ICD 08241

http://www.cq-amateur-radio.com

3 i cen

WIAT

SERVING AMATEUR RADIO SINCE 1945 OCTOBER 1999

In This Issue: • Sunspots Soar Highest Since 1991 (p. 90) • 90 Years of the Harvard Wireless Club (p. 11) • All-Time CQ WW DX Contest Records (p. 50) • High-Speed Packet Backbone Nodes (p. 58) • Co-WW DX CW Contest, Full 1998 Results (p. 17) • On the station of the Harvard Club, Boston, MA

are you ready?

1999 Contest Equipment Checklist

Transceivers:

Linear Amps:

Accessories:

IC-706MKIIG Glad I picked up this new little hummer. Super backup radio; also use as 2nd rig for multiplier hunting - or upcoming rover class contesting on VHF/UHF. IC-746 What bang for the buck Real HF performance, PUIS 6 + 2 meters. Twin PBT, IF-DSP, dual IF filtering, auto antenna tuner... that low ICOM Rx noise floor, too.

IC-756 Real time band scope AND TRUE dual watch! IF-PSP, twin PBT. That receive-only ant jack will come in handy for lowband contesting ... wow!

IC-706MKIIG

IC-746

IC-775DSP Exceptionally clean TX audio, quiet Rx noise floor, IF-PSP, all the bells & whistles. 200 watts out, runs cool even after 48 hours in barefoot class contests. Each 100% duty cycle TX! IC-756 IC-781 Still a ham's dream rig The ultimate!

IC-PW1 Small footprint, remotable head with full

for quick bandhopping), a full kW on 6 meters ... neat!

© 1999 ICOM America Inc. 2380 1 dealer or contact ICOM America 1 or obligation. All ICOM radios s

SM-20 Desktop mic easy front panel connect SP-20 Deluxe speaker (775, 781) SP-21 Standard speaker (706G, 746, 756) SP-10 Mobile speaker excellent with 706G CT-17 Computer interface get PC ready ! PS-85 DC power supply for '706G, '746, '756 AT-180 Auto antenna tuner for coax fed anten AH-4 Auto antenna tuner longwire operat

IC-781

ICO

IC-PW1

-mm

Gain & Wave: 146MHz 2.15dBi 1/2 wave • 446MHz 5.0dBi 5/8 wave x 2 • Length: 30" • Conn: B-20 PL-259/B-20NMO NMO • Max Pwr: 50W

B-10 B-10NMO • Dual-band 146/446MHz cellular look-a-like • Gain & Wave: 146MHz 0dBi 1/4 wave • 446MHz 2.15dBi 1/2 wave • Length: 12' •

bsoru 5 10 ma Impacts nce he whip nd -

1/446MH

MH-209SMA Wave: 0 1/4 wave • 1

Dual-band

146/446MHz

Mal

Antenna w/SMA Con e SMA • Max Pwr. 5W

W/SMA Conr

The Amateur Radio Vol. 55, NO. 10

FEATURES

- 11 A COLLEGIATE RADIO MILESTONE: This month the Harvard Wireless Club, W1AF, celebrates its 90th anniversary. Here is what they have planned and a bit of their history. By Mike Manafo, K3UOC
- 17 RESULTS OF THE 1998 CQ WW DX CW CONTEST By Bob Cox, K3EST

Team Contesting	
Trophy Winners and Donors	
Club Scores	
Band-By-Band Breakdown	
Zone Leaders Single Operator	
Top Scores in Very Active Zones	
Top Scores	72
Scores	

26 HIGH-CAPACITY, HIGH-VOLTAGE VARICAPS FROM THE SCRAP HEAP

By George Murphy, VE3ERP

- 28 SOMEBODY REALLY OUGHT TO ...: Here's your chance to contribute to the amateur radio technology of the 21st century By Rich Moseson, W2VU
- 38 MATH'S NOTES: Op-amp update By Irwin Math, WA2NDM
- 45 WORLD OF IDEAS: Crystal set resurrection, Part I By Dave Ingram, K4TWJ

page 17

DEPARTMENTS

- 36 VHF PLUS: Reports on the 1999 Perseids meteor shower; contests and conferences By Joe Lynch, N6CL
- 40 THE DIGITAL DIPOLE: CUBEX Quads, Autek Antenna Analyst, GeoClock, and more By Karl T. Thurber, Jr., W8FX
- 53 CONTEST CALENDAR: Remembering a contesting friend, K2EEK; contests for October By John Dorr, K1AR
- 62 DX: Islands On The Air (IOTA) revisited

50 CQ WW DX CONTEST ALL-TIME RECORDS

By Fred Capossela, K6SSS

All-Time Pho	ne Records	5(
All-Time CW	Records	5
All-Time US	A Records	52

- 58 PACKET USER'S NOTEBOOK: Higher speed backbone nodes By Buck Rogers, K4ABT
- 86 WASHINGTON READOUT: Sorting out the new ULS applications By Frederick O. Maia, W5YI

By Chod Harris, VP2ML

90

- 83 AWARDS: Tips for award hunters; awards from here and abroad By Ted Melinosky, K1BV
 - PROPAGATION: Sunspots soar! Band-byconditions and tips for the CQ WW DX Contest; DX Charts for Oct. 15 through Dec. 15 By George Jacobs, W3ASK

4	ZERO BIAS
6	ANNOUNCEMENTS
30	CQ SHOWCASE: New amateur products
6	HAM SHOP

ON THE COVER: We're proud to help celebrate a huge milestone in collegiate amateur radio—the 90th anniversary of the founding of the Harvard Wireless Club. Pictured here at the recently refurbished club station are (front to back): Nick Guydosh, N2MSE; Frank Wright, N3OQB; and Dennis Feehan, KD4SBN. There's a neat operating event scheduled for October 2 and 3 which will celebrate the occasion, and you'll find all the details beginning on page 11. (Photo by Larry Mulvehill, WB2ZPI)

2 • CQ • October 1999

Visit Our Web Site

Ced to For Day Der Pariotude?

Kenwood has a full line of "True" HF products ready to meet your current needs

KENWOOD has been known for high performance products since 1946. Over the years, Kenwood has produced and distributed more HF Amateur radios than any other manufacturer worldwide. Beginning in the early 1970's the legendary TS-520S first appeared in the U.S.A., then other world class products followed. Over the years Kenwood has produced HF transceivers with unparalleled performance and reliability. Many of our HF models manufactured in the early 1970's are still in service today! Compare Kenwood HF audio performance against the competition. You'll understand why Kenwood is still #1 in "TRUE" HF performance.

15-505

- HF All Mode
- Rugged Compact Design
- Easy To Use
- Fuzzy Logic VFO
- Adjustable Power Output
- Auto Tuner Available

(C)COLE-SE

- HF All Mode
- Built-In Antenna Tuner
- CW Auto Tune/Kenwood First
- 441 Combinations Of DSP Filtering
- RCP2 Computer Control*

Hat styles may vary due to availability.

JS-SJOS(S)
HF All Mode w/6 Meters
Built-In Antenna Tuner
46 Easy Menu Items
DSP Plus SSB/CW Filter Opt.
Voice Synthesizer Opt.

TS-950SDX

- HF All Mode
- #1 Contest HF With DSP
- Digital AF Filters
- 150 Watts Mos-Type FET Finals
- Dual Digital VFO's
- Built-In Power Supply

15-3705

- HF All Mode
- True IF Stage DSP Noise Reduction
- 1st 100% Digital DSP Filtering System
- Logikey Electronic Keyer

10 10 10

- Built-In Antenna Tuner
- Beat Cancel

- SSTV Visual Communicator
- Use with any VHE/UHE/HE/UBZ

Operating Manuals via the FTP site

Deluxe

Hat

with groot

purchase

KENWO

"Win a Kenwood TH-DZA, Garmin" III+ & Palm IIIx PC. See your Kenwood dealer or visit http://www.kenwood.net for details.
"Purchase any new Kenwood Amateur radio between Aug. 15th & Oct. 31st 1999 and get a free hot. Submit a copy of your bill of sale that includes date of purchase, serial number as well as the product information card (pink) to the address below. Your FREE hat will be sent. (Allow 4-6 weeks for processing)
(Promotions & special giveaways apply to US residents only)

KENWOOD COMMUNICATIONS CORPORATION AMATEUR RADIO PRODUCTS GROUP P.O. Box 22745, 2201 E. Dominguez St., Long Beach, CA 90801-5745, U.S.A. Customer Support/Brochures (310) 639-5300 99ARD-1907/#062599

JQA-1205 Communicational Equipment Division Kenwood Corporation IS09001 certification

INTERNET

Kenward News & Products http://www.kenwood.net Kenwood Belietins Rp/ftp.kenwood.set

Jero Bias

An Editorial

Alan Dorhoffer, K2EEK (SK): A Tribute

he Zero Bias in last month's CQ was written as we were in the process of laying to rest a dear friend and colleague, Alan Dorhoffer, K2EEK, long-time Editor of CQ. As word of Al's death spread throughout the amateur radio community, we began to receive a flood of cards, letters, e-mails, and phone calls from around the world, all expressing their feelings and remembrances of the man so many had come to know as the face and voice of CQ.

As a final tribute to AI, we're pleased to present a sampling of the comments received over the past month, beginning with a short essay by Gail Schieber, KC2DHK, long-suffering Managing Editor to AI for the past 20 years.

Al will certainly be missed. Hardly a day passes without the thought entering my mind that "Al would know the name of that person," or "I've got to share this story with Al," or "I wonder what Al would think about this." The thoughts are immediately brushed aside by the realization that my slightly disheveled, always clever friend and colleague of the past 42 years is no longer here to fill in the gaps in our lives.

But business, like life, goes on. With the next issue of *CQ* we will announce the new Editor of *CQ*. Bear in mind that anyone stepping into another's shoes under circumstances like these cannot fairly be called a "replacement." Editors, like all people, are unique in their character and approach to their life and their work. In that uniqueness lies the opportunity for growth and change, and that is what we all can expect from *CQ* in the months and years ahead. *–K2MGA*

Life at the CQ offices has always been pretty democratic, with every able-bodied person doing whatever is necessary to get the product out the door. Here AI has just finished packing up another carton of WW DX Contest logs to be shipped to the committee for checking. And you thought it was done by a cast of thousands. of the contest and award chase, the camaraderie of the ham community, the quality of the food at hamfests (a subject that is remembered fondly by many of you, I'm sure), and most of all, the FUN that to AI was the essence of amateur radio.

As purely a wordsmith, Al was the best I have ever worked with. He was in his glory when he could find a word that would challenge the reader (and me) to go to the dictionary (sometimes the unabridged dictionary at that!) to find the meaning of the word. And one of my main tasks when all was said and done was to actually attempt to *find* the word in the dictionary, as Al readily admitted to his lack of skill in the spelling arena and would spell a word just as it sounded—sometimes close, sometimes not, and a challenge nonetheless.

I was always amazed by AI's ability to begin with a topic, weave his way through the paths and intricacies of his chosen subject, and ultimately come to, as he would say, the *denouement*—all in four typewritten pages, a number forever etched in my mind. If one month's editorial was a particularly laborious task, there would be periodic updates: "I have two pages done"; "finished page three"; "only the last paragraph still to go!" It was a work in progress with a master at the helm.

As the years pass, I, for one, will always remember not so much the content of "Zero Bias," but the man and the process: the sounds of the typewriter clacking away, AI's poking his head around the door to pass a few minutes while the thoughts and words jelled, discussions of where he was going with the subject at hand, and the ultimate "tah dah!" when the editorial was finally finished after a week of us saying, "Aren't you finished yet?" to which he would respond, "Don't worry. It will get done. Why? Because we're professional!"

Zero Bias, The Process

Until last month, each month since the May 1976 issue of CQ we have published the words of Alan, K2EEK, on this page. With his passing on July 19 ends AI's "Words of Wisdom," as he and I came to fondly call this sometimes cajoling, sometimes purely entertaining, sometimes feather-ruffling mix of words and phrases. For many of you, this is the first page you turn to when you receive your copy of CQ. Often we would receive letters, e-mails, and phone calls agreeing with or disagreeing with AI's point of view. And then there were those who just wanted to say thanks, I appreciate what you have said and what you are doing for the hobby.

What went on behind the scenes of Al's editorial process is a story in itself. Each month's "Zero Bias" entailed a creative process that took about a week to complete. Some of us here in the office, myself included, would often wonder how it could take so long to produce one page! In the monthly magazine business, especially when there are multiple publications in progress at any given moment, it seemed a luxury to have a whole week to produce one single page. The deadline for an issue would be at hand, all articles and advertising complete, and AI would still be typing away on his blue IBM Selectric II (a treasure dragged here to Hicksville when we moved from our Port Washington offices in 1979), creating an editorial that usually caught the attention of even the most jaded reader.

I knew not to bother him when the words were flowing so as not to break his train of thought. If things were going well, he would not emerge from his office for several hours. The sound of the clacking of the typewriter keys could be heard, with bursts of speed and long pauses intermingled with the sound of the chair crashing into the wall behind my office as Al leaned back to reflect and perhaps light a cigarette. If in a given month the words did not come quite as easily ("They all can't be gems," he would say.), he would be in and out of his office, stopping to sit in my office to chat, or wandering down the hall to Dick or Arnie's office to see what was new. It was a break which allowed him to regroup his thoughts and stretch his legs, while at the same time checking in with the rest of us who were wondering just when the master would be finished, allowing us to wrap up yet another month.

Al's thoughts on the hobby he loved so much ranged from the purely pragmatic to the somewhat esoteric. On this page at one time or another he stated his feelings on almost every aspect of the hobby, from the "perfect" antenna weather (sometime in mid-January here in the northeast), to the "toys" that every selfrespecting ham must have, the emergency communications of which we all are so very proud, the steadfastness of those who sing the praises of CW (and yes, those who will not let go of it as a measure of a ham's worth), the drive with which some of us face the challenge I feel very fortunate and proud to have been a part of that process, a part of one of AI's favor-

(Continued on page 8)

Jeff Savasta, KB4JKL, with K2EEK at the CQ Industry Reception at Dayton in 1997.

THE DIRECTOR HF Multiband Beam Antenna BIGSIGNAL SMALL FOOTPRINT

Cushcraft's newest multiband HF antenna provides 5 band directivity in a package small enough to mount to a tripod. The MA5B is a design that does not sacrifice ruggedness, performance and power handling for size and ease of installation.

Easy To Tune

No complicated gamma matches to adjust.

Easy To Turn

With a boom length of 7 feet and a longest element length of 17 feet, a lightweight TV rotor will do the trick.

Flat response across all 5 bands. VSWR minimum 1.2:1.

ed Construction

Cushcraft's tried and true stainless steel mounting hardware and heavy wall aluminum tubing make for a rugged, long lasting antenna.

Only one coaxial feed line is necessary for all 5 bands

High Front To Back Ratio On 10/15/20m

MA5B SPECIFICATIONS

FREQUENCY	10	12	15	17	20	Meters
ELEMENTS	2	1	2	1	2	per band
GAIN	5.3	1.0	4.8	1.0	3.6	dBl
FRONT TO BACK RATIO	10	0	12	0	22	dB
SIDELOBE ATTENUATION	25	25	25	25	25	dB
VSWR 2:1 BANDWIDTH	665	>110	255	>100	90	ki-iz
LONGEST ELEMENT	17.1n	(5.2m)			8 U.	10 10 10
TURNING RADIUS	8.8n	(2.7m)	1.1			37 M 201
BOOM LENGTH	73#	(2.2m)				
BOOM DIAMETER	15h	(3.8cm)	- 22			
MAX. WIND SURFACE AREA	3.22	12 (3 m²)	- TX	10.2.3		THE STATE
MAX. POWER HANDLING	1.2 1	v	3			
WEIGHT	26.5	tes (12kg)				

For more information on this outstanding HF Multiband Beam Antenna, visit our web site at http://www.cushcraft.com or contact any one of our dealers worldwide.

CUSHCRAFT

COMMUNICATIONS ANTENNAS 48 PERIMETER ROAD, MANCHESTER, NH 03108 USA [Tel.] 1 603 627 7877 • [Fax] 1-603-627-1764

mouncements

 The following Special Events are scheduled for October:

YLAP, sponsored by YLRL. CW from 1400 UTC Oct. 7 to 0200 UTC Oct. 9; SSB from 1400 UTC Oct. 21 to 0200 UTC Oct. 23. YLs only. Exchange QSO number, RS(T), and ARRL section/province/country. For more information, contact Cleo Bracket, KØJFO, 810 Towne Square Dr., Fremont, NE 68025-7000.

N2MO, from the old Marconi Hotel, Wall Township, NJ. Celebrating the Marconi Test Facility in Wall; 1300 UTC Oct. 3, 2100 UTC Oct. 9; 3.875, 7.235, 14.240, 21.325 MHz. Sponsored by Ocean/ Monmouth ARC; certificate or QSL available. QSL via OMARC, P.O. Box 267, Oakhurst, NJ 07755.

W2GSA, from the Twin Lights Lighthouse, Atlantic Highlands, NJ. Celebrating the 1st practical use of a wireless transmission; 1300 UTC Oct. 13, 2100 UTC Oct. 17; 3.875, 7.235, 14.240, 21.325 MHz. Sponsored by Garden State ARA; certificate or QSL. P.O. Box 34, Fair Haven, NJ 07704.

W2OD/MM, from New York Harbor. Simulated spark gap transmission from a ship at sea; 1400 UTC Oct. 16, 1400 UTC Oct. 17; 3.875, 7.235, 14.240, 21.325 MHz. Sponsored by Garden State ARA; certificate or QSL available. For information, contact Bob Buus, W2OD, 8 Donner Street, Holmdel, NJ 07733.

WA2GM, from the Twin Lights Lighthouse, Atlantic Highlands, NJ. Celebrating the 100th anniversary of NY Yacht Race transmission from New York Harbor; 1300 UTC Oct. 20, 2100 UTC Oct. 24; 3.875, 7.235, 14.240, 21.325 MHz. Sponsored by Marconi Chapter of the QCWA #138; certificate or QSL available. For information, contact Mike B. Feher, N4FS, 89 Arnold Blvd., Howell NJ 07731.

K4HXZ, from Devil's Courthouse, Transylvania County, NC (weather permitting); 1800Z–2359Z Oct. 31; 7.237, 14.295, 21.365, 28.335 MHz SSB and 146.52 FM simplex. Sponsored by Transylvania County ARC. For certificate, send a business- size or 9×12 SASE to TCARC, P.O. Box 643, Brevard, NC 28712. For more information, contact Fred Hatfield, lower General 40–10 meters; 14.240 main frequency. Sponsored by Douglas Co. ARC. Certificate. Contact Ken Blair, KCØGL, 1711 W. 19th Terrace, Lawrence, KS 66046.

 The following hamfests are scheduled for October:

Oct. 1–2, NWAARC Hamfest '99, Jones Center for Families, Springdale, AR. Contact Northwest Arkansas ARC, P.O. Box 24, Farmington, AR 72730 or Clarence Morrow, KC5UEW, phone 501-631-9231. (Exams)

Oct. 1–3, 23rd Mid-Atlantic States VHF Conference, Hampton Inn, Willow Grove, PA. Sponsored by the Mt. Airy VHF Radio Club (the Packrats), followed by Hamarama '99 on Sunday at Middletown Grange Fairgrounds, Wrightstown, Pennsylvania. Contact John Sorter, KB3XG, 1214 N. Trooper Rd., Norristown, PA 19403; e-mail: <johnkb3xg@aol. com>; phone 610-584-2489; see PackRat Web site at <http://www.ij.net/packrats> for location maps and additional information; or e-mail John Sortor, KB3XG, <johnKB3XG@aol.com>.

Oct. 2, Ham Expo '99 Fall Fest, Bell County Expo Center, Belton, TX. Contact Mike, WA5EQQ, 254-773-3590; e-mail: <hamexpo@tarc.org>; on web: <www.tarc.org>.

Oct. 2, Garden State Hamfest '99, Croydon Hall, Leonardo, NJ. Contact GSARA, c/o Mario Sellitti, P.O. Box 286, Keansburg, NJ 07734, <http://www. monmouth.com/~gsara>. (Exams)

Oct. 2, SVARC Computer, Amateur Radio & Electronics Show, Silver Moon Antique and Flea Market Show Arena, Hummels Wharf, PA. Contact George Machesic at <gpmac@netscape.net>; answering machine 570-286-2086; web: <http:// loveland.dynip.com/svarc>; Dave Weker at <k3si@ hotmail.com>. (Handicapped accessible)

Oct. 2, York County ARS Hamfest, Knights Stadium, Ft. Mill SC. Contact YCARS Hamfest, 2129 Squire Rd., Rick Hill, SC 29730, or call Haney Howell, K2XN, at 803-323-4534, or <www.ycars. org>.

EDITORIAL STAFF

Alan M. Dorhoffer, K2EEK (SK), Editor Gail M. Schieber, KC2DHK, Managing Editor Lew McCoy, W1ICP, Technical Representative Richard S. Moseson, W2VU, On-Line Coordinator

CONTRIBUTING STAFF

John Dorr, K1AR, Contest Calendar Chod Harris, VP2ML, DX Dave Ingram, K4TWJ. Special Interests George Jacobs, W3ASK, Propagation Joe Lynch, N6CL, VHF Frederick O. Maia, W5YI, FCC Correspondent Irwin Math, WA2NDM, Math's Notes Bill Orr, W6SAI, Radio Fundamentals Buck Rogers, K4ABT, Packet Radio Editor Karl T. Thurber, Jr., W8FX, Antennas & Software Ted Melinosky, K1BV, Awards & USA-CA

AWARD MANAGEMENT

Jim Dionne, K1MEM, WAZ Award Norman Koch, WN5N, WPX Award Ted Melinosky, K1BV, USA-CA Award Billy Williams, N4UF, CQ DX Award

CONTEST MANAGEMENT

Steve Bolia, N8BJQ, WPX Contest Director Robert Cox, K3EST, WW DX Contest Director Roy Gould, K1RY, RTTY Contest Director David L. Thompson, K4JRB, 160M Contest Dir.

BUSINESS STAFF

Richard A. Ross, K2MGA, Publisher Arnie Sposato, N2IQO, Advertising Manager Nicole Tramuta, Sales Assistant Sal Del Grosso, Accounting Manager Ann Marie DeMeo, Accounting Department Judith Erickson, Office Manager

CIRCULATION STAFF

Catherine Ross, Circulation Manager Melissa Kehrwieder, Operations Manager

W9MMZ, 458 Still Branch Road, Brevard, NC 28712.

N4M, from Arlington, VA, and Washington, DC. Celebrating the 24th running of the Marine Corps Marathon; 1200Z–2200Z Oct. 23 and 1300Z–2300Z Oct. 24; 1.845, 3.855, 7.263, 14.255, 21.305, 28.355 MHz. Sponsored by the Fauquier ARA. For certificate send 9×12 SASE with QSL. For info, contact FARA-Marathon, P.O.B. 752, Warrenton, VA 20186.

W8MCC, from Woodsfield, OH. Commemorating Monroe Co. Black walnut festival at Monroe Co. Fairgrounds; 1400 UTC Oct. 9 to 2100 UTC Oct. 10; 7.250, 14.300, 21.400, 28.480, 50.150 MHz. Sponsored by Monroe County Communicators. For certificate, send a 9×12 SASE to Bob Simpson, KB8UTE, 44480 Pfalgraf Ridge Rd., Woodsfield, OH 43793. For more information, call 740-472-0512.

W8NCK, will be participating in the sesquicentennial (150 years) celebration of Fremont, OH; Sandusky Valley ARC, Oct. 16; 7.225, 14.225, 21.325, 28.325 MHz.; For QSL, send QSL and SASE to SVARC, P.O. Box 1072, Fremont, OH 43420.

W9CEQ, the Fox River Radio League will be commemorating their 75th anniversary; 1700Z Oct. 15 to 2300Z Oct. 17; suggested frequencies SSB 7.260, 14.260, 21.300, 28.300 MHz; CW 7.130, 14.100, 21.150, 28.150 MHz. For certificate, send a QSL and 9×12 SASE to Fox River Radio League, Box 673, Batavia, IL 60510-0673.

W9L, from Mooresville, IN. Commemorating the 60th anniversary of Goethe Link Observatory; 1000 UTC Oct. 22 to 2330 UTC Oct. 24; General portions of 20, 40, 80 meters, phone and CW; Novice portion of 10 meters. Sponsored by Indiana Astronomical Society. For certificate, send QSL and large SASE to Goethe Link Special Event Station, c/o 5431 Padre Ln., Indianapolis, IN. For info, contact Rick Reneau, KB9NDF, <kb9ndf.arrl.net>.

WOUK, from Nowhere, KS. Celebrating the Baldwin City Maple Leaf Festival; 1400–2100 Oct. 16; Oct. 2, RAGS 1999 43rd Hamfest, Pompey Fire Department, Syracuse, NY. Contact Vivian Douglas, WA2PUU, 315-469-0590, or visit <www.pagesz. net/~rags>. (Exams)

Oct. 3, Mt. Airy VHF Radio Club HAMARAMA, Middletown Grange Fairgrounds, Penns Park Rd., Wrightstown, PA. Contact Mark Schreiner, NK8Q, e-mail: <nk8q@amsat.org>; phone 215-847-2285.

Oct. 3, 1999 Hall of Science ARC Hamfest, New York Hall of Science parking lot, Flushing Meadow Corona Park, Queens, NY. Contact Stephen Greenbaum, WB2KDG, 718-898-5599 (evenings only); e-mail: <WB2KDG@Bigfoot.com>.

Oct. 8–10, AMSAT-NA Annual Meeting and Space Symposium, San Diego, California. For details, see the AMSAT Web site at <http://www. amsat.org>, or contact AMSAT, P.O. Box 27, Washington, DC 20044; phone 310- 589-6062; fax 301-608-3410.

Oct. 8–11, 17th Space Symposium/ AMSAT-NA Annual Meeting, Hanalei Hotel, San Diego, CQ. Contact Duane Naugle, KO6BT, at <ko6bt@amsat. org>; visit the AMSAT-NA web page at <http:// www.amsat.org>; or contact AMSAT, P.O. Box 27, Washington, DC 20044 (phone 310-589-6062; fax 301-608-3410).

Oct. 9, North Kitsap ARC Hamfest, President's Hall, Kitsap County Fairgrounds, Bremerton, Washington. Contact Marcie Stilwell, KC7DAT, P.O. Box 2268, Silverdale, WA 98383-2268 (360-697-2797; e-mail: <nkarc@yahoo.com>).

Oct. 9, RSGB Int'l HF & IOTA Convention, Beaumont Conference Centre, Old Windsor, Berks, England. Contact RSGB, Lambda House, Cranborne Rd., Potters Bar, Herts, EN6 3JE, UK; phone +44 (0) 01707 659015; web: <www.rsgb.org>; for details on accommodations packages, contact Marcia Brimson, 2E1DAY, <marcia.brimson@rsgb.org.uk>.

Oct. 9, Bergen ARA Hamfest, Fairleigh Dickinson

Jean Sawchuk, Data Processing Denise Kells, Customer Service

PRODUCTION STAFF

Elizabeth Ryan, Art Director Barbara McGowan, Associate Art Director Edmond Pesonen, Electronic Composition Mgr. Dorothy Kehrwieder, Production Manager Emily Leary, Assistant Production Manager Nicole Tramuta, Advertising/Production Pat Le Blanc, Phototypographer Hal Keith, Illustrator Larry Mulvehill, WB2ZPI, Staff Photographer Joe Veras, N4QB, Special Projects Photographer

A publication of

Offices: 25 Newbridge Road, Hicksville, New York 11801. Telephone: (516) 681-2922. FAX (516) 681-2926. E-mail cq@cq-amateur-radio.com. Website:http://www.cq-amateurradio.com. CQ (ISSN 007-893X) is published monthly by CQ Communications Inc. Periodical postage paid at Hicksville, NY and additional offices. Subscription prices (all in U.S. doilars): Domestic-one year \$27.95, two years \$49.95, three years \$71.95; Canada/ Mexico-one year \$40.95, two years \$72.95, three years \$110.95; Foreign Air Post-one year \$52.95, two years \$99.95, three years \$146.95.U.S. Government Agencies: Subscriptions to CQ are available to agencies of the United States government, including military services, only on a cash with order basis. Requests for quotations, bids, contracts, etc. will be refused and will not be returned or processed. Entire contents copyrighted CQ Communications Inc. 1999. CO does not assume responsibility for unsolicited manuscripts. Allow six weeks for change of address.

Printed in the United States of America.

Postmaster: Please send change of address to CQ Magazine, 25 Newbridge Road, Hicksville, N.Y. 11801.

Make the World Your Playground!

Transmits on all HF U.S. Amateur Bands, 10 ~ 160 Meters SSB, CW, AM, FM and Data

- General coverage receiver 500 KHz ~ 30 MHz, all standard modes
- 100 watts output SSB, CW and FM, 40 watts AM
- Enhanced Direct Digital Synthesis (DDS) eliminates need for SSB Narrow Filter
- Built-in speech compressor

ALINCO

OWER ON AROFT

- Front panel mounted speaker with loud, clear audio
- Front panel jacks for convenient connections of key, headphones or external speaker

DX-77T Desktop HF Transceiver

Alinco

Loaded with features at an affordable price!

The Alinco DX-77T is a design achievement that puts a new desktop HF transceiver within your reach. And this is no "bare bones" radio! The DX-77T was designed from the beginning to be a quality HF transceiver, full of features to enhance its performance and your enjoyment. The DX-77T has "big radio" features at a low Alinco price!

- QRM/QRN reduction with IF shift, standard CW audio filter and RF attenuator
- Built-in electronic keyer, adjustable from 6 ~ 50 wpm
- Full QSK, 7-step semi break-in operation or Auto Break-In CW modes
- 100 memory channels, each stores mode, split, frequency, AGC, RF attenuation or gain
- Computer control with optional ERW-4
- Front panel CTCSS tone access for 10 Meter FM operations (50 tones)
- Two VFOs plus Memory operation mode
- Rear panel connectors for external amplifier, antenna, power, computer control/cloning

Options

DM-340MVT

EDX-1 manual antenna tuner EDX-2 automatic antenna tuner ERW-4 personal computer interface

EMS-14 desktop microphone EDS-5 microphone extension cable DM-340MVT DC regulated power supply

CIRCLE 121 ON READER SERVICE CARD

"Radios in this price class typically don't include built-in CW keyers, so it was a pleasant surprise to find one in the DX-77T. Nice going, Alinco!"

"With the long list of features already included in the DX-77T, first-time buyers may be curious as to what additional capabilities they would find in the next step up."

-QST Product Review, June 1998

Simple - Clean - Dependable

U.S.A. Alinco Branch: 438 Amapola Ave. • Suite 130 • Torrance, CA 90501 Phone: (310) 618-8616 • Fax: (310) 618-8758 • Internet: http://www.alinco.com

> Specifications subject to change without notice or obligation. Performance specifications only apply to amateur bands. Permits required for MARS/CAP use.

The DX-77T represents the quality, performance and value you've come to expect from Alinco!

EDX-2

Digital Communications for the 21st Century!

TNC Software

Pacterm '98 for Kantronics Pk-Term '99 for Timewave MultiComm Host for MFJ PTC-Term '99 for SCS (Q4) HALTerm '99 for HAL (Q4)

- Fully Featured
- User Friendly
- Logging Program Compatible
- Y2K Compliant

University, Teaneck, NJ. Contact Jim Joyce, K2ZO, 201-664-6725 (before 10 PM). (Exams)

Oct. 10, LCDRA & CMARC HamFair & Computer Show, Ingham County Fairgrounds Community Center, Mason, MI. Contact Don Tillitson, WB8NUS, 517-321-2004. (Handicapped accessible)

Oct. 10, Maysville Hamfest, Community Center, Maysville, NC. Contact Jo Ann Taylor, WD4JYR, 252-393-2120. (No exams)

Oct. 10, Nutmeg Hamfest & Computer Show, Mountainside Special Event Facility (Indoor Exhibit Hall), Wallingford, CT. Gordon Barker, K1BIY, 9 Edge Wood Rd., Portland, CT 06480; <www.wsl. net/nutmeghamfest>; e-mail: <nutmeghamfest@ qsl.net>.

