #2
*K2DB	266	19	14	NY		N4YDU	151,938	734	207	NC	Score Reductions
W5KI	198	18	11	NJ							Greater Than 10%
WB2ART	180	15	12	NY		W4AU	150,380	730	206	VA	PVRC #2
WB2ABD	4	2	2	NY		N4IR	141,245	689	205	ΤN	TCG #2
						K4QPL	121,152	631	192	NC	PVRC #3
AA3B	253,704	1023	248	PA	FRC	W4SAA	112,112	572	196	FL	FCG Team #4
K3WW	197,505	855	231	PA		KA1DWX	111,619	529	211	AL	SECC #3
KD4D	184,230	801	230	MD	PVRC #1	KU8E	92,340	540	171	GA	SECC #1
N3AD	154,775	755	205	PA	FRC	N4DW	88,888	542	164	ΤN	TCG #3
NY3A	151,296	768	197	PA	PVRC #1	N4TB	88,510	530	167	FL	
K3MM	125,802	723	174	MD	PVRC #2	AE4Y	85,158	513	166	GA	SECC #2
WA3HAE	115,173	603	191	PA	CWrocks	K4VU	80,013	447	179	AL	
K3MD	98,560	560	176	PA	FRC	K4BEV	78,750	450	175	ΤN	TCG #3
NS3T	86,779	539	161	MD		K4LQ	73,144	446	164	FL	FCG Team #2
N3SD	70,992	493	144	PA		WD4AHZ	62,348	436	143	FL	FCG Team #1
N8NA	70,744	478	148	DE		K3CQ	61,770	435	142	ΤN	TCG #4
WW3S	51,408	357	144	PA	North Coast Contesters	KA9EKJ	61,686	414	149	AL	SECC #2
*K3WWP	47,640	397	120	PA	.	N8UX	60,492	426	142	KY	
N3FR	41,082	334	123	PA	CWrocks	K4DJ	51,684	354	146	NC	
WA3SES	27,963	239	117	PA	CWrocks	K4GA	50,820	363	140	GA	SECC #3
NA3V	26,730	243	110	PA		KN4Y	43,680	312	140	FL	FCG Team #3
AA3ML	20,200	202	100	PA		KM4FO	43,329	303	143	KY	
WA3AAN	19,698	201	98	PA		K4BX	40,950	325	126	TN	
N3XL	10,230	155	66	MD	PVRC #3	K4IQJ	38,468	326	118	AL	
*NG3K	10,147	139	73	MD		K2UFT	37,524	318	118	GA	SECC #4
N3NZ	9,600	128	75	PA		W4RK	35,990	305	118	ΤN	TCG #4

<i>Call</i> W4DAN W3ZI/4	<i>Score</i> 35,872 35,148	QSOs 304 303	<i>Mults</i> 118 116	<i>QTH</i> TN VA	Team	<i>Call</i> N5NJ NE0P	<i>Score</i> 3,696 1,950	QSOs 77 65	<i>Mults</i> 48 30	<i>QTH</i> TX OK	<i>Team</i> Azenmokers 1
KY4L NY4N W4HZD K4WW	34,748 34,686 29,458 26.814	292 282 286 246	119 123 103 109	TN TN TN KY	TCG #6 TCG #3 TCG #5	AC5Z AC5ZQ W5PDB	1,750 945 156	50 35 13	35 27 12	TX TX OK	
*K4ORD W9WI W4NTI(WA4UA	24,856 24,817	239 299 218	103 104 83 112	VA TN AL	TCG #3 SECC #2	N6MJ(at W6KP) N6RO K6LA	284,566 263,130	1286 1082 1074	283 263 245	CA CA CA	SCCC #1 NCCC #1 SCCC #1
AA4NO W3DCG NY4T(W1ARN)	23,793 22,236 21,340 20,737	231 218 194 233	103 102 110	NC GA TN	TCG #3 SECC #3	AC6T(at N6VR) K6AM KX7M N7CW	228,448 219,936 217,560 177,760	944 928 980 880	242 237 222 202	CA CA CA CA	SCCC #1 SCCC #1 NCCC #2
*WB6BWZ K4HAL AA4LR WB4SQ	19,190 16,353 15,725	202 207 185	89 95 79 85	GA AL GA GA	SECC #3 SECC #4 SECC #4	AA6PW K6NR K6RIM	171,696 168,078 166,012	876 771 847	196 218 196	CA CA CA	SCCC #2 SCCC #2 NCCC #2
K1GU W4EBA KE4OAR	15,300 15,023 13,944	180 181 168	85 83 83	TN FL TN	TCG #4 FCG Team #4 TCG #5	K6XX N6HC N6ZFO AD6E	160,161 157,377 138,358 133,600	813 753 662 668	197 209 209 200	CA CA CA CA	NCCC #5 SCCC #2 NCCC #4 NCCC #2
AA4FU N4GI W4TYU VE3XD/W4	13,932 13,671 13,416 13,351	162 217 156 169	86 63 86 79	NC FL TN FL	FCG Team #3 TCG #5 Team CCO #3	WZ6Z K6LRN W6TK	126,730 110,670 99,007	667 527 547	190 210 181	CA CA CA	NCCC #2 NCCC #3 SCCC #2
KI3O KB4N *WN4M	13,284 12,240 11,988	162 153 148	82 80 81	VĂ FL TN	FCG Team #3	K6CTA K6SRZ K6III	97,148 77,572 76,776	596 473 457	163 164 168	CA CA CA	NCCC #7
KM4H WY4Y(N4EIL) KC4WQ	11,475 11,400 9,850	153 150 197	75 76 50	TN GA KY	TCG #6	NT6K W6IXP N6EE	69,174 59,976 56,544	427 408 372	162 147 152	CA CA CA	NCCC #3 NCCC #5
AF4QZ	9,048 8,946	156 126	58 71	SC TN	Score Reductions Greater Than 10% TCG #4	K6DGW W6XU WA6OGO AE6Y	51,986 50,468 46,953 44,298	374 407 333 321	139 124 141 138	CA CA CA CA	NCCC #3
*KW4JS K4WI WA4GLH KØCOP	8,658 7,524 7,344 7,280	117 132 102 112	74 57 72 65	TN AL TN SC		WJ6O KE6ZSN W6CWM	43,847 42,980 39,762	269 307 282	163 140 141	CA CA CA	NCCC #6
WW4LL N7DLS K4LW	6,804 6,732 5,400	108 102 100	63 66 54	GA TN FL	FCG Team #4	*N6WG KG6CMS K6OWL	39,552 38,771 38,090	309 283 293	128 137 130	CA CA CA	NCCC #5 NCCC #5
N4NTO *NA4BW K4SV	4,150 3,552 3,424	83 74 107	50 48 32	NC GA NC		K2RP W6KY N6RT	31,877 28,482 25,806	251 303 253	127 94 102	CA CA CA	SCCC #3 SCCC #3
W4KAZ K4GM N4NX	2,280 1,715 1,508	57 49 52 39	40 35 29 29	NC VA GA VA		W6ISO N6YEU WA6BOB K6EY	24,921 21,935 21,112 20,500	213 205 203 205	117 107 104 100	CA CA CA CA	SCCC #4 SCCC #4
K3MZ NJ8J AE4EC AA0BA	1,131 946 918 540	43 34 30	29 22 27 18	GA NC TN	SECC #4 TCG #6	K6ZCL W7SW W6ZZZ	19,776 17,172 15,486	192 212 178	103 81 87	CA CA CA	SCCC #4 NCCC #7
N4CU NX9T W4OGG	480 400 392	24 25 28	20 16 14	FL NC TN		AD6TF N6EM W6ZL	14,630 12,920 10,010	190 152 154	77 85 65	CA CA CA	NCCC #5 NCCC #6
KG4PKQ *K2EKM KV4DJ	25 9 6	5 3 3	5 3 2	TN VA VA	TCG #4	AD6FR K6CSL W8KIE K5PI/KH6	9,875 9,648 6,832 6,448	125 134 112 124	79 72 61 52	CA CA CA KH6	Austin Powers #2
N6ZZ N3BB N5OT	323,361 276,000 272,250	1159 1104 1125	279 250 242	NM TX OK	Azenmokers 3 Austin Powers #1 Azenmokers 1	K2MM KI6OY AE6IS	4,773 3,936 3,237	111 82 83	43 48 39	CA CA CA	Livermore ARK Livermore ARK
K5NA(KI5DR) AD5Q K5CM(W5AO) K5WA	257,808 238,632 234,192 232,078	1048 978 984 959	246 244 238 242	TX TX OK TX	Austin Powers #1 Austin Powers #1	W4EF W1MVY N6AN WB6ETY	2,736 2,108 1,952 1,120	76 68 61 40	36 31 32 28	CA CA CA CA	SCCC #3
N40GW K5GO N5DO	230,418 225,184	918 908 900	251 248 243	MS AR TX	Team Mississippi Ozark Contest Club	K3KOA KE6CC N5VWN	690 400 396	30 25 22	23 16 18	CA CA CA	
N2IC KM5G W5XX	218,700 216,979 207,675 192,800	973 923 800	223 225 241	NM AR MS	Azenmokers 2 Ozark Contest Club Team Mississippi	KO6LU KN6N K6MI	221 63 25	17 9 5	13 7 5	CA CA CA	NCCC #4
AA5AU N5PO K5TR N5RG	192,500 190,210 183,799 178 849	875 827 847 781	220 230 217 229	LA TX TX TX	Austin Powers #1	K6LL W7RN(K5RC) W7UT	312,872 285,740 252,384	1208 1099 1056	259 260 239	AZ NV UT	SCCC #1 NCCC #1 GMC's Rocky Mountain
N5UL K5XR(W5ASP) WQ5L	132,200	778 726 661	222 198 200	NM TX MS	Azenmokers 3 Team Mississippi	K8IA K7NV	233,910 175,055	1035 785	226 223	AZ NV	Contesters #1 Azenmokers 1 NCCC #1
W5ZL W5JAW *KG5U K5GN	121,191 113,932 113,176 90,720	597 626 602 560	203 182 188 162	TX TX TX TX TX	Austin Powers #2 Austin Powers #2 Austin Powers #1	K4XU KY7M KO7X	162,408 131,793 116,788	804 669 679	202 197 172	OR AZ WY	Azenmokers 2 GMC's Rocky Mountain Contesters #1
N5CHA AC5AA N5XU(KM5TY)	89,612 79,450 70,623	521 454 413	172 175 171	TX TX TX TX	Austin Powers #3 Austin Powers #3	N7WA KI7Y N7LOX	112,896 109,369 104,248	672 611 664	168 179 157	WA OR WA	
NI5F N7KA K7IA	62,643 61,420 58,500	399 415 375	157 148 156	MS NM NM		W7YS WC7CW W7OM NØAX	100,580 92,070 89,270 76,960	535 594 565 520	188 155 158 148	AZ MT WA WA	Azenmokers 2 FRC Keep Clam Contesters
K5UV W5MK W5RW *K7UP	54,405 50,085 47,472 47,460	403 371 368 420	135 135 129 113	OK AR AR NM	Ozark Contest Club Azenmokers 3	N7MAL KC7V W7WW	74,536 74,298 70,047	484 609 387	154 122 181	AZ AZ AZ	Azenmokers 1 Azenmokers 3 SCCC #3
KØGEO W5EKF KB5IXI	47,160 34,102 27,007	360 289 239	131 118 113	TX LA MS	Team Mississippi	KB7N WA7YAZ W7TSM	55,626 46,827 30,250	381 363 275	146 129 110	WA UT WY	Keep Clam Contesters
N5KA AD6G *W5KDJ W1DY	22,477 20,889 17,800 11,919	247 211 200 137	91 99 89 87	TX TX TX OK		NG7Z W3CP N7ZN W7HS	28,280 28,080 25,705 23,790	280 240 265 195	101 117 97 122	WA OR ID UT	Keep Clam Contesters
WTDY NX5M(NT5TU) KB5NJD *KI5DR	10,212 6,300 4,902	137 138 105 86	87 74 60 57	TX TX TX TX	Austin Powers #2 Austin Powers #3	W6RLL N7IR N7JB	19,474 19,140 17,864	182 220 203	107 87 88	AZ AZ WA	

