

NATIONAL CONTEST Janu JOURNAL

January/February 2006

Volume 34 Number 1

NCJ: The National Contest Journal American Radio Relay League 225 Main Street • Newington, CT 06111-1494

Contesting and DXing Products from Array Solutions

The Array Solutions PowerMaster

The Next Generation of SWR/Wattmeter: Delivering **Outstanding Accuracy and Functionality at a Price You Can Afford!**

- Available in Two Versions 1 W to 3 kW (amateur) and 1 W to 10 kW (military/commercial)
- Accuracy Within ≤5% from 1.8 to 54 MHz Temperature and frequency compensated
- Separate Control Head and Coupler/Sensor Sensor can be remotely located for the ultimate in shack and mobile installation convenience, and moves high levels of RF away from your operating position - Say goodbye to RFI!
- High VSWR and Low and High RF Output Power Alarms Programmable trip points with warning LEDs and relay outputs - tremendously handy for contesters and DXers! Lightning fast trigger response will protect your rig, your amplifier, and your rate!
- Auto-Ranging Bar Graph Display Operates in Two Modes Simplifies peaking your RF output or dipping your VSWR
- Large Vacuum Fluorescent Display Easy to read, even in bright sunlight
- Peak Hold Modes Programmable for fast, medium and slow response for CW and SSB
- Effective 12-bit A/D Processing Resulting in outstanding resolution and accuracy
- Meter Operation and Menu Functions Accessible from Front Panel or Via RS232 Connection Capable of displaying up to 16 alphanumeric characters - your call sign, for example
- RS232 Application for Your PC Complete control and programming via computer, perfect for remote station applications; firmware can be updated via Web site downloads
- All Metal Enclosure Rack mount option available (1 or 2 units in a 19-inch 2U panel)
- Choice of Connectors SO239 or Type-N (Sensor connector: 7/16-inch DIN)
- Control/Display Head Dimensions 31/2 X 81/4 X 41/4 inches (HWD)
- Remote Coupler/Sensor Dimensions 2¾ X 2¾ X 6½ inches (HWD)
- Now Shipping!

Array Solutions proudly carries a tremendous variety of high quality Amateur Radio products, including those of this issue's featured company:

SIS.TEL. BIG BOY ROTAT

The Most Powerful and Accurate Amateur/Commercial/Military/Industrial Antenna Rotators Available – Just Got Better!

Pro.Sis.Tel. rotators are designed to perform under tremendous stress while carrying large antenna loads - up to 81 square feet! Perfect for turning 80-meter beams, long boom Yagis, large log periodics and stacked arrays. Why turn just the antenna, when you can turn the entire tower?!

Worm gear technology generates incredible starting and rotating torque, and tremendous braking forces. All models now employ DC motors that deliver even higher torque and unparalleled controllability.

Model:	Compare With:	Price:
PST641D	Ham IV, V (or less), G-400, G-800	\$795
PST2051D	T2X, RC5A-B, G-1000, Alfa-Spid	\$995
PST61D	HDR300, Orion 2800, G-2800	\$1,350
PST61DHP	Twice the Specs of the Nearest Competition	\$2,095
PST71D	2 to 3 Times the Specs of the Competition!	\$2,495
Controller D included	with all models	

The new "Controller D" control box features a built-in computer interface. Fully control the rotator manually or via software. Also use your PC to program operating parameters into the box such as stop points, calibration, soft start/ stop, reverse delay, rotation range, and more!

A wide range of azimuth and elevation rotators is available. Two-year warranty (US).

WXØR

www.arraysolutions.com Phone 972-203-2008 sales@arraysolutions.com We've got your stuff! Fax 972-203-8811

the next best thing to a Ten-Tec Transceiver is a Ten-Tec Accessory

(800) 833-7373 www.tentec.com

High Power Tuner – Superior matching capability with an L-network tuner assures correct match every time. 2000 watts CW or SSB PEP power rating. *\$595*

Titan III – Two 4CX800A tubes, massive power supply, solid overdrive protection. Peak reading wattmeter and QSK standard. Titan III loafs at 1500 watts with 65 watts of drive. 3-year parts/labor warranty. \$3,695

Vee Beam Antenna – Small-sized broadband HF antenna with below 2:1 SWR from 1.8–30 or 3.5–30 MHz continuous. 250 watts maximum power. *\$249/\$239*

963 Power Supply – Hash-free switching design.
13.8 Vdc at 25 amps continuous, 30 amps peak.
Small, lightweight (4 lbs!) and 90-264 VAC, 50/60 Hz input make 963 usable from anywhere. \$169

310 Fan Kit –

Hole-free allen screw attachment to transceiver

heat sink. 13.8 Vdc powered. Use with Orion, Orion II, Jupiter, Pegasus, all Omnis, Corsairs, Tritons, Paragons. *\$39.95*

706/706A Desk Mic – Our standard communications desk mic comes ready to plug into any 4-pin (706) or 8-pin (706A) equipped Ten-Tec transceiver. Quality audio with plenty of punch. *\$99.95*

937 Power Supply – 13.8 Vdc at 11 amps for powering HF or VHF transceivers of up to 50 watts output. 115 VAC input. *\$89*

Acro-Bat – Unbreakable polycarbonate antenna hanger for coax or ladder line-fed antennas. Stainless steel hardware. \$9.95

Centurion – In its 16th year, this proven dual 3-500ZG design busts the pileups but won't bust your wallet. Peak reading wattmeter and QSK standard. 1300 watts. *\$2,695*

307 Speaker Series – External frontfiring communications speakers, available in light grey (307G), black (307B), or charcoal grey (307C), are a terrific addition to any receiver or transceiver. Cabinet and large 4-inch speaker designed specifically

for amateur radio use. \$98.

302 Series Tuning Knobs – Armchair tuning and direct frequency entry for your Jupiter (302J), Pegasus (302), RX-350D, or Orion or Orion II (302R). Function buttons allow control of some radio features. *\$139*

1185 Dolly Parton Parkway Sevierville, TN 37862 Sales Dept: 800-833-7373 Sales Dept: sales@tentec.com Mon. - Fri. 8:00 - 5:30 EST We accept VISA, Mastercard, Discover, and American Express

Office: (865) 453-7172 • FAX: (865) 428-4483 • Repair Dept.: (865) 428-0364 (8 - 5 EST)

The National Contest Journal

Volume 34 Number 1 January/February 2006

National Contest Journal (ISSN 0899-0131) is published bimonthly in January, March, May, July, September and November by the American Radio Relay League, 225 Main Street, Newington, CT 06111-1494, USA. Periodicals postage paid at Hartford, CT and at additional mailing offices. POSTMASTER: Send address changes to: National Contest Journal, 225 Main St, Newington, CT 06111-1494, USA.

225 Main Street, Newington, CT 06111 tel: 860-594-02200 fax: 860-594-0259 (24-hour direct line) Electronic Mail: hq@arrl.org World Wide Web: www.arrl.org/ Editor Carl Luetzelschwab, K9LA 1227 Pion Rd, Fort Wayne, IN 46845 editor@ncjweb.com Managing Editor Steve Ford, WB8IMY sford@arrl.org NCJ WWW Page Bruce Horn, WA7BNM, Webmaster www.ncjweb.com ARRL Officers President: Jim Haynie, W5JBP Executive Vice President: David Sumner, K1ZZ Contributing Editors

American Radio Relay League

Publisher

Gary Sutcliffe, W9XT—Contest Tips, Tricks & Techniques Paul Schaffenberger, K5AF—Contesting on a Budget Paul Gentry, K9PG—*NCJ* Profiles Jon Jones, NØJK—VHF-UHF Contesting! Carl Luetzelschwab, K9LA—Propagation Bill Turner, W6WRT—RTTY Contesting Mark Beckwith, N5OT—Station Profile Bill Feidt, NG3K—DX Contest Activity Announcements Bruce Horn, WA7BNM—Contest Calendar Pete Smith, N4ZR—Software for Contesters Don Daso, K4ZA—Workshop Chronicles ARRL CAC Representative Ned Stearns, AA7A 7038 E Aster Dr, Scottsdale, AZ 85254

- aa7a@arrl.net North American QSO Party, CW Bob Selbrede, K6ZZ 6200 Natoma Ave, Mojave, CA 93501 *cwnaqp@ncjweb.com* North American QSO Party, Phone
- Bruce Horn, WA7BNM 4225 Farmdale Ave, Studio City, CA 91604 ssbnaqp@ncjweb.com
- North American QSO Party, RTTY Shelby Summerville, K4WW 6500 Lantana Ct, Louisville, KY 40229-1544 *rttynagp@ncjweb.com*
- North American Sprint, CW Boring Amateur Radio Club 15125 Bartell Rd, Boring, OR 97009 cwsprint@ncjweb.com
- North American Sprint, Phone Jim Stevens, K4MA 6609 Vardon Ct, Fuquay-Varina, NC 27526 ssbsprint@ncjweb.com

North American Sprint, RTTY Doug McDuff, W4OX 10380 SW 112th St, Miami, FL 33176 *rttysprint@ncjweb.com* Advertising Information Contact:

Janet Rocco, tel 860-594-0203; fax 860-594-0303; jrocco@arrl.org

NCJ subscription orders, changes of address, and reports of missing or damaged copies should be addressed to ARRL, 225 Main St, Newington, CT 06111 and be marked **NCJ Circulation**. ARRL members are asked to include their membership control number or their *QST* mailing label.

Letters, articles, club newsletters and other editorial material should be submitted to *NCJ*, 1227 Pion Rd, Fort Wayne, IN 46845.

The NA Sprint and NAQSO Parties are not sponsored by ARRL. Yearly Subscription rates: In the US \$20

US by First Class Mail \$28

Elsewhere by Surface Mail \$32 (4-8 week delivery)

Canada by Airmail \$31; Elsewhere by Airmail \$40

All original material not attributed to another source is copyright ©2005 by The American Radio Relay League, Inc. Materials may be excerpted from the *NCJ* without prior permission provided that the original contributor is credited, and the *NCJ* is identified as the source.

In order to insure prompt delivery, we ask that you periodically check the address information on your mailing label. If you find any inaccuracies, please contact the Circulation Department immediately. Thank you for your assistance.

TABLE OF CONTENTS

3 Editorial Carl Luetzelschwab, K9LA

FEATURES

- 4 A 40-Meter Comparison: 4-Square versus Yagi Al Christman, K3LC
- 8 Building a New Contest Station—Part 2 John V. Evans, N3HBX
- 12 A Spectator's Guide to WRTC 2006 Jeff Briggs, K1ZM/VY2ZM
- 14 ARRL DX Contest Single-Band W/VE Winners
- 16 A Simple Approach to SO2R Jack Schuster, W1WEF
- 18 NCJ Station Profile Mark Beckwith, N5OT

COLUMNS -

- 21 Contesting on a Budget Paul Schaffenberger, K5AF
- 22 RTTY Contesting Bill Turner, W6WRT
- 24 Propagation Carl Luetzelschwab, K9LA
- 26 Workshop Chronicles Don Daso, K4ZA
- 27 Software for Contesters Pete Smith, N4ZR
- 29 Contest Calendar Bruce Horn, WA7BNM
- 30 Contest Tips, Tricks & Techniques Gary Sutcliffe, W9XT

CONTESTS –

- 32 September 2005 CW Sprint Results Boring Amateur Radio Club
- 38 September 2005 Phone Sprint Results Jim Stevens, K4MA
- 41 March 2005 NA RTTY Sprint Results Doug McDuff, W4OX
- 42 July 2005 NAQP RTTY Results Shelby Summerville, K4WW
- 45 North American QSO Parties (NAQP) CW/SSB/RTTY Rules
- 47 North American Sprint CW/SSB/RTTY Rules

ADVERTISING INDEX -

Alfa Radio Ltd.: 48 Array Solutions: COVER II ARRL: 48 Atomic Time: 20 Better RF Company, The: 7 Bencher: 28 CATS/Rotor Doctor: 31 Clark Electronics: 23 ComTek Systems: 28 DX Connection, The: 11 DX Engineering: 31 Elecraft: 25 Expanded Spectrum Systems: 44 Icom America: COVER IV

Idiom Press: 40 IIX Equipment Ltd: 13 KØXG Systems: 20 microHAM: 3, 17 Radioware & Radio Bookstore: 40, 46 RF Parts: 23 Ten-Tec: 1 Teri Software: 11 Texas Towers: COVER III Top Ten Devices: 48 Unified Microsystems: 11 W2IHY Technologies: 17 Writelog for Windows: 25, 44 XMatch/N4XM: 41

Editorial

K8JP's Contest Traveler column

After many years of offering the proverbial hints and kinks about traveling to faraway locations to contest, Joe, K8JP, is retiring. His first column was in the March/ April 1997 *NCJ*, and his last one was in the July/August 2002 issue. I want to thank Joe for all the great columns he wrote that enlightened and encouraged people with respect to doing contests away from home. His columns were certainly beneficial to me in my contesting travels in the late 1990s through the early 2000s.

Remote Contesting

Elsewhere in this issue is an *NCJ* Station Profile (by Mark, N5OT) about Tim, N9IW, and his remote station. I first became aware of Tim's station at the 2004 W9DXCC Convention. I was one of the DXCC card checkers sitting at a table in a room adjacent to the main presentation area, and late Saturday afternoon I noticed Tim showing something on his laptop to John, K9DX. It didn't take me long to find out that Tim had a remote station in Wisconsin, and was running it from his wireless laptop.

I took time out from card checking to get a demo, too. Soon I was working Scandinavian stations in the Scandinavian Activity Contest—the CW event, nonetheless. Even though I was sitting at a table in the Chicago area, I felt as if I was right at the station in Wisconsin. I was smitten by this look at future contesting.

N9IW showed up at the 2005 W9DXCC Convention and again I used his laptop to make Qs from his remote station during a lull in card checking. After this, I encouraged N5OT to do a profile on N9IW.

Now N9IW certainly isn't the first one to have a remote contest station, nor is he the only one (for example, check out K9DX's remote station in the March/April 2003 *NCJ*). I am quite sure we'll see more of them in the future, and this will undoubtedly bring some new issues to the contesting scene with respect to rules. In fact, the NAQP and Sprint contest managers have begun to think about this.

I am sure that someday (if it already hasn't happened!) someone will do a con-

test from his laptop while sitting on one coast of North America while using a station on the other coast. And that's not too far away from the next step—doing a contest from a foreign country while sitting in North America.

Wouldn't that be neat? Just hire someone to drop your remote contest station (via parachute) into a country with a score and/or propagation advantage (with full permission from the foreign country's authorities, of course), and enjoy the pileups while sitting at home.

Is this far fetched? Yes—for now, at least. But with technology marching forward at its present pace, it may not be as far fetched as we think.

Errata

AI, K3LC, advises that the captions for the two vertical curves in Figure 4 of his "Verticals by the Sea—Part 3" article in the November/December issue are reversed. The H = 2.5 ft curve is really the H = 5 ft curve, and vice versa.

NCJ

No free COM or LPT port? Switch to USB!

micro KEYER

"The standard in high performance USB all-in-one radio control, Audio, Digital mode, and CW interfaces." microKEYER is a powerful All-In-One multi-mode USB interface for CW, SSB, RTTY and PSK31. Using a single USB port and a sound card, microKEYER can interface with N1MM Logger, Win-Test, or WriteLog to provide complete radio control, DVK, CW, FSK, AFSK and PSK capability in a single compact package with no need to change cables or reconfigure when changing modes.

microKEYER includes a rig control interface for all common computer controllable radios (Elecraft, Icom, Kenwood, Ten-Tec or Yaesu) and interfaces (RS-232, TTL, or CI-V), a powerful CW memory keyer, and a buffer for keying a Power Amplifier.

A low cost, high performance USB interface with optically isolated radio control and CW/PTT as well as high quality audio isolation for data Input/Output.

USB II provides radio control, software generated CW and AFSK/PSK compatible with N1MM Logger, Win-Test, and WriteLog as well as many "every day" amateur applications.

Unlike mass market computer "USB to Serial adapters" the USB Interface II is carefully designed and filtered to be "RF quiet" and

CW Keyer provides th

A powerful USB CW interface and memory keyer based on the K1EL WinKey chip and microKEYER technology.

CW Keyer provides the unmatched CW and radio control features of microKEYER in a small package for those with no need for microKEYER's audio switching or digital mode capabilities.

CW Keyer is the ideal companion to a laptop and portable, computer controlled radio (K2, IC-706, FT-857, TS-50 etc.) for contesting on the go or a single suitcase CW DX-pedition.

The W1KM contesting site converts frequently between a 5-position multi-op and SO2R. We needed a stable, modern computer interface with audio, FSK, CW and radio control that can be quickly configured and tested at each operating position.

The microKEYER fit the requirements perfectly -- and the support is excellent ! Eric K3NA

*micr*oHAM

North and South America www.microHAM-USA.com info@microHAM-USA.com

<u>World Wide</u> www.microHAM.com order@microHAM.com

A 40-Meter Comparison: 4-Square versus Yagi

This article compares the performance of a 40-meter 4-square phased-vertical array to that of a two-element "shorty forty" Yagi, when both are installed over several different types of soil. The number of radials in the ground system of the 4square is varied, as is the height of the Yagi (which should probably be called the "Uda-Yagi array" to give proper credit to its developers).

Background

Forty meters is the primary night-time band during many contests, and a big signal on 7 MHz is important if an operator wants to be competitive. Both contesters and DXers know that 40 meters is the lowest-frequency band where Yagis are readily available to the average ham. They can be bought with 2, 3, or 4 elements, while the elements themselves may be either full-length, or utilize coils or linearloading wires. Towers to support these Yagis need not be gargantuan in size, and flashing beacons are not required at normal installation heights.

As an alternative, one might choose to construct a 4-square phased-vertical array for this band. Quarter-wave elements are only about 34 feet long, and can easily be made to be self-supporting. Such an antenna is relatively unobtrusive, and can be erected without violating most zoning ordinances.

But which antenna style is best? One is horizontal, the other is vertical, and both have their adherents. Let's take a closer look and see what we can learn.

Computer Simulation

Figure 1 shows a plan view of a typical 4-square array. We are looking directly down from above, so the vertical elements are not visible. A "broadcast-style" ground system is used, and none of the radials overlap. Instead, they are truncated at the points where they intersect one another, and are then bonded to bus-wires as shown. Thus, the ground screen of each element is electrically connected to all the others. The number of radials per element was varied from 15 to 30 to 60 to 120, and the maximum radial length was fixed at 0.25 wavelength (WL). The inner end of the first segment of each radial is located at the air/soil interface (H = 0), and the segment slopes downward to a "final" burial depth of 3 inches. All four of the monopoles have a physical height of 0.25 WL, or about 34.39 feet. All elements are fed with equal-amplitude currents,

NC0601-Christman01

Figure 1—Computer-generated drawing (plan view) of a 40-meter four-square array using a "broadcast-style" ground screen. Here, each element has 30 buried radials (depth = 3 inches), whose maximum length is 0.25 WL.

Table 1

Gain of the 4-square phased-vertical array, at various take-off angles, versus the number of radials per element. A "broadcast-style" ground screen is used, and the maximum radial length is 0.25 WL (average soil).

Take-off Angle	Ga Nu	in (dBi) as a fu mber of radials	inction of s per element	
(deg)	N = 15	N = 30	N = 60	N = 120
2.5	-5.99	-5.36	-5.07	-4.96
5	-1.26	-0.64	-0.34	-0.23
7.5	+1.08	+1.71	+2.01	+2.11
10	2.49	3.12	3.42	3.53
12.5	3.41	4.04	4.34	4.44
15	4.02	4.65	4.95	5.06
17.5	4.42	5.06	5.36	5.47
20	4.67	5.31	5.62	5.73
22.5	4.81	5.45	5.76	5.87
25	4.84	5.49	5.80	5.91
27.5	4.80	5.45	5.76	5.88
30	4.68	5.34	5.66	5.78

using progressive 90-degree phase shifts.

Probably the most familiar 40-meter Yagi on the planet is the so-called "shorty forty," which typically employs two coilloaded elements on a boom whose length is about 24 feet. A computer model of such an antenna was obtained from John Brosnahan, WØUN,¹ for use in this study, and its operational height was varied from 40 to 120 feet in steps of 20 feet.

The antenna models were run using the new EZNEC Pro software, version 4.0,2 with a double-precision NEC-4 calculating engine. For simplicity, it was assumed that the 4-square was constructed entirely from #12 AWG copper wire, while aluminum was used for the Yagi. The wire segment-lengths for all antenna elements were selected in accordance with the NEC guidelines. Three different sets of ground constants were used: "average" soil (conductivity = 0.005 Siemens per meter and dielectric constant = 13), "very good" soil (conductivity = 0.0303 S/m and dielectric constant = 20), and "very poor" soil (conductivity = 0.001 S/m and dielectric constant = 5). A frequency of 7.15MHz (mid-band) was selected for the analysis, and the terrain is assumed to be flat in all cases.

If our goal is to optimize the DX performance of our antenna system on 40 meters, then it is important to know the range of take-off angles which must be covered. Dean Straw, N6BV, has expended a considerable amount of time and effort to answer this question using a number of software tools, and is an acknowledged expert in this area. Dean has stated that "the vast majority of the time the take-off angles for DX are less than 30 degrees."³ Therefore, we need to determine which antenna configurations generate the most gain within this span of elevation angles.

Results for Average Soil

Table 1 lists the detailed results for the

Figure 2—Elevation-plane radiation patterns for several 40-meter antennas, using "average" soil. A = 4-square with 15 radials per element B = 4-square with 120 radials per element C = 2-el Yagi up 60 feet D = 2-el Yagi up 80 feet.

Figure 3—Elevation-plane radiation patterns for several 40-meter antennas, using "average" soil.

A = 4-square with 15 radials per element	C = 2-el Yagi up 60 feet
B = 4-square with 120 radials per element	D = 2-el Yagi up 80 feet.

Table 2

Gain of the 2-element "shorty-forty" Yagi, at various take-off angles, versus the height of the antenna, over average soil.

Take-off Anale		Gain (dBi) as	a function of	antenna heigh	t
(deg)	H = 40'	H = 60'	H = 80'	H = 100'	H = 120'
2.5	-10.92	-7.35	-4.65	-3.10	-1.61
5	-5.04	-1.49	+1.15	+2.64	+4.05
7.5	-1.68	+1.81	4.37	5.75	7.02
10	+0.63	4.03	6.48	7.70	8.78
12.5	2.34	5.64	7.94	8.95	9.76
15	3.66	6.83	8.95	9.70	10.17
17.5	4.72	7.73	9.62	10.05	10.08
20	5.56	8.40	10.03	10.05	9.51
22.5	6.24	8.88	10.19	9.73	8.43
25	6.78	9.20	10.15	9.09	6.77
27.5	7.20	9.38	9.92	8.12	4.32
30	7.53	9.43	9.50	6.78	0.63

Table 3

Gain of the 4-square phased-vertical array, at various take-off angles, versus the number of radials per element. A "broadcast-style" ground screen is used, and the maximum radial length is 0.25 WL (very good soil).

	J	• • • •	, , ,	,
Take-off Angle	C N	Gain (dBi) as a lumber of radia	function of als per elemer	nt
(deg)	N = 15	N = 30	N = 60	N = 120
2.5	-0.87	-0.56	-0.34	-0.24
5	+3.05	+3.36	+3.58	+3.68
7.5	4.78	5.10	5.31	5.41
10	5.72	6.04	6.25	6.35
12.5	6.27	6.58	6.80	6.90
15	6.58	6.90	7.11	7.22
17.5	6.74	7.06	7.27	7.38
20	6.78	7.10	7.32	7.43
22.5	6.74	7.07	7.28	7.39
25	6.63	6.95	7.17	7.28
27.5	6.45	6.78	7.00	7.11
30	6.22	6.55	6.77	6.89

4-square array, for take-off angles from 2.5 to 30 degrees, as the number of radials is varied between 15 and 120 per element. We can see that the maximum gain produced by any of these vertical antennas is less than 6 dBi. In a similar fashion, Table 2 displays the outcome for the horizontally-polarized "shorty-forty" Yagi, at heights ranging from 40 to 120 feet. Here, a peak gain of more than 10 dBi is possible. Figure 2 is a complete polar plot of the elevation-plane radiation patterns for several selected antennas of both polarizations. Figure 3 presents the same information in rectangular form, covering only those elevation angles which are important for DX propagation. Note that the "shorty-forty" at a height of 80 feet yields more gain than any of the 4squares, throughout the range of take-off angles from 2 to 30 degrees. However, if the Yagi height is set at 60 feet, then the 4-square is better at very low elevation angles, even with a sparse groundscreen.

Results for Very Good Soil

Increasing the conductivity of the soil allows the 4-square array to generate more gain, as is evident from an examination of Table 3. Now the peak gain obtainable from the phased verticals approaches 7.5 dBi, an improvement of slightly more than 1.5 dB when compared to average soil. Table 4 lists the results for the "shorty-forty," and reveals that the gain of the Yagi actually climbs by a few tenths of a decibel when placed over very good soil, reaching a maximum of just over 10.7 dBi. Several examples of the elevation-plane radiation patterns (for both antenna types) are shown in Figure 4. At very low take-off angles, the 4square is superior, even with only 15 radials per element. To match its performance at elevation angles below about 5 degrees, the Yagi would have to be placed more than 120 feet in the air, although this reduces its gain at take-off angles in the 20-to-30 degree region.

Results for Very Poor Soil

Conversely, a decrease in the soil conductivity diminishes the gain of the 4square, as indicated by the data in Table 5. Here the maximum gain produced by the phased verticals is just under 5 dBi, roughly one decibel less than for average soil. Table 6 lists the results for the "shortyforty," and we see (as expected) that the gain of the Yagi now falls a bit when installed over very poor soil, peaking at slightly less than 9.8 dBi. Figure 5 includes the radiation-pattern plots for a number of antennas, and it can be seen that the "shorty-forty" easily out-performs the 4-square when the Yagi is mounted at a height of just 60 feet.

Figure 4—Elevation-plane radiation patterns for several 40-meter antennas, using "very good" soil.

A = 4-square with 15 radials per element B = 4-square with 120 radials per element C = 2-el Yagi up 100 feet D = 2-el Yagi up 120 feet.

Table 4

Gain of the 2-element "shorty-forty" Yagi, at various take-off angles, versus the height of the antenna, over very good soil.

Take-off Angle		Gain (dBi) as	a function o	f antenna heig	ht	
(deg)	H = 40'	H = 60'	H = 80'	H = 100'	H = 120'	
2.5	-11.11	-7.44	-4.58	-3.11	-1.64	
5	-5.17	-1.53	+1.28	+2.68	+4.07	
7.5	-1.76	+1.82	4.55	5.84	7.10	
10	+0.59	4.09	6.71	7.84	8.91	
12.5	2.35	5.75	8.22	9.14	9.95	
15	3.73	7.00	9.29	9.95	10.41	
17.5	4.82	7.95	10.02	10.35	10.37	
20	5.72	8.66	10.47	10.41	9.86	
22.5	6.44	9.19	10.70	10.14	8.84	
25	7.03	9.56	10.71	9.56	7.24	
27.5	7.50	9.78	10.53	8.65	4.83	
30	7.87	9.89	10.16	7.35	1.09	

Т	L	-	E
ıа	D	e	Ð

Gain of the 4-square phased-vertical array, at various take-off angles, versus the number of radials per element. A "broadcast-style" ground screen is used, and the maximum radial length is 0.25 WL (very poor soil).

	0	•		,
Take-off Angle		Gain (dBi) a Number of r	s a function c adials per ele	of ement
(deg)	N = 15	N = 30	N = 60	N = 120
2.5	-9.06	-8.41	-8.19	-8.10
5	-3.91	-3.27	-3.05	-2.96
7.5	-1.23	-0.58	-0.36	-0.27
10	+0.47	+1.11	+1.33	+1.43
12.5	1.62	2.26	2.49	2.58
15	2.43	3.08	3.31	3.40
17.5	3.01	3.66	3.89	3.99
20	3.42	4.07	4.30	4.40
22.5	3.69	4.35	4.58	4.68
25	3.84	4.51	4.74	4.84
27.5	3.91	4.58	4.82	4.92
30	3.90	4.58	4.82	4.92

Conclusions

Computer analysis indicates that, under most conditions, a two-element "shorty-forty" Yagi can generate more gain in the range of take-off angles that are useful for DX communications than a conventional 4-square array with an extensive ground system. Over "average" soil, the Yagi must be placed about 80 feet above the ground to achieve superiority at most important elevation angles. For "very poor" soil the required height is roughly 60 feet, while about 120 feet is necessary over "very good" soil.

Limitations

Computer simulation is a great tool for antenna analysis, but the models are limited in scope, and by no means do they include all of the factors which are present in a real-world environment. For instance, if the "shorty-forty" Yagi is installed at a typical operating height, it is likely to be "in the clear," (relatively speaking) with respect to its surroundings. On the other hand, a four-square phased-vertical array will normally be installed either at or near the earth's surface, making it more difficult for the antenna to "see out," which can be a significant handicap. In addition, this article gives no consideration to wavepropagation phenomena. Because it is immersed in a magnetic field, the ionosphere can give preferential treatment to waves of a specific polarization, but that issue was not addressed here.4

Acknowledgements

The author would like to thank several individuals for their helpful reviews of this article while it was being prepared. Advice, comments, and suggestions were solicited and received from John Brosnahan, WØUN, Carl Luetzelschwab, K9LA, and Dean Straw, N6BV. Thank you gentlemen!

Notes:

- ¹Private communication with John Brosnahan, WØUN.
- ²Several versions of the *EZNEC* antennamodeling software are available from Roy Lewallen, W7EL, PO Box 6658, Beaverton, OR 97007.
- ³Private communication with Dean Straw, N6BV.
- ⁴See the article by K9LA in the Propagation column in this issue.

Figure 5—Elevation-plane radiation patterns for several 40-meter antennas, using "very poor" soil.

A = 4-square with 15 radials per element B = 4-square with 120 radials per element C = 2-el Yagi up 40 feet D = 2-el Yagi up 60 feet.

Table 6

Gain of the 2-element "shorty-forty" Yagi, at various take-off angles, versus the height of the antenna, over very poor soil.