Oct. 10, Lima Hamfest & Computer Show, Allen County Fairgrounds, Lima, OH. E-mail: <Gas1950 @aol.com>; web: <www.Anglefire.com>.

Oct. 16, OPRC/ARCA Swapmeet/Hamfest, Sabbar Shrine Temple, Tucson, AR. Contact Glen Henderson, WA7OBG, at 520-749-5478; e-mail: linus@primenet.com>. (Exams, Handicapped accessible)

Oct. 16, 14th Annual Tri-Cities Hamfest, Appalachian Fair Grounds, Gray, TN. Mail inquires to P.O. Box 3682, CRS Johnson City, TN 37602.

Oct. 16, Mid-West Amateur Radio & Computer Expo, Lewis & Clark Community College (River Bend Arena), Godfrey, IL. For info, write to Lewis & Clark Radio Club, P.O. Box 553, Godfrey, IL 62035; e-mail: <n9whh@ezl.com>; web: <http://www.ezl.com/ ~Imiller/lcrc.html>. (Exams, handicapped accessible)

Oct. 17, North Central Ohio Hamfest & Computer Show, Ashland County Fairgrounds, Ashland, OH. Contact David Fike, N8UCA, 979 Twp Rd., 1654 RFD 6, Ashland, OH 44805, or call 419-289-1085. Oct. 17, Tailgate Electronics, Computer & Amateur Radio Fleamarket, Albany & Main St., Cambridge, MA. Contact W1GSL, P.O. Box 397082 MIT BR., Cambridge, MA 02139-7082. (Handicapped accessible)

Oct. 17, Kalamazoo Hamfest, Kalamazoo County Fairgrounds, Kalamazoo, MI. Contact <ka8blo@ net-link.net>, or <www.qsl.net/ka8blo/hamfest.html>.

Oct. 23, Swap-Toberfest, Amateur Radio Emergency Services Convention, Polk County Fairgrounds, Rickreall, OR. Contact Bob Boswell, W7LOU, 503-623-2513, e-mail: <w7lou@goldcom. com>, or download a flyer and pre-registration form: <http://www.teleport.com/~n7ifj/swaptobe.htm>. (Handicapped accessible)

Oct. 23, Chattanooga Hamfest, Camp Jordan Arena, East Ridge, TN. Contact David Hoffman, KE4FGW, 423-877-7398; web: http://www.qsl.net/ w4am/carc_index.html.

Oct. 24, Mason-Dixon Computer & Hamfest, Carroll County Agricultural Center, Westminister, MD. Visit http://www.gis.net/~k3pzn, or phone/fax 410-795-2556. (Exams)

Oct. 29–30, Amateur Radio & Computer Show, Morocco Shrine Auditorium (new location), between Jacksonville and the Beach, Jacksonville, FL. Write to Greater Jacksonville Hamfest, P.O. Box 9673, Jacksonville, FL 32208, or visit: http://www.ccse.net/~1rich/hamfest98.htm. (Exams)

Oct. 30, Hamfest Minnesota/Computer Expo, St. Paul River Centre, St. Paul, MN. Contact Mark Roberts at 651-460-6050 or e-mail to <n0pty@pclink. com>.

Oct 31, Halloween Hamfest, St. Louis, MO. Contact Steve Welton, WBØIUN, 9847 Arv-Ellen, Affton, MO 63123 (314-638-4959). (Exams)

Michelle Swann, KE4EZI, of Warner Robins, Georgia, has been named the 1999 "Newsline Young Ham of the Year" (YHOTY). The award is jointly sponsored by Amateur Radio Newsline, Yaesu USA, and CQ magazine. Michelle is 17 and a member of a four-ham family. Her father, Mark, is KR4YH; her mother, Jean, is KE4GRO; and her younger sister, Tiffany, is KF4DGT. According to a news release from Newsline, Michelle was selected as this year's YHOTY recipient based upon her six-year amateur radio career that has been dedicated almost exclusively to public service work, including support communications during the 1994 Georgia floods and last year's Atlanta tornadoes. A recent graduate of Houston County (Georgia) High School, Michelle was accepted to some of the nation's top engineering schools, including the Georgia Institute of Technology, the Massachusetts Institute of Technology, the California Institute of Technology, and Stanford University. She

Michelle Swann, KE4EZI, holds her Newsline Young Ham of the Year commemorative plaque. With Michelle is Arnie Sposato, N2IQO, CQ Advertising Manager. (Photo by Don Wilbanks, KC5MFA)

chose Cal Tech and began classes in September. One of her possible long-term goals is to become an astronaut.

As "Young Ham of the Year," Michelle received, courtesy of Yaesu USA, an expensepaid trip to the 1999 Huntsville Hamfest, along with a gift of Yaesu ham radio equipment. *CQ* magazine treated her to an expense-paid week in Spacecamp Huntsville, as well as a variety of CQ products. Newsline provided Michelle with a commemorative plaque, whose cost this year was underwritten by Dave Bell, W6AQ, President of DBA Entertainment Inc., Hollywood, California. Congratulations, Michelle, from the whole CQ family.

POWER ON WITH ASTRON SWITCHING POWER SUPPLIES

SPECIAL FEATURES:

EFFICIENCY SWITCHING •HIGH TECHNOLOGY SPECIFICALLY FILTERED FOR USE WITH COMMUNICATIONS EQUIPMENT, FOR ALL FREQUENCIES INCLUDING HF. HEAVY DUTY DESIGN •LOW PROFILE, LIGHT WEIGHT PACKAGE. •EMI FILTER MEETS FCC CLASS B

PROTECTION FEATURES: CURRENT LIMITING OVERVOLTAGE PROTECTION

FUSE PROTECTION OVER TEMPERATURE SHUTDOWN SPECIFICATIONS:

INPUT VOLTAGE: 90-132 VAC 50/60Hz OR 180-264 VAC 50/60Hz SWITCH SELECTABLE

OUTPUT VOLTAGE:

13.8 VDC

MODEL	CONT. AMP	ICS	SIZE (Inches)	WT.(LBS)
SS-10	7	10	2.3 x 6 x 9	3.2
SS-12	10	12	2.3 x 6 x 9	3.4
SS-18	15	18	2.3 x 6 x 9	3.6
SS-25	20	25	27/8 x 7 x 93/8	4.2
SS-30	25	30	3 ³ / ₄ x 7 x 9 ⁵ / ₈	5
SS-25M*	20	25	27/8 x 7 x 93/8	4.2
SS-30M*	25	30	3 ³ /4 x 7 x 9 ⁵ /8	5

· *with separate volt & amp meters

All SS power supplies are available in a <u>RACK MOUNT VERSION</u> (3.5 x 19 x 9³/8)

To order Rack Mount Version change SS to SRM (example: SRM-10)

9 AUTRY, IRVINE, CALIFORNIA 92618 949-458-7277 FAX 949-458-0826

www.astroncorp.com

CIRCLE 163 ON READER SERVICE CARD

ANAHEIM, CA (Near Disneyland) 933 N. Euclid St., 92801 (714) 533-7373 (800) 854-6046 Janet, KL7MF, Mgr.

BURBANK, CA 2492 W. Victory Bl., 91506 (818) 842-1786

(800) 854-6046

Eric, KA6IHT, Mar. Victory Blvd. at Buena Vista 1 mi, west I-5

OAKLAND, CA 2210 Livingston St., 94606 (510) 534-5757

(800) 854-6046 Mark, WI7YN, Mgr. I-880 at 23rd Ave. ramp

SAN DIEGO, CA 5375 Kearny Villa Rd., 92123 (858) 560-4900

(800) 854-6046 Tom, KM6K, Mgr. Hwy. 163 & Claremont Mesa

SUNNYVALE, CA 510 Lawrence Exp. #102 94086 (408) 736-9496 (800) 854-6046 Ken, K1ZKM, Mgr.

So. from Hwy. 101

NEW CASTLE, DE (Near Philadelphia) 1509 N. Dupont Hwy., 19720 (302) 322-7092

(800) 644-4476 Rick, K3TL, Mgr. RT.13 1/4 mi., So. I-295

PORTLAND, OR 11705 S.W. Pacific Hwy. 97223 (503) 598-0555 (800) 854-6046

12 Store Buying Power!

YAESU

FT-840

• 100W • 12V DC • DDS . Gen. Cov. Rx. 100 mem.

Optional Ext. Auto • Tuners Available

Call Now For Our Low Pricing!

Call For Low Autumn Pricing

VX-5R

50/2M/440HT

. 5W output

· Li-Ion Battery

Wideband RX, 6M-2M-440TX

· 220 mems, opt. barometer unit

Call For Low Intro Price!

Alpha Numeric Display

· CTCSS/DCS built-in

R

FT-847

Ultimate Base Station, HF, VHF, UHF

ORLDWIDE DISTRIBUTION

- 100w HF/6M, 50w 2M/430 mHz
- DSP Full Duplex Cross-band
- · 1200/9600 Baud Packet Ready

Call for Low Price!

FT-90R 2M/440 Mini Dualbander Transceiver

Rich, KK7PL, Mgr. Tigard-99W exit from Hwy. 5 & 217

DENVER, CO

8400 E. Iliff Ave. #9, 80231 (303) 745-7373 (800) 444-9476 Joe, KDØGA, Mgr.

PHOENIX, AZ

1939 W. Dunlap Ave., 85021 (602) 242-3515 (800) 444-9476 Gary, N7GJ, Mgr. 1 mi. east of I-17

ATLANTA, GA 6071 Buford Hwy., 30340 (770) 263-0700 (800) 444-7927 Phil, N4DRO, Mgr.

Doraville, 1 mi. no. of I-285

WOODBRIDGE, VA

(Near Washington D.C.) 14803 Build America Dr. 22191 (703) 643-1063 (800) 444-4799 Mike, N4MDK, Mgr.

Exit 161, I-95, So. to US 1

SALEM, NH

(Near Boston) 224 N. Broadway, 03079 (603) 898-3750 (800) 444-0047 Chuck, KM4NZ, Mgr. sales@hamradio.com Exit 1, I-93; 28 mi. No. of Boston

FT-1000MP HF Transceiver

Enhanced Digital Signal Processing

Dual RX

- . Collins SSB filter built-in
- +100W, Power supply built-in

Call Now For Low Pricing!

FT-100 HF/6M/2M/70CM Transceiver

- · Compact Transceiver w/detachable front panel
- Rx 100kHz to 970mHz (cell blocked)
- Tx 100W 160-6M, 50w 2M, 20W 70CM
- . Built-in DSP, Vox, CW keyer

300 Memories

Call Now For Low Pricing!

AZ, CA. CO. GA. VA residents add nales tax Pricas, specifications. subject to change SOUGH THOMPS

Look for the **HRO Home Page** on the World Wide Web

VX-1R

2M/440 Sub-Mini HT

- 290 Memory Channels
- Receives 76-999mHz plus AM BCB (Cell Band Blocked)

Call Now For Your Low Price!

.5W output

. Lithium Ion Battery

- Built-in CTCSS/DCS Encoder/Decoder
- . Less than 4" wide!

50w 2m, 40w 440mHz

Call for Your Intro. Low Price!

FT-920 HF+6M Transceiver

- 100w 160-6M, 12VDC
- · Built-in DVR, CW Memory Keyer
- DSP, Auto-Notch 99 Memories

FT-8100R 2M/440 Mobile

. 110 memories . Wide Band RX

· Ultra Compact · 50w/35w 2m/440

Call Now For Special Pricing

Backlit mic • Remotable front panel w/opt. YSK-8100

· Computer controllable, CAT System

Call For Low Pricing!

- DVR, Decode, Paging Built-in
- · Alpha numeric display
- Wide Band receive

- HiSpeed scanning

Call For Your Low

Pricing!

UPS - Most Items Over \$100 **Rapid Deliveries From** The Store Nearest To You!

· Battery Saver

FT-50RD

- 112 Memories
- · Mil-Spec

In the background is the big tower (60 ft. of Rohn 45 at 55 ft. above street level), which has a 10-element log periodic and above that a 2-element 40 meter beam. Lots of wire antennas are also attached to this support. On the left is Frank Wright, N3OQB, HWC President. On the right is Mike Manafo, K3UOC, the author, and HWC Trustee.

On October 2–3 the Harvard Wireless Club will be on the air signing W1AF to celebrate their 90th anniversary. Here is some of the history of America's oldest amateur radio club.

A Collegiate Radio Milestone The Harvard Wireless Club 90th Anniversary Celebration

"CQ CQ, this is W1AF at Harvard University, special event station, celebrating 90 years as America's oldest amateur radio club..."

Uning the bands on the weekend of October 2–3 this year, one will likely hear this transmission coming from Harvard Square in Cambridge, Massachusetts. America's oldest amateur

*6 Linden St., Cambridge, MA 02138 e-mail: <k3uoc@aol.com>

BY MIKE MANAFO,* K3UOC

radio club will be celebrating its 90th anniversary over these two days by working as many amateur radio operators as possible throughout the world. We invite all stations to work W1AF and join the celebration. Let the pileups begin!

Founded in 1909

The first club record book in the Harvard University Archives tells us that The Radio Society of the Institute for Geographic Exploration at Harvard was formed in early 1909 by Professor George W. Pierce.¹ By 1910 this group was known as the Harvard Wireless Club (HWC). Pierce, who was Rumford Professor of Physics and Director of Crufts High Tension Laboratory, was an early experimenter with the new super-heterodyne receiving circuit. Experimenters still study and work with his Pierce oscillator circuit today.

The club averaged about 25 members in those early days. In March 1912 the HWC published Amateur Wireless Stations within 20 miles of Boston, listing over 300 stations in the area.² This callbook predates all Commerce Department list-

ings of amateurs as well as the ARRL's first callbook in 1915. At the time of this book's publication, HWC members were using the call "HDU" (Harvard University) from a station located in Jefferson Laboratory of the Physics Department. Within a few short years operators would be signing 1AF and 1XJ.

Between the Wars

cations ceased at Harvard and elsewhere during World War II.

36 Years at 52 Dunster Street

Following the war, the club eventually reformed in 1949–1950 under the leadership of club president Bill Hampton, ex-W9SWQ. During the 1950s a magnificent Collins station was assembled, antennas were erected, and membership increased rapidly. There are so many stories from this era that we consider this to be the golden age of the HWC. Dozens of operators built, experimented, and operated from the third floor of 52 Dunster Street. For several years W1AF operators ran mountaintop DXpeditions up in Vermont. The HWC President for 1954-55, Carter Pfaelzer, W1TCD (SK), was instrumental in garnering resources and support for the club. As in the 1930s and 1940s, things slowed down again for W1AF in the 1960s. In reading back through the old station logs, one finds that reliable equipment was the major concern during this era. The old Collins gear was constantly on the workbench; finding new equipment and resources was a never-ending quest. In the mid-1960s one HWC president came back from summer vacation to find several important pieces of equipment had been stolen. HWC operators were most certainly disheartened by these turns of events, but eventually some newer Collins and National gear found its way to 52 Dunster Street via the estate of a deceased alumnus. Interestingly, in 1960 the HWC welcomed renowned operator Katashi Nose, KH6IJ (SK) as a member. Nose had come to Harvard to pursue his Masters degree in education and often dropped by the shack to operate or just to chat with other members. In a 1989 letter to the HWC, Nose recalls that he was known less for his operating talents at W1AF than he was for his skills at preparing tantalizing Japanese barbecue during the 1961 HWC Field Day outing.

During the mid-1970s, HWC operators turned toward contesting as several new beam antennas went up at 52 Dunster Street. We suspect that Fred Hopengarten, K1VR, an MBA student at the time, had something to do with this particular agenda. The station log also tells us that a local operator named Ken Wolff, K1EA, began dropping by the club and working contests frequently from W1AF. In fact, we have several *handwritten* contest logs in our archives from a young Mr. Wolff! Now that's something unique!

During that same era another MBA student passed through Harvard and W1AF. This was noted IOTA DXpeditioner A.E. "Buzz" Jehle, N5UR. Buzz left his mark on the HWC by taking it upon himself to preserve all the club's valuable documents by making copies and then placing the originals in the University Archives. Without his foresight, much of our important heritage could easily have been lost.

Disaster and Rebirth

During the early 1980s, the HWC became involved in traffic handling, and many of the hot CW operators of the day kept regular schedules handling net and emergency traffic. However, as in 1929, disaster struck again at the HWC in 1986. After 36 years at 52 Dunster Street, Harvard preempted the station space and the HWC was again without a home. For several years after, a small, determined group of members kept the W1AF flame alive, operating from the dorm room of club president Lisa Rees Miller, N9LM. Finally in 1989, the HWC relocated to 6 Linden Street, where we reside today. With hard work and generous assistance from the administration and alumni, HWC members turned an old storage room and a squash court into a handsome station/ clubroom complex. In October 1989 the new station was rededicated and a special event operation commemorating the 80th anniversary of the club was held. Over the next several years HWC membership grew to an all-time high of 35, including undergraduate and graduate students, faculty, staff members, and Harvard alumni. Then in 1990, W1AF carried out a reciprocal exchange with a club in the Soviet Union and the US1A operation was launched. This was followed in 1991 by a DXpedition to St. Maarten (PJ1A) and a mountaintopping Field Day excursion up to Vermont (W1AF/1) in the spirit of those adventurous HWC operators of the '50s.

The post-war period between 1921 and 1925 witnessed tremendous advances in radio, with 1AF at the forefront. After three or four moves around campus, HWC operators finally found their ideal QTH atop Harvard football stadium. The station boasted CW and phone capability, two receivers, and two 60 foot masts 150 feet apart to support the antenna. This premier setup was featured in the *Harvard Alumni Bulletin, The New York Times*, and in the July 1925 issue of *QST*. Unfortunately, this station was destroyed by a fire caused by an overheated wood-burning stove during the winter of 1929.

The 1930s and 1940s were hard times for the HWC as first the Great Depression set in followed by rising world tensions and the outbreak of World War II. Alumni from that era remember W1AF as in a period of decline and sometimes without a home. At other times, the Harvard Wireless Club went by the call W1JOO and operated from the Harvard Law School. The callsign W1AF was even lost, twice-once to Bill Coburn, who taught a course at Harvard in communications for geographical explorers, and several years later to a Medford, Massachusetts amateur named Frank Gow, who published two excellent construction articles in QST in 1936. Of course, all amateur communi-

We actually date this photo at about 1954 or 1955. HWC was located at 52 Dunster Street up on the third floor. That was the W1AF QTH from 1950–1986, the longest W1AF had been at any of its dozen or so QTHs on campus since 1909. The Collins gear seen here was donated by an alumnus and served W1AF for nearly 20 years.

Over the past decade, HWC members have added several new operating positions; erected new HF, VHF, and satellite antennas; worked numerous contests, held licensing sessions; and carried out a whole host of activities that amateur radio clubs do. During 1998–1999 we have again completely renovated the station, clubroom, and antenna system. We are pleased that the HWC is in excellent condition today and that our membership is once again on the rise. The HWC is continually on the lookout for new members (licensed or not) from within the Harvard

This is a recent photo that appeared in the March 1999 issue of the Harvard Gazette. Pictured are Frank Wright, N3OQB, HWC President (background) and Nick Guydosh, N2MSE, HWC Vice President. The ops are fine-tuning a Heath Mohawk receiver (next to the Apache transmitter, both vintage 1955). Sitting atop the gear are "Ernestine and Rebecca," the transmitting tubes of the HWC in the 1930s. This photo represents three different eras in the life of the HWC. University community.

Visiting W1AF today, you will find four operating positions, including two state-ofthe-art HF installations, a fully operational Heath vintage station, and a VHF position with satellite capabilities. Up on the roof of 6 Linden we have two HF towers sporting antennas for all bands except 160 and a VHF azimuth installation for satellite work. For an in-depth look at the HWC, take the Virtual Tour on our web site at: <http:// www.hcs.harvard.edu/~w1af/>.

Tomorrow's Challenges

As with many collegiate clubs across America, we see our largest challenge as recruiting new student members. We will always have our alumni, faculty, graduate students, and staff members, but the life blood of the HWC has always been the undergraduates, and we are working hard to keep our students at the core of club activities. We believe that colleges can be fertile territory for attracting new members to the amateur ranks. In that sense, collegiate clubs have the same mission as the many elementary and secondary school radio clubs across the country.

At the same time, we realize that collegiate clubs must change with the times. We need to stay abreast of new communications technologies without extending

The FT-2600M is a deluxe, compact FM mobile transceiver providing high power output and outstanding receiver performance for the 144 MHz band. Included in the FT-2600M's feature complement are:

Features

- 60 Watts of power output, with selection of four power levels for every operating situation.
- Expanded receiver coverage: 134-174 MHz.
- Keyboard entry of operating frequencies from the microphone.
- Excellent protection from receiver intermodulation distortion, thanks to Yaesu's renowned Advanced Track Tuning front end.
- Outstanding packet radio capability at 1200 or 9600 bps with easy interface via a dedicated rear-panel jack.
- 175 memories which can store repeater shifts, odd repeater shifts, CTCSS/DCS tones, and 8-character Alpha-Numeric labels.
- Built-in CTCSS and DCS Encoder/Decoder circuits.
- ■The Smart Search[™] feature automatically sweeps a band and loads active frequencies into a dedicated memory bank.
- ●The Yaesu-exclusive Omni-Glow[™] multi-function LCD display.

- Yaesu's exclusive ARTS[™] (Auto-Range Transponder System), which alerts the operator when an "out-of-range" condition exists with another ARTS[™]- equipped station. This feature is especially valuable during search-and-rescue operations with hand-held units.
- Extensive MENU system, which allows customization of a number of transceiver performance characteristics.
- Additional features include a transmit Time-Out-Timer (TOT), Automatic Power-Off (APO), Automatic Repeater Shift (ARS), plus provision for reduction of the TX deviation in areas of high channel congestion. And an all-new S-Meter Squelch circuit allows the owner to set the squelch to open at a programmable setting of the S-Meter, thus reducing guesswork in setting the squelch threshold.

©1999 Yaesu USA: 17210 Edwards Road, Cerritos, CA 90703 (562) 404-2700 Specifications subject to change without notice. Specifications guaranteed only within Amateur bands. Some accessories and/or options are standard in certain areas. Check with your local Yaesu dealer for specific details.

For the latest news, hottest products: Visit us on the Internet! http://www.yaesu.com

HF ENTHUSIASM

Yaesu, Choice of the World's top DX'ers

Over 40 years of experience in HF transceiver design has firmly established Yaesu as the choice of the world's top DX'ers. The knowledge that produced unequaled RF technology and design that is found in the State of the Art FT-1000MP can also be found in the miniature FT-100. The FT-100 while small in size $6.3" \times 2.1" \times 8.1"(160 \text{ W} \times 54 \text{ H} \times 1000 \text{ W})$

205 D mm :w/o knob) is large in features and performance. This is accomplished by using the most advanced manufacturing techniques and component mounting technology. High Dynamic range RF front-end technology and Advanced Digital technology such as DSP sets a new standard of receiver performance for miniature HF transceivers. The single piece die cast frame, dual cooling fan system and revolutionary RF high power design technique keeps the FT-IOO running cool and smooth in the most adverse operating environments. (TX Power output=100W HF, 50W VHF/20W UHF) The TX Equalizer offers crisp, clear and clean TX audio reproduction that until now was only found in top of the line HF base stations. The optional ATAS-IOO (active tuning antenna system) ushers in a new age of mobile and field day operation (from HF to UHF frequencies). Add the optional ATBK-IOO base kit (Good for limited space, simple setup.) and you've got a base station that ranks among the best in the world.

Features

- Frequency coverage:
- RX : 100 kHz-961 MHz (cellular blocked)
- TX : 160-6 m/144-148 MHz/430-450 MHz
- Power output : 100 W (160-6 m), 50 W (144 MHz), 20 W (430 MHz)
- DSP Bandpass Filter, Notch Filter, Noise Reduction, and Equalizer
- IF Noise Blanker
- SSB, CW, AM, FM, AFSK, Packet (1200/9600 bps) operation
- Detachable Front Panel
- Two Antenna Jacks (HF/50 and 144/430)
- IF Shift
- VOX
- Dual VFOs

 Available IF bandwidths of 6 kHz, 2.4 kHz, 500 Hz, and 300 Hz (6 kHz, 500 Hz, 300 Hz filters optional)

h

- Built-in Electronic Memory Keyer
- Speech Processor
- Built-in CTCSS and DCS for FM operation
- Automatic Repeater Shift and Auto-Range Transponder System
- Smart Search^{IM} Automatic Memory Channel Loading System
- 300 memory Channels
- Quick Memory Bank (QMB)

- Bright LCD with multi-function display
- Optional FC-20 External Antenna Tuner
- Compatible with ATAS-100 Active-Tuning Antenna System. Add the optional ATBK-100 base kit

MICRO MOBILE SERIES

For the latest news, hottest products: Visit us on the Internet! http://www.yaesu.com

©1999 Yaesu USA, 17210 Edwards Road, Cerritos, CA 90703 (562) 404-2700

Specifications subject to change without notice. Specifications guaranteed only within Amateur bands. Some accessories and/or options are standard in certain areas. Check with your local Yaesu dealer for specific details.

"Ham" Originates at Harvard?

Perhaps you've heard the story about the term "ham" having originated at Harvard. This story has been published and told by word-ofmouth countless times over the past decades. Here's how it goes:

Have you ever wondered why we radio amateurs are called hams? Well, the word ham originated in 1908 and was the call letters of one of the first amateur wireless stations operated by some members of the Harvard Wireless Club. They were Albert Hyman, Bob Almy, and Peggie Murray. At first they called their station Hyman-Almy-Murray. Tapping out such a long name in code soon called for a revision, and they changed it to Hy-A1-Mu, using the first two letters of each name. However, early in 1909 some confusion resulted between signals from HYALMU and a Mexican ship named Myalmo, so the operators decided to use only the first letter of each name and from that point on identified their station as HAM.

In the early pioneer and unregulated days of radio, amateur operators picked their own frequencies and call letters. Then, as now, some amateurs had better signals than some commercial stations. The resulting interference finally came to the attention of Congressional Committees in Washington, and they gave much thought to proposed legislation designed to critically limit amateur activity.

In 1911 Albert Hyman chose the controversial Wireless Regulations Bill as the topic of his Senior Thesis at Harvard. His instructor insisted that a copy be sent to Senator David Walsh, a member of the committee hearing the Bill. The Senator was so impressed that he sent for Mr. Hyman to appear before the Committee. Hyman was put on the stand and described how the little amateur station, HAM, was built. Then, in an emotional statement, he told the crowded committee room that if the bill went through, the three operators would have to close down HAM

because they could not afford the license fees and other requirements which were called for in the bill.

The debate started and the little station, HAM, became a symbol of all the little amateur stations in the country that were crying out to be saved from the menace and greed of the big commercial stations who didn't want them around. Finally, the Wireless Regulations Bill got to the floor of Congress and every speaker talked about the poor little station, HAM. Because of Hyman's stirring testimony, Congress voted to save amateur radio and limit the power and influence of commercial radio. Thereafter, nationwide publicity identified the station HAM with amateur wireless operators. From that time to this, and probably to the end of time, in radio every amateur is a ham. And, that's how it all got started.

Great story isn't it? Thanks to Harvard's Albert Hyman for saving amateur radio and providing us with the "ham" label as well! Unfortunately, "it just ain't so." HWC members have thoroughly researched this story over the years. Albert Salisbury Hyman actually did graduate from Harvard College in 1915 and then went on to earn his M.D. degree from Harvard in 1918. He was a prominent cardiologist in New York City and is credited with introducing the first heart pacemaker in 1932. However, Hyman is not listed on the early membership rosters of the HWC. Furthermore, there is no mention in the Harvard Archives of Dr. Hyman ever being involved in amateur radio or ever testifying before Congress. Additionally, neither Almy nor Murray appears in any alumni records of the time. We have to admit, though, it's a very entertaining story. And where it came from, we haven't a clue

ourselves into unsupportable projects. We need to offer activities and programs that rival the allure of the Internet without abandoning amateur radio. We need to sell ourselves to prospective members and then keep them interested once they are involved and licensed. We need to promote our presence on campus and in the amateur radio press. Did you know that there are more than 200 active collegiate clubs and stations in the United States and that new clubs pop up every year? There are many challenges and opportunities facing both the HWC and all collegiate radio in the future. And in celebration of what the future holds in store for all of us, let's have some fun!

1988. Over the past 20 years, he has operated under a number of DX calls, including 7Z500, 7Z1AB, PJ5AA, PJ8H, 4M5V, YXØAI, US1A, 4M4A, P46S, and a host of portable K3UOC operations mostly from Venezuela and the Dutch Caribbean. He holds a doctorate in educational administration from Harvard and is the proud father of Molly, born July 16, 1999. Visit his web site at <http://members.aol.com/k3uoc/ index.htm>.

Complex Impedance Analyzer Graphical display of:

- Impedance
- Reactance
- Resistance
- Phase angle (Vector)
- SWR and Return Loss Also shows:
- L&C/conjugate match
- · 2:1 BW & Q factor
- Cable distance to first short or open
- Factory direct \$399.95 add \$7.50 S&H

AEA

Div. Tempo Research Corp.

1390 Aspen Way Vista, CA 92083 Tel: 1-800-258-7805 FAX: 1-760-598-5634 www.aea-wireless.com

Footnotes

1. Much of the early club history is taken from The Harvard Wireless Club: 80 Years History of W1AF by Dr. Gene Simon, W2KOY (SK).

2. This early callbook and many other club primary source documents are available on the HWC website at: <http://www. hcs.harvard.edu/~w1af/>.

About the Author

Mike Manafo, K3UOC, holds an Extra Class license and has served as Trustee of W1AF, the Harvard Wireless Club, since

A Special Event

The Harvard Wireless Club celebrates the 90th anniversary of its founding by Professor George W. Pierce in early 1909.

On Saturday and Sunday, October 2 and 3, 1999, between 1200Z-0000Z both days, listen for W1AF on the following frequencies: HF SSB 3.890, 7.270, 14.270, 21.370, and 28.390; HF CW 35 kHz up from the lower band edges; VHF SSB 50.150, 14.200, 432.150.

A special 90th anniversary QSL will be sent to all those requesting a confirmation. In addition, each request enclosing an SASE will receive complimentary souvenir QSL cards from past W1AF DXpeditions, including US1A, PJ1A, and PJ8H.

Our mailing address is: Harvard Wireless Club (W1AF), Harvard University, 6 Linden Street, Cambridge, MA 02138.

For further information, contact club officials at <w1af@harvard.edu>.

Results of the 1998 CQ WW CW Contest

BY BOB COX*, K3EST

ontesters were hoping that conditions would improve. At least they were hoping that CW would be better than the variable phone weekend had been a month earlier. As the CW weekend approached, thousands of contesters from all over the world were putting the final touches on all their preparations to do well in the contest. What happened during the CW weekend was unexpected and wonderful. For most of the world, conditions were fantastic on all bands. The 1998 CO WW CW will be remembered for some of the best conditions across the spectrum many of us have seen in a long time. This is best summed up by "a contest to remember for all time"-W9RE (N9RV).

After all the logs were counted, there were a total of 3345 CW logs, which is only a little down from the SSB total. It seems that CW can generate a lot of fun for many people. So how did it all turn out? Keep reading to find out.

High Power

The battle for the top spot this year was as competitive as ever. Who are the best operators in the world? Each year the box of top ten finishers in the WW gives an answer to that age old question. These operators travel to places around the globe where the propagation might be a little bit better than at your QTH. But once they get there, they have to do everything right, because the pressure of the competition is tremendous. Jose, CT1BOH (P4ØE), handled the pressure pretty well. He jumped on a jet and made his way to the QTH of Jacky, P43P, which is located on the north shore of Aruba. This is a wonderful station in an ideal location, P40E's big low band numbers helped him not only grab the top spot in the world AB, but led to a new all-time record as well. Fighting off the sea's corrosion on the towers and antennas long enough to finish in second place was Ville, OH2MM, who has won the CQ WW more times than one can remember. It was only a little over a year ago when nothing existed at the HC8N QTH except shrubbery. Now Trey, N5KO, has keyed this well-crafted new station to third world high, and the view isn't bad either. Kudos are also due to top ten finishers K4BAI (John set a new North American record.) and DL6FBL -operators of 8P9Z and CN8WW, respectively-for their extremely accurate logs. The outstanding conditions allowed almost every corner of the European continent a shot at the SOAB standings. GIØKOW and S58A slugged it out for 48 hours, and when it was all done, it was Andy, GIØNWG at KOW who prevailed. The British Isles stations used their low

Jan, 4X1VF.