Call KC7NUP K7NTW K7GS N7EIE KR7X AB7RW NB7F N7JST	Score 11,457 10,050 7,701 4,539 4,416 3,120 92 340	QSOs 171 150 151 89 92 65 37 20	67 67 51 48 48 25 17	<i>QTH</i> NV WA WA OR OR OR OR	Team	Call Kori N5AW/0 N4VI *K7RE K0UK KJ0G N0BUI K0VBU KT0R W0VD KF0UR K0HB K0HB K0HB K0HB K0HW WA2MNO AC0W N0AV N0IM	Score C 85,278 83,660 77,575 74,036 72,420 70,065 69,296 68,403 66,220 63,294 62,376 49,792 49,446 43,524 43,310 43,070 41,422 40,524 35,754 32,592 32,450 25,208 23,2200 14,877 10,452	466 470 535 446 510 405 488 453	183 178 145 166 142 173 142 151		7 Team GMC's Rocky Mountain Contesters #1 GMC's Rocky Mountain Contesters #1 MWA #4 MWA #2
N8EA KT8X K8MR K8IR NU8Z WX3M	167,535 121,404 109,324 109,112 99,616 97,442	765 604 604 593 566 587 553	219 201 181 184 176 166 137	MI MI OH MI MI MI	MRRC #1 MRRC #4 MRRC #3 MRRC #2 MRRC #5 MRRC #1	KTUR WØVD KFØUR KSØT KØHB KØTK KØHW	63,294 62,376 49,792 49,446 43,524 43,335	552 389 369 351	154 154 113 128 134 124	MO CO MN MN MN	MWA #3
K8IR NU8Z WX3M W8MJ N8NM K8JQ K5IID	75,761 74,820 74,365 65,875	516 535 425	145 139 155	MI MI WV WV	MRRC #1 MRRC #1 MRRC #1	WA2MNO ACØW NØAV NØIM	43,310 43,070 41,422 40,524	295 298 307	135 122 146 139 132	SD MN MN IA MN	MWA #4 MWA #2 SMC #2 MWA #4
AF8A *WB8RTJ ND8DX K8DD N8IW	51,888 51,660 37,926 37,510	421 368 369 294 310	143 141 140 129 121	OH OH OH MI OH	MRRC #2 MRRC #4 MRRC #3	KØXM KØCF WGØM KØJPL KØPC WØETC AAØAW KSØM KBØCPC	39,744 35,754 32,592 32,450	303 291	138 118 112 110	KS IA MN MO	MWA #3
N8IW *W8TM W8WTS *N8VW WD8S	29,376 27,972 24,380 23,400	310 306 252 230 260	121 96 111 106 90 85	OH OH OH MI	MRRC #3	KØPC WØETC AAØAW KSØM KBØCBG	25,208 23,220 14,877 10,452 6 840	274 215 171 134 114	92 108 87 78 60	MN IA MN MO IA	TCG #6 MWA #3
WD8S KB8TYJ N4ZR K8GT WA8TNO K8WV N8XD *KT8K NF8M K8KHZ K8VFR W8RU K78F	$\begin{array}{c} 167,535\\121,404\\109,324\\109,112\\99,616\\97,442\\75,761\\74,365\\65,875\\60,203\\51,888\\51,660\\37,926\\37,510\\29,376\\27,972\\24,380\\23,400\\17,850\\17,850\\17,850\\5,100\\3,740\\3,496\\2,200\end{array}$	210 155 143 100 98 85 76 63	75 60 51 50 44 46 38	MI WV OH WV OH MI MI	PVRC #2 MRRC #5	KBØCRG KIØF NØKK WBØTRA KNØV NØOA KØEWS WBØB KØIR	6,840 6,100 4,611 3,780 2,993 2,574 1,600 798 600	100 87 90 73 66 50 38 30	61 53 42 41 39 32 24 20	MN MN MN MN SD IA MN	MWA #5 MWA #4
K8KHZ K8VFR W8RU	1,888 1,363 1,034	55 59 47 47	40 32 29 22	MI MI MI MI	MRRC #4	KØIR WØHW KØVG KØSV	384 260 110	24 20 11	16 13 10	MN MN MN	MWA #3 MWA #5
N5NW	270 4 351,900	18 2 1275	15 2 276	WV OH IN	TCG #5 SMC #1	VE3EJ VE3DZ VE3KZ VE3NE	215,520 184,224 148,730 145 122	695	240 228 214 201	ON ON ON ON	CCO #1 CCO #1 CCO #1
N9RV N9CK K9NW N9FH K9QVB K9MMS WT9U WA9IRV W9IU NØIL	223,223 201,716 200,236	1001 844 886 820	223 239 226 201	WI IN WI IL	SMC #1 SMC #1 MRRC #1 SMC #1 SMC-II	VA3NR VE3KP VE5SF	112,077 102,438 95,613	593 542	189 189 157 166	ON ON SK	CCO #2 CCO #1
K9MMS WT9U	153,080 152,544	712 681	215 224	IL IN	SMC-12 SMC #2 SMC #1	VE2AWR VE3IAY VE7FO	88,146 70,854 63,618	482 461	166 147 138	PQ ON BC	CCO #1
WA9IRV W9IU NØIJ W9LO	127,140 124,460 109,112 96,936	652 635 593 577	195 196 184 168	WI IN WI WI	SMC #2 SMC #2 MWA #2 SMC #3	VA3DX VE3SMA VE3NBJ	61,544 61,200 56,516	392 425 398 379	147 138 157 144 142 140	ON ON ON BC	Team CCO #3 CCO #2 Team CCO #3
NØIJ W9LO K9WX KX9DX N9BOR N9JF KJ9C W9RE	$\begin{array}{c} 351,900\\ 223,223\\ 201,716\\ 200,236\\ 164,820\\ 153,080\\ 152,544\\ 127,140\\ 124,460\\ 109,112\\ 96,936\\ 90,654\\ 74,745\\ 72,988\\ 69,027\\ 63,282\\ 46,766\\ 32,768\\ 31,654\\ 25,872\\ 24,576\end{array}$	521 453 514 417 519 398	174 165 142 166 133 159	IN IL IL IN IN	MHHC #1 SMC #1 SMC #1 SMC #2 SMC #2 SMC #2 SMC #2 SMC #2 SMC #3 SMC-IN SMC #5 SMC-IN SMC #3	VE3EJ VE3AZ VE3KZ VE3KP VE3KP VE3KP VE5SF VE2AWR VE3IAY VE3AV VE3MBJ VA7LC VE3SMA VE3MBJ VA7LC VE5ZX VE3AGC *VA3DF VE3GLO VE3GLO VE6EPK VE3OM VE3OM VE3QY VE3MGY	$\begin{array}{c} 215,520\\ 184,224\\ 148,730\\ 145,122\\ 112,077\\ 102,438\\ 95,613\\ 88,146\\ 70,854\\ 63,618\\ 61,544\\ 63,618\\ 61,544\\ 61,200\\ 56,516\\ 53,060\\ 52,521\\ 38,570\\ 29,998\\ 20,582\\ 20,181\\ 18,531\\ 15,575\\ 15,088\\ 14,924\\ 13,500\\ \end{array}$	427 290 283 251 217 213	123 133 106 82 93 87	SK ON ON ON ON AB	Team CCO #3 CCO #2 CCO #2
K9JE N9AZZ K9JWI N4TZ AJ9C KA9F K9MI	46,766 32,768 31,654 25,872 24,576 19,656 18,240	349 256 266 231 256 182 192	134 128 119 112 96 108 95	IL IL IN IN IN IN	SMC #4 SMC #5 SMC-IN SMC-IN SMC-IN	VA3RJ VA3EC VE3WZ	15,575 15,088 14,924 13,500 11,952 11,466 9,656	175 184 182 180 144 147	78		CCO #2
AK9F AA9KH K9LA K9OZ K9IJ KG9N KE9R	17,082 11,840 10,721 9,520 6,313 5,551 5,500	234 148 151 136 107 91 100	73 80 71 70 59 61 55	IL IN IL IL IL IN	SMC #4 SMC-IL SMC #5 Score Reductions Greater Than 10%	VE2OWL VE5UF VE4YU VA3IX VE7JKZ VE3UKR VO1MP VE3TW VE3RCN	9,656 8,100 6,900 5,073 4,750 3,268 1,508 1,508 1,485 910	136 135 115 89 95 86 52 45 35	33	PQ SK MB ON BC ON LAB ON ON	Team CCO #3
WI9WI KB9YDI N9GUN	5,300 4,150 3,784	100 83 88	53 50 43	WI WI IL	SMC #4 SMC-IL	VE2DSK VA7CAB	460 340	23 20	20 17	PQ BC	N000 #4
K9OSH W9HLY W9ID	3,600 1,625 1,350	90 65 50	40 25 27	WI IN IN		ZF2NT NP3A (at NP4Z) XE2MX(N6KI)	367,360 176,187 166,991	1312 843 799	280 209 209	ZF KP4 XE	NCCC #1 SCCC #2
W3HDH N9NDS K9PK K9JS	1,000 910 612 322	40 35 34 23	25 26 18 14	IL IN IL IL		CX7BY EA8CN EA1WX ZL/W3SE	10,944 8,241 1,620 1,000	152 123 54 40	67 30 25	DX DX DX DX	AVILES-CW SCCC #4
KØSR WDØT NØAT KØOU	255,116 236,472 216,408 209,975	1081 1002 1016 925	236 236 213 227	MN SD MN MO	MWA #5 MWA #1 SMC #3	EA1CS * Indicates QRI Multi-Two Sco	,	5	5	υX	AVILES-CW
N9CO NØSXX	166,320 165,121	840 883	198 187	CO CO	SMC #1 GMC's Rocky Mountain Contesters #1	<i>Call</i> K5KA (K5YAA,I W5NN (NO5W.	N5RZ,W5T N1LN.K5G	A.K5NZ	Z)		Score QSOs Mults QTH 598,689 1989 301 OK 590,139 1987 297 TX
NAØN WØBH KMØO	155,600 152,382 152,200	778 699 761 720	200 218 200	MN KS MN	MWA #1 MWA #1	WE9V (WE9V, W6YX (K6UFO N2UT (AA5B,W N0NI (NØNI,WØ KM4M (W3BP,H	KABU KUAN	7)			524,030 1807 290 WI 453,152 1666 272 CA 430,890 1626 265 NM 416,066 1582 263 IA
KØAD NØFP WØUY AE9B	144,105 120,365 111,510 105,930 105,591	739 665 590 535	195 181 189 198	MN MN KS MO	MWA #1 MWA #2 SMC #3	N9KI (KØSN,W	9YQ) SC AC4P7	רחפשי	o ka		405,000 1500 270 VA 279,146 1098 253 WI
KUU KØMPH	105,591 105,591 94,809	577 561	183 169	MN MN MN	MWA #4 MWA #5	N4CW (N4CW, WA6OEC (WA6	WØUCE) SOEC) 2NV, KT1V	, N4IG,	VA32	KRZ,	133,509 699 191 NC 32,768 256 128 CA W0YK, WA7VNI

Results, January 2004 NAQP SSB Contest

The West Coast was the place to be during the January NAQP SSB Contest with seven of the top-ten single-op scores. N6MJ, operating what would be his last NAQP from W6KP's station, beat his own all-time records for most points and most QSOs to take first place with 444.876 points. Until this contest. Dan had been the only single-op to break the 400,000-point barrier. However, K6LL added 95k points to his old Arizona record to become a member of the 400k club and take second, followed by K7RL with a new Washington record for third and 400k membership. N6RT operated W6EEN for fourth, K9PG was fifth and W7GG took sixth. K5CM, operated by W5AO, was seventh, with K4XS, W7EJ and W7WW finishing out the top ten.

In the single-op QRP power category, NA4BW took first place, followed closely by WA0VBW for second. KI0II, N8IE and WA4PGM were third through fifth, respectively.

As further evidence of the West Coast advantage in this edition of the contest, the crew at W6YX took first place from California in the multi-two category, with the guys at NK7U taking second from Oregon. Frequent winner, K9NS, was third from Illinois.

With four members with top-ten singleop scores, the Southern California Contest Club #1 team took first place in the team competition, even though only four of their five registered members submitted a log. Powered by two members submitted a log. Powered by two members in the top-ten, the Orygun Staight team was second (also with only four members submitting logs), and the Northern California Contest Club #1 team was third.

Other record-breaking performances included K1JB setting a new Maine record and W5WMU, K0UK and KT0R breaking their own Louisiana, Colorado and Minnesota records, respectively. 8P6SH established a first-time record with a strong effort from Barbados, and CO8TW set a first-time record for Cuba.

Team Se	cores				
1. SCCC	#1	2. Orva	un Staight	3. NCCC #	1
N6MJ	444,876	W7GG	330.876	W7RN	275,124
K6LL	417,912	W7EJ	292,603	WX5S	240,009
W6EEN	,		284,988	N6ZFO	152,100
W7WW	288,718	K7ZS	233,584	K6LRN	146,672
	200,7.10		200,00	K6RIM	145,964
Total	1,532,334	Total	1,142,051	Total	959,869
1 SMC #	1 (K9PG, N9CO, KØ				007 076
4. SIVIC #	Gladiators (KTØR, N	000, W910)			
6 Mad P	iver Radio Club #1 (
	see Contest Group				
	AR, N4JN)				641 546
8 5000	#2 (N6KI, K6AM, N	SHC)			639 480
	Rocky Mountain #1 (
	Texas Rowdies (N5				
	e Clipper 1 (N1SV,				
12 Yanke	e Clipper 3 - Green	Mountain Boy	(K1KD KK1)	W1S.I)	470 266
13 Austin	n Powers (K5NA, W	5KFT KY5V K	(1(11(D), 1(1(1) (5PI/KH6)	, , , , , , , , , , , , , , , , , , , ,	449 493
14 NCC0	C #2 (ND2T, K6III, K	F6ZSN W6IX	P AF6Y)		401 746
15 SMC	#2 (K9JS, W9RE, K	X9DX KA9F	N9AZZ)		369 074
16. SMC	#5 (N9RV, N2BJ, A/	A9RT WT9U)			344.062
17 Bay A	Area Wireless Assn (KE9S KØSN	K8IB)		335 780
18. NCCC	C #3 (N6EE, W0YK,	W6FBH, N6F	M K6DGW)		304,422
19. TCG	Team 2 Tigers (K4M	IA. K4AMC. K4	BP. WA4OSD.	W4DUI)	
	(N3AD, N3PUR)				
21. GMC	Rocky Mountain #3	(N4VI, KO7X)			
22. MWA	Spartans (WA2MNO	D, KØTO, NØW	BO, KSØT, N9T	TX)	
23. TCG ⁻	Team 3 Cougars (W	4NZ, K4LTA, V	V4RK, AF4QB,	N5NW)	
24. SECC	C #2 (K4BAI, KU8E,	WB6BWZ)			
25. SECC	C #1 (AA4LR, WA4Ť	II, KN6RO)			171,800
26. MWA	Trojans (KIØF, WBØ	TRA, KMØO, N	IØHJZ)		160,496
	Team 4 Leopards (V				
28. SECC	C #3 (N4LR, AA4GA)			
29. GMC	Rocky Mountain #2	(KØGAS, KIØI	I, NØSXX)		
30. Order	of Boiled Owls (NA	2M, KW2O, N	2GA)		113,925
31. SMC	#4 (K9QVB, K9WX,	N9JF, N9GUN	۱)		
	River Radio Club #2				
33. TCG	Team 7 Wildcats (W	ØETC)			
34. Yanke	e Clipper 2 (NZ1U,	W1AIR)			
35. PVRC	Part Timers (WX3	В, КІКН)			
36. SMC	#3 (K9MI, AK9F, N4	ΗΖ)			
37. SCCC	C #3 (K6EY, K6ZCL,	NN6O, WA6B	OB, W6KY)		
	C #4 (AK6DV, WA4F				
	Contest Group (N1				
	la Contest Group (K River Radio Club #3				
41. Mau r	Team 5 Jaguars (K4		$(, VV \land SIVI) \dots$		
	River Radio Club #4				
43. Wat r $44.$ Δ Rov	/ Named Slim (NR3)	Y KAASK KR		·y	
45 Wild a	and Crazy Guys (KE		WI8W)		25 276
	ny Mountain Contest				
47 TCG	Team 6 Panthers (K	G4ABM WC4	 DC)		
47. TOU		G-77DIVI, WO4			

Single Op Top Ten Breakdowns														
Call	Score	QSOs	Mults	160	80	40	20	15	10	Team				
N6MJ	444,876	1698	262	33/15	88/32	219/48	472/57	463/57	423/53	SCCC #1				
K6LL	417,912	1583	264	33/12	139/39	345/53	348/54	309/54	409/52	SCCC #1				
K7RL	412,100	1585	260	43/17	141/45	301/54	453/55	375/48	272/41					
W6EEN (N6RT)	380,828	1421	268	29/16	127/45	279/53	237/54	323/55	426/45	SCCC #1				
K9PG	348,992	1216	287	261/53	375/54	190/56	185/54	116/40	89/30	SMC #1				
W7GG	330,876	1414	234	35/11	66/24	219/49	345/50	270/51	479/49	Or St				
K5CM (W5AO)	302,549	1369	221	75/31	340/49	251/43	385/46	262/39	56/13					
K4XS	295,225	1225	241	34/22	195/49	298/52	360/57	310/47	28/14					
W7EJ	292,603	1289	227	50/16	86/30	171/43	202/44	404/50	376/44	Or St				
W7WW	288,718	1198	241	32/14	106/30	220/48	295/54	275/49	270/46	SCCC #1				