Take-off Angle	G	ain (dBi) as a	function of a	ntenna height		
(deg)	H = 40'	H = 60'	H = 80'	H = 100'	H = 120'	
2.5	-10.60	-7.22	-4.71	-3.07	-1.58	
5	-4.80	-1.45	+1.01	+2.58	+3.99	
7.5	-1.52	+1.77	4.14	5.61	6.88	
10	+0.70	3.91	6.16	7.47	8.55	
12.5	2.33	5.43	7.53	8.63	9.45	
15	3.58	6.55	8.46	9.30	9.77	
17.5	4.55	7.37	9.05	9.56	9.59	
20	5.32	7.96	9.37	9.49	8.95	
22.5	5.92	8.36	9.46	9.09	7.81	
25	6.39	8.60	9.35	8.39	6.12	
27.5	6.75	8.71	9.04	7.37	3.75	
30	7.02	8.71	8.56	6.02	0.54	NCJ

Building a New Contest Station —Part 2

John V. Evans, N3HBX jvevans@his.com

Part 1 in the November/December 2005 NCJ outlined how I began work on a new contest station in the summer of 2004, and the choices that were made regarding selection of a site, the towers and antennas. This part describes the thinking that went into assembling the rest of the station. Early on it was decided that "multi-two" contesting was as ambitious as I wanted to get. Thus the station should be designed to be operable as "single op" (either assisted or not), "multi-single" or "multi-two". The antenna system described earlier was intended to facilitate all of these contesting modes. For "multitwo" operation there needed to be two independent stations, each of which could access any antenna and control the pointing of any tower. It was also desirable for each of these stations to be configured for SO2R operation.

Setting up Shop

The master bedroom in the house was selected as the "shack" owing to its size, the fact that it is on the ground floor and has an adjoining bathroom! The master bedroom also has the virtue of being at one end of the house and accessible from the front door by means of corridors that do not traverse other rooms. In the center of this room a wooden console was built that essentially consists of two desks joined in the middle forming a shallow V. At the back of each of these desks are four 5-foot high 2 × 4s that support a set of adjustable shelves. Copper strapping was run across the back of this arrangement and connected to a set of ground rods in the soil outside via more copper strapping that exits through three sash windows.

Placing the console in the center of the room allowed plenty of access behind for routing the myriad of interconnecting cables. All antenna coax cables enter the room by coax feed-throughs set in a piece of aluminium U-channel placed at the bottom of one of the sash windows. This aluminium channel is well grounded. The control cables enter by holes in this U-channel, but are protected in a box outside the window where there are MOVs across each line. The coax cables that are available to bring Beverage antenna signals to the shack have their centers grounded, when not in use, by a set of heavy-duty relays in a box outside the shack. The six main cables to the towers have their centers left open when not in use.

Major Components

The two stations each occupy one half of the console. Station #1 (on the left) employs a pair of FT1000 MP radios, modified to include the INRAD roofing filters and equipped with extra bandpass filters. Station #2 employs a pair of Ten-Tec Orions. Each radio drives an amplifier—the left one being an Alpha 87a and the right one an Emtron DX-2SP, though the roles can be reversed via a "commutate switch" consisting of back-to-back Top Ten Devices A/B switches. Power from the Alpha is applied to a Ten-Tec 238A tuner and that from the Emtron to a Palstar AT4K tuner. Second-hand Dell Optiplex GX1 computers are used for logging at each station, with the LCD display placed on the desk between the radios.

Control of antenna pointing is by means of four "Green Heron Engineering" control boxes that are connected by long

Figure 1—View of the front of the two consoles

Figure 2—Close-up of the left console.

Figure 3—View of the rear of the consoles.

Figure 4—The antenna selection scheme.

cables allowing them to be placed on the shelves of either station. The same is true of the WXØB Stackmatch control boxes that control the selection of the antennas in the 10- 15- and 20-meter stacks on the three "run" towers. Other controls (to be discussed) are fastened to the undersides of shelves to securely locate them. Figures 1, 2 and 3 provide some views of the station.

Antenna Assignment

A major issue to be solved for multitwo operation was how to quickly assign antennas to stations. Figure 4 shows how this is done. The problem is simplified by having only six cables to deal with. These are routed to a set of six commutate switches made up of pairs of Top Ten A/B switches arranged back to back. These assign cables to "stations" under the control of a centrally located switch panel. This also controls a set of status lights in front of each operating position-to show which of the six cables has been assigned to that station. For single operation all six cables would be assigned to the station in use. Selection of which of the assigned cables go to which radio is then made with a WXØB Six-Pack (2×6) switchbox.

The unused ports on the input side of the six commutate switches are connected to MFJ 1 kW Versaload dummy loads so that it is not possible for an amplifier to transmit into an open piece of cable. The Top Ten A/B switches, when arranged to provide a commutate function, have the useful property that there is no path through them unless power is applied. Thus they provide some lightning protection when the station is not in use. These six cables are also grounded at the towers where they are protected by lightning arresters.

Selection of which antenna to use on an assigned cable is made with an Ameritron RCS-4 control box inserted at the output of each tuner. Since only two cables can be used by a station at any given time, only two RCS-4 controllers are needed per station. This exploits the fact that an RCS-4 controller does not care which of the switch boxes on the towers it is routed to since the control voltages are sent via the coax.

This scheme means that any of the 16 (and eventually more) antenna systems on the towers can be selected for the two radios at each of the operating positions via just three small control boxes (the WXØB Six-Pack and the two RCS-4 controllers). The objective here is to remove clutter and lessen the chances of cockpit errors.

Protection and Isolation

For any of the contest modes considered there exists the possibility of sufficient power being coupled from one of the antennas to another to damage an idle receiver. Protecting all the receivers against this is accomplished by routing the received signals (either from a main antenna or a Beverage antenna) first to an MFJ 1025 Noise Canceling unit and then to the RX port on the radio.

The MFJ units have considerable internal protection against large RF voltages, and are powered to come on once the receiver is turned on (otherwise they would be bypassed). This scheme is shown in Figure 5. A separate external coax relay works as a T/R switch so that unwanted RF voltages cannot reach the normal antenna port on the radio, either. Two Dunestar 600 filter banks under the control of a Top Ten decoder are placed in series in the receive path to achieve over 80 dB of isolation against out-of-band signals. One of the units is also in the transmit path to minimize any harmonics reaching the amplifier.

A bad feature of this approach, however, is that it does not lend itself to the use of coax shorting stubs in the shack on the antenna cables to achieve extra isolation between stations. This is because, with one exception, the cables fed antennas operating at various wavelengths. Stubs could be placed on the lines on the towers going to the antennas, that is, beyond the RCS-4 switches, but this has not yet proved necessary. Some added isolation has been provided by adding two high-power (2 kW) lowpass filters. One with a cut off just above the 20 meter band was inserted in the shack in the cable to the 20 meter stack on tower #4 (there is no RCS-4 switch in this path). A second with a cut-off just above the 40-meter band was placed beyond the RCS-4 switch on Tower #2 in the line going to the 40-meter stack. It is possible that these added filters are "overkill" as early tests showed little interference between stations, so long as they were operating on different bands.

These efforts to isolate the radios from one another could be compromised by some of the transpose switching were this done with open frame relays, for example (as was initially the case). The Top Ten A/B switches, however, allow the creation of a commutate switch that provides over 70 dB of isolation between paths.

Computer Control

Control of the radios is assigned to a ZS4TX Super Combo Keyer II (SCKII) as shown in Figure 6. Not shown in this figure is the extra CAT cable between each radio and a computer serial port that allows the radio frequency to be monitored (or set) by the computer, as well as the band selected. The ZS4TX boxes provide up to six memories for recording a CQ message (either phone or CW), thereby reducing the need for a DVP in each computer. They can be set to switch to the idle radio dur-

Figure 5—The arrangements to protect and isolate the receivers.

Figure 6—The radio control arrangements using SCKII SO2R control boxes.

ing a CQ transmission (for SO2R), or remain connected to the transmitting radio (to monitor the call). On booting up any of the computers, one is given a choice of operating systems: either DOS or Windows 98. At least initially we plan to log using CT 10 running under DOS because of our familiarity with it and its many features that support networked computers.

A third Dell Optiplex GX1 Computer supports a 2-meter packet station, as no Internet service is readily available. Packet information can be routed to the

two logging computers by a switched Ethernet 10K link, which also allows the two logging computers to communicate with one another during a contest. Mark, KD4D, undertook setting up the computers and loading the software.

Conclusion

While the foregoing may create the impression that little more needs to be done in the way of station building, this is not the case. Still to be resolved, for example, is the issue of setting up Beverage antennas (in winter) and assigning these to the two stations. Also, it is possible that further work may be needed to reduce interstation interference to an acceptable level. Meanwhile the station is ready for use and guest operators will be welcome!

Acknowledgment

I am grateful to Mark, KD4D, for many useful suggestions, his constant support and encouragement, and for assuming responsibility for setting up the computers and networking them. NCI

The ALL MODE - ALL IN ONE PC - Radio Interface

Clean up your shack by replacing all interfaces with EZMaster

SO2R, Multi Single, Multi Multi

K1EL WinKey CW Keyer. 32 Remote Antenna Switch Out. USB. Parallel, Serial Interfaces. Four Independent PTT Outputs. USB or External Power Supply. Front Panel Key Pad. Internal CW Keyer Speed Control. Paddle Inputs for Sending CW. High RF Immunity.

SSB, CW, RTTY, DIGITAL Mode. 75 sec Hi Quality Internal Digital Voice Keyer. SO2R Capabilities, Automatic Radio Switch. Two Radio Interface: RS232, CI-V, FIF-232, IF-232. Two Audio Isolated I/O Sound Card Interface. Twin Headphone Jacks. 20-character LCD Display. Heil Proset Plugs in Directly. 8 LEDs Provide Visual Feedback.

Visit us: www.dxconnection.com 877-202-0963

A Spectator's Guide to WRTC 2006

By Jeff Briggs, K1ZM/VY2ZM USA Fundraising Captain For the WRTC Organizing Committee

WRTC 2006–Florianopolis, Brazil–July 7 through 10, 2006.

So you don't think you know what the letters "WRTC" mean? Well, you are not alone. But please read on, and at the end of this article you will not only understand what it all means, you just might want to book a flight to Santa Catarina Island in southern Brazil next summer to be a witness to the most important Amateur Radio contesting event taking place on the planet!

Amateur Radio Olympics

Billed as the "Olympics of Amateur Radio," the World Radiosport Team Championship was created in the late 1980s by Danny Eskenazi, K7SS. The event was run by a committee of local Seattle amateurs, including K7SS, NØAX, K7LXC, K7ST and others with integral help from W6OAT, K3EST and OH2BH. WRTC 1990 wanted to create a special contest competition that would test the operating skills of the "best of the best" contest operators from around the world—in an environment that leveled the playing field as much as might be possible.

Now why would anyone want to do that? Well, as most experienced contesters and DXers know, there are enormous geographical disadvantages that exist both here at home and equally abroad which make it all but impossible to compare the Top 10 results in the various major contests. For example, it is unfair to attempt to compare CQWW scores made from New England against those made from say Chicago, Illinois or Dallas, Texas. In Europe, it is also impossible to equate scores made from G, CT1 or EA with those made from LZ or YO. In Asia it is not possible to equate scores made from JA versus those made from 5B4 or 4X. And, in the Pacific, one cannot compare a DX contest score made from KH6 against those made by even the best operators from VK or ZL. It just isn't possible because of the disparity of the various locations involved and their respective distances from the world's major population centers and multiplier-rich zones (read Europe!).

Thus out of this problem came a wonderful opportunity. The amateurs noted above and some of their friends decided in 1990 to host the first WRTC in Seattle, Washington. The plan was to bring the best operators in the world to a common location and then let them operate in national teams of two from various sites around the Seattle suburbs using comparable antennas, the same power level and operating locations chosen as much as was possible in order to level the geographic playing field. In reality, at this first WRTC, the organizers were not successful at equalizing these variables. In the end, operator skill probably outweighed station capabilities with stations in roughly similar classes. In so doing, the organizers hoped at long last to discover which operators were the best of the best from around the world and then award gold, silver and bronze medallions to the winners in much the same way as is done in the real Olympics every four years. As luck would have it, Ted Turner's Goodwill *Games* were also taking place that year in Seattle and the first WRTC 1990 preceded Turner's games as a prelude to the real games that opened that following weekend.

Just over 20 teams were invited to par-

Making A Contribution To WRTC 2006

Planning an event like WRTC is a serious financial undertaking as over 750 competitors, spectators and guests are likely to be on hand. Apart from arranging for lodging, 52 identical stations must be assembled by the organizers with identical antennas, rotors and amplifiers. The anticipated budget for WRTC 2006 is expected to be over \$300,000 US.

To help offset some of these expenses, the Organizing Committee has put together a global fundraising team to solicit DXers and contesters alike for financial assistance. Any amount is welcome and it is easy to make a contribution.

To donate by check, make it payable to "NCDXF" and write "WRTC 2006 Contribution" in the lower left-hand corner. Mail the check to:

Rusty Epps, W6OAT

651 Handley Trail

Redwood City, CA 94062

To contribute by PayPal, log into www.wrtc2006.com. From the homepage, click on one of the PayPal links you will find there and follow the instructions.

Both ways are simple and efficient and donors in the US can deduct the amount of their donation as charitable contributions under current IRS tax law.

Thanks in advance to those who are able to help us offset some of the anticipated expenses of putting on WRTC 2006 in Brazil. Your support is appreciated. ticipate, drawn by application, and the games were held on a Thursday afternoon and evening Seattle time as a 10-hour contest of limited duration. Starting in 1996 with the San Francisco games, WRTCs began being conducted as a "contest within a contest"-meaning that from now on WRTCs ran for 24 hours simultaneously within and during the IARU Contest of that summer. In 1990, teams came from as far away as the Soviet Union, Asia, Europe and South America and when the smoke had cleared away, the team of John Dorr, K1AR and Doug Grant K1DG, representing the USA was the winner of the Gold medallion. And that is how it all started.

Perhaps one of the most important benefits of WRTC 1990 was that it served as a setting that brought together many of Amateur Radio's finest operators—both contesters and DXers. From the friendships made in Seattle have grown some of the most significant DXpeditions of the last 15 years. Thus many DXers have the WRTC program to thank for some of their rarer QSL cards (like, for instance, FT5XO, VP8THU, VP8SGI, etc.).

What's Happened Since?

Following the Seattle games, subsequent WRTC championships have taken place in 1996 in San Francisco, in 2000 in Slovenia and most recently in 2002 in Helsinki. With each running of the games, the number of teams and countries represented has grown. And so too has the number of WRTC guests and spectators coming to each venue to witness the various competitions making the WRTC games one of the most sought after gatherings of dyed-in-the-wool contesters in the world. Everybody who is anybody in contesting (and many DXers as well) will likely be there as a competitor, judge or spectator just out for an exciting vacation. The early scuttlebutt about WRTC 2006 in Florianopolis, Brazil has it that this event may well turn out to be the best WRTC ever in part because of its wonderful location, the fact that it is being held in a part of the world that is further away from Europe and North America than any past WRTC and because its organizers are introducing some exciting rules changes that are hoped to make the competition more lively than ever before.

For example, in addition to equalized operating locations from a common general theater of southern Brazil, there are some new twists in the rules, such as:

• Competitors will be no longer be limited to 100W output only; small amplifiers will be allowed for the first time.

• An HF log periodic antenna and a small 40-meter Yagi will be permitted in addition to the Windom that has been *de riguer* at past WRTC competitions.

• A number of multi-operator teams is planned from home stations in Brazil, which may be populated by visiting guest amateurs by application to the organizers.

• Student type teams will be introduced at WRTC as a means of attracting newcomers to contesting and the games.

• Three teams will be drawn by lottery from private bidding by sponsors as a means of securing necessary funding for the games, which is a large sum this time out.

The central site for the games will be located at a 5-star resort on the northeast side of Santa Catarina Island known as the Costao do Santinho. This complex is located right on the Atlantic Ocean in a magnificent setting with a private beach, multiple pools and restaurants and simply gorgeous, secure grounds. Most everything at the games, except for the WRTC competition itself, will be run out of this complex, making it wonderfully convenient for competitors, judges, guests and spectators alike.

What Should I Bring? What Will I Do at a WRTC?

Unless you are coming as a competitor, you should bring sport casual clothes, some shorts and your jeans, a light jacket or windbreaker, your camera and a positive outlook aimed at just having fun! At a WRTC, spectators join in and get to oversee all public events such as the opening and closing/award ceremonies, pileup competitions, WRTC planning sessions, meals and evening beer drinking conversations that often take place all night long until the sun comes up. It is possible to go to bed at midnight and awaken at 7AM and stroll out again only to find many folks still going at it long after daybreak.

On Friday morning, the competitor teams will select their operating locations around Santa Catarina province by lottery, and shortly after that they will leave to set up their stations. Each team will be dreaming of a hilltop location overlooking the sea but, in reality, most will find generally average locations which have been preselected by the organizers to be as competitively equal as is humanly possible. Remember, the winners of the WRTC games are intended to be *the best* operators, not the team that just happens to wind up with a superior location. That is the beauty and fundamental guiding principle behind the WRTC games in the first place: give everyone an equal setting, equal power output and antennas and then let the games begin-and may the most talented and skilled operating team come out the winners. That is the

spirit of WRTC and the organizers will be careful to ensure this is again the basis for the competition.

During the games themselves, spectators can stay at the Costao do Santinho and follow the hour-by-hour results of the competition. Or they may go off on a sightseeing trip around the island or take a tour of Florianopolis, the capital city of SC (Santa Catarina) province, which is a beautiful city on a bay just about 25 minutes from the resort. On Sunday afternoon, the various WRTC team competitors will return to the hotel for a hot shower, a nap and then the ubiquitous storytelling about their experiences in the contest, which is always great fun to listen to. The organizers will also host a nice evening meal on Sunday night for all to enjoy, to be followed by the awards ceremony for the winners and then the closing ceremony to bring WRTC 2006 to its close.

How to Get There? Visa Requirements?

From the US, several airlines provide daily service to Brazil from major city gateways such as Miami, New York, Chicago and elsewhere. American Airlines and Varig (the national airline of Brazil) are two examples of major carriers serving Brazil. Many flights go into Sao Paulo on the Atlantic coast and a regional carrier called TAM services routes to the south including Florianopolis in Santa Catarina province.

From overseas, Varig serves Brazil from gateways located in many of the major capitals around the world. Once entry into Brazil has been made, a transfer to one of the local carriers such as TAM will get you down to Florianopolis.

US travelers do need a visa for travel to Brazil and these can be obtained in person at Brazilian consular offices in major cities here in the US. Information on visa requirements applicable to other countries is available on the Internet and should be carefully followed. Briefly, here are a few of the high points for US travelers: • The cost of a visa for travel to Brazil is \$100US.

• Entry into Brazil must take place within 90 days following the date of issuance of the visa.

• The visa must be paid for with a money order only.

• Passport photos, airline tickets or proof of an airline travel itinerary to Brazil are required for issuance of a visa.

• A valid US passport is required and it must be valid for 6 months following completion of one's trip to Brazil in order to secure an entry visa.

• The US passport must have an empty visa page available inside it on which the Brazilian consular office authorities will affix the visa.

• A Brazilian visa is good for multiple reentry visits for 5 years following the date of first entry into Brazil.

• A surcharge of \$10 per person is required if one applies for a visa for another person.

So, Are You QRV For The Games?

Now that you know all about WRTC and the significance and history of the games, are you QRV for a visit to Florianopolis? Atilano de Oms, PY5EG, and the rest of the organizing committee surely hope so and no effort will be spared to ensure you have a wonderful experience should you elect to take some vacation time next summer to join them at the games.

If you wish to stay abreast of up-to-theminute WRTC 2006 news, there is a website available to follow at www.wrtc2006.com. Click on the HTML format for the latest WRTC news, rules, travel and hotel information (coming soon) and competitor information once the final competing teams have been selected. Again, we hope to see you in Florianopolis next summer between July 7 and 10, 2006 for what will surely be one of the most important Amateur Radio gatherings of the year—WRTC 2006. It will be a great place to be for contesters and DXers alike!

ARRL DX Contest Single-Band W/VE Winners

band category from other geographical areas of W/VE. Study the data, pick your band to give you the best shot, set your Q and mult goals, make sure your antennas The 2006 ARBL International DX Contests are rapidly approaching. The CW event is the weekend of February 18 and 19, and the Phone event is the weekend of March 4 and 5. Doing a single-band entry in the ARBL DX Contests is a great way for smaller stations to be competitive. You don't need competitive antennas for all the bands, just the band you've decided to concentrate on. Here are the winners from the inception of the single-band categories in 1980 through the 2005 events, with the call, state/province, number of QSOs, and number of multipliers. Although the East Coast is well represented, note that it is very possible to win a singleare ready, and then have fun!

				W/VE Sing	gle Band M	/inners - A	RRL DX CI	2				
	160 M	eters	80 Me	ters	40 Mt	șters	20 Mt	sters	15 Me	ters	10 Me	ers
	call & state	Qs & mults	call & state	Qs & mults	call & state	Qs & mults	call & state	Qs & mults	call & state	Qs & mults	call & state	Qs & mults
1980	W8LRL WV	41 21	N4AR KY	205 60	W5UN TX	527 77	K3TW MD	727 90	K6LL AZ	901 78	N4WW FL	741 93
1981	N4IN FL	31 23	W1ZM CT	234 71	W5UN TX	710 77	Κ5ΙΥ ΤΧ	1076 107	K1RM CT	1200 85	WØZV CO	1067 83
1982	N4WW FL	44 25	W1ZM CT	254 64	W6XX CA	655 63	K1KI CT	864 111	K6LL AZ	1002 84	N4ZZ TN	732 77
1983	W8LRL WV	60 35	K1PT MA	383 73	NA5R TX	604 75	K8NA MI	498 80	WØZV CO	750 82	WB4TDH FL	206 56
1984	W1RR NH	50 32	W1FV MA	320 64	W2YV NY	796 100	K3UA PA	931 108	WB4TDH FL	643 88	W1WEF CT	359 76
1985	W1RR NH	139 60	W1FV MA	640 77	N4PN GA	96 266	N2AA NJ	1199 94	K2EK NY	635 87	WA7KLK AZ	18 13
1986	K5UR AR	100 50	W1FV MA	454 74	N6QR CA	795 76	Κ2VV NY	1813 115	K3RV VA	439 82	KR1R MA	17 8
1987	K1ZM NY	115 48	W1FV MA	728 69	K4XS FL	810 80	K1RM CT	1123 100	W5VX TX	362 72	К9LA ТХ	51 20
1988	K1ZM NY	122 60	W6RJ CA	346 68	K2EK NY	1102 96	Κ2VV NY	1564 103	K1RM CT	961 92	N4BP FL	179 45
1989	K1ZM NY	88 35	W1FV MA	551 70	KBØG KS	910 84	N2AA NJ	1944 103	Κ2VV NY	1769 105	K1RM CT	1530 98
1990	W1NG CT	60 34	W1FV MA	521 81	WOØG MO	790 97	K4VX MO	1075 104	WN4KKN TX	964 104	K1ZM NY	631 108
1991	W1NG CT	107 46	W1FV MA	729 78	K1ZM NY	1312 102	W1RR NH	1597 101	WOOG MO	1548 103	ΚRØY ΤΧ	1410 100
1992	K5UR AR	64 43	WE3C PA	307 68	K8PO MA	1110 102	K1TO CT	1814 112	Κ2VV NY	1529 115	WØUN CO	1563 115
1993	W1FJH NH	97 47	W1FV MA	746 77	W6XX CA	994 103	КТЗҮ VA	1515 109	KØLUZ FL	1413 111	K5MR TX	421 98
1994	K1ZM NY	85 50	W1MK MA	472 80	K8PO MA	1075 100	W3USS DC	568 92	N4CT TN	565 87	WS1M MA	118 48
1995	W4MYA VA	154 58	W1MK MA	928 89	W3GH PA	793 99	K2SS CT	1516 112	W5VX TX	839 91	K9OM IL	73 35
1996	K1ZM MA	303 63	W1MK MA	905 79	N7DD AZ	1014 92	K1RM CT	1450 103	K9BGL IL	151 52	W6KFV CA	31 8
1997	K1ZM NY	268 70	W1MK MA	1021 90	N7DD AZ	1182 110	N8II WV	1674 110	N5LT TX	301 68	W5AJ TX	34 16
1998	W4ZV NC	200 71	W1MK MA	1018 90	AD6DO CA	1006 94	WØUN CO	1573 105	K5TR TX	1100 104	K4JYO AL	97 41
1999	WA8GHZ TX	82 61	W1MK MA	645 81	K8DX MI	1012 94	K1TO FL	1255 103	K2SS/1 CT	1905 106	WC4E FL	1179 93
2000	K3RR PA	58 41	W1MK MA	802 82	K7EM OR	1264 88	K4XS FL	1666 115	VE6WQ AB	2059 113	K1RM CT	1766 111
2001	LN Y2WW	346 61	W1MK MA	1099 89	K8LV MI	1161 105	W5WMU LA	1115 106	N2MF NY	1778 121	K1ZZ CT	1778 111
2002	VY2ZM MAR	600 71	W1MK MA	1013 85	КТЗҮ VA	1334 97	W7WA WA	1856 106	N2MF NY	1879 112	W4ZV NC	2162 108
2003	K4TEA GA	67 42	W1MK MA	847 78	N4PN FL	1034 99	N2MF NY	1464 115	W4KZ GA	1486 106	W4ZV NC	1306 113
2004	VY2ZM MAR	468 76	VY2LZ MAR	1211 98	N4PN FL	1351 120	WE2F NY	1473 117	N2MF NY	1551 111	K4WI AL	724 93
2005	W4ZV NC	244 63	W1MK MA	1126 88	КТЗҮ VA	1245 94	VW II8N	1667 113	W4NZ TN	1052 91	K4WI AL	96 40

				W/VE Sin	gle Band <u>N</u>	/inners - A	ARRL DX SS	8				
	160 M	leters	80 Me	ers	40 Me	sters	20 Mei	ters	15 Me	eters	10 Mei	ers.
	call & state	Qs & mults	call & state	Qs & mults	call & state	Qs & mults	call & state	Qs & mults	call & state	Qs & mults	call & state	Qs & mults
1980	W4PZV FL	29 24	WA4SVO FL	92 55	WA7ZLC WA	354 56	K9DX IL	1208 123	N7XX WA	2313 93	VE6WQ AB	2007 108
1981	W8LRL WV	24 20	W1CF MA	188 74	K7UR WA	408 43	K3KG GA	918 123	K7RI WA	2391 106	K1UO ME	1711 118
1982	WA2SPL NY	15 11	K1PT MA	141 65	N5JJ TX	293 68	K1KI CT	1498 146	W7RM WA	2255 103	WØZV CO	1910 118
1983	VE1YX NFL	39 28	KR2N NY	207 71	N6BV CA	629 56	N2PP NY	771 118	WØZV CO	1343 102	WA6DBC CA	1019 66
1984	VE1YX NFL	92 46	W1FC MA	272 80	K8NN IL	178 76	K1U0 ME	1569 134	WØZV CO	1342 115	WA6DBC CA	864 75
1985	K1ZM NY	84 46	WØMJ LA	299 87	KM6B CA	541 53	KS8S OH	745 105	W5XZ LA	291 64	WA3EEE MD	20 5
1986	K1ZM NY	70 40	K2EK NY	255 71	NZ5I TX	191 43	K2VV NY	1813 115	K3RV VA	944 115	K4JRB GA	169 37
1987	K5UR AR	90 53	W5WMU LA	168 59	W6AQ CA	525 45	V01SA NFL	1730 124	K6SVL CA	831 62	KE5FI TX	189 40
1988	WA4SVO FL	109 54	N2NT NJ	330 79	K6NA CA	682 61	KS1L CT	1487 127	K4XS FL	1600 117	K5UR AR	343 75
1989	K1ZM NY	50 30	K4HJJ NC	151 60	KVØQ CO	416 60	AI7B OR	731 108	W7EJ OR	2052 114	K4XS FL	2117 127
1990	K1ZM NY	54 34	KA1XN MA	183 76	K4XS FL	503 86	WØZV CO	1364 133	W7WA WA	2123 117	K3ZJ/8 VA	1922 126
1991	K1ZM NY	70 39	K8UR MA	310 72	WOØG IL	476 82	KS1L CT	1334 124	W7WA WA	2210 122	N1GLG VT	1645 144
1992	K1ZM NY	66 33	K1UO ME	308 62	KC7EM OR	702 69	KK9A IL	1649 133	K2SS CT	2160 140	WØUN CO	2323 125
1993	WB9Z IL	54 33	WE3C PA	325 75	K1UO ME	503 98	K5MR TX	930 129	WØUN CO	2204 133	K4XS FL	1437 144
1994	K5UR AR	52 35	K1ZM NY	483 90	KC7EM OR	762 78	KS1L CT	1748 137	K1UO ME	1273 134	KE5FI TX	328 73
1995	W0ZV NC	132 54	KQ3V PA	429 91	K6NA CA	804 68	KS1L CT	1346 121	K3ZJ WV	793 112	K6SVL CA	244 57
1996	K1ZM MA	191 60	KQ3V PA	566 92	N7DD AZ	763 86	NI8L OH	1416 122	K5XI TX	432 97	KE5FI TX	104 23
1997	W4ZV NC	90 46	N1GLG VT	392 77	N7DD AZ	665 66	VA3MG ON	1004 94	W4WA GA	458 86	W5AJ TX	100 23
1998	AA1BU MA	51 38	K1FZ ME	575 79	N7DD AZ	748 94	VE6JY AB	2004 119	N2IC CO	1446 125	KZ5MM TX	348 60
1999	AA1BU MA	61 40	K1FZ ME	419 84	N5DO TX	359 63	K4ZW VA	1084 117	WØUN CO	1766 121	NA5B OK	917 110
2000	UN Y2WW	81 42	KE1Y MA	285 68	K4XS FL	809 101	WAZQNW NJ	1106 118	K8DX MI	2830 146	W4ZV NC	2577 127
2001	UN Y2WW	61 38	AA1BU MA	232 66	K9ES FL	175 67	W7WA WA	1493 129	W2FU NY	1728 118	W4ZV NC	2264 130
2002	AA4MM FL	34 27	AA1BU MA	429 72	K4XS FL	850 92	N7DD AZ	1313 124	VE6WQ AB	2552 136	W4ZV NC	2205 135
2003	K5RX TX	51 37	AA1BU MA	488 83	N4PN FL	420 88	W7WA WA	1406 137	N7DD AZ	1564 121	W5PR TX	1302 120
2004	KT1V NH	60 42	AA1BU MA	459 89	K4XS FL	887 101	VE6WQ AB	2305 135	N7DD AZ	1884 123	K5RX TX	208 58
2005	KT1V NH	127 47	K5RX TX	159 62	K4XS FL	512 87	K2XA NY	1839 127	WM5R TX	1339 120	W5PR TX	231 53

A Simple Approach to SO2R

It's not that I never tried SO2R before. I've spent countless hours cutting half an inch at a time off good quality coax, making stubs with deep nulls. I once bought a five-band Dunestar bandpass filter. I had two Yaesu FT-1000D transceivers sitting side by side for a few years waiting to be used in an SO2R setup. In 1997 I actually did operate with two radios, but my station wasn't conducive to using the second radio because I still had irritating CW "buzz saw" QRM between the radios. Nevertheless, I gained a handful of extra Qs on the second radio and had my best CW Sweepstakes score ever.