*1816 Poplar Lane, Davis, CA 95616 e-mail: <k3est@cqww.com> band advantage to capture four of the top ten spots, but super efforts on the higher bands helped the central and southern EU boys to the glory as well.

What was happening in the USA? A lot! Three stations finished with over 7 million points. The competition was the best it has been in years. Top USA honors went to Greg, W1KM. He edged out Bill, W4AN, who in turn just edged out Jeff, K1ZM. Special mention must go to W9RE operated by Pat, N9RV. What a terrific score from Indiana.

Low Power

You can sure work a lot of stations running a hundred watts. Just look at the score of AA3B, who keyed V26K to victory. Bud set an all-time low power record with his fine accuracy and skills. In 1997 it was VP2EEB, and now V26K. What will Bud try this year?

In the low power USA category the old record was totally demolished by Jeff, N5TJ, with over 3.1 megapoints. Is there anything this guy can't win? We took some time to ask Jeff why he has ventured into the low power category; his answers are very interesting: "I am a tworadio man, and if I operate QRO too much interstation QRM to use 2 radios. One radio = no fun. QRO and neighbors don't go together for 48 hours when living on a one-third acre lot. I can't be competitive QRO from home."

We also asked about antennas: "A single crankup w/160 shunt fed, 80 meter sloper, Force 12 402/204 interlaced, homebrew (NW3Z design) 515/510 interlace, A3 on sidemount at 30 feet." While that's not a trapped dipole in the attic, it sure isn't stacked monobanders either. Incredible job, Jeff! Second place went to W2TZ with 2.6 meg, and third slot went to N8AA with 2.4 meg.

In Europe after the dust settled Franc, S59AA, operating from his home in the suburbs of Ljubjana, pushed his station to claim top honors. At the other end of zone 15, second-place Europe went to Gediminas, LY3BA. Third place was won by HA1CW. But the real story in Europe was that all ten top scorers finished within 500K of each other. That's intense!

QRP

QRP is an interesting category. One entrant runs 100 mW while the next runs 5 W. No other category has such power differences. That's what makes QRP fun. It's a personal challenge.

The QRP scores are once again crossing the mega-point level. Congratulations to HA2SX for winning it worldwide with just over 1 meg. Second-place world and first-place USA went to N6MU from . . . California! John has done the seemingly impossible; he won both modes QRP USA from the West Coast. Wow! And his score of 857k is nothing to be embarrassed about either. Third-place world and second-place Europe went to LY2FE with just under 800k points. These are very impressive scores for stations running just 5 watts. Second- and

TEAM CONTESTING

 The Team: 55,395,494. P4ØE (CT1BOH), EA8EA (OH2MM), CN8WW (DL6FBL), C4A (9A3A), WP3R (DL2CC).

2. Handkey Team #2: 27,107,560. K6LA, N2NT, W1KM, WC4E, W9RE (N9RV).

3. Handkey Team #3: 23,826,619. V26K (AA3B), W4AN, K1TO, N4ZR.

4. Handkey Team #1: 21,760,658. DKØMM (DJ7IK), VP5GN (K5GN), AA4S, W6AX (N6IG), N4AF.

 Contest Club Finland #1: 21,620,846. OH5LF (OH1WZ), OH1MM, PZ5JR (OHØXX), OH6RX, XX9X (OH2PM).

6. Handkey Team #4: 14,026,178. N5TJ, NA2U, K3MD, WT1O, W1WEF.

7. Team Nippon: 13,160,991. FG5BG (JF2DQJ), V8A (JO1RUR), 9M2TO (JAØDMV), 9M8YY (JR3WXA), 9M6NA (JE1JKL).

8. Moscow Contest Team: 10,534,747. RZ3BW, RZ3AZ, RA3CW, RX3APM, RO3A.

9. The Dream Team: 6,874,159. LY2KM, LY2MM, LY2OX, LY5W (LY1DR), LY6M (LY1DS).

10. Team Chihuahua Uno: 4,818,784. W4PA, WO4O, N4IR, NN4T, N4KN.

11. ZA-TE Plus Team: 4,275,169. 9A9A, 9A5W, 9A6A, 9A3GW, 9A2EU.

12. Russian Woodpeckers: 3,931,262. UA1OMS, UA1OZ, RA1OJ, UA1OMX, RW1ON.

13. Contest Club Finland #4: 3,671,941. OH3WW, OH8BQT, OH8LAE, OH2LU.

 **Contest Club Finland #3: 3,043,554. OHØJJS (OH6LI), EA8/OH2BCI, OHØZ (OH2MAM), OH1F (OH1NOA), OH1F (OH1MDR).

15. Contest Club Finland #2: 2,717,112. OH4JFN, OH5BM, VR2/OH6YF, OH9DX.

16. Contest Club Finland #5: 1,746,629. OH2BSQ, OHØJJS (OH4JLV), OH6KN, OH1ZAA.

**Single Band Team.

third-place USA went to N1TM and K1RC, respectively.

Assisted

It took a while, but the winner of the assisted category beat the all band high power category and by quite a bit. All those years of learning what to do, when to look at the packet screen, when to avoid screen chasing, paid off big time for Charlie, K3WW. Not only did he win, he set a new USA record. Second place went to Yankee Clipper power house KI1G, and Noah, K2NG, took third. The top European scorer was Igor, RZ3BW. This was the first time that the assisted category was won so far east in Europe. Second place went to Bernd, DF3CB, operating from Munich next to a recording studio.Quite a FB effort, Ben! Special mention must be made of the far Pacific effort of KH2/N2NL. Stationed on Guam, he made good use of his location.

6Y2A team defeated the Voodoo group at 5V7A. The 6Y2A crew planned for months what their strategy would be. They used verticals, almost exclusively, set up on the beach of the north coast of Jamaica. Their hard work sure paid off with a new world multi-multi CW record, accomplished from a two-point area! Second place went to the "Voodudes" who did a marvelous job after scrambling to relocate when their hotel was not available.

Three North American stations finished in the top six box, with TI1C operating at TI2CF's QTH coming in third and J6DX at number six. The crew at EA9EA finished second in Africa and number four overall. A61AJ at number five was the highest scoring multi-multi from Asia setting a new Asian record. For the USA championship, Matt and his team at KC1XX finished first again this year, just ahead of W3LPL and K3LR. Europe was lead by DFØHQ, the famous quad station located in eastern Germany. They just edged out the OH2U team formerly known as OH2HE.

In Japan at the mountain QTH of JA5BJC, they cranked up their towers, set up the station, and keyed their way to a new all-time Japanese multi-multi record. Congratulations.

Team Contesting

Get five contesters together from anywhere in the world and you have a team entry in the CQ WW. That's just about what "The Team" did with representatives from four continents. Doubling the total score of the second-place team, "The Team," had four finishers in the top ten world box. In terms of real competition, the battle for second through fourth place among Handkey teams was intense. Team Handkey #2 took second place with a group from five USA call areas.

Joining a team does not in any way prevent you from submitting your score for your local club. Team contesting allows for some interesting global alliances and more fun for everyone.

Clubs

A lot of club spirit plus getting everyone on the air, coupled with DXpeditions, is the formula for a winning club effort. The number one club this year was the Yankee Clipper Contest Club. Through a well-orchestrated campaign of phone calls and just plain hard work, this NE USA giant set the all-time club record of 460 million points! Not far behind was perennial club winner, the Frankford Radio Club. The YCCC, FRC, and third-place Potomac Valley Radio Club launched many DXpeditions. Last year we predicted that it might not be long before the top three clubs would top a billion points. Well, this year 1.06 billion points were accumulated by the top three alone!

Setting a new DX club record with over 164 million points generated by a determined club effort was the Bavarian Contest Club. When you look at the results, you will find many DXpeditions mounted by the BCC, second-place finisher Contest Club Finland, and frequent winner, the Rhein-Ruhr DX Association. The

Multi-Single

The multi-single category is one of the most competitive. There were over 275 entrants who spent long hours building their stations and training their operators. The 1998 contest final MS results produced some of the most interesting final scores in this category in many years. The world winner was K1AR. Yes, a USA MS took the world top slot. Not only did the three-man crew do that, they set a new North American record. It has been a long time since a USA station finished #1. The #2 world and #1 Europe station was TM2Y operating from F6BEE's station in the French countryside. Their log was very accurate. Third-place world was Sig, N3RS, and his crew in eastern Pennsylvania. Second-place Europe and #4 world was EA6IB operating from the lovely isla Ibizia. Congratulations to all the winners, who showed us what is possible when conditions really are good.

Multi-Multi

The multi-multi stations are the beacons of contesting. They provide benchmarks for all of us. A sure sign of improving conditions was that 12 stations broke 20 million, compared to only the top three last year. In a reversal of fortunes, the

Julio, HI3K.

Visit Our Web Site

AMERITRON True Legal LimitTM Tuner

Easily handles 1500 Watts continuous carrier even on 160 Meters . . . High-current edge-wound silver plated Roller Inductor . . . Two 500 pf high capacitance tuning capacitors with 6:1 vernier reduction drives ... 3 core choke balun ... Six position antenna switch . . . True peak reading Cross-Needle SWR/Wattmeter . . .

Call your dealer for your best price!

AMERITRON ATR-30

- Handles 1500 Watts carrier
- Super High Current edge-wound silver plated Roller Inductor
- 500 pf tuning capacitors with 6:1 vernier reduction drives
- 3 core choke balun
- 6 position antenna switch
- True peak reading meter

AMERITRON's ATR-30 True Legal LimitTM roller inductor antenna tuner is ham radio's toughest! It'll handle 1500 Watts continuous carrier output on all modes and all HF bands into most antennas -- even on 160 Meters where most antenna tuners fail.

It's perfect for Ameritron's most powerful amplifiers where the ATR-30 just loafs.

All band coverage lets you operate 1.8-30 MHz including all MARS and WARC bands.

Super High Current Roller Inductor

You'll see Ameritron's new super high current air core roller inductor. It's edge wound from a thick solid copper strip and silver plated. This produces a large surface area and a massive conductor. It can carry huge circulating RF currents and withstand

tremendous heat that'll melt or burn ordinary roller inductors.

A gear driven turns counter and crank knob gives you precise inductance control.

Two 500 pf Tuning Capacitors

Two 500 pf -- the highest of any antenna tuner -- variable transmitting capacitors give you no-arc wide range impedance matching for true high power performance.

6:1 vernier reduction drives makes capacitor tuning smooth and easy.

Super Balun, 6 position Antenna Switch

Super heavy duty three core choke balun lets you match virtually any balanced feedline antenna without core saturation.

A 6 position antenna switch lets you select your desired operating antenna.

Read true Peak Power

Ameritron's active electronic true peak reading meter accurately reads forward and reflected power and SWR simultaneously on a lighted Cross-Needle meter.

Roomy Cabinet maintains High-Q

Roomy extra-strong .080 inch thick aluminum cabinet gives highest efficiency and lowest loss. 131/4Wx55/8Hx171/2D inches. **AMERITRON ATR-15 Antenna Tuner**

ATR-15, \$399. Handles 1500 Watts RF output. Slightly less on 160 Meters. Bandswitched T-Network,

peak reading SWR/ Wattmeter, covers 1.8-30 MHz, 6 pos. antenna switch, balun. 131/2

W x51/2x131/4 in. Perfect for AL-80B/AL572.

Ameritron has the best selection of True Legal LimitTM HF Amplifiers

AMERITRON's legal limit amplifiers use Peter Dahl super heavy duty Hypersil power transformer capable of 2500 Watts!

Ameritron's most powerful Amp with Eimac^B 8877 ceramic tube

the herculean Eimac^R 8877 ceramic tube. It's so powerful that 65 Watts drive gives you the full output power -- and it's just loafing because the power supply is capable of 2500 Watts PEP. All HF bands, all modes. 77 pounds, 181/2Dx17Wx10H in.

1.5 plus kW SSB HF Amp with 2 Eimac* 3CX800A7 tubes

AL-800H, \$2395 suggested retail. Two Eimac^R 3CX800A7 tubes produces 1500 plus Watts SSB PEP with 55 Watts drive. 52 lbs., 81/2Hx161/2Dx141/4W in. AL-800, \$1695 suggested retail, single 3CX800A7, 1250 Watts out with 70 Watts drive.

NearLegalLimit[™] Amp

AL-572, \$1395 suggested retail. New class of Near Legal Limit[™] amplifier gives you 1300 Watts SSB PEP power output (70 Watts drive) for 65% of price of full legal limit amps! Instant 3-second warm-up. 40 lbs. 81/2Hx151/2Dx141/2W inches.

Ameritron's toughest Amp with Eimac^R 3CX1200A7 tube

AL-1200 295 Suggested Retail TrueLegalLimit^{Di} Get ham radio's toughest tube with AL-

1200. The Eimac[®] 3CX1200A7 has a 50 Watt control grid dissipation and the lowest history of field replacement of any modern transmitting tube that we use. 90 Watts in gives you full power out. All HF bands, all modes. 76 pounds, 18¹/₂Dx17Wx10H in.

I kW Desktop HF Amp with Amperex* 3-500ZG tube

AL-80B, \$1299 suggested retail. Gives you full kilowatt SSB PEP output (85 Watts in) from a whisper quiet compact desk- top linear. 81/2 x14x 151/2 in. Plugs into 120 VAC outlet. Graphite plate Amperex* 3-500ZG tube. Nearly 70% efficiency. Weighs 48 lbs.

Ameritron's classic Amp with 2 graphite plate Amperex[®] 3-500ZG tubes

AL-82 2295 Suggested Retail TrueLegalLimitTM Most linears using 3-500s can't give you

1500 Watts because their lightweight power supplies can't use these tubes to their full potential. AL-82 is ham radio's only super 3-500 amp! 100 Watts in gives you full power out. All HF bands, all modes. Hefty 76 pounds, 18¹/₂Dx17Wx10H inches.

Precision SWR/Wattmeter AWM-30, \$149 suggested retail. Active circuit gives true peak/average readings on lighted Cross-Needle meter. 3000/300 Watt ranges. Remote sensor.

Call your dealer for your best price!

... the world's high power leader! 116 Willow Road, Starkville, MS 39759 TECH (601) 323-8211 • FAX (601) 323-6551 8 a.m. - 4:30 p.m. CST Monday - Friday For power amplifier components call (601) 323-8211 http://www.ameritron.com Prices and specifications subject to change without notice. 1999 Ameritan

TROPHY WINNERS AND DONORS CW

SINGLE OPERATOR, ALL BAND World P4ØE (Opr. Jose Carlos Cardoso Nunes, CT1BOH) Donor: Albert Kahn, K4FW W9IOP Memorial

World Low Power V26K (Opr. Joseph Trench, AA3B) Donor: Slovenia Contest Club

> World QRPp Peter Kalocsa, HA2SX Donor: Gene Walsh, N2AA

World Single Operator Assisted Charles Fulp, Jr., K3WW Donor: Snake River Contest Club

U.S.A Gregory Cronin, W1KM Donor: Frankford Radio Club

U.S.A. Low Power Jeffrey Steinman, N5TJ Donor: North Coast Contesters

U.S.A. - Zone 3 W6AX (Opr. James Pratt, N6IG) Donor: Bill Fisher, W4AN

U.S.A.- Zone 4 W9RE (Opr. Patrick Barkey, N9RV) Donor: Bill Fisher, W4AN

> Canada Phil Goetz, N6ZZ/VE2 Donor: CQ Magazine

Caribbean/C.A. 8P9Z (Opr. John Laney III, K4BAI) Donor: Chuck Shinn, W7MAP

Europe GIØKOW (Opr. Andrew Williamson, GIØNWG) Donor: Edward Bissell, W3AU World - 3.5 MHz Martin Huml, IH9/OL5Y Donor: Fred Capossela, K6SSS

World - 1.8 MHz VA1A (Opr. Yuri Blanarovich, K3BU) Donor: Kenneth Byers, Jr., K4TEA

USA - 28 MHz Robert Patten, N4BP Donor: Wireless Institute of the Northeast Treasury

> USA - 21 MHz David Donnelly, K2SS/1 Donor: Wayne Carroll, W4MPY

USA - 14 MHz Walter Kornienko, K2WK Donor: Northern Illinois DX Association

USA - 7 MHz David Blaschke, W5UN Donor: W6AM Memorial (Jan Perkins, N6AW)

> USA - 3.5 MHz Robye L. Lahlum, W1MK Donor: Bill Feidt, NG3K

USA - 1.8 MHz Wallace Eckles, W8LRL Donor: Dave Patton, NT1N, & Mark Obermann, AG9A

> Canada (28 MHz) Lajos Laki, VA3RU Donor: Radio Amateurs of Canada

> Carib./C.A. (28 MHz) WP2Z (Opr. David Harper, WD5N) Donor: Snake River Contest Club

Europe - 28 MHz 9HØA (Opr. G. Morris, 9H1EL) Donor: John Pryor, K4OGG

Europe - 21 MHz

Africa D44BC (Oprs. D44BC, DL2OBF, DK7YY) Donor: Harry Booklan, RA3AUU

Asia 8Q7DV (Oprs. UA9CI, UA9CDC, UA9CDV, UA9CLB, UA9CFF, UA9CKP) Donor: Steve Merchant, K6AW

Europe TM2Y (Oprs. F6BEE, F6ARC, F6FGZ, F6FVY, F5MUX, F5NLY) Donor: Bob Cox, K3EST

Oceania-Pacific Rim AH2R (Oprs. KH2/JHØUSD, KH2/JRØBQD, JR7OMD/WI3O) Donor: Junichi Tanaka, JH4RHF

South America CE3F (Oprs. CE3/SM3SGP, CE3FIP) Donor: Tyler Stewart, K3MM

MULTI-OPERATOR, MULTI-TRANSMITTER World 6Y2A (Oprs. K2KW, N6BT, N6TV, N6BV, AF7Y, K7CO, W4SO, KE7X, AG9A, W9QA) Donor: K2GL Memorial (Doug Zwiebel, KR2Q)

U.S.A. KC1XX (Oprs. KC1XX, KM3T, K1GQ, K1DG, N1RR, N2IC, T93M, Christine) Donor: N6RJ Memorial (Bob Ferrero, W6RJ)

Europe DFØHQ (Oprs. DK8YY, DL1AUZ, DL3ALI, DL3OI, DL3TD, DL4ALB, DL5ANT, DL5AXX, DL5LYM, DL5MX, DL7URH, DL7VOA, DL8WAA) Donor: Finnish Amateur Radio League

Japan JA5BJC (Oprs. JA5BJC, JA5FDJ, JA5JCC, JA5THU, JH5RXS, JR5JAQ, JR5VHU) Donor: Ryozo Goto, JH3JYS

Europe - Low Power Franc Bogataj, S59AA Donor: Scott Jones, N3RA, & Tim Duffy, K3LR

Africa EA8EA (Opr. Ville Hiilesmaa, OH2MM) Donor: Gordon Marshall, W6RR

> Asia C4A (Opr. Ivo Pezer, 5B4ADA) Donor: Chuck Shinn, W7MAP

Japan Satoshi Hara, JH5FXP Donor: Japan Crazy Contesters Club

Oceania 9M6NA (Opr. Saty Nakamura, JE1JKL) Donor: Peahi Contest Club

South America HC8N (Opr. Trey Garlough, N5KO) Donor: Venezuela DX Club

SINGLE OPERATOR, SINGLE BAND World - 28 MHz ZW5B (Opr. Randall Thompson, K5ZD) Donor: Joel Chalmers, KG6DX

World - 21 MHz 5X1Z (Opr. Mats Persson, SM7PKK) Donor: Don Busick, K5AAD (N5JJ Memorial)

World - 14 MHz Jaromir Klimosz, 5NØ/OK1AUT Donor: W2JT Memorial (North Jersey DX Assn)

> World - 7 MHz V8A (Opr. Hajime Kato, JO1RUR) Donor: Alex M. Kasevich, VP2MM/4

IR4T (Opr. Stafano Brioschi, IK2QEI) Donor: Robert Naumann, N5NJ

Europe - 14 MHz OHØZ (Opr. Jukka Kulha, OH2MAM) Donor: G3FXB Memorial (Maud Slater)

Europe - 7 MHz Zdravko Balen, 9A9A Donor: Ivo Pezer, T93A/5B4ADA

Europe - 3.5 MHz Tine Brajnik, S50A Donor: K3VW Memorial (Frankford Radio Club)

Europe - 1.8 MHz IR4T (Opr. Gabriele Macchi, IK4UPB) Donor: Pat Barkey, N9RV, & Terry Zivney, N4TZ

> Japan - 21 MHz Akito Nagi, JA5DQH Donor: DX Family Foundation

Japan - 14 MHz Syuichi Sato, JA7FTR Donor: Mitsuhiro Nishimura, JA7WME

MULTI-OPERATOR, SINGLE TRANSMITTER World K1AR (Oprs. K1AR, K1EA, W2RQ) Donor: Anthony Susen, W3AOH

U.S.A. N3RS (Oprs. N2SR, N3ED, N3RD, N3RS) Donor: Douglas Zwiebel, KR2Q

Canada VE6SV (Oprs. VE6EX, VE6EKP, VE6EZ, VE6AKY, VE6NTF, VE6NAP) Donor: Eastern Canadian DX Assn. World - SSB/CW Combined KH7R: 47,345,300 Donor: Alpha/Power, Inc.

CONTEST EXPEDITIONS World Single Operator Thomas Poland, 3A/N9NC Donor: Yankee Clipper Contest Club

> World Multi-Single VK9LX (Oprs. K6KM, N4RU, NØTT, NM7N, VK2ICV) Donor: Carl Cook, Al6V

World Mult-Multi XZ1N (Oprs. WA6CDR, N5IA, AF7O, N7MB, K7SP, WF5T) Donor: Bill Schneider, K2TT

SPECIAL - SINGLE OPERATOR AWARDS World SSB/CW Combined CN8WW (Opr. Bernd Och, DL6FBL) Donor: Hrane Milosevic, YT1AD

World All Band: Under 21 years old Marcus Ilvonen, OF3KCB Donor: Chuck Shinn, W7MAP

SPECIAL EVENT AWARD JT1A (Oprs. JT1BH, JT1BV, JT1CD, OH1RX, OH2BH, OH8PF) Donor: CQ Contest Magazine

CLUB World SSB/CW Yankee Clipper Radio Club: 460,442,158 Donor: W1WY Memorial (CQ Magazine)

NON-USA SSB/CW Bavarian Contest Club: 164,991,164 Donor: N6AUV Memorial (No. Calif. Contest Club)

20 • CQ • October 1999

Visit Our Web Site

GORDON WB6NOA

June 29, 1999 From: Gordon West To: Don Tyrrell and Jim Burns, Alpha Delta Re: Outbacker Performance On Radio School Van

WEST

Hi Don and Jim!

2414 COLLEGE DRIVE (at Nassau) COSTA MESA, CALIFORNIA 92626 Call (714) 549-5000 Monday-Friday 10:00 a.m.-4:00 p.m.

24 HR FAX (714) 434-0666

In our NEW communications van installation, we run with the Outbacker Perth, the regular Outbacker with the short stainless steel whip tip, and when we're parked, the 500 watt Outreach. When compared to other mobile antennas at the same approximate length, the Outbackers and the Outreach are equal if not better performers, and I don't need to unscrew them when we change bands. We have logged over 30,000 miles with all of our Outbackers constantly up in the air, and now and then tangles with trees failed to slow them down one bit!

Many of our graduating students who have earned their General class license have gone with our recommendation of the Outbacker over the less-expensive mobile whips. The benefit of all bands on one shaft is well worth the money. No extra loading coils-no extra whip tips-no extra shafts to carry ... all the bands on just one nice,

neat jet-black body.

The 500-watt Outbackers can really handle the power, coolly. None of these 600watt amps have been able to blow up the 500-watt Outbackers. Many of our classroom demos use a single Outbacker and your tripod, and it works every

time over almost any type of ground conductivity. And when we placed the tripod with the Outbacker over sea water, whowzers-what a signal!

One of our students dropped his marine Outbacker in the bay. After he dried it out, it still continues to work at optimum. Another student forgot to tighten his Outbacker into the mount, and it finally vibrated loose and dragged behind the vehicle-still attached by the fly lead-for about 5 miles until other motorists alerted

TIONS UNIT

him to the problem. It was scuffed up, but still continued to work great.

I wouldn't have any other mobile antenna for highfrequency work on our communications van than the proven Outbacker series. For our emergency Red Cross work, I use the international I.T.U. Outbacker that covers those frequencies above and below the ham bands. And if I need both, Outbacker has a combination ham/I.T.U. whip with all of the band taps on it clearly marked.

I have run the antenna both mobile as well as maritime mobile all over the United States and coastal waters, and the Outbacker is my favorite and ultimate choice for a serious HF whip that can withstand the elements with really nothing movable on the inside

VISA

to go wrong.

PHA DELTA COMMUNICATIONS, INC.

P.O. Box 620, Manchester, KY 40962 • (606) 598-2029 • fax (606) 598-4413 Alpha Delta - Compelling You Into the 21st Century Toll free order line (888) 302-8777 Website: www.alphadeltacom.com

How to Stop **RF** Interference Cold!

Get rid of RF Interference in your computers, stereos, telephones, TVs, VCRs with proven Amidon RF suppression ferrites.

Your RF Interference may be hard to get rid of without the ferrite technology available from Amidon. We have thousands to choose from so finding the right solution for you is easy. Not all ferrites are the same. Different ferrite materials are used to kill different RF Interference. We have over 30 different materials to choose from. Wrap the ferrites on your cables and see the RF Interference disappear. All parts are backed by a no questions asked 100% money back life time guarantee. We will gladly send a replacement any time. You can find Amidon ferrites only at our selected dealers or direct from us. Don't let RF Interference rob performance from your equipment. Call today for our FREE "Tech Data" Flyer at:

top six clubs set a new standard by amassing 1.4 billion points!

New All-Time CW Records

World: AB P4ØE (CT1BOH); 28 ZW5B (K5ZD); LA V26K (AA3B); Q3.5 HA8LUH; A28 KH2D; A21 OHØJJS (OH6LI); A14 LA9GX; A3.5 YTØA (YT7AO); MM 6Y2A.

Africa: AB EA8EA (OH2MM); L21 EA8NN; MM 5V7A.

Asia: AB C4A (5B4ADA); 21 5B4AGC; A28 JH1FSF; MM A61AJ.

Europe: AB GIØKOW (GIØNWG); 28 9HØA (9H1EL); L28 9A7R; L21 9A6A; Q28 GØTDX; Q21 OH7NVU; Q3.5 HA8LUH; AA RZ3BW; A21 OHØJJS (OH6LI); A14 LA9GX; A3.5 YTØA (YT7AO); MS TM2Y.

USA Frankford Radio Club......432,136,542 Florida Contest Group26,284,422 Western Washington DXC......21,374,682 Tennessee Contest Group......14,312,616 Southern California DX Club......13,874,813 Oklahoma Dx Assn......9,536,853 Willamette Valley (W7)9,029,390 North Florida DX Assn......8,072,273 Western New York DXA7,138,765

CLUB SCORES

Ural Contest Group (UA9)	40,678,033
Nicosia Contest Group	
Japan Crazy Contesters	
YU Contest Club	30,497,391
Lithuanian DX Group	29,495,609
UA2 Contest Club	
SP DX Club	26,819,602
Ukrainian Contest Club	25,985,197
Kaunas Technical University RC	25,612,343
Croatian Contest Club	23,929,311
Low Land Crazy Contesters (PA)	22,230,065
LYNX DX Group (EA)	22,037,127
French Contest Club	21,951,872
Chiltern DX Assn. (G)	20,282,076
HA DX Club	20,218,058
Top of Europe Contesters	16,419,407
GPDX (CT)	16,180,833
LU4FM Club	
Araucaria DX Group	13,419,169
Czech Contest Club	
LA Contest Club (LA)	
LNDX (F)	
Rosario RC (LU)	11,778,628
BC DX Club (VE7)	
Moscow City Radio Club	8,739,248
Aruba Radio Club	6,907,354
Z30M Contest Team	5,676,466
YU DX Club	5,593,184
Taganrog Contest Club	
Koryazhma DX Company	
TuPY (PY2)	4,624,194
Danish DX Group	4,534,267
Udmurita Contest Club (UA4W)	4 156 384

1-800-898-1883 or 714-850-4660, and ask

22

21	r Se	an	•			
	CIRCI	.E 3	6 ON READ	ER SE	RVICE	CARD
•	cq	•	October	1999)	a lui

Rentucky contest croup	
Northern Ohio DX Assn	3,060,619
CT & RI Contest Group	2,960,756
Hoosier Contesters	2,743,635
Kansas City DX Club	2,509,171
CA Central Coast DX Club	2,502,153
Salt City DX Club (W2)	2,125,217
Ozaukee Radio Club (W9)	1,844,240
Southeast DX Club	1,720,140
Eastern Iowa DX Assn	1,671,843
World Radio Staff ARC	1,616,619
Mother Lode Contest & DXC (W6)	1,122,346
Northern Arizonia DXA	1,065,454
Sterling Park ARC (W4)	
Northern California DX Club	820,657
West Park Radio Ops (W8)	
Central West VA Club	
Northrop-Grumman RC	
Redwood Empire DXA	
Order of Boiled Owls NY	
Athens (Ohio)	
Heartland DXA (WØ)	
American Red Cross EC	
Yoder ARC (WØ)	
Metro DX Club (W9)	
Mississippi Valley DXCC	
Northern Illinois DXA	
Weekend Warriors Contest Club (W3)	
Tolersville ARC (W4)	
Northern Shenandoah DXA	

Kentucky Contest Group 2 570 724

DX

Bavarian Contest Club	
Contest Club Finland	
Rhein-Ruhr DX Assn	
Russian Contest Club	
Slovenian Contest Club	
Marconi Contest Club (I)	

Outhunta Contest Club (OA4VV)	4,100,304
LY CW Contest Club	3,721,963
Lithuanian CW Contest Club	3,721,963
Vojvodina Contest Club (YU)	3,714,692
Far East Island DX Club	3,693,778
Sarajevo Dx Group (T9)	3,679,445
LU4AA Club	3,506,589
Beemster Contest Club	3,392,746
GADX (LU)	3,340,414
GACW (LU)	2,667,138
Osona (EA3)	2,572,218
Bavarian DX Group	2,403,399
SP Contest Club	2,303,207
St Petersburg ARS (UA1)	2,030,209
Southern Germany DX Group	1,843,520
Sao Paolo Contest Group	1,517,596
Sky Sat Contest Club (YU)	1,505,658
Shizuoka DX Assn. (JA2)	1,408,548
Sudaca's Contest Gang (LU)	1,379,455
Northern Lithuania DX Group	1,019,577
North Patagonia DX Group (LU)	995,996
Fox Contest Club (YU)	946,173
LU4HH Club	906,301
YO4KCA Club	816,430
Amsterdam DX Club	684,178
Kharkov Region ARS (Ukraine)	683,200
NOL (ON)	668,279
Ivanovo DX Club	667,072
Macedonia DX Club	512,444
Globus (Ukraine)	454,956
Obninsk"QRU"Club (UA3X)	453,156
S59DBC Club	449,961
Northern Greece Contest Team	433,432
Crimean Contest Club	400,026
SV1SV Club	277,255
ARUK (EX)	234,446
Tallinn Radio Club	164,627
Geo DX Group (DL)	141,927
GUARA (PY7)	69,667

North America: AB 8P9Z (K4BAI); 1.8 VA1A (K3BU); LA V26K (AA3B); L28 WP2Z (WD5N); AA K3WW; A21 AA8U; MS K1AR; MM 6Y2A.