Single Op	QRP To	p Five	Breakc	lowns										Combin		gle
Call NA4BW WAØVBW KIØII N8IE WA4PGM	<i>Score</i> 50,141 46,731 36,024 29,920 15,050	QSOs 377 421 316 272 175	<i>Mults</i> 133 111 114 110 86	16 0/0 0/0 6/0 0/0 31/1	0 110/31 0 50/23 6 42/21 0 76/30	40 70/33 34/16 28/19 46/28 19/12	20 93/39 173/38 159/39 51/25 36/14	15 66/20 137/32 75/24 76/17 22/11	10 38/10 27/2 6/5 23/10 22/9	Tean GMC	n RM2	Ja Dar NAC SSE K6L plac	nuary n, N6MJ QP com 3 and so L and F ces, res	J, won the competition with econd place K5RC took s spectively. Cost of great ops!	AQPs ombined (his first p CW finish second an	blace nes. d third
												Ope	erator MJ	CW Points 500	SSB Points 495	Total Points 995
Multi-Two	Breakdo	owns										K6L K5F	.L	426 389	470 309	896 698
Call W6YX NK7U K9NS	<i>Score</i> 731,276 709,660 674,424	QSOs 2548 2590 2204	<i>Mults</i> 287 274 306	16 52/1 54/2 314/5	4 272/47 0 360/53	40 353/54 431/52 432/58	<i>20</i> 587/59 499/53 610/60	<i>15</i> 710/59 661/52 138/38	10 574/54 585/44 264/4	1 1		N9F W5 K4V N5E K8I K6/ N0/	RV AO VX VX DO A AM	479 319 323 298 318 299 295	184 340 298 284 235 241 215	663 659 621 582 553 540 510
Single Op	perator S	cores														
Call N1SV	Scc 174,9	74 98	3 178	MA	Team YCCC 1		<i>Call</i> *NG3		1,	122	2 <i>SOs</i> 51	Mults 22	<i>QTH</i> MD	Team		
K1KD KK1L	164,3 158,5			VT VT	YCCC 3 – Green Moun YCCC 3 –		K3IS N3H0 *W3F	CN		012 882 567	46 49 27	22 18 21	PA MD MD			
W1SJ	147,3				Green Moun YCCC 3 – Green Moun	-	*WB0 KB3L	NWG MS		390 117	30 13	13 9	PA PA			
W1JQ NA1QP K1JB NZ1U (N1XS) K1HT N1BCL NY1S K5ZD W1AIR W1TO AJ1M NE1RD AA9VI K52J KA1VMG K1VU W2JU K51J KA1VMG K1VU W2JU K51J KA1VMG K1VU W2JU K51J KA1VMG K1VU W2JU K51J KA1VMG K1VU W2JU K51J KA1VMG K1PK N2GU N2GA N2WK N2CU NA2M K02CU NA2M K02CU N2CU N2CU N2CU N2CU N2CU N2CU N2CU N	$\begin{array}{c} 67.4\\ 60.6\\ 54.6\\ 539.7\\ 28.1\\ 25.6\\ 115.4\\ 12.6\\ 11.9\\ 11.6\\ 9.7\\ 9.3\\ 7.6\\ 7.1\\ 1.5\\ 7.6\\ 43.6\\ 43.6\\ 43.4\\ 42.0\\ 7.2\\ 26.8\\ 26.2\\ 24.1\\ 21.0\\ 7.6\\ 8.8\\ 26.2\\ 24.1\\ 21.0\\ 7.4\\ 28.6\\ 1.3\\ 1.8\\ 1.6\\ 3\\ 3\\ 8\\ 6\\ 6\\ 3\\ 3\\ 3\\ 8\\ 8\\ 6\\ 6\\ 3\\ 3\\ 3\\ 3\\ 8\\ 8\\ 6\\ 6\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{c} 4 & 1599 \\ 85 & 1511 \\ 99 & 1477 \\ 1177 \\ 39 & 1130 \\ 53 & 923 \\ 33 & 99 \\ 73 \\ 99 & 733 \\ 99 \\ 73 \\ 99 \\ 73 \\ 99 \\ 73 \\ 99 \\ 73 \\ 99 \\ 73 \\ 99 \\ 73 \\ 99 \\ 73 \\ 99 \\ 73 \\ 99 \\ 73 \\ 99 \\ 73 \\ 99 \\ 70 \\ 80 \\ 99 \\ 74 \\ 101 \\ 11 \\ 99 \\ 4 \\ 101 \\ 11 \\ 99 \\ 4 \\ 101 \\ 11 \\ 99 \\ 4 \\ 101 \\ 11 \\ 99 \\ 4 \\ 101 \\ 11 \\ 99 \\ 4 \\ 101 \\ 11 \\ 99 \\ 4 \\ 101 \\ 11 \\ 99 \\ 4 \\ 101 \\ 11 \\ 99 \\ 4 \\ 101 \\ 11 \\ 99 \\ 4 \\ 101 \\ 11 \\ 99 \\ 4 \\ 101 \\ 11 \\ 99 \\ 4 \\ 101 \\ 11 \\ 99 \\ 22 \\ 9 \\ 24 \\ 10 \\ 22 \\ 9 \\ 24 \\ 10 \\ 10 \\ 22 \\ 9 \\ 24 \\ 10 \\ 10 \\ 10 \\ 22 \\ 9 \\ 24 \\ 10 \\ 10 \\ 22 \\ 9 \\ 24 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	MCTATELAATALALITATICTA YYYYJYYJYYJYYYYYYYJYJYJ	Creen Moon YCCC 1 YCCC 1 YCCC 2 YCCC 1 MRRC #2 CTRI Contes CTRI CO	st Group st Group st Group est Group d Slim led Owls led Owls	N4Th KU8E KA14 K5EE W4R KN6F AF40 K4JN W4D W4D W40 AA0E *WA4 AC4F WB4 W64	S X X X X X X X X X X X X X	26, 25, 24, 23, 22, 22, 22, 21, B) 19, 18, 17, 16, 15, 15, 15, 14, 14, 14,	500 ° 325 325 3800 755 245 245 245 245 245 245 245 245 245 2	9 1225 1125 837 850 809 537 5549 5557 5549 5557 5557 5557 5557 5567 402 424 424 328 377 806 3555 302 281 2240 263 2251 2240 263 2251 2242 2251 2242 2551 2242 205 200 191 175 165	9 241 2365 288 1953 1857 177 1737 1489 1651 1213 1263 1109 1038 1102 984 404 103 883 1053 1053 1053 1053 1053 1053 1053 105	PA FLANDER FOR THE FUNCTION FOR FUNCTION FOR THE FUNCTION FOR THE FUNCTION	TCG Team SECC #2 TCG Team TCG Team TCG Team TCG Team TCG Team SECC #1 TCG Team SECC #1 TCG Team TCG Team TCG Team TCG Team SECC #2 TCG Team SECC #2 TCG Team TCG Team TCG Team TCG Team TCG Team TCG Team TCG Team	1 Lions 1 Lions 1 Lions 1 Lions 1 Lions 1 Lions 1 Leopa 1 Lions 1 L	irs rds rds rds rs rs
N3AD N3PUR W31L WX3B N8NA W3PT K3WW NA3V K1RH W4ZE AK3E K3ASK K3ASK NT3J N3XL K3FH K3FH K3FH K3LJS	195,9 81,8 55,4 54,8 42,0 37,2 32,4 30,6 30,4 16,8 9,4 8,3 8,1 3,7 1,6 1,6 1,5 1,5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MD DE PA PA MD PA MD PA MD PA DE	FRC FRC PVRC Part 1 PVRC Part 1 A Boy Name	īmers		H BF Z JA DF DF/W4 BBWZ ABM ET AHZ T ES D	9, 8, 7, 6, 6, 6, 5, 4, 4,	544 388 222	160 148 156 181 180 141 152 126 131 119 110 111 124 99 106 95 94 84 90	74 78 762 59 68 61 69 54 59 62 51 62 51 62 51 50 54 54	VAN FKELNA GLACONNELLACAN	TCG Team FCG TCG Team SECC #2 TCG Team FCG FCG	n 5 Jagua	rs

Call KG4MWO KF4CQS K4GM KG4UUM KG4OCJ W4UM KG4OCJ W4CTGLL N4IOZ AA4GA WA2SRY W4UII *K3MZ K3MZ K3MZ K3MZ K3MZ K4GG N4NTO W4PA AE4EC K3HE WA4GLH N1JAC NJ8J KV4DJ N5SMQ WC4DC K4APG	Score 3,444 3,168 2,952 2,925 2,701 2,257 2,166 1,920 1,914 1,683 1,612 1,400 1,300 1,288 1,012 988 925 820 567 425 406 126 45	QSOs 82 72 75 75 73 61 57 64 58 51 52 50 64 44 38 37 41 27 25 29 14 9	Mults 42 44 39 37 38 30 33 33 33 33 33 28 26 28 26 220 21 114 9 5	QTL QTL VAAYACACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Team SECC #3 TCG Team 4 Leopards TCG Team 6 Panthers	Call K6DGW NN6O W6KC W1MVY K6OWL WA6BOB W6CWM W6KY K6CSL W6ZZZ KD6PQF WA6OGO NU6T K6BBQ K06LU WA7BOH WA6CEC W6TK WB6NFO WA7BNM NO6X AD6FR K6PRN (KJ6RA) K6FFM AH6RH KQ6TW	Score 14,529 14,110 12,375 11,234 10,650 10,602 10,005 9,344 7,440 7,140 6,867 6,848 6,588 4,343 3,888 8,3700 2,840 1,824 1,824 1,824 1,824 1,824 1,824	QSOs 167 170 165 137 150 171 145 128 126 126 128 126 138 120 109 109 107 108 101 81 100 101 81 101 81 101 81 101 81 101 10	Mults 87 83 752 71 629 733 728 633 620 633 641 433 402 323 201 9	QTA CCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Team NCCC #3 SCCC #3 SCCC #3 SCCC #3 NCCC #5 NCCC #5 NCCC #4 NCCC #4
K5CM (W5AO) K5NA (KI5DR) W5WMU N5DO N7KA KE5OG W5KFT(K5TWJ) K5YAA K5FD N5ZK (W5ASP) W5NN (K5NZ) W5NN (K5NZ) W5NK K5D5LNO NI5F W0VX N6ZZ WK5K KC5R N5ZC K75V (KC5YKX) W5RZ	302,549 279,380 255,116 255,116 231,080 148,630 135,582 115,731 105,968 103,782 49,920 49,104 38,760 31,590 26,316 26,214 25,048 22,638 20,367 19,694 19,197 17,910	1369 1145 1081 1120 1060 835 766 693 716 706 416 396 310 258 257 248 231 279 229 229 229 229 2199	221 244 236 228 178 177 167 147 120 120 120 102 102 102 102 102 98 73 86 79 90	OK TLA TX M TX K X X X X X X X X X X X X X X X X X	Austin Powers West Texas Rowdies Austin Powers West Texas Rowdies West Texas Rowdies West Texas Rowdies	KEGEYZ K6UFO AE6OU K6LL K7RL W7GG W7EJ W7WW K7ZSD W7RN (K5RC) K7ZSD W7RN (K5RC) K7ZS K8IA N7LOX K7INA W7OM K17Y K07X KW7N W67Y K7WM K07O K7BG WG7X	16 12 9 417,912 412,100 330,876 292,603 288,718 284,988 275,124 233,584 209,166 191,000 174,075 115,596 84,000 60,630 60,630 66,630 45,689 24,200 23,876	4 3 1583 1585 1414 1289 1198 1397 1212 1123 1055 676 525 676 5264 480 470 375 564 480 477 242 254	4 3 264 260 234 227 241 204 227 204 208 213 200 165 171 160 134 146 129 107 100 94	CA A Z A WR OR Z R V R Z A WA A WA A D W A Z A WA A A A A A A A A A A A A A A	SCCC #1 Orygun Staight SCCC #1 Orygun Staight NCCC #1 Orygun Staight GMC Rocky Mountain #3
W5RW KK5MI KC5RPF AD6G N5RKK KD5RYQ AD5PR KD5QEB W5JEN K5KA N5XU (KM5TY) KC5TA KA5BAY WB0YEA WB5VGI K5WW AD5GE K5IX N5DTT AD5LL K5YAB *KF6AAQ N5OT	$\begin{array}{c} 16,020\\ 15,810\\ 15,288\\ 14,112\\ 12,936\\ 11,880\\ 9,159\\ 8,265\\ 8,178\\ 5,586\\ 4,851\\ 3,525\\ 3,485\\ 2,926\\ 2,244\\ 1,890\\ 1,450\\ 1,378\\ 962\\ 560\\ 352\\ 300\\ 280\\ \end{array}$	180 186 196 154 164 145 145 145 145 145 145 145 53 55 53 53 37 85 53 37 22 20 20	89 85 84 72 84 71 57 58 57 49 47 41 38 33 529 26 20 26 20 16 14	AR TX TLA ST TX K TX CK TX K TX NM TX TAR K TX NM TX TAR K TX K	West Texas Rowdies	W6RLL N7UK W1ZWV W1YS N9ADG KQ6MU KR7X KG9JP WA7YAZ N7BKS W7KMC W7LDT K7VIT K1SF K7AEK *KK7A KW8N W8MJ ND8DX W28P K8IR N8BU (KT8X)	21,560 17,372 15,810 10,443 10,208 7,192 6,993 3,322 3,124 2,030 1,680 1,323 1,269 551 176 198,835 172,200 146,445 134,196 87,980 47,328	196 202 170 140 177 319 116 151 751 848 49 47 29 16 8051 751 845 8651 751 846 8530	910 186 933 59 322 63 224 435 35 27 19 11 247 205 159 166	XZ XA XA XA XA XA XA XA XA XA XA XA XA XA	MRRC #1 MRRC #1 MRRC #1 MRRC #1 Bay Area Wireless Assn MRRC #2
N6MJ (at W6KP) W6EEN (N6RT) WX5S (at N6RO) N6KI N6HC N62FO K6LRN K6RIM ND2T N6EE W6AFA K6III	444,876 380,828 240,009 221,488 214,376 203,616 152,100 146,672 145,964 145,962 138,565 137,484 100,082	1698 1421 1039 1016 1016 1008 845 712 802 918 749 804 614	262 268 231 218 211 202 180 206 182 159 185 171 163	CA CA CA CA CA CA CA CA CA CA CA CA	SCCC #1 SCCC #1 NCCC #1 SCCC #2 SCCC #2 SCCC #2 NCCC #1 NCCC #1 NCCC #1 NCCC #3	K9NW *N8IE NU8Z W8TM N8OL W1PDI KB8TYJ N8IW W8KNO N8BJQ WC8VOA N8PUG AF8A KZ8E	35,203 29,997 28,086 20,085 19,251 15,604 15,471 12,358 10,720 10,010 9,100 8,906 7,366	348 329 297 302 267 195 207 188 191 167 160 143 140 146 127	107 101 93 88 103 93 83 81 74 67 70 65 61 58	OH H H H H H H H H H H H H H H H H H H	MRRC #3 MRRC #4 Wild and Crazy Guys MRRC #3 Wild and Crazy Guys MRRC #4
KEGZSN WØYK W6IXP W6FRH AK6DV NC6X (N6STX) KO6BB K6EY N6EM K6ZCL WA4FIB K62CL W4FIB K62CL W6ISO AE6Y KD4GBA W4EF K5PI/KH6	78,884 75,674 60,564 48,994 46,398 30,392 25,764 23,668 22,077 21,024 20,586 20,564 16,254 16,254 15,840 15,688 15,334	6143 482 412 374 418 262 228 219 219 212 189 212 189 212 187	163 148 157 147 139 131 111 116 113 97 96 94 97 86 80 74 82	CA CA CA CA CA CA CA CA CA CA CA CA CA C	NCCC #2 NCCC #3 NCCC #3 NCCC #3 NCCC #4 SCCC #3 NCCC #3 NCCC #3 NCCC #3 NCCC #4 NCCC #2 Austin Powers	N20E N8NX K8WV KN8J K8KHZ W8SGZ K8SAK KC8UMB *KC8UMG N5NW KC8UMG N5NW K8MR KC8VJR WD8S NF8M KC8HAN K68MA KC8RAN K8MJZ WX3M KC8UDV	7,192 4,944 4,508 3,854 3,567 3,240 3,102 2,925 2,516 1,674 1,472 1,372 1,350 1,305 1,178 888 630	127 123 103 98 87 81 66 54 49 50 45 37 35	508 548 46 47 40 47 39 371 32 28 27 29 24 19 24 18	M W W W M M M M M M M M M M M M M M M M	MRRC #4 TCG Team 3 Cougars MRRC #4 MRRC #3

<i>Call</i> WI8W	Score 572	QSOs 44	<i>Mults</i> 13	QTH MI	<i>Team</i> Wild and Crazy Guys	<i>Call</i> KØUH	Sc 3,
K9PG	348,992	1216	287	IL	SMC #1	*KAØLDG KØVH	2, 2,
N9RV	164,052	837	196	IN	SMC #5	NØOA	1,
N2BJ KE9S	152,036 146,664	796 756	191 194	IL WI	SMC #5 Bay Area Wireless Assn	WØVD *WWØWB	1, 1,
AJ9C K9JS	131,211 117,476	717 683	183 172	IN IL	SMC #2	*WØANM NØEO (AAØAW)	
W9IU	104,754	663	158	IN	SMC #1	KØMY	
KØSN W9RE	101,136 85,656	588 498	172 172	WI IN	Bay Area Wireless Assn SMC #2	VE5SF	236,
K9QVB	80,822	502	161	IL	SMC #4	VE3AGC	89,
KX9DX K9SG	79,002 71,391	513 449	154 159	IL IN	SMC #2	VE3WIB VY2LI	69, 54,
K9MI KA9F	50,096 44,352	404 336	124 132	IN IN	SMC #3 SMC #2	VE3MGY VE4YU	47, 42,
N9AZZ	42,588	364	117	IL	SMC #2	VE2CQ (DL7FEF	R) 41,
K9JE WW9R	35,340 31,828	285 292	124 109	IL WI		VE3DZ VE6JY	34, 33,
K9WX	25,334	239	106	IN	SMC #4	VE3KP	32,
AK9F KE9I	24,255 20,076	245 239	99 84	IL IN	SMC #3	VE3TW VA3SWG	32, 27,
N9NT AA9RT	18,240 17,910	228 199	80 90	IL IL	SMC #5	VE3CRU VA3NR	24, 16,
N9TTX	10,251	153	67	WI	MWA Spartans	VA3OX	15,
WT9U K9OSH	10,064 9,504	148 132	68 72	IN WI	SMC #5	VA7AM VA3NU	15, 12,
K9LA	9,300	150	62	IN		VE4HAZ	9.
WØHED K9ZF	8,875 8,804	125 142	71 62	IL IN		*VA3DF VE7WWW	8, 8,
N4TZ N9OX	8,515 8,512	131 133	65 64	IN WI	SMC #3	VE3KZ VE9DX	8, 7,
W9IFR	7.080	120	59	IL		VA3IX	6,
W9CEO N9LTA	6,510 5,084	105 124	62 41	IL WI		VA3PL VY1MB	6, 5,
KG9N	4,428	82	54	IL		*VA7JC	4.
K9EFP KC9DUX	4,214 3,612	98 86	43 42	IN IL		VE3EJ VO1AU	3, 2, 2, 2, 2, 2,
N9JF	3,034	74 74	41 41	IL WI	SMC #4	VE3TPZ	2,
W9AEM K9LO	3,034 2,890	85	34	Ŵ		VE2DC VE3FU	2, 2,
N9EP AE9YL	2,701 2,520	73 72	37 35	IL IN		VO1MX VE2OWL	2, 1,
N9LF	1,750	50	35	IN		VE3UKR	1,
K9PLX WI9WI	960 580	40 29	24 20	IL WI		VE4VID VO1MP	1, 1,
N9GUN	242	22	11	IL	SMC #4	VE2DSK	,
KØUK	270,402	1122	241	со	GMC Rocky Mountain #1	8P6SH	98,
KTØR N9CO	246,512 232,470	1136 1134	217 205	MN CO	MWA Gladiators SMC #1	CO8TW WP3GW	8,
WØLSD	224,919	1119	201 204	CO CO			-
WØAH NØAT	202,572 191,438	993 962	199	MN	GMC Rocky Mountain #1 MWA Gladiators	CT1ILT LU5EVK	7,
AE9B ACØW	189,000 185,850	875 885	216 210	MO MN	MWA Gladiators	JAØAVS	
KDØS	172,176	816	211	SD	WWA Gladiators	* Indicates QRP	entry
WØBH KØOU	142,080 141,660	768 787	185 180	KS MO	SMC #1		
N4VI	125,120	736	170	CO	GMC Rocky Mountain #3	Multi-Two S	cores
KØXM WØETT	109,440 108,031	608 671	180 161	KS CO	GMC Rocky Mountain #1	Call	
WØETC WRØDK	101,931 101,736	557 648	183 157	IA MN	TCG Team 7 Wildcats MWA Gladiators	W6YX (K6IF, W6 NK7U (NK7U, K7	
KFØUR	101,036	754	134	CO		K9NS	
KØGV WA2MNO	97,836 69,012	789 486	124 142	MN MN	MWA Spartans	(K9HMB, K9PW, K5TR (WM5R, K	
KØGAS KIØF	65,120 62,568	407 396	160 158	CO MN	GMC Rocky Mountain #2 MWA Trojans	NX5M (NX5M, N K4NO	5XJ, NT
NØWE	51,186	449	114	MN	WWA Inojano	(K4NO, KA9EKJ,	
KØMPH *WAØVBW	49,664 46,731	388 421	128 111	MN MN		KY5R (K4VU, KY W4WS	5R)
KØRH	44,400	370 357	120 122	KS MN	MWA Sportops	(KG4NEP, W2DZ	
NØWBO KØSV	43,554 41,480	305	136	MN	MWA Spartans MWA Gladiators	ŇY4T (K1KY, W1 W8FT	
WBØTRA *KIØII	36,072 36,024	334 316	108 114	MN CO	MWA Trojans GMC Rocky Mountain #2	(N8ET, AD8P, N8 NØAOM (NØAOM	
KMØO	34,356	409	84	MN	MWA Trojans	WØEF	
KBØBUV KCØIGY	34,102 31,000	289 310	118 100	IA CO		(KØBUD, NØNFU, K4HTA/8	WBØN,
NØSXX	28,056	334	84 99	CO MN	GMC Rocky Mountain #2	(AC4LT, N4ZPT, I	
KSØT NØHJZ	27,819 27,500	281 275	100	MN	MWA Spartans MWA Trojans	KF4KJQ, K2HYD K4YTZ (AE4VJ, I W4NTI (W4NTI, V	, rzvz, N4UFP)
N3XT KØIRL	25,245 23,808	297 248	85 96	CO CO		W4NTI (W4NTI, V KØUSN (KØRI, W	WA4UA) V7T NØ
KØJPL	21,715	215	101	MO		K5BSA	
NØAC KØAD	21,222 20,972	262 214	81 98	IA MN		(KR1ZAN, KD5IC W5RWH, KA5SO	
NØOBM KØBWJ	17,630 17,533	215 197	82 89	KS IA		W5DJT (W5DJT, KD5KP	
NØBUI	17,425	205	85	MN		W8LBZ (W8LBZ)	
KBØARZ KB8CL	15,385 14,800	181 185	85 80	NE ND		KL7CQ (AL1G, Ř W7LSK (W7LSK,	L7FH, H
KR6NA	9,310	245	38	CO		W6BAR (W6BAR	() ()
AAØA KCØPBY	9,035 6,032	139 116	65 52	MO MN		N8UZE (N8UZE) W2RDS (W2RDS	
NØMWY N9OE	5,757 5,400	101 135	57 40	CO IA		W2ORO (W1ORO VE7FO (VE7HAK	D)
WØIE	4,794	102	47	KS		VETEO (VETAM	, VE/F
KCØEFR KBØENE	3,650 3,600	73 80	50 45	CO IA		Check Logs: K1I	DAN, K
	- ,					- 3	,