Despite my efforts to lick the interference between radios well enough to feel comfortable using SO2R, I concluded it was impossible to do it with three TH6s stacked on one tower. Sweepstakes was always the one contest where I would try to make it work, especially on the slow, boring Sunday.

A New Idea

SSCW 05 was going to be different. I had a new idea! I started thinking about my plan in May. After visiting Chris, W4/ G4BUE, in Florida in January last winter while driving through his town in the RV, I decided I should have a Hustler vertical like the one that Chris used for his second radio. No matter what I wanted it for, it was such a well-built antenna at such a reasonable price that I had to have one. I bought and used a Hustler 6BTV similar to G4BUE's at my summer house with the idea that I could easily take it down and bring it on next winter's RV trip. What I would also do is put it up for a second radio in SS.

By using a separate multiband antenna, I wouldn't have to do any antenna switching on the second radio. I would locate it as far away as I could from my other antennas to minimize QRM between radios. Being vertically polarized would help in minimizing interference with the first radio since it would be on horizontally polarized antennas.

Although I am fortunate to have a lot that allows me to locate the Hustler vertical over 300 feet away from my single tower, I didn't have as much coax left on the spool as I thought. As a result, the Hustler was planted only 100 feet away from the tower. Being only 32 feet high, it was still a good distance from the lowest TH6 at 58 feet.

I put down only two ground radials per band, just as I had this summer. Since I figured I'd only be using the second radio when the rate really slowed (most likely

W1WEF at his SO2R station.

W1WEF's homebrew switch box to control the two radios.

on Sunday), I figured I didn't need 1500W on both rigs and set up a little FL-2100B amplifier to run at 500W on the Kenwood 930S.

Finally, it was time to check QRM between the Yaesu FT-1000D and the 930S. First I ran 1500W on the main radio and tuned all the bands with the 930. Unless I was close to the first harmonic, it was amazingly quiet. I tried all band combinations and it was the quietest setup I ever had. I next did the same thing with the 930 and amp, and it too was excellent! The only time I had severe QRM was when I ran 1500W on the main radio to my 4 Squares on 80 meters. With the 4-Square's vertical polarization, and with two of its verticals being closer to the Hustler than the tower, it wasn't doable. But my 80-meter dipole was quiet when used along with the Hustler, so I decided I could live with the dipole.

My hunch that a vertical on one radio and horizontal antennas on the other radio with no stubs or filters was correct. This was going to play!

I spent the next day building a switch box that let me listen to the left radio (1000D) in my left ear, the 930 in my right ear, or either radio in both ears. A toggle switch selected which radio was keyed. It was simple enough to use and I was ready to roll...or so I thought.

The True Test

I started SS on 20 meters, figuring I could CQ there for at least a few hours at a pretty good rate. It didn't happen. Where was everybody? After a few Qs I decided to scan the bands from the bottom up, working everyone I heard, knowing there were no dupes to worry about in these first few hours. The rate picked up, but it was nowhere near what I had hoped for, looking at Randy, K5ZD's, winning rate sheet from last year.

After a couple of hours, I decided it was slow enough to use the second radio, much earlier than I thought I would. I found big signals easily on the 930, and had no trouble working them with 500 W. I'd go back to the main radio, work some there and find another on the 930. This might be fun!

Then I realized a mistake I had madea big mistake. What a dummy! I was so used to operating one radio with computer control and automatic frequency logging, I had forgotten to change bands in the logging program for the 930. Although the 1000D was interfaced for computer control of band changes, the older 930 was not. I thought I remembered who I worked on the second radio, and edited the contacts, but I found I would keep forgetting. or worse yet, I changed the band for the second radio, went back to the first with the second radio band still in the computer, and worked a bunch of guys before realizing it! After doing this about five times I knew it was all over. There was no way I could figure out the correct bands, and I thought I would be penalized severely. Five hours into Sweepstakes, very disappointed, I threw in the towel. The penalties would be so great that it wasn't worth a serious effort.

Lessons Learned

Sunday, I decided to get on for some casual operating during the day, without using the second radio. Since the log was so busted, I decided to try the PacketCluster since I had never used it in a contest. I decided to go for a sweep and send in a checklog. To avoid confusion, I continued to send a "B" precedence for the rest of the operating time. I never did get the Sweep, missing NL, but getting a sweep this way would have meant little to me anyway.

What did I learn? I learned that I can set up two radios with almost no interference between them, with no filters or stubs. I also learned that there's no way I'll ever do it again without computer control that will select the radio from the keyboard and log the right frequency!

Automate Your Antennas

With the microHAM Band Decoder you will never forget to switch something when changing bands! You'll be on the air with proper antennas, bandpass filters and/or stubs even if your computer locks up. microHAM Band Decoder is the most flexible and powerful band decoder available.

- Serial or parallel input
- Operates with or without computer control
- Native support for Elecraft, Icom, Kenwood, Ten-Tec, and Yaesu
- Separate outputs for antenna switch and bandpass filter/stub switching
- Supports Six and 60 meter bands
- Decodes two frequency segments per band (e.g. 75/80m)
- Allows up to four antennas per band
- CW and PTT drivers from either COM or LPT inputs
- Icom (CI-V), Kenwood (IF-232), Yaesu (FIF-232) and RS-232 CAT interfaces
- Controls Icom PW1, 2KL, 4KL and Yaesu FL-7000 or Quadra solid state amplifiers from any supported radio

Controls microHAM **Six Switch**, **Ten Switch**, **Double Six Switch** and **Double Ten Switch** as well as switches from Ameritron, Array Solutions, DX Engineering, and Top Ten Systems.

microHAM

microHAM

STACK MAX

micro STACK MAX is a microcontroller based push-button controller for micro STACK SWITCH or stacking/phasing boxes from other manufacturer.

- Supports 2, 3, or 4 antenna stacks
- Allows one antenna to be "pulled out" of the stack for SO2R operation or a multiplier station with microHAM Stack Switch
- Supports separate transmit and receive configurations
- "memorize" special configurations

The optional micro Info Panel displays current and memorized antenna configuration on a two line LCD.

<u>North and South America</u> www.microHAM-USA.com info@microHAM-USA.com I love the Stack Max! One of the most important features for us is the hot-switch protection which has proved to be a great savior during the heat of battle at our M2 contest station!

Another great feature is the easy configurability for four squares or stacking systems, it takes less than one minute to change configurations. At our request, microHAM added a new configuration to support the N4TZ stub stacking method (it also works with the Comtek/K3LR phase box).

Due to the flexibility of the Stack Max and microHAM's great support, we now have 7 Stack Max controls in use and may be adding more.

John WE3C

<u>World Wide</u> www.microHAM.com order@microHAM.com

NCJ Station Profile

0

As the days get cooler, the Hardware Addict begins to question his choices about what to do at the station; instead of putting up those new Beverages, maybe we should have taken down those monster 40meter Yagis and replaced them with something more modest. In our amateur world of seat-of-the-pants engineering, we wonder what those 40-meter Yagis will look like after a bad ice storm. Then our minds spin, playing out scenarios of taking them down when they're split in half. There are just not enough hours in a day sometimes. As if Sweepstakes was not enough, Thanksgiving wastes no time in rolling around, and we have to pause to consider what we're thankful for. We're thankful for CQ Worldwide. And I hope there isn't an ice storm during CQ Worldwide.

Wouldn't You Know

The Hardware Addict and I leave for the Caribbean in 10 hours so that we can make lots of contacts in lots of countries. Before we go, we realize the rest of the contesting world needs to hear about N9IW, the rather spectacular station of Tim Gustafson. Tim has built an off-the-shelf multi-tower station which he can access by remote control over the Internet from his wireless laptop. When I think that N5OT is 16 miles away from where the Hardware Addict and I actually reside, I wonder sometimes if those trips up the hill are really necessary-remote control over the Internet sounds good sometimes!

Tim has proven the robustness of N9IW through thousands of HF contest QSOs on phone and CW. Subsequently he has demonstrated it at local and regional contest club meetings. He piqued the interest of NCJ Editor Carl, K9LA (see his Editorial)-and the Hardware Addict had his work cut out for him.

A Normal Guy

We caught up with Tim and struck up a conversation. Tim is a "normal guy" and confesses that contesting is not his main focus in life. He grew up in Western Springs, Illinois, a suburb of Chicago. At age 13 he built his first ham station. As a married adult he moved into a high rise in downtown Chicago, during which time he would get on the air from his original station at his parent's house.

When mom and dad decided it was time for the antennas to go, Tim built a big station 250 miles north in Sister Bay, Wisconsin. "I would drive up north almost every weekend to enjoy the beauty of Door County where I spent my childhood summers."

... and get on the air, I'm sure.

Block diagram of the N9IW remote contest station.

Screen shot of N9IW's laptop when running the remote station.

Another One Bites the Dust

"A few years ago I read an article about remote controlling an HF station," Tim relates. "The article piqued my curiosity. I was currently living in a condo in downtown Chicago, and my station was located 250 miles to the north.

"I was in the process of upgrading the antennas and wanted the opportunity to play radio other than just on the weekends I went north. A remote station fit the bill." Here again, the Hardware Addict and I can only imagine what that would be like. Surely this is not an undertaking for the faint-hearted, or to quote John Battin, K9DX, "If you're controlling your radio directly, and you have a [modem] drop out, you're in deep trouble."

Tim continued, "My first goal was to make sure every piece of equipment I used had the ability to be computer controlled." He e-mailed us a block diagram of the station so I could get an idea of all the various components that had to be drawn together into the system. Our first reaction was how much common sense it made. I asked Tim if one of the design criteria was that it could be duplicated with off-the-shelf components. Tim responded with an emphatic *yes*.

Makes sense, doesn't it?

No Antenna Slouch

"The antennas consist of a 3 stack of home brew log periodics for 14-30 MHz. Each log is 14 elements on a 40-foot boom, and they were designed using techniques to maximize performance compared to standard designs."

"The design of the logs is a whole nother story," Tim said. I bet it is. We hope

N9IW Equipment Summary

Radios Kenwood TS-2000 FT-1000D

Amps Alpha 87A King Conversions 6M Kilowatt

Antennas

- 160 Shunt-fed 100 foot tower
- 2-element K8UR wire array
 2-element home-brew Yaqi
- 30 2-element home-brew Yagi (full-sized)
- 40 2-element home-brew Yagi (full-sized)
- 20–10 3 x 14-element home-brew log periodics
- 6 3 x M² 6M7s

Antenna Switching Array Solutions StackMatchs and RatPaks APC7901 (to turn on 12V wall warts to activate the selected antenna on the RatPaks) you tell us sometime, Tim.

"The Logs are on a 125-foot Rohn 55 rotating tower using KØXG's hardware and an M² OR2800 RS232-controllable rotor controller. On a second 100 foot tower is a homebrew full-sized 2 element 40 meter beam with 2 elements for 30 meters interlaced using one $50-\Omega$ feed point for both bands."

Like I said, Tim is no antenna slouch. Anyone who scratch-builds full sized 40meter Yagis gets our respect.

"I'm also using an M^2 OR2800 rotor to turn the 30/40 antenna. For 80 I'm using a 2 element K8UR wire array and on 160

meters I'm shunt feeding the 100 foot tower. The station is pretty competitive except for being located in 'The Black Hole."

Tim has casually operated his beautiful station in contests by remote control for several years now, and made several thousand contacts.

RS232 Central

Inside the well-appointed shack, as you can see in the cover photograph, Tim made good on his parameter to seek only hardware that was computer controllable. To interconnect all the serial devices (i.e.

The 40/30-meter antenna at N9IW's remote contest station.

The 6-meter amp at N9IW's remote contest station

radios, amps, rotator controls) he relies on a Byterunner PCI to RS232 8-port serial expansion card. Like K9DX, Tim chose to have a PC on-site that does the actual controlling, and uses a wireless laptop to link to the shack computer via the Internet.

"To control the TS-2000, I use *TRX-Manager* software by F6DEX." Tim comments, "Laurent [F6BEX] has been very helpful with his software." Laurent's program is only needed on the actual shack computer. To access the shack computer Tim uses the remote desktop connection feature inside *Windows XP*. "Get the professional version!" he adds quickly.

Tim uses a Dell D610 laptop. "Make sure you get a machine which will do SXGA+ for graphics. This allows the remote computer window to fit on my laptop screen without having to scroll all over the place." I had to agree that the bigger displays are helpful. The Hardware Addict and I don't have a single 15-inch or smaller screen in the place, and there's nothing left that's heavy or uses cathode rays. Flat screens are the best thing to happen to the operating console since SO2R.

Pesky Details

Naturally, there are little things here and there that make Tim's installation complete and play like a charm. I asked him about some of the smaller details.

"To remotely control power and relays to switch antennas I use an APC7901 IPaddressable power strip. For audio I use *SKYPE*— you will also need an isolation transformer between the computer sound card line output and the microphone input on the rig to eliminate the ground loop. I also use a backup UPS to keep the computer on at the station if I ever lose power."

Tim heaped praise on *SKYPE* for passing all his audio over the Internet. *SKYPE* results in an approximate 50 millisecond delay in audio in both directions." Tim feels that this is about as good as it gets and is very happy with this figure. "If you set up your own link outside of the Internet you could get the delay down to nothing."

Just About Ready

After talking with Tim, the Hardware Addict and I sat and thought about the upcoming cold winter months. "Gotta get those 40s down," he said without a trace of enthusiasm.

"Yep," I curtly replied.

But then we thought about how cool it would be if we could get our station to where we didn't have to bash through the snow and ice to get on the air. "This offthe-shelf remote thing has some promise," I said to him, breaking the silence.

"Yep." he replied curtly. The Hardware Addict is a man of few words.

Tell time by the U.S. Atomic Clock -The official U.S. time that governs ship movements, radio stations, space flights, and warplanes. With small radio receivers hidden inside our timepieces, they automatically syncronize to the U.S. Atomic Clock (which measures each second of time as 9,192,631,770 vibrations of a cesium 133 atom in a vacuum) and give time which is accurate to approx. I second every million years. Our timepieces even account automatically for daylight saving time, leap years, and leap seconds. \$7.95 Shipping & Handling via UPS. (Rush available at additional cost) Call M-F 9-5 CST for our free catalog.

KØXG Systems Bettendorf, IA 52722 USA **k0xg@k0xg.com – (563) 355-7451**

Guy ring

bearing

tower.

installed on

Rohn 55G

Ground mounted base for 300 feet of Rohn 55G/AB105.

Rotating tower equipment for LF, HF, VHF and UHF applications.

- Guy ring bearings for all size towers.
- Ground or tower mount rotors.
- Boom to tower plates and brackets for most brands and tower sizes.
- Boom to tower plates and mounts.
- Computer control available.
- Visit our booth at the Dayton Hamvention.

Professional installations by: **XX Towers** – (603) 878-1102

Visit our web site! www.k0xg.com

Contesting on a Budget

Budgeting and Tracking Contest Expenditures

Over the past six months I had taken receipt of about ten packages that arrived either by mail or UPS for a station project. Watching these packages come in, my wife kept asking me how much I was spending on all this stuff. My response was that I wasn't spending any more money on my station and on contesting this year than any other year. She challenged me to prove it! My rather weak response was that I couldn't, as I had not really tracked my expenses.

This little discourse with my wife fueled the topic for this issue of NCJ. I wanted to find out how the rest of you wrestled with budgeting and tracking expenses. I asked if you tracked expenditures and analyzed them for trends. I wondered if you had a budget or did you spend as resources became available. I also asked if you knew how much you were spending on contesting and if that included travel to such events as Visalia or DXpeditions. I further asked how you dealt with unexpected expenses, and if you were able to correlate spending with overall station performance. Finally, I asked for any other insights regarding this topic.

Tracking and Analyzing Expenses

The responses were interesting and quite varied. Regarding tracking and analyzing expense, some, such as Ethan, K8GU and Billy, AA4NU, had a fairly well developed concept for spending and acquiring contest-related items. As a grad student, Ethan has a modest station with a pair of TS-930 transceivers. He knows what he wants to buy and picks up stuff at attractive prices. He tries to keep backups of critical items and parts, and he never turns down freebies or bartering opportunities. Billy, AA4NU, also tracks his resources carefully. He has realized, based on early trends, that cheap switches, coax and other hardware are not cheaper over the long run. He always considers long-term reliability with his purchases. Randy, K5ZD, tracks all of his expenses, including travel, equipment and even trips to the hardware store.

Others, like George, K5TR and Bill, AA4LR, take a more *ad hoc* approach to spending. George has quite an impressive station, does not track his expenses consciously, but is aware that expenses are not excessive. I've visited George's place, and from the operating positions to the antennas, everything is simple, sturdy and functional. Bill doesn't consciously track expenses either, but does look at failure trends and attempts to determine if the failure is operator-induced or bad design. He strives to replace unreliable equipment with higher-reliability equipment, and strives to maintain commonality between his two operating positions.

Regarding a specific yearly spending target for contest-related activities, most of you responded that you did not have a specific contesting budget, but spend funds as they become available. Some, like Ethan, K8GU, set aside a small portion of the paychecks each month as "hobby money." Fred, WW4LL, uses his other hobby, photography, to help fund his contesting addiction. He will shoot weddings or other photography jobs to raise funds for radio expenditures. While some don't have a specific budget, they have a good idea how much they are spending. Bill, K4XS, estimates his annual budget at about \$700 to keep his station going. This excludes any long-term capital items, such as a new radio or amp. Despite his fairly large number of stacks, he keeps these expenses down by spending wisely when good deals come along, and scrounging as much as possible! Likewise, Randy, K5ZD, estimates that he spends about \$1000 per year on maintaining his station. Despite not consciously tracking his expenses on a daily or monthly basis, Bill, AA4LR, has used Quicken to track his overall spending over the past 17 years and can report on the "radio" category at any time.

A Radio Budget?

Most everyone didn't have a specific budget with funds earmarked for radio each year. Most spend as money becomes available. As Bill, AA4LR, says, he spends "As funds are available and the need or opportunity strikes." Billy, AA4NU and Eric, K8GU, use the station master plan to drive their expenditures.

It was kind of a mixed bag as far as budgeting for travel was concerned. Many seemed to consider trips to Dayton, Visalia and even to exotic DX locations as an integral part of continually improving our contest capabilities. Exposure to new ideas and technology helps us recalibrate our future needs and expenditures. Operating from desirable locations helps hone operating skills. In either environment, being around other competitors piques our interest and motivation in the sport. Bill, K4XS, considers his annual pilgrimage to Dayton to be an integral part of his annual contest activity. He buys and sells aluminum and towers, and

usually includes pickups and/or deliveries on his trip to Dayton.

I was interested if anyone kept a "rainy day" fund to deal with unexpected expenses, such as natural disasters or other unplanned events. The answer was almost universally "no." Some, like Billy, AA4NU, try to keep spares of critical parts and resources to help avoid unexpected expenses. Randy, K5ZD, equates staying on the air to driving a car—if something breaks you've got to get if fixed or stay home, even if it busts the budget. Given recent events, this seemed to be fertile ground to explore for the next issue.

The Bottom Lines

I posed the question of how the financial bottom line affected the station performance bottom line; in other words, how spending correlated to score. George, K5TR, simply tries to not spend money on things that will not help the score. Bill, K4XS, feels strongly that investments in aluminum will show the biggest payoff. To quote Bill, "Give me a pair of old ICOM 775s and pair of old ratty 1kW amps with stacks, instead of two new \$10000 radios, with Alpha amps and a tribander at 50 feet, and I'll kick the crap out of the guy using the fancy rigs. The key to contest station spending is putting the money into the antennas and towers!'

This question also brought some philosophical answers. Fred, WW4LL, summarized these responses very succinctly with "I have correlated some increase in scores to station enhancement but it has been not so much the money and equipment invested, as it has learning from our mistakes, listening to others, playing smarter, and better utilization of the existing station equipment and software." In short, the space between the headphones is really the number one resource for a contester.

Thanks to K1HI, AA4LR, AA4NU, K4XS, WW4L, K5TR, K5ZD and K8GU for their thoughtful responses.

Topic for Mar/Apr NCJ

Contingencies: With the string of natural disasters lately, what is the most costeffective way to deal with them? Do you purchase insurance, or do you overbuild your station to deal with potential catastrophic events? Once a disaster has happened, what cost-effective workarounds help keep you on the air and in the game? As always, I look forward to your responses.

NCJ

RTTY Contesting

Getting Started in RTTY Contesting – Part 1

The last few columns have been directed to the more experienced RTTY contester who wants to improve his skills and/or equipment. For this issue and next, I'd like to speak to the ham who is already a contester on CW or SSB, but who has never tried RTTY. Let's imagine a conversation that goes like this:

Q. I've been contesting for years on the other modes, but never on RTTY. What does RTTY have to offer me?

A. RTTY's appeal is different from CW or SSB. For one thing, there's a lot less racket to listen to. In fact, you can do an entire contest with no audio at all if you like. Surely the spouse would appreciate that!

Q. So true! What else?

A. Likewise, you won't wear out your voice talking into a mike or your hand using a key. Much of RTTY contesting is done using pre-recorded macros and software control of your transceiver. You don't even have to press a PTT button.

Q. Sounds pretty automatic. So what is there for me to do?

A. Plenty, both before and during the contest. Automating routine tasks reduces fatigue and frees you up to focus on the heart of the contest itself—strategy, propagation, timing, honing your skills, etc. Let the hardware do things like capturing and entering calls while you concentrate elsewhere.

Q. What do you mean "capturing and entering calls?"

A. Everything you receive is printed on your computer screen. From there, it only takes a mouse click to capture the other station's call and place it in the entry window of your software. Nothing to type, just click!

Q. Sounds fast and easy. What's the catch?

A. There are some definite skills involved. For one, tuning in a station quickly. For another, deciding whether the other guy's call has printed correctly. QRM and QRN can disrupt RTTY just like any other mode.

Q. How do I do those things under the pressure of a contest?

A. Experience helps of course, but your software can help, too. Modern software has an Automatic Frequency Control

(AFC) feature that helps tune in a station for you. As long as you are tuned reasonably close, AFC will make the final tuning correction for you. If you wish, you can have a setup where AFC moves both your TX and RX right on top of the other guy. Another handy feature of most software is that it will automatically check the call printed on the screen against a database and flag it if has printed correctly. You probably already use this for CW and SSB, but only after you type in the call by hand. With RTTY, the software reads it right off the screen and makes the check for you!

Q. Let me guess—does it do a dupe check automatically too?

A. Absolutely.

Q. So with all this automation, how do I stay awake?

A. Not to worry. RTTY contesting is highly competitive if you want it to be. Like other contests, there are some participants who put in a casual effort, some who are in it mainly to chase DX and some who pull out all the stops to win. You can play at whatever pace you like and have a lot of fun.

Q. Sounds good. How do I get started?

A. First you need a basic understanding of how RTTY works. Unlike CW or SSB, RTTY has some variables like shift and baud rate that must be standardized between stations in order to print correctly. Hams have standardized on a shift of 170 Hz and a baud rate of 45 for example. Some variation is allowed, but if you're very far off, all you'll see on your screen is garbled text. Many commercial and military stations use greatly different parameters and you won't be able to copy them even though they do sound like the RTTY you're used to.

Q. What else?

A. One important thing is the "polarity" of your signal. RTTY uses two tones called MARK and SPACE. Your carrier shifts back and forth between the two, giving the familiar "diddle-diddle" sound of RTTY. By convention, MARK is the higher RF frequency and SPACE is the lower. If you accidentally get them reversed (everyone does, sooner or later) you will be "upside down" and will not print on the other guy's screen until he reverses his receiving. All software has, or should have, the capability of doing this reversal just long enough to inform you of the problem so you can correct it. Not a big deal. Like I said, everyone does it sooner or later.

Q. I see there *are* some things to learn. Where can I get more information?

A. A few years ago I wrote an article called "RTTY Basics" which is included with the popular software program MMTTY (more on MMTTY later). If you'd like, you can e-mail me at dezrat1242 at ispwest.com and I'll send you the article as an attachment. The article assumes you have some knowledge of radio but none at all of RTTY and starts from the very basics. Another excellent source, especially for more advanced users, is AA5AU's Web site, www.aa5au.com. Follow the links to the RTTY section. Don is one of the top RTTY contesters in the world and his advice is well worth taking. I always tell newcomers to listen to Don during a contest and do what he does. You won't go wrong.

Q. I have a pretty good station for CW and SSB. What do I need for RTTY?

A. The first thing to consider is something called duty cycle. Unlike CW or SSB, RTTY is a 100% duty cycle mode while transmitting. This means your transmitter, including the amplifier if any, gets no rest between syllables or between dots and dashes. Whenever the transmitter is on, it is cranking out full power. You need to be sure your rig can do this without overheating. Some equipment manufacturers rate their products for a full 100% duty cycle and some do not. That "100 watt" transceiver may only be capable of half power during sustained RTTY operation. Check your owner's manual or call the manufacturer and be absolutely sure. Prolonged RTTY contesting is probably the highest duty cycle operation in ham radio. Be sure your equipment can handle it!

Q. Okay. What else?

A. RTTY these days is always done with a computer. In the old days, hams used a mechanical printer, and in fact the earliest RTTY contests were done that way. No longer. Computers have revolutionized the use of RTTY on the ham bands.

Q. What kind of computer do I need?

A. Good news in this department. RTTY does not require much computing power and practically any computer made since

the Windows 95 era will do just fine. If you have a really, really, old computer you may have to use a hardware TNC instead of software. If that is the case, e-mail me directly and I will help you out. Most hams who are running Windows 95 or later can use software only.

Q. How much does the software cost?

A. More good news! You can set up a world-class RTTY station with topnotch software that is completely free. Yes, there are some for-pay programs out there and some hams like them a lot, but to start with, get the free ones and try them out.

Q. Which ones?

A. There are two I recommend to begin with: *MMTTY* by JE3HHT and *Logger* by N1MM. *MMTTY* can be downloaded at **mmhamsoft.ham-radio.ch/mmtty/** and *Logger* at **pages.cthome.net/n1mm/**.

Q. Ok, I have them both. Now what?

A. Start with *MMTTY* running by itself. *MMTTY* will allow you to transmit and receive RTTY using the soundcard in your computer. *MMTTY* has some limited contest capability, but it is not a true contesting program, and that is where *Logger* comes in. I'll have more on *Logger* in the next issue of *NCJ*.

Q. What do I have to do to my station to use *MMTTY*?

A. The main things you need are cables to interface *MMTTY* to your transceiver. *MMTTY* includes a very complete help file including schematics, so I'll only cover the basics here. You will need a minimum of two cables: one for the audio output from your transceiver to the computer and one for the RTTY keying signal to the transceiver. Highly recommended but not strictly mandatory is a PTT/VFO cable to the transceiver. You probably already have the VFO cable for your CW/SSB contesting, but you may not have PTT. You could do PTT by hand, but nobody does. Use a cable. As explained in the help files, PTT can be done either by hardware or software. If you transceiver supports software control, use it. If it doesn't, you will need a separate cable.

Q. The last time I used a soldering iron was on my spark transmitter. Can I buy the cables?

A. Yes, indeed. Check a recent *QST* for advertisements. At least three companies I know of sell ready-made cables. Once you have *MMTTY* running, get on the air and do some rag chewing and chase some DX. Get a feel for how RTTY tunes. Learn how to use the macros but don't spend a whole lot of time on that unless you want to. Contest macros with *MMTTY* are actually done in *Logger* and have a different format. That's for next time.

Q. Whew! Anything else I should do between now and then?

A. Yes. Join the RTTY reflector at **www.contesting.com**. It's one of the oldest ham radio reflectors and has a great bunch of guys, both Old Timers and Newcomers. It is oriented toward all RTTY operation, not just contesting. Jump in, ask questions and have fun!

K1FZ Receive Antenna Transformers

High efficiency wound ferrite toroid transformers with isolated 50 ohm windings for minimum noise transfer. Color coded binding post for Beverage wire(s) and ground connections. Teflon and silver SO-239 coax connectors used.

Each unit is individually calibrated to eliminate variations found in mass production.

- **KB-1** Single wire Beverage transformer. (Variations available for EWE)
- KB-2 Two wire, two direction Beverage transformer.
- KB-3 Two wire end termination transformer. (For two wire switchable systems).
- *KB-4* Distribution transformer. Two and three ports available. Combine phased Beverages or distribute Beverage signal to multi/multi contest positions.
- KB-5 Pennant, flag and delta antennas.

For more information, please check the www web site.

Clark Electronics

65 Patterson Hill Rd., Belfast, ME 04915 USA Tel (207) 338-0474 • www.qsl.net/k1fz/• k1fz@prexar.com

Propagation

40-Meter 4-Square Versus 2-Element Shorty 40

Elsewhere in this issue, Al K3LC compares a 40 meter 4-Square array to a 2 element Shorty 40-meter Yagi. His comparison evaluates 4-Squares with various numbers of radials per element and the Shorty 40 at several different heights above ground. All of these evaluations are done over various soil conditions.

K3LC's article came at a very fortuitous time for me. My 40 meter antenna is an inverted-vee at 50 feet. It's a decent antenna, and has served me well. But I've always wanted to take the next step on 40 meters to be more competitive with the big boys. K3LC's article only addresses gain, so let's take a look at several propagation issues with respect to the 4-Square versus the Shorty 40. I will focus on the 15-radials per element 4-Square and the Shorty 40 at 60 feet, as these are what I would implement at my QTH. Additionally, I will only look at these antennas over average ground.

Figure 1 reproduces K3LC's gain data for the 15-radials per element 4-Square and the Shorty 40 at 60 feet over average ground. I have also added some 40 meter elevation angle data statistics for W9 from the *ARRL Antenna Book* CD 1.0.

The Antenna Book elevation angle data is from all ten US call areas on 80 through 10 meters (including the WARC bands) to six general areas of the world: Europe (EU), Far East (FE), Southern Africa (AF), Oceania (OC), South America (SA), and South Asia (SE Asia). The angles over which propagation is predicted to occur 100% and 90% of the time are given, along with the peak elevation angles and their respective percentage of the time occurrence.

Figure 1 indicates that two peak angles are predicted to occur from W9 to Europe on 40 meters: 12 degrees 16% of the time and 15 degrees 9% of the time. The other 75% of the time, elevation angles in the range of 3 to 19 degrees are predicted to occur. Similarly we see that the peak elevation angle to the Far East (JA) is predicted at 12 degrees 48% of the time (the other 52% of the time, elevation angles in the range of 9 to 18 degrees are predicted to occur) and so forth to the other areas of the world. Not shown is the data that says elevation angles from 3 to 19 degrees are predicted to cover all openings to all six areas of the world from W9 (it just so happens that this is the same as the statistics to Europe). To summarize this data, our comparison of the 4-Square

Figure 1—Gain and elevation angle statistics.

to the Shorty 40 should be done from 3 to 19 degrees, with a bit of bias toward the peak angles in Figure 1.