Oceania: L28 WHØV; QA NØKE/KH6; Q7 W8QZA/KH6; AA KH2/N2NL; A28 KH2D; MS AH2R.

South America: AB P4ØE (CT1BOH); 28 ZW5B (K5ZD); L28 CX5AO; Q28 PY2TNT; A28 LU1APG; A21 LU7EAR.

Special Mention

The CQ WW brings out intrepid travelers from all over the world who head out to far-flung QTHs. A fast count of the number DXpeditions for the contest yielded about 100! Of course, there are many that go unnoticed if an exotic callsign is not involved. Why don't you try a DXpedition this year? You can travel light, set up with a vertical on the beach or hotel roof, and work thousands of QSOs. Once you take

> Desk Mike

that first trip and find yourself knee deep in your own pile-up, you will want to go back and back.

All of those operations put their calls into a lot of logs. A group of W5, 6, and 7's made a lot of contesters and DXers happy with XZ1N. Phil, N6ZZ, traveled up to zone 2 and set a new zone record with his effort. Out in the west of the USA, the competition in the seventh call area was fierce. Five stations finished above two million points. N7DR and W7GG finished in a dead heat, with N7DR winning by the point value of one multiplier. Out in the western USA, W6YA and W6NL shifted their efforts to 28 MHz. Jim, W6YA, just edged out Dave W6NL.

Dave, K2SS/1, and George, WØUA (WØUN), put their considerable talents into 21 MHz. The scores were close, with Dave taking top place. Take a look at the heated competition in Slovenia on 7 MHz. S57AL just edged out S57DX and S52O.

Martti, OH2BH, and friends, and with the efforts of JT contesters, put together a special event station from JT1A. Thanks to the JT's and OH's, many contesters worked the elusive zone 23 for the first time.

A real special mention is made of KH7R, who reprised their outstanding 1997 effort in 1998. They had the highest combined SSB/CW multimulti total in the contest. Operating from zone 31 and winning the highest MM combined trophy is tough.

The two Russian multi-op groups (mostly UA9's) again headed to south Asia. The P3A group finished just behind A61AJ, while 8Q7DV blasted through on all bands.

Special mention must be made of new QSO records set in the contest. Jose, CT1BOH (P4ØE), made 6853 QSOs, and the MM station 6Y2A had a 40 meter QSO total of 3896 on 7 MHz for a new band record.

Comments

Last year the first UBNs were released to everyone who submitted an electronic log. We

OMNI-VI Plus

Supply with Speaker

1.61

53

YOUR SECRET IS SAFE WITH US

OMNI owners know the advantages of this superlative rig. First and foremost, they work the weakest signals under the most crowded band conditions, signals their friends can't even hear! Active operators, like contesters and DXers, tell us they can operate for hours on end with little or no listening fatigue. They've never owned a rig this clean. Just the right amount of DSP eliminates interfering carriers and provides up to 15 db of DSP adaptive noise reduction. Owners call every day to tell us, "It's the best rig I've ever used!"

But there is one problem. OMNI owners also ask us NOT to tell their friends. "Tell them it's the ... coax ... sunspots ... operator skill...day-glo readout...antennas...ground rod...knobs per square inch. Distract them, confuse the issue, recommend 'brand X', but PLEASE, PLEASE, don't tell them my secret is the OMNI-VI Plus!"

To learn more, request literature, or to place an order, call Scott or Stan at 800-833-7373.

Model 564, OMNI-VI Plus	\$2,585.00*
Model 962, Matching Supply with Speaker	\$275.00*
Model 705, Desk Mike	\$79.95*
Accessory Crystal Filters	\$89.00* each

14288888

No-Risk 30-day Money-Back Guarantee**
 We take trades on used TEN-TEC gear

. We accept VISA, Mastercard, and Discover *Plus Shipping and Handling (ground transportation anywhere in 48 states). OMNI - \$20; OMNI & Supply - \$31 **Customer pays shipping both ways

You can reach us at: Office: (423) 453-7172 • FAX: (423) 428-4483 Repair Dept.: (423) 428-0364 (8a - 4p EST) e-mail: sales@tentec.com Visit our web site at http://www.tentec.com

BAND-BY-BAND BREAKDOWN—TOP ALL BAND SCORES

Number groups indicate: QSOs/Zones/Countries on each band

WORLD TOP SINGLE OPERATOR, ALL BAND

USA TOP SINGLE OPERATOR, ALL BAND

Station	160	80	40	20	15	10	Station	160	80	40	20	15	10
P4ØE	351/15/52	727/25/74	1188/30/92	1232/37/114	1821/37/120	1521/32/99	W1KM	104/14/47	690/22/79	902/29/89	731/31/96	764/31/90	835/28/87
EA8EA	152/13/41	512/24/72	1161/30/84	1295/35/107	1254/38/119	2166/36/120	W4AN	53/12/31	241/20/67	1021/35/99	907/34/106	746/31/104	873/30/102
HC8N	98/13/22	406/23/61	1099/31/89	1223/35/109	1517/37/117	2317/32/120	K1ZM	98/19/56	440/23/76	1134/31/98	503/35/93	598/31/89	1059/30/104
P4ØW	281/14/45	803/24/85	988/28/92	970/31/103	1268/31/105	1952/31/109	W9RE	26/10/19	157/20/62	1040/31/99	884/36/103	941/33/97	889/27/88
CNSWW	157/9/33	829/19/71	1260/23/83	1067/31/99	1078/32/101	2100/29/102	K1T0/4	38/13/30	218/18/64	827/29/100	881/36/101	927/33/108	610/28/92
8P9Z	302/15/45	694/19/66	1223/31/87	1213/33/87	1386/32/87	1681/25/82	K02M/1	47/10/33	402/20/72	1003/29/90	595/34/106	771/31/101	605/25/98
C4A	385/17/64	718/21/72	1373/29/97	913/32/87	743/32/87	1376/31/96	N2NT	59/12/38	403/17/7	684/30/88	738/35/110	1059/32/99	519/26/88
A45XR	187/13/44	315/18/65	1084/28/92	871/32/93	1146/35/111	1219/34/121	K3ZO	42/11/31	296/18/64	771/32/91	691/34/99	985/33/100	656/26/85
3V888	243/11/57	782/19/75	1107/26/83	1023/31/95	798/32/94	1077/30/81	N2LT	49/12/32	278/16/64	641/34/95	744/27/94	785/31/101	793/27/94
6V6U	40/7/11	214/15/45	602/22/70	1253/28/89	1196/27/93	2012/29/92	K1RU	20/9/15	220/17/57	840/28/82	700/29/91	898/30/92	812/23/74

WORLD MULTI-OPERATOR SINGLE TRANSMITTER

K1AR 569/27/101 49/13/46 1384/35/136 991/38/151 K1AR 49/13/46 999/36/135 1083/32/132 569/27/101 1384/35/136 TM2Y 208/18/68 1303/36/127 568/25/99 1326/35/121 N3RS 53/16/51 425/29/100 1202/34/125 943/35/127 1132/39/136 856/31/126 N3RS 53/16/51 425/29/100 1202/34/125 793/37/145 892/36/130 N2NU 59/15/58 198/29/97 912/34/120 EA61B 77/14/57 640/21/89 1581/35/119 1169/39/129 1307/34/121 K8AZ 47/17/44 225/25/97 990/36/120 1371/36/128 741/34/121 N2NU 59/15/58 198/29/97 912/34/120 912/37/145 1085/37/131 755/30/126 K1ZZ 67/17/56 418/26/100 990/36/120 K8AZ 47/17/44 225/25/97 959/37/140 K8LX. 42/13/35 178/25/90 807/33/113 987/34/139 958/30/127

WORLD MULTI-OPERATOR MULTI-TRANSMITTER

6Y24	1139/20/82	1867/28/106	2206/25/122	4000/00/454	0 400 m 4 14 4 7	a case as a const		and the second sec	and a second second	and the second second second	the second s		
		19911201100	2020/22/125	4099/38/101	3433/31/14/	3175/32/120	KC1XX	238/21/75	971/29/113	2120/37/142	2228/38/157	1812/39/143	1565/35/133
5V74	208/15/48	683/25/79	2298/35/118	3526/38/146	4485/39/151	3182/35/137	W3LPL	208/22/70	1003/31/115	1798/37/139	2104/39/158	1743/39/148	1445/34/133
TI1C	768/17/63	1689/28/97	2976/32/119	3459/38/147	3217/39/147	3304/35/138	K3LR	200/21/67	660/29/110	1971/38/144	1942/37/156	1773/37/145	1554/35/140
EA9E	A 52/5/22	1804/22/94	2815/37/132	3225/38/147	2732/38/144	2213/36/124	K1KI	144/16/59	809/29/106	1664/37/137	1833/38/152	1764/37/138	1121/33/128
A614	J 530/21/67	1359/28/95	2957/35/133	2946/39/146	2331/36/141	2569/36/136	K2LE/1	108/13/41	572/21/95	1389/33/127	1769/37/139	1223/35/123	1104/34/123
JEDY	627/17/54	1368/26/84	2372/31/103	2986/36/121	3795/36/135	3148/33/123	K9NS	76/18/36	406/28/95	1229/37/133	1676/39/149	1441/36/134	1075/31/120

ZONE LEADERS SINGLE OPERATOR

Zon	e Call	Score	Zone	Call	Sc
1	KL7AC	1,263,542	21	A45XR	9,067,
2	VE2/N6ZZ	7,023,425	22	AT2AJ	34.
3	W6AX	4,417,426	23	JT1CO	1,235,
4	W9RE	6.875.625	24	XX9X	3,795

991/38/151 999/36/135

USA MULTI-OPERATOR SINGLE TRANSMITTER

1083/32/132 892/36/130 793/37/145 856/31/126 912/37/145 1085/37/131 755/30/126 987/34/139 959/37/140 958/30/127 931/37/140 919/35/131 645/31/125 797/37/138 1061/36/130 410/31/122

USA MULTI-OPERATOR MULTI-TRANSMITTER

C1XX	238/21/75	971/29/113	2120/37/142	2228/38/157	1812/39/143	1565/35/133
W3LPL	208/22/70	1003/31/115	1798/37/139	2104/39/158	1743/39/148	1445/34/133
K3LR	200/21/67	660/29/110	1971/38/144	1942/37/156	1773/37/145	1554/35/140
C1KI	144/16/59	809/29/106	1664/37/137	1833/38/152	1764/37/138	1121/33/128
K2LE/1	108/13/41	572/21/95	1389/33/127	1769/37/139	1223/35/123	1104/34/123
K9NS	76/18/36	406/28/95	1229/37/133	1676/39/149	1441/36/134	1075/31/120

5	W1KM	7,379,711	25	JH5FXP	4,857,376
6	6D2X	4,338,864	26	3W7TK	2,720,442
7	3E1AA	7,002,610	27	DU1/DL5ZAH	889,680
8	8P9Z	9,991,863	28	9M6NA	5,979,138
9	P4ØE	14,372,964	29	VK6VZ	451,584
10	HC8N	12,971,803	30	VK2AYD	1,386,240
11	ZW5B	1,991,895	31	NH7A	2,648,535
12	*CE3AA	735,715	32	KH8/N5OLS	2,889,842
13	*LT1F	1,824,312	33	EA8EA	13,717,801
14	GIØKOW	6,961,240	34	5A1A	450,865
15	S58A	6,628,059	35	6V6U	8,127,504
16	EW8EW	2,665,131	36	No Entry	
17	EX8W	4,373,712	37	5H3US	791,427
18	RZ9UA	3,927,066	38	ZS6EZ	5,379,840
19	UAØJQ	2,220,574	39	3B8/DL9GFB	1,024,920
20	C4A	9,904,510	40	No Entry	
			* Low	Power	

LU1FNH, number one on 21 MHz Argentina.

did the same this year. The difference between the two years is that the contest community is becoming more and more knowledgeable about how errors can occur. With the ever increasing number of tools available to validate the scores and allow the winners to really celebrate their win, there might be a tendency to lose focus about what contesting is about. The UBN is a learning tool which if you take the time can help you become a better contester.

The reason you enter a contest is to have fun! To repeat from last year's writeup, "The buzz of the bands coming to life is a siren's song that can't be resisted. The new ones you might work, finding that your signal can work a lot of people, and your personal motivation to do well are just the tip of the iceberg. Each contest is a learning experience about propagation, your own skills, and learning from others."

Please send us your log in electronic format. No matter how small or large, mail your CW log via the Internet to <cw@cqww.com> and your SSB log to <ssb@cqww.com>. It is cheaper and less trouble to e-mail your log. Each log helps to make the whole contest better and truer. You can check the CQ WW home page at <http://www.cqww.com>. There you will find the latest rules and other interesting information including directions on how to submit an e-mail log entry.

Power

Everyone knows that when you enter a con-

test, you are on your honor to run the power that your category allows. It is unsettling to see logs that claim low power but clearly are running more than what is allowed. It is a false victory to beat other competitors when they all are running 100 W or less and you decide to run 500 W. We all have heard many reasons to justify this type of thinking: "I live too far from competitive areas."; "How can that top station win? He must be cheating. I have to cheat to be competitive."; "I'll run 500 W because my antenna is not very good." It sure makes life easier and your score bigger if you cheat by running high power. The truth is that almost everyone really does obey the power limitations. It is much more satisfying to obey the rules and find out just how well you can do from your QTH.

EUROPE TOP SINGLE OPERATOR, ALL BAND

Station	160	80	40	20	15	10
GIØKOW	249/13/57	662/19/77	1166/32/97	716/37/107	1066/35/110	929/28/103
S58A	113/15/56	416/17/78	1563/34/109	905/35/103	772/33/99	772/34/114
G4BUO	177/15/52	591/18/71	583/25/73	846/31/93	761/31/94	608/28/84
GUGUW	350/8/49	576/15/65	852/23/74	681/24/72	733/27/79	1002/30/89
4N9BW	180/11/51	369/18/66	989/32/92	873/28/85	928/33/102	760/33/94
DL4NAC	66/12/43	220/17/67	1085/34/99	626/29/80	660/32/100	559/30/98
GØIVZ	270/11/52	550/16/65	778/22/72	779/27/92	657/30/97	701/29/85
OH1MM	100/9/40	360/17/77	524/29/89	1080/27/82	820/32/105	495/29/88
OM5M	60/7/35	437/18/67	932/31/89	671/29/80	783/32/86	511/33/81
OH5LF	104/10/49	259/18/62	375/28/83	880/33/90	829/34/101	647/33/107

EUROPE MULTI-OPERATOR SINGLE TRANSMITTER

TM2Y	208/18/68	568/25/99	1303/36/127	943/35/127	1132/39/136	1326/35/121
EA6IB	77/14/57	640/21/89	1581/35/119	1371/36/128	1169/39/129	1307/34/121
RU1A	126/19/75	753/35/128	843/38/136	1321/37/139	1085/39/140	451/35/133
SQ6Z	181/18/66	608/26/95	1397/35/125	1304/36/127	992/38/122	660/35/117
DL2NBU	140/18/70	607/25/96	1171/33/112	774/37/130	883/38/131	648/35/125
A8MO	198/17/72	468/18/74	1345/37/122	1232/37/138	791/38/123	635/34/120

EUROPE MULTI-OPERATOR MULTI-TRANSMITTER

DFØHO	832/23/85	1837/32/111	2461/37/138	1976/37/138	1805/37/142	1378/37/137
OH2U	638/23/88	1088/31/120	2101/37/145	2439/39/158	1825/38/146	1287/37/145
RW2F	895/28/94	1622/31/117	2121/38/143	2158/39/146	1275/38/135	1181/37/145
SL3ZV	826/23/89	1092/33/114	2045/35/132	2385/37/137	1593/39/140	673/33/116
DLØCS	731/22/90	1257/33/120	1541/37/130	1519/36/133	1458/38/138	851/36/130
EA4ML	613/16/63	1223/22/82	2106/31/113	2235/36/121	1469/36/120	1102/32/94

TOP S	SCORES IN VE	RY ACTIVE	ZONES
zo	NE 3	zo	NE 14
W6AX		GIØKOW	

YOUR FAVORITE BOOKS AT SPECIAL PRICES

 World Radio TV Handbook 2000
 All SWBC stations by country with schedules, addresses, power, etc. Reviews too.
 Will ship about 12/19/99 ... \$24.95

 Worldwide Aeronautical Frequency Directory By R. Evans. The definitive guide to commercial and military, HF and VHF-UHF aeronautical communications including ACARS. ... \$19.95 \$16.90
 Joe Carr's Receiving Antenna Handbook By J. Carr Arguably the best book devoted to receiving antennas for longwave through shortwave. Easy to understand. \$19.95 \$16.90
 Shortwave Listening Guide Book By H. Helms

Over 300 pages of understandable info. on: selecting and operating a shortwave receiver, simple antennas, time stations, pirates and more. With informative tables and diagrams . \$19.95 \$16.90

Pirate Radio (With audio CD!). By A. Yoder

Here is the incredible saga of America's underground illegal broadcasters. Includes an audio CD of famous pirates. .. \$29.95 \$26.90

Scanner Radio Guide. By L.M. Barker

Where has good old-fashioned

W6RU	3,141,840
K6LA	2,851,800
*X07X	2,584,983
N7DR	2,568,104
W7GG	2,561,988
W2VJN/7	2,133,130
N7TT	2,053,425
K4XU/7	2,015,248
AA7A	1,992,810

ZONE 4

W9RE	6,875,625
KØRF	4,029,435
W4PA	
K5YAA	2,959,691
K9MA	
K9AN	2,781,072
WBØO	2,511,587
KØEU	2,495,724
KØCAT/9	2,375,505
NA5B	2,251,855

ZONE 5

W1KM	7,379,711
W4AN	7,141,453
K1ZM	7,119,308
K1TO/4	6,293,104
KQ2M/1	6,112,282
N2NT	6,086,220
K3ZO	6,054,048
N2LT	5,831,100
K1RU	5,214,551
W3BGN	5,008,964

G4BUU	5,0/3,/50
GU6UW	5,047,170
DL4NAC	4,872,882
GØIVZ	4,722,406
G4BJM	3,826,284
OZ1LO	3,779,440
CU2V	3,728,724
EA3NY	3,215,612
TM9C	2,928,660

1,240

E 07

ZONE 15

S58A	.6,628,059
4N9BW	.5,016,810
OH1MM	.4,374,240
OM5M	.4,157,721
OH5LF	.3,994,272
HA8FM	.3,734,322
SP4Z	.3,658,850
LY5W	.2,988,110
HA8JV	.2,865,016
OH6RX	.2,725,254

ZONE 25

JH5FXP	4,857,376
JH4UYB	4,470,430
JH7AFR	
JH7WKQ	
JS3CTQ	
JA8RWU	
JH7XGN	
JH10GC	1,979,356
*JEØUXR	1,533,600
*JL1ARF	1,530,450
*Low Power	1000

(Continued on page 70)

Ham ingenuity gone?

It's alive and well COMMUNICATIONS in the pages of QUARTERLY

- Do you feel that some of the fun is missing from your Hamming?
- Do you feel there's more to Ham Radio than just talking?
- Do you wish you could get more nuts and bolts value from your Ham reading?
- Are you proud of your high-tech skills?

If you answered YES to any of these questions, you should be reading Communications Quarterly. It's the antidote to your Ham Radio blahs!

Communications Quarterly is the finest purely technical publication in Ham Radio — written and edited for people just like you.

Four times each year the Communications Quarterly staff assembles the best-of-the-best in technical Amateur Radio communications literature in a skillfully-crafted magazine of the highest quality. Each year, within the pages of *Communications Quarterly* you'll find more than 350 pages of informative, well-written, beautifully illustrated technical articles, all specifically aimed at the high tech interests of aspecial group of Hams like you.

In Ham Radio technology, you either learn and lead, or you're left behind. The choice is yours.

US	Canada/Mexico	Foreign Air Post	
1 year\$33.00 2 years\$62.00	1 year\$39.00 2 years\$74.00	1 year\$46.00 2 years\$88.00	
Us	ing your credit can	rd?	

Gall Today 1-516-631-2922

or mail your order including check or money order to: CQ Communications, 25 Newbridge Road Hicksville, New York 11801 Fax 516-681-2923

October 1999 • CQ • 25

This time VE3ERP brings back a golden oldie that has not seen the light of day in a while.

High-Capacity, High-Voltage Varicaps From the Scrap Heap

BY GEORGE MURPHY*, VE3ERP

CONSTRUCTION

A scraps of pipe or tubing is not a new idea. It just doesn't seem to have seen the light of day in the popular amateur literature for quite a while. Somebody mentioned that somebody else should bring it to light again, so here goes.

Fig. 1 shows the principle of the concept, together with a table of standard copper pipe sizes¹ and how they fit together to produce custom capacitors. Fig. 2 shows a typical application—a tuning sys-

tem for a miniature loop antenna^{2, 3}.

The design equations⁴ for concentric conductors with air dielectric (e.g., one tube within another) are:

$$C_{cent} = \frac{0.2413}{\log_{10}(\frac{D}{d})} \qquad C_{inch} = \frac{0.6128}{\log_{10}(\frac{D}{d})}$$

where:

- C_{cent} = capacity in pF per centimeter of overlap
- C_{inch} = capacity in pF per inch of overlap D = inside diameter of outer cylinder
- d = outside diameter of inner conductor
- D and d are in the same units (e.g., centimeters or inches)

These equations are actually for transmission lines where the length-to-diameter ratio of the conductors is very large. When applied to the comparatively very short overlaps under discussion here, the actual capacitances are about 11/2% greater than the equation values. This is due to end effect⁵ at the end of each ele-

*77 McKenzie Street, Orillia, ON L3V 6A6 Canada e-mail: <ve3erp@encode.com>

Nominal Pipe Size	Outside Diameter	Wall Thickness	Inside Diameter	Fits Inside Pipe Size	With Air Gap of	Overlap pF per Inch	Breakdown Voltage
1/4" 0.375	0.775	75 0.030	0.345	3/8"	0.028	10.3	578
	0.050	0.313	1/2"	0.085	3.77	1785	
3/8"	3/8" 0 500	0.035	0.430	1/2"	0.023	16.4	473
5/0	0.500			5-8"	0.083	4.92	1743
1/2"	0.625	0.040	0.545	5/8"	0.021	22.2	431
1/2	0.020			3/4"	0.080	6.19	1680
5/8"	0.750	0.042	0.666	3/4"	0.018	30.9	368
0/0	0.750	0.042		1*	0.137	4.52	2887
3/10	0.975	0.045	0.045 0.785	1"	0.075	8.92	1575
5/4	3/4 0.8/5	0.045		1-1/4"	0.195	3.83	4095
1.0		0.050	1.025	1-1/4"	0.070	12.0	1470
	1-120	0.050	1.025	1-1/2"	0.190	4.85	3990
1-1/4"	1 775	1.375 0.055	1.265	1-1/2"	0.065	15.6	1365
1-1/4	1.57.5			2"	0.305	3.84	6405
1-1/2"	1.625	0.060	1.505	2"	0.180	7.05	3780
1 1/6	1.020	0.000	1.505	2-1/2"	0.420	3.39	8820
".	2 125	0.070	1 085	2-1/2*	0.170	9.51	3570
-	E.I.E.S	0.070	1.505	3"	0.410	4.32	8610
2-1/2"	2 625	605 0.050	2 455	5	0.160	12.3	3360
2-1/2 2.023	0.000	2.400	3-1/2	0.400	5.30	8400	
3" 3.125	3.125 0.090	2.945	3-1/2"	0.150	15.4	3150	
			4*	0.390	6.33	8190	
3-1/2" 3.625	1 625 0 100	2.405	4	0.140	19.0	2940	
	5.025	0.100	3.423	5°	0.625	4.76	13125
4"	4.125	0.110	3.905				
5"	5.125	0.125	4.875	AND THE T			

Fig. 1– The principle of the concept, together with a table of standard copper pipe sizes and how they fit together to produce custom capacitors.

ment where it can "see" a little beyond the end of its own "reflection" on the surface of the other element. This difference is much smaller than the tolerances of many commercially available capacitors and can be ignored for most practical amateur radio applications. same amount of material off the head of each of the three screws at each location. This is not too critical, but if there is a significant difference in the head thicknesses of the three screws, the breakdown voltage will be less than shown in the table.

Actuation of the variable capacitor is left to the ingenuity of the designer. All other construction details are left to the plumber.

Footnotes

1. Aluminum tubing can also be used. The complete design procedure using tubing of any appropriate material, including all the math in both metric and American dimensions, is contained in the HAM-CALC version 40 program "Capacitors—Telescoping Variable."

HAMCALC is free software containing more than 200 programs of interest to amateur radio enthusiasts. It is obtainable from the author at the address which appears at the beginning of this article. To cover my costs of materials, documentation, and airmail shipping, please send US\$6.00 for HAMCALC, version 40 and GWBASIC.EXE (two diskettes), or US \$5.00 for a single HAMCALC diskette if you already have GWBASIC.EXE installed in your computer.

2. Ted Hart, W5QJR, "Small High Efficiency Loop Antenna," *The ARRL Antenna Book, 17th edition*, pp. 5-10 to 5-16.

3. HAMCALC "MINILOOP Miniature Tuned Loop Antenna" design program (variation of W5QJR's design, by Harold Kane, W2AHW).

Using the design table is straightforward. Suppose you need a capacitor that can withstand 1000 volts across it. Allowing a 50% safety factor, look in the table for a breakdown voltage of about 1500 volts. Both a 1/2 inch pipe inside a 3/4 inch pipe (1680 volts) and a 1 inch pipe inside a 11/4 inch pipe (1470 volts) will do the job. The only difference between the two combinations is the capacity per inch of overlap: the first pair, at 6.19 pF/inch, will produce a finer tuning rate than the other pair, at 12 pF/inch. To determine the length of overlap in inches, divide the required capacity in pF by the overlap pF/ inch shown in the table.

Construction is simple. Avoid the temptation to merely wrap enough tape around the inner pipe to provide spacing. You will end up with a lossy dielectric in a pneumatic piston that is great for pumping up tires. Instead, you will need some short Nylon[®] or Teflon[®] machine screws⁶, a hand or power drill, and a coarse file.

Drill holes in each pipe end just big

4. F. E. Terman, Radio Engineers' Handbook, 1943, p. 119.

5. Doug DeMaw, W1FB, in personal correspondence with the author.

6. Available at your local supplier to machine shops, tool and die makers, etc.

CIRCLE 90 ON READER SERVICE CARD

www.cq-amateur-radio.com

October 1999 · CQ · 27

CARRYING "EXCESS EQUIPMENT?"

DONATE YOUR RADIO

Turn your excess Ham Radios and related items into a tax break for you and learning tool for kids.

Donate your radio or related gear to an IRS approved 501 (c)(3) charity. Get the tax credit and help a worthy cause.

TECHNOLOGY

If you've ever looked at some aspect of amateur radio technology and thought, "There's a better way to do this," there are some folks who want to hear your ideas.

Somebody Really Ought to ...

By Rich Moseson, W2VU

f you have ever thought, "Somebody ought to ... " do such-and-such to improve some aspect of amateur radio, then here's your opportunity to get "somebody" to listen who is in a position to do something about it. CQ Communications is working together with the ARRL in an effort to search out, identify, and promote new amateur radio technology for the 21st century.

The League has formed two committees to work together on the project - a Technology Task Force (TTF) made up of ARRL directors and vice directors, and a Technology Working Group (TWG), made up of other amateurs with specific areas of expertise in developing and evaluating technology (see "Who's Who on the Technology Team"). The groups will collect proposals and ideas from the broad amateur radio community, study those which show promise, and make recommendations for bringing the most promising ideas into the mainstream of amateur radio. The TTF and TWG invite formal or informal proposals, or even ideas of what needs fixing and how someone with the right technical know-how might go about trying to improve it. You don't even have to have a specific proposal in mind; a general idea of directions to go and paths to follow are welcome as well. Don't be afraid to "think out of the box" and suggest truly innovative approaches to future amateur radio technology. (However, try to stay within the realm of possibility. "A device to get Joe to talk less and help more at club meetings" probably won't go too far, unless, of course, you've designed such a device!) In order to keep things from getting bogged down forever, the ARRL Board has given the TTF and TWG a timetable to follow, and part one, for submission of initial ideas and proposals, has a deadline of October 31, 1999. If you have something to offer-and I'm willing to bet that lots of you do-there are three ways to submit your idea or proposal: "snail mail," email, and the World Wide Web. A form has been developed for ease of submission, but you may also just send a letter saying who you are, what your idea or proposal is, and how it might be used in and benefit amateur radio. The input form and information about the TTF and TWG are available on the TTF website at <http://www.arrl.org/news/ttf/>. Input may also be sent by e-mail to <ttfinput@arrl. org> or by mail to the ARRL Technology Task Force, c/o Ed Hare, W1RFI, Staff Liaison, 225 Main St., Newington, CT 06111.

Who's Who on the Technology Team

The two technology panels created by the ARRL include amateur radio operators with a wide variety of background and expertise in various areas of amateur radio technology. Here is a list of who's who in each group, listed alphabetically after each chairman.

Technology Task Force

Steve Mendelsohn, W2ML, ARRL First Vice President, Chairman

Dennis Bodson, W4PWF, Roanoke Division

Equipment picked up anywhere or shipping arranged. Radios you can write off - kids you can't.

Call (516) 674-4072 FAX (516) 674-9600 e-mail:crew@wb2jkj.org www.wb2jkj.org

THE RADIO CLUB OF JUNIOR HIGH SCHOOL 22 P.O. Box 1052 New York, NY 10002 Bringing Communication to Education Since 1980

CIRCLE 77 ON READER SERVICE CARD 28 • CQ • October 1999 c/o CQ magazine

Vice Director

Frank Fallon, N2FF, Hudson Division Director

Tom Frenaye, K1KI, New England Division Director

Art Goddard, W6XD, Southwestern Division Vice Director

Jim Maxwell, W6CF, Pacific Division Vice Director

Larry Price, W4RA, ARRL International Affairs Vice President

Walt Stinson, WØCP, Rocky Mountain Division Director

Ed Hare, W1RFI, ARRL Laboratory Supervisor, Staff Liaison

Technology Working Group

Rich Moseson, W2VU, Editor, CQ VHF, Chairman

Keith Baker, KB1SF, President, AMSAT-NA Peter Coffee, AC6EN, author, PC Week columnist

Mike Cook, AF9Y, Chief Engineer, ITT, Fort Wayne, Indiana

Gene McGahey, NRØNR, Deputy Manager of Communications Technology, National Law Enforcement and Corrections Technology Center, Rocky Mountain Region

Paul Rinaldo, W4RI, ARRL Technical Relations Manager

Dennis Silage, K3DS, Professor of Digital Signal Processing and Data Communications, Temple University, Philadelphia, Pennsylvania

Doug Smith, KF6DX, Editor, QEX, and Chief Engineer, Kachina Communications

LINERR RMPLIFIER

0

• •

v

Sale as

The Intelligent Amplifier

READER SERVICE CARD

REGOLD INTERNATIONAL, INC.

IT KNOWS ALL YOU NEED AND DOES IT AUTOMATICALLY

A MUST FOR THE DX'ER AND CONTESTER

10002 W091 • [

RUTOMATIC HF

www.hfpower.com

phone: (978) 440 7555 fax: (978) 440 9008

CIRCLE 53 OI

Big Boy Rotators from First Call Communications

First Call Communications has announced Big Boy rotators by Prosistel, antenna rotators using advanced wormgear technology and solid-state components. The line offers three different models, the largest of which is designed to handle up to an 81 sq. ft. wind load. Featured are high torque resistance; high starting torque (up to 26.800 in./lb.); large zincated steel output shaft to 11/2" (choose from three types of mast clamps); solid-state digital control box; Db9 rear connector for computer interfaces; highstrength aluminum gear box; 100-metersplus cable; and more. Optional accessories include a foot-switch remote control, flexible mast clamp, and ARS by EA4TX universal computer interface.