Call K0UH *KA0LDG K0VH N0OA W0VD *W00NB *W0ANM N0EO (AA0AW) K0MY	Score 3,024 2,628 2,607 1,947 1,890 1,664 754 690 495	QSOs 72 73 79 59 54 52 29 30 33	Mults 42 36 33 35 32 26 23 15	QTH MN MN MN MN CO MN MN MN	Team
VE5SF VE3AGC VE3WIB VY2LI VE3MGY VE4YU VE2CO (DL7FER) VE3DZ VE3KP VE3KP VE3KP VE3CN VE3CN VE3CN VA3SWG VE3CN VA3NR VA3NR VA3NR VA3NR VA3NR VA3NK VA7AM VA7AM VE4HAZ VA3DF VE7WWW VE3KZ VE7WWW VE3KZ VE7WWW VE3KZ VA3IX VA3IX VA3NL VE7WWW VE3DX VA3IX VA3NL VE7WWW VE3DX VA3IX VA3NL VE7WWW VE3DX VA3IX VA3NL VE2DX VA3IX VA3NL VE2DX VE3FU VO1AU VE3FU VE3FU VE3FU VE3FU VE3FU VE3WL VE2DX VE3VL VE2DX VE3VL VE2DX VE3VL VE2DX	$\begin{array}{c} 236,900\\ 89,333\\ 69,836\\ 54,900\\ 47,553\\ 41,664\\ 34,128\\ 33,604\\ 32,400\\ 32,264\\ 27,160\\ 24,985\\ 15,760\\ 15,210\\ 15,210\\ 15,760\\ 15,210\\ 15,760\\ 15,210\\ 15,760\\ 15,210\\ 15,760\\ 15,210\\ 15,760\\ 15,577\\ 4,554\\ 8,905\\ 8,905\\ 8,905\\ 2,788\\ 2,701\\ 2,680\\ 2,418\\ 2,788\\ 2,701\\ 2,680\\ 2,418\\ 2,788\\ 2,701\\ 2,680\\ 2,418\\ 2,788\\ 2,701\\ 2,680\\ 2,418\\ 2,226\\ 1,638\\ 1,575\\ 1,248\\ 1,575\\ 1,248\\ 1,551\\ 1,551\\ 1,55$	$\begin{array}{c} 1150\\ 569\\ 442\\ 450\\ 393\\ 336\\ 316\\ 271\\ 270\\ 280\\ 280\\ 280\\ 280\\ 280\\ 197\\ 1956\\ 129\\ 132\\ 132\\ 132\\ 132\\ 132\\ 132\\ 133\\ 68\\ 73\\ 67\\ 62\\ 537\\ 46\\ 345\\ 48\\ 29\end{array}$	$\begin{array}{c} 206\\ 157\\ 1522\\ 121\\ 1224\\ 124\\ 124\\ 1209\\ 950\\ 808\\ 789\\ 772\\ 568\\ 61\\ 556\\ 739\\ 461\\ 413\\ 370\\ 342\\ 62356\\ 19\end{array}$	SK ONN OPEI ONB PONB PONB ONN ONN ONB ONB ONB ONB ONT CNB ONA PONB PONB PONB PONB ONN ONN ONN ONB ONB ONB OND ONN ONN ONN ONN ONN ONN ONN ONN ONN	
8P6SH	98,525	563	175	8P	
CO8TW	8,804	142	62	CO	
WP3GW	450	30	15	KP4	
CT1ILT	7,296	128	57	DX	
LU5EVK	36	6	6	DX	
JA0AVS	6	3	2	DX	

es

Call W6YX (K6IF, W6LD, N7MH) NK7U (NK7U, K7ZO, KW7J) K9NS (K9HMB, K9PW, K9XW, KO9A, W9RM)	<i>Score</i> 731,276 709,660 674,424	<i>QSOs</i> 2548 2590 2204	<i>Mults</i> 287 274 306	<i>QTH</i> CA OR IL
(K3HNID, K3FW, K3KW, K09A, W3HNI) K5TR (WM5R, K5TR) NX5M (NX5M, N5XJ, NT5TU) K4NO (K4NO, KA9EKJ, K4GU, KA1DWX)	660,672 595,840 425,430	2368 2128 1630	279 280 261	TX TX AL
KY5R (K4VU, KÝ5R) W4WS (KG4NEP, W2DZO, WX1NCC, KG4ECI)	366,296 258,408	1477 1164	248 222	AL NC
NY4T (K1KY, W1KLM, NY4T, W1ARN) W8FT (N8ET, AD8P, N8RMF, N8RMT, KC8TZR			214 161	TN OH
NØAOM (NØAOM) WØEF (KØBUD, NØNFU, WBØN, NDØM, WA1GV			164 128	MO MN
K4HTA/8 (AC4LT, N4ZPT, KG4OJT, KG4JBJ, KG4 KF4KJQ, K2HYD, K2VX, K4TCM, KO1D,	, KOÁALA,	KG4PRN,		WV
K4YTZ (AE4VJ, N4UFP) W4NTI (W4NTI, WA4UA) K0USN (K0RI, WV7T, N0QJS) K5BSA	47,082 42,402 40,128 21,600	354 382 304 240	133 111 132 90	SC AL CO TX
(KR1ZAN, KD5IQO, KG4VPV, KC5QAI, I W5RWH, KA5SOT, KD5HHZ, KD5JVF) W5DJT				AR
(W5DJT, KD5KPJ, KD5CCG, N5BU) W8LBZ (W8LBZ) KL7CQ (AL1G, KL7FH, KL1MX)	9,060 8,976	151 187	60 48	OH KL7
W7LSK (W7LSK, NG7Z) W6BAR (W6BAR) N8UZE (N8UZE) W2RDS (W2RDS)	7,074 6,696 5,390 2,448	131 108 98 68	54 62 55 36	WA CA MI NJ
W2ORO (W1ORO) VE7FO (VE7HAK, VE7FO)	369 120	41 15	9 8	KY BC

K9ZO, KA7PLE, N0KK, VK2CZ, WA6BFW, WA8WV, WW4LL

Wayne Matlock, K7WM

Results: July 2004 *NCJ* **North American QSO Party RTTY Contest**

The July 2004 *NCJ* RTTY NAQP was a little different than other July NAQPs. If the "soapbox" comments are looked at, it was highly dependant on one's location as to what band was open and what the operating strategy should be. Here in the Southwest desert, 10 meters was absolutely dead all the time. I never heard a peep anytime I checked it. Fifteen meters was right behind it, too, as it would come and go and without a second radio I couldn't stay on the band waiting for it to open.

It was sure was nice seeing ET3TK, 5U7B, 5WØDL, 4X/OK1FIA/P and the other great DX that showed up. While listening to the pileups, it became clear that some of the ops had forgotten that they were in a contest; the DXer in them had taken over. Four land won the title of having the most operators by a large margin, but we had great participation from all call areas and the Canadian Provinces. Overall, it was the best July *NCJ* RTTY NAQP—more logs submitted, more teams participating, more DX showing up and more multi-2 teams.

The SWACC Team, comprised of AA5AU, KI5XP, K5AM, AD6WL and K7WM (put together by Dave, K6LL) won the team competition with a great score (for July) of 393,498. I had my first-ever computer failure during a contest when the hard drive on my machine decided to go bonkers. I spent all my 2-hour off time plus a little more getting all the hardware out of the busted machine and into another. It took 30 minutes of operating (without making any contacts and thinking there had to be a huge solar flare) before someone told me that I was just transmitting a solid tone. A click of the mouse on the tone selection and I was back in business. The rest of the contest was spent in the "catch-up mode."

This is/was my last stint as CD for the RTTY NAQPs and Shelby, K4WW, will be taking the task on. I know he will be doing a great job and the *NCJ* RTTY NAQP will continue to grow and be the fun contest that it is.

Soapbox

A propagation scientist's delight! Wildly varying real-time indications, flares before and after, A rising and K declining meant QSB galore! Tough conditions for the low power urban lot operator. K6OWL...K7WM was the only other AZ call I heard. K7KAR...RTTY by *WF1B* software v5, PK-232 (old lightning-bit unit). Enough thunderstorms to power the spaceship *Enter*-

prise. K8DO...First ever contest log submission after 36 years of hamming. K8UT...Propagation to US was not good. Too bad, but I had fun anyway. 5U7B...Enjoyed the contest, but in July? AAØCY...One of my favorite contests. Conditions were good here when they were not so good in other parts of the US (you can say that again, Don) AA5AU...First time on RTTY, had fun. AB9EK...It was a blast! Gotta put up that 80-meter antenna. AG4ZG...Had lots of fun operating from a DX location. A lot of stations couldn't believe they were working 5WØDL and wanted to log me as WØDL, especially on 40 meters. 5WØDL...Summertime in Texas, with vertical and wire antennas, makes for challenging work. Wish the high bands still had some life, but that was not apparent this weekend. AC5AA...Nice to see 10 meters open at the start of the contest. It was also nice to work the contest without having to stop for a lightning storm. Thanks for all the QSOs and I look forward to the next one. AF4Z ... My second NAQP summer RTTY, K4AQ ... Enjoyed the time I was able to participate, 0100Z to 0520Z, and lightning showed up outside the house at 0520Z. Conditions on 40 meters (only band I have an antenna for) were marginal due to thunderstorms in area. They were bad enough that I tried to convince Michal, ET3TK, that he was KT3TK by repeatedly asking for his state. Finally, Michal got through to me that his call was really ET3TK! Thanks to all who put up with my multiple requests for repeats. Most signals would have been easy copy except for the thunderstorms on my end. Nice to work "J," VY1JA, on 40 meters. Tennessee was well represented in the contest, at least from my perspective. The path length by the time I started must have been ideal between this part of Virginia and Tennessee. Thanks to the folks who take the time and effort to put on this contest, it is appreciated, KG4MH...Thanks to WØETC for assembling all the teams. K4RO...Lots of

fun in spite of the solar flare. Nice activity for the time I was on the air. I look forward to next year. K5PAX...Noisy on the low bands. K5ZD...Operated from cabin in Northern Wisconsin, conditions were good to poor at times. K9JS ... My very first trip into RTTY contesting. Last time I was on RTTY, it was with a MacroTronics interface and a TRS-80. Much improved. Had a lot of fun. KE6CC...Nice 10-meter opening, but it and 15 meters died too early. Working 40 meters at 2200Z is crazy. Lots of static on 80 meters, so the mults were hard to come by. KI5XP...I want to thank K7ZSD for the use of his station. KR7X...I was able to put in 6 1/2 hours. Conditions were fair in MO. Using the beam and the vertical helped a lot. Worked four DX calls: CT4DX, OK2PAY, HG4I and 9A7R. A lot of "agn" macros used. KI1G was everywhere. Best exchange was NY1S with "byte me." Sorry that I had to QRT at 0930Z just as 80 meters was getting hot. I will be back next year. KS0M...Great fun. We operated from a hunting camp in Rutland County Vermont. N1MGO...Twenty meters was slow in the afternoon and then it picked up after dark. Fifteen meters was surprisingly good as was 40 meters. It was a fun contest, though. N5PA...Thunder storms!. N5PU...I worked five provinces and one other country for a total of 57 multipliers. N7UVH...Better score than last year. Enjoyed this 10-hour contest very much and enjoyed being part of a team with Club TCG 5 O'clock Somewhere this year. NA5Q...Fifteen meters is the new 10 meters. Started really slow, about half the February rate and stayed that way. Only the 0000Z hour felt airy, the rest was a slog and an exercise staying in the chair, but I'll be back in the winter. ND2T...Make the thunderstorms go away! NI5F... Propagation awful. Poor turnout. Some Murphy issues. Should've gone fishing instead. NN6NN...Did not have much time, but enjoyed every minute. The A index was high, but it didn't hurt this domestic contest. Hope to have more time next time.

Top Tens					
QSOs			Mults		Score
AA5AU	685	KI1G	197	AA5AU	133575
KI5XP	660	AA5AU	195	KI1G	121943
KI1G	619	KI5XP	183	KI5XP	120780
NØAT	568	NØAT	177	NØAT	100536
K4WW	470	KE4KWE	162	K4WW	74260
KI6DY	465	VA3DX	161	W8BAR	73440
AB5K	461	K4WW	158	KI6DY	73005
V8BAR	459	KI6DY	157	KE9S	72311
WX4TM	450	WX4TM	157	WX4TM	70650
KE9S	433	N8NR	150	KE4KWE	70632

NO2T...To bad conditions were very poor. ON6MX...Had a lot of fun! Great contest. PT2FM...Nice to know our friend's names. PY2NY...Started the first 2 hours on 10 and 15 meters for mults. Forty and 80 meters were the best bands. Got VY1JA. VE4YU and WY in last 15 minutes on 40 meters. Best name was "byte me" from NY1S. VA3DX...Twenty meters had very unusual propagation and 80 meters was so noisy that MMTTY couldn't copy. VE3ESH...Interesting propagation. VE4YU...Nice surprise to find 10 meters open. Part-time effort on this end. Hope I helped a few out with the mult. Nice to see ET3TK, SX2OO4A and YW6C join in. Heard 5U7B a couple of days ago say he would be on, but never heard him. Thanks to all for the Qs. VE9DX...Operated all the time available to me. Sorry it could not be more. VY1JA...Great conditions and as usual, a lot of fun. Lots of stations, too. W1HY ... Very nice contest! Started off slow, but picked up speed as it went along. Definitely plan to work this one again. Thanks. W3MEL...My first RTTY contest and I enjoyed it. Strictly S&P operation. See y'all next year. W3OFD...Conditions were awful. W6OAT...Thanks for the contest. Only short time available to operate. W7DPW...1st NAQP contest and 1st Writelog use. W7LD...Used station K1TTT. Thanks to Dave for use of his great station. W8BAR/ W1TO...Great contest! Thanks to all for listening to my 20 W on 80 meters. W9ILY ... I'm a first timer in this contest and I had fun. See you again next year. WA6NOL...I wish I had more time to participate, but the time I was able to work the contest was an absolute blast. I will be a participant in many upcoming RTTY contests. WBØDUL...Interesting contest this time. I operated a couple of hours mobiling around Marion County in a multi-op with John, WA9ALS/Ø. Hope John was able to recover the log I lost! WD9GMK...Current solar cycle is limiting band usage, but what a lot of fun. Got tired and went to bed before the contest ended. WN1OTV...First RTTY contest. Lots of fun. WN6K...First half was pure drudgery due to software issues. WO4O.