Figure 1 shows that the break-even gain point in the comparison of the 15radial 4-Square and the Shorty 40 at 60 feet over average ground is at an elevation angle of around 5 degrees. Thus for elevation angles above 5 degrees (which includes all those peak angles), the Shorty 40 at 60 feet is up to 4dB better than the 4-Square, with 2dB probably being a good average value. For elevation angles below 5 degrees, the 4-Square is up to 1.5dB better than the Shorty 40. If only gain and elevation angles are considered, it appears that the Shorty 40 at 60 feet would have a slight advantage over the 15-radials per element 4-Square.

Polarization

What about polarization? Does a 4-Square being vertically polarized and a Shorty 40 being horizontally polarized have any bearing on the comparison? In a roundabout way it does. But not in the way most people believe. Most people would say that the polarization of an arriving signal is random in nature and thus the antenna's polarization doesn't matter. Yes, the ionosphere does vary and can cause polarization to vary, but there is more order to polarization that most people realize. That's because the ionosphere is immersed in a magnetic field.

When an electromagnetic wave enters the ionosphere, the magnetic field causes

it to split into two characteristic waves: the ordinary wave (o-wave) and the extraordinary wave (x-wave). On operating freguencies not near the electron gyro-frequency, the o-wave and x-wave incur a similar amount of absorption. For example, on a three-hop F2 path on 40 meters from a European country (I chose Spain) to my home during a winter month at 0300 UTC around solar minimum, *Proplab* Pro (Solar Terrestrial Dispatch) says the o-wave suffers 2.1dB of absorption and the x-wave suffers 2.7dB of absorption. Although the absorption is very similar for both characteristic waves, it doesn't necessarily mean the signal strength from each will be the same. This is because polarization has to be taken into account.

In addition to splitting our RF into the o-wave and the x-wave, the magnetic field also imparts a limiting polarization to each characteristic wave when entering the ionosphere and when exiting the ionosphere. In general, the o-wave and x-wave are elliptically polarized, with their major axes orthogonal to each other. Additionally, the E-field vector of each characteristic wave rotates in the opposite direction from the other. What all this means is a vertically polarized antenna (like a 4-Square) could couple best to one of the characteristic waves, and a horizontally polarized antenna could couple best to the other characteristic wave.

In a nutshell, for the EA to K9LA path on 40 meters, the 4-Square is best with the o-wave and the Shorty 40 is best with the x-wave. Either antenna should work similar at my station as long as both characteristic waves are propagating. For some interesting observations with the polarization of arriving waves, especially the effect of limiting polarization, take a look at *The Enhancement of HF Signals by Polarization Control* by B. Sykes, G2HCG. This article appeared in the November 1990 issue of *Communications Quarterly*.

More Considerations

There are other considerations in the 4-Square versus Shorty 40 decision. With respect to mechanical issues, a 4-Square on the ground is generally easier to implement than a Shorty 40 high up on a tower (unless you already have a suitable tower up). With respect to pattern rotation issues, a 4-Square can switch directions instantaneously, which is very advantageous for contesting. With respect to noise, the Shorty 40 could have the advantage, as horizontal polarization would offer some immunity to vertically polarized man-made noise (noise can still be the limiting factor on 40 meters). Additionally, K3LC reports that the RDF (receiving directivity factor - the difference between the gain in the favored direction and the average gain—see **www.w8ji.com/ receiving_basics.htm**) is 10.46 dB for the 4-Square and 11.36 dB for the Shorty 40—thus the Shorty 40 may offer a slightly better signal-to-noise ratio.

All in all, the Shorty 40 at 60 feet seems to have the edge over the 15-radial 4-Square. Of course the old saying "your mileage may vary" applies here, and different conditions could affect your decision. For example, the Shorty 40 could be even more dominant if it is mounted higher—say at 100 feet or so. On the other hand, the 4-Square could be more dominant if it is mounted over very good soil and compared to a low-height Shorty 40. These comparisons can easily be made with the data in K3LC's article.

One last comment. Although this column focused on 40 meter elevation angle statistics for W9-land, the range of elevation angles cited to cover all openings to all six areas of the world (3 - 19 degrees)is quite similar to the statistics from all the other call areas to all six areas of the world. So if you cover this range of angles on 40 meters, you should pretty much be ok no matter where you are in the continental US.

NCJ

WriteLog for Windows with Rttyrite/WinRTTY/AFC

One Package Handles All Your CW, SSB, and RTTY Contesting Needs

NEW VERSION 10 for Windows, 95, 98, NT 2000 Operate 2 radios with one sound card on RTTY and SSB & Perfect CW transmission. Tired of obsolete DOS logging packages that force you to use special configurations and don't use all of the power of your computer? WriteLog is the first contest logging software designed to fully deliver the convenience and ease of use of Windows 95, 98 & NT. WriteLog includes these battle-proven features: Work RTTY using any 16-bit (or better) sound card. No other hardware required! Opt. Super Check Partial Click and Go Mouse Support Perfect Log Submission Two Radio Support Supports All Major Contests in All Modes 2 sound cards and run 4 radios Full Radio Control Helpful Band Map Packet Interface Only \$75.00 Ver 9 users upgrade \$30. Fast Ethernet Networking PLUS These NEW Features: RTTY mode AFC - also • CW Reader - print CW on known as Autotune. screen like in a RTTY contest We also added multi-channel Audio Compression - now you CW reader capability. With a fast PC (350MHz Pentium or can save & play back your entire log after a contest, con-tact by contact from WAV files faster) WriteLog will decode CW at 6 different pitches on 2 radios simultaneously. Like having a backup operator in your H.D., in CW, SSB, RTTY & PSK31 modes - Via WAV file compression. looking over your shoulder. "I made the first contest (non RTTY) with WriteLog, and it is FANTASTIC. It is such an improvement for me over CT...I really love it, and from now on anyone who operates from here will HAVE to use this program! I will twist their arms." John, ON4UN

K2 Transceiver Now with DSP!

- New KDSP2 internal DSP unit for the K2
- New XV Series transverters for 50, 144, and 222 MHz
- New KRC2
 Programmable
 Band Decoder

Elecraft K2 and K2/100 Transceivers. Our 160-10 m, SSB/CW transceiver kit is available in 10 and 100-watt models, which share the same chart-topping receiver performance. Add the new KDSP2 option for versatile notch and bandpass filtering, plus noise reduction. K2 pricing starts at \$599.

Our KX1 4-watt, 3-band CW transceiver is the new featherweight champ!

www.elecraft.com

Pocket-size and with controls on top, it's ideal for trail-side, beach chair, sleeping bag, or picnic table operation. DDS VFO covers both ham and SWL bands; the receiver handles CW, SSB, and AM. Features memory keyer, RIT, logbook lamp, and internal battery. Optional internal ATU and attached paddle. Basic KX1 kit covers 20 & 40 m (\$289). KXB30 option adds 30 m (\$29).

Visit our web site for details on the K1, XV Series, KRC2, and mini-module kits.

ELECRAFT P.O. Box 69

P.O. Box 69 Aptos, CA 95001-0069 Phone: (831) 662-8345 sales@elecraft.com

NEW KRC2 Universal Band Decoder

Our new KRC2 universal Band Decoder can automatically switch any combination of antenna relays, filters, amplifiers, or other equipment as your rig changes bands. It supports analog, digital, and RS232 band control inputs.

- Decodes band data from our K2, Icom, Yaesu and Kenwood rigs
- Microprocessor control / Software reconfigurable
- Rugged source & sink relay drivers for all HF bands
- Also has BCD HF band and transverter band outputs
- Price: \$159

Workshop Chronicles

Getting Your Bearing on Bearings

If you stop and consider how many things in our lives turn or rotate, a new appreciation for the humble bearing will likely evolve. Hams, of course, are concerned with turning antennas. And bearings can make such a task easier, or more reliable, more precise, or less limited by size.

Bearings work by using either hard "balls" or "rollers." moving or turning inside smooth inner and outer surfaces (called "races"). These balls or rollers bear or support the load, allowing objects to move smoothly. Ball bearings typically deal with two types of load-radial and thrust, usually one at a time, or a combination of both. The typical tower thrust bearing, as you might imagine, deals with both forces, but we are mostly concerned with the vertical load.

Mention bearings to any active station builder, and you get an opinion or two, perhaps even a horror story. In a word, this is one topic that's not only sure to draw a reaction, but one that is almost guaranteed to be different. Let's try to clear the air, just a bit.

Lubrication

Should I grease my thrust bearing or not? The typical Rohn bearings (TB-3 and TB-4) are designed to run dry (see Figure 1). Their turning speed is so slow that virtually no heat will be generated. Remember, heat is what lubricants take away. Atop our towers, let's consider some basic physics. When a ball in such a bearing is motionless, the load is distributed symmetrically on the ball and the race. When a tangential load is applied, causing the ball to roll, the material in the race will "bulge" in front of the ball, while "flattening out" behind it. Since not enough heat is generated from sliding friction in a typical thrust bearing, metal pickup or welding does not occur. But the race can show evidence of wear; since it's made from a softer metal than the ball bearings, it will deform first, sometimes to the point of seizure. Lubrication will not solve that problem. Indeed, if the grease holds debris, it could damage the race.

Two Bearings?

Another common question: what about using two bearings? While it's a good way to easily remove the rotator (the mast/ antennas are supported as you take out the rotator), alignment is critical. Indeed, mast alignment inside the tower is one of the more important instances of measure-

ment we hams face, yet nearly everyone takes it for granted-mostly, I believe, because there's simply "so much" room to adjust things. For instance, in 20 years of tower work. I have never encountered one client who's asked about shimming the Hy-Gain/Telex series of rotator mast clamps, even though it's clearly spelled out in the manual if using other than a 2inch mast. Everyone assumes there won't be a problem; usually they're right, lucky or both. Adding a second bearing magnifies the issue of even slight misalignment, which can cause drastic load concentrations. So those two thrust bearings must be kept square with the shaft. I usually indicate to my clients that two bearings means alignment is twice as critical.

An Alternative to Rohn Bearings?

What about something other than

Figure 1—Probably the most popular and misunderstood bearing in ham radio use: the TB-series from Rohn.

Figure 2—A 3-inch bearing/bushing made from DELRIN stock & installed on K4VV's Pirod tower. K4VV PHOTO

Rohn bearings? And the immediate answer is, of course, it's certainly possible. Such bearings usually only have one, or at most, two, setscrews-not three evenly spaced ones like the Rohn's have. But the major limitation of such bearings is they're intended for use indoors. They will rust quickly when used outside in the weather. Yet I continue to see them used by clients and supplied by tower manufacturers. Here are some preventative measures I've used with these bearings.

1. Paint the entire bearing, including the flange and bearing surfaces, with Rustoleum Rusty Metal Primer-two coats.

2. Replace the Allen set screws with hex head bolts. These will be fine-thread bolts and will probably require some searching. But replace them, or you'll be climbing up to drill them out one day!

3. Be prepared to climb and grease such bearings, usually twice a year. Remember that water can migrate into the grease and freeze. Remember, too, that this same grease can hold other debris or contaminants, some of which may lead to premature failure. Keep such bearings clean!

4. Try to cover the bearing with a suitable "blanket" or cover of some sort. Each installation will require something different, but the business end of a Plumber's Friend, vent stack covers, or other building parts can and do work. I usually use a large remnant from a truck tire inner tube, cut to shape and held to the mast by a hose clamp.

And finally, you may not need or want a real bearing (supporting vertical loads), but a simple bushing. This works especially well if you remember that you can reduce bending moment forces if your mast extends below the top of your tower about as far as it extends above the top. Most modern rotators can support heavy mast and antenna loads easily. Pictured in Figure 2 is a bushing made at K4VV's station with some Delrin stock and installed on his Pirod tower.

In true ham spirit, when talking about towers and thrust bearings, I'm reminded of K1VR's posting on the YCCC Web page (www.yccc.org) and listed under "Articles." It's called, simply: "FAQ: Thrust Bearings." It's filled with neat, often witty but always useful ideas, especially a stepby-step description of how to refurbish a Rohn thrust bearing.

Software for Contesters

Past and Future

We'll discuss two topics this month: one that may seem like a throwback, and the other very much on the cutting edge. First, let's look at the throwback.

If you're like me, and more than a few years out of high school, a lot of things have fled your brain. For example, the other day I wanted to calculate a table relating antenna height to angle of maximum radiation. I found a simple trig formula in Chapter 10 of Dave Leeson's great book *Physical Design of Yagi Antennas.*

No problem, I thought, just use *Excel*. Imagine my surprise to discover that *Excel* wants you to specify angles in radians when doing any calculation involving trig functions. Radians? I thought that was a company that made towers. Convert degrees to radians? Without trig tables? You must be kidding.

This got me thinking about the venerable freeware *Hamcalc*. This true labor of love by George "Murph" Murphy, VE3ERP, available from **www.cq-amateurradio.com**, was first offered in 1993 and is currently in Version 79, last updated in July 2005. It incorporates over 300 different programs, written in *BASIC*.

It is really hard to adequately capture the sheer breadth of *Hamcalc.* The other day I found myself needing to calculate the value of the series current limiting resistor in an LED indicator circuit. Calling up the main alphabetical menu in *Hamcalc*, I found the Ls, and in a few seconds I had found a dedicated LED series resistor calculator. Figure 1 is a screen shot of one of the sub-menus.

Hamcalc's calculators are impressively refined. For example, in the case of the LED circuit, the calculator gives you several standard values of resistors, and reports what the resulting power dissipation will be for each. Working from the tables in any component catalog, it is easy to come up with a design that meets your criteria for a safety margin. Other calculators, like the RC active audio filter program, give you a choice of optimal or standard resistor and capacitor values. Murph appears to have spent a lot of time and effort consulting with experts in various areas, and he is generous in giving credit to those who helped validate each program.

Is there a downside? *Hamcalc* runs only under *DOS* or in a *DOS* window, with all the limitations that implies, plus some of its own. It *must* be installed in the root directory of your C: drive, and cannot provide printer output to anything but a stan-

C:\WINDOWS\System32\cmd.exe	_ 🗆 🗙
HAMCALC Program Menu C	by George Murphy VE3ERP
TYPE one of the 2-digit numbers liste	d below - DO NOT press <enter>:</enter>
Ø1: Fuses - Emergency Ø2: G5RU Multiband Antenna Ø3: Gamma Match Ø4: Great Circle Paths & Distances Ø5: Grid Square Locator (Maidenhead) Ø6: Guy Wires for Antenna Towers/Masts Ø7: Hairpin Beta-Match for Yagis Ø8: Half-Loop Low Profile Antenna Ø9: Ham Band Edge & Centre Frequencies 10: Harmonic Frequencies 11: Helical Antenna - UHF/UHF 12: Helical Resonators (UHF/UHF) 13: Helical Winding 14: Impedance Bridge (3-meter) 15: Impedance Matching Networks 16: Impedance - Antennas 18: Impedance - Parallel Resonant Cct. 19: Impedance - Reactance/Resist. Cct. 20: Inductance Calculator 41: Hast Hennu 42ENX	21: Inductance - Single Loops 22: Inductors - Dryer Vent Hose 23: Inverted Vee Antenna 24: J Calculator (Complex Impedances) 25: J-Pole End-Fed Zepp Antenna 26: K-Ractor & Antenna Length (NEC-2) 27: Ladder Network - 2 element 28: Ladder Network Analyzer 29: Lamp Life Expectancy 30: Latitude/Longitude Data Base 31: LED Series Resistor 32: Line-of-Sight Radio Wave 33: LM317 Voltage Regulator 34: Load Resistance Calculator 35: Local Repeaters 36: LoGyArtAns to any base 37: LOG-YAG Log-Periodic Yagi Antenna 38: Loop Antenna Coil Inductance 39: Loop Antenna - Transmitting 40: Loop Skywire Dimensions 45: ENC

Figure 1—Screen shot of one of the sub-menus of Hamcalc.

dard parallel printer—no USB. The program is strictly keyboard-driven—no mouse. It would be terrific if a Visual Basic programmer would get together with Murph and do a port of *Hamcalc* to *Windows*, but for freeware that may be a long shot.

A Real Time Scoreboard

Now, let's go back to the future and the cutting edge. For a long time, people have wondered what it would be like, not only to gather on 3830 after a contest and swap claimed scores, but actually to know how things were going *during* the contest—a real-time scoreboard.

My research—hopefully more reliable than my memory—suggests that the organizers of WRTC 2002 in Finland were the first to implement a real-time Internet scoreboard. There were some bugs, but it was exciting to hear someone on the air and know that he was leading the pack or closing on the leader.

Next up, probably, was W1VE's plug-in for *Writelog*, which would create a file giving whatever score information you wanted to a Web site, where the information could be displayed. Again, there was a flurry of excitement in the *Writelog* community, and it was tried for a few contests, but critical mass was never achieved, probably because it was a logger-specific solution.

Enter N8VW. I in the fall of 2004 he implemented a real-time Web scoreboard that required manual posting of score data, and attracted only a few enthusiasts. The consensus at the time was that it wasn't realistic to expect serious contesters to take time out to post manually. There was some desultory conversation about possible standards for automated posting, to permit incorporating such routines in contest logging programs, but again, the dust settled and nothing much developed.

This fall, the idea's time may have finally come. Bruce Horn, WA7BNM, is working with N8VW, K1TTT and a small group of knowledgeable contesters and software authors on automated score reporting. It all began during CQWW SSB, when Bruce started aggregating real-time scores that people were posting on various Web pages. Pat, N8VW reactivated his scoreboard experiment. Shortly thereafter, Bruce floated a first draft of a document defining what a common reporting format might look like. He and K1TTT launched a first rough-and-ready test for the CW Sweepstakes, using an add-in to N1MM Logger. It worked well.

Discussion of evolving the data format further has been hot and heavy. A second draft is out, and more testing of the real-time scoreboard concept went on during SS SSB. As far as I can tell, all the serious players in this area are currently working on a common approach, which I think is very good news; the last thing we need is a contesting version of the VHS versus Beta death match of the '80s.

So why should you care? Well, once a standard data format is worked out, all the program authors will be easily able to incorporate automatic score reporting capabilities in their software, and the data will be usable by any Web site that wants to display it. For users, it will be as simple as checking a box in the software, or maybe adding a line to an .ini file. Initially, most of the thinking has been about scoreboard applications, where Web sites could display standings in a contest, or in classes within a contest, or even in multiple contests on a given weekend. But just imagine all the other possibilities. More general-interest ham radio Web sites, like QRZ.COM, could easily incorporate contesting "news feeds" in their offerings, drawing from the morespecialized scoreboard sites.

Figure 2 is a screen shot of N8VW's scoreboard Web site (scoreboard.oqp.us/), as a preview of what can be done. WA7BNM's site, /www.hornucopia.com/ xml4contestresults.html, offers a bird's eye view of the effort to develop a common format for score reporting.

By the time this column comes out, things will be much farther along than they are now, so check those Web sites to find out what is going on currently. I hope you share my excitement about the prospect.

Figure 2—Screen shot of N8VW's scoreboard Web site.

NCJ

Contest Calendar

Here's the list of major contests of possible interest to North American contesters to help you plan your contesting activity through April 2006. The web version of this calendar is updated more frequently and lists contests for a 12-month period. It can be found at: **www.hornucopia.com/contestcal/**.

As usual, please notify me of any corrections or additions to this calendar. I can be contacted via e-mail at: **bhorn@hornucopia.com**. Good luck and have fun!

January 2006

SARTG New Year RTTY Contest AGCW Happy New Year Contest ARS Spartan Sprint WQF QRP Party Midwinter Contest, CW Original QRP Contest ARRL RTTY Roundup EUCW 160m Contest

Midwinter Contest, Phone DARC 10-Meter Contest Kid's Day Contest Hunting Lions in the Air Contest 070 Club PSKFest MI QRP January CW Contest North American QSO Party, CW NRAU-Baltic Contest, CW NRAU-Baltic Contest, SSB Run for the Bacon QRP Contest NAQCC 80m Straight Key/Bug Sprint LZ Open Contest Hungarian DX Contest North American QSO Party, SSB ARRL January VHF Sweepstakes CQ 160-Meter Contest, CW REF Contest, CW **BARTG RTTY Sprint** UBA DX Contest, SSB

February 2006

Vermont QSO Party YL-ISSB QSO Party 10-10 Int. Winter Contest, SSB Minnesota QSO Party AGCW Straight Key Party Delaware QSO Party

Mexico RTTY International Contest North American Sprint, SSB **ARCI Winter Fireside SSB Sprint ARS Spartan Sprint** KCJ Topband Contest CQ WW RTTY WPX Contest New Hampshire QSO Party Asia-Pacific Spring Sprint, CW Dutch PACC Contest Louisiana QSO Party **OMISS QSO Party FISTS Winter Sprint** British Columbia QSO Challenge RSGB 1st 1.8 MHz Contest, CW North American Sprint, CW ARRL School Club Roundup AGCW Semi-Automatic Keying Evening ARRL Inter. DX Contest, CW Run for the Bacon QRP Contest Russian PSK WW Contest CQ 160-Meter Contest, SSB **REF Contest, SSB** UBA DX Contest, CW Mississippi QSO Party **CZEBRIS** Contest North American QSO Party, RTTY High Speed Club CW Contest

North Carolina QSO Party

0800Z-1100Z, Jan 1 0900Z-1200Z, Jan 1 0200Z-0400Z, Jan 3 0000Z-2400Z, Jan 6 1400Z-2000Z, Jan 7 1500Z, Jan 7 to 1500Z, Jan 8 1800Z, Jan 7 to 2400Z, Jan 8 2000Z-2300Z, Jan 7 and 0400Z-0700Z, Jan 8 0800Z-1400Z, Jan 8 0900Z-1059Z, Jan 8 1800Z-2400Z, Jan 8 0000Z, Jan 14 to 2400Z, Jan 15 0000Z-2400Z, Jan 14 1200Z, Jan 14 to 2359Z, Jan 15 1800Z, Jan 14 to 0600Z, Jan 15 0530Z-0730Z, Jan 15 0800Z-1000Z, Jan 15 0200Z-0400Z, Jan 16 0130Z-0330Z, Jan 19 1200Z-2000Z, Jan 21 1200Z, Jan 21 to 1200Z, Jan 22 1800Z, Jan 21 to 0600Z, Jan 22 1900Z, Jan 21 to 0400Z, Jan 23 0000Z, Jan 28 to 2359Z, Jan 29 0600Z, Jan 28 to 1800Z, Jan 29 1200Z, Jan 28 to 1200Z, Jan 29 1300Z, Jan 28 to 1300Z, Jan 29

0000Z, Feb 4 to 2400Z, Feb 5 0000Z, Feb 4 to 2359Z, Feb 5 0001Z, Feb 4 to 2359Z, Feb 5 1400Z-2000Z, Feb 4 1600Z-1900Z, Feb 4 1700Z, Feb 4 to 0500Z, Feb 5 and 1300Z, Feb 5 to 0100Z, Feb 6 1800Z, Feb 4 to 1759Z, Feb 5 0000Z-0400Z, Feb 5 2000Z-2400Z, Feb 6 0200Z-0400Z, Feb 7 1200Z, Feb 9 to 1200Z, Feb 10 0000Z, Feb 11 to 2359Z, Feb 12 0001Z, Feb 11 to 0001Z, Feb 13 1100Z-1300Z, Feb 11 1200Z, Feb 11 to 1200Z, Feb 12 1500Z, Feb 11 to 0300Z, Feb 12 1500Z, Feb 11 to 1459Z, Feb 12 1700Z-2100Z, Feb 11 1800Z, Feb 11 to 1800Z, Feb 12 2100Z, Feb 11 to 0100Z, Feb 12 0000Z-0400Z, Feb 12 1300Z, Feb 13 to 0100Z, Feb 18 1900Z-2030Z, Feb 15 0000Z, Feb 18 to 2400Z, Feb 19 0200Z-0400Z, Feb 20 2100Z, Feb 24 to 2100Z, Feb 25 0000Z, Feb 25 to 2359Z, Feb 26 0600Z, Feb 25 to 1800Z, Feb 26 1300Z, Feb 25 to 1300Z, Feb 26 1500Z, Feb 25 to 0300Z, Feb 26 1600Z, Feb 25 to 2400Z, Feb 26 1800Z, Feb 25 to 0600Z, Feb 26 0900Z-1100Z, Feb 26 and 1500Z-1700Z, Feb 26 1700Z, Feb 26 to 0300Z, Feb 27

March 2006

ARRL Inter. DX Contest, SSB Open Ukraine RTTY Championship

DARC 10-Meter Digital Contest ARS Spartan Sprint AGCW YL-CW Party Idaho QSO Party RSGB Commonwealth Contest AGCW QRP Contest Oklahoma QSO Party

North American Sprint, RTTY UBA Spring Contest, CW NSARA Contest

Wisconsin QSO Party 10-10 Inter. Mobile Contest BARTG Sprint RTTY Contest Russian DX Contest CLARA and Family HF Contest Virginia QSO Party 9K 15-Meter Contest Run for the Bacon QRP Contest CQ WW WPX Contest, SSB Spring QRP Homebrew Sprint

April 2006

Kid's Roundup SP DX Contest EA RTTY Contest Missouri QSO Party

ARS Spartan Sprint JIDX CW Contest ARCI Spring QSO Party EU Spring Sprint, SSB Georgia QSO Party

Yuri Gagarin International DX Contest UBA Spring Contest, SSB ES Open HF Championship

EU Spring Sprint, CW Michigan QSO Party EA-QRP CW Contest

Ontario QSO Party YU DX Contest

Run for the Bacon QRP Contest Low Power Spring Sprint DX Colombia International Contest SP DX RTTY Contest Florida QSO Party

Helvetia Contest

0000Z, Mar 4 to 2400Z, Mar 5 2200Z-2359Z, Mar 4 (Low Band) and 0000Z-0159Z, Mar 5 (Low Band) and 0800Z-1159Z, Mar 5 (High Band) 1100Z-1700Z, Mar 5 0200Z-0400Z, Mar 7 1900Z-2100Z, Mar 7 0000Z, Mar 11 to 2400Z, Mar 12 1000Z, Mar 11 to 1000Z, Mar 12 1400Z-2000Z, Mar 11 1400Z, Mar 11 to 0200Z, Mar 12 and 1400Z-2000Z, Mar 12 0000Z-0400Z, Mar 12 0700Z-1100Z, Mar 12 1200Z-1600Z, Mar 12 and 1800Z-2200Z, Mar 12 1800Z, Mar 12 to 0100Z, Mar 13 0001Z-2359Z, Mar 18 0200Z, Mar 18 to 0200Z, Mar 20 1200Z, Mar 18 to 1200Z, Mar 19 1700Z, Mar 18 to 1700Z, Mar 19 1800Z, Mar 18 to 0200Z, Mar 20 1200Z-1600Z, Mar 19 0200Z-0400Z, Mar 20 0000Z, Mar 25 to 2359Z, Mar 26 0000Z-0400Z, Mar 27

1400Z, Apr 1 to 2200Z, Apr 2 1500Z, Apr 1 to 1500Z, Apr 2 1600Z, Apr 1 to 1600Z, Apr 2 1800Z, Apr 1 to 0500Z, Apr 2 and 1800Z-2400Z, Apr 2 0100Z-0300Z, Apr 4 0700Z, Apr 8 to 1300Z, Apr 9 1200Z, Apr 8 to 2400Z, Apr 9 1500Z-1859Z, Apr 8 1800Z, Apr 8 to 0359Z, Apr 9 and 1400Z-2359Z, Apr 9

2100Z, Apr 8 to 2100Z, Apr 9 0600Z-1000Z, Apr 9 0500Z-0559Z, Apr 15 and 0600Z-0659Z, Apr 15 and 0700Z-0759Z, Apr 15 and 0800Z-0859Z, Apr 15 1500Z-1859Z, Apr 15 1600Z, Apr 15 to 0400Z, Apr 16 1700Z-2000Z, Apr 15 (20-10m) and 2000Z-2300Z, Apr 15 (80m) and 0700Z-1000Z, Apr 16 (40m) and 1000Z-1300Z, Apr 16 (20-10m) 1800Z, Apr 15 to 1800Z, Apr 16 2100Z, Apr 15 to 0500Z, Apr 16 and 0900Z-1700Z, Apr 16 0100Z-0300Z, Apr 17 1400Z-2000Z, Apr 17

0000Z, Apr 22 to 2359Z, Apr 23 1200Z, Apr 22 to 1200Z, Apr 23 1600Z, Apr 22 to 0159Z, Apr 23 and 1200Z-2159Z, Apr 23 1300Z, Apr 29 to 1259Z, Apr 30

NCJ

Contest Tips, Tricks & Techniques

Tactical Decisions—Part 2

Tactical decisions are made continuously during a contest in an effort to maximize your score. Changes in propagation conditions, drops in rate, lower than expected multiplier totals and other factors make it necessary to change what you are doing. In the last installment of CTT&T we looked at what factors affect the decision making of contesters. In particular we looked at the decision to CQ or search and pounce (S&P), band selection, SO2R tactics, and selecting off times. In this installment we take a look at some other tactical decisions.

Multiplier Hunting

Balancing the number of QSOs with the number of multipliers can have a huge effect on your score. Sometimes it is necessary to hunt for multipliers. Sometimes you may even consider leaving a good run frequency to look for multipliers. The correct decision can be crucial.

Billy, AA4NU, tends to look for multipliers on the low bands around sunrise, and looks for them on the higher bands around sunset. He also mentions looking at times with known special openings, like an Africa to W4 opening that occurs during one part of the sunspot cycle at their sunrise.

The decision to search for multipliers varies for Bill, AA4LR, depending on the contest. In WPX, multipliers just come with rate. Bill does not worry too much about multipliers in SS, and will not really look for them until the last 12 hours of the contest.

As others have mentioned, in contests like SS and WPX, rate is king. K5TR takes it a bit further stating that in DX contests multipliers will call you. George recalls a sign at the N5AU contest station that read "Call CQ. Mults answer CQs". There are a number of rare multipliers that will make close to 1000 QSOs and never make a CQ. You will miss them if you are out S&Ping for multipliers.

Along these lines, I have had good success with power splitting to an antenna pointed to a second location. For example, I might be running Europe but have a second antenna pointed to Africa or South America. From time to time I will switch from CQing into the European antennas only, to transmitting into the African and European antennas at the same time. I will lose 3 dB into Europe (which is probably not too big a deal if the band is really open), but I will go up several S-units into the secondary location. With everyone

else concentrating on Europe, my half power signal into Africa will stand out like a beacon to the S&Per in that location.