For more information, contact First Call Communications, Inc., 32 Grove Street, Spring Valley, NY 10977 (800-426-8693; fax 914-357-6243; e-mail: <firstcall@ cyburban.com>; <www.firstcallcom.net>), or circle 100 on the reader service card.

CAIG New R-5 Contact Cleaner

CAIG Laboratories has reintroduced its R-5 contact cleaner line, suited to use on switches, batteries, probes, connectors, plugs and sockets, edge connectors, terminal strips, interconnecting cables, and anywhere else metal conducts electricity. The new R-5 is reformulated to provide improved deoxidizing, cleaning, preserving, and lubricating characteristics. The new R-5 is nonflammable, fast evaporating, safe on plastics, and environmentally safer. It is available in a new pump nonaerosol spray or in liquid form.

For more information, contact CAIG Laboratories, Inc., 12200 Thatcher Court, Poway, CA 92064 (phone 800-224-4123; web: <www.caig.com>; e-mail: <caig123 @aol.com>), or circle number 102 on the reader service card.

"Ham Radio 101" Radio Program

Hosted by Bill Lauterbach, WA8MEA, owner of DWM Communications, a small amateur radio and shortwave manufacturer/retailer, "Ham Radio 101" is a ham radio course being aired over WGTG shortwave. The course concentrates on the Novice/Tech theory with occasional Morse Code segments during some of the broadcasts. Bill is using Gordon West's Technician No-Code Plus as the textbook and is concentrating on the correct answer to the exam questions only, giving a detailed explanation of the question and answer. The programs are prerecorded and rotated, so new listeners can catch up with past programs. The tentative schedule is Monday through Friday from 2300-2330 UTC summers and from 0000-0030 UTC winters on 6.890 MHz upper sideband. For confirmation of times and more information about "Ham Radio 101," visit the website at <http://www.erols.com/imageinn/ dwm>, e-mail: <tinytenna@hotmail.com>, or call 517-563-9022.

DX4WIN/32

... the way logging software should be!

With additional innovative features optimized for 32 bit operating systems

- · Optimized for Win95/98 and NT.
- World Map Window displaying day/night, short and long path and display of propagation trends
- Support for most callsign databases on CD ROM
- A CW keyboard, with memories, which sounds right even under Win/NT
- Unlimited QSL manager database storage size
- Keep multiple logs using same or different calls
- Packet radio spotting of DX via TNC or Internet connection
- Voice announcements and color-coded packet spots according to your needs

- RTTY interface with memories
- Imports approx. 50 other log formats
- Prints QSL and SWL labels using 120+ common label formats (US and European sizes)
- Interfaces with most commonly available radios
- Support for controlling rotators and TOP TEN band decoders.
- Friendly, no hassle, unequaled customer support, when you want it.
- Upgrade policy that is fair and affordable. Compare this to others.
- Test drive DX4WIN without restrictions on the number of QSO's
- · User defined custom awards tracking

DX4WIN/32 - \$89.95 US; DX4WIN - \$69.95 US (Win3.1 and Win95) Shipping US \$6.95; DX \$11.00. Printed users guide \$12.00

Rapidan Data Systems

P.O. Box 418, Locust Grove, VA 22508

540-785-2669

FREE Demo at www.erols.com/pvander

PROBE Version 5.0 Software From DataFile, Inc.

PROBE Version 5.0 computer-controlled scanning software works exclusively with Optoelectronic's Optocom, Optoscan 456, 456 Lite, and 535 computer-to-scanner interfaces. It increases accuracy, speed, and control for unattended scanning, searching, and logging of active frequencies. Also included are enhanced frequency data management tools and more functions to improve the overall ease of use and computer control for optimum scanning performance.

PROBE V5.0 provides an enhanced

CIRCLE 49 ON READER SERVICE CARD

30 • CQ • October 1999

THE VECTRONICS HFT-1500 THE FINEST HIGH POWER ANTENNA TUNER MADE!

- high current Roller Inductor
- SSB*Analyzer Bargraph[™]
- Cross-Needle Meter
- 6 position Antenna Switch
- built-in 4:1 Balun
- gear driven Turns Counter

The VECTRONICS HFT-1500 is not just an antenna tuner . . . it's a beautifully crafted work of art, using the finest components available and the highest quality construction.

Every HFT-1500 aluminum cabinet is carefully crafted with a durable baked-on paint that won't scratch or chip.

The attractive two-color Lexan front panel is scratch-proof. Take a quarter. Scratch the HFT-1500 front panel as much as you want. You won't leave a mark!

Arc-Free Operation

Two heavy duty 4.5 kV transmitting variable capacitors and a massive high current roller inductor gives you arc-free operation up to 2 kW PEP SSB.

Precision Resetability

A sturdy hand cranked roller inductor lets you quickly fly from band to band. A precision 5-digit gear driven turns counter lets you accurately return to your previous settings.

Large comfortable knobs and smooth vernier drives on the variable capacitors make tuning precise and easy. Bright red pointers on logging scales make accurate resetability a breeze.

Absolute Minimum SWR

You can tune your SWR down to absolute minimum!

Why? Because all three matching network components, the roller inductor and both variable capacitors, are fully adjustable.

Tune any Antenna

You can tune any real antenna from 1.8 to 30 MHz, including all MARS and WARC

300 Watt Mobile Tuner

bands. You can tune verticals. dipoles, inverted vees, yagis, quads, long-wires, whips, G5RVs, etc

SSB*Analyzer Bargraph™

VECTRONICS' exclusive 21 segment bargraph display lets you visually follow your instantaneous voice peaks. Has level and delay controls.

Accurate SWR/Power Meter

A shielded directional coupler and backlit Cross-Needle meter displays

accurate SWR, forward and reflected power simultaneously. Reads both peak and average power on 300/3000 Watt scales.

6 Position Ceramic Antenna Switch

Select two coax fed antennas (tuned or bypassed), balanced line/wire or bypass.

Built-in Balun

A 4:1 Ruthroff voltage balun feeds dual high voltage Delrin terminal posts for balanced lines. HFT-1500 is 5.5x12.5x12 inches.

Try any product for 30 days Call toll-free 800-363-2922 and order any product from VECTRONICS. Try it for 30 days. If you're not completely satisfied return it for a full refund, less shipping and handling -- no hassles. All VECTRONICS products come with a one year warranty.

SWR/Power Meters

300 Watt Antenna Tuner

VECTRONICS uses the finest components available to build the highest quality 300 Watt antenna tuner ever made.

You can tune any antenna 1.8-30 MHz. Custom 48 position switched inductor and continuous rotation 1000 Volt capacitors provide arc-free operation. Handles 300 Watts PEP SSB, (150 Watts on 1.8 MHz).

8 position antenna switch, built-in 50 ohm dummy load, peak reading backlit cross-needle SWR Power meter, 4:1 balun for balanced line antenna. Scratch-proof Lexan front panel. 10.2x9.4x3.5 in. Weighs 3.4 lbs.

1500 Watt dry Dummy Load

DL-650M, \$64.95. Handles 100 watts continuous, 1500 Watts for 10 seconds to 650 MHz. Ceramic resistor. SWR < 1.3. SO-239 connector. DL-

The VC-300M Mobile Antenna Tuner compact, lightweight, easy-to-operate 15 and is our most economical tuner.

It's compatible with any mobile antenna and any mobile HF transceiver and is compact enough to fit in the most compact car.

It can also be used at home with dipoles, vees, verticals, beams or quads fed by coax.

Backlit dual movement meter simultaneously monitors Power and SWR. Covers 1.8-30 MHz. Handles 300 Watts SSB PEP, 200 Watts continuous, (150 Watts on 1.8 MHz.). 7.25x8.75x3.6 in. Weighs 3.4 lbs.

Low Pass TVI Filter

LP-30, \$69.95.

PM-30, \$79.95, for 1.8 to 60 MHz. Displays forward and reflected power and SWR simultaneously on dual movement Cross-Needle Meter. True shielded directional coupler assures accuracy. Backlit meter displays peak or average power in 300/3000 Watt ranges. First-rate construction includes scratch-proof case/front panel. 5.3x5.75x3.5 inches. SO-239 connectors. For 144/220/440 MHz, 30/300 Watt ranges. PM-30UV, \$89.95, has SO-239 connectors. PM-30UVN, \$89.95, has N connectors. PM-30UVB, \$89.95, has BNC connectors.

High Pass TVI Filter

HPF-2, \$24.95. Installs between VCR/TV and cable TV or antenna lead-in cable. Eliminates or reduces interfer-

650MIN, \$69.95 has N connector. and antenna or tuner. Handles 1500 watts. ence caused by nearby HF transmitters.

... the finest amateur radio products made

VECTRONICS 1007 Hwy 25 S, Starkville, MS 39759 USA VOICE: (601)323-5800 FAX: (601)323-6551 Web: http://www.vectronics.com Free catalog, nearest dealer or to order call 800-363-2922

CIRCLE 15 ON READER SERVICE CARD

CIRCLE 43 ON READER SERVICE CARD

Be a Winner with CQ Contest!

No matter how you look at it, CQ Contest is the contester's magazine. We've assembled some of the best contesters in the world to produce a publication that's informative and fun to read. Edited by Bob Cox, K3EST, it offers fascinating articles from fellow contesters OH2MM, N6KT, S50A, I2UIY, W3ZZ, KU2Q, JH4NMT and others!

People

Fascinating features about experiences of contesters around the world such as Contesting Under Communism or the PJ1B story.

Analysis

In-depth analysis of Contest results. Detailed information about contesting that will never be found in the results!

Technology

Practical reporting on contest-specific technology and its applications. Read about multi-op filters, station design, product reviews and more.

Techniques

Advice from the experts on operating and ways to improve your score including phone pileup techniques, basic operating tips and much more!

Reporting

Up-to-date, worldwide coverage of contests and events.

U.S.: 1-year, (10 issues) \$30.00, 2-years (20 issues) \$57.00. Canada/Mexico: 1-year \$40.00, 2-years \$77.00. Foreign Air Post: 1-year \$42.95, 2-years \$82.95. Please allow 6-8 weeks for your first issue.

VISA

CQ Communications, Inc. 25 Newbridge Road, Hicksville, New York 11801 Ph: 516-681-2922 Fax: 516-681-2926 (include check, money order or credit card information).

champion Radio Wear

level of scanning speed and support for the Optocom's 38400 baud capability. It also supports access to features such as computer-controlled volume and squelch control and stand-alone scanner operation. For all Opto users, the "Autolock Hitcount" and "Automark Hitcount" automatically lock out and/or mark frequency records based on the number of hits in the log, providing assistance in searching unknown frequency lists or finding out what frequencies in a list are really active.

For more information, contact DataFile Inc., P.O. Box 20111, St. Louis, MO 63123 (e-mail: <Datafiles@aol.com>), or circle number 106 on the reader service card.

Hi-Res Communications' R-390A Addendum Video

Hi-Res Communications, Inc. has announced The R-390A addendum Video addition to the Collins Video Library. This new 3 hour 40 minutes video contains additional and detailed information on the R-390A that complements the original 7 hour long R-390A video which was produced two years ago and includes topics such as "How to pick out an R-390A," its "Modules," "Circuit Description," "Front and Rear Panel Detains," and much more. New and more detailed topics covered in the addendum video are "General Information," more detailed "Circuit Description," more "PTO" talk, "Quick Checks" to establish the electrical condition of an R-390A, "Restoration" and rebuilding considerations, and more. The original 7 hour video was priced at \$109.95. The new addendum is \$49.95 plus s/h. For more information, contact Hi-Res Communications, Inc., 8232 Woodview Drive, Clarkston, MI 48348-4058 (phone/fax 248-391-6660; e-mail: <info@ hi-rescom.com>; on the web: <http:// www.hi-rescom.com>), or circle number 107 on the reader service card.

IC-T81A Four-Band Handheld From ICOM America

The new IC-T81A four-band handheld covers 6 meters, 2 meters, and 440 MHz at 5 watts output power and 1 watt on the 1.2 GHz band. It features 124 memory channels, water-resistant construction, a five-position "joy stick" control for ease of control of set mode, tone, duplex, volume, operating band, scanning, and more, plus an alphanumeric display for memory channel naming. The IC-T81A does not use function keys, and is easy to use, maker says.

The handheld is 2.3"W × 4.2"H × 1.1"D and weighs 9.9 oz. For more information, contact ICOM America, Inc., 2380 116th Avenue NE, Bellevue, WA 98004 (425-454-8155; for a free brochure call 425-450-6088; or check the website: <www. icomamerica.com>), or circle number 108 on the reader service card.

Visit Our Web Site

MFJ 1.8-170 MHz SWR Analyzer Reads complex impedance . . . Super easy-to-use

New MFJ-259B reads antenna SWR ... Complex RF Impedance: Resistance(R) and Reactance(X) or Magnitude(Z) and Phase(degrees) ... Coax cable loss(dB) ... Coax cable length and Distance to fault ... Return Loss ... Reflection Coefficient ... Inductance ... Capacitance ... Battery Voltage. LCD digital readout ... covers 1.8-170 MHz ... built-in frequency counter ... side-by-side meters ... Ni-Cad charger circuit ... battery saver ... low battery warning ... smooth reduction drive tuning ... and much more!

The world's most popular SWR analyzer just got incredibly better and gives you more value than ever!

MFJ-259B gives you a complete picture of your antenna's performance. You can read antenna SWR and Complex Impedance from 1.8 to 170 MHz.

You can read Complex Impedance as series resistance and reactance (R+jX)or as magnitude (Z) and phase (degrees).

You can determine velocity factor, coax cable loss in dB, length of coax and distance to a short or open in feet.

You can read SWR, return loss and reflection coefficient at any frequency simultaneously at a single glance.

You can also read inductance in uH and capacitance in pF at RF frequencies.

Large easy-to-read two line LCD screen and side-by-side meters clearly display your information.

It has built-in frequency counter, Ni-Cad charger circuit, battery saver, low battery warning and smooth reduction drive tuning.

Super easy to use! Just set the bandswitch and tune the dial -- just like your transceiver. SWR and Complex Impedance are displayed instantly! Here's what you can do

MFJ-209, \$139.95. Like MFJ-249B but reads SWR only on meter and has no LCD or frequency counter.

MFJ-219B, \$99.95. UHF SWR Analyzer[™] covers 420-450 MHz. Jack for external frequency counter. 7¹/₂x2¹/₂ x2¹/₄ inches. Use two 9 volt batteries or 110 VAC with MFJ-1312B, \$12.95. Free "N" to SO-239 adapter.

SWR Analyzer Accessories

resonant frequency of tuned circuits and Q of coils. Set of two coils cover 1.8-170 MHz depending on your SWR Analyzer[™].

Genuine MFJ Carrying Case

Find your antenna's true resonant frequency. Trim dipoles and verticals.

Adjust your Yagi, quad, loop and other antennas, change antenna spacing and height and watch SWR, resistance and reactance change instantly. You'll know exactly what to do by simply watching the display.

Perfectly tune critical HF mobile antennas in seconds for super DX -- without subjecting your transceiver to high SWR.

Measure your antenna's 2:1 SWR bandwidth on one band, or analyze multiband performance over the entire spectrum 1.8-170 MHz!

Check SWR outside the ham bands without violating FCC rules.

Take the guesswork out of building and adjusting matching networks and baluns.

Accurately measure distance to a short or open in a failed coax. Measure length of a roll of coax, coax loss, velocity factor and impedance.

Measure inductance and capacitance. Troubleshoot and measure resonant frequency and approximate Q of traps, stubs, transmission lines, RF chokes, tuned circuits and baluns.

Adjust your antenna tuner for a perfect 1:1 match without creating QRM.

And this is only the beginning! The

MFJ-224 **MFJ 2 Meter** FM SignalAnalyzerTM

Measure signal strength over 60 dB range, check and set FM deviation, measure antenna gain, beamwidth, front-to-back ratio, sidelobes, feedline loss in dB. Plot field strength patterns, position antennas, measure preamp gain,

Call your favorite dealer for your best price!

MFJ-259B is a complete ham radio test station including -- frequency counter, RF signal generator, SWR Analyzer[™], RF Resistance and Reactance Analyzer, Coax Analyzer, Capacitance and Inductance Meter and much more!

Call or write for Free Manual

MFJ's comprehensive instruction manual is packed with useful applications -- all explained in simple language you can understand.

Take it anywhere

Fully portable, take it anywhere – remote sites, up towers, on DX-peditions. It uses 10 AA or Ni-Cad batteries (not included) or 110 VAC with MFJ-1315, \$14.95. Its rugged all metal cabinet is a compact 4x2x6³/₄ inches.

How good is the MFJ-259B?

MFJ SWR Analyzers[™] work so good, many antenna manufacturers use them in their lab and on the production line -- saving thousands of dollars in instrumentation costs! Used worldwide by professionals everywhere.

More MFJ SWR Analyzers™

MFJ-249B, \$229.95. Like MFJ-259B, but reads SWR, true impedance magnitude and frequency only on LCD. No meters.

detect feedline faults, track down hidden transmitters, tune transmitters and filters. Plug in scope to analyze modulation wave forms, measure audio distortion, noise and instantaneous peak deviation. Covers 143.5 to 148.5 MHz. Headphone jack, battery check function. Uses 9V battery. 4x2¹/₂x6¹/₄ in. Made of special foam-filled fabric, the MFJ-29C cushions

blows, deflects scrapes, and protects knobs, meters and displays from harm.

Wear it around your waist, over your shoulder, or clip it onto the tower while you work -- the fully-adjustable webbed-fabric carrying strap has snap hooks on both ends.

Has clear protective window for frequency display and cutouts for knobs and connectors so you can use your MFJ SWR Analyzer[™] without taking it out of your case. Look for the MFJ logo for genuine authenticity!

MFJ-99, \$54.85. Accessory Package for MFJ-259/B/249/B/209. Includes genuine MFJ-29C carrying case, MFJ-66 dip meter adapter, MFJ-1315 110 VAC adapter. Save \$5!

Tunable Measurement Filter[™] MFJ-731, \$89.95. Exclusive MFJ tunable RF filter allows accurate SWR and impedance measurements 1.8 to 30 MHz in presence of strong RF fields. Has virtually no effect on measurements. Works with all SWR Analyzers.

MFJ No Matter WhatTM warranty

MFJ will repair or replace (at our option) your MFJ SWR Analyzer[™] for one full year.

http://www.mfjenterprises.com

 1 Year No Matter What[™] warranty • 30 day money back guarantee (less s/h) on orders from MFJ

Prices and specifications subject to change. (c) 1998 MFJ Enterprises, Inc.

More hams use MFJ SWR AnalyzersTM than any others in the world!

CIRCLE 64 ON READER SERVICE CARD

HF Plus

All About The World Above HF

The 1999 Perseids

he following from Shelby Ennis, W8WN, pretty well summarizes the meteor activity for the 1999 *Perseids* meteor shower:

All reports so far say about the same thing— "dismal," "poorest *Perseids* in years," "no early peak at all," "worst ever in many years of operating," etc. Many are still hoping for a later-thanpredicted second peak, so the ionospheric is still being kept hot at this time (and, the number of overdense bursts is probably about as good now as any time during the peak time, except for a couple of short enhancements).

There was a strong flurry of long overdense bursts on 13 August between 1030 and 1040 UTC. Several other reports from both Europe and North America indicate some overdense burns in the 2300–0100 period, although there is some question about this exact time.

Best single burn observed by a number of us in North America was Thursday at 2224 UTC, not the typical time for the *Perseids*.

Thus, from trying to watch the real-time NA and European web sites, plus the main MS reflectors, the early peak (and the meteors in general) just weren't there except for the normal background of underdense pings, until around 1000 UTC Friday. Since then things were better, and (at 1535 UTC) occasional overdense bursts were heard.

Did the Perseids just fail to produce much this year?"

	VHF Plus Calendar
Oct. 1	Last quarter Moon.
Oct. 3	Moderate EME conditions.
Oct. 9	New Moon.
Oct. 10	Poor EME conditions.
Oct. 15	Moon apogee.
Oct. 16	Lowest Moon declination.
Oct. 17	First quarter Moon. Very poor EME conditions.
Oct. 21	Orionids meteor shower predicted peak.
Oct. 24	Full Moon. Good EME condi-
tions.	
Oct. 26	Moon perigee.
Oct. 29	Highest Moon declination.
Oct. 30-3	31 First weekend of the ARRL EME contest. (See text for details.)
Oct. 31	Last quarter Moon. Very good EME conditions.

have enough data yet to know which did better, though SSB should have been the mode of choice, especially for random work.

It's interesting to note that several 222 MHz contacts have been reported, and that, Holly, NØQJM (located in EN13, South Dakota), has now worked all the lower 48 states on 144 MHz without using EME! My completion with VE5UF (HSCW, 2273 km) was a surprise given the poor shower, as we have run a number of skeds during good periods of "better" showers. (He got only the two information-carrying pings on me, while I got five S1's and four S2's on him. And I had several dB more power.) So far I've seen no reports of 432 MHz completions, and no information on 50 MHz conditions have been seen.

2000, become more proficient at MS procedures, and get the boss to let us off for the *Leonids*.

NØQJM Completes Lower 48 WAS

The following is from Arliss, W7XU, via the VHF Reflector: "While many of us may have found the *Perseids* somewhat lacking this year, Holly, NØQJM (located in EN13, South Dakota), managed to complete schedules with W1AIM (Vermont) and W1JJM (Rhode Island) on 2 meters. With those QSOs she has now worked all lower 48 states on 2 meters without using EME. Congratulations, Holly!"

Current Contest

The first weekend of the ARRL annual EME contest is scheduled for the weekend of 30-31 October. The second weekend will be in November. The contest period is the entire 48-hour period, beginning at 0000 UTC. The object of the contest is to work as many stations as possible "off the moon." Categories include single operator, single band, single operator, multiband, multi-operator, and commercial equipment. Each contact counts as 100 points. Multipliers include each U.S. and Canadian call district and each DXCC country worked. Conditions are expected to be moderate during the contest weekend. Complete rules are in the September issue of QST and can be found on their web site: <http://www.arrl.org/contests/ announcements/99/rules-eme.html>.

A subsequent message contained the following reflections:

Messages continue to trickle in, but with no really new information. The question has logically been asked, since the predicted peak times occurred at generally "bad" times for the centers of activity (and also during daylight hours for many visual observers), are the poor results due to a lack of meteors or to the trail geometry due to the location of the radiant? At this time we don't have enough data to tell (that's why we're trying to stir up more info). But the reports so far indicate that the lack of a first (the "new") peak was real. The second ("old standard") peak may have been better than first thought, but was still poor, compared with previous years. Occasional overdense burns were heard from 1000 to about 1600 UTC on August 13, but remember this tends to be subjective. We're still spoiled by the large, early peaks earlier this decade, and by the fireballs of last year's Leonids! (For a summary of newest guesses on this year's Leonids, go to the hscw/HotNews section of my web site).

SSB was found by many to be nearly useless this year until after 1000 UTC on August 13 due to the lack of overdense trains. But there were still some underdense pings, making HSCW effective. In the 1000–1600 UTC period I don't

P.O. Box 73, Oklahoma City, OK 73101 (phone 405-528-6625; fax 405-528-0746) e-mail: <n6cl@fuller.edu> What does all this mean?

1. Put all the experts in the world in a line and they'll never reach a conclusion.

Your results may be greatly different from everybody else's. It's yours that count for you.

 We may pay too much attention to predictions based on too many unknowns, while neglecting the known characteristics of trail orientation, etc.

4. We need to be trying more, anyway! Poor shower or not, several did well in one way or another. And that's what counts!

There are many differences between the visual and forward-scatter radio results.

6. The use of the real-time MS web pages and e-mail has revolutionized acquiring schedules. But the North American "Hot Rocks" page can hardly handle the traffic at peak times. By the time you post a note and the next twominute update period, it may be 10 lines down the page and off the screen.

 North Americans need to use 144.100 ZB and letter-CQ's a *lot* more during these times. (Europeans may need to return to the CQ-letter system more).

Now is the time to repair equipment, make sure we have the latest version of WinMSDSP

Current Meteor Showers

According to the OH5IY meteor shower prediction software, the Orionids is predicted to peak around 21 October at approximately 2020 UTC. A characteristic of this shower is that it has several smaller peaks both before and after the main spike. The second major peak is expected approximately four days after the main peak. At peak the zenith hourly rate (ZHR, the number of predicted meteors falling per hour) is predicted to be around 25. Look for activity associated with this shower for approximately 16 days beginning a week before the main peak.

Current Conference

1999 Microwave Update: This year's Microwave Update is scheduled for sometime in October in the DFW area of Texas.
Detailed information on the conference was not available as of the deadline for this column. For up-to-date information, contact Kent Britain, WA5VJB, at <wa5vjb @flash.net>.

A Tribute to K2EEK

My wife, Carol, W6CL, and I were honored to be at the funeral of Alan, K2EEK, in July. The following are excerpts from the eulogy I delivered.

Under the leadership of Al, CQ magazine has become a place where many different facets of our hobby regularly get national and international exposure. We columnists come and go in the hobby. However, today the current longest running columnist in any publication is George Jacobs, W3ASK, with his "Propagation" column. Other columns deal with packet, DX, contesting, county hunting, and VHF and above. Those of us such as John Dorr, Chod Harris, and myself, who have inherited long-running columns, look over our shoulders at the great columnists before us and wonder if we are keeping up the traditions. All of this was made possible under the leadership of Al. There is nowhere in the world of ham radio that one can go and not know of the impact of CQ and what AI helped make it become.

Al kept us aiming for the best. Out of love for his hobby, Al guided the magazine editorially to become a respected voice within the amateur radio community. It is through Al's editorials that CQ became a sort of Torah for the ham radio fraternity. Al constantly chided us to strive for something better than we had become or were becoming. Via his "Zero Bias," time and again Al challenged us to measure up to a mark of a higher standard. For him, anything less was, well, unacceptable. However, AI could not have achieved such a forum without first creating a very successful magazine. It was from his unique position in the history of our hobby that Al could make his observations. One of our last in-depth conversations was about the passing of so many of our hobby's heroes. The breadth of Al's stay in the hobby positioned him in such a way that he saw the dying embers of the influences that these heroes of the past had on our hobby, and he saw into the future of what our hobby would become. It was from that position that, as a good conscience, Al challenged us both to not forget our past and to move responsibly into the future. In my heart, and in the hearts of so many of us in the fraternity, memories of Al's contributions will be with us as we move into the future of amateur radio.

dress and P.O. Box remain the same. However, check the beginning of the column for our new fax number.

This move puts us in a different part of the state of Oklahoma and in a new grid locator—EM26. The bad news is that I get to start all over on my VUCC and WAS work on the VHF+ bands. I am now located within the magic ring of increased probability of being able to work all of the lower 48 states on 2 meters without the aid of the Moon. That ring is centered over the corner of Kansas, Missouri, Oklahoma, and Arkansas. While it is generally believed that operators located within that ring have an increased probability of working the 48 states over the rest of the country, it is not impossible for operators outside of that ring to accomplish that goal, as Holly, NØQJM, proved during the *Perseids* meteor shower.

Look for us to be on a bit more now that we have a new home for our antennas.

Next month will be coverage of the impending *Leonids* meteor shower which has the potential of being a storm. Until next month . . .

73, Joe, N6CL

And Finally ...

Carol and I have finally completed our move to Tulsa, Oklahoma. Our e-mail ad-

CIRCLE 41 ON READER SERVICE CARD

Antenna Software by W7EL

EZNEC ('Easy-NEC') captures the power of the NEC-2 calculating engine while offering the same friendly, easy-to-use operation that made ELNEC famous. EZNEC lets you analyze nearly any kind of antenna - including quads, long Yagis, and antennas within inches of the ground - in its actual operating environment. Press a key and see its pattern. Another, its gain, beamwidth, and front/back ratio See the SWR, feedpoint impedance, a 3-D view of the antenna, and much, much more. With 500 segment capability, you can model extremely complex antennas and their surroundings includes true current source and transmission line models Requires 80386 or higher with coprocessor, 486DX, or Pentium, 2Mb available extended RAM, and EGA/VGA/SVGA graphict.

ELNEC is a MININEC-based program with nearly all the features of EZNEC except transmission line models and a limitation of about 127 segments (6-8 total wavelengths of wire). Not recommended for quads, long Yagis, or antennas with horizontal wires lower than 0.2 wavelength, excellent results with other types. Runs on any PC-compatible with 640k RAM, CGA/EGA/VGA/Hercules graphics. Specify coprocessor or non-coprocessor type.

Both programs support Epson-compatible dot-matrix, and HPcompatible laser and ink jet printers.

Prices - U.S. & Canada - EZNEC \$89, ELNEC \$49, postpaid Other countries, add \$3, VISA AND MASTERCARD ACCEPTED

Roy Lewallen, W7EL	phone	503-646-2885
P.O. Box 6658	fax	503-671-9046
Beaverton, OR 97007	email	w7el@teleport.com

CIRCLE 67 ON READER SERVICE CARD

FREE samples - Write, phone, fax or Email Wayne Carroll, W4MPY 682 Mt. Pleasant Road Monetta, SC 29105 U.S.A. Phone or FAX (803) 685-7117 Email: W4MPY@w4mpy.com Web site: www.w4mpy.com

ath's Notes

What's New And How To Use It

Op-Amp Update

Did you say that you needed a little more power in an op-amp? Did you say that the output of your op-amp cannot give you enough drive into a 50 or 75 ohm load? Well, if that's your problem, I have a set of chips for you! These, as you will see, can truly be called op-amps!

The new OPA5471819 series from Burr-Brown starts with the OPA547, a TO-220 packaged op-amp with an output peak current rating of 750 milliamperes that's three-quarters of an amp). This device can produce a continuous output of 1/2 amp and has a slew rate of 6 volts/ microsecond, so it is fine for use up to a MHz or so and will provide 50 volts pp into 50 ohms with a THD of only 0.004% at that frequency (gain of 1). Fig. 1 shows the power package for the op-amp, and fig. 2 shows the typical schematic diagram. Notice the exact similarity to conventional op-amp design.

Other than the high power output, the device can be used for all usual op-amp circuitry. Additional parameters include a ± 30 volt dual or +60 volt single-ended power supply range, an operating temperature range of -40° to $+125^{\circ}$ C, and an open loop gain of 115 dB. Cost for this device is \$4.09 in large quantities and

Fig. 1- The OPA547/8 package.

somewhat more for single pieces.

20,000 IN 0 OVER 50 COUNT	USE IN RIES			SAM SHIF MAD	E DAY PPING DE IN U.S.A.
HV14-1	14KV	-1A	250A.SUR	GE	\$15.00
HV10-1	10KV-	-1A	250A.SUR	GE	12.00
HV 8-1	8KV-	-1A	250A.SUR	GE	10.00
HV 6-1 Plus \$4.00	6KV- SHIPPIN	-1A G-NY	150A.SUR	GE DD 8%	5.00 SALES TAX
	K2AW	/'s "5	SILICON AL	LEY"	
17	5 FRIEND	S LAN	NE WESTBURY 6-334-7024	, NY 1	1590

c/o CQ magazine

If that is not enough, we now move on to the OPA-548. Now the output peak current rating jumps to 5 amps with 3 amps continuous! The package remains the same, but now this baby will provide the

Fig. 2- Typical non-inverting op-amp circuit using OPA547/8/9 devices.

BY IRWIN MATH, WA2NDM

50 volt pp output into 8 ohms. Boy, what an audio amplifier you can build! Total harmonic distortion is only 0.02%, and openloop voltage gain is around 98 dB. Powersupply range is the same, and now the real issue becomes proper heat sinking. Cost for the OPA548 is \$5.45 in large quantities with somewhat more for single pieces.

For the ultimate, Burr-Brown also has the OPA549, which was just released in April. This device will provide 10 amps peak output and 8 amps continuously. Data sheets were not available at the time this column was written, but the press release indicated a slew rate of 10 volts/ usec, which still equates to better than a MHz of bandwidth. The package is a socalled 11 lead power ZIP (?), and from the press release the other parameters seem to simply be an extension of the lower current devices. By the time you read this, there probably will be more information available from the company. Cost for the OPA549, by the way, is \$12.00 in large quantities with again somewhat more for single pieces.