Team Scores

CCO Termin		Lightning Bo N4GI	olts	5 O'Clock S AD0K	omewheres
VE3YF	20710			WØBR/1	44634
VE3IAY	27489	K4LQ	<u>17460</u>	AF4Z	
VE3XD	51375		17460		64998
VE3HG	14256			NA5Q	51240
	113830	NCCC #1		W4LC	47655
		ND2T	26967	W0ETC	<u>59353</u>
4 Dogs and	Kuwait	AC6JT	19580		202882
K9JS	28034	W6OAT	48375		
K9MI	12774	KJ6RA	16125	TCG Long &	Winding Road
K9WX	46028	K6OWL	6206	W4BCG	34040
			117253	KM4H	3220
K9MUG	64680			K4RO	13527
N9KO	<u>11592</u>	NCCC #3			
	163108		0000	N1WI	15486
		N6TQS	8636	KR7X	<u>32970</u>
Cocosolo Si	ibichi Club	K6RFM	6270		99243
N2CN	1624	A6BOB	<u>14784</u>		
N2TA	48764		29690	TCG Califor	nia Dreamers
AK2P				KSØM	14784
	50388	SWACC		AB8NI	12665
		AA5AU	133575	AD4EB	65415
Florida Boy	e .	KI5XP	120780	WO40	44649
•		K7WM	50304	K1GU	18768
WO4D	51539	K5AM	45666	ittido	156281
K4PX	48764	AD6WL	43173		100201
WB4EQS	49560	ADOWL	393498		
KC4HW	<u>61190</u>		393490	TCG Top Fo	
	276050		Maabiniata	K8DO	11715
		CCO Rising	machinists	WBØDUL	<u>2340</u>
TCG Travelii	ng Men	VA3PC	21828		14055
NN5A	4320	W1AJT/VE3	27390		
NY4N	19992	VA3XRZ	16632	NCCC #2	
KA5DON/3	234	VE3ESH	20776	W6ZZZ	204
KØIDT	38115		86626	K6DGW	10164
KØXU	16744			AK6DV	16530
No/NO	79405	Wireless As	sn of South Hills	KO6LU	2736
	75405	W4ZE	44763	WB6TQG	10419
TCG CanAm		N3FR	44700	MBOIQG	40053
	15	N3RDV			40033
VA7SW		NONDV	44763		
VE9DX	8750		44703	Austin Pow	
VE3GSI	35625		_	KC5YKX	27000
VA7ST	17860	YCCC & Frie	ends	KD5SQF	
KE4OAR	<u>8040</u>	K5ZD	7004	AB5K	66384
	70275	KI1G	121943	AC5AA	24860
		W8BAR	73440	K4WW	<u>74260</u>
		W1ZT	378		192504
		W8WEJ			
		VVOVVEJ	<u>20592</u>		
			223357		

Scores	5																				
Call	Name	QTH	80m	40m	20m	15m	10m	QSOs	Mults	s Score	Call	Name	QTH	80m	40m	20m	15m	10m	QSOs	Mults	Score
NØAT	RON	MN	88/34	194/50	183/48	74/28	29/17	568	177	100536	WA1Z	BOB	NH	0/0	6/6	52/20	17/12	15/12	90	50	4500
KI6DY	BOB	KS	73/22	174/45	133/37	64/29	21/14	465	157	73005	KB1IKD	JOHN	NH	0/0	2/2	65/21	16/11	11/8	94	42	3948
WØETC	LAR	IA	42/22	106/32	178/42	77/27	24/16	427	139	59353	W1LZ	LES	NH	0/0	0/0	35/22	14/11	1/1	50	34	1700
KØIDT	RON	NE	46/25	108/34	68/26	65/23	28/13	315	121	38115	W1ZT	GEO	MA	0/0	0/0	3/3	5/5	13/10	21	18	378
KØFX	DON	CO	47/29	166/45	127/38	0/0	0/0	340	112	38080											
KØXU	JIM	NE	16/12	76/31	56/30	36/18	0/0	184	91	16744	WA2ETU		NY	77/30	102/41	123/40	72/28	33/15	407		62678
NØOBM	SID	KS	22/17	70/30	68/25	19/12	5/2	184	86	15824	NO2T	JETRY	NJ	39/24	80/33	55/28	38/21	11/8	223	114	25422
KSØM	DICK	MO	20/15	28/15	70/30	40/20	10/8	168	88	14784	KA2D	TOM	NY	9/7	24/16	119/36	58/22	13/8	223	89	19847
KØHW	JIM	SD	40/24	79/32	33/15	0/0	0/0	152	71	10792		FRANK	NY	0/0	44/23	91/39	25/16	8/8	168	86	14448
KØEWS	ERIC	SD	13/11	41/23	47/24	0/0	0/0	101	58	5858	NT2A	GENNAD		12/8	90/36	54/23	2/2	0/0	158	69	10902
WØHW	CHAZ	MN	0/0	36/20	50/24	0/0	0/0	86	44	3784	K2MK	MIKE	NJ	0/0	26/17	34/21	14/10	9/7	83	55 36	4565
WBØDUL		CO	2/2	40/19	23/15	0/0	0/0	65	36	2340	W1TY NC2N	RICK ANDREI	NY NY	0/0 0/0	100/36 39/22	0/0 19/6	0/0 0/0	0/0 0/0	100 58	36 28	3600 1624
NØIBT KØVG	DAVE VERN	CO MN	0/0 0/0	0/0 21/14	40/24 0/0	9/6 0/0	0/0 0/0	49 21	30 14	1470 294	K2PH	PAUL	NY	1/1	39/22 5/4	19/6	3/3	0/0	23	20 17	391
ABØYM	GEORGE		1/1	21/14 8/7	1/1	0/0	0/0	10	9	294 90	NZF II	FAUL	INT	1/1	5/4	14/9	3/3	0/0	23	17	391
	GEONGE	00	1/1	0/1	1/1	0/0	0/0	10	9	90	W4ZE	TED	PA	62/26	89/36	127/39	53/20	16/8	347	129	44763
KI1G	RICK	RI	88/39	173/44	202/48	107/41	10/25	619	197	121943	W3MEL	MEL	PA	72/26	87/32	80/35	17/10	0/0	256		26368
W8BAR	TOM	MA	77/30	128/42	122/39	92/30	40/19	459	160	73440	W3KB	KEITH	PA	37/21	60/27	73/29	26/15	19/11	215	103	22145
NY1S	BYTE	ME	30/18	108/40	110/39	67/28	30/16	345	141	48645	KA3PVA		PA	49/24	74/25	63/29	13/9	5/2	204	89	18156
WØBR/1	BOB	CT	51/24	99/34	126/39	50/20	20/12	346	129	44634	WA1LWS	SHANS	MD	22/14	76/35	71/33	11/7	0/0	180	89	16020
KB1JZU		MA	37/22	72/32	79/31	22/16	7/5	217	106	23002	N5LBJ	DOUG	MD	44/22	50/27	40/15	33/18	6/6	173	88	15224
W1HY	PAUL	RI	4/4	49/25	94/33	36/22	9/9	192	93	17856	W3OFD	RICH	PA	26/17	35/23	71/35	12/11	0/0	144	86	12384
K5ZD	RANDY	MA	16/11	19/14	25/16	24/14	19/13	103	68	7004	K3UW	DOUG	PA	26/19	60/26	38/18	6/6	0/0	130	69	8970
WN1OT\	/DON	ME	8/6	48/27	40/17	5/4	5/5	106	59	6254	W3DSX	RANDY	PA	0/0	41/20	40/23	27/14	0/0	108	57	6156
KB1HDC	JOHN	MA	0/0	26/18	49/25	21/15	3/2	99	60	5940	AA0CY	JJ	PA	0/0	12/9	28/21	26/15	1/1	67	46	3082