One way to work multipliers without hunting is to have them call you while CQing, and move them to other bands. K5TR mentions that you have to decide if the disruption is worth it. George notes that it is usually not worthwhile to move a P4Ø since there will probably be several serious operations there for the whole contest. If you get a call from 5Z4/ KC4NYU, you should immediately move him to every open band since he may not be on much longer.

Randy, K5ZD, and George, K5TR, note it is important to know how much a multiplier is worth. Many logging programs will give you a number indicating how many regular contacts a new multiplier is worth. Others will give the figure in how many minutes a new multiplier is worth at the current QSO rate. You can use that to judge how long to spend in a pile up. Often there will be other new multipliers available while you waste too much time in a big pileup.

You also need to know what the chances are of finding new multipliers by searching for them. Randy points out that it changes during the course of the contest. That can skew the real value from the number on the computer screen. Early in the contest there will be a large number of easy multipliers that you will work just by keeping the rate up.

If you come across a juicy multiplier that has too big a pile up on the first day, Brian, N9ADG, suggests marking down the time and frequency. There is a chance he will show up again at around the same time and place the next day.

N1UR has goals for band multipliers and will adjust his operating to help make those goals. For example, Ed might note that just before sunrise on Sunday morning during CQWW he does not have VK or ZL on 40. He will take an S&P pass through 40 meters hoping to pick them up. If he is unsuccessful, he will often try some CQs, hoping to pick up some relatively easy double multipliers. He would not do this on Saturday morning since he might work them during other operating. He would also not do this to try to pick up a KH2 because he does not expect to normally work a KH2.

Mixed Modes

Some contests like the ARRL 10 Meter Contest and some state QSO parties allow you to operate mixed mode. In such cases, CW contacts usually have more point value. In the 10 Meter Contest they are worth twice as much as phone contacts.

W9RE likes to start out on phone in these contests because there is a big surge there at the beginning. He keeps the point differential in mind, but tries to switch at least every couple of hours to avoid missing any part-timers.

For the 10 Meter Contest Paul, EI5DI, feels that about 75% of your contacts should be on CW. He feels that you will not normally be able to work phone contacts at twice the rate as CW. At 75% CW you will average 3.5 points per contact. If you fall below 3.5, you might be having fun, but you may not be optimizing your score. Paul also notes that multipliers count for both modes, so you need to be sure that you keep your phone multipliers in line.

I find that there are normally more multipliers available on phone than on CW in the 10 Meter Contest. I sometimes find that I will have spent a large portion of the European opening on one mode on Saturday, so I make an effort to be on the other mode at that time on Sunday. I doubt there will be such a problem this year since there will probably not be an opening to Europe on 10 meters! On the second day I also make an effort to move new multipliers to the other mode.

Other Tactics

Zack, W9SZ, notes that he has been upgrading his VHF station for contests by adding more bands, and the result is that he has had to change his tactics. With more bands, there are more stations to work.

K6UFO tries to compare his current rate to similar times in past contests adjusted for current conditions to decide on changing tactics. Before changing, Mark tries to come up with several possible tactics first. These might be to change to S&P, change bands, move to another part of the same band, etc. He might quickly try several tactics before deciding on one. Mark notes that most contesters probably stick with a tactic too long, as opposed to changing too soon.

That is especially true while CQing. If you call CQ four times without an answer, you might feel that is a losing proposition. It will take less than a minute to make those four CQs. At the same time you might only be able to find a new station to work every few minutes on S&P. You will be more mentally involved in S&P-copying calls, checking for dupes and tuning for the next possible station. It may feel more productive to S&P than CQ because your mind is more actively engaged. Watch the rate meter to be sure.

Sometimes you will find yourself in a frequency fight. Just like deciding how long to stay in a pile up for a new multiplier, K5ZD says you need to know when you are better off just moving on. Past experience and the sound of the band can help you make that decision.

N3BB uses daylight periods to help him make a lot of his decisions. Jim used to make up charts telling when sunrise was happening in a given area, when certain bands would open up, etc. After a lot of experience, Jim uses a Geochron on the wall to keep tabs on what is happening around the world and makes adjustments accordingly. For example, he will notice it is sunrise in Europe and that he should be on 40 or 80 meters as signals will be rising as the target areas reach sunrise. A bit later he will notice that Europe is in full sun and the low bands have dried up to that area, and it will be several hours until local sunrise and better propagation to JA and other parts of the Pacific. This tells Jim it might be a good time to get a few hours of sleep. Jim finds a real time daylight-darkness indicator invaluable. I have found it also to be very valuable, and run the W6EL Prop program with the day/ night map in a separate window on the PC.

When in S&P mode, NA3V divides up the band into 3 zones. The bottom of the band is the high power, high speed and low turn over portion of the band. Basically the big guns sit out here for most of the contest. The top zone is the area the low power, and slower stations hang out. This area has the highest turnover rates. The middle is a mixture of the high and low power stations, and has moderate turn over. Jim starts at the top because he can usually work these on the first call. Next he moves to the middle zone because this is generally where he finds the most new multipliers. Finally, he works the bottom after the pile ups have thinned, and returns to the top because there will likely be more new stations to work there. If Jim feels there will be a high turnover he will do the middle section again before moving to another band.

N9ADG suggests that just moving from one area of the band to another can help. Brian says people are creatures of habit, and tend to stay where they are more familiar

Changing CW speeds can have a remarkable effect when the rate slows

down. I operated with a different club for Field Day the last couple of years. Bob, W9LO, was my partner. I always kept my speed in the low 20 WPM area because FD operators tend to be less skilled than ops in other contests (or "operating event" as FD is officially known). Bob felt that you should keep the keyer much higher to keep the QSO times short. We decided to agree to disagree that first year. When I started a shift I noticed that Bob had good CQ runs at high speed, but often it slowed down towards the end of his shift. I started out at my lower speed and had a higher initial rate, but after a while would increase, and find a rise in rate. I will now vary my CW rate when my CQ rate slows down. It seems that the change attracts different operators.

W6WRT, K5TR and other mentioned that you learn these things by experience. After you operate enough contests you learn by "feel" when it is time to make a change.

Thanks go out to this topic's contribu-

tors: AA4LR, AA4NU, EI5DI, GW4BLE, K5AF, K5TR, K5ZD, K6UFO, K9AY, KJ9C, N1UR, N3BB, N9ADG, NA3V and W9SZ. Thanks guys! CTT&T works because of contesters sharing their experience.

Topic For NextTime

Eliminating Noise (Deadline January 12, 2006)

"You can't work them if you can't hear them" and noise is the main reason you can't hear them. What noise sources have you had trouble with? How did you track it down and cure it? What antennas and other equipment have you used to reduce natural noise (QRN) on the low bands or other bands?

Send in your ideas on these subjects or suggestions for future topics. You can use the following routes: Postal Mail-3310 Bonnie Lane, Slinger, WI 53086. Email-w9xt@unifiedmicro.com. Be sure to get them to me by the deadline. NCJ

Build a Better Antenna With DX Engineering!

High quality components to help you build the best amateur antenna possible!

- 5KW/10KW Baluns
- Stainless & Aluminum Clamps
- Vertical and HF Receive Antennas

Secure Online Ordering: www.DXEngineering.com Order by Fax: 1-330-572-3279 24 hrs./7 days Order by Phone: 1-800-777-0703 Mon.-Fri. 8:00 am-4:30 pm EST Product Support Line: 1-330-572-3200 Mon.-Fri. 8:00 am-4:30 pm EST

When You Want The Best!

The fifty-seventh CW Sprint was held on September 11 UTC—a very memorable date in our recent history. We received logs from 174 stations, but our records indicate that 303 stations participated—each making at least two QSOs with stations that submitted logs. While the maximum number of multipliers worked was 49, it appears that at least 55 multipliers were active.

Working multipliers is certainly a hit or miss situation. It takes a certain amount of luck and *je ne sais quoi* to pull off a top multiplier. For an example, K9PG flew down the NP4Z's station for this contest and made 248 QSOs. After the contest, Paul commented that he never heard N6TR—who made 369 QSOs. The fact that these two gentlemen never crossed paths is a testament to the general chaos that the CW Sprint generates for its fourhour duration.

Conditions for the September event are always interesting. In general, the East Coast stations are a bit happier in September because 20 meters tends to stay open longer. The West Coast stations have a hard time QSYing to 40 meters when it is still light outside and always dread having to go to 80 meters where the summer QRN is typically still a factor. The September event seems to have winners spread around the country. Recent winners include N9RV, W4AN, N6TR, K1TO, NN1N at K4VX, K5GA and then of course the string of victories by N5TJ. The northeast has had several showings in the top few scores—with K5ZD, N2NT and K1KI often being in the running.

This year, the northeast got the short end of the conditions. While N2NT and N9RV got off to a blazing start, they were not able to maintain their rates going into the second hour and both missed the Top Ten. Out West, stations like N2IC and N6TR got off to a slow start, but found conditions improving for them as the contest went on and finished strong. This left the stations in Texas with the best of both worlds: a strong start and strong enough finish to put many of them into the Top Ten listing, along with the winning score in the high power and QRP categories.

QRP Category

Eight logs were submitted in the QRP category. Dale Martin, KG5U, added another QRP victory to his resume with a strong score over the rest of the pack. Gary, NØSXX, stayed in the chair the whole four hours and made 110 QSOs to come in second. N6WG came in third, over the first time effort from NA4BW.

Contest Mobile!

One of the previous winners of the September CW Sprint decided to try working the contest during the drive home from the Melbourne Hamfest. It seems that this event often conflicts with the September Sprint and has prevented him from doing both. Here is Dan, K1TO's, story.

The September CW Sprint is held the Saturday evening of the Melbourne Hamfest, a traditional Florida Contest Group gathering spot every year (except last year when one of those huge named storms caused a cancellation). A few times, I've made the 3-plus hour trip each way in the same day followed by the Sprint from home, but in recent years, I've not managed to operate at all in September. This time, George, K5KG, offered to drive and "watch," steadfastly refusing to share the operating, so off we went on our way home to the Sarasota area.

Recalling the fine effort that George and Jim, VE7ZO, posted in the FQP 2004, I figured that George's mobile set-up got out well—and it did. Sure, it wasn't like being at home with Yagis and full power, but the IC-706 and Screwdriver worked surprisingly well. No SO2R capability here, of course, so I started on 20 (which was its typical self—no W4s to work, but everything else was fair game). Finishing the first log page—actually the back of a printed *PowerPoint* presentation—of 27 Qs at 0019Z was very encouraging! With 80 an hour, 300 might be possible! Uh-huh...

Immediately afterward, I was beat out repeatedly and put only one Q in the log in the next 3 minutes, which quickly grounded me in reality. The half-hour ended with 39 in the log. Signals steadily weakened as propagation slowly disappeared. Mark, N5OT, gets the prize for being the most patient as he finally pulled my number through the fading, after which the hour ends with #73. At 0106Z we arrived at Joe, W4SAA's place and dropped him off. After our farewells, I was back on and, except for N2RM, only worked western stations—slowly.

Time for a quick change to 40 meters! George pulled over for a 3-minute band change in the dark. Signals on 40 were generally louder and the '706 struggled with its filter blow-by. I'm pleased that the CA boys were hearing us well on 40. This is a heavily contested period, with multiple callers after most doublets, but we hung in there and beat some folks out. More repeats were needed with loud adjacent signals leaking in.

Thirty-seven Qs went in the log in the first 30 minutes on 40, but the rate slowed. I realized that the antenna was no longer tuned properly and we spent 5 minutes trying to get it resonant again. Those efforts turned the rate from "blah" to "good" again as Trey, N5KO, entered the log. N6TR checked in with a huge number relative to that on 20. Sure enough, he later reported an unusually slow start, then Rate Acceleration Time. At 0230Z, there were 157 Qs in the log, even with 15 minutes off. Soon afterward, it was obvious that the sheep were flocking to 80 right on schedule, as only 11 Qs were made in the next 16 minutes.

Arriving safely back at my place, I thanked George profusely and my mobile effort was over with 168 (claimed) QSOs. Two of my most pleasant 2005 operating experiences, including this one, have been from a mobile. Vic, N4TO, and I have done the FQP each of the last 4 years and we managed over 3000 CW-only QSOs last April in the 20 FQP hours!

Mobiling in the Sprint is a bit masochistic, especially hand-keying and hand-logging (so you can't really Keep Score), but the rush has me looking forward to the next one. I'd say "see you in February", but that conflicts with the Orlando hamfest. Hey, George, I got an idea...

Operating your first ever Sprint in the QRP category sure takes a lot of courage. W4QO, NØQT, KM3T and VE3RKM finish out the top eight.

Low Power Category

The low power category saw a close finish between two "sevens"-but from different coasts. KM7W, piloted by Chris Hurlbut, KL9A, used a unique QSO number scheme to confuse everyone (including the log checkers), but still ended up beating Larry, K7SV, who operated from his home in Virginia. Chris had trouble in the first hour, but as conditions improved for him, he made up ground. Mel, KJ9C, finished third ahead of a pack of four scores which included sprint founder W6OAT, W4OC, VE3DZ and K9PG at NP4Z. AA5B, N9CK and KU8E/4 finish out the competitive Top Ten. K1HT, who typically shows up near the top of this list. was done in by the bad conditions. He was edged out by N6PN at 12th place and WW2Y at 11th place. N6PN has a special place in my heart-he was on the other end of the radio when I made my first ever QSO in ham radio—almost 40 years ago now. One of the great things about ham radio is keeping tabs on people you have known nearly all your life.

High Power

There were two distinct rate profiles for the scores making it into the Top Ten. Some stations got off to a fast start, hanging onto their good rate in the second hour, but had a horrible time in the 3rd hour. They recovered enough in the 4th hour to hang onto a spot in the Top Ten. Other stations seemed to be able to string together 4 consecutive hours of good rate and catch up with the other stations during that critical 3rd hour. Take a look at the hourly rates in the Top Ten box to see this.

After the contest was over, four stations had scores within a few QSOs of each other. Dave McCarty, K5GN, produced an almost error-free log and stayed ahead of N5RZ (at K5TR), N6TR/7 and N2IC/5. Steve, N2IC, had a golden log, an impressive accomplishment with 350 QSOs. Steve was limited to one radio due to a lightning strike the week before the contest. Perhaps being able to focus on one radio helped him get that golden log. In fifth place was Dan, N6MJ, operating at the W6YI superstation. Dan has made the move from low power to high power without missing a beat. Howie, N4AF, makes his second Top Ten showing-the first being with his old K4PQL call ten years ago. Next comes Jim George, N3BB/5, whose participation in the NCCC practice Sprints paid off with his first ever Top Ten showing. Rumor also has it that he spent an hour on the phone with his Ssprint mentor just before the contest. K5GA, N6ZZ/5 and W4PA finish out the Top Ten.

In the ten band change or less box,

Dave, K5GN, smiling after winning the September High Power CW Sprint.

TOP 10								
		Band	QSOs					
	Score	Changes	Lost	00Z	01Z	02Z	03Z	
K5GN	17591	144	1	105	88	76	90	
K5TR	17390	146	4	108	92	81	89	
N6TR	17343	96	4	92	91	88	99	
N2IC	17150	4	0	91	93	75	91	
W6YI	16779	70	6	102	89	79	88	
N4AF	15886	2	7	96	85	64	94	
N3BB	15651	142	4	98	88	75	72	
K5GA	15604	100	3	107	77	79	70	
N6ZZ	15533	4	5	82	76	80	80	
W4PA	15488	169	7	106	87	81	79	

Top 10

One Radio

	N2IC N4AF N6ZZ N5OT W6YX K6NA N6AN K1KI N6TV W4EE	<i>Score</i> 17150 15886 15533 14985 14688 14674 14504 14335 14310 12029	Band Changes 4 2 4 2 2 8 8 8 6 2 2	QSOs Lost 0 7 5 4 1 2 6 4 4 4	00Z 91 96 82 86 82 89 78 89 82 89 88 82 89	<i>012</i> 93 85 76 93 68 81 79 86 80 71	<i>022</i> 75 64 80 73 86 70 63 64 75	<i>032</i> 91 94 80 81 70 79 76 66 81	
--	--	--	--	--	---	--	--	--	--

Top 10	Top 10	Top 10	Top 10	Top 10
QSOs	Multipliers	Low Power	QRP	Band Changes
K5TR 370 N6TR 369 K5GN 359 W6YI 357 W4PA 352 N2IC 350 N2NT 344 N9RV 344 N4AF 338	K5GN 49 N2IC 49 N6AN 49 N6ZZ 49 K7NV 48 KJ9C 48 N6RO 48 W6YX 48 Many 47	KM7W 12604 K7SV 12236 KJ9C 11328 W6OAT 10755 W4OC 10664 VE3DZ 10534 NP4Z 10428 AA5B 10004 N9CK 9963	KG5U 6084 NØSXX 3740 N6WG 2212 NA4BW 1764 W4QO 1176 NØQT 455 KM3T 72 VA3RKM 1	W9RE 170 W4PA 169 N9RV 151 K5TR 146 K5GN 144 N3BB 142 N2NT 132 AA3B 100 K5GA 100

some very nice scores from N5OT, W6YX, K6NA, N6AN, K1KI, N6RV and W4EF rise up to join N2IC and N4AF.

Team Competition

The Northern California Contest Club pulled off their third team victory with a comfortable margin over the PVRC/FRC team. Still, we are all very thankful for the efforts by the PVRC/FRC organizers, as Maryland was a perpetual rare multiplier for a long time. The Southern California Contest Team came in third followed by the Society of Midwest Contesters. Overall, 17 teams were registered. If you are interested in helping improve the activity in the contest, sponsoring a team is a proven way to do it.

Golden Logs

N2IC	350
W2RQ	315
AA3B	307
K5OT	292
K4BAI	283
N4ZZ	280
KM7W	274
K9BGL	266
W6EEN	250
N2GC	226
N4CW	100
K8BB	71
N6XI	58
NE6I	47
NØQT	35
K2SX	30
KZ5OM	30
KL7WV	28
N2ZN	7
W1DY	4

Records

Four new records were established this time around. Brian, NA4BW, set a new QRP record for Georgia, beating the record set just last year by K4AQ. Gary, NØSXX, bumped up his QRP Colorado record from February by 500 points. Peter, WW2Y, operated from Nebraska and blew away the six-year-old low power record previously held by KA9FOX. Kyle, WA4PGM, operated from VP9 and established the low power record there.

NextTime

The next NCJ CW Sprint will be held on February 12 UTC (Saturday February 11 local time). For team registration, use the NCJ web page at **www.ncjweb.com**. Logs can be submitted via e-mail to cwsprint@kkn.net or using the log submission form on the NCJ Web site. Logs are due seven days after the contest.

Check out the web resources at n6tr.jzap.com/sprint.html and rules, records and previous results at the NCJ Web page at www.ncjweb.com.

Soapbox

First time using high-power in the sprint. Had a few problems-after 20 minutes, discovered

Team Scores

Northern Ca Contest Clu	alifornia b #1	Potomac and I Radio Clubs #	Frankford 1	
N6RO N2NL W6YX K6XX N6TV K7NV	15264 15165 14688 14352 14310 13056	N4AF N2NT N2RM AA3B W2RQ K3WW	15886 15136 14536 14122 13860 13570	
AE6Y W6RGG W6EU AJ6V	13019 11421 11308 9184 131767	K7SV N3AD W4AU VP9/WA4PGM	12236 10340 7372 5508 122566	Guest Ops K3CR (LZ4AX) K5OT (at K5NA) K5TR (N5RZ) K5XR (W5ASP) KL7WV (W3YQ)
Southern C. Contest Clu W6YI K6NA N6AN K6LA W4EF W6EEN N6VR K6NR K6NR K6NR K6XT NE6I	alifornia b #1 16779 14674 14504 14352 13938 11750 11220 10755 5565 987	Society Midwe Contesters #1 N9RV W9RE K9NW KØOU WT9U NP4Z N9CK K9MMS W19WI	st 15136 13889 13596 11424 10794 10428 9963 8694 8588 102512	KM7W (KL9A) N2NL (at W6NL) N6PN (at W6JZH) N8SR (at N8JI) NN7ZZ (N5LZ) NP4Z (K9PG) W1AW/6 (N6AA) W4EF (at W6VIO) W6EEN (N6RT) W6RGG (at AA6G) W6YI (N6MJ) W6YX (at W6YX) W7RN (K5RC) W8KW (W8UE)
	114524			

5. SSC (W4PA, K4RO, K4BAI, W4NZ, W4OC, KU8E, AA4GA, N4GI, AA4LR) 90703 6. YCCC#1 (K1KI, W1WEF, K1DG, N2GC, K5ZD, K1HT, NB1B, 7. Azenmokers (N2IC, N6ZZ, N5OT, K5KA, K5YAA, KY7M, W7YS, 8. Austin (N3BB, N4OGW, K5OT, KZ5D, K5WA, AC5AA, KG5U)74120 9

9. NCCC#2 (W6OAT, K6LRN, K2KW, N6PN, W7RN, N6ZFO, N6WG, N6XI)	60261
10. MWA (KØAD, NØAT, NAØN, KMØO KTØR, WGØM, KEØL)4	2825
11. PVRC/FRC #2 (WW2Y, W3YY, N4ZR, K3MD, K3STX)	0366
12. NCC (K3CR, K2UA, VE3EJ, K8NZ, KL7WV)	37226
13. CCO#1 (VE3DZ, VE3JM, VA3NR, VE3RZ, VE3IAY, N2ZO, VE3RCN)	3659
14. SMC #2 (KJ9C, KA9FOX, K8GU, K9KM, WW9R)	32461
15. Corner (KM7W, K4XU, KI7Y, K7WA, AL1G)	31689
16. NCCC#3 (W6RK, K6OWL, N6EM, W6ZZZ)	9549
17. YCCC#2 (K2SX, KM3T)	582

my garage door was opening and closing when I transmitted on 20m. So I had to drop back to low power. Worked well on 40 meters, though.—AA4LR

First entry in a cw sprint in many years. Used dipoles and vertical on a push up mast. Lots of fun, as always.—AA5B

This was my third Sprint, and it's still a challenge. At least I didn't completely collapse like I did last time an hour into the contest! 40m and 80m were very noisy here-thanks for the patience so many of you had when we were having trouble hearing each other. My peanut whistle vertical on 80m isn't the greatest. Great contest!-AC5AA

Heard but did not work KS. Never heard another MO-KØOU

Just got back from fast trip to WA6BOB's place to pick up some tower sections and arrived home right at the start of the contest. My CW sucked till I had a few 807'S—K0UK

Made a 90-minute appearance. Sheesh, you'd think we were in a sunspot minimum the way the bands sounded.—K1AR

Death in family left only last hour to play but had my best Sprint rate ever.—K1GU

After a decent start on 40, conditions made this a tough contest from the Northeast. Still,

I was happy to work N4CW/1 in ME and to hear a number of new call signs.—K1HT Tnx to K5KG for the ride!—K1TO/M

First time tried low power...missed at least 50 QSOs that did not come back ... 73 John-K3MD

Beat my previous best by a factor of two. Next time I hope to break 200. Thanks to all the great CW ops out there.—K3STX

Time out from relaying Katrina H&W traffic.—K4RO

Signals on all bands tested the dynamic range of the operator, from rock-crushing (e.g., W2RQ) to ESP (inside the long skip on 20). Backscatter improved after 0100, but so many had already gone to 40. All bands were noisy with the tropical wx. Congrats to all who braved the protons.-K5GN

Sorry to all for the bad signal in the first half of the contest. I had to open the K2/100 up and tighten screws on the finals to clean up my spark gap note.—K5WA

Tough conditions, so took some time off to watch Texas vs Ohio State. More people got the name Katrina on the first pass than I had expected. Those who asked for repeats usually just wanted to confirm. Then there were those who couldn't figure it out even with multiple repeats. Makes me wonder if they listen to the news!—K5ZD

GAAAAK! Flares galore!—K6OWL

Well I had a great time. My low power combined with long wire antenna and advanced decrepitude didn't help but had fun getting there.—K6XT

Conditions weren't quite as bad as I expected they would be! Only mult heard but not worked was NV. W7RN and K7NV were zigging while I was zagging!—K7SV

Tough condx.—K9NW

Real antennas still not installed here at new QTH, so I threw up a trap fan dipole at 30ft an hour before the contest. 20 & 40 were OK considering condx, but it was a dummy load on 80. Poor condx here due to flare, but still a great time. So much fun in 4 short hours!— KA9FOX

Not a good idea to party all afternoon before a sprint—KJ9C

Camped in Vermont Saturday night brought some stuff to play around in the Sprint. Lowest power ever. Lowest antenna ever. Lowest score ever.

Transplanted 80m dipole	\$10.00
Yaesu FT-817 (2.5W out)	\$500.00
36 "AA" batteries (just in case)	\$11.50
No antenna tuner for dipole	\$0.00
Twine for dipole support	\$5.00
Three nip bottles of	
single malt Scotch	\$10.00
Trying to work guys	
in the Sprint	Priceless
Trying to explain to friends	why I do

this...Impossible!

QRP with crappy propagation + low dipole

does not make for a really fun time, but it was fun anyway (for some value of fun)!—KM3T

Thanks to K7MM for use of his fine station! It's too bad 20m was REALLY bad this time.— KM7W

Caught this one at the end, but had a good time for 20 minutes. First sprint—definitely see you all next time.—N2ZN

The pinball wizard sent me a copy of his amazing 123 QSO hour from last February. I was hoping my QSO total would increase by studying the master. Well, maybe next year, hi! But my multiplier skill/luck certainly held up. I worked my last multiplier in the final two minutes!—N6AN

Congrats to N2NL for an outstanding job in his first effort from the West Coast.—N6TV

Well, nothing great was achieved, but I did have my best September Sprint score so far. Only 17% down from my best Sprint score ever last February, so fairly pleased. Made 87 Qs and 29 mults this time as condx were much better than I expected. Next year my goal will be to break 100 QSOs in September Sprint. I've already done that in February Sprint. Biggest mistakes were spending too much time CQing and too much time on 80m. CQing doesn't work well for a QRP Sprint station. My 80m dipole is just my 40m dipole, and it's not really adequate. 20m and 40m were my workhorse bands, with nearly equal Qs. I had fun anyway, with my QRP K2 and wire antennas. Sure got some serious score envy though, hearing those 300+ numbers along the way :-) Still have 5 thumbs on each hand when I get excited, and start smashing keys on the laptop. Gotta get a better handle on this :-) See you

all in CQP next month. The Little Station with Attitude—N6WG

Had company; could only spend a few minutes on the air.—N6XI

This was the wrong contest to try SO2R on CW for my first time—my head hurts!—N7VM

This was my second try. The goal was to break 100 Q's. I'm looking forward to Feb. 73's Guy—N7ZG

Some mighty long gaps between QSOs, especially during the last hour. Don't remember a Sprint with so many super weak signals. Gonna take a really good op to have a golden log in this one.—N9RV

Not many replies to CQ so mainly S&P which kinda sucks in Sprints. Still good fun till brain turns to mush. Great to hear all the good ops. Cu in the next one. Tony—VE3RZ

A humbling experience.-W1JQ

Everything went well with single radio, except for amp shutting down around 0310Z. Lost about 8 minutes and my concentration/motivation for a bit afterwards. Great to hear the active LA/ MS/AL stations on after hurricane.—W2RQ

DSW-40 at 1.5 watts to 80 meter loop—Y'all have some great receivers!—W4QO

Effort aborted because of computer problems. Thanks for the contacts.—W6ZZZ

The greatest, fastest paced contest of them all!—W9RE

80 almost totally disappeared about 0330, made 3 QSOs in 15 min. When the contest was over took the dog for a walk and the aurora was almost to the zenith at my northern WI OTH.—WI9WI

This was my best effort to date. Thanks for all those that slowed down—WW9R

CW Sprint Records—Through September 2005

QTH	Pwr	Date	Call	20	40	80	QSO	Mul	Score	QTH	Pwr	Date	Call 20	40	80	QSO	Mul	Score
CT	н	Sep-2003	K1KI	153	132	84	369	50	18,450	GA	Н	Sep-2003	K4AAA 146	170	88	404	54	21,816
CT CT	L Q	Sep-1999	NT1N	122	115	43	280	49	13,720	GA GA	L Q	Feb-2003 Sep-2005	(W4AN) KU8E 42 NA4BW 15	124 28	81 20	247 63	48 28	11,856 1,764
Ma Ma Ma	H L Q	Feb-2003 Feb-2003 Sep-2003	K5ZD K1HT NB1B	136 72 75	144 106 29	85 114 3	365 292 107	54 50 33	19,710 14,600 3,531	KY KY KY	H L Q	Sep-1998 Feb-2002	K4LT 82 K4FXN 103	107 98	92 53	281 254	44 45	12,364 11,430
ME ME ME	H L Q	Sep-2004 Feb-2003	N4CW NY1S	94 37	81 42	44 81	219 160	44 43	9,636 6,880	NC NC NC	H L Q	Sep-2003 Feb-1995 Feb-1998	N4AF 98 K7GM 73 W4WS 13	129 101 23	115 69 13	342 243 49	49 45 24	16,758 10,935 1,176
NH	Н	Feb-2003	K1DG	129	119	83	331	50	16,550		-		(N4VHK)					.,
NH NH	L Q	Feb-2002 Feb-2003	K1BX AB1AV	131 2	76 0	62 0	269 2	47 2	12,643 4	SC SC	H L	Sep-2003 Sep-2003	W4OC 108 W4OC 87	107 92	83 116	298 295	46 50	13,708 14,750
ri Ri Ri	H L Q	Feb-2002 Feb-2004	KI1G AJ1M	122 7	95 6	93 0	310 13	47 13	14,570 169	TN TN	U H L	Sep-2003 Sep-2003	W4PA 134 K4AMC 77	163 127	96 66	393 270	51 47	20,043 12,690
VT	н	Feb-2004	NT1Y	116	175	47	338	48	16,224	TN	Q	·						,
VT VT	L Q	Sep-1999 Sep-2004	W1EAT WT1L	38 18	33 2	33 18	104 38	35 21	3,640 798	VA VA VA	H L O	Sep-1989 Feb-2003	KT3Y 95 K7SV 84	122 101	79 115	296 300	48 52	14,208 15,600
NJ NJ NJ	H L Q	Feb-2003 Feb-1999	N2NT K2SQ	88 94	158 101	134 85	380 280	51 46	19,380 12,880	AR AR	H L	Feb-2000 Sep-1995	K5GO 81 N8VV 49	117 54	80 38	278 141	50 39	13,900 5,499
NY NY	H L	Feb-2002 Sep-2004	K2UA K2KQ	113 80	123 94	85 56	321 230	50 46	16,050 10,580	LA	H	Feb-1995	W5WMU 10 (K5GA)	5 115	86	306	48	14,688
DE	H L	Sep-1989 Feb-2002	KN5H N8NA	98 107	102 79	72 76	272 262	46 45	12,512 11.790	LA LA	L Q	Feb-2004 Feb-2003	W5EKÉ 43 KC5R 11	67 51	18 49	128 111	40 35	5,120 3,885
DE MD	Q H	Sep-1999 Sep-1989	N3DEL W3LPL	6 120	1 110	0 80	7 310	5 47	35 14,570	MS MS MS	H L Q	Feb-2000 Feb-2005 Feb-2002	WQ5L 123 WQ5L 95 WA2NYR 30	136 101 16	58 57 0	317 253 46	49 40 26	15,533 10,120 1,196
MD MD	L	Sep-2002 Sep-2002	K3MM K3ESE	95 19	95 35	71 0	261 54	40 17	10,440 918	NM	Н	Feb-2003	N6ZZ 133	153	65	351	52	18,252
PA	H	Sep-2004	K3NM	131	116	91	338	49	16,562	NM NM	L Q	Feb-1999 Feb-2002	N6ZZ 99 W5YA 121	116 75	44 28	259 224	44 42	11,396 9,408
PA PA	L Q	Sep-2003	W1NN	87	83	59	229	46	10,534	ok ok ok	H L Q	Sep-2003 Sep-1998 Sep-2004	K3LR 131 K5KA 79 K5KA 91	133 89 69	88 62 52	352 230 212	48 40 43	16,896 9,200 9.116
AL AL AL	H L Q	Feb-2004 Sep-2003 Feb-1998	K4NO K4IQJ KJ3V	115 70 0	98 89 8	67 60 0	280 219 8	48 44 7	13,440 9,636 56	TX TX TX	H L	Feb-2000 Sep-1998	N5TJ 148 N5TJ 141	137 111	96 80	381 332	52 46	19,812 15,272
FL	н	Feb-2003	N2NL	151	139	67	357	55	19,635	CA	Н	Feb-2000	W6EEN 150	147	22 81	204 378	47 54	9,000
FL FL	L Q	Sep-2003 Sep-1999	KØLUZ N4BP	118 119	132 51	0 0	250 170	47 34	11,750 5,780	CA	L	Feb-2004	(N6RT) N6MJ 106	158	77	341	50	17.050
											-					- · ·		.,