So what can you do with such highpower op-amps? You can build audio amplifiers as we have already mentioned. You can drive various transducers or even motors and develop accurate feedback speed controls. You might be able to push the devices into service at 160 meters, or you can build accurate regulated power supplies. Fig. 3 is a schematic diagram of a manufacturer-suggested power supply circuit using these devices. It is simple to build and has applications for both a bench-top lab supply or as part of some other circuit where high currents are needed. Either way be certain to assure proper heat sinking. These devices will get quite hot.

Before building anything, however, I strongly suggest that you contact Burr-Brown at <http://www.burr-brown.com> for further details and download the data sheet for the device that interests you.

As a final note, I am deeply saddened by the passing of my friend and colleague Alan Dorhoffer, K2EEK. We had been friends since the start of "Math's Notes" in the early '70s, and he was always, in my opinion, one of the true spokesmen of amateur radio. Al was never afraid to express his views verbally or in his "Zero Bias" editorial each month, and every time we got together (which in retrospect was not often enough) the result was always a lively discussion that I am certain we both enjoyed. I only wish there were more like him. I will truly miss Al in the years to come.

THE BEST for ham radio operators!

n aluminum frame, fully expanded. Put the weather on your wall

The most popular accessory for our precision weather systems, **The Weather Picture®** continuously displays all the vital weather data you've pre-selected from your ULTIMETER® Weather Station. Big red numerals are easy to read from across the room, day or night. Available in 2 sizes, in brushed aluminum or elegant solid teak frame.

ULTIMETER Weather Systems are simple to install and easy to use, yet accurate enough for the pros. Select the one that best fits your needs and budget.

Wireless displays now available! For full details, write or call us TOLL-FREE at 1-800-USA-PEET. Or visit our Web Site to see and actually try a system:

73, Irwin, WA2NDM

www.cq-amateur-radio.com

he Digital Dipole From Software Through Antennas For The Shack

ow the year 1999 has flown! Already we've been through about three-quarters of the year, the last one of this century. By the time you read this, the calendar will have advanced into fall, when we see the first signs of antenna season waning for another year. In any case, let's begin our fall excursion by setting our sights squarely on the antenna notebook.

Antenna Notes

CUBEX Quads: New Location, New Products. In the March and November 1996 columns we profiled some of the rugged quad antennas from CUBEX Company, whose motto is "You can't say quad better than CUBEX." The firm, which has been in the antenna business for some 40 years, offers complete quads and quad kits for 2 through 40 meters. All CUBEX models are built using high-quality materials, among them the cast aluminum alloy spiders and fiberglass spreader arms.

About a year ago CUBEX president Norman Alexander, W4QN, announced the relocation of the firm to new and better facilities in Jupiter, Florida, after serving the amateur radio market for some 40 years from southern California and south Florida locations. The move to better quarters is complete now, and several antennas have been announced and promoted recently.

Among these are the CUBEX MANTIS Series Quads. They claim 6+ dB gain on 40 meters, and more gain on other bands, using a 24 or 30 ft. boom (the 40 meter only MANTIS has a 15 ft. boom). The 140 lb. antennas are about 52 ft. tip-to-tip, 36 ft. on each side; wind loads are 17 to 21 sq. ft., depending on the model.

Four MANTIS Series "Monster" models are available. These include the MANTIS II PT1B, offering two elements on 40 meters (\$1325.95 plus s/h); the MANTIS II – PT4B, with four elements on 10/15/20 meters and two elements on 40 meters (\$1825.95); the MANTIS II - PT6B, with four elements on 10/12/15/17/20 meters and two elements on 40 meters (\$1945.95); and the MANTIS III - PT6B, with four elements on 10/12/15/17/20 meters and three elements on 40 meters (\$2449.95). Among

CUBEX, which has been in the antenna business for some 40 years, offers complete guads and quad kits. They currently offer antennas for 2-40 meters. All models are built using high-quality materials, among them the cast-aluminum-alloy spiders and fiberglass spreader arms. The rugged and durable models boast easy assembly. (Photo from CUBEX website)

289 Poplar Drive, Millbrook, AL 36054-1674

other new products are the MF VHF dualband 2 and 6 meter quad (\$112.95) and the SCORPION, a 7-element, 2 meter quad (\$94.95), an addition to the popular YELLOW JACKET 4-element, 2 meter quad antenna.

CUBEX also offers the intrepid quad builder a complete line of hardware, rope,

Fig. 1– With the new Autek Research Model VA1 Vector RF Analyst you can easily and instantly tell whether your load is capacitive or inductive, and even find out what value of coil or capacitor to add to eliminate series resistance and yield a lower SWR. The VA1 adds a true phase detector to give you antenna or load R as well as "signed" X components. It also offers other important, easy-to-use functions, as this chart, derived from the instrument's front panel, shows. (Illustration from Autek Research product literature)

> and parts. Available components include spiders, fiberglass arms, elements, boom/ mast couplers, matching transformers, arm clamps, booms, Dacron® polyester rope, a "high wind kit," and other necessary or nice-to-have goodies.

> For a free flyer, including some interesting "Quad vs. Yagi" comparisons and contrasts, contact CUBEX Company, Inc., 228 Hibiscus Street, Jupiter, FL 33458 (561-748-2830; e-mail: <CubexCo @aol.com>; on web: <http://www.cubex. com>).

> Autek Research Model VA1 Vector R-X Antenna Analyst. In the October 1994 column we profiled the Autek Research RF1 Antenna Analyst[™]. As we noted in that writeup, Autek Research has been turning out high-quality amateur radio accessories since 1972 under the capable stewardship of Bill Onesky, N6WO.

COAX (500HM"LOW LOSS" GROUP)	100FT/UP	500FT	1000FT	
"FLEXIBLE" 9913 STRD BC CNTR FOIL + 95% BRAID 2.7dB@ 400MHz NC/DB/UV JKT	.58/FT	.56/FT	.54/FT	COAX CABLE ASSEMBLIES
LMR 400 SOLID CCA CNTH FOIL + BRAID 2.70B @ 450MHZ WP/UV JKT	-09/F1 70/ET	5//F1	.55/FT	With USA made Silver/Tetion* Gold Pin PL259 connectors.
LMR 600 (OD 590") SOLID CCA CNTR FOIL + BRAID 1.72dB @ 450 MHz WP/UV JKT	1.25/FT	1.22/FT	1.20/FT	150' \$99 95 100' \$69 95 75' \$54 95 50' \$39 95 25' \$24 95 15' \$21 95 10' \$18 95 6' \$12 95 3' \$11 95
LDF4-50A 1/2" "ANDREW" HELIAX" 1.51dB @ 450MHz	.2.10/FT	. Constant	11222110	BG213/U strd BC Mil-Spec NC/BD/UV JKT, 1 2dB 2500 watts @ 30MHz.
COAX (50 OHM "HF" GROUP)	100FT/UF	P 500FT	1000FT	150' \$69.95 100' \$49.95 75' \$39.95 50' \$29.95 25' \$19.95 15' \$17.95 10' \$15.95 6' \$11.95 3' \$9.95
RG213/U STRD BC MIL-SPEC NC/DB/UV JACKET 1.2 dB/2500WATTS @ 30MHz	.36/FT	.34/FT	.32/FT	RG8/U strd BC foam 95% braid UV resistant JKT, 0.9dB 1350 watts @ 30MHz.
RGB/U STRD BC FOAM 95% BRAID UV RESISTANT JKT 0.9dB/1350WATTS @ 30MHz.	.34/FT	.32/FT	.30/FT	150ft \$54.95 100ft \$44.95 75ft \$34.95 50ft \$24.95 25ft \$14.95 10ft \$13.95 6ft \$11.95 3ft \$9.95
RG8 MINI(X)95% BHAID UV RESISTANT JACKET 2.0dB/875 WATTS @ 30MHz	.15/FT	.13/FT	.12/FT	RG8 MINI(X) strd BC foam 95% braid UV resistant JKT. 2.0dB/875watts@ 30 MHz
PC58A/LISTRD CENTER 05% TC RPD LIV RESISTANT IKT 2 648/350 WATTS @ 30MHz	.15/FI	.13/FT	.11/FT	150' \$34.95 100' \$24.95 75' \$19.95 50' \$15.95 25' \$10.95 6' \$4.95 3' \$3.95
BG214/U STRD SC 2 95% BRD NC/DB/UV JKT 1 2dB/1800WATTS @ 30MHz	25	FT/UP 1	1.75/FT	LMR 400 SOLID CCA CNTR FOIL + BRAID 2.7dB @ 450MHz WP/UV JKT=100' \$72.95
		and i		With USA made Silver/Tefion*/Gold Pin male "N" connectors.
IAKE suggest you get your	the second second			FLEXIBLE 9913 strd BC cntr 10IH95% braid 2.7dB 400MHz NC/DB/UV JK1.
JAKE suggest you get your	N_P	1		150 \$110.90 100 \$60.90 75 \$07.90 50 \$04.50 25 \$39.90 15 32.90 10 \$20.90 6 \$10.90 3 \$15.90 With LICA made Silver/Teffor#/Cold Dia DI 250 to male "M"
HF station ready with our OCTOBER	A STATE OF		21	FLEXIBLE 9913 strd BC ontr foil 95% braid 2 7dB 400MHz NC/DB4 IV IKT
1999	10			150'\$104.95 100'\$74.95 75'\$59.95 50'\$44.95 25'\$29.95 15'\$26.50 10'\$23.95 6'\$14.95 3'\$13.95
	T			All terminations are soldered, Hi-Pot ^e tested @ 5kv for one minute, & completed with UV
FEATURED CABLE SPECIAL.		1 9		resistant heat shrink tubing. CUSTOM CONNECTOR WORK TOO. Call for price and delivery.
500ft RG213/U MIL SPEC TYPE 50 Ohm Coax		1.210		
Features: Non Contaminating Direct Burial	A	Acres		CONNECTORS Both connectors fit 9913 types and LMR400 MADE IN USA
Plack looket Drice: \$170.00/cc	-			PL 259 SILVEH/Tetion/GOLD TIP
Black Jackel. Price: \$170.00/ea.				1 (2PC) SILVEH Tetion /GOLD TIP10PC \$32.5025PC \$75.0050PC \$143.75.100PC \$275.00
Freight included with this special only (within the 48 states). Shipping applies to a	li other d	lestinati	ions	For our other connectors and adapters see http://www.cablexperts.com/
and products listed herein. Sorry NO COD'S. Illinois residents add 8.25% state sa	ues tax.			TINNED COPPER "FLAT" GROUNDING BRAID
LADDER LINE GROUP	1005781	D SOOFT	100057	1 INCH WIDE (equivalent to 7ga)
"FLEXIBLE" 450 OHM 16GA COMPRESSED STRD CCS(PWR-FULL LEGAL LIMIT+)	20/FT	18/FT	16/FT	1/2 INCH WIDE (equivalent to 10ga)
"FLEXIBLE" 450 OHM 14GA COMPRESSED STRD CCS(PWR-FULL LEGAL LIMIT++)	.25/FT	.24/FT	.23/FT	FLEXIBLE 2/COND RED/BLK DC POWER "ZIP" CORD
300 OHM 20GA STRD (POWER: FULL LEGAL LIMIT)	.15/FT	.13/FT	.12/FT	8GA (rated:40 amps)
ROTOR & CONTROL CABLES	100FT/UF	9 500FT	1000FT	10GA (rated:30 amps)
5971 8/COND (2/18 6/22) BLK UV RES JKT. Recommended up to 125ft	.20/FT	.18/FT	.16/FT	12GA (rated:20 amps)
1618 8/COND (2/16 6/18) BLK UV RES JKT. Recommended up to 200ft.	35/FT	.34/FT	.32/FT	14GA (rated:15 amps)
1806 18GA STRD 6/COND PVC JACKET, Recommended for Vaesu Botors	23/51	21/FT	10/FT	trademark of DuPont. ORDERS ONLY:
Quick disconnects: PS308 KIT (JONES 8/C M/F) \$7,95/pr., PS309-KIT (JONES to AMP ROUND M/F).	\$10.95/0	E.	-19(1)	Check out our hasket" = 900 900 2010
Or we can install either pair for \$22.95, \$25.95.	a second per			shopping web site.
ANTENNA WIRE (UNINSULATED BARE COPPER)	100FT/UP	500FT	1000FT	Torine cablexperts.com
14GA 168 STRD "SUPERFLEX" (great for Quads & Portable set-ups etc.)		.12/FT	,10/FT	Calculates shipp
14GA 7 STRD "HARD DRAWN" (perfect for permanent Dipoles etc.).	10/FT	.08/FT	.06/FT	Carrie Comptant
14GA SOLID "COPPERWELD" (for long spans etc.).	10/FT	.08/FT	.06/FT	TECH INFO: 847-520-2003 EAX- 847-520-2444 Web Sile Check
POPE: 2/16" DOUBLE BRAID "POLVESTER" 770* TEST WEATHERPROOF	12/57	.08/FT	08/57	HOURS: M-E SAM-SPM CST
BOPE: 5/16" DOUBLE BRAID "POLYESTER" 1790# TEST WEATHERPROOF	17/FT	.14/FT	13/FT	http://www.cablexperts.com
CARLE & WIDE OUT TO YOUR OPEOICIC LENGTH - WE OTOOK AND WOTA	11 000	NEOT		
CABLE & WIRE CUT TO YOUR SPECIFIC LENGTH • WE STOCK AND INSTA	LL CON	NECTO	JRS 10	U. 410 Diens Drive, wheeling, IL 60090
www.cq-amateur-radio.com				October 1999 • CQ • 41

CIRCLE 45 ON READER SERVICE CARD

"KACHINA" THE \$4000 HF TRANSCEIVER AT ALMOST HALF THE PRICE SEE: www.kachinaradio.com ORDERS: 800-333-9041 M&S COMPUTER PRODUCTS

The original Model RF1 Antenna Analyst was (and still is) a digitally based, "do-all" HF antenna analyzer with a microprocessor for digital readout of just about everything, not just frequency. As such, the \$129.95 instrument greatly simplifies the construction, measurement, and adjustment of antennas, transmission lines, tuners, and RF networks from 1.2 to 35 MHz continuously.

In February 1998 we noted that Bill expanded his RF Analyst product line to include the new RF5 VHF Analyst. It's very similar in function to its RF1 older cousin, although it doesn't have the capability of directly reading out L and C values. The \$229.95 RF5 VHF Analyst goes well beyond the frequency range of the RF1 to cover 35–75 MHz and 138–500 MHz.

The big news is that an innovative, third Antenna Analyst has been added to the product stable. It's designed especially to compete head-to-head with the new, sophisticated antenna test and measurement devices offered by MFJ Enterprises, AEA/Tempo, and others. The new Model VA1 Vector R-X Antenna Analyst™ adds a true phase detector, to give you antenna or load R as well as "signed" X components, plus several other important and easy-to-use functions (see the functions chart in fig. 1).

With the new device you can easily and instantly tell whether your load is capacitive or inductive, and even find out what value of coil or capacitor to add to eliminate series resistance and yield a lower standing wave ratio (SWR). The device also tells you the parallel reactance that will produce the lowest SWR. (The unit isn't limited to 50 ohm lines; you can measure SWR on over 10 feedline impedances from 25 to 450 ohms.) The new VA1 even calculates the R and X components of your antenna when measuring at the far end of the feedline. No halfwave line is required; you just measure or calculate the feedline electrical length using the instrument. Like the RF1 (which still is available for those who are mainly concerned with SWR and Z measurements), the VA1 can cycle between several measured values so you can watch them together. The VA1's illustrated instructions cover many typical hamshack applications, not just bare-bones instrument operations. The VA1 is \$199.95 plus \$6 s/h; RF1/RF5 and VA1/RF5 combo offers also are available for all-band coverage. For a flyer with detailed specifications of all three instruments, contact Autek Research, P.O. Box 8772, Madeira Beach, FL 33738 (813-886-9515). NewTronics Hustler Catalog. Newtronics Antenna Corp., with its line of Hustler antennas, is a supplier of CB, monitor, and amateur fixed-station and mobile antennas. The Texas-based firm

offers a 26-page antenna and antenna accessories catalog that details their considerable antenna selections. The Hustler catalog also depicts mounts, springs, and other useful accessories. The catalog is particularly useful to beginners in that its sections covering each different type of antenna offered have succinct explanations of the antennas' electrical, mechanical, and mounting features and details.

The Hustler amateur product line still includes the extremely popular, classic 4-BTV, 5-BTV, and 6-BTV HF fixed-station vertical antennas, which trace their lineage back to the late 1950s. Also featured are the heavy-duty "HS" Spirit Series VHF and UHF antennas. These rugged vertical antennas originally were produced for the commercial and professional antenna market, but they now are available for amateur use. The catalog also shows the similar, very heavy-duty "HD" series antennas that, like the "HS" series, are virtually impervious to common antenna perils such as lightning, ice, wind, and water.

For a free catalog, contact Newtronics Antenna Corp., One Newtronics Place, Mineral Wells, TX 76067-9563 1-800-949-9490; web: http://www.new-tronics.com com>. The firm also sells through a network of over 60 dealers and distributors.

Soft Stuff

GeoClock. Way back in 1991 we profiled the very popular, DOS-based GeoClock precision map graphics program. Joe Ahlgren's versatile shareware application is thriving today, being offered in several highly capable DOS- and Windows®based versions, so it's time to revisit it. To briefly review, GeoClock shows the current time, based on your computer's system clock, on a high-quality map of the Earth. The Sun's current position is displayed, and the parts of the Earth that are in sunlight and in twilight are highlighted. This display is automatically updated every few seconds. Local sunrise/sunset, the Sun's azimuth and elevation, and times around the world are displayed. Various map backgrounds and other options are available. GeoClock long has been distributed as shareware, or "try before you buy" software. With registration you get the latest program versions, some 44 maps, zoom and distance measuring capabilities, local time displayed next to city names, and immediate map displays. The program comes in DOS and Windows versions; both are included with registration. The Windows version also includes screen saver and "wallpaper" modes. Registration for the DOS and Windows programs (which are functionally and graphically very similar) is \$35 with basic maps on a 3.5 inch floppy; upgrades from previous versions are \$15.

No costly school. No commuting to class. The Original Home-Study course prepares you for the "FCC Commercial Radiotelephone License." This valuable license is your professional "ticket" to thousands of exciting jobs in Communications, Radio-TV, Microwave, Maritime, Radar, Avionics and more...even start your own business! You don't need a college degree to qualify, but you do need an FCC License.

No Need to Quit Your Job or Go To School This proven course is easy, fast and low cost! GUARANTEED PASS-You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

Or, Call 1-800-932-4268 Ext. 96 COMMAND PRODUCTIONS FCC LICENSE TRAINING, Dept. 96 P.O. Box 2824, San Francisco, CA 94126 Please rush FREE details immediately! NAME ADDRESS CITY_______STATE ____ZIP____

Visit Our Web Site

The best news is that GeoClock now is available on CD-ROM. The CD contains the complete GeoClock suite with all options, including the revolving GeoGlobe; it's less only the specialized Ham add-in package, which requires a custom map. The CD also contains some 300 new maps, including 140 city maps and a large number of 800 × 600 maps; in total, there are over 500 maps. The GeoClock CD is \$75, including registration, for new users; the price is \$50 for owners of prior registered versions.

The ham add-in package for Windows and DOS offers several special functions of considerable interest to radio amateurs. It provides graphical display of remote station location, propagation path, and Dand F-layer illumination, together with key location, pointing, distance, and time data. The ham package includes a custom azimuthal-equidistant map centered on your station's location (QTH), a callsign database, and utility programs. The addin requires a registered copy of GeoClock to run; it's \$30, or \$15 with the purchase of GeoClock on CD-ROM.

For more information on GeoClock, contact the program's author, Joseph R. Ahlgren, 2218 N. Tuckahoe St., Arlington VA 22205-1964 (703-241-5809; e-mail: <Joe@GeoClock.com>; web: <http:// www.clark.net/pub/bblake/geoclock>). Program updates are available to registered users on the GeoClock Website.

HAMCALC: Still Another New Edition. In a number of "Digital Dipole" columns over the past several years, we have profiled the ongoing updates to George "Murph" Murphy, VE3ERP's excellent, free, DOS-based HAMCALC math and design programs. Murphy defines his very comprehensive software as providing "painless calculations for amateur radio operators."

In between writing several interesting feature articles for *CQ*, Murph is producing new versions of HAMCALC; a short while ago we received Version 38. (By the time you read this column, HAMCALC probably will be in another, even more improved version.)

According to Murph, the HAMCALC freeware package has prospered since its introduction as a reference and learning tool in 1993. The current version has over 200 math and design programs and program upgrades; included are calculation routines of interest not only to radio amateurs, but to professional engineers and university faculties alike.

You can find copies of the program for download on the Internet. However, the main (and preferred) method of distributing the program is through people ordering copies from Murph after reading about

Installation made easy! Davis' wireless Weather Monitor II* and Weather Wizard III* stations use our new SensorLink'' to transmit data to the display console up to 400' away! Each station comes completely pre-assembled and includes sensors, a radiation shield, a weathertight shelter, and a display console with receiver. All without running wires!

Or try our new radio transmission solutions -Spread-Spectrum Radio Modem, UHF Radio Modem & Cellular Phone Modem. They work with all of our stations to provide data transmission from virtually anywhere.

Davis Wireless Weather Stations Feature Inside and Outside Temperature, Wind Speed and Direction, Barometric Pressure and Trend, Wind Chill, Dew Point, Daily and Yearly Rainfall, Inside and Outside Humidity, Time and Date, Highs and Lows, Alarms.

For a FREE catalog, call **1-800-678-3669** One-year warranty • 30-day money-back guarantee

Davis Instruments 3465 Diable Ave., Hayward, CA 94545-2778 (510) 732-9229 • FAX (510) 732-9188 • sales@davisnet.com • www.davisnet.com •

CIRCLE 46 ON READER SERVICE CARD

Batteries / Chargers BUY DIRECT FROM THE U.S. MANUFACTURER

www.cq-amateur-radio.com

October 1999 • CQ • 43

CIRCLE 82 ON READER SERVICE CARD

Box 565101, Dallas, TX 75356

it in CQ and other amateur radio publications. For a copy on a 1.44 Mb IBM-PC format diskette, send \$5 (in U.S. funds, no stamps or IRCs) to cover the cost of materials and airmail worldwide, to George Murphy, VE3ERP, 77 McKenzie St., Orillia, ON L3V 6A6, Canada (e-mail: <ve3erp@encode.com>).

Note: A DOS-based program, HAM-CALC is written in GWBASIC and requires you to have GWBASIC.EXE installed on your PC's hard drive. The disk tells you how to obtain this program easily if you don't already have it. Or, you can remit a total of \$6 (instead of \$5) if you want a GWBASIC.EXE diskette included.

From the Bookshelf

ARRL's Wire Antenna Classics. Are you "skyhooked" on HF wire antennas? Whether you hang 'em high or hang 'em low, you've probably found that wire antennas represent the best antennas to use to get on the air simply and inexpensively. I know that I have found this to be the case over an amateur radio career that has spanned nearly 45 years. And I've got just the book for you.

This new book, compiled by ARRL staffer Chuck Hutchinson, K8CH, is a collection of some of the best antenna articles from ARRL publications, a book of both antennas and ideas. Dipoles (including broadband and multiband types), loops, collinears, rhombics, wire beams, verticals, receive-only types, and more are featured. There's even a chapter on trees and tree-mounted antennas, including info on trees' care and feeding! The ten-chapter book also makes an excellent wire-antenna historical resource. I say that because I was pleasantly surprised to find many of the original, trend-setting wire-antenna classic articles dating back to the 1950s included among more recent articles from the 1980s and 1990s. ARRL's Wire Antenna Classics is \$14 plus \$4 s/h. It's available from the American Radio Relay League, 225 Main St., Newington, CT 06111-1494 (1-888-277-5289; e-mail: <pubsales@arrl.org>; web: <http://www.arrl.org/catalog>). More Antenna Classics. While we're on the subject of antenna classics, we should point out that a nice companion to the new wire antenna book is Vertical Antenna Classics, at \$12, also from the ARRL and compiled by Robert Schetgen, KU7G. It's a 1995 collection of 35 published articles on the vertical antenna from various ARRL publications. Chapters include theory and modeling, VHF and UHF, HF, directional arrays, reduced-size antennas, and radial and ground systems. Going one step further, I'll state that both ARRL books make nice companions to CQ's own antenna classic, the Vertical Antenna Handbook, by Paul H. Lee,

N6PL. It's still in print and available from CQ Communications for \$9.95 plus \$4 s/h (the new CQ website also features secure online ordering). The classic Lee book helps you learn the theory, design, and practice of the vertical antenna, taking advantage of the late author's 20 years of research and practical experience as a naval communications engineer.

For a copy, contact CQ Communications, Inc., 25 Newbridge Rd., Hicksville, NY 11801 (1-800-853-9797; e-mail: <cq@cq-amateur-radio.com>; on web: <http://www.cq-amateur-radio.com>. (Don't forget to peruse the new CQ website. Although the website is still in its infancy, CQ is justifiably proud of it and has some great things planned. To start, you can e-mail most CQ authors, including yours truly, through the website.)

PCs Cheat Sheet. Are you just "getting your feet wet" on personal computers (PCs), and are you too busy to sit down and really study what they are all about? If so, check out PCs Cheat Sheet, by Shelly O'Hara. It's a unique, two-in-one book that offers fast answers for busy people, plus in-depth study for when you have the time. Each chapter of the 334-page, four-part, 56-chapter book starts with a "basic survival section" to get you going fast. When you're ready to do more, you can move on to clear, thorough coverage of the best ways to use PCs.

Taking a sort of schoolhouse approach, the most important material is already yellow-marker highlighted for you, to help minimize fumbling through the book when you need a quick solution. Each chapter includes handwritten notes and shortcuts. The \$14.99 book is available in local bookstores, or contact Macmillan Publishing USA, 201 West 103rd St., Indianapolis, IN 46290-1097 (1-800-858-7674) for a free computer books catalog. E-mail: <info@mcp.com>; on the web: <http:// www.mcp.com>. Incidentally, as we have mentioned previously, Macmillan's massive but easily navigable website is a treasure trove of useful information. The Macmillan site at <http://www.mcp.com>offers online computer resource centers, distance learning information, product support, software downloads, special offers, upcoming book previews, online Ebook viewing, and other features that supplement Macmillan's extensive line of computer books.

Wrap-Up

That's all for this time, gang. Next time more "Digital Dipole" topics of current interest. See you then.

Overheard: One thing I've learned from this hobby is that when erecting and disassembling antennas, almost anything is easier to get into rather than out of.

73, Karl, W8FX

orld Of Ideas

A Look At The World Around Us

Crystal Set Resurrection—Part I

This month's column features a special treat for our friends of all ages and backgrounds: a blowout review and heartwarming look at those ever-popular crystal sets of yesteryear (and today!). Many of us (including your author) had our very first exposure to homebrewing basic electronic projects through these low-cost delights, and they also (directly or indirectly) opened the door to amateur radio for us. As grade-school youngsters, our ability to read and understand circuit diagrams often left something to be desired, but that just emphasized the beauty and "forgiveness" of crystal sets. They worked despite our wiring errors and "self interpretations" of their diagrams.

Was it a fun time? The best! It always is when you are learning and growing. Yes, and just like eating potato chips, we could not stop with just one quickly assembled crystal set. (Stop? Making and selling them to other kids at school financed parts to build my first rigs. What about you?) We built crystal sets in such a wide variety of styles and—err—designs that we gave new meaning to the term "kitchen table construction." Yes, friends, and the good news is that those joys of home-assembling and experimenting with crystal sets continues alive and well today.

Crystal sets exhibit a simple and timeless elegance that transcends the annals of time, from the early 1900s to the 1950s, '60s, and beyond. Just like classic keys and bugs, they also represent a true piece of radio's proud history. Building, replicating collectible versions, and just experimenting with conventional types of crystal sets is one of life's special pleasures. In many ways, I see it as the "electronic equivalent" to making and flying kites of lightweight wood and newspaper. I know of no better way to indoctrinate that special person or next-generation family member in your life to the wondrous world of wireless communications and, yes, amateur radio! Enough! Space is limited and some exciting notes and views await, so let's focus on some of the neatest little crystal sets I have seen. Then we will introduce the world-famous Crystal Set Society and discuss some circuits. This will be a fast moving tour, so hang on tight and let's get started!

Photo 1– This Pocket Radio was made by the Philmore Mfg. Company of New York during the 1930s, and it is only one of many neat crystal sets produced by that well-known company between the 1920s and the 1980s. In many respects, Philmore could be called the "Vibroplex of crystal sets," and like Vibroplex, all past-era models are modern-day collectibles. (Photo courtesy Dr. M. L. Sievers and Sonoran Publishing Company)

Crystal Set Showcase

Although some folks might consider it a ploy to capture your attention and imagination (Would I do that?), let's begin with a couple of "bright lights and glamour" views of classic "store-bought" crystal sets (photos 1 and 2). These illustrations, incidentally, are samples from *Crystal Clear*, Volume I written by

4941 Scenic View Drive, Birmingham, AL 35210

Radio Radio

Photo 2– Two versions of Pee Wee radios produced by the famed Midway Company of Kearney, Nebraska and sold by mail. Remember seeing these little plastic-cased heartthrobs advertised in Popular Electronics during the 1950s? Where, oh where have they gone today! (Photo courtesy Dr. M. L. Sievers and Sonoran Publishing Company)

Photo 3– Crystal sets of every type, style, and era imaginable are brilliantly presented in this top-grade Crystal Clear Volume I compiled and written by Dr. M. L. Sievers and printed by Sonoran Publishing Company of Arizona. Its "show and tell" format is similar to my popular Keys, Keys, Keys and Keys II books. (Details in text.)

Photo 4– The Crystal Set Society is "world headquarters" for information and goodies relative to crystal-set receivers. Shown here is a sampling of some recent "XSS" newsletters, captivating books, and hard-to-find items such as a miniature openframe 365 pFd tuning capacitor and a high-impedance crystal earphone.

Dr. Maurice L. Sievers and available through Sonoran Publishing LLC, 116 N. Roosevelt, Suite 121, Chandler, AZ 85226 (602-961-5176). This book is undeniably a crystal-set lover's dream (photo 3). It highlights over 500 crystal sets, 300 crystal detectors, and 200 crystals and galenas in its 268 pages, and all photos and illustrations (over 750 total!) are of super high quality. such as a coffee table book of the Titanic or WW II planes. If you are not a crystal-set enthusiast before reading *Crystal Clear*, you will be afterwards!

Now referring to photo 1, this little Pocket Radio was made by the Philmore Mfg. Company during the 1930s, and it works just as well today as it did 70 years ago. (There is really nothing to "go bad" in a crystal set.) Say the name sounds familiar? It should. Philmore was the industry's most well known and longest lived producer of crystal sets, with models such as the Supertone, Blackbird, and Little Wonder spanning the years from 1925 to the 1980s. Indeed, Philmore was as synonymous with crystal sets as Vibroplex is to bugs—a legend.

Philmore's many varieties of crystal sets are equally as intriguing to study— (well, almost!). Sets were produced in a wide array of case styles and colors. Post-WW II versions also utilized modern-style crystal diodes rather than point-contact-type detectors. Watch out, as collecting crystal sets can be habit forming and oh so enjoyable!

Next we have two classy little Pee Wee crystal radios produced by The Midway Company of Kearney, Nebraska and shown in photo 2. Think back and you will remember seeing these gems or some of Midway's other palm-size radios advertised in *Popular Electronics* or *Popular Science* during the fabulous '50s. Yes, and they really were enticing. You just had to clip the antenna lead to a (rotary) telephone's fingerstop, hold the ground clip or snap it on a cold-water pipe, and the radio would play indefinitely. (Was it really using all the phone lines in the city for an antenna?) This was also a radio you could lay on your pillow and listen to all night long without using batteries. Fun all the way! Midway, incidentally, was another big name in crystal sets, a name I would place parallel to Speed-X in bugs number two or three in popularity, so to speak.