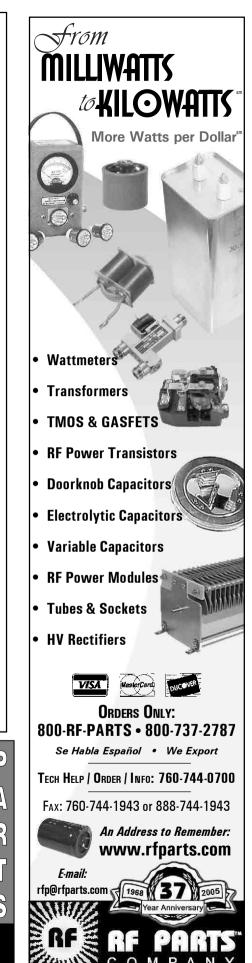
NUMBER DO A.V. Source 1 DO A.V. DO D.V. D.V. D.V.V. D.V.V. D.V.V	<i>Call</i> K3FH W3FQE KA5DON/3	Name MIKE LEE DON	QTH PA MD MD	80m 20/15 0/0 0/0	40m 31/19 0/0 0/0	20m 8/6 35/20 18/13	15m 8/5 6/6 0/0	10m 0/0 0/0 0/0	<i>QSOs</i> 67 41 18	Mults 45 26 13	Score 3015 1066 234	<i>Call</i> WI8W K8IR K8UT	Name THOM JIM LARRY	QTH MI MI MI	79/33 70/33 46/26	40m 118/41 99/42 67/32	20m 95/31 102/37 88/32	15m 61/24 52/26 46/23	10m 34/14 17/14 24/15	QSOs 387 340 271	143 152 128	<i>Score</i> 55341 51680 34688
Karz Carolac File	WX4TM KE4KWE AD4EB AF4Z K9MUG KC4HW WO4D	TOM TOM JIM DON ROD JIM ORRIN	AL TN FL FL FL	67/30 61/28 52/26 33/22 67/28 31/19 38/19	104/37 131/40 98/35 106/37 133/39 80/31 89/35	177/44 130/44 185/47 142/40 153/45 163/42 135/43	74/28 77/29 82/26 85/32 78/28 123/3 48/27	28/18 37/21 28/13 48/26 9/7 8 25/15 43/22	450 436 445 414 440 422 353	157 162 147 157 147 145 146	70650 70632 65415 64998 64680 61190 51538	W8WEJ KZ8E AB8NI KT8X K8DO N8PUG WA8SDA	JOHN JEFF DENNIS SHREK DENNY JIM FRANCIS	WV WV OH MI MI S WV	66/27 42/24 32/17 0/0 10/8 28/20 0/0	53/30 47/27 22/15 29/21 20/15 9/8 23/16	69/31 68/33 54/27 55/20 128/42 20/10 28/17	18/9 18/13 35/20 56/24 6/5 11/8 5/4	2/2 1/1 6/6 16/12 1/1 6/6 6/6	208 176 149 156 165 74 62	99 98 85 77 71 52 43	20592 17248 12665 12012 11715 3848 2666
AAAPY TOM NC DO D <thd< th=""> D <thd< th=""> <thd< t<="" td=""><td>K4PX W4LC W040 NA4K W4BCG AG4ZG W4UEF WB2RHM NY4N K4LQ K4LQ K4LQ K4LQ K4AQ N1WI K4RO WA4OSD K4AQ K4AQ K4AQAR K4QJ</td><td>GEORG JIM RIC STEVE BILL BEN JEFF NED BILL JAMIE KENT DICK KIRK KIRK KIRK KIRK MATT CHUCK DICK</td><td>E FLYNNN FLOOD FLO</td><td>29/15 90/33 104/3, 73/28 39/19 1/1 43/23 36/16 26/18 23/17 22/15 68/26 15/9 18/13 0/0 27/18 22/14 4/3 19/16 0/0</td><td>77/31 98/38 5 102/36 86/34 113/40 45/28 145/45 989/39 76/34 79/25 54/26 58/28 102/37 44/25 40/19 66/33 45/23 47/24 41/22 89/30 0/0</td><td>104/42 118/38 139/40 81/32 117/42 111/38 11/8 32/19 59/32 44/22 76/34 77/33 37/15 70/27 60/28 88/37 41/26 88/37 41/26 26/14 51/25</td><td>74/34 46/25 7/5 53/23 27/14 90/34 22/13 29/16 27/15 49/22 24/16 18/12 0/0 33/19 35/23 27/14 5/2 21/13 29/20 0/0 47/27</td><td>50/24 1/1 22/15 0/0 35/18 8/8 13/9 8/3 9/6 17/14 5/3 0/0 13/10 13/10 17/9 3/3 2/1 3/3 4/4 0/0 18/15</td><td>334 353 365 296 282 229 208 196 204 180 207 175 170 178 167 134 124 134 116</td><td>146 135 123 135 115 119 97 99 102 97 91 78 90 92 97 91 78 90 92 87 81 80 71 60 67</td><td>487654 47655 44649 41580 330558 22213 20592 20592 19992 18768 16380 16346 15750 15646 15570 15648 13527 10720 8804 8040</td><td>KB9AX WB9Z N2EJ K9WX W9HLY K9JS N5UWY/9 K9MI N9KO N7GVV K9XL N9KT WD9GMK K9FOH W9RVG N0ICV AB9EK</td><td>DAN JERRY BARRY TIM VERN JOHN JOHN PETER MIKE CALVIN JIM RAY DAVID CALAN ROGER BOB MARSHA TONY TOM</td><td>L L L L L L L L L L L L L L L L L L L</td><td>91/32 78/36 81/31 73/31 96/37 21/17 5/5 30/17 16/13 9/7 11/8 29/19 0/0 7/5 0/0 7/5 0/0 3/3 0/0</td><td>125/44 104/36 115/36 109/38 87/36 113/38 69/30 59/28 69/32 50/27 43/25 20/12 43/25 20/12 43/26 34/22 0/0 15/9 14/11 6/6 0/0</td><td>173/47 136/41 151/40 148/42 63/28 67/32 100/33 53/25 46/23 52/29 33/17 29/19 6/3 24/19 28/16 28/15 8/5 17/8</td><td>33/18 41/17 41/22 30/16 52/23 56/22 70/28 18/9 12/10 14/9 26/12 20/12 1/1 4/3 34/17 2/2 9/6 0/0 0/0</td><td>9/7 30/13 6/4 1/1 21/11 14/6 18/11 5/4 0/0 6/6 15/9 3/1 1/1 0/0 6/5 0/0 2/1 0/0 0/0</td><td>431 389 394 319 271 262 178 126 83 126 83 82 68 52 33 17 17</td><td>148 143 128 135 115 107 91 82 84 70 52 50 44 38 31 23 14 8</td><td>63788 55627 52402 46208 43065 31165 28034 16198 12874 11592 88200 4316 4100 2728 2584 4100 2728 2584 1612 759 238 136</td></thd<></thd<></thd<>	K4PX W4LC W040 NA4K W4BCG AG4ZG W4UEF WB2RHM NY4N K4LQ K4LQ K4LQ K4LQ K4AQ N1WI K4RO WA4OSD K4AQ K4AQ K4AQAR K4QJ	GEORG JIM RIC STEVE BILL BEN JEFF NED BILL JAMIE KENT DICK KIRK KIRK KIRK KIRK MATT CHUCK DICK	E FLYNNN FLOOD FLO	29/15 90/33 104/3, 73/28 39/19 1/1 43/23 36/16 26/18 23/17 22/15 68/26 15/9 18/13 0/0 27/18 22/14 4/3 19/16 0/0	77/31 98/38 5 102/36 86/34 113/40 45/28 145/45 989/39 76/34 79/25 54/26 58/28 102/37 44/25 40/19 66/33 45/23 47/24 41/22 89/30 0/0	104/42 118/38 139/40 81/32 117/42 111/38 11/8 32/19 59/32 44/22 76/34 77/33 37/15 70/27 60/28 88/37 41/26 88/37 41/26 26/14 51/25	74/34 46/25 7/5 53/23 27/14 90/34 22/13 29/16 27/15 49/22 24/16 18/12 0/0 33/19 35/23 27/14 5/2 21/13 29/20 0/0 47/27	50/24 1/1 22/15 0/0 35/18 8/8 13/9 8/3 9/6 17/14 5/3 0/0 13/10 13/10 17/9 3/3 2/1 3/3 4/4 0/0 18/15	334 353 365 296 282 229 208 196 204 180 207 175 170 178 167 134 124 134 116	146 135 123 135 115 119 97 99 102 97 91 78 90 92 97 91 78 90 92 87 81 80 71 60 67	487654 47655 44649 41580 330558 22213 20592 20592 19992 18768 16380 16346 15750 15646 15570 15648 13527 10720 8804 8040	KB9AX WB9Z N2EJ K9WX W9HLY K9JS N5UWY/9 K9MI N9KO N7GVV K9XL N9KT WD9GMK K9FOH W9RVG N0ICV AB9EK	DAN JERRY BARRY TIM VERN JOHN JOHN PETER MIKE CALVIN JIM RAY DAVID CALAN ROGER BOB MARSHA TONY TOM	L L L L L L L L L L L L L L L L L L L	91/32 78/36 81/31 73/31 96/37 21/17 5/5 30/17 16/13 9/7 11/8 29/19 0/0 7/5 0/0 7/5 0/0 3/3 0/0	125/44 104/36 115/36 109/38 87/36 113/38 69/30 59/28 69/32 50/27 43/25 20/12 43/25 20/12 43/26 34/22 0/0 15/9 14/11 6/6 0/0	173/47 136/41 151/40 148/42 63/28 67/32 100/33 53/25 46/23 52/29 33/17 29/19 6/3 24/19 28/16 28/15 8/5 17/8	33/18 41/17 41/22 30/16 52/23 56/22 70/28 18/9 12/10 14/9 26/12 20/12 1/1 4/3 34/17 2/2 9/6 0/0 0/0	9/7 30/13 6/4 1/1 21/11 14/6 18/11 5/4 0/0 6/6 15/9 3/1 1/1 0/0 6/5 0/0 2/1 0/0 0/0	431 389 394 319 271 262 178 126 83 126 83 82 68 52 33 17 17	148 143 128 135 115 107 91 82 84 70 52 50 44 38 31 23 14 8	63788 55627 52402 46208 43065 31165 28034 16198 12874 11592 88200 4316 4100 2728 2584 4100 2728 2584 1612 759 238 136
Kivico DAVE DAVE Dirac Bit Product Set 1	AA4VV NN5A	TOM TOM	NC TN	0/0 0/0	61/25 26/17	33/21 49/22	6/4 10/6	1/1 5/3	101 90	51 48	5151 4320											
NT40 JAY W O 0.00 0.	KV4CN NQ4K	DAVE GORDO	NC	0/0	28/18	16/7	6/6	1/1	51	32 21	1632											
PROB DOB TX 41/25 11/15 151/45 61/25 VEVP MIKE ON 000 00.038 03/28 38/21 00 211 95 20710 KSAM MARK MA 106 06/22 177 110 456 100 100 90/26 100/28 38/21 101 38/21 101 38/21 100 38/21 101 38/21 101 38/21 101 38/21 101 38/21 101 38/21 100 211 101 101 101 101 101 100 100 58/27 101/21 111 101 111 101 111 101 111 101	NT4D AB4GG AA5AU KI5XP	JAY KENNY DON CHAS TERRY	NC TN LA LA TX	10/9 0/0 90/33 80/33	20/13 20/14 212/49 175/46	0/0 10/5 194/50 227/50 205/49	0/0 0/0 142/4 152/4 87/29	0/0 0/0 2 47/21 0 26/14 33/17	30 30 685 660	22 19 195 183 144	660 570 133575 120780	VE3XD VE3GSI VE3IAY W1AJT/V VA3PC	DON ERIC RICH E3 ART PAUL	ON ON ON ON	54/24 40/21 41/22 33/24 21/12	125/43 60/28 88/39 49/21 48/26	146/48 109/36 67/32 128/45 81/38	50/22 53/26 27/18 37/18 42/23	0/0 23/14 8/8 2/2 12/8	375 285 231 249 204	137 125 119 110 107	51375 35625 27489 27390 21828
KCSYKX FEID TX 12/10 67/34 13/42 24/16 8/6 25/20 108 27000 VEAVU ED ME 8/8 38/23 61/35 13/11 0/0 119 77 9/63 KGSAA DUMHE CM 4022 72/75 0/0 0/0 225 110 24/11 13/245 0/25 0/0 0/0 225 76 56/0 0/0 225 76 56/0 0/0 0/0 225 76 77 56/0 0/0 0/0 225 76 77 56/0 76/0 77 56/0 76/0 77 56/0 76/0 77 76/0 76 77 76/0 76/0 77 76/0 76/0 77/0 76/0 77/0 76/0 77/0 76/0 77/0 76/0 77/0 76/0 77/0 76/0 77/0 76/0 77/0 76/0 77/0 76/0 77/0 76/0 77/0 76/0 77/0 76/0 77/0 76/0 77/0 76/0 77/0 76/0 77/0	K5BG K5AM K5NRC W5MK KE5OG N5PA	BOB MARK CHAS CHRIS BILL ALAN	TX NM AR AR TX MS	41/23 26/13 43/24 28/16 20/13 32/21	111/38 106/32 66/31 124/37 162/47 72/33	131/43 217/51 162/43 113/35 142/42 124/40	61/24 37/21 62/25 66/30 36/18 78/31	21/11 1/1 12/6 13/10 0/0 0/0	365 387 345 344 360 306	139 118 129 128 120 125	50735 45666 44505 44032 43200 38375	VE3YF VA3XRZ VE3HG VE3LFA VE3UKR	MIKE JULIO PETER DAVE NICK	ON ON ON ON	0/0 33/20 11/6 0/0 0/0	80/36 50/31 57/27 49/30 0/0	103/38 68/35 59/30 53/27 58/25	35/21 13/10 29/19 19/12 0/0	0/0 4/3 6/6 11/8 0/0	218 168 162 132 58	95 99 88 77 25	20710 16632 14256 10164 1450
KSCM CONNIE OK 48/22 78/23 76/22 00 0/0 202 79 15980 VEEVR B00 AB 223/11 104/41 133/45 40/25 0/0 0/0 122 38600 NSUE TED TX 161/2 6/33 73/35 11/1 2/1 11/1	KC5YKX	REID	ТΧ	12/10	67/34	139/42	24/16	8/6	250	108	27000	VE4YU	ED	MB	9/8	36/23	61/35	13/11	0/0	119	77	9163
NS5A DIETER TX 15/11 48/24 52/30 96 2/1 126 72 9072 VESD ANDY NB 3/3 28/20 46/18 15/13 33/16 125 70 8750 KSFPA DON TX 1/1 21/15 67/28 16/12 0/0 0/0 52 71 444 3432 KSSF RICH TX 0/0 52/27 1704 NC1H JOHN RI 0/0 0/0 10/2 34 3468 KSWW GEHT TX 0/0 0/0 20 14 280 NK CH 11/11 11/13 11/13 11/13 11/13 11/14	K5CM N5VYS N5IJE K5RCR NI5F N5PU	CONNIE OBIE TED RICK BILL LEON	OK TX TX LA MS MS	48/22 0/0 18/12 6/4 1/1 0/0	78/35 67/31 64/30 48/25 37/22 33/21	76/22 127/35 79/35 62/31 68/27 27/18	0/0 6/6 11/8 41/21 36/21 61/29	0/0 5/4 2/1 9/5 13/10 13/9	202 205 174 166 155 134	79 76 86 86 81 77	15958 15580 14964 14276 12555 10318	VA6MM VA7ST VE7UQ VA7CAB	MACRASTI BUD KEN CHRIS	BC BC BC BC	0/0 4/3 1/1 0/0	37/20 101/34 28/16 10/4	108/39 125/36 61/26 31/19	0/0 5/3 0/0 1/1	0/0 0/0 0/0 0/0	145 235 90 42	59 76 43 24	8555 17860 3870 1008
KSSE* FICH TX 000 52/27 000 000 52/27 000 000 102 34 3468 KSWW GERT TX 000 000 20 14 280 WeOAT RUSTY CA 26/12 111/14 181/51 46/24 11/1 375 129 4837 AD6WL JIM CA 43/21 108/38 200/48 181/10 0/0 369 11/1 43173 50/26 16/44 0/0 0/0 16/24 43/24 100/26 16/44 0/0 0/0 16/4 43/24 4	NS5A K5PAX	DIETER HARVEY	TX / NM	15/11 0/0	48/24 29/20	52/30 48/23	9/6 1/1	2/1 0/0	126 78	72 44	9072 3432		ANDY	NB	3/3	28/20	46/18	15/13	33/16	125	70	8750
ADGWL JUM CA 44/2 JUM CA 24/2 JUM CA 24/2 JUM CA 24/2 JUM JUM <th< td=""><td>K5SF</td><td>RICH</td><td>ТΧ</td><td>0/0</td><td>52/27</td><td>0/0</td><td>0/0</td><td>0/0</td><td>52</td><td>27</td><td>1404</td><td>KO1H</td><td>JOHN</td><td>RI</td><td>0/0</td><td>0/0</td><td></td><td>0/0</td><td>0/0</td><td>102</td><td>34</td><td>3468</td></th<>	K5SF	RICH	ТΧ	0/0	52/27	0/0	0/0	0/0	52	27	1404	KO1H	JOHN	RI	0/0	0/0		0/0	0/0	102	34	3468
Waknol. Richard CA 0/0 0/0 45/27 0/0 0/0 45/27 0/0 0/0 45/27 1215 WefRH BOB CA 1/1 9/9 16/14 6/5 0/0 32 29 928 WefZZ MARK CA 0/0 9/6 8/6 0/0 0/0 17 12 204 W5NR BOB CX 121/3 121/44 223/50 120/41 63/22 928. W5NR BOB 712 186 132432 K7WM WAYNE AZ 36/22 170/48 171/45 16/13 0/0 393 128 50304 W5NR BOB TX 52/24 174/48 29/52 93/33 8/1 55 18 87690 KTWM WAYNE AZ 36/22 107/48 3/2 0/0 231 8/1 105 32970 NM6NN DOC CA 44/20 12/1/32 12/1/33 36/15 1/1 4/1 132 55308 K7JNO BRAD UT 19/36 10/0 217	AD6WL K6HGF N6OJ ND2T WN6K AC6J W6FFH AK6DV KJ6RA WA6BOB W86TQG K6DGW N6TQS K6DGW N6TQS K6CGWL KE6CC KF6CNV KO6LU	JIM DOUG CHUCK TOM PAUL BRYAN DON CHUCK RICH BOB PHIL FRED DOUG RICH MARK JOHN JEFF BOB	CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	43/21 38/15 2/2 19/7 24/8 22/8 8/5 17/6 18/6 26/13 0/0 4/1 17/8 0/0 14/4 9/1 0/0 0/0	108/38 111/38 74/33 51/27 101/39 81/37 58/27 81/35 81/35 81/35 33/19 24/12 38/23 60/32 33/20 41/23 65/31 2/1	200/48 162/46 172/46 155/45 104/37 93/33 141/43 78/35 123/36 55/25 99/40 113/44 67/34 44/22 59/33 52/29 23/15	18/10 36/18 33/17 40/21 16/9 20/10 11/7 12/10 0/0 0/0 15/9 13/9 4/2 5/2 1/1 2/1 1/1 13/9	0/0 0/0 2/1 0/0 2/1 0/0 2/1 0/0 0/0 4/1 0/0 0/0 4/1 1/1 1/1 0/0 0/0 3/1	369 347 281 267 245 220 218 190 215 192 151 154 127 110 107 107 89 76	117 117 98 101 93 89 82 87 75 77 69 66 68 57 58 54 47 36	43173 40599 27538 26967 22785 19580 17876 16530 16125 14784 10419 10164 8636 6270 6206 5616 4183 2736	ET3TK 5W0DL HG4I ON6MX HB9BJJ PR7ZZ 4X/OK1FL PT2FM UA4FCO CT4DX PR7AR SQ6FHP 5U7B PT2AC YL3FW LA6FJA JA1XRH JR3RIY	MICHAL DAVE TIBOR MARTIN ROY JOSE A/PZDENEK PHIL YURI LUIS IRA JAREK BRUCE PEDRO SERGE RAG TAC NOB	ET 5WG HB PY 4X PY UAT PY SU PY LA JA	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	6/6 22/15 0/0 0/0 29/19 0/0 0/0 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0	163/40 69/34 114/40 88/38 20/14 47/25 37/22 34/21 38/19 34/19 16/13 13/10 17/15 23/10 10/8 4/4 3/3	0/0 11/3 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0	0/0 0/0 0/0 0/0 2/2 0/0 0/0 0/0 0/0 0/0	169 102 114 88 49 37 35 39 34 22 18 17 23 10 8 3	46 52 40 38 33 27 22 19 18 15 10 8 8 3	7774 5304 4560 3344 1617 1323 814 770 722 646 396 270 255 230 80 64 9
KVWM WAYNE AZ 36/22 17/48 17/45 16/13 0/0 33 128 50304 NN6NN DOC CA 44/20 121/43 217/53 36/15 1/1 419 132 55308 KJ7NO BRAD UT 19/12 91/36 107/40 3/2 0/0 220 90 19800 N3LS JOE PA 71/25 120/37 102/35 40/19 7/3 340 119 40460 W7LD JACK WA 15/7 89/32 120/39 7/6 0/0 231 75 17325 W7KB RICK UT 0/0 3/2 201/43 11/9 0/0 215 54 11610 WSKFT: K5PI-K5TWT-K5GA-K5NZ W7KB RICK UT 0/0 3/2 29/37 0/0 131 72 94/32 WSKFT: K5PI-K5TWT-K5GA-K5NZ WSKFT: K5PI-K5TWT-K5GA-K5NZ WSKFT: K5PI-K5TWT-K5GA-K5NZ WSKFT: K5PI-K5TWT-K5GA-K5NZ WSKFT: K5PI-K5TWT-K5GA-K5NZ WSNN: N15TTV-K5GA-K5NZ WSNN: N15TTV-K5GA-K5NZ N1MGO: N1MGO-KT11 N100 10/2 10/2 10/2	WA6NOL W6FRH	RICHAR BOB	ID CA CA	0/0 1/1	0/0 9/9	45/27 16/14	0/0 6/5	0/0 0/0	45 32	27 29	1215 928	W5KFT W5NN W6YX	ED BOB JOHN	TX CA	52/25 51/24	161/43 174/48	223/50 229/52	120/4 ⁻ 93/33	1 63/25 8/1	619 555	184 158	113896 87690
N7UVH PAT ID 8/5 34/21 187/47 2/2 0/0 231 75 17325 MULTL-2 OPERATORS: W7KB RICK UT 0/0 3/2 201/43 11/9 0/0 215 54 11610 W5KFT: K5PI-K5TWT-K5SV N7XB BRUCE OR 11/5 49/27 62/33 9/7 0/0 131 72 9432 K7KAR KEITH AZ 1/1 41/22 59/35 0/0 0/0 101 58 5858 W6YX: K6UFO-N7MH-W6LD-KJ9U-KG6RYB KD7RX JERRY WY 4/3 45/26 23/16 1/1 0/0 73 46 3358 N1M6ON: N1MGO-NTMIGO-KT1I N7JB JIM WA 4/2 12/7 64/32 0/0 0/0 84<1	KR7X KJ7NO W7LD	HANK BRAD JACK	OR UT WA	4/3 19/12 15/7	79/35 91/36 89/32	193/48 107/40 120/39	38/19 3/2 7/6	0/0 0/0 0/0	314 220 231	105 90 84	32970 19800 19404	NN6NN N3XLS	DOC JOE	CA PA	44/20 71/25	121/43 120/37	217/53 102/35	36/15 40/19	1/1 7/3	419 340	132 119	55308 40460
Check Logs NCI	N7UVH W7KB N7XB K7KAR KD7RX N7JB N7ON W7DPW	PAT RICK BRUCE KEITH JERRY JIM JOHN DAVE	ID UT AZ WY WA NV WA	8/5 0/0 11/5 1/1 4/3 4/2 3/1 0/0	34/21 3/2 49/27 41/22 45/26 12/7 7/6 0/0	187/47 201/43 62/33 59/35 23/16 64/32 36/25 41/23	2/2 11/9 9/7 0/0 1/1 0/0 0/0 1/1	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	231 215 131 101 73 80 46 42	75 54 72 58 46 41 32 24	17325 11610 9432 5858 3358 3280 1472 1008	W5KFT: W5NN: N W6YX: K N1MGO: NN6NN: N3XLS: 1	K5PI-K5TW NT5TV-K5GA (6UFO-N7M N1MGO-KT W6XK-N6EE N3XLS-N3K	T-KS5 A-K5N H-W61 11 E AE	Z _D-KJ9U	-KG6RYE	3					
														6FQN	I, WØPS	S, SM7B						NCJ

How smart is your contest software?