QTH	Pwr	Date	Call	20	40	80	QSO	Mul	Score		Pwr	Date	Call	20	40	80	QSO	Mul	Score
CA	Q	Feb-2002	K6III	122	27	4	153	48	7,344	VE2	Н	Sep-1988	VE2ZP	75	98	41	214	41	8,774
AK	L	Feb-2000 Feb-1995	KL9A KL7FAP	139 P 7	0	0	202	47 6	9,494 42	VE2 VE2	L Q	Feb-2003	VE2AWR	49	77	26	152	39	5,928
AK AZ	Q н	Sep-2003 Feb-2000	N6TR/K	L7 1	0 144	0 12	1 364	1 50	18 200	VE3	Н	Feb-2000	VE3EJ	90	93	87	270	50	13,500
AZ	Ľ	Feb-2002	K7UAZ	126	87	23	236	45	10,620	VE3 VE3	L Q	Feb-2003	VE3NE	71	43	108	222	49	10,878
AZ	Q	Feb-1998	(N40GV NQ7X	/v) 3	0	0	3	3	9	VE4	Н	Sep-2003	VE4/WBØO	136	130	0	266	45	11,970
ID	Н	Feb-2000	W7ZRC	123	107	44	274	45	12,330	VE4 VE4	L Q	Feb-2003	VE4X1	38	42	6	86	32	2,752
	L 0	160-2001	(KL9A)	144	00	44	270	40	13,240	VE5	н	Sep-2000	VE5DX	122	92	50	264	43	11,352
ID MT	Q H	Eeb-1996	AB7BG	50	100	88	238	40	9 520	VE5 VE5	Q	Feb-2003	VE5SF	106	119	12	237	49	11,613
MT	Ľ	Feb-1998	K7BG	79	105	89	273	43	11,739	VE6	Н	Feb-2000	VE6EX	228	439	,804	105	46	0 070
	Q H	Eeb-2000	K7BV	106	1/1	13	200	50	14 500	VE0 VE6	Q	Seb-1999	VEOEA	117	04	14	195	40	6,970
NV	Ľ	Feb-2000	KU7Y	88	116	0	204	45	9,180	VE7	Н	Feb-2000	VA7RR	151	128	37	316	48	15,168
OB	Q Н	Feb-1999 Feb-2003	N6TB	59 172	69 142	20 79	148 393	40 52	5,920 20 436	VE7 VE7	Q	Sep-2001	VE/QU	0/	5	21	113	3/	4,101
OR	Ľ	Feb-2003	K4XU	121	110	46	277	47	13,019		Н	Feb-2000	VY1JA	36	0	0	36	22	792
UT	Ч	Sep-1991	K6XO	128	93	42	263	44	11 572	VE8	Q								
ŬŤ	Ĺ	Sep-1995	AH3C	59	91 96	65	215	38	8,170	4U1 4U1	H	Feb-1985	4U1UN(W2T	O) 3	52	15	70	23	1,610
WA	н	Feb-2003	W7WA	133	113	54	300	49	14,700	4U1	Q								
WA	L	Feb-2003	K7RI	149	111	37	297	53	15,741	8P 8P	H	Sep-2002	8P9JG(N5K	C) 164	105	8	277	42	11,634
WA	Q	Feb-2002	K7RI	109	112	19	240	45	10,800	8P	Q								
WY	н	Sen-1999	(K7SS) K7KU	132	117	63	312	48	14 976	C6 C6	H L	Feb-1999	C6AKP	15	4	2	21	14	294
			(N2IC)	-7	140		007	47	10.000	C6	Q		007.1.4			-			201
WY	Q	Feb-2004 Feb-2003	WC7S	57 26	142 16	28 3	45	47 22	10,669 990	HH	H L	Sep-1996	HH2AW	48	61	30	139	33	4,587
MI	Н	Feb-2003	N8EA	197	124	100	331	52	17,212	ΗH	Q								
M	Q	Sep-2004 Sep-2004	WA8RE	1 32	33	o2 12	252 77	44 27	2,079	HI HI	H L	Feb-1991	HI8DMX	0	40	0	40	19	2,420
OH	Н	Feb-2003	K8MR	72	128	109	309	52	16,068	HI	Q								
OH	Q	Sep-2003	N8VW	43	86	93 50	179	40	7,518	HP HP	H L	Feb-2000	HP1AC	50	14	0	64	30	1,920
WV	Н	Feb-2002	N4ZR	69	100	117	286	48	13,728	HP	Q								,
Ŵ	Q	Sep-2003	K5IID	49	52 52	42	143	34	4,862	KP4 KP4	H L	Feb-2004	NP4Z	49	150	54	253	48	12,144
IL II	Н	Sep-2003	AG9A	130	162	73 59	365	52 48	18,980	KP4	Q	Feb-2004	K1ZZ/ KP4	1	18	3	22	14	308
	2	Cop 2000	(K9PG)	40			141	44	5 701	TG	н								
IL IN	Q H	Feb-1999 Sep-2003	N9RV	43 134	66 168	32 87	141 389	41 53	5,781 20.617	TG TG	L Q	Sep-2001	TG9/N5KO	150	0	0	150	42	6,300
IN	Ľ	Feb-2003	KJ9C	76	95	91	262	48	12,576	V4	H	Feb-1996	V4ØZ	0	21	33	54	23	1,242
IIN WI	Q Н	Feb-2000	K9AA	94	169	69	302	55	16 610	V4	L		(AA7VB)						
10/1		Tab 1000	(K9PG)	06	100	67	070	47	10,010	V4	Q								
VVI	L .	Feb-1999	(K9PG)	90	109	67	212	47	12,704	VP2E	Н	Feb-1996	VP2E/ KJ4HN	2	66	0	68	30	2,040
WI	Q L	Feb-2002	N9NE	69 154	66 151	21 94	156 280	40 52	6,240	VP2E	L								
00	L	Feb-2003	WØETT	122	86	15	223	46	10,258	VP9	Н	Feb-1985	W6OAT/VP9	9 43	93	66	202	31	6,262
	Q H	Sep-2005	NØSXX	30 126	72 136	8 89	110 331	34 ⊿3	3,740	VP9 VP9	L	Sep-2005	WA4PGM/VI	P9 77	59	17	153	36	5,508
		0ep-2000	(AG9A)	70	100	70	007	40	0.701	XE	H	Sep-1990	XE2XA	134	127	44	305	47	14,335
IA	Q	Sep-1998	KORX	70	84	73	221	43	9,761	XF		Sep-2003	(WN4KKN) XE1K (N6AI	N) 113	85	39	237	47	11 139
KS	н	Sep-1982	KØVBU	50	103	78 67	231	42	9,702	XE	Q	000 2000		() 110	00	00	207		11,100
KS KS	Q	Sep-2004	K3LR	95	94	67	256	41	10,496	ZF 7F	H	Sep-1992	ZF2KI (K1K	I) 154	90	7	251	49	12,299
MN	н	Feb-2003	KØSR	98	127	83	308	50	15,400	ZF	Q								
MN	Q	Sep-2003 Sep-2002	NOUR	62	44	51	288	47 32	3,552	9A	Н	Sep-2000	9A6XX	29	0	0	29	19	551
MO	Н	Sep-1996	K4VX	104	133	95	332	46	15,272	Ct DL	H H	Sep-1998 Sep-2004	CT1BOH DJ1YFK	122 0	76 6	27 0	225 6	40 6	9,000 36
MO	L	Feb-2002	KAØGG	, 1 74	83	45	202	41	8,282	EA8 F	H H	Feb-1994 Sep-1990	EA1AK/EA8 E/N6TB	15	21 78	0 18	36 196	21 38	756 7 448
MO	Q H	Sep-2004 Feb-2002	NJ4X WBØO	61 124	99 106	38 88	198 318	41 47	8,118	G	H	Feb-2002	G4BUO	45	84 121	31	160	40	6,400
ND	Ľ	Feb-1998	WØHSC	49	96	72	217	36	7,812	I I	Н	Sep-1998	IKØHBN	64	26	10	100	35	3,500
ND	Q		(KBØO)							JA KH6	H H	Feb-1991 Sep-1981	7J1AAI KH6NO	13 86	0 35	0	13 121	9 30	117 3,630
NE	н	Feb-1991	KVØI	82	62	60	204	34	6,936	LU	H H	Feb-2003 Sep-2000	LU1FAM	74 107	18 56	0	92 163	35 38	3,220
NE	Q	Sep-2005 Feb-2003	W8TM	42	116	0	116	41	9,389 4,756	Oh PV	Н	Sep-1998	OH1NOA	56	0	Ő	56	22	1,232
SD	Н	Feb-2003	WDØT	115	124	108	347	47	16,309	UA9	H	Feb-2000	RUØSN	20 15	0	0	29 15	13	195
SD SD	L Q	Sep-2002	K7RE	51	37	2	90	24	2,160	UN VK	H H	Sep-2000 Sep-1994	UP6F VK5GN (N6A	13 A) 48	0 0	0 0	13 48	10 22	130 1,056
VE1 VE1	H L	Feb-2004 Sep-2000	VO1AU VE9DX (K5NZ)	36 99	79 56	0 28	115 183	40 40	4,600 7,320	ZD8 ZS	H H	Sep-1990 Feb-2000	ZD8Z (N6TJ ZS1ESC (N6A) 116 AA) 51	93 0	19 0	228 51	43 18	9,804 918

2005 S	eptembe	er CW	Sp	rint	Sco	res (*	inc	dicates	s low power, '	* indica	ates QRF	')							
Call K1KI K1EA W1WEF K1DG K5ZD K1HT NB1B W1EBI WA1Z N4CW K1AR W1JQ KM3T	Name TOM KEN JACK DOUG KATRINA *DAVE DENNIS GEO *BOB BERT JOHN *MIKE **VINO	<i>QTH</i> CT MA CT MA MA MA MA NH NH CT V	20 121 80 102 95 92 67 60 41 48 46 6 33 0	40 91 131 113 102 75 104 53 56 52 46 45 28 0	80 93 82 70 78 51 52 56 31 8 27 6 9	QSO 305 293 285 275 225 222 165 153 131 100 78 67 9	Mt 47 44 42 42 42 40 40 93 43 33 25 8	Score 14335 12892 11970 11550 9450 8880 6600 5967 4454 3300 2574 1675 72	Team YCCC#1 YCCC#1 YCCC#1 YCCC#1 YCCC#1 YCCC#1 YCCC#1 YCCC#1 YCCC#1 YCCC#1	Call W6EU N6VR K6NR W6OAT K6LRN K2KW AJ6V N6PN N6ZFO W6RK N5KO K6OWL W1AW N6WG	Name JIM RAY DANA *RUSTY DICK KEN ED *MATT *BILL *RISTO TREY *MARK *DICK **50B	Q TH C C C C C C C C C C C C C C C C C C C	20 87 108 106 100 86 96 4 6 77 48 15 48 34	40 116 89 91 103 88 80 113 116 94 82 97 60 0 36	80 54 58 42 36 37 45 37 46 46 3 18 9	QSO 257 255 239 239 211 221 224 229 197 130 115 102 78 79	Mt 444545463140418853468	Score 11308 11220 10755 9706 9503 9184 9160 8077 4940 4025 3468 2808 2212	Team NCCC#1 SCCC#1 SCCC#1 NCCC#2 NCCC#2 NCCC#2 NCCC#1 NCCC#2 NCCC#3 NCCC#3
N2NT N2RM W2RQ K2UA N2GC K2SX N2ZN	ANDY JOHN BILL RUS MIKE DENNIS *KEN	N N N N N N N N N N	115 124 91 58 54 0 0	129 91 116 103 97 26 7	100 101 108 85 75 4 0	344 316 315 246 226 30 7	44 46 44 42 17 5	15136 14536 13860 10824 9492 510 35	PVRC/FRC#1 PVRC/FRC#1 PVRC/FRC#1 NCC YCCC#1 YCCC#2	N6XI N6EM NE6I KZ5OM KE6QR W6ZZZ	RICK *JACK *DENNIS JAY *GARY MARK	CA CA CA CA CA CA CA	58 24 47 30 0 6	0 23 0 3 1	0 9 0 0 18 0	58 56 47 30 21 7	30 20 21 17 11 3	1740 1120 987 510 231 21	NCCC#2 NCCC#3 SCCC#1 NCCC#3
AA3B K3WW K3CR N3AD K3MD K3STX	BUD CHAS ALEX ALAN *JOHN *PAUL	PA PA PA PA MD	93 99 104 64 58 48	137 116 106 95 62 60	77 80 76 61 53	307 295 286 235 181 161	46 44 43 37	14122 13570 12584 10340 7783 5957	PVRC/FRC#1 PVRC/FRC#1 NCC PVRC/FRC#1 PVRC/FRC#2 PVRC/FRC#2	N6TR K7NV KM7W K4XU K07X W7RN NN7ZZ N7VM	TREE KURT *DAN DICK AL TOM DON *BILI	or NV WA OR WY NV UT UT	131 95 95 83 75 55 53 60	147 114 123 106 120 87 93 71	91 63 56 76 83 56 55 54	369 272 274 265 278 198 201 185	47 48 46 45 39 46 39 37	17343 13056 12604 11925 10842 9108 7839 6845	NCCC#1 Corner Corner NCCC#2
N4AF W4PA K4RO K4BAI N4ZZ NA4K K7SV W4NZ W4NZ W4OC KU8E	AL SCOTT KIRK JOHN DON STEVE *LARRY TED *DON *JEFF	N N N N N N N N N N N N N N N N N N N	121 105 74 68 88 58 86 85 86 85 84 46	123 156 126 135 110 122 94 105 95 122	94 91 108 80 82 99 86 80 99 86 80 99 80 99 80 99 80 99 80 80 99 80 80 80 80 80 80 80 80 80 80 80 80 80	338 352 308 283 280 279 266 270 248 227	47 44 43 45 44 44 46 43 43 43 43 43	15886 15488 13244 12735 12320 12276 12236 11610 10664 9761	PVRC/FRC#1 SSC SSC PVRC/FRC#1 SSC SSC SSC SSC	K7BG N7WA KY7M KI7Y K7WA W7YS N7ZG W3CP KL7WV AL1G	*MATT *DINK LEE *JIM *JIM *BILL *GUY *JIM TIM KIM	MT WA AZ OR AZ WA AZ WA OR AK	12 58 66 36 49 35 28 18 28 0	114 69 48 56 35 38 36 25 0 0	38 52 0 38 29 14 26 10 0 0	164 179 114 130 113 87 90 53 28 0	39 35 35 29 30 34 27 30 6 0	6396 6265 3990 3770 3390 2958 2430 1219 168 0	Azenmokers Corner Azenmokers NCC Corner
W3YY AD4EB AA4GA W4AU N4DW K4MX N5VI K1TO K4IQJ N4GI	JIM *LEE JOHN DAVE *JERI *VAN *DAN *DICK *BLAKE	ATN GA VA TN VA GA LL AL LL	58 58 37 49 17 10 39 88 50 49	87 72 92 73 102 78 83 76 66 85	69 66 50 72 49 73 31 31 31 18	214 196 179 194 168 161 153 164 147 152	41 42 38 42 40 40 36 40 34	8774 8036 7518 7372 7056 6440 6120 5904 5880 5168	SSC PVRC/FRC#1	N4ZR N8EA W8KW W8WTS K8NZ K8BB N8SR K8MR	*PETE *JOE *TED *JIM *RON DON STEVE *JIM	WV MI OH OH MI OH	77 54 72 24 34 38 80 1	93 77 41 42 36 33 0 22	47 53 55 28 19 0 0	217 184 168 94 89 71 80 23	39 40 38 36 35 29 24 15	8463 7360 6384 3384 3115 2059 1920 345	PVRC/FRC#2
AA4LR NA4BW N4GG K4LW N4LF W4QO K1GU	BILL **BRIAN HAL *BOB LEX **JIM *NED	GA GA GA FL GA TN TY	45 15 0 2 19 0 0	60 28 30 48 33 49 0	24 20 25 6 1 0 51	129 63 55 56 53 49 51	35 28 27 24 25 24 23 49	4515 1764 1485 1344 1325 1176 1173	SSC	N9RV W9RE K9NW K9BGL KJ9C WT9U N9CK K9MMS WI9WI	PAT MIKE MIKE KARL *MEL JIM *STEVE *GARY JIM		106 88 81 64 41 52 57 43 79	147 142 116 109 97 100 111 115 91	91 93 112 93 98 105 75 49 56	344 323 309 266 236 257 243 207 226	44 43 44 46 48 42 41 42 38	15136 13889 13596 12236 11328 10794 9963 8694 8588	SMC#1 SMC#1 SMC#1 SMC#2 SMC#1 SMC#1 SMC#1 SMC#1
K5TR N2IC N3BB K5GA N6ZZ N5OT N4OGW	GEO STEVE JIM BILL PHIL MARK TOB	TX NM TX TX NM OK MS	126 122 116 109 108 96 100	149 150 139 152 147 147 140 125	94 89 65 76 62 97 87	339 370 350 333 332 317 333 312	+ 47 49 47 47 49 45 43	17390 17150 15651 15604 15533 14985 13416	Azenmokers Austin Azenmokers Azenmokers Austin	KA9FOX N9JF K8GU K9KM WW9R NA9U	*SCOTT *POGO *ETHAN *HOWIE *PAT *JOHN		50 42 25 20 3 0	121 87 95 68 22 0	21 62 59 42 15 0	192 191 179 130 40 0	43 42 43 34 19 0	8256 8022 7697 4420 760 0	SMC#2 SMC#2 SMC#2 SMC#2
KSKA KSYAA KSYAA KSOT KZ5D AA5B K5WA K5XR AC5AA KG5U KØCIE NØQT WØZW W1DY	KEN JERRY LARRY ART *BRUCE BOB JOE *DUANE **DALE **DALE **DALE **JAN *WAYNE *WENDY	SKKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	85 79 90 71 82 97 81 57 70 16 13 10 4	116 130 123 104 106 106 79 76 60 55 22 4 0	91 83 79 60 56 33 91 26 3 0 3 0 3 0	292 292 292 235 244 236 199 164 156 74 35 17 4	12 44 43 43 41 42 43 39 39 31 13 10 4	12848 12848 12556 10105 10004 9912 8557 6396 6084 2294 455 170 16	Azenmokers Azenmokers Austin Austin Austin Austin Austin Azenmokers Azenmokers Azenmokers	KØOU KØAD WW2Y NØAT WØETT NAØN KMØO KTØR KØX NØSXX WGØM KØUK KEØL N2ZO	STEVE AL *PETER *RON *KEN *TAT *TONY DAVE *ART **GARY *MIKE *BILL *JIM *VAL_	MO MN NE NO MN MN O MN MN O O MO MO MO MO MO MO MO MO MN MN MN MN MN MN MN MN MN MN MN MN MN	58 73 42 55 60 49 77 45 48 30 12 13 4 42 1	139 100 120 106 86 110 97 83 90 72 38 32 35 21	75 51 67 54 51 49 32 60 21 8 14 17 16 0	272 224 229 215 197 208 186 174 159 110 73 62 55 43	42 42 41 43 93 93 75 95 75 75 75 75 75 75 75 75 75 75 75 75 75	11424 9408 9389 8815 8471 8112 7254 6438 5565 3740 1533 1426 1265 946	SMC#1 MWA PVRC/FRC#2 MWA MWA MWA SCCC#1 MWA MWA CCO#1
W6YI N6RO N2NL W6YX K6NA N6AN K6LA K6XX N6TV W4EF	JIM KEN DAVE MIKE GLEN REX KEN BOB BOB MIKE	CA CA CA CA CA CA CA CA CA CA	116 108 123 124 98 98 118 106 99 108	147 135 137 116 148 115 127 129 143 118	94 75 77 66 73 83 67 76 77 76 77	357 318 337 306 319 296 312 312 312 318 303	47 48 45 48 49 46 45 46 45 46	16779 15264 15165 14688 14674 14504 14352 14352 14352 14310 13938	SCCC#1 NCCC#1 NCCC#1 SCCC#1 SCCC#1 SCCC#1 NCCC#1 NCCC#1 SCCC#1 SCCC#1	K4IU WØQQS VE3EJ VE3DZ VE3DZ VE3JM VA3NR VE3RZ VE3RZ VE3RCN VA3RKM	*FRED *BRUCE JOHN *YURI VLAD CHRIS *TONY *RICH *KEVIN **BOB	MN MN VE3 VE3 VE3 VE3 VE3 VE3 VE3 VE3	14 25 69 60 67 45 23 18 3 1	18 0 96 88 80 84 46 48 7 0	10 0 80 81 60 50 35 36 9 0	42 25 245 229 207 179 104 102 19 1	19 7 43 46 41 38 35 30 10 1	798 175 10535 10534 8487 6802 3640 3060 190	NCC CCO#1 CCO#1 CCO#1 CCO#1 CCO#1 CCO#1
AE6Y W6EEN W6RGG	ANDY DOUG BOB	CA CA CA	110 93 63	115 157 116	52 0 64	277 250 243	47 47 47	13019 11750 11421	NCCC#1 SCCC#1 NCCC#1	NP4Z VP9/WA4	*PHIL PGM	KP4 *KYLE	96 77	115 59	26 17	237 153	44 36	10428 5508	SMC#1 PVRC/FRC#1

September 2005 Phone Sprint Results

The September SSB Sprint had 104 logs submitted, which is about normal for September. K8MJZ operated at WP2Z to provide the first official entry from KP2. The following "rare for Sprint" multipliers were logged by one or more contestants: Kentucky, Nebraska, Utah, Wyoming, VE1, VE4, VE6, KP2, VP9, and XE.

QRP

Kyle, WA4PGM, picked up his second QRP win by an easy margin. The remaining QRP Top Ten, in order, were KC5R, K6UFO, and VA3RKM. There was some confusion about power levels by several entrants. QRP means 5 W or less.

Low Power

Jon, KL2A, operating at K7ZSD in Oregon, won his first low power SSB Sprint. Scott, KA9FOX, finished second and

Top 10 G	SOS	Top 10 QI	RP
K7RI KW8N K9PG W7WA W6YX K6I A	351 329 316 302 298 296	WA4PGM KC5R K6UFO VA3RKM	4699 3200 372 35
N6ED N6RO	289 287	Top 10 Go (20 or mo	olden re QSOs)
W6NL	274 265	NTØF K5ZD	131 122
Top 10 M	lults	W5KI WA4JA	51 49
K7RI KW8N N6RO KA9FOX W7WA	57 47 47 47 46 46	W6ZZZ K6UFO KG9N AL1G	44 31 29 22
N6ED K7ZSD	45 45	Top 10 Ba Changes	and
N4PN K9PG W6NL N4ZZ K4BAI N5ZK K5NZ	45 44 44 44 44 44 44 44	KW8N K9PG N4ZZ N6RO K7ZSD K6LA KT0R KØUK	91 69 64 60 50 49 38 35
Top 10 Low Pov	ver	ACØW NA4BW WE9V	32 32 32
K7ZSD KA9FOX N4PN KØUK K5NZ NA4K KE5OG KU8E WØETT ACØW	11475 11139 10710 9660 8800 8190 8096 8077 7600 7600		

TOP 10								
K7RI (K7SS) KW8N K9PG W7WA K6LA N6RO N6ED W6YX W6NL N477	Scores 20007 15463 13904 13892 13616 13489 13005 12814 11660 11572	Band Changes 2 91 69 6 49 60 2 4 16 64	QSOs Lost 5 3 4 9 4 13 3 4 2 3	00Z 99 100 91 87 86 75 93 77 73 70	01Z 77 73 80 68 77 76 74 69 66 60	02Z 100 67 65 85 67 73 62 78 61 58	03Z 89 80 63 66 63 61 74 65 75	
	11072		0	10			10	
Team Score	s							
NCCC #1		Li	ds from N	ine			SCCC #1	
N6RO	13489	&	Zero Land	d			K6LA	13616
W6YX	12814	K	9PG	13904			N6ED	13005
W6NL	11660	K	A9FOX	11139			K6EY	4371
K7ZSD	11475	K		10793				
K6XX	9912	r. v		9430				30992
KJ6RA W7RN N6NZ K6III	7708 7216 6747 1584	Ad KI W	CØW EØL IGØM	7600 4795 3737 3135			More Lids & Zero La N2BJ	from Nine nd 9348
	82605	K	9JS	2816			WW9R WE9V	5832 5254
				75631				20434
5. NCCC #2 6. A Shakes W4UAF, K 7. NCCC #3	(W6OAT, V pearean Tra G4IUM, KE	V6FB, N6RC agedy (N3C 33MME)	E, K6OW A, KC2NM	'L, W6ZZ 1Z, AE6N	Z, K6U IY,	FO)		13939 11173 9683

Among the Maddening Crowd

By Danny, K7SS, (op at K7RI)

Conditions seemed okay while tuning through 20 meters just before the sprint started, but there were lots of big holes in between loud W9/W8 stations from 14.225 up to 14.275 MHz. The rest of the band was pretty quiet. Taken together, it was an ominous sign.

Of course, when 0000 came around, all hell broke loose and there was nowhere to go. In fact, it was so crowded I had to find semi-empty space by flipping between 14.220 and 14.290. If anyone calling was under an S5, they were swamped anywhere in the middle of the band. A missed call in the noise is a real clock eater, so I stayed on the edges for most of the first hour.

After 0100 it seemed that the band was being abandoned by many of the loud guys and there was actual room to hear low-level signals. The second hour was my slowest, and I would guess for many, it's one of their best. I tried to avoid 40 meters for as long as possible and stay on 20 because the band sometimes stretches out the Caribbean multiplier heaven. Not this time, though. It did, however, clear out well enough to allow for many casual ops to make it into the log.

I heard lots of 1s, 2s and 3s, all the casual ops who were just hanging out on 20 during their evening on the east coast. That's best chance for me to bag mults from Northeast on 20. Once you get to 40 it's a dogfight all over again and QRM makes it very tough to hear the 100-W dipole stations.

Because of the broadcast signals, 40 meters is always a challenge. The few available frequencies are instantly up for grabs. After every QSO there is one winner, and lots of missed QSO opportunities for the rest.

I stayed off 80 meters until the last half hour, hoping to compress what action was there into a tight time segment with good rate. There is nothing worse than working 80 with close-in loud and no where else to go. By that time 20 is dead and 40 is too long. Luckily, it worked and in the last half hour my first "CQ VE7" actually brought home the (Canadian) bacon....with a new mult.

made it close by racking up 2 more multipliers than KL2A despite having a lower QSO total. Also topping the 10K mark in third was Paul, N4PN. Rounding out the Top Ten were KØUK, K5NZ, NA4K, KE5OG, KU8E, WØETT and ACØW.

High Power

Danny, K7SS, traveled to K7RI again to operate and notched his 7th SSB Sprint win. This win was an easy one since Danny had 32 QSOs and 10 multipliers more than his nearest competitors. See the sidebar for some comments from Danny about this Sprint.

This win ties Danny with K6LL and VA7RR for most high power SSB Sprint wins. It would be great to have K6LL, VA7RR, and K7SS on in February to see

if one of them can become the undisputed champion of SSB Sprint. Of course, they will all have to get past Mr February Sprint of late, K9PG. SSB Sprint trivia: K6LL and VA7RR once tied for first with identical scores.

Finishing in second is no stranger to high finishes in the SSB Sprint: KW8N. Bob did his normal great job from Ohio racking up the second most QSOs and tying for second most multipliers.

Rounding out the Top Ten were K9PG, W7WA, K6LA, N6RO, N6ED, W6YX (N6DE), W6NL, and N4ZZ. It was Dave's, W6NL, first time in the Top Ten.

Golden Logs

The Top Ten Golden Logs were NT0F, K5ZD, WI9WI, W5KI, WA4JA, W6ZZZ, K6UFO, KG9N, and AL1G. Congratulations to all on the accuracy! If you want a copy of your log checking report, please send an e-mail to **ssbsprint@ncjweb.com**.

Records

In QRP, WA4PGM set a new Virginia mark and VA3RKM established a mark for Ontario. New low power area records are KK1KW in New Hampshire, N4PN in Georgia, K7ZSD (KL2A) in Oregon, and KA9FOX in Wisconsin. WP2Z (K8MJZ) established an initial record for the US Virgin Islands. There were no new high power records. You can view the SSB Sprint records at www.ncjweb.com/ ssbsprintrecords.php.