Other varieties of crystal sets include the famous Rocket Radio, pen radio, wallet radio, and more. They were produced by slightly less well known manufacturers such as Remco, Metro, Radioceptor, and dozens more and have unfortunately disappeared into the woodwork over the years (sigh!). Oh, if we had only bought a big batch of them back when we were young and penniless! Ah, but don't fret. There's still hope. Homebrewing is the key. Read on.

The Crystal Set Society

A few years ago, Phil Anderson, W44XI, of Kantronics notoriety realized crystal sets were an important part of radio history and founded the Crystal Set Society. The society's main goal was (and still is) bringing together those with a common interest in crystal sets and sharing views with via a bi-monthly newsletter. The plan is working great, and the "XSS" is enjoying healthy

Photo 5– The Crystal Set Society's XS102 crystal radio kit as received and laid out for assembly. The item is well thought out, cleverly documented, and makes a dandy "first project" for kids from 8 to 80.

growth. Some recent newsletters, for example, have included "build 'em" details on sets in matchboxes, on Frisbees, in oatmeal boxes, and even a flat greeting-card version with spiderweb coil. Some other issues highlighted the ten most popular crystal-set circuits. Can you believe it? Ten circuits on crystal sets, and those are just the most popular versions. The total count is even higher!

Today the Crystal Set Society is spearheaded by Phil's daughter, Rebecca A. Hewes, and has almost 1000 members nationwide and worldwide. Under Rebecca's dedicated care, the society also maintains an outstanding bookstore. It carries a wide array of books and crystal- radio kits plus difficult-to-find parts such as small open-air 365 pFd tuning capacitors, galena holder and catwhisker detector stands, and high-impedance crystal earphones (photos 4, 5, 6, and 7). Just looking at the society's two main kits inspires unquenchable enthusiasm for building at least one crystal set. Their "starter model" XS102 (photos 5 and 6) makes a dandy indoor project for a cold winter day. The kit includes a parts/layout guide, easy-to-read and understand instructions, and goes together without any soldering. Their "fancy model" XS101 (photo 7) sports genuine spider-web coils and covers the approximate frequency range of 550 kHz to 8.0 MHz. Its optional wood case is unfinished pine wood and really makes the radio a showpiece. What a neat pair of heartthrobs!

WEATHER SATELLITE SYSTEMS

<u>Track</u> sun-shine, clouds, local storms, hurricanes on your IBM-PC style computer. Predict <u>your</u> weather. High Quality, Low Cost Systems, from TIMESTEP.

Systems include antenna, pre-amp, coax, receiver, decoder card & software

137MHz NOAA 1691 MHz GOES

PROsat for WINDOWS Systemsfrom \$888.00from \$1074.00PROsat for DOS Systemsfrom \$788.00from \$974.00

Systems for METEOSAT and GMS satellites. Advanced High Resolution HRPT and PDUS systems.

All systems FCC Class B approved Many options available. Write for details.

If you have even a slight interest in crystal sets, ordering a membership and a big pile of goodies from the XSS is like open-

Photo 6– An assembled XS102 looks as good as it works. Decorative front panel and parts layout guide are included in the instructions and glue to boards for a nice finishing touch.

www.cq-amateur-radio.com

Fig. 2– Circuit diagram of the famous Foxhole Crystal Radio. It was typically assembled on a small board using mess- kit supplies such as a razor blade, lead from a pencil, a safety pin, and a tissue roller. The antenna was random length of wire and ground was wire wrapped around knife stuck in the ground.

ing the door to fantasyland. Membership and integral newsletter subscription is \$10.95 a year U.S., \$12 Canada, or \$17 DX and goes to Rebecca A. Hewes at the Crystal Set Society, P.O. Box 3026, St. Louis, MO 63130. The XSS order line (only) is 1-800-927-1771, or you can e-mail XSS at <xtalset@midnightscience.com>. Go for it!

Dink Haven

So, friends, are you still sitting there reading about crystal sets rather than building one of your own just for fun? What is hold-

5 BAND QUAD

Lightning Bolt Antennas RD#2, RT 19, Volant, PA 16156 724-530-7396 FAX 724-530-6796 http://lbq.isrv.com

CIRCLE 69 ON READER SERVICE CARD

Photo 7– "First class and total flash" best describes this terrific XS-101 kit available today from the Crystal Set Society. It features dual spider-web coils, optional wood case with hinged top, plus front- panel overlay, and receives the AM broadcast band through approximately 8 MHz. (Photo courtesy Rebecca A. Hewes and the Crystal Set Society)

ing you back? Lack of a good circuit diagram and coil info? Okay, a couple of all-time favorites are shown in figs. 1 and 2. They are only a small sampling of the endless varieties, true, but they are all we can squeeze into remaining column space. More circuits are coming in Part II next month.

If you have never assembled a crystal set, some quick "get you going" notes follow. (Hopefully, some newcomers and younger amateurs are reading our column right along with the "old pros.")

First, the size or gauge wire used to wind a set's coil is not a critical matter. Using number 18, 20, 22, 26, or even 30 wire rather than number 24, for example, will not noticeably alter a set's performance. Using bare wire rather than enamel-coated

48 • CQ • October 1999

Visit Our Web Site

copper wire in a close-wound coil can prove troublesome, however, as all the turns will be short-circuited. Just think logically and you will do fine.

Folks have used everything from nuggets of fool's gold and razor blades to 1N64 and 1N82 diodes for detectors in crystal sets, and they all worked fairly well. For best results, however, I heartily recommend at least starting out with a modern glass-enclosed 1N34 (even Radio- Shack sells them). Once you confirm your set works, then you can make substitutes against that known-good reference. Need I repeat it? Start with a known-good 1N34!

Finally, a high-impedance (2000 to 20,000 ohms) crystal-type earphone rather than a low-impedance (8, 16, or 32 ohm) earphone or Walkman-type "earbud" must be used with a crystal set. Why? It is the diode's load resistance or impedance, and the higher its value, the more signal or voltage developed across it—and the louder its volume. An 8 ohm earphone acts like a dead short and kills all volume. A single (or a pair of 2000 ohm earphones is near ideal. "Perfect" is a pair of classic Baldwin earphones, but they are both rare and expense.

Now let's quickly discuss what many folks consider the most popular crystal-set circuit of all, shown in fig. 1. This set's main coil consists of 40 or 50 turns of number 20 or 24 enamel-coated copper wire wound on a form 3 inches in diameter and 3 inches long. An open-air 365 pFd variable capacitor is connected in parallel with it for AM broadcast band reception. (Have you listed to AM radio lately? It is making a comeback!) If desired, a coil of 10 turns (also number 20 or 24 wire) spaced equally along the form's full length and a parallel-connected 100 pFd tuning capacitor or the small section of an old-time "365 dual capacitor" will tune shortwaves. Coverage will be approximately 4 to 15 MHz. Alternately, consider using a unique spider- web coil such as featured in my October 1998 "Classics" column. That should really make it an attention grabber. An optional antenna coupling coil is also shown in fig. 1. Some folks included it in their sets, while some did not. It is thus your choice. If used, just remember to connect the antenna to the coupling coil, which is usually one-quarter to one-third the turns of the main coil. For simplicity, just use plastic-insulated doorbell wire and wind the antenna coil over the middle area of the main coil. It will step up incoming signal voltage and give a bit more volume.

A somewhat different form of crystal set is shown in fig. 2. This one depicts the well-known "foxhole radio" of WW II fame and could even be home-assembled as an authentic replica radio, if desired. Hopefully, old timers remember the physical details of this set and will share them with younger amateurs (the full story will fill a complete column). Alternately, drop me a note if you wish to see the Foxhole Radio as the main feature in a future column. I aim to please. Now let's squeeze in some notes as we approach the closing wire.

This radio's "diode detector" is a single- edge razor blade with a piece of lead snapped from a wooden pencil pressing against its surface like a catwhisker. The lead is wire-wrapped to the tip of a bent safety pin for support. The blade and pin, in turn, are screwed down to the radio's baseboard. Note stainless-steel blades will not work as detectors; use only a genuine "blue blade." To the best of my knowledge, there is only one type made today: the Pal Super Single Edge made by The American Safety Razor Company, P.O. Box 500, Staunton, VA 24401. This set's coil is 80-100 turns wound on a 11/2 or 13/4 inch tissue roller. Sand all coil turns down to the copper at the top, and then use a 7 inch piece of sanded, shiny clean coat hanger scraping over exposed wires as a tuning rod. A 150 foot longwire, 138 foot doublet, or G5RV makes a good antenna for any crystal set. Enjoy experimenting, and stay tuned for more super crystal radio fun next 73, Dave, K4TWJ month!

 \mathbb{M}^2 ARE YOU READY FOR SOME CONTESTS P \mathbb{R} Series

THE DX SERIES OF MONOBANDERS FROM M2 WILL NOT ONLY MAKE YOU THE ENVY OF YOUR FRIENDS, BUT WILL SAVE YOU BIG BUCKS ON SHIPPING !!

www.cq-amateur-radio.com

October 1999 • CQ • 49

CQ World-Wide DX Contest All-Time Phone Records BY FREDERICK CAPOSSELA, K6SSS

Number groups after calls are: year of operation, total score, contacts, zones and countries. All-band and Multi-Operator records include a band-by-band breakdown of the world leader in each category.

WORLD RECORD HOLDERS A1252 L203 24 L202 AF C/R/WV(193) 15.373.060 7.702 15 IG01(193) A1252 L203 24 102 AF C/R/WV(193) .7.387.080 7.702 10 IG05(197) L249.236 2517 55 137 A <th></th> <th>Sing</th> <th>le Operator/Single B</th> <th>and</th> <th></th> <th></th> <th></th> <th></th> <th>Singl</th> <th>e Operator/All E</th> <th>and</th> <th></th> <th></th>		Sing	le Operator/Single B	and					Singl	e Operator/All E	and		
18 GGI/G3TAN(96)		WOR	LD RECORD HOLDE	ERS		110000	AF	CN8W	N('98)	15,375,060	7,702	143	544
3.5 Gign (195) Bit (99) 1.393 33 100 AS C4A(98) 7,981,930 5,058 7.0 (Cpr. TRGSF) 1.249,236 2517 35 137 K 4 POFFM(Ps) 3.202,242 5,109 36 179 2 (Dpr. TRGSF) 3.202,242 5,109 36 179 28 (Dpr. PSC) 3.322,230 5,332 39 183 16 (Garl (YST)) A41,252 1203 24 100 Copr. NB(T) 3.171,166 3.212 18 (Garl (YST)) A41,252 1203 24 102 Copr. NB(T) 3.3171,166 3.212 14 (Dpr. NG(T)) 3.481,925 5.535 36 179 Sourt (Copr. NB(T) 7.00 Sourt (Copr. NB(T) </td <td>1.8</td> <td>IG9/IV3TAN('96).</td> <td></td> <td>1,203</td> <td>24</td> <td>102</td> <td></td> <td>(Opr. D</td> <td>L6FBL)</td> <td></td> <td></td> <td></td> <td></td>	1.8	IG9/IV3TAN('96).		1,203	24	102		(Opr. D	L6FBL)				
7.0 (Opr. [V31 AP) (P) (1,249,236 2517 35 137 14 (P) (P) <td< td=""><td>3.5</td><td>IG91('95)</td><td></td><td>1,938</td><td>33</td><td>110</td><td>AS</td><td>C4A('98</td><td>B)</td><td>9,781,930</td><td>5,105</td><td>146</td><td>548</td></td<>	3.5	IG91('95)		1,938	33	110	AS	C4A('98	B)	9,781,930	5,105	146	548
10 Dodyser (97) 1.24,236 2017 35 137 EU GlipkCW(96) .73,388,788 5,868 6,891 14 Dydr PYSCO 3,202,242 5,109 38 175 0 0 0,07,071 0,07,071 0,07,071 0,07,011 0,08,071 0,07,011 </td <td>70</td> <td>(Opr. IV31AN)</td> <td>1 0 10 000</td> <td>0547</td> <td>or.</td> <td>107</td> <td></td> <td>(Opr. 5</td> <td>B4ADA)</td> <td>101000000000000000000000000000000000000</td> <td>1.442</td> <td>10.15</td> <td>1445</td>	70	(Opr. IV31AN)	1 0 10 000	0547	or.	107		(Opr. 5	B4ADA)	101000000000000000000000000000000000000	1.442	10.15	1445
14 Upp: ITASSP / Corr. VPSCD 3.202,242 5,109 38 175 11 Corr. PYSCD 3.461,925 5,535 36 179 3.202,242 5,109 3.51 6,429 28 ZXSJ (98) 3.322,230 5,392 39 133 6,429 28 ZXSJ (98) 3.322,230 5,392 39 133 6,429 28 Corr. NRTJ Affilds 21 Corr. NRTJ 3.3171,166 3.212 18 IG91/V3TAN(98) Affilds 2.21 20 24 100 11.248,477 6.323 14 ZD82(195) .2356,065 3.925 38 177 7.379,223 5.453 21 ZD82(194) .3481,925 5.553 36 179 3.411,024,177 7.379,223 5.453 21 ZD82(194) .3481,925 5.553 36 179 3.411,024,177 7.379,223 5.453 21 ZD82(194) .244,177 7.342 1.411,224,877 6.323	7.0	IG9GSF(97)	1,249,236	2517	35	137	EU	GIØKO	W('98)	7,388,788	5,268	143	539
Ind Ind <thind< th=""> <thind< th=""> <thind< th=""></thind<></thind<></thind<>		(Opr. H9GSF)	0.000.040	E 100	00	175	NA	KP2A('	93)	13,202,298	8,691	148	506
21 LODE / F3C/D 3,481,925 5,535 36 179 28 ZXSL(981) 3,322,230 5,392 39 183 18 IG9T(951) AFRICA 170 17,055,106 8,955 18 IG9T(95) AFRICA 170 ICOP: PFS/IP) 3,171,166 3,212 10 ICOP: (197) 1,249,236 2,517 35 137 11 ZDS(195) 2,350,055 3,225 38 137 12 ZDS(196) 2,350,055 3,225 38 179 28 COpr. (NFT) 2,350,055 3,225 38 179 12 ZDS(196) 2,350,055 3,225 38 179 28 COpr. (NFT) 2,350,055 3,225 38 179 28 DOP, OHIT ASIA 33 172 13 33 33 100 29 Copr. (NFT) 2,300 3,764 32 100 174 33 33 3	14	PY0FM(94)		5,109	38	1/5	100	(Opr. C	T1BOH)				
21 2.062 (191)		(Opr. PYSCC)	0 101 005	-		170	0	YJ1A('S	90)	9,516,731	6,429	160	381
28 ZoSU, 1981, 1991, 1995, 1986, 1998, 19998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998	21	ZD8Z(94)		5,535	36	1/9		(Opr. O	H1RY)				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	(Opr. N61J)	0 000 000	5 000		400	SA	HC8A(98)		8,955	161	501
Copp. Product AFRICA 18. 169(1745)	28	ZX5J(98)		5,392	39	183		(Opr. N	6KT)				
1.8 IGGIVSTAN('96) AFHC2 1200 2.4 102 1.8 IGGIVSTAN('96) 35.6 15.6 15.8 100 10		(Opr. PP5JR)					QRP	PJ2FR	('87)		3,212	100	234
18 ICB/IV/31 / AV(49)	10		AFRICA	1000		100		(Opr. K	7SS)				
3.5 IC91 (15)	1.8	IG9/IV3TAN(96)		1203	24	102	Low	TIIC('9)7)	7,379,253	5,453	144	465
1.0 1.249.236 2.517 35 137 1.4 1.207.1795	3.5	(Gar (95)		1,938	33	110	Pwr.	(Opr. T	I2CF)				
10 Lose Set 19:5, model (Section 19:5, model (S	70	(Opr. IVSTAN)	1 040 000	0.517	DE	107	Asst.	P4ØW('94)	11,224,877	6,323	131	470
14 ZOM: 1930-97 2.356,065 3.925 38 167 21 Z032('94) .3.481,925 5.535 36 179 28 SX1T('98) .2.501,521 4.133 37 172 (Opr. ONETT) ASIA Copr. ONETT) ASIA 18 UG7GWO('87) .2.550,852 1.327 12 57 1.8 UG7GWO('87) .2.140,780 3.942 32 100 177,055,106 21.0 1.474 33 1.4 SB4AGC('86) 1.551,539 3.095 35 152 2.8 JHIALT('88) 1.421,070 2.409 8 163 1.8 LZ2CJ('84) 1.07,818 3.19 37 145 1.8 LZ2CJ('84) 1.07,818 3.19 37 145 1.4 DGr ('1428)// (29) .867,875 2.419 37 145 1.4 DGr ('1428)// (29) .867,875 2.419 37 145 1.4 DGr ('1428)// (29) .867,8	1.0	(Opr. 170000)	1,249,230	2,017	35	1.57		(Opr. W	V2GD)				
L202(19)	14	(Opi. 11903F)	2 256 065	2 0 2 5	20	167							
21 Z02.1/(94.) .3,481,925 5,535 36 179 28 5XT (199.) .2,501,521 4,133 37 172 18 UG72WO(187) ASIA .255,852 1,327 12 57 18 UG72WO(187) ASIA .255,852 1,327 12 57 14 UG72WO(187) ASIA .255,852 1,327 12 57 14 UG72WO(187) ASIA .255,852 1,327 12 57 14 UG72WO(187) .256,852 1,327 12 57 .267 35 14 SART(28) .1551,539 3,095 35 152	14	(Opr NGT I)	2,350,005	3,920	30	107	1.1.1.1.1.1.1.1.1		W	ORLD RECORD			
Zhar (1977) Shot (128) South (138) Station Band QSOs Zones 28 Shi (178) 2.501.521 4.133 37 172 1.8 90 10 18 UG7CWO(187) Asia 255.852 1.327 12 57 11998) 14.0 1.174 33 223 14 Sbard(2) 7.056,422 1.812 32 107 11998) 14.0 1.174 33 14 Sbard(2)(97) 2.140.790 3.944 35 159 70 14.14.0 1.174 33 15 ISARAGC(97) 2.140.790 3.944 35 166 156 156 156 156 156 156 156 156 156 156 156 157 2.499 36 163 157 77 158 151 156 157 7.434 156 157 7.434 0 KH22(191) 11.68,539 2.596 7.061 1.68 111	.01	7D97/'04)	2 491 025	5 525	26	170				TENNI COLUMN	12 1 10 2 10 p.		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	(Opr NGT I)		5,555	30	119	Station	n	Band	QSOs	Zones	Cou	ntries
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	(Opr. No13)	2 501 521	4 122	27	170		-					
(c)p. CHO (17) ASIA (C)p. CHC (17) ASIA 1.8 UG7G (MO(187) .255.852 1.327 12 570 1.5 584A(MP20(198) .255.952 1.327 12 570 1.7.0 F121A(192) 736.422 1.812 32 107 1.4 SB4AGC(197) 2140.790 3.944 35 155 2.8 JH1ALT(188) 421.070 2.409 36 163 1.8 LZ2CJ(84) 107.818 1.319 13 61 AS F2A(197) 161.437 6.602 3.5 539UN '92) 875.875 2.419 37 138 EU IC4A(290) 7255.700 7.253 1.4 OH2EH('92) 875.875 2.419 37 138 EU IC4A(290) 7255.700 7.253 1.4 OPERU('92) 1670 4.008 3.219 91 144 IS 16.827 (152) 7.443 1.4 Opr. (712CF) 1685 <td>20</td> <td>(Opr ONETT)</td> <td>2,501,521</td> <td>4,100</td> <td>51</td> <td>112</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>1.8</td> <td>90</td> <td>10</td> <td>1</td> <td>7</td>	20	(Opr ONETT)	2,501,521	4,100	51	112	· · · · · · · · · · · · · · · · · · ·		1.8	90	10	1	7
1.8 UG7CWO(C)7) ABA Sec 1.327 1.2 57 1.8 SB4ANSD(99) .250,416 1333 21 90 1.9 SB4ANSD(99) .250,416 333 21 90 1.9 SPAANSO(197) .2140,780 3944 35 159 1.9 SPAANGC(197) .2140,790 3,944 35 159 21 SPAANGC(197) .2140,790 3,944 35 161 1.8 L22C/I(84) EUROPE 441,070 2,409 88 163 1.8 L22C/I(84) EUROPE 441,070 2,409 36 164 22 JAFAARGC(197) .1421,070 2,409 37 164 SPAANG(197) 19,118,437 8,002 3.5 Segainvg20 .657,675 2,419 37 148 VELPV(98) 1,441,633 3,219 37 140 1.98 VELPV(98) .1541,463 3,219 37 140 SA PJ1B(193) 2,259		(Opr. 01011)	ACIA				HC8A		3.5	302	23	5	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.0		ASIA 255 052	1 997	10	57	(Opr.)	N6KT)	7.0	953	28	8	2
3.3 Definition 2.00 2.00 2.677 35 10 H21(42) 7034.422 1.812 32 107 11 S5446GC(197) .2.140,790 3.944 35 159 21 S5446GC(198) .1.551.539 3.095 35 152 23 JH1AU(188) .1.421.070 2.409 38 161 3.5 HA8E(190) .361.343 1.455 35 116 AS P34(197) 16.143,795 8.602 14 OH2BH(92) .1.870,170 4.008 39 154 AF C56T(198) .19,118.437 8.602 21 406A(197) .1.980,046 3.220 37 145 SA PJ1B(193) .222,596,570 9.386 (Opr. TI2CF) .1.08,140 2.882 31 108 116 1.8 111 10 14 KP2K(24) .22,552,550 4.810 38 156 22,596,570 14.0 2.011 382 22,596,570 14.0 2.011 38 22,596,570 14.0 2.011 38 <td>1.0</td> <td>5P4/ND2D//00)</td> <td>250,416</td> <td>1,327</td> <td>21</td> <td>00</td> <td>(1998)</td> <td>1</td> <td>14.0</td> <td>1,174</td> <td>33</td> <td>10</td> <td>11</td>	1.0	5P4/ND2D//00)	250,416	1,327	21	00	(1998)	1	14.0	1,174	33	10	11
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.0	U21 A/'02)	706 400	1 010	20	107	17,05	5,106	21.0	2,677	35	12	.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7.0	(Opt ANAOO)		1,012	32	107			28.0	3,764	32	12	1
14 DBrACC (98) 2,150,750 3,995 35 152 28 JH1AJT (88) 1,421,070 2,409 38 162 18 LZ2CJ (84) 107,818 1,319 13 61 AF C55T (98) 19,118,437 8,602 35 HABIE (90) 361,343 1,455 35 168 SP3A('97) 16,143,795 8,315 14 OH2BH (92) .875,875 2,419 37 138 EU IA4('90) .7,255,700 7,255 7,434 18 VEIBY (98) 1,541,603 3,219 99 134 WORLD RECORD 18 VEIBY (98) 1,541,603 3,219 99 134 18 VEIBY (98) 1,641,795 31 108 Station Band QSOS Zones 10 (Opr. TI2CF) .148,798 .066 21 76 .18 .111 10 14 COE .2255,250 .4,810 38 156 .22,596,570 1,40 .2011 38 18 KH6CC (85) .45944	14	(Opr. 41400)	2 140 700	2044	25	150	1. 20 2. 1		*		101		
21 304A0D (89) 1.321,039 304 33 163 28 JH1A17(88) 1.421,070 2.409 36 163 1.8 LZ2CJ((84) EUROPE 1.31 9 13 61 3.5 HABIE (90) .361,343 1.455 35 116 AF C56T('98) .19,118,437 8,602 3.5 HABIE (90) .361,343 1.455 35 116 AS P34(97) .16,143,795 8,315 14 OH2BH('92) .1,870,170 4.008 39 154 OK VE2C(52) .16,287,152 7,434 21 OCP, YT6A) .1,980,046 3.280 37 145 SA PJIB('93) .22,596,570 9,386 28 YU3ZV('88) .1,541,603 3,219 39 134 .0000 .101,093,32 .20,080 Zones 3.5 THC('92) .1,081,400 2,882 31 .008 156 .22,596,570 1,88 111 10 7.0 TH(C'94) .1,081,400 2,882 31 38 156 .22,596,570 <td>01</td> <td>5B4AGC('97)</td> <td>1 551 520</td> <td>3,944</td> <td>25</td> <td>159</td> <td></td> <td></td> <td>lotal</td> <td>8,955</td> <td>161</td> <td>50</td> <td>n –</td>	01	5B4AGC('97)	1 551 520	3,944	25	159			lotal	8,955	161	50	n –
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	21	JD4AGO(90)	1 421 070	3,095	20	162		-	Contraction of the second				
1.8 LZ2CJ(84)	20	JHIAJI(00)	EUROPE	2,409	30	103			Multi-O	perator/Single)	(mtr.		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	1 700 1/1941	107 919	1 210	10	61	AE	CECT	00)	10 110 427	0 600	160	621
3.5 TAGIC 30)	1.0	LZ200(04)		1,019	15	116	AF	D24/201	90) 7)	10 140 705	0,002	164	625
1.4 OHZAR (90) 1.253,000 1.254,000 1.254,000 1.254,000	3.5	CEOLINI/02)		0,410	30	120	AS	POALS	/)	17 055 700	0,010	104	030
14 OPZEN(92) (370,170 4.008 39 154 VA VPZEC(92) (16,26,162 7.434 21 406A(97) (98,046 3.280 37 145 SA PJ1B(93) (19,5392 7.434 28 YU3ZV(188) (148,798 806 21 766 7.09 7.00	1.0	OHOBH(02)	1 970 170	2,419	3/	100	EU	IQ4A(S	(U)	17,255,700	7,203	103	/1/
1 (Op. Or.2W) (Opr. YT6A) 1,980,046 3,280 37 145 SA PJ18('93) 11,955,332 7,086 28 YU3ZV('88) 1,541,603 3,219 39 134 WORLD RECORD 1.8 VE18Y('98) 1,48,798 806 21 76 76 717 717 717 717 718 11,095,332 7,086 2.9 YU3ZV('88) 1,48,798 806 21 76 76 717 716 717 716 717 716 710 7117 717 718 71.085 71685 71685 71685 71685 71685 71685 71685 71685 71685 71685 7169 716 7140 7161 7140 7168 7140 7168 7169 7169 7169 7169 7169 7169 7169 7141 7169 7141 7169 7169 7169 7141 7140 7141 7140 7157 7157 7157 7157 7157 7157 7157 7157 7157 7157 7157 7157 </td <td>14</td> <td>(Opt OH2BH(92)</td> <td></td> <td>4,000</td> <td>39</td> <td>154</td> <td>NA</td> <td>VPZEC</td> <td>(92)</td> <td></td> <td>7,434</td> <td>183</td> <td>685</td>	14	(Opt OH2BH(92)		4,000	39	154	NA	VPZEC	(92)		7,434	183	685
21 400 A(97) 1,950,0446 3,280 37 143 SA PJ1B(93) 22,396,570 9,386 28 YU3ZV(788) 1,541,603 3,219 39 134 1.8 VE1BY(98) 1,448,798 806 21 76 3.5 T11C(92) 498,037 1,695 31 108 (Opr. T12CF) 1,108,140 2,882 31 134 1.8 VE1BY(98) 2,255,250 4,810 38 156 (Opr. T12CF) 2,255,250 4,810 38 156 22,596,570 14.0 2,011 38 21 V26N(93) 2,159,460 4,623 36 150 22,596,570 14.0 2,011 38 28 VP2ET(88) 2,423,880 5,137 37 143 109 33.443 30 28 VP2ET(88) 2,227,68 1,064 23 49 49 404 37 143 9,386 164 29 9,386 1091,335 2,354 37 127 45 EA9UK(93) 37,	01	(Opr. 0H2IW)	1 000 046	2 200	27	145	0	KH2S(91)		7,086	145	387
28 YU3ZV(78) 1.541,603 3,219 39 134 NORTH AMERICA (35 NORTH AMERICA (14,798) 806 21 76 1.8 VE1BV(798)	21	400A(97)	1,960,040	3,200	3/	140	SA	PJIB(93)		9,386	164	646
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	(Upr. 110A)	1 541 602	2 210	20	124							
1.8 VE1BY('98) COPT 114 CHIPCA 148, 798 806 21 76 3.5 TITC('92) 498,037 1,695 31 108 7.0 TITC('92) 498,037 1,695 31 108 7.0 TITC('92) 1,108,140 2,882 31 134 (Opr. TI2CF) (Opr. KW8N) 2,255,250 4,810 38 156 (1993) 7.0 1,055 29 2,596,570 14.0 2,011 38 21 V26N('93) 2,159,460 4,623 36 150 21.0 1,829 32 (Opr. KW8N) 2,423,880 5,137 37 143 Total 9,386 164 0pr. KW8N) 2,25768 1,064 23 49 45 AF EA9UK('93) .37,140,597 13,547 AS 938(95) .1,91,339,743 2,650 36 147 AS P34('98) .26,578,978 14,947 14 9M8R('95) .1,944,800 <	20	10327(00)	NODTH AMERICA	3,219	39	1.54			W	ORLD RECORD			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	VE10V/'00)	140 700	906	01	76							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.5	THC/'02)	140,730	1 605	21	100	Statio	n	Band	QSOs	Zones	Cou	Intries
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0	(Opr TI2CE)		1,095	51	100							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	70	TI1C('94)	1 108 140	2 882	31	134	Laster rate		1.8	111	10	2	24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.0	(Opr TI2CE)		2,002	01	104	PJ1B		3.5	937	25	ç	14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	KP24('94)	2 255 250	4.810	38	156	(1993)	7.0	1,055	29	11	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.4	(Opr KW8N)		4,010	00	100	22,59	6,570	14.0	2,011	38	14	17
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	V26N('93)	2 159 460	4 623	36	150	100000		21.0	1,829	32	13	19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	61	(Opr KWRN)		4,020	50	150	1000		28.0	3,443	30	12	28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28	VP2FT('88)	2 423 880	5 137	37	143			Tetel	0.000	101	~	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	(Opr K5RX)		0,107	07	140	A CONCILIA ON A		Total	9,386	164	64	10
1.8 KH6CC('85)		(opinion)	OCEANIA										
3.5 T32AF(*85)	18	KH6CC('85)	45 984	484	13	19	2.00						
7.0 9M8R('95) 1.091,835 2,354 37 122 AF EA9UK('93) .37,140,597 13,547 14 9M8R('97) 1,339,743 2,650 36 147 EU LX7A('89) .29,108,800 13,073 14 9M8R('97) .1,339,743 2,650 36 147 EU LX7A('89) .26,578,978 14,947 (Opr. W7EJ)	35	T32AE('85)	222 768	1 064	23	49	1.00		Multi-C	Operator/Multi-X	mtr.		
14 9M8R(97) 1,339,743 2,650 36 147 AS P3A('98) 29,108,800 13,073 14 9M8R('97) 1,339,743 2,650 36 147 EU LX7A('89) 26,578,978 14,947 21 9M8R('98) 1,944,800 3,471 38 162 O KHØAM('90) 35,730,600 16,309 28 KD7P/NH2('88) 2,309,304 4,885 38 123 SA PJ1B('90) .57,610,400 19,655 28 KD7P/NH2('88) .58,653 353 14 43 SA PJ1B('90) .57,610,400 19,655 3.5 P4ØR('87) .552,786 1,628 23 91 1.8 531 19 7.0 PJ9U('93) .1,199,968 2,637 34 120 PJ1B 3.5 1,335 24 (Opr. VH'VR) .3,202,242 5,109 38 175 57,610,400 14.0 4,860 38 14 PYØFM('94) .3,202,242 5,109 38 175 57,610,400 14.0 4,860	7.0	9M8R('95)	1 091 835	2 354	37	122	AF	EA9UK	(('93)	37,140,597	13,547	179	744
14 9M8R(97) 1,339,743 2,650 36 147 EU LX7A(89) 26,578,978 14,947 14 9M8R(97) 1,944,800 3,471 38 162 0 KHØAM('90) 37,770,012 17,767 21 9M8R('98) 2,309,304 4,885 38 162 0 KHØAM('90) 35,730,600 16,309 28 KD7P/NH2('88) 2,309,304 4,885 38 123 SA PJ1B('90) 57,610,400 19,655 28 KD7P/NH2('88) 58,653 353 14 43 SA PJ1B('90) 57,610,400 19,655 3.5 P4ØR('87) 552,786 1,628 23 91 1.8 531 19 7.0 PJ9U('93) 1,199,968 2,637 34 120 PJ1B 3.5 1,335 24 (Opr. OH1VR) 3,202,242 5,109 38 175 57,610,400 14.0 4,860 38 14 PYØFM('94) 3,202,242 5,109 38 175 57,610,400 14.0 4,860 38 </td <td>1.0</td> <td>(Opr W7F.I)</td> <td></td> <td>2,001</td> <td></td> <td>166</td> <td>AS</td> <td>P3A('9</td> <td>8)</td> <td>29.108.800</td> <td>13.073</td> <td>182</td> <td>738</td>	1.0	(Opr W7F.I)		2,001		166	AS	P3A('9	8)	29.108.800	13.073	182	738
Instruction	14	9M8R('97)	1 339 743	2 650	36	147	FU	IX7AC	89)	26 578 978	14 947	175	751
21 9M8R('98) 1,944,800 3,471 38 162 0 KHØAM('90) 35,730,600 16,309 28 KD7P/NH2('88) 2,309,304 4,885 38 123 SA PJ1B('90) 57,610,400 19,655 1.8 P49I('95) 58,653 353 14 43 WORLD RECORD 3.5 P4ØR('87) 552,786 1,628 23 91 1.8 531 19 7.0 PJ9U('93) 1,199,968 2,637 34 120 PJ1B 3.5 1,335 24 (Opr. VR) (Opr. OH1VR) 3,202,242 5,109 38 175 57,610,400 14.0 4,860 38 14 PYØFM('94) 3,202,242 5,109 38 175 57,610,400 14.0 4,860 38 21 ZX5L('97) 3 181 696 5 264 37 175 28.0 5 430 30	14	(Opr W7E.I)		2,000	00	147	NA	VP2KC	2('79)	37 770 012	17 767	175	677
Lit Station Band QSOs Zones 1.8 P49I('95) 552,786 1,628 23 91 Station Band QSOs Zones 3.5 P4ØR('87) 552,786 1,628 23 91 1.8 531 19 7.0 PJ9U('93) 1,199,968 2,637 34 120 PJ1B 3.5 1,335 24 (Opr. K4UEE) 0.0011VR) 3,202,242 5,109 38 175 57,610,400 14.0 4,860 38 14 PY0FM('94) 3,202,242 5,109 38 175 57,610,400 14.0 4,860 38 21 ZX5J('97) 3 181 696 5 264 37 175 28.0 5 430 30	21	9M8R('98)	1 944 800	3 471	38	162	0	KHØAN	A('90)	35 730 600	16 309	179	565
28 KD7P/NH2(*88) 2,309,304 4,885 38 123 1.8 P49I('95)		(Opr W7E.I)		0,471	00	IUL	SA	P.IIBC	90)	57 610 400	19,655	189	803
SOUTH AMERICA (Opr. K4PI) WORLD RECORD 1.8 P49I('95)	28	KD7P/NH2('88)	2 309 304	4 885	38	123	On	1010(007		10,000	100	000
1.8 P49I('95)	20	11011111112(00)	SOUTH AMERICA	4,000	00	120			W	ORI D RECORD			
(Opr. K4Pl) Station Band QSOs Zones 3.5 P4ØR('87)	1.8	P491('95)	58 653	353	14	43				ONLD NLOOND			
3.5 P4ØR('87)	1.0	(Opr K4PI)		000	1.4.	40	Statio	0	Rand	0900	Zonos	Cou	Intrine
(Opr. K4UEE) 1.8 531 19 7.0 PJ9U('93) 1,199,968 2,637 34 120 PJ1B 3.5 1,335 24 (Opr. OH1VR) (Opr. OH1VR) 14 PYØFM('94) 3,202,242 5,109 38 175 57,610,400 14.0 4,860 38 14 PYØFM('94) 3,202,242 5,109 38 175 57,610,400 14.0 4,860 38 21 ZX5J('97) 3,181,696 5,264 37 175 28.0 5,430 39	3.5	P40R('87)	552 786	1 628	23	91	Statio		Danu	0305	Zones	COL	mules
7.0 PJ9U('93) 1,199,968 2,637 34 120 PJ1B 3.5 1,335 24 (Opr. OH1VR) (Opr. OH1VR) 3,202,242 5,109 38 175 57,610,400 14.0 4,860 38 14 PYØFM('94) 3,202,242 5,109 38 175 57,610,400 14.0 4,860 38 21 ZX5J('97) 3,181,696 5,264 37 175 28.0 5,430 39	0.0	(Opr K4LIEE)		1,020	20	01			1.8	531	19	4	50
(Opr. OH1VR) 3,202,242 5,109 38 175 (1990) 7.0 2,104 31 14 PYØFM('94) 3,202,242 5,109 38 175 57,610,400 14.0 4,860 38 (Opr. PY5CC) 21.0 3,181,696 5,264 37 175 28.0 5,430 39	7.0	P.1911('93)	1 199 968	2 637	34	120	P.IIR		3.5	1.335	24	ĩ	99
14 PYØFM('94) 3,202,242 5,109 38 175 57,610,400 14.0 4,860 38 (Opr. PY5CC) 21.0 5,395 38 21 7X5J('97) 3,181,696 5,264 37 175 28.0 5,430 39	1.0	(Opr OH1VB)		a,007	04	120	(1990)	7.0	2.104	31	1	17
(Opr. PY5CC) 21.0 5,395 38 21 7X5J('97) 3.181.696 5.264 37 175 28.0 5.430 39	14	PY0EM('94)	3 202 242	5 109	38	175	57.61	0.400	14.0	4,860	38	1	79
21 7X5J('97) 3181696 5264 37 175 28.0 5430 39		(Opr. PY5CC)		0,100	00	115	01,01	-1100	21.0	5 395	38	1-	76
	21	ZX5.1('97)	3 181 696	5 264	37	175			28.0	5,430	39	15	32
(Opr. PP5JR)	-	(Opr. PP5.IB)		01204	07			13 11 17	20.0	0,100	00	10	
28 ZX5J('98)	28	ZX5.(('98)	3 322 230	5.392	39	183			Total	19,655	189	80	03
(Opr. PP5JR)		(Opr. PP5JR)											