TR-Log is smart enough to know in the ARRL Sweepstakes when you enter:

234B76STX 76STX B 234 K5RAT 234 B K5RAT 76 STX 76 WPA 234 A Q B NLI MD STX MD Q 234 A WPA 76 STX B K5RAT 76STX 234B 235A46SCV STX 234 Q B 76 WPA 36 Q 735 A 234 STX 76 B 1 A 56 ND 76 B 234 STX

What you really mean is:


234 B K5RAT 76 STX

No tabbing between fields. No backspacing. No deleting. To learn more and to order - http://www.QTH.com/tr/

TR-LOG -- by N6TR http://www.qth.com/tr email : k5tr@kkn.net tel : 830-868-2510 GEO DISTRIBUTING George Fremin - K5TR 624 Lost Oak Trail Johnson City, Texas 78636

In Europe contact -- Jon Silvergran SM3OJR -- sm3ojr@pobox.com In Japan contact -- Tack Kumagi JE1CKA -- je1cka@nal.go.jp

Serious Products for Serious Hams

SCAF-1 Audio Filter

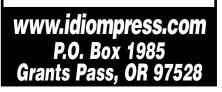
Make your receiver listener friendly! Variable cut-off audio low-pass filter, 96 db rolloff per octave! Cut-off range frequency 450 Hertz to 3.5 kHz. Absolutely real time, NO delay perfect for QRQ CW and no monitor problems. Use for CW, Digital modes, and SSB, with headphones or speakers. Super-simple operation, yet wonderfully effective. Sample audio files on our web site. Available as a kit or preassembled.

Keyers: Logikey K3, Super CMOS-3, CMOS-4

Our keyers simply are the best keyers available — Period. More user friendly by far, more features. Extremely powerful memory functions, yet easy to learn. Extended paddle input timing reduces errors and increases your speed. Can emulate many earlier designs for timing feel, but with full feature set. Use with both positive and negative keyed rigs. Built-in monitor included. Full beacon capability.

For full details see our web site. Forget that built-in keyer in your transceiver. You deserve far better. We have one waiting for you.

Antenna Rotor Enhancements:


TailTwister & Ham-M

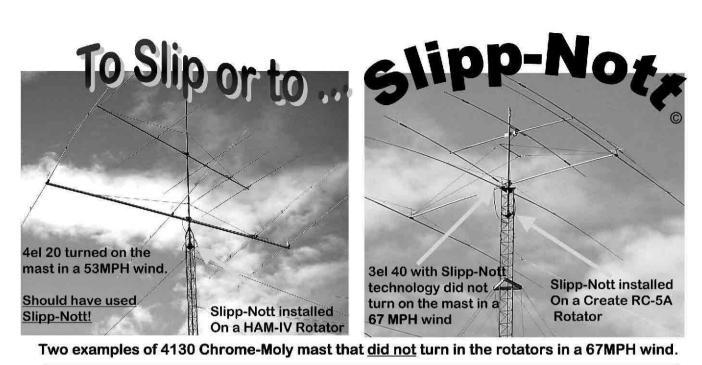
Do you own one of these fine rotors? Bring it into the 21st Century! Rotor-EZ adds a unique "Auto-Point" capability plus brake delay, endpoint protection, optional complete computercontrol capability for logging and contesting programs, and more!

See our web site for full details of this "must have" enhancement.

Yaesu DXA and SDX series rotors add affordable plug-in computer-control capability for far less. See our web site for full details!

AlfaSpid Rotator

TWICE THE TURNING POWER OF ANY ROTATOR IN IT'S PRICE CLASS ALL METAL DOUBLE WORM GEAR DRIVE QUET, SELF-BRAKING ACTION LOW VOLTAGE DC MOTOR DIGITAL CONTROLLER INCLUDED WITH ONE DEGREE ACCURACY LARGE EASY TO READ DIGITAL READOUT SIX PRESETS AVAILABLE WITH MOUSE CONTROLLER SERIAL INTERFACE EMULATION OF MANY POPULAR ROTATORS WORKS WITH MOST LOGGING PROGRAMS AZIMUTH / ELEVATION UNIT CAPABLE OF 720 DEGREE AZIMUTH **185 DEGREE ELEVATION** ELEVATION ONLY UNIT AVAILABLE SPECS & MANUAL AVAILABLE ON WESSITE Alfa Radio Ltd 11211 154 St Edmonton, AB T5M 1X8

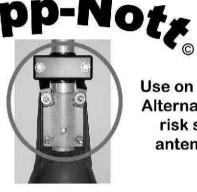

Alfa Radio Ltd 11211 154 St Edmonton, AB 15M 1X8 PHONE (780) 466-5779 FAX (780) 466-4956 www.alfaradio.ca

ARE YOU BUILDING A HIGH POWER AMPLIFIER? DO YOU WANT TO TAKE A LIGHT-WEIGHT ON A TRIP? You must check out the PS-2500A High Voltage Power Supply

- 240VAC IN/2.5KVDC @ 1.1A OUT
- WEIGHT: 10 LBS
- Size: 11 3/4 X 5 5/8 X 5 INCHES
- RF "QUIET"
- FOR BUILT-IN OR OUTBOARD USE
- NEW CONSTRUCTION OR RETROFIT
- TWO MAY BE CONNECTED IN OUTPUT SERIES AND PARALLEL FOR HIGHER V AND I

\$585 KIT/\$698 BUILT AND TESTED (POSTPAID IN CNTL US) FOR FULL SPECS AND EASY ONLINE ORDERING, VISIT WWW.WATTSUNLIMITED.COM

Productivity Resources is back... with the most innovative product in antenna hardware in decades!


Add-on clamp for existing

antenna installations to provide

the needed friction to stop

slippage in medium to severe

winds

High-Friction Clamps

Use on rotators to stop slippage. Alternative to pinning masts and risk stripping gears. Use on antennas to stop slippage on mast.

NEWS FLASH!

TENNADYNE ACQUIRES EXCLUSIVE DISTRIBUTION RIGHTS TO SLIPPNOTT TENNADYNE, an international leader in antenna manufacturing, has become the exclusive distributor for the SlippNott. They are also including the SlippNott as the OEM Boom-to-Mast Clamp on their larger arrays. You can order from Productivity Resources through 12/31/04, or contact TENNADYNE at TENNADYNE@TENNADYNE.COM OR 616-868-9907

Slipp-Nott© High Friction Clamp designed for 2"OD Mast and HAM & T2X Rotators and most 2" antenna boom-to-mast brackets - \$79.95 plus S&H

Other sizes coming soon. Also coming, Slipp-Nott clamps for boom-to-mast and for element-toboom mounting. <u>Complete specs on www.ConsultPR.com</u>. Call or email for details. 775-847-7929. SlippNott2@aol.com. www.consultpr.com PO Box 1126 Virginia City NV 89440 Visa – Master Card – Amex

K1FZ Receive Antenna Transformers

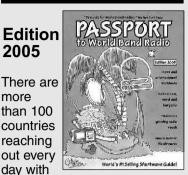
High efficiency wound ferrite toroid transformers with isolated 50 ohm windings for minimum noise transfer. Color coded binding post for Beverage wire(s) and ground connections. Teflon and silver SO-239 coax connectors used.

Each unit is individually calibrated to eliminate variations found in mass production.

- **KB-1** Single wire Beverage transformer. (Variations available for EWE)
- **KB-2** Two wire, two direction Beverage transformer.
- KB-3 Two wire end termination transformer. (For two wire switchable systems).
- Distribution transformer. Two and three ports available. Combine phased KB-4 Beverages or distribute Beverage signal to multi/multi contest positions.
- **KB-5** Pennant, flag and delta antennas.

For more information, please check the www web site. Visa and Master Card accepted.

rk Electronics


65 Patterson Hill Rd., Belfast, ME 04915 USA Tel (207) 338-0474 • www.qsl.net/k1fz/• k1fz@prexar.com

Available from ARRL

Passport to World Band Radio

Edition 2005

more

news, music and entertainment. Make Passport your guide. Includes a channel-by-channel guide to World Band Schedules and other listening resources.

ARRL Order No. 9446—**Only \$22.95*** *shipping \$8 US (ground)/ \$13.00 International

ARRL The national association for AMATEUR RADIO

SHOP DIRECT or call for a dealer near you ONLINE WWW.ARRL.ORG/SHOP ORDER TOLL-FREE 888/277-5289 (US) NCJ 11/2004

See DXEngineering.com for many more Polyphaser products! Check our secure web site for Sales, Specials, E-mail and the parts that you need! Tech/International: 330.572.3200 SOURCE CODE: 1104NC

46

K2 Transceiver Now with DSP!

- New KDSP2 internal DSP unit for the K2
- New XV Series transverters for 50, 144, and 222 MHz
- New KRC2
 Programmable
 Band Decoder

Elecraft K2 and K2/100 Transceivers. Our 160-10 m, SSB/CW transceiver kit is available in 10 and 100-watt models, which share the same chart-topping receiver performance. Add the new KDSP2 option for versatile notch and bandpass filtering, plus noise reduction. K2 pricing starts at \$599.

Our KX1 4-watt, 3-band CW transceiver is the new featherweight champ!

Pocket-size and with controls on top, it's ideal for trail-side, beach chair, sleeping bag, or picnic table operation. DDS VFO covers both ham and SWL bands; the receiver handles CW, SSB, and AM. Features memory keyer, RIT, logbook lamp, and internal battery. Optional internal ATU and attached paddle. Basic KX1 kit covers 20 & 40 m (\$279). KXB30 option adds 30 m (\$29).

Visit our web site for details on the K1, XV Series, KRC2, and mini-module kits.

SELECRAFT www.elecraft.com

P.O. Box 69 Aptos, CA 95001-0069

Phone: (831) 662-8345 sales@elecraft.com

NEW KRC2 Universal Band Decoder

Our new KRC2 universal Band Decoder can automatically switch any combination of antenna relays, filters, amplifiers, or other equipment as your rig changes bands. It supports analog, digital, and RS232 band control inputs.

- Decodes band data from our K2, Icom, Yaesu and Kenwood rigs
- Microprocessor control / Software reconfigurable
- Rugged source & sink relay drivers for all HF bands
- Also has BCD HF band and transverter band outputs
- Price: \$159

Go SO2R in Minutes With The **DXDoubler** from Top Ten!

- Installs in 5 minutes with available prefab cables.
- Leave it installed permanently! No computer required.
- Handles 4 RX audio streams, mike, key, and footswitch.
- Heil Proset plugs in directly. Adapter available for DVP.
- High RF immunity. Relay switching for ground isolation.
- Works with CT, NA, TR, and WriteLog for Auto mode.
- Audio mix control to blend left and right headphones.
- Red and green LEDs provide visual feedback.

Prices:

DXDoubler...\$195 DVP Adapter Cable...\$15 Radio Interface Cable...\$35

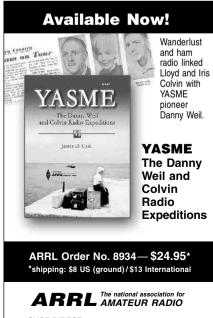
Complete info (incl. manual) at www.QTH.com/topten/dxd.htm


Other Products for Station Automation from Top Ten

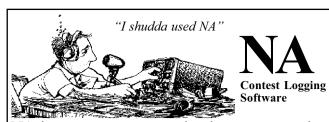
Icom/Yaesu or LPT models. Source Driver mod controls Ameritron and WX0B 6Pak. Cables available for Icom and Yaesu transceivers

Also available: Six Way Relay Box (indoor model), Tower Six Way (outdoor), A/B Station Selector, band reject coax stubs. Visit the web site for prices, or call us at the number shown below.

Come Visit Our Web Site! • Photos and Diagrams • On-line Order Form • Full product details http://www.QTH.com/topten



1. Publication Title	2. Publication Number	1 Filing Esta
National Contest Journal	0 0 9 9 0 1 31	September 27, 2004
E Baue Emplering	5. Number of Issues Published Annually	6 Annual Subscription Price
Simonthly in: Jan, Mar, May, Jul, Sep, Nev	6	\$20.00
7. Certaine Making Addross of Known Office of Publication (Nor primer) (Si	oner, any ecump. stats, and ZV++4	Conser Person Katherine Capodicas
225 Main Street, Newington, Hertford Count	y, CT 06111-1494	(860) 554-0257
5 Complete Meeting Address of Headquarters or General Business Office of	Picilister (Storpshied	
225 Main Street, Newington, CT 06111-149	4	
 Fol Names and Conclete Maling Addresses of Publisher, Editor, and Ma Instituter (Name data any price making indexing) 	muçinç Belton (Do not hurry blank)	
American Padio Relay League, Inc., 225 Mai	n Street, Newington, CT	06111-1494
Beer (Name and concerts motiog address) Carl LueLzels chivab, 225 Moin Street, Newin	gton, CT 06111-1404	
Nanaping Editor (Hamo and obmolete mailing sources)		_
Joel R. Hallas, 225 Main Street, Newington	, CT 06111-1494	
10. Owner (Do not abare billion) of the publication is dwinse by a conservative nerves and admission of all aborhandows dwining in leading 1 percent of carries and additions of the local-base dwining. "Owned by a percent and industrial careful in the publication or published by the percent of the second admission." It has publication or published by the percent of the second admission of the publication or published by the percent of the second admission.	pro two name and address of the corporate memo of the total ansatus of abolt. If not but is or other unincorporated firm, give its name interior, give its norme and definist.)	n materiality followed by the red by a serectation, give the and address as well as those of
Pull Kann	Complete Halling Address	
American Redio Relay League, Int.	225 Main Street, Newing	ten, 81 06111-1494
American Redio Relay League. Int.	225 Main Street, Newing	ten, CT U6111-1494
		ton, 01 06121-1494
11. pocer-texteductive biologicans, solar that data with results to building		ten, Cf _ 06121-1494
11 Booker Bookersen: Bookersen of the antibooker bookersen bookersen of the antibookersen of the antibookers		ten, CT 06111-1494
11 Booker Bookersen: Bookersen of the antibooker bookersen bookersen of the antibookersen of the antibookers		ten, Sf. Jelit-1494
11 Booker Bookersen: Bookersen of the antibooker bookersen bookersen of the antibookersen of the antibookers		ten, 31 JElli-3494
11 Booker Bookersen: Bookersen of the antibooker bookersen bookersen of the antibookersen of the antibookers		ton, CT 38111-1494
11. Booke Bioconcere, Borgapara, and the antanany biology burger Medica P. Power or Manual Rick Androne, of Social, Holizapes, S 1000 Sciences, Toron, Berch New		ten, 31 36111-1494


	Tee 1 Contest Journal	14 laste Date for Circulation Data Be Sep/Oct 03 - Jul/Aug	04 Sep/Oct 04
15	Extent and Nature of Circulation	Auszage No. Copies Each lason During Preceding 12 Months	No. Copies of Single Issue Published Nearest to Filing Dat
a. Totarhum	ber of Copies (her pross run)	2,450	2,400
-	(1) PastRecented Outside Outry Mail Subscriptions Stated on Form 3541, thick of activate any party and exchange social	1,541	1,508
	(2) Red In-County Subscriptions Stated on Form 3341 sinclocle administrative proof and exchange popilat (ä	(b)
Requested Decidebon	(3) Salas Theody Doubes and Canters, Street Vanders, Counter Soles, and Other Kon USPS Paid Distribution	60	60
	(4) Other Classes Mailed Troughthe USPS	390	401
Total Paid a	ndlor Requested Circulation	2,011	1,989
Distribution	(1) Outside-County as Stated on Form 3541	57	57
Samality Mall	(2) In Courty as Stated or Form 2541	a	0
ancional other trae)	(1) Other Disses Mailet Through the USPS	32	30
- Free Distrib	ution Outside the Mail other matrix	68	72
Total Free D	Nastbuller (Sum of (Sol. and 15e.)	157	159
Total Distrib	ction (Burn of (Be and 18)	2,168	2,148
Copies rei	Distributed	282	252
Total (Sum	of 15g. and h.)	2 450	2,400
	d and/or Recuested Coculation d by tilig: amas #80;	92.75%	82,608
15 Publication	of abarament of Overaminia no required will be printed in the _Now/Dec_2004	in a of the sublimition	D Fublication not required.
12 Signal y	and Title of Erster Publisher Russies Manager, or Quater		Cone
1La	unt Halla Businese Han	2016	September 27, 200
Longly that sil	information furnished on this form it state and complete. I under	stand that pryone who furnishes false :	or misidading information on this form
er who on its in linguising sinil	referial or information requested on the form may the subject to permitted.	criminal senctions (including free and in	representent () and by dive salations
Instructo	ons to Publishers		
L Cor	nglete and tile one copy of this term with your postmaste	r snewelly easer self-ye Gasaber 1.)	Soon a easy of the completed fo
2 in c	one exercise sees where the stockholder or structure holder is a studio withe transition is acting. Also include the names and ado note of the total antouri of bonds, mortgages, or other su- Cise blank (needs if meet spaces movined.	reases of incluiduals who are stack	holdyrs who own or hold 1 perce
	sure to famish all grou ation internation called for initian	15. Fee circulation must be show	n in nome tod, e, and if
	a 16h Courier and Dist Judget wortheologie (11 presents)	a subscription and a state of an Example	which and a strange of the state of the

nd Dist liuted, must include (1) newsstand copies originally stated on Form 3041, and returned to the put

It the perivote the Periodical's summitteen as a general or requirister publication, this Statisment of Dimotrikle. Management, and Creatation must be published; timust be printed in any losse in October or, if the publication is not published during October, the first issue prime after Codeber.