Scores

* denotes Low Power **denotes QRP

W6FRH BOB CA 0 26 29 55 WA2RY *RON NJ 32 51 28 111 34 3774 W6ZZZ BERT CA 16 9 3 28 KC2NMZ PAUL NJ 29 61 25 115 31 3565 Shakespeare K6UFO **MORK CA 14 9 8 31 W2EQ *TOM NJ 36 46 26 108 30 3240	5 21 1155 NCCC#3 8 18 504 1 12 372 NCCC#2 1 57 20007 2 46 13892 5 45 11475 NCCC#1 4 38 10412	
	1 57 20007 2 46 13892 5 45 11475 NCCC #1 4 38 10412	
KD2HE VIC NY 14 17 11 42 24 1008 K7RI DAN WA 218 88 45 351 W5KI STEVE NJ 23 28 0 51 18 918 W7WA DAN WA 218 88 45 351 K2RET *BOB NJ 25 0 22 14 350 K7ZSD *BRAD OR 120 98 37 255 W2ARP *BOB NJ 8 0 8 6 48 W0MU MIKE MT 126 76 72 274	0 44 0450	
KO/X ALAN WY 94 61 44 199 N8NA *KARL DE 44 51 51 146 41 5986 W7RN TOM NV 93 66 27 176 AJ3M MASA MD 68 51 31 150 37 5550 KI7Y *JIM OR 66 39 0 105 N3CA *ROMEO MD 46 73 32 151 35 5285 Shakespeare K7RAT BERT OR 10 31 57 98 NF3R< *ANDREW	9 41 8159 6 41 7216 NCCC#1 5 33 3465 8 33 3234 0 23 1840 2 9 198	
N4ZZ DON TN 89 100 74 263 44 11572 KW8N BOB OH 118 139 72 329 N4PN *PAUL GA 102 103 33 238 45 10710 K8BB DON MI 49 102 69 220	9 47 15463 0 39 8580	
KVBAI JOHN GA 90 90 20 217 44 9546 NX9T JEFF NC 81 92 55 228 38 8664 K9PG PAUL IL 97 145 74 316 NA4K *STEVE TN 57 77 61 195 42 8190 KA9FOX *SCOTT WI 63 116 58 237 KU8E *JEFF GA 59 85 53 197 41 8077 N2BJ BARRY IL 67 110 51 228 AD4EP IM TN 50 62 021 40 9040 110 51 228	6 44 13904 9&0 Lids 7 47 11139 9&0 Lids 8 41 9348 More 9&0	Lids
AD4ED JIMI IN 59 80 62 201 40 8040 NA4BW BRIAN GA 56 77 55 188 39 7332 K9BGL KARL IL 55 98 62 215 KA1ARB ROB NC 65 58 37 160 36 5760 WT9U JIM IN 63 96 43 202 WA4PGM **KYLE VA 47 43 37 127 37 4699 WW9R *PAT WI 25 87 50 162	5 40 8600 2 41 8282 9&0 Lids 2 36 5832 More 9&0	Lids
N4GG HAL GA 46 72 10 130 34 4420 N4GI BLAKE FL 68 66 0 134 32 4288 WE9V CHAD WI 53 89 0 142 WA4.JA *JOHN TN 11 14 24 49 23 1127	2 37 5254 More 9&0	Lids
W4UAF *ROMEO VA 23 16 0 39 16 624 Shakespeare WI9WI JIM WI 35 45 21 101 KG4IUM *JULIET GA 0 10 10 20 16 320 Shakespeare K9JS *JON IL 37 51 0 88 K4BP *JEFF TN 16 0 0 16 9 144 NA9U *JOHN IN 7 42 0 49 K4TCM *TOM VA 14 2 0 16 9 144 KG9N *CHUCK IL 18 11 0 29	1 37 3737 9&0 Lids 8 32 2816 9&0 Lids 9 24 1176 9 20 580	
K5PTC BOB TX 94 96 58 248 43 10664 KØOU STEVE MO 72 123 56 251 N5ZK JOE TX 123 80 0 203 44 8932 KØUK *BILL CO 78 97 55 230 K5NZ *MIKE TX 84 97 19 200 44 8800 KTØR DAVE MN 63 106 61 230 KE5OG *BILL TX 83 69 32 184 44 8096 WØBH BOB KS 80 94 61 235 KEAM MAEU NA 65 67 92 14 67 670	1 43 10793 9&0 Lids 0 42 9660 0 41 9430 9&0 Lids 5 39 9165	
NOAM IMARK INVI 56 33 25 134 35 4690 W0E11 *KEN CO 92 90 18 200 W2MN *TOM TX 56 31 15 102 37 3774 ACØW *BILL MN 55 101 44 200 KC5R **AL LA 43 35 22 100 32 3200 KEØL *JIM MN 50 54 33 137 NT76 *TON IA 43 35 22 100 32 3200 KEØL *JIM MN 50 54 33 137	38 7600 0 38 7600 9&0 Lids 7 35 4795 9&0 Lids 1 32 4293	
K6LA KEN CA 142 110 44 296 46 13616 SCCC #1 WW2Y *PETER NE 48 33 33 114 N6RO KEN CA 120 108 59 287 47 13489 NCCC #1 WG0M *MIKE MN 52 43 0 95 N6ED ED CA 120 117 52 289 45 13005 SCCC #1 K4IU *FRED MN 4 30 32 66 W6YX BILL CA 131 120 47 284 A NCCC #1 K4IU *FRED MN 4 30 32 66	4 33 3762 5 33 3135 9&0 Lids 6 23 1518	
WGNL DAVE CA 116 96 53 265 44 11660 NCCC #1 VA3NR CHRIS VE3 63 80 37 180 K6XX BOB CA 131 68 37 236 42 9912 NCCC #1 VE3RCN *KEVIN VE3 28 18 0 46 N6ZFO BILL CA 95 81 32 208 41 8528 NCCC #3 VE3VMP *MIKE VE3 0 6 36 KJ6RA RICH CA 97 56 35 188 41 7708 NCCC #1 VA3RKM *BOB VE3 0 6 36 KJ6RA RICH CA 77 59 37 173 39 6747 NCCC #1 VE4VID *TEDD VE4 0 4 0 4) 38 6840 6 26 1196 6 19 684 7 5 35 4 3 12	
WODAL HUSTT CA 34 42 35 131 37 4847 NUCC#2 K6EY *BECKY CA 59 52 30 141 31 4371 SCCC#1 WP2Z *STAN KP2 63 0 0 63 ND6S *RAY CA 71 36 17 124 33 4092	3 28 1764	
W6FB *JACK CA 34 52 23 109 31 3379 NCCC #2 Check Log: HC8N		_

Serious Products for Serious Hams

SCAF-1 Audio Filter

Make your receiver listener friendly! Variable cut-off audio low-pass filter, 96 db rolloff per octave! Cut-off range frequency 450 Hertz to 3.5 kHz. Absolutely real time, NO delay perfect for QRQ CW and no monitor problems. Use for CW, Digital modes, and SSB, with headphones or speakers. Super-simple operation, yet wonderfully effective. Sample audio files on our web site. Available as a kit or preassembled.

Keyers: Logikey K3, Super CMOS-3, CMOS-4

Our keyers simply are the best keyers available — Period. More user friendly by far, more features. Extremely powerful memory functions, yet easy to learn. Extended paddle input timing reduces errors and increases your speed. Can emulate many earlier designs for timing feel, but with full feature set. Use with both positive and negative keyed rigs. Built-in monitor included. Full beacon capability.

For full details see our web site. Forget that built-in keyer in your transceiver. You deserve far better. We have one waiting for you.

Antenna Rotor Enhancements:

TailTwister & Ham-M

Do you own one of these fine rotors? Bring it into the 21st Century! Rotor-EZ adds a unique "Auto-Point" capability plus brake delay, endpoint protection, optional complete computercontrol capability for logging and contesting programs, and more!

See our web site for full details of this "must have" enhancement.

Yaesu DXA and SDX series rotors add affordable plug-in computer-control capability for far less. See our web site for full details!

www.idiompress.com P.O. Box 1985 Grants Pass, OR 97528

Teams

The team winner was North California Contest Club #1. Second was Lids from Nine & Zero Land. Third was Southern California Contest Club #1 while fourth was More Lids from Nine & Zero Land. Fifth, sixth, and seventh were NCCC #2, A Shakespearean Tragedy, and NCCC #3.

February Reminder

The February 2006 Phone Sprint will be held at 0000Z on February 5 (February 4 local time). Get on and join us in the fun!

Soapbox

Nice to work familiar calls.—AJ3M. Conditions to Europe were so bad that 40M had lots of clear frequencies. This band (40M) will be great when we get it exclusively.—K5ZD.

Another character building exercise— QRP with low wires (I'll say—more like some final, rite of passage test for Contesting Monks–*Ed*)—K6UFO.

Wow! Great fun coupled with great

luck.—K7RI (K7SS).

Only antenna was an Alpha-Delta DXCC dipole at 30 feet. I was blown away by how well it worked (So am I—*Ed*).— KA9FOX.

My first contest.-KB3MME.

With new operating position in disarray, I had to clip lead some cables together to get the mic wired to the rig.—N8NA.

Out of synch and out of time.—W6ZZZ. Just checking out the equipment when I noticed the contest. Thought I would give out the VI multiplier.—WP2Z (K8MJZ).

Guest Ops

NF3R (K3ASK) W7RN (K5RC) K5PTC (N1LN) KB3MME (at WB3JHG) W4UAF (KG4USK) W6YX (N6DE) K7ZSD (KL2A) N5ZK (W5ASP) K7RI (K7SS) WP2Z (K8MJZ) K7RAT (N6TR)

NCJ

NA is a contest program that is easy-to-use, has templates for most contests, will allow you to design your own templates and can be used as a general logging program. Operation is simple and most active contesters can sit down and use it right away. Runs on almost all computers from 8088 to stateof-the-art Pentiums. You get an illustrated manual and one year of free upgrades with your purchase. NA is fimly committed to the future of contesting and ensuring that the program is kept up-to-date and fun to use.

NA Contest Logging Software v 10.x \$60 US Shipping \$5.95 Overseas \$9.95 NA Website: www.datomonline.com

http://www.radio-ware.com

e-mail @ radware@radio-ware.com Radioware & Radio Bookstore PO Box 209

Rindge, NH 03461-0209

March 2005 NA RTTY Sprint Results

The March 2005 running of the NA RTTY Sprint is history and the results revealed some outstanding efforts. Before getting to the results, however, "ye editor" would like to pass along some observations.

First, and on a positive note, with each successive running of this Sprint fewer logs are encountered that take more than limited "editing" to be readable by the log checking software. Thanks are in order for both the participants and the authors of the various contest programs that support this contest. Second, while the 61 logs that were submitted reflect a good turn-out for this event, ye editor does not believe that the threshold has been reached to eliminate the unique feature of being able to work the same station more than once. While some may disagree, it appears this feature is still necessary to maintain interest for the entire Sprint. Comments on this issue are welcome.

Now for the results...

High Power

Congratulations are in order for a big score submitted by Charlie, KI5XP, who edged out Ty, K3MM. In turn, Ty led Dave, K6LL, by a small margin. The significance of the scores of these great operators was that they happened to be on the same team (SWACC). As noted later in this write-up, the combined scores of these gentlemen, along with their other team members, blew away the competition.

Low Power

Of interest, the number of low power logs that were submitted numbered slightly double the number of high power logs. Nevertheless, the top low power scores did not lag that far behind very many of their high power counterparts.

Bob, KI6DY, made a fine showing and took top honors in the low power category with a score of 8,510. A quick check showed that he would have placed a respectable sixth in the high power category. Great effort Bob! Taking second and third place, respectively, in this category were Ron, NØAT, and Jim, KØHW.

QRP

Despite the claim in his soapbox comments about how slow he started out, Mark, K6UFO, operating at W6YX, ended with a bang. His score of 4,488 in the "peanut whistle" category deserves special recognition. This would not only be for his fantastic score, but also for his patience. Way to go, Mark!

Operation From Outside North America

Special thanks go to KH6GMP and JA1XRH for their contributions to this event. Gary, KH6GMP, made a FB effort, with a final score of 3,150. Thank you to both gentlemen for their participation.

Team Competition

Six teams registered and participated in this contest. As noted above, SWACC easily ran away with the "trophy" in this category with a combined score of 73,174. Truly a fantastic finish!

Congratulations to all of the participants and thanks for getting on during this contest. Hope to see you in the next one!

High Power					
Call sign KI5XP K3MM K6LL K5AM W7WW	<i>Score</i> 11,581 11,200 10,640 10,027 9,468	Call sign KJ7NO WI8W K9WX VE7FO W7TMT	Score 6,688 6,623 5,610 5,304 4,960	<i>Call sign</i> N8PUG VE3RCN N4LF K9JS WA4OSD	Score 1,166 1,100 1,056 1,012 987
K4GMH AD4EB WØETC N2BJ K9DJ	8,547 8,474 6,984 5,320 4,896	W6FFH K9SEX (K5NZ op) NY1S W9WI N9I F	4,860 4,725 4,512 4,384 4 305	AI4JW WAØWHT W1DY WA2UET	833 760 595 330
K6OWL N1KWF KE6RAD VE6YR KJ6RA	3,720 3,410 3,390 3,069 2,996	VA7ST K3SV WB6TQG NY4N	4,060 4,020 3,937 3,680	Call sign W6YX (K6UFO op) WA6BOB	<i>Score</i> 4,488 315
W6ZZZ AB9H W4ZE AA5AU	2,204 1,100 1,100 476	AD4AX K9TR W4OX VE3ESH N6EE	3,584 3,528 3,520 3,444 2,604 2,276	Call sign KH6GMP JA1XRH Teams	Score 3,150 4
Low Power		NUXU	2,370	<i>Team</i> SWACC	<i>Score</i> 73.174
<i>Call sign</i> KI6DY NØAT KØHW KE5OG K2PS	<i>Score</i> 8,510 7,616 7,524 7,252 7,182	W4BCG VA3PL N1WI XE1NK K5ZD	2,236 1,846 1,664 1,500 1.325	TCG Volunteers NCCC #1 SMC BRAARC CCO Icebergs	32,948 17,345 16,247 7,789 6,390

July 2005 NAQP RTTY Results

I doubt very seriously if anyone of us could have imagined, in July, what would take place on the Gulf Coast in September. The devastation the people living there experienced certainly puts contesting in a very different perspective! Knowing the intensity and competitive nature of some of our Gulf Coast contesting friends, I have no doubt that not only will they survive this devastation, but they'll return bigger and better than ever.

Poor propagation? You bet! As noted in the soapbox, many mentioned the less than favorable band conditions. Single Operator logs (234) were down, while M/2 (10) were up from February. Regardless of the conditions, this may have been the closest finish in NAQP history? Just to confirm that multipliers are very important, AA5AU (86,335) finished with two less contacts than KI5XP (86,086), but Don's multiplier total was one more than Charlie's, giving AA5AU another NAQP RTTY victory. Only 249 points separated these two Louisiana neighbors. K5AM posted another nice score from New Mexico, finishing third. WK6I (CA), K5CM (OK), WX4TM (AL), W1ZT (MA), K9MUG (AL), KI6DY (KS) and AD4EB (TN) round out the top ten for North American stations. YV6BTF posted another first place finish among 22 DX entries.

W6YX (ND2T, W6ZZZ, N7MH, N2YM, N6DE, K6OWL, K6UFO) continue to dominate the multi-operator category, easily out distancing their California neighbors, NN6NN (N6EE, N6TQS, AK6DV, W6KX), 105,570 to 81,760. K9SEX (K5NZ, KU5B), W1SLF (KB1JZU, KT1I, N1MGO) operating from Sugarloaf Mountain, in Vermont, W4GAC (AI4IE, WA4EEZ, KU4BT, KR4U, N4RI, KP2N), W2YC, VE7OGS (VA7RY, VE7KNK, VE7MVF) and IK1PMR (K2LEO, IK1PMR) round out the multioperator category. Surely one or more contest superstations can put together a multi-operator group to give the West Coast some competition?

SWACC #1, (AA5AU, KI5XP, K5AM, KI6DY, K7WM) with a score of 312,777 easily outdistanced the "radio challenged" SO1R (WX4TM, W1ZT, K9MUG, K4GMH, K4WW) team score of 268,787. TCG Blues (AD4EB, WØETC, N4ZZ, KE4KWE, KI8U), one of five TCG entries, finished third.

DX stations are reminded that only contacts with North American stations will count for points! Several stations were classified as check logs, for varying reasons. Please pay attention to the Cabrillo header when submitting your log. There is no "high power" category in NAQP.

Thanks to Bruce, WA7BNM for the log

Call	Score	QSOs/Mults	80	40	20	15	10	Team
AA5AU 8	36,335	557/155	81/36	215/52	225/48	36/19	0/0	SWACC #1
KI5XP 8	36,086	559/154	73/34	190/52	265/53	30/14	1/1	SWACC #1
K5AM 7	71,820	540/133	58/30	177/44	296/53	9/6	0/0	SWACC #1
WK6I 6	68,256	474/144	55/18	143/50	220/49	55/26	1/1	NCCC Team 1
K5CM 6	63,574	478/133	57/30	192/50	209/45	20/8	0/0	
WX4TM 6	51,920	480/129	90/39	153/41	208/39	29/10	0/0	SO1R
W1ZT 5	59,250	474/125	56/29	149/43	257/44	12/9	0/0	SO1R
K9MUG 5	55,083	427/129	103/39	135/43	181/43	8/4	0/0	SO1R
KI6DY 5	54,932	443/124	85/35	171/43	175/39	12/7	0/0	SWACC #1
AD4EB 5	54,864	432/127	101/38	158/47	150/34	23/8	0/0	TCG Blues

Team Scores

Team	Score
SWACC #1 (AA5AU, KI5XP, K5AM, KI6DY, K7WM)	312,777
SO1R (WX4TM, W1ZT, K9MUG, K4GMH, K4WW)	268,787
TCG Blues (AD4EB, WØETC, N4ZZ, KE4KWE, KI8U)	191,113
SWACC #2 (AE5AA, W7ZR, AD6WL, N7UVH, WBØDUL, KE5OG)	173,336
TCG Jazz(W9HLY,W4LC,VA7ST,WA4OSD,W4BCG)	128,673
NCCC Team 1 (WK6I, N6RCE, KE6RAD, KJ6RA, KO6LU)	113,896
YCCC Plus (W8BAR, NB1B, WA8SDA, K5ZD)	113,226
TCG Country (KØIDT, NY4N, WB4YDL, K4HMB, N8PUG)	84,906
SMC #1 (W9SE, KE9I, N9LF)	76,257
Acadiana RTTY Cajuns (NA5Q, K5UA, N5RLM)	73,594
COCOSOLO SIBICHI CLUB (NC2N, K2PAL, N2TA)	60,485
Misfits (WO4D, KC4HW, W4EIP)	52,045
TCG Folk (NP4BM, K5ZM, KS0M, N1WI, KA7KUZ)	51,194
NCCC Team 2 (K6DGW, W6RK, WB6TQG)	49,136
RTTY RATS (KE7AJ, KH6GMP)	48,808
CTRI Contest Group North (KO1H, W1HY, WL7Z/1)	40,837
CTRI Contest Group South (AJ1M)	27,225
TCG Rock (K3UK/2, KE4OAR, W4TDB, DJ6JH)	5329

checking. Bruce will also be making online certificates available to the qualifying winners. Making these certificates available online will save several man-hours spent printing and mailing, as well as the cost to our sponsor, ICOM America. As y'all may or may not be aware, ICOM America, through their general sales manager, Ray Novak, has been the sole sponsor of the NAQP RTTY award program since 1991. Please accept my appreciation for the expressions of gratitude to Ray, and ICOM!

Soapbox:

AA5AU: Tough conditions!

ABØLR: Had fun!

AC7KY: My first RTTY contest. Had a blast. AD0EB: Sure like the 10hr and low power format.

IK1PMR: Working 100+ NA stations (low power of course) in NAQP RTTY from EU is really challenging with current propagation conditions.

K4GMH: Good activity considering vacations and not the best band conditions.

K5ZM: First RTTY test. First RTTY anything, actually.

K9MUG: Recent hurricanes limited the antenna preparations.

K9SEX: Well, that was brutal!

KI5XP: Finally learned how to ask people to change bands.

KIGDY: I swear the older I get the stupider I get, or so it seems.

KK5OQ: Conditions did not seem as good as Feb.

KO1H: Fun test. Rough propagation.

KSØM: Great fun. Ready for the next one.

N7MQ: Poor conditions on West Coast, but lots of fun

NA5Q: I love these 10 hour contests. Easy on the body!

NB1B: 10M was almost nonexistent.

NN6NN: With 10M and 15M all but useless, our 2nd radio didn't contribute much for several hours.

VA7ST: High band conditions were lousy here.

WØETC: I sure hope this was the low end of the sun spot cycle!

W1SLF: Too bad about the propagation, but we had a ball.

W1ZT: There were 15% non-North American stations in my log.

W6YX: The level of RTTY operating skill out there is great.

WX4TM: This is really a short, fun contest. ZL3TE: Nice way to spend a Winter Sunday afternoon.

Single Op

Call W1ZT W8BAR NB1B NY1S	<i>Score</i> 59,250 49,140 45,076 38,586	QSOs / 474 390 382 354	<i>Mults</i> 125 126 118 109	<i>State</i> MA MA MA ME	<i>Team</i> SO1R YCCC Plus YCCC Plus	<i>Call</i> KI5XP K5AM K5CM NA5Q	<i>Score</i> 86,086 71,820 63,574 48,750	QSOs N 559 540 478 390	<i>lults</i> 154 133 133 125	State LA NM OK LA	<i>Team</i> SWACC #1 SWACC #1 Acadiana RTTY Cajuns
K1DAN K01H* W1HY KB1HDO K5ZD WL7Z/1 N1UZ N1WAT W1AW	23,688 21,620 13,475 11,286 6930 5742 3572 2976	252 235 175 171 110 99 76 93	94 92 77 66 63 58 47 32	NH RI MA MA RI MA MA	CTRI CONTEST GROUP NORTH CTRI CONTEST GROUP NORTH YCCC Plus CTRI CONTEST GROUP NORTH	AE5AA (N5ZM) KU5S K5UA KE5OG N5RLM KS5V W5MCK KK5CA	45,824 35,280 14,861 10,212 9983 8607 6732 5610	358 294 193 148 149 151 102 102	128 120 77 69 67 57 66 55	AR TX LA TX LA TX TX TX	SWACC #2 Acadiana RTTY Cajuns SWACC #2 Acadiana RTTY Cajuns
(WB8IMY) N4CW/1 W1LZ NC2N	2030 1281 570	70 61 30	29 21 19	CT ME NH		KØCIE K5WW K5WAL KA5EYH KE5LQ	5252 5152 4982 3420 2700	101 112 94 76 75	52 46 53 45 36	OK TX TX TX TX TX	
(EW1AR) W2RTY	39,480	376	105	NY	COCOSOLO SIBICHI CLUB	W1DY K5WWT *	2607 960	79 40	33 24	OK TX	
(W1TY) NT2A K2PAL KA2D KF2XF	30,396 28,100 20,485 12,546 6672	298 281 241 153 139	102 100 85 82 48	NY NY NY NY NY	COCOSOLO SIBICHI CLUB	AC5ZG AD5BY W5TB WB5EXI WK6I	910 551 49 16	35 29 7 4 474	26 19 7 4 144	TX TX TX TX CA	NCCC Team 1
K3UK/2	2457	98 63	52 39	NY	TCG Rock	N6OJ AD6WL	43,920 41.685	366 397	120 105	CA CA	SWACC #2
(KC2FVN) AB0OX	520 56	26 8	20 7	NY NJ	COCOSOLO SIBICHI CLUB	K6HGF W6OAT	36,708 23,140	322 260	114 89	CA CA	
W3WKR W4ZE W33AAN W3KB N3XLS K3WW N3NZ W3DQN AJ3M AB3AI N3NR W3ADX	23,760 19,008 18,990 9360 7749 5088 4830 3504 2490 1590 522 450	264 216 211 144 123 106 105 73 83 53 29 30	90 88 90 65 63 48 46 48 30 30 18 15	PA P		K6DGW W6RK WB6TQG KE6RAD KH6GMP KJ6RA W6OQI K6XJ K6RFA WB6JJJ K06LU WA6BOB K6BIP	18,662 16,646 16,380 14,094 14,040 11,872 10,404 7874 7085 6384 6195 4550 3888 2002	217 203 195 174 180 212 153 127 109 112 105 91 81	86 82 84 81 78 66 82 65 57 95 84 44	CA CA CA CA CA CA CA CA CA CA CA CA CA C	NCCC Team 2 NCCC Team 1 NCCC Team 2 NCCC Team 2 NCCC Team 1 RTTY RATS NCCC Team 1
WX4TM K9MUG AD4EB K4GMH K4WW	61,920 55,083 54,864 50,099 42,435	480 427 432 421 369	129 129 127 119 115	AL AL TN VA KY	SO1R SO1R TCG Blues SO1R SO1R	K6XX W6ISQ W6SJ NC6P N5KO/6	1888 1508 1363 352 247	59 52 47 22 19	32 29 29 16 13	CA CA CA CA CA	
N4ZZ W4LC AF4Z WO4O W9WI KE4KWE WO4D	36,120 35,310 34,220 32,865 31,415 30,704 29,757	344 321 295 313 305 304 273	105 110 116 105 103 101 109	IN KY FL TN TN AL FL	TCG Blues TCG Blues Misfits	W7ZR WA7LNW KE7AJ W7CT KJ7NO N7MQ	45,356 44,128 36,936 36,120 21,168 17,100	391 394 342 344 216 225	116 112 108 105 98 76	AZ UT WA UT UT OR	SWACC #2 RTTY RATS
W4MLB (KG4CZU) AF4OX WB4EQS K4IQJ WB2RHM W44OSD	28,416 28,222 26,829 25,652 22,407 22,110	296 274 271 242 231 219	96 103 99 106 97	FL SC FL AL NC	TCG lozz	W6RLL N7UVH K5ZM K7WM N7BF W7TVF K7HBN	16,351 15,249 14,592 13,604 13,067 12,900 6210	197 221 192 179 179 172 115	83 69 76 76 73 75 54	AZ ID OR AZ WA NV WA	SWACC #2 TCG Folk SWACC #1
KC4HW NY4N NA4K WB4YDL AB4GG K4HMB KJ4QF W9IXX/4 NX4W	21,984 20,532 19,758 18,868 18,786 17,160 12,243 11,690 11,100	219 229 236 222 212 202 195 159 167 148	96 87 89 93 88 77 70 75	R A Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	TCG Country TCG Country TCG Country	AA7IH KR7X WG7X KA7KUZ W7WHY W9PL W7LD AC7KY KD7EJC	5141 4600 3815 3471 3362 1798 1100 352 56	97 92 109 89 82 58 44 32 8	53 50 35 39 41 31 25 11 7	or or wa wa or wa wa az	TCG Folk
W4BCG K4BX K4ZJ N1WI AI4JW	10,080 9792 9310 4002 3818	144 136 133 87 83	70 72 70 46 46	AL TN GA TN VA	TCG Jazz TCG Folk	K8AJS KI8U AJ1M K5ZG	35,168 28,140 27,225 12,848	314 268 275 176	112 105 99 73	OH OH WV OH	TCG Blues CTRI Contest Group South
AA4LR KE4OAR	3108 1408	74 44	42 32	GA TN	TCG Rock	N8BJQ N8PUG	9,045 4,316	135	67 52	OH	TCG Country
W4TDB KE1F	1300 1160 1080	50 40 45	20 29 24	SC TN FL	TCG Rock	KC8NKA N8PVL	1,488 1,316	48 47	31 28	MI	
K4JAF NQ4K K4AQ * W4EIP KV4CN	1053 882 651 304 288	39 42 31 19 18	27 21 21 16 16	FL VA GA FL NC	Misfits	KE9S W9HLY W9SE KE9I N9LF	48,555 38,416 32,118 28,392 15,747	415 343 303 273 181	117 112 106 104 87	WI IN IL IN IN	TCG Jazz SMC #1 SMC #1 SMC #1
AA5AU	86,335	557	155	LA	SWACC #1	W9ILY	13,667	173	79	L	

<i>Call</i> AA9DY AI9T K9XL KW9L KC9DQP	Score 7015 5733 3773 1271 104	QSOs I 115 117 77 41 13	Mults 61 49 49 31 8	State IL IL IL IL	Team
KI6DY	54,932	443 370	124	KS	SWACC #1
WØETC KTØDX	41,285 40,080	359 334	115 120	IA CO	TCG Blues
Kørfd Køidt Køhw Køjjr Nøat	34,155 24,030 23,562 18,156 16,095	345 267 238 204 185	99 90 99 89 87	CO NE SD MN MN	TCG Country
NTØF WBØDUL	15,484 15,010	196 190	79 79	IA CO	SWACC #2
NØOBM KSØM KØCF KØAD NØUX WDØM KØEFM KAØEIC KØVG	14,499 13,806 9248 5772 5720 3136 2940 2360 1824	179 177 136 111 104 64 70 59 57	81 78 68 52 55 49 42 40 32	KS MO IA MN CO CO MO KS MN	TCG Folk
VE2RYY VE1OP VE6YR VA7ST VE3HG VE3HG VE3HG VE3IAY VE3LFA VE3LFA VE3LFA VE3QLO VE3ESH VE6AX VE3WKR VE3RCN	45,465 24,186 23,901 22,748 20,520 316,720 14,365 10,191 9240 8410 6976 6804 5200 2356	433 278 257 242 228 242 190 169 129 1345 109 108 100 108	105 87 93 94 90 83 88 85 79 70 88 64 63 52 33	PQ AB B B B N O O N O N O N O N O N O N O N	TCG Jazz

<i>Call</i> VE2FU * VA3TTU	Score 238 1	<i>QSOs </i> 17 1	<i>Mults</i> 14 1	<i>State</i> PQ ON	Team
NP4BM HR2/LU1DY	15,323 5814	199 102	77 57	KP4 HR	TCG Folk
YV6BTF	33,027	303	109	DX	
ZL31E (W3SE) SP6IHE CU2JT G3LHJ UT9FJ SP3GXH SP3BGD SP2HXY DJ6JH DC3HB JA1BHK OE1KTS SM6BSK IYØTC (IØKH MWØCPZ SP5ECC YB5BO OK2SWD/P JR1BAS 7L4IOU YB2ECG	2,240 1,960 1,200 1,200 476 432 304 294 208 IP) 168 88 72 54 28 221 208 88 221 208 88 221 208 88 221 208 88 22 9 4	64 56 50 8 228 228 24 19 21 20 17 16 11 9 9 7 7 3 2	35 32 25 23 20 17 18 16 14 13 13 13 12 8 8 6 4 3 3 2	XX	TCG Rock

* = QRP

The following were treated as check logs either because they submitted their log as a check log, or they indicated that they operated high power: DJ3IW, F5IHP, N0YCY, PA0WRS, SV3EXU, W4DJ.

Logs from the following were not processed because the log contained the wrong contest, the wrong mode, wrong dates/times, insufficient QSO data (complete exchange received was not included) or there was some other problem with the formatting of the log that made it unusable: AI6O, DL1APX, KA1C, KA1VMG, KC7NUP, N3YEA, YU7AM.

MultiOp

Call Score QSOs Mults State 105.570 W6YX 621 170 (ND2T, W6ZZZ, N7MH, N2YM, N6DE, K6OWL, K6UFO,) NN6NN 81,760 511 160 CA (N6EE, N6TQS, AK6DV, W6XK,) K9SEX 69,412 469 TX 148 (K5NZ,KU5B,) W1SLF 54,808 442 124 MF (KB1JZU, KT1I, N1MGO,) W4GAC 53,802 427 126 FI (AI4IE, WA4EEZ, KU4BT, KR4U, N4RI, KP2N,) 52.700 W2YC 425 124 N.I (W2YC,) VE7OGO 11,088 BC 198 56 (VA7RY, VE7KNK, VE7MVF,) IK1PMR 5,243 107 49 DX (K2LEO, IK1PMR,)

NCJ

Software Radio Now!

RF Time Machine

- A high-performance I-Q modulator and demodulator.
- Receive a block of RF—up to 80 kHz wide—& record it to the audio tracks of a Hi-Fi VCR, to a computer through a sound card
- or to other recording devices.
 Hook to the antenna port of an HF RX & *tune through* the recorded parties of anostrum *inc*.
- recorded portion of spectrum *just like in real time!* • Terrific for contest & DX analysis.
- radio demos, OO, EME & research.
 Assembled. \$170: kit. \$135 (+S/H). 1 Band Filter
- Assembled, \$170; kit, \$135 (+S/H). 1 Band Filter board & xtal included. 80, 40, 30, 20, 15 & 10 meters available.
- Daughter board now available for direct connection to a signal generator.

Freakin' Beacon

- PIC-Based CW Beacon Controller.
 Serial Interface for Programming
- with Hyperterminal.
 - Two Models Available: FB1 – 17 g, 2.2 x 1.75 in; kit, \$30 (+S/H) FB2 – 43 g, 2 x 4 in; kit, \$40 (+S/H)

Cylindrical Crystals

- 3560, 7030, 7038, 7040, 7042, 7190, 10106, 10125, 14025, 14060, 14200, 14285, 18096, 21026, 21060, 24906, 28060 kHz
- +/-100 PPM, 18 pF, 3 x 8 mm (3560 - 3 x 10 mm)
- Expanded Spectrum Systems 6807 Oakdale Dr Tampa, FL 33610 813-620-0062 • Fax 813-623-6142 • www.expandedspectrumsystems.com

North American QSO Parties (NAQP) CW/SSB/RTTY Rules

1. Eligibility: Any licensed radio amateur may enter.

2. Object: To work as many North American stations as possible during the contest period.

3. North American Station: Defined by the ARRL's DXCC list with the addition of KH6.

4. Contest periods:

January/February 2006 Contests:

CW: 1800Z January 14 to 0600Z January 15, 2006 (Second full weekend in January)

SSB: 1800Z January 21 to 0600Z January 22, 2006 (Third full weekend in January)

RTTY: 1800Z February 25 to 0600Z February 26, 2006 (Last full weekend in February)

July/August 2006 Contests:

RTTY: 1800Z July 15 to 0600Z July 16, 2006 (Third full weekend in July)

CW: 1800Z August 5 to 0600Z August 6, 2006 (First full weekend in August)

SSB: 1800Z August 19 to 0600Z August 20, 2006 (Third full weekend in August)

5. Entry Classification:

a) Single Operator:

i) One person performs all transmitting, receiving, spotting, and logging functions as well as equipment and antenna adjustments.

ii) Use of helpers or spotting nets, regardless of the mode of communication (e.g. PacketCluster), is not permitted.

iii) Only one transmitted signal allowed at a time.

iv) May operate 10 out of the 12 hours of the contest. Off times must be at least 30 minutes in length.

b) Multi-Operator Two-Transmitter

i) More than one person performs transmitting, receiving and logging functions, etc.

ii) A maximum of two transmitted signals at any given time, each on a different band. Both transmitters may work any and all stations.

iii) Shall keep a separate log for each transmitter.

iv) Each transmitter_must have at least 10 minutes between band changes.

v) May operate for the entire 12 hours of the contest.

6. Output power must be limited to no more than 100 watts for eligible entries. Use of external amplifiers capable of more than 100 watts output is not allowed. QRP (5W) entries will be recognized in the results.

7. Mode: CW only in CW parties. SSB only in phone parties. RTTY only in RTTY parties.

8. Bands: 160, 80, 40, 20, 15, 10 meters only, except no 160 meters for the RTTY contest. You may work a station once per band. Suggested frequencies are 1815, 3535, 7035, 14035, 21035 and 28035 kHz (35 kHz up from band edge for Novice/Tech) on CW; and 1865, 3850, 7225, 14250, 21300, and 28500 kHz (28450 for Novice/Tech) on SSB. When operating on 160-meters, please respect the DX window of 1830-1840 kHz and keep SSB operations above 1840 kHz.

9. Station: All radio transmitters, receivers and antennas used by an entrant must be associated with one station, either at a fixed geographical location or as a mobile/portable station. A station may be operated remotely. Use of multiple stations during the contest, whether directly or remotely operated, is prohibited.

10. Exchange: Operator name and station location (state,

province, or country) for North American stations; operator name only for non-North American stations. If the name sent is changed during the contest, as sometimes happens with multi-operator stations, the name used for each QSO must be clearly identified in the log.

11. Multipliers: US states (including KH6 and KL7), 13 Canadian provinces/territories (British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec, New Brunswick, Nova Scotia, PEI, Newfoundland/Labrador, Yukon, NWT, and Nunavut) and other North American countries. District of Columbia counts as Maryland. Non-North American countries, maritime mobiles and aeronautical mobiles do not count as multipliers, but may be worked for QSO credit.

12. Valid Contact: A valid contact consists of a complete, correctly copied and legibly logged two-way exchange between a North American station and any other station. Proper logging requires including the time in UTC and band for each contact. Regardless of the number of licensed call signs issued to a given operator, one and only one call sign shall be utilized during the contest by that operator.

13. Scoring: Multiply total valid contacts by the sum of the number of multipliers worked on each band.

14. Team Competition: You may wish to form a team with fellow NAQP participants. If so, your team must consist of 2 to 5 single operator stations whose individual scores are combined to produce a team score. Although clubs or other groups having more than 5 members may form multiple teams, there is no distance or meeting requirements for a team entry.

Teams must be registered prior to the start of the contest. Use one of the following on-line forms to register your team:

CW Team Registration: www.ncjweb.com/cwnaqpteamreg.php SSB Team Registration: www.ncjweb.com/ssbnaqpteamreg.php RTTY Team Registration: www.ncjweb.com/rttynaqpteamreg.php

These team registration forms automatically provide confirmation of team registration by returned e-mail.

15. Log formatting: All logs containing more than 100 QSOs must be submitted as an ASCII text file, with one line per QSO,. Cabrillo is the standard format for all NAQP logs. For those participants who use paper logging, please use either the *Excel* spreadsheet template (available at **www.ncjweb.com/naqplogtemplate.xls**) or the manual log entry Web-to-Cabrillo on-line forms available at the links given below to submit your logs. Paper log originals will be accepted from those participants who have no other means of submitting their log. Paper log forms are available on the *NCJ* Web site (**www.ncjweb.com/naqpforms.pdf**) for the convenience of those who log on paper during the contest.

For a Cabrillo-formatted log, submit only the log file. Please confirm that your output power is properly stated in the header portion of the Cabrillo log before submission. LOW indicates the use of 100W or less, while QRP indicates 5W or less. Submissions that indicate the use of HIGH power will be used as check logs. For a non-Cabrillo log, a proper entry consists of: (1) a summary sheet showing the number of valid contacts and multipliers by band, total contacts and multipliers, total score, team name (if applicable), power output, name, call sign and address of the operator, station call sign and exchange (name and location) sent during the contest; and (2) a complete log, including date and time (in UTC), frequency or band, and copied call and exchange for each QSO.

Name your files with your call sign (i.e. yourcall.log). Please do not send binary files produced by a contest logging program (e.g. yourcall.BIN, yourcall.QDF, etc.).

16. Log submission: Entries must be postmarked no later than 14 days after the contest to be eligible for awards. Methods of log submission in order of preference are as follows:

a) Upload Cabrillo-formatted log via Web form (preferable):

AII	moues.	www.ncjweb.com/
naqplo	ogsubmit.pl	hp
b) E	-mail log (A	SCII text file, or Excel file
if temp	late used):	

CW: cwnaqp@ncjweb.com

SSB: ssbnaqp@ncjweb.com

RTTY: rttynaqp@ncjweb.com

c) Mail 3.5-inch floppy disk, containing log file, to the appropriate address listed below.

RTTY

RTTY

d) Manually convert paper log to Cabrillo log using one of the following tools:

CW: www.b4h.net/cabforms/naqpcw_cab.php SSB: www.b4h.net/cabforms/naqpssb_cab.php RTTY: www.b4h.net/cabforms/naqprtty_cab.php

e) Mail original paper log to the appropriate address listed below.

CW/SSB: Bruce Horn, WA7BNM 4225 Farmdale Ave Studio City, CA 91604 USA CW e-mail: cwnaqp@ncjweb.com SSB e-mail: ssbnaqp@ncjweb.com

RTTY: Shelby Summerville, K4WW 6506 Lantana Ct Louisville, KY 40229-1544 USA e-mail: **rttynaqp@ncjweb.com**

17. Disqualifications: Entries with score reductions greater than 5 percent may be disqualified. Any entry may be disqualified for illegibility, illegal or unethical operation. Such disqualification is at the discretion of the contest manager.

18. Awards: Plaques will be awarded for the high score in each of the categories given below, provided there are a minimum of five entries in the category. If a plaque is not sponsored, the winner may purchase it. Certificates of merit will be awarded to the highest scoring entrant with at least 200 QSOs from each state, province, or North American country. Certificates of merit will also be awarded to the overall second and third place finishers in the multi-operator category for each mode.

Plaques will be awarded as follows:

<i>Mode</i>	<i>Category</i>	<i>Sponsor</i>
CW	Single Op, North America	Florida Contest Group
CW	Multi-Op, North America	Texas DX Society
SSB SSB	Single Op, North America Multi-Op, North America	South East Contest Club Tennessee Contest Group
Combined CW/SSB	Single Op, North America	Southern California Contest Club
RTTY	Single Op, North America	ICOM
RTTY	Single Op, DX	ICOM
BTTY	Multi-Op, North America	ICOM

Multi-Op, DX

Team

Check out our web site for the latest prices on coax, rotor cable, baluns, insulators, connectors, adapters, TVI filters, antenna wire, M^2 HF and VHF-UHF antennas and much more.

ICOM

ICOM

Featuring Davis Bury-Flex, (tm) 9914, low loss, direct burial coax. "Tuff as nails," outer jacket, flexible and designed for HF to UHF applications. Reasonably priced. Great Value!

We also stock Davis Flex-weave (tm) antenna wire. Easy to work with and quite strong. We have bare and coated #12 and #14 wire in

stock.

Looking for connectors? We have high quality Amphenol Silver plate PL-259s plus an easy-to-install, two piece N connector. Need to go from BNC to UHF? We have the adapters in stock.

Mon-Fri 10am-6pm * Fax (603) 899 6826 e-mail @ radware@radio-ware.com Radioware & Radio Bookstore

PO Box 209 Rindge, NH 03461-0209

.0209 (800) 457-7373

North American Sprint CW/SSB/RTTY Rules

1. Eligibility: Any licensed radio amateur may enter.

2. Object: For North American stations to contact as many licensed radio amateurs as possible. For non-North American stations to contact as many North American stations as possible.

3. Entry Classification: High power, low power (100W) and QRP (5W). Single operator only. Use of helpers, packet or spotting nets is not permitted.

4. Contest periods:

February/March 2006 Contests: SSB: 0000Z-0400Z February 5, 2006 (Sunday of first full weekend in February) CW: 0000Z-0400Z February 12, 2006 RTTY: 0000Z-0400Z March 12, 2006 (Sunday of second full weekend in March) September/October 2006 Contests CW: 0000Z-0400Z September 10, 2006 (first Sunday following first Monday in September) SSB: 0000Z-0400Z September 17, 2006 (second Sunday following first Monday in September) RTTY: 0000Z-0400Z October 15, 2006 (Sunday of second full weekend in October)

These are entirely separate four-hour Sprints. Note that the CW Sprint comes before the SSB Sprint in September, but not in February.

5. Mode: CW only in CW Sprints, SSB only in SSB Sprints, RTTY only in RTTY Sprints.

6. Bands: 80, 40 and 20 meters only. Suggested frequencies are around 3540, 7040 and 14040 kHz on CW; 3850, 7225 and 14275 kHz on Phone; and 3580, 7080 and 14080 kHz on RTTY. You may work the same station once per band. *Note:* For RTTY only, the same station can be worked multiple times provided 3 contacts separate the contact in both logs, regardless of band.

7. Exchange: To have a valid exchange, you must send all of the following information: the other station's call, your call, your serial number, your name and your location (state, province, or country). You may send this information in any order. For example:

N6TR DE K7GM 154 RICK NC K

K7GM NR 122 TREE OR DE N6TR K

8. Valid Contact: A valid contact consists of a complete, correctly copied and logged two-way exchange between a North American station and another station. Proper logging requires including the time of each contact. Serial numbers must begin with serial number one and be sequential thereafter.

9. North American Station: Defined by the rules of the CQ WW DX Contests. Note that KH6 is not in North America.

10. Scoring: Multiply total valid contacts by the sum of the U.S. states, Canadian Provinces and other North American Countries to get final score (do not count USA and Canada as countries). District of Columbia counts as Maryland. KH6 is not counted as a State and is not a North American country (but counts for QSO credit). The eight Canadian multipliers are Maritime (VE1, VE9, VO1, VO2 and VY2), VE2 through VE7, and Yukon-NWT (VYØ, VY1 and VE8). Non-North American countries do not count as multipliers, but do count for QSO credit for North American stations.

11. Special QSY Rule: If any station solicits a call (by sending CQ, QRZ?, "going up 5 kHz," or any other means of soliciting a response, including completion of a QSO where the frequency was inherited), they are permitted to work only one station in response to that solicitation. They must thereafter move at least 1 kHz before calling another station, or at least 5 kHz before soliciting other calls. Once a station is required

to QSY, that station is not allowed to make another QSO on the vacated frequency until or unless at least one subsequent QSO is made on a new frequency.

12. Additional Rules: Simultaneous transmission on more than one frequency is prohibited. All contacts must be sent and received using means requiring real-time human intervention, detection and initiation. Each operator must use only one call sign during the contest.

13. Log Formatting: All competitive logs (more than 100 QSOs) must be submitted electronically (e-mail, 3.5-inch floppy, etc.). The file format for electronic logs for *NCJ*-sponsored contests is Cabrillo. Entrants who do not use computer logging are encouraged to use the manual Web-to-Cabrillo on-line forms available at the links given below to enter the QSO info from their paper logs.

14. Log Submission: Entries must be received no later than 7 days after the Sprint. Methods of log submission in order of preference are as follows:

- a. Upload Cabrillo-formatted log via Web form (preferable): All modes: www.ncjweb.com/sprintlogsubmit.php
- b. E-mail log (ASCII text file): CW: cwsprint@ncjweb.com SSB: ssbsprint@ncjweb.com RTTY: rttysprint@ncjweb.com
- c. Mail 3.5-inch floppy disk, containing ASCII log file, to the appropriate address listed below.
- d. Manually convert paper log to Cabrillo log using one of the following tools:

CW: www.b4h.net/cabforms/nasprintcw_cab.php SSB: www.b4h.net/cabforms/nasprintssb_cab.php RTTY: www.b4h.net/cabforms/nasprintrtty_cab.php

e. Mail original paper log to the appropriate address listed below:

Send CW logs to: Boring Amateur Radio Club 15125 Bartell Rd

Boring, OR 97009 USA

E-mail: cwsprint@ncjweb.com

Send SSB logs to: Jim Stevens, K4MA 6609 Vardon Ct Fuquay-Varina, NC 27526 USA E-mail: ssbsprint@ncjweb.com

Send RTTY logs to: Douglas McDuff, W4OX 10380 SW 112th Street Miami, FL 33176 USA

E-mail: rttysprint@ncjweb.com

15. Team Competition: Team competition is limited to a maximum of 10 operators as a single entry unit. Groups having more than ten team members may submit more than one team entry. To qualify as a team entry, the team registration form on the *NCJ* Web site must be completed before the contest starts. Use one of the following links:

CW Team Registration: www.ncjweb.com/cwsprintteam.html SSB Team Registration: www.ncjweb.com/ssbsprintteam.html RTTY Team Registration: www.ncjweb.com/rttysprintteam.html

16. Penalties and Disqualification: Contacts with incorrect received information will be removed. Contacts not found in the other station's log will be removed with a one QSO penalty. Entries with score reductions in excess of 5 percent may be disqualified. Any entry also may be disqualified for illegibility, illegal or unethical operation.

NCJ Subscription Order Card The <i>National Contest Journal</i> features articles by top contesters, letters, hints, statistics, scores, NA Sprint, NA QSO Parties, and more. Big gun or small, the <i>NCJ</i> provides you with a valuable source of information on the active world of
Competitive radio.
 □ In the US, surface mail \$20 (\$28 First Class) □ In Canada by airmail \$31 □ Elsewhere, surface mail \$32 (\$40 Airmail)
 Name
Call
Address
City
State or Zip or
ProvincePostal Code
Mail to <i>NCJ</i> Circulation, ARRL, 225 Main Street, Newington, CT 06111, USA.

Remittance must be in US funds and checks must be drawn on a bank in the US. Maximum term is 12 issues and prices are subject to change without notice.

AlfaSpid Rotator

ROTATOR IN IT'S PRICE CLASS

TWICE THE TURNING POWER OF ANY

ALL METAL DOUBLE WORM GEAR DRIVE

QUIET, SELF-BRAKING ACTION LOW VOLTAGE DC MOTOR DIGITAL CONTROLLER INCLUDED WITH ONE DEGREE ACCURACY LARGE EASY TO READ DIGITAL READOUT SIX PRESETS AVAILABLE WITH MOUSE CONTROLLER SERIAL INTERFACE EMULATION OF MANY POPULAR ROTATORS WORKS WITH MOST LOGGING PROGRAMS AZIMUTH / ELEVATION UNIT CAPABLE OF 720 DEGREE AZIMUTH 185 DEGREE ELEVATION ELEVATION ONLY UNIT AVAILABLE

SPECS & MANUAL AVAILABLE ON WEBSITE

Alfa Radio Ltd 11211 154 St Edmonton, AB T5M 1X8 PHONE (780) 466-5779 FAX (780) 466-4956 www.alfaradio.ca

Go SO2R in Minutes With The **DXDoubler** from Top Ten!

- Installs in 5 minutes with available prefab cables.
- Leave it installed permanently! No computer required.
- Handles 4 RX audio streams, mike, key, and footswitch.
- Heil Proset plugs in directly. Adapter available for DVP.
- High RF immunity. Relay switching for ground isolation.
- Works with CT, NA, TR, and WriteLog for Auto mode.
- Audio mix control to blend left and right headphones.
- Red and green LEDs provide visual feedback.

Prices:

DXDoubler...\$195 DVP Adapter Cable...\$15

Radio Interface Cable...\$35

Other Products for Station Automation from Top Ten

Icom/Yaesu or LPT models. Source Driver mod controls Ameritron and WX0B 6Pak. Cables available for Icom and Yaesu transceivers

Also available: Six Way Relay Box (indoor model), Tower Six Way (outdoor), A/B Station Selector, band reject coax stubs. Visit the web site for prices, or call us at the number shown below.

Come Visit Our Web Site! • Photos and Diagrams • On-line Order Form • Full product details http://www.QTH.com/topten

Dave N3RD: n3rd@arrl.net George W2VJN: w2vjn@rosenet.net

Complete info (incl. manual) at www.QTH.com/topten/dxd.htm

SAVE BIG ON ANTENNAS, TOWERS & CABLE

TELESCOPING ALUMINUM TUBING

1.250" \$1.65/ft
1.375" \$1.85/ft
1.500"\$2.05/ft
1.625" \$2.35/ft
1.750" \$2.60/ft
1.875" \$2.85/ft
2.000" \$3.10/ft
2.125" \$3.60/ft
.188" rod \$.35/ft

.250" rod\$.50/ft 4"x.375" bar . \$6.50/ft 2"x.125"......\$4.50/ft 2"x.250"......\$8.00/ft 6' OR 12' LENGTHS. 6' LENGTHS SHIP UPS.

COMET ANTENNAS

GP3, 2m/70cm Vertical	\$99
GP6, 2m/70cm Vertical	\$149
GP9 2m/70cm Vertical	\$189
GP15, 6m/2m/70cm Vertical	\$159
GP98, 2m/70cm/23cm Vertical	\$189

DIAMOND ANTENNAS

X50A, 2m/70cm Vertical	\$109
X200A, 2m/70cm Vertical	\$149
X510MA 2m/70cm Vertical	\$195
X500HNA 2m/70cm Vertical	\$259
X700HNA 2m/70cm Vertical	\$399
V2000A 6m/2m/70cm Vertical	\$172

M2 VHF/UHF ANTENNAS

6M5X/6M7JHV	\$219/289
6M2WLC/6M9KHW	\$489/529
2M4/2M7/2M9SSBFM	\$105/119/139
2M12/2M5WL	\$179/219
2M5-440XP, 2m/70cm	\$189
440-470-5W/420-450-11.	\$149/105
432-9WL/432-13WLA	\$189/255
440-18/440-21ATV	\$135/159

M2 SATELLITE ANTENNAS

2MCP14/2MCP22	\$189/259
436CP30/436CP42UG	\$255/299
CALL FOR MORE IN-STO	CK M2 ITEMS.

HYGAIN ANTENNAS

AV18HT Hightower	\$739
DIS71/72	\$269/569
TH3JRS/TH3MK4	\$319/399
TH5MK2/TH2MK3	\$659/319
TH7DX/TH11DX	\$749/995

MFJ

259B/269, Analyzers	\$229/319
948/949E, Tuners	\$129/149
969, HF-6m Tuner	\$179
986, 3kW Tuner	\$299
989D, Deluxe 3kW Tuner	\$319
991/993 Autotuners	\$199/229

WEEKDAY HOURS: 9 AM-5 PM CENTRAL

SATURDAY HOURS: 9 AM-12 NOON CENTRAL

CREDIT CARDS: M/C, VISA, DISCOVER

ANTENNA ROTATORS

/2 OR-2800PDX	\$1279
lygain HAM IV	\$499
lygain T2X Tailtwister	\$569
/aesu G-450A	\$249
aesu G-800SA/G-800DXA	\$329/409
G-1000DXA	\$499
aesu G-2800SDX	\$1089
′aesu G-550	\$299
/aesu G-5500	\$599

ROTATOR CABLE

R62 (#18), HD 6 conductor\$.39/ft. R81/82/84, 8 cond. \$.29/ft./.49/ft./.99/ft.

COAX CABLE

RG-213/U, (#8267 Equiv.)	\$.45/ft
RG-8X, Mini RG-8 Foam	\$.25/ft
RG-213/U Jumpers	Please Call
RG-8X Jumpers	Please Call
CALL FOR MORE COAX	CONNECTORS.

TIMES MICROWAVE LMR® COAX

LMR-400	\$.59/ft
LMR-400DB Direct Bury	\$.74/ft
LMR-400 Ultraflex	\$.89/ft
LMR-600	\$1.19/ft
LMR600 Ultraflex	\$1.95/ft
CALL FOR MORE SIZES & C	ONNECTORS

TOWER HARDWARE

3/8"EE/EJ Turnbuckle	\$15/16
1/2"x9"EE/EJ Turnbuckle	\$21/23
1/2"x12"EE/EJ Turnbuckle	\$24/26
3/16"/1/4" Big Grips	\$5/6
3/16"EHS-500'/1/4"EHS-500'	\$119/149
PLEASE CALL FOR MORE HA	RDWARE.

HIGH CARBON STEEL MASTS

5 FT x .12" / 5 FT x .18"	\$45/59
11 FT x .12" / 11 FT x .25"	\$80/199
12 FT x .18" / 17 FT x .12"	\$159/149
20 FT x .18" / 22 FT x .12"	\$249/199
23 FT x .25" / 24 FT x .18"	\$369/299

PHILLYSTRAN GUY CABLE

HPTG1200I	\$.45/ft
1200 END KIT	\$3.60
HPTG2100I	\$.59/ft
PLP2738 Big Grip (2100)	\$7.00
HPTG4000I	\$.89/ft
PLP2739 Big Grip (4000)	\$9.50
HPTG6700I	\$1.29/ft
PLP2755 Big Grip (6700)	\$13.50
HPTG11200	\$1.89/ft
PLP2758 Big Grip (11200)	\$16.00
PLEASE CALL FOR HELP SELE	ECTING THE
PHILLYSTRAN SIZE FOR YOUR	R PROJECT.

ROHN TOWER

PLEASE CALL FOR MORE ROHN ITEMS.
TB3/TB4\$139/159
SB25G5/SBH25G \$79/139
SB25G/45/55\$59/109/149
GAR30/GAS604 \$39/49
GA25GD/GA45GD/GA55GD\$99/139/159
BPL25G/BPL45G/BPL55G \$99/189/219
BPC25G/BPC45G/BPC55G \$89/119/129
AS25G/AS455G\$49/109
45AG2/45AG4\$249/249
25AG2/25AG3/25AG4\$119/149/129
25G/45G/55G \$99/209/259

TRYLON "TITAN" TOWERS

SELF-S	UPPOR	TING ST	FEEL T	OWERS
T200-64	64', 15	square	feet	\$1489
T200-72	72', 15	square	feet	\$1819
T200-80	80', 15	square	feet	\$2169
T200-88	88', 15	square	feet	\$2529
T200-96	96', 15	square	feet	\$2969
T300-88	88', 22	square	feet	\$2869
T400-80	80', 34	square	feet	\$2759
T500-72	72', 45	square	feet	\$2629
T600-64	64', 60	square	feet	\$2499
T700-56	56', 80	square	feet	\$2349
MORE TH	RYLON	TOWER	RS AV	AILABLE.

UNIVERSAL ALUMINUM TOWERS

4 -40'/50'/60'	\$569/809/1149
7 -50'/60'/70'	\$1039/1499/1969
9 -40'/50'/60'	\$809/1149/1619
12- 30'/40'	\$599/949
15- 40'/50'	\$1069/1529
16 -60'/80'	\$2219/3389
21- 50'/60'/70'	\$1759/2339/2929
23- 30'/40'	\$959/1419
35- 40'	\$1649

BOLD IN PART NUMBER SHOWS WIND LOAD CAPACITY. SHIPS DIRECT FROM THE FACTORY TO SAVE YOU MONEY!

US TOWER CRANK-UPS

MA40/MA550	\$1099/1699
MA770/MA850	\$2799/4349
TMM433SS/HD	\$1479/1789
TMM541SS	\$1939
TX438, 38' Crankup Tower	\$1379
TX455, 55' Crankup Tower	\$1899
TX472, 72' Crankup Tower	\$3139
TX489MDPL, 89' Motorized	d HD \$8239
HDX538, 38' Extra Heavy I	Duty \$1649
HDX555, 55' Extra Heavy I	Duty \$2889
HDX572MDPL 72' Motorize	ed \$7549
SHIPPED DIRECT TO SAVE	E YOU MONEY!

LOCAL CALLS: (972) 422-7306

EMAIL ADDRESS: sales@texastowers.com

INTERNET ADDRESS: www.texastowers.com

TEXAS TOWERS A Division of Texas RF Distributors, Inc. • 1108 Summit Avenue, Suite #4 • Plano, TX 75074

(800) 272-3467

Did you log K7C?

The K7C DX'pedition to Kure Atoll is over. Operators logged over 50,000 Q's from all over the world. The radio of choice for this DX'pedition? Icom's '756PROIII. The '756PRO series was the first rig with 32-bit floating point IF-DSP. The first amateur rig with a large, TFT color LCD. In keeping with tradition, the PROIII pushes the envelope, extending receiver performance to a +30dBm third order intercept point (TOI) — a first in this price range! Two new '7800-style preamplifiers maximize sensitivity while minimizing distortion. It's no wonder Icom's PRO series rigs have been a part of some of the best DX'peditions. Find out for yourself from your authorized Icom dealer.

"The K7C operation faced two very difficult challenges: weak propagation at the sunspot minimum and marginal propagation to Europe. The 756PROIIIs easily made the difference between success and failure under these marginal conditions, enabling the operators to routinely locate, and work, calls at, and sometimes below, the average noise level. Without the superior capabilities of the 756PROIIIs, the K7C log would undoubtedly have been ten or twenty thousand QSOs shorter." - Robert Schmieder, KK6EK

A/D D/A converters • 64 MHz roofing filter • 5" TFT color LCD • 8 Channel RTTY TX memory • Digital twin passband tuning • Auto or manual-adjust notch with 70 dB attenuation • 13.4" W x 4.4" H x 11.2" D • 21.1 lb • And much more

IC-756PROIII • TX: HF + 6M • 100W, continually adjustable down

to 5W • Adjustable SSB TX bandwidth • Digital voice recorder • Auto antenna tuner

• RX: 30 kHz to 60 MHz • Quiet, triple-conversion receiver • 32 bit IF-DSP with 24-bit

in near real-time. When K7C went QRV, there were 156,000 people logged onto DXÅ. On the average, during the entire operation, an average of 18,000 hams were watching DXA. By the

time K7C went QRT, the DXA Website had sustained 80 million hits!

"The IC-756PROIIIs proved to be reliable and straightforward to use. The operating positions were frequently over 100 degrees and the radios were often running at maximum power for extended periods of time - yet we had no failures nor did they ever even seem to get hot. The receivers were particularly good at handling a pileup. Instead of turning the many signals into mush, the signals remained distinct and easy to copy." - Ward Silver, NØAX

©2005 Icom America Inc. The Icom logo is a registered trademark of Icom Inc. All specifications are subject to change without notice or obligation. 7964