SHOP DIRECT or call for a dealer near you ONLINE WWW.ARRL.ORG/SHOP ORDER TOLL-FREE 888/277-5289 (US) NCJ 11/2004

NA is a contest program that is easy-to-use, has templates for most contests, will allow you to design your own templates and can be used as a general logging program. Operation is simple and most active contesters can sit down and use it right away. Runs on almost all computers from 8088 to stateof-the-art Pentiums. You get an illustrated manual and one year of free upgrades with your purchase. NA is fimly committed to the future of contesting and ensuring that the program is kept up-to-date and fun to use.

NA Contest Logging Software v 10.x \$60 US Shipping \$5.95 Overseas \$9.95 NA Website: www.datomonline.com

http://www.radio-ware.com

Pro-Set.

e-mail @ radware@radio-ware.com **Radioware & Radio Bookstore PO Box 209**

Rindge, NH 03461-0209

(800) 457-7373

STEADERS I

Transmit Voice & CW messages in your IC-756PROII while the SPECTRUM SCOPE stays alive. Ideal for chasing DX and contesting (746PRO CW only). Save the finals in your linear amp while tuning with the Tune button. Sends 30 wpm pulsed tone at 50% duty cycle for amp

tuning. Saves stress on finals & power supply. Standard 8-pin plug and jack for Heil

800-653-9910 505-286-3333 FAX: 505-281-2820 www.BetterRF.com

The BetterRF Co. 44 Crestview Lane Edgewood NM 87015 The company that brought vou the 706 TUNE Control

\$74.95 + \$5.00 S/H (\$10 Foreign)

MATE I-MATE

Available from ARRL

The Complete DX'er

3rd edition, by Bob Locher, W9KNI.

One of the most popular DX books ever written. Learn how to REALLY listen, how to snatch the rare ones out of the pile-ups, the excitement of landing the newone, and the agony of defeat. Full of lessons for DX'ing success!

ARRL Order No. 9073-Only \$19.95*

*shipping \$7 US (ground)/\$12.00 International

ARRL AMATEUR RADIO SHOP DIRECT or call for a dealer near you ONLINE WWW.ARRL.ORG/SHOP ORDER TOLL-FREE 888/277-5289 (US)

NCJ 11/2004

SAVE BIG ON ANTENNAS, TOWERS & CABLE

TELESCOPING ALUMINUM TUBING

DRAWN 6063-T832	1.250"\$1.55/ft
.375\$.70/ft	1.375" \$1.75/ft
.500"\$.80/ft	1.500"\$1.95/ft
.625"\$.90/ft	1.625"\$2.25/ft
.750" \$1.00/ft	1.750" \$2.50/ft
.875"\$1.10/ft	1.875"\$2.75/ft
1.000"\$1.20/ft	2.000" \$3.00/ft
1.125" \$1.35/ft	2.125" \$3.50/ft
IN 6' OR 12' LENG	THS. 6' LENGTHS
SHIP UPS. CALL FOR	R ^{3/16} "AND ¹ /4" ROD,
BAR STOCK, AND EX	XTRUDED TUBING.

BENCHER / BUTTERNUT

Skyhawk, Triband Beam	.\$1129	
HF2V, 2 Band Vertical	\$249	
HF5B, 5 Band Minibeam	\$359	
HF6VX, 6 Band Vertical	\$339	
HF9VX, 9 Band Vertical	\$369	
A1712, 12/17m Kit	\$54	
CPK, Counterpoise Kit	\$129	
RMKII, Roof Mount Kit	\$159	
STRII, Roof Radial Kit	\$125	
TBR160S, 160m Kit	\$139	
CALL FOR MORE BENCHER/BUTTERNUT.		

COMET ANTENNAS

	-
GP15, 6m/2m/70cm Vertical	\$159
GP6, 2m/70cm Vertical	\$149
GP9, 2m/70cm Vertical	\$189
B10NMO, 2m/70cm Mobile	\$39
SB14, 6m/2m/70cm Mobile	\$59
SBB224NMO,2m/220/70cm	\$69
SBB2NMO, 2m/70cm Mobile	\$39
SBB5NMO, 2m/70cm Mobile	\$55
SBB7NMO, 2m/70cm Mobile	\$69
UHV4/UHV6	. \$109/149
MORE COMET ITEMS IN STOC	K—CALL.

DIAMOND ANTENNAS

D130J/DPGH62	\$79/139
F22A/F23A	\$89/119
NR72BNMO/NR73BNMO	\$39/54
NR770HBNMO/NR770RA	\$55/49
X200A, 2m/70cm Vertical	\$129
X500HNA/X700HNA	\$229/369
X510MA/510NA	\$189/189
X50A/V2000A	\$99/149
CR627B/SG2000HD	\$99/79
SG7500NMO/SG7900A	\$75/112
MORE DIAMOND ANTENNA	S IN STOCK.

GAP ANTENNAS

Challenger DX	\$289
Challenger Counterpoise	\$29
Challenger Guy Kit	\$19
Eagle DX	\$299
Eagle Guy Kit	\$29
Titan DX	\$329
Titan Guy Kit	\$29
Voyager DX	\$409
Voyager Counterpoise	\$49
Voyager Guy Kit	\$45
PLEASE CALL FOR DELIVERY	INFO.

WEEKDAY HOURS: 9 AM–5 PM CST

SATURDAY HOURS: 9 AM-12 NOON CST

CREDIT CARDS: M/C, VISA, DISCOVER

CUSHCRAFT ANTENNAS

13B2/A148-10S	\$159/89
A270-6S/A270-10S	\$79/99
A3S/A4S	\$439/549
A50-3S/5S/6S	\$99/169/269
A6270-13S	\$199
AR2/ARX2B	\$55/69
AR270/AR270B	\$89/99
R6000/R8	\$309/459
X7/X740	\$649/269
XM240	\$679
CALL FOR MORE OUCH	JODAET ITEMO

CALL FOR MORE CUSHCRAFT ITEMS.

M2 VHF/UHF ANTENNAS

144–148 MHZ		
2M4/2M7/2M9	\$95/109/129	
2M12/2M5WL	\$165/209	
2M5-440XP, 2m/70cm	\$179	
420–450 MHz		
440-470-5W/420-450-11	\$139/95	
432-9WL/432-13WLA	\$179/239	
440-18/440-21ATV	\$129/149	
SATELLITE ANTENNAS		
2MCP14/2MCP22	\$169/239	
436CP30/436CP42UG	\$239/279	

M2 ANTENNAS -----

30-34 WITZ		
6M5X/6M7JHV	\$209/269	
6M2WLC/6M9KHW	\$459/499	

10/12/15/17/20M MONO

10M4DX, 4 Element 10m	\$399
12M4DX, 4 Element 12m	
15M4DX, 4 Element 15m	
17M3DX, 3 Element 17m	
20M4DX, 4 Element 20m	
MORE M2 IN STOCK-PLEASE	

MFJ	
259B, Antenna Analyzer	\$219
269, Antenna Analyzer	\$299
941E, Antenna Tuner	\$109
945E, Antenna Tuner	\$99
949E, Antenna Tuner	\$139
969, Antenna Tuner	\$169
986, Antenna Tuner	\$289
989C, Antenna Tuner	\$309
1798, 80–2m Vertical	\$249
1796, 40/20/15/10/6/2m Vert	\$199
BIG MFJ INVENTORY- PLEA	SE CALL.

LAKEVIEW HAMSTICKS

9106 6	n 9115	15m	9130	.30m
9110 10	n 9117	17m	9140	.40m
9112 12	n 9120	20m	9175	.75m
All hand	e 600W	, 7' ap	proxim	ate
length, 2	:1 typic	al VSV	VR .\$24	1.95

HUSTLER ANTENNAS

4BTV/5BTV/6BTV	\$129/169/199
G6-270R, 2m/70cm Vertic	al\$169
G6-144B/G7-144B	\$109/179
HUSTLER RESONATOR	RS IN STOCK.

TEXAS TOWER

(800) 272-3467

FORCE 12–MULTIBAND

C3	10/12/15/17/20m, 7 el\$65	59	
C3E	10/12/15/17/20m, 8 el\$69	99	
C3S	10/12/15/17/20m, 6 el\$57	79	
C3SS	10/12/15/17/20m, 6 el\$59	99	
C4	10/12/15/17/20/40m, 8 el\$79	99	
C4S	10/12/15/17/20/40m, 7 el\$71	9	
C4SXL	10/12/15/17/20/40m, 8 el \$101	19	
C4XL	10/12/15/17/20/40m, 9 el \$118	39	
C19XR	10/15/20m, 11 el\$99	99	
C31XR	10/15/20m, 14 el\$138	39	
CALL FOR MORE FORCE 12 ANTENNAS.			

ROHN TOWER

25G/45G/55G	\$99/209/259		
25AG2/3/4	\$119/119/129		
45AG2/4	\$229/249		
AS25G/AS455G	\$49/109		
BPC25G/45G/55G	\$89/119/129		
BPL25G/45G/55G	\$99/129/149		
GA25GD/45/55	\$79/109/139		
GAR30/GAS604	\$39/29		
SB25G/45/55	\$49/109/129		
TB3/TB4	\$99/119		
PLEASE CALL FOR MORE ROHN PRICES.			

GLEN MARTIN ENGINEERING

HAZER ELEVATORS FOR 25G		
H2, Aluminum Hazer, 12 sq ft	.\$359	
H3, Aluminum Hazer, 8 sq ft	.\$269	
H4, HD Steel Hazer, 16 sq ft	.\$339	

ALUMINUM ROOF TOWERS

RT424, 4 Foot, 6 sq ft \$1	59
RT832, 8 Foot, 8 sq ft\$2	39
RT936, 9 Foot, 18 sq ft\$3	89
RT1832, 17 Foot, 12 sq ft \$5	19
RT2632, 26 Foot, 9 sq ft\$8	69

COAX CABLE

RG-213/U, (#8267 Equiv.)	\$.36/ft
RG-8X, Mini RG-8 Foam	\$.19/ft
RG-213/U Jumpers	.Please Call
RG-8X Jumpers	.Please Call
CALL FOR MORE COAX/CO	NNECTORS.

TIMES MICROWAVE LMR® COAX

\$.59/ft
\$.89/ft
\$1.19/ft
\$1.95/ft

ANTENNA ROTATORS

M2 OR-2800P	\$1249
Yaesu G-450A	\$249
Yaesu G-800SA/DXA	\$329/409
Yaesu G-1000DXA	\$499
Yaesu G-2800SDX	\$1089
Yaesu G-550/G-5500	. \$299/599

ROTATOR CABLE

R62 (#18)	\$.32/ft.
R81/82	\$.25/ft./.39/ft.
R84	\$.85/ft

TRYLON "TITAN" TOWERS SELE-SUPPORTING STEEL TOWERS

SELF-SUPPORTING STEEL TOWERS			
T200-64	64', 15 square feet	\$1209	
T200-72	72', 15 square feet	\$1429	
T200-80	80', 15 square feet	\$1649	
T200-88	88', 15 square feet	\$1949	
T200-96	96', 15 square feet	\$2249	
T300-88	88', 22 square feet	\$2189	
T400-80	80', 34 square feet	\$2089	
T500-72	72', 45 square feet	\$1979	
T600-64	64', 60 square feet	\$1869	
MANY MORE TRYLON TOWERS IN STOCK.			

US TOWER

UU I UNILII			
MA40/MA550	\$1039/1599		
MA770/MA850	\$2619/4049		
TMM433SS/HD	\$1379/1669		
TMM541SS	\$1799		
TX438/TX455	\$1289/1789		
TX472/TX489MDPL	\$2929/7649		
HDX538/HDX555	\$1539/2679		
HDX572MDPL	\$6999		
PLEASE CALL FOR HE	LP SELECTING A		
US TOWER FOR YOUR	NEEDS. SHIPPED		
FACTORY DIRECT TO SA	AVE YOU MONEY!		

UNIVERSAL ALUMINUM TOWERS

4 -40'/50'/60'	\$539/769/1089
7 -50'/60'/70'	\$979/1429/1869
9-40'/50'/60'	\$759/1089/1529
12- 30'/40'	\$579/899
15 -40'/50'	\$1019/1449
23- 30'/40'	\$899/1339
35- 40'	\$1569
BOLD IN PART NUM	BER SHOWS WIND
LOAD CAPACITY. P	LEASE CALL FOR
MORE UNIVERSAL	MODELS. SHIPPED
DIRECT TO YOU TO	SAVE YOU MONEY.

TOWER HARDWARE

3/8"EE / EJ Turnbuckle	\$11/12
1/2"x9"EE / EJ Turnbuckle	\$18/19
1/2"x12"EE / EJ Turnbuckle	\$21/22
3/16" / 1/4" Big Grips	\$5/6
PLEASE CALL FOR MORE HA	RDWARE.
UIOU OADDON CTEEL N	ACTO

5 FT x .12" / 5 FT x .18"	\$35/59
10 FT x .18" / 11 FT x .12"	\$129/80
16 FT x .18" / 14 FT x .12"	\$179/109
19 FT x .12" / 21 FT x .18"	\$129/235
22 FT x .25" / 24 FT x .25" .	\$349/379

PHILLYSTRAN GUY CABLE

HPTG1200I	\$.45/ft
HPTG2100I	\$.59/ft
PLP2738 Big Grip (2100)	\$6.00
HPTG4000I	\$.89/ft
PLP2739 Big Grip (4000)	\$8.50
HPTG67001	\$1.29/ft
PLP2755 Big Grip (6700)	\$12.00
HPTG11200	\$1.89/ft
PLP2758 Big Grip (11200)	\$18.00
PLEASE CALL FOR HELP SELE	CTING THE
PHILLYSTRAN SIZE FOR YOUR	PROJECT.

LOCAL CALLS: (972) 422-7306

EMAIL ADDRESS: A Division of Texas RF Distributors, Inc. • 1108 Summit Avenue, Suite #4 • Plano, TX 75074 sales@texastowers.com

> **INTERNET ADDRESS:** www.texastowers.com

Multiple Meter Readouts See the latest in meter technology with the '7800's virtual meter system. These digital meters are visually superior to and of a higher performance than analog. Don't believe it? Log on to www.icomamerica.com/7800 and see for yourself!

Multiple Spectrum Displays You can select a standard spectrum display either centered on your operating frequency or a fixed range to view the band! Choose how you want to SEE the band, and then tune to what signals you see. (Photo shows the fixed range spectrum display.)

IC-7800 The Ultimate HF!

Gentlemen, start your engines. All four of them!

Power your way to front of the pack with Icom's new IC-7800. Cutting edge digital meets the best of world class analog, resulting in an amazing 110dB of receiver dynamic range and a +40dBm IP3 in the *HF bands*! But that's not all. The '7800 has two identical, independent receiver circuits. Receive two different bands simultaneously on different antennas, with no adverse effects from one receiver to the other — take your band hopping and contesting to the next level! There are four 32-bit floating point DSP units with 24-bit AD/DA converters, one each for the main RX, second RX, TX, and spectrum scope, to accelerate data processing to whiplash speeds! Newly designed power amplifiers provide a powerful 200W of output power at full duty cycle and low transmit IMD. So what are you waiting for? Make your move. See your authorized Icom dealer!

Dual Receive Controls Separate key receiver controls are available for each receiver. Controls for volume, RF gain, and DSP controls, the '7800 also has independent controls for the Digital Twin PassBand tuning as well as the 70 dB Manual Notch filters. Whether in a contest, or just hopping around the bands, easy access to receiver controls such as volume, RF gain, and AGC adjustments are at your fingertips.

Dual Digital Twin PassBand Tuning Only Icom brings you Digital Twin PassBand tuning. Adjustments can be made for each receiver without affecting the other receiver.

Independent Digi-Sel Controls Incorporated into the IC-7800 is a newly designed digital pre-selector, with separate controls for each receiver.

Independent Auto Tune Automatically zero beat your CW or AM carrier signals. The '7800 makes sure you're right on the proper frequency for these modes. Each receiver has a separate control.

Independent AGC Settings Multiple AGC settings for each receiver. On-the-fly adjustment for either preset AGC settings, or a completely variable AGC control.

©2004 Icom America Inc. The Icom logo is a registered trademark of Icom Inc. All specifications are subject to change without notice or obligation. 6707