CQ World-Wide DX Contest All-Time CW Records

BY FREDERICK CAPOSSELA, K6SSS

WORLD RECORD HOLDERS AF EAREA (98)		Single Operator/Sing	le band				Sing	le Operator/All E	banu		
18 0-HildlePr(95) 251;136 1.451 24 85 25 Feature (195) 1.75550 2.672 56 114 85 Code (196) 9.904.510 5.508 162 503 7.0 (Opr. OF200) 1.75550 2.672 56 114 85 Code (197) 9.904.510 5.508 162 503 114 Padar (191) 1.883,700 3.521 18 142 NA Th (1730) 9.904.510 5.508 162 503 12 Corr, NF10 2.357,967 4.589 38 140 NA Th (1760) 9.789,383 4.583 176 553 135 EABEA(196) 1.175,550 2.672 25 114 Pade(198) 1.028,950 5.541 155 460 14 Chard (197) 143 327 115 460 14 Code (197) <td>1.5</td> <td>WORLD RECORD HO</td> <td>LDERS</td> <td></td> <td></td> <td>AF EA8EA('98</td> <td>8)</td> <td>13,717,801</td> <td>6,563</td> <td>176</td> <td>543</td>	1.5	WORLD RECORD HO	LDERS			AF EA8EA('98	8)	13,717,801	6,563	176	543
3.5 EAREA(P6)	18	OHØMEP('95) 251.13	6 1.451	24	85	(Opr. OH2	MM)		10.00		
J Corr Co	2.5	EA9EA/'06) 1 175 56	0 2672	36	114	AS CAA('98)		9 904 510	5 508	162	503
7.0 UPEL USANJ 1.364,465 3.095 35 122 EU Discretion 6,123,904 4,605 147 491 14 PARV (31)	3.0	EAOEA(90)	2,012	50	114	AS 04A(50).	ADA)		5,500	102	000
0 VYSA(95)		(Opr. OH2KI)				(Opr. 584)	ADA)				
Interpretation Corr. CH0XX Interpretation Interpreta	7.0	YV5A('95)1,364,46	3,095	35	122	EU ZB2X('93)		6,129,904	4,606	14/	491
14 Páữy (s) 8.88.700 3.521 3.8 142 NA TÍC (s) 9.128.17 6.335 159 448 12 2025(17) <		(Opr OHØXX)				(Opr. OH2	KI)				
Image: Instruction Construction Constru	14	P40///01) 1 883 70	0 3.521	38	142	NA THC(93)		9 123 817	6 335	159	448
21 Corr. NRT:) 2.357.967 4.589 33 140 0. Corr. CTECH 6.798.828 4.539 172 335 28 ZV/SP(19) 1.991.865 3.810 37 143 14.372.964 6.853 176 553 28 ZV/SP(19) AFRICA (Opr. K2D) AFRICA (Pr. Mas) 71 14.372.964 6.853 176 553 5.6 EAREAPS 2.677 37 122 (Opr. MAS) 7.185.562 5.337 135 406 14 Opr. (MAS) 1.461.397 3.164 37 124 Vert (Mas) 7.185.562 5.337 135 406 226 ZV(37) 2.357.967 4.589 39 140 1.461.397 1.663 30 125 7.7185.562 5.74 11.00 1.00.80 9.72 1.18 1.18 1.18 1.18 1.18 1.18 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12	1.44	F40V(31)	0 0,021	.50	1.46	INA ITTO(30)	0)		0,000	100	110
21 Z0Z(197) 2.357.967 4.589 39 140 O AH3C(190) 6.7638.53 4.539 172 355 28 ZVG101(19) 1.991.895 3.810 37 148 C 6.778.520 6.778.520 5.77 35 7.67 7.7 2.57 7.7 7.7 2.57 7.7		(Opr. N/NG)	5 5 5 5 5 5	36	2000	(Opr. N61	H)	1212220000		1	
B COpr. NeT.J. Sopr.J. Sopr.J. Sopr	21	ZD8Z('97)2,357,96	67 4,589	39	140	O AH3C('90))	6,798,363	4,539	172	335
28 ZVISBING 1.991.895 3.810 37 148 CDC, CTF(SO(H) 3.316.768 3.320 117 325 1.8 CT3(OH1MA(97) 1.175.562 2572 36 114 70 COP, LASDOCH) .000 2280CP(18) .000 230 24 114 230 714 .000		(Opr NGT.I)				SA P40F('98)	(mar	14.372.964	6.853	176	553
28 Copy. (SED) Arrian Copy. (SED) Arrian 1.8 CT3:OHTMA(F7) 144,760 542 20 74 1.8 CT3:OHTMA(F7) 144,760 542 20 74 1.8 CT3:OHTMA(F7) 144,760 542 20 74 1.8 CT3:OHTMA(F7) 144,770 542 20 74 1.00 Copy. (AsAB)	00	7/4/50/001 1 001 00	5 2 910	27	1/19	Opr CT1	POU)				
Cityp: RS2D) AFRCA 18 C13:0+(IMA(97) 144.760 542 20 74 15 EABEA(96) .1175.560 2572 36 114 10 (Cpr. CH2K) (Cpr. VEX) .233.7 135 466 14 (Cpr. VEX) .235.9 73 122 (Cpr. VA3B) .7185.562 5.337 135 460 12 ZDS2(72) .235.957 45.89 39 140 (Cpr. VA3B) .10288.950 5.541 155 52 12 ZDS2(72) .235.7867 .200.755 76 20 75 14 39 15 .207.75 74 18 30 92 14.33 15 .228 77 114 14 920.755 .207.75 76 20 75 14.30 .228 77 14.33 12 Corr.43(9) .1.39.698 2.972 39 130 .230.9111 .232.917 .246 .231.77 .252	28	ZVV3B(96)1,991,03	5 3,010	57	140		bon)	0.010 700	0.000	117	205
AFRICA CTACHIMALTS AFRICA Control Contro Control Control <		(Opr. K5ZD)				QRP HI8A('91)			3,320	117	320
18 CT3:OH1MA(97) 1.44,760 542 20 74 Low V28K(98) 7.185,582 5.337 135 406 7.5 EXERCE (96) .175,550 222 36 14 Porr. (Opr. A38) .10280,950 5.541 155 460 14 CGBX/CME1261 .124,317 2.677 37 124 (Opr. K28) .10280,950 5.541 155 460 12 ZD82(57) .235,7967 4,589 39 140 18 Station Bard OSO Zones Countrise 18 X4M195 .230,797 .235,7967 4,589 39 140 14.372,964 14.0 1222 37 114 22660C(181) .1397,658 3,209 34 112 14.372,964 14.0 1222 37 114 2256126 .1318 29 85 74 14.00 1222 37 114 14 GPACQS(197) .1242,439 2,718 39 100 14.401 1222 37 114 14 OH0MEP(195) <td></td> <td>AFRICA</td> <td></td> <td></td> <td></td> <td>(Opr. JA5</td> <td>DQH)</td> <td></td> <td></td> <td></td> <td></td>		AFRICA				(Opr. JA5	DQH)				
3.5 EAREA (196) 1,175,550 2872 36 114 0 ICOP. (AdB) Asta 10,289,950 5,541 155 460 14 CT3BX(197) 1,461,397 3,164 37 124 12 COP. (AdB) Baste MPW(34) Baste MPW(34) Baste MPW(34) MORLD RECORD 21 COP. (AdB) Baste MPW(34) Station Baste MPW(34) Sta	18	CT3/OH1MA('97) 144.76	50 542	20	74	Low V26K('98)			5.337	135	406
3.3 Corr Classing (17.0 kig) (224,37) (257, 37) (226,37)	2.5	EA9EA/'06) 1 175 5	0 2672	36	114	Pur (Oor AA3	R)	and the second second			
70 (Opr. VA20) (Opr. VA20) (Opr. VA20) (Opr. VA20) (Opr. VA20) 14 (Opr. VA20) (Opr. VA20) (Opr. VA20) (Opr. VA20) 14 (Opr. VA20) (Opr. VA20) (Opr. VA20) (Opr. VA20) 14 (Opr. VA20) (Opr. VA20) (Opr. VA20) (Opr. VA20) 12 (Opr. VA20) (Opr. VA20) (Opr. VA20) (Opr. VA20) 28 (Opr. VA20) (Opr. VA20) (Opr. VA20) (Opr. VA20) 28 (Opr. VA20) (Opr. VA20) (Opr. VA20) (Opr. VA20) 28 (Opr. VA20) (Opr. VA20) (Opr. VA20) (Opr. VA20) (Opr. VA20) 28 (Opr. VA20) (Opr. VA20) (Opr. VA20) (Opr. VA20) (Opr. VA20) (Opr. VA20) 28 (Opr. VA20) (Opr.	0.0	EAOEA(50)	10 2012	00	CO.	Anna DAGIAUOA	0)	10 000 050	5 541	155	460
Clog MCBWE (e.gs) 1.24 (317) 2.67 37 122 (Opr. W2LD) 14 COPX (1P) 1.461.397 3.164 37 124 12 Z052(37) 2.357.967 4.599 39 140 12 Z052(37) 2.357.967 4.599 39 140 12 Z052(37) 2.357.967 4.599 39 140 128 Z4567(37) 4.30,660 1.318 2.9 71 1.46 37 72 13.8 4.44NU(95) .200.735 756 20 75 1.46 1.222 37 114 14 96/265(97) .130,96,080 5.854 170 52 2.00 39 120 14 96/265(98) .1319,604 2.99 310 176 553 14 96/265(98) .1319,604 2.99 310,604 5.854 170 52 15 0HUMP(75) .241,833 146 34 815 5 14	200	(Opr. OH2KI)			100	ASSL P40VV(94		10,200,900	5,541	155	400
Image: https://withingtonewide Image: https://withingtonewide <thttps: th="" withingtonewide<=""> Image: https://w</thttps:>	7.0	IG9/AC6WE('96)1,234,31	7 2,677	31	122	(Opr.W2G	D)				
Id Citasx(s7) 1.461.397 3.164 37 124 I Corr OHEM 2082(37) 2.357,967 4.589 39 140 28 ZS68C(R)97) 1.397,656 3.209 34 112 18 4X4NU[95) ASIA 756 20 757 18 4X4NU[95) ASIA 756 20 757 18 4X4NU[95) ASIA 756 20 757 14 972.05 Corr TasA 90.0735 758 20 727 25 74 14 972.06 71.0 1.188 30 92 14.372.964 14.0 1.232 37 114 14 972.05 1.307.964 2.972 34 133 130 130.6680 5.854 176 553 28 4750X(90)		(Opr. UA3DPX)									
Corr. OH: EH) Corr. OH: EH) Corr. OH: EH) Corr. NF1J Station Band COSC Zones Countries 1.8 4X4NU(95) .200, 75 756 20 75 114 970 1.82 37 114 1.4 .071, 733A) .130, 960 2.972 34 130 14.372, 964 14.0 1.232 37 114 21 SPBAGC(96) .138, 060 2.698 37 130 Nutti-Operator/Single Xmtr. AF EA9EA(91) 13.096, 080 5.854 170 522 23 CORVIP(95) .251, 136 1.451 24 85 Nuti-Operator/Single Xmtr. AF APEAPCA(91) 13.096, 080 5.854 170 522 18.0 APER(98) .400, 22, 249 177 <td>14</td> <td>CT3BX('97) 1461.39</td> <td>7 3.164</td> <td>37</td> <td>124</td> <td></td> <td>W</td> <td>ORLD RECORD</td> <td></td> <td></td> <td></td>	14	CT3BX('97) 1461.39	7 3.164	37	124		W	ORLD RECORD			
21 Constraint Countries Station Band OSOs Zones Countries 28 ZS6BCR(91) 1.397.658 3.2.99 34 112 1.8 351 15 52 18 AXAN(YS) A30,650 1.318 29 88 14.372,284 14.0 1.232 377 120 14.372,284 14.00 1.232 377 120 21.0 1.521 32 99 14.372,284 14.00 1.223 377 120 21.0 1.521 32 99 14.372,284 14.00 1.232 377 120 120 542.0 1.521 32 99 120 Copt.733A) 1.307,444 2.972 34 130 Total 6,853 176 553 130 Cohence(78) EUROPE EUROPE 2.043 313 56 1.043,57,360 5,480 170 527 177 476 14 OHOMCW(78) .71,64		(Opr OU1EU)									
Part Color MS1J Color MS1J <td></td> <td></td> <td>7 4 500</td> <td>20</td> <td>140</td> <td>Outline</td> <td>Deed</td> <td>0000</td> <td>70000</td> <td>Cou</td> <td>ntrine</td>			7 4 500	20	140	Outline	Deed	0000	70000	Cou	ntrine
28 ZSBECR[3]	21	ZD8Z(97)2,357,90	4,589	39	140	Station	Band	Q505	Zones	Cou	nuies
28 258BCP(191)		(Opr. N6TJ)				A COLUMN TO A COLUMN	10	054	45	E	0
Local (1) ASIA ASIA Page 3.5 727 225 74 1.8 4XAN(105) 20075 766 20 75 14 302 37 114 7.0 CHAR(35) 1.307,944 2.972 34 133 120 1.221 37 114 9K2GS(197) 1.242,439 2.718 39 140 1.621 322 99 12 5B4AGC(198) 1.139,608 2.698 37 130 Multi-Operator/Single xmtr. 7.0 Total 6.853 176 553 0H0MEP(195) 251,136 1.451 24 85 NA K1AR(198) 13.096,080 5654 170 527 13.0 OH0MEP(194) .0003,332 2.957 130 NA K1AR(198) 8.08,03,249 5.024 188 073 133 15044 5.074 181 777 775 527 152 162 503 1.0 OH0MCV(189) <t< td=""><td>28</td><td>7S6BCB('91) 1.397.65</td><td>3.209</td><td>34</td><td>112</td><td></td><td>1.8</td><td>351</td><td>15</td><td>5</td><td>2</td></t<>	28	7S6BCB('91) 1.397.65	3.209	34	112		1.8	351	15	5	2
ASIA 220,725 T56 200 200 75 200 75 200 75 200 75 200 75 200 75 21 75 22 75 22 75 23 75 20 75 20 75 21 75 21 75 21 75 21 75 21 75 22	20	2002011(01)			2446250	P4ØE	3.5	727	25	7	4
1.8 4X4AN(95) 200,735 756 20 75 14,372,964 14,0 1222 37 114 3.5 ZC4DV(87) 430,550 1.318 28 21.0 1.821 37 120 1.6 Gyr, 133A 1.307,944 2.972 34 133 28.0 1.521 32 99 20 C41A(39) 1.307,944 2.972 34 133 14.072,964 12.0 1.821 37 120 20 Corr 133A 1.242,439 2.718 39 140 14.0 1.821 37 150 21 Scale(79) 13.096,080 5.854 170 582 28 425DX(90) 13.096,080 5.854 170 582 28 OHOMEP(35) EMPOPE AF EASEA(79) 13.096,080 5.854 170 582 28 OHOMEP(35) AF EASEA(79)		ASIA				(1998)	7.0	1.188	30	9	2
3.5 2C40X(87) 430,560 1.318 29 88 14,322,304 21,0 1,521 37 120 7.0 C41A(93) 1.307,944 2,972 34 133 36 28.0 1,521 32 99 14 9K2GS(197) 1,242,439 2,718 39 140 6,853 176 553 28 4Z5DX(190) 826,759 2,003 39 120 AF EA9EA(191) 13.916,044 7,201 175 552 18 OH6MEP(195) 251,136 1,451 24 85 118 OH4MP(195) 2,404 314 50.44 7,201 175 552 18 OH6MEP(195) 251,136 1,451 24 85 120 AF EA9EA(191) 13.915,044 7,201 175 552 18 OH4MP(195) 251,138 148 24 85 14 306,2207 177 476 7.0 Sature (142) 775,520 2,208 37 1102 14 18 771 256 177 170 17	18	4X4NJ('95)	5 756	20	75	14 272 064	14.0	1 222	37	11	4
3.3 Converting Converting <td>2.5</td> <td>7CADY('87) 430.56</td> <td>0 1318</td> <td>29</td> <td>88</td> <td>14,372,904</td> <td>14.0</td> <td>1,202</td> <td>07</td> <td>10</td> <td>-</td>	2.5	7CADY('87) 430.56	0 1318	29	88	14,372,904	14.0	1,202	07	10	-
Code Code <thcode< th=""> Code Code <thc< td=""><td>5.5</td><td>10 1710/0</td><td>1,010</td><td>20</td><td>00</td><td></td><td>21.0</td><td>1,821</td><td>3/</td><td>12</td><td>0</td></thc<></thcode<>	5.5	10 1710/0	1,010	20	00		21.0	1,821	3/	12	0
7.0 C414(93) 1.307,944 2.972 34 133 14 9K2GS(97) 1,242,439 2,718 39 140 12 5BAAGC(98) 1,139,608 2,698 37 130 28 4Z5DX(190) 826,759 2,003 39 120 AF EA9EA('91) 13.915,044 7.201 175 553 18 OHMEP('95) 251,136 1.451 24 85 TA5KA('90) 13.915,044 7.201 175 552 18 OHMEP('95) 251,136 1.451 24 85 176 5.402 18.8 673 13.915,044 7.201 175 522 18 OHMEP('94) 1.003,352 2.957 31.00 AL F(P8) 8.902,349 5.027 177 476 53 SMEN(W38) 2.248 39 120 Katon 8.35 14.302,820 7.252 162 503 16 VA1A('98) .087,460 3.115 38 132 14 46 46 477 14 46 477 195		(Opr. 4Z4DX)		-			28.0	1,521	32	9	9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7.0	C41A('93)1,307,94	4 2,972	34	133	and the second se		MICHAELS	The same		
14 ářáčas(197) 1,242,439 2,718 39 140 21 5584AGC(98) 1,139,608 2,698 37 130 28 425DX(190)		(Opr. T93A)					Total	6,853	176	55	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	9K2GS('97) 1 242 43	9 2.718	39	140		- Conservation -	1	10400 L 10		
21 SDARG(19) 1,139,608 2,698 37 130 28 4Z5DX(190)	14	(Opr. T07M)									
21 SBAAGC (99)	~	(Opr. 197M)	0 000	07	100						
28 4Z5DX('90) 826,759 2.003 39 120 AF EA9EA('91) 13.096.080 5.854 170 582 18 OH0MEP('95) 642.600 2.204 55 118 NA TA5KA(30) 13.915.044 7.201 175 527 19 OH0MEP('95) 642.600 2.204 55 118 NA KIAR('98) 10.357.962 5.481 170 592.003 148 673 10 OH6MEW('89)	21	5B4AGC('98)1,139,60	18 2,698	37	130		Multi-O	perator/Single X	(mtr.		
28 425DX(90) 286,759 2.003 39 120 AF EABEA(9) 13.01040.80 58.84 175 592 18 OH0MEP(95) 251.136 1.451 24 85 TM2Y(98) 10.357.360 5.480 188 673 35 OH0MEP(95) 971.049 2.484 38 185 O ALAR(98) 12.063.14 5.007 177 476 14 OH0BH(94) .003.53 2.957 39 100 ALAR(98) 8.002.349 5.027 177 476 21 OH0BH(94) .775.620 2.208 37 102 WORLD RECORD 544 44 46 35 NF4A(78) .006,640 2.243 31 102 1495 712 26 77 18 VA1A(98) .006,640 2.243 31 102 1495 717 72 74 74 46 19 // 195/// 108 .007,K12M) .008,640 2.243 <								10,000,000	FOFA	470	500
List of Metropy EUROPE Association	28	475DX('90)	9 2.003	39	120	AF EA9EA('9	1)	13,096,080	5,854	170	582
EUROPE 1.8 CHOMEP('95) 251,136 1,451 24 85 1.3 CM4UN('95) 642,600 2,204 35 118 OA 12,063,114 5,074 181 701 1.4 CHOBH('94) .1,003,353 2,957 39 130 AH2R('98) .8,902,349 5,027 177 476 1.4 CHOBH('94) .1,003,353 2,957 39 130 AH2R('98) .8,902,349 5,027 177 476 28 9H1EL('92) .794,846 2,249 39 120 WORLD RECORD SA Countries 1.8 VA1A('98) .246,238 1048 21 85 SA HC8N('95) .14,302,820 Zones Countries 1.8 VA1A('98) .246,238 1048 2,243 31 102 (1935) 7.0 1.770 35 115 7.0 CPC K12M) .332,460 3,115 38 132 (1935) 7.0 28.0 423	20	12007(00)				AS TA5KA('90	0)	13,915,044	7,201	175	527
1.8 OHOMEP(25) .251,136 1.451 24 85 NA K1AR(98) 12.063,114 5.074 181 7.07 3.5 ONUN(95) .642,600 2.204 35 181 7.0 SegUN(92) .971,049 2.484 38 135 OA HCRN(95) .14.302,820 7.252 162 503 14 OHOBH(94) .1003,353 2.957 39 130 SA HCBN(95) .14.302,820 7.252 162 503 12 OHORTH AMERICA	1.5	EUROPE				FU TM2V/'98		10 357 360	5 480	188	673
3.5 ONAUN(95) .642,600 2204 35 118 OA ALAR(98) .12,063,114 30,74 131 101 131 101 131 101 131 101 131 101 131 101 131	18	OHØMEP('95)	6 1.451	24	85	NA KARCON		10,060,114	5.074	191	701
Society	3.5	ONALIN('95) 642.60	0 2204	35	118	NA NIAN SO		12,003,114	5,074	177	170
1.10 South (sc) Sr. (sc) S	7.0	CEOLINI(00) 071 0	0 2/8/	38	135	O AH2H(98)		8,902,349	5,027	1//	4/0
14 OHBH (94) 1,003,353 2,957 39 130 13 OHBMCW(89) 775,620 2,208 37 102 28 9H1EL('92) 794,846 2,249 39 120 18 VA1A('98) .246,238 1048 21 85 19 NPFAA('88) .206,240 31 102 Station Band QSOs Zones Countries 100 NPFAA('88) .206,240 31 101 14,302,820 14.0 2,128 37 119 10 V2F2TG('92) .1,087,862 2,985 31 111 14,302,820 14.0 2,128 37 119 14 V2B(Y0) .1,10,512 2,829 37 115 Total 7,252 162 503 28 J79DX('89) .859,360 2,661 33 98 Multi-Operator/Multi-Xmtr. 18 KH6CC('97) .69,693 593 17 22 166 C KH62/(98) .29,914,492 12,822 197 18 138 KH6CC('97)	7.0	559UN(92)	2,404	50	100	SA HC8N('95		14,302,820	7,252	162	503
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	OHØBH('94)1,003,35	3 2,957	39	130		C C Destroiter / comme	Second and Second Pre-	Marcanes.		
21 OH6MCW(199) 794,846 2,249 39 120 28 9H1EL(92) 794,846 2,249 39 120 1.8 VA1A('98) 246,238 1048 21 85 (Opr. K3BU) 246,238 1048 21 85 (Opr. K1ZM) 246,238 1041 24 66 (Opr. K1ZM) 332,460 3,115 38 132 28.0 423 20 43 21 V28(%0)		(Opr. OH2MAM)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	OH6MCW('89) 775.62	2.208	37	102		10/	ODI D DECODD			
NORTH AMERICA NORTH AMERICA Station Band QSOs Zones Countries 1.8 (Opr. K3BU)	20	0H1EL ('02) 794.84	6 2 249	39	120		VV	URLD RECORD			
NORTH AMERICA (Opr. K3BU) Station Band QSOs Zones Countries 1.8 VA1A('88)	20	9HIEL(92)		00	120						
1.8 VA1A(98)		NORTH AMERIC	1			Station	Band	QSOs	Zones	Cou	ntries
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			m		OF						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	VA1A('98) 246.23	1048	21	00		The Contraction	and a second			6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.8	VA1A('98)	1048	21	00		1.8	374	14	4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.8	VA1A('98)	1048	21	102	HC8N	1.8	374 712	14 26	4	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8 3.5	VA1A('98)	1048 1048 0 2,243	21 31	102	HC8N (1995)	1.8 3.5 7.0	374 712 1 770	14 26 36	4 7 11	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8 3.5	VA1A('98)	1048 1048 0 2,243	21 31	102	HC8N (1995)	1.8 3.5 7.0	374 712 1,770	14 26 36	4 7 11	750
14 KP2A(94) 1,332,460 3,115 38 132 21 V28W(90) 1,110,512 2,829 37 115 28 J79DX(89)	1.8 3.5 7.0	VA1A('98)	1048 10 2,243 2 2,985	21 31 31	102 111	HC8N (1995) 14,302,820	1.8 3.5 7.0 14.0	374 712 1,770 2,128	14 26 36 37	4 7 11 11	7 5 9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.8 3.5 7.0	VA1A('98)	1048 10 2,243 2 2,985	21 31 31	102 111	HC8N (1995) 14,302,820	1.8 3.5 7.0 14.0 21.0	374 712 1,770 2,128 1,845	14 26 36 37 29	4 7 11 11 10	7 5 9 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8 3.5 7.0	VA1A('98)	1048 10 2,243 2 2,985 0 3,115	21 31 31 38	00 102 111 132	HC8N (1995) 14,302,820	1.8 3.5 7.0 14.0 21.0 28.0	374 712 1,770 2,128 1,845 423	14 26 36 37 29 20	4 7 11 11 10 4	7 5 9 3 3
21 V29W(90) 1,110,512 2,829 37 115 28 J79DX(89)	1.8 3.5 7.0 14	VA1A('98)	1048 10 2,243 2 2,985 0 3,115	21 31 31 38	102 111 132	HC8N (1995) 14,302,820	1.8 3.5 7.0 14.0 21.0 28.0	374 712 1,770 2,128 1,845 423	14 26 36 37 29 20	4 7 11 11 10 4	7 5 9 3 3
Copr. KD6WW) 859,360 2,661 33 98 (Opr. AA5DX) OCEANIA AF 5V7A('98) 34,658,186 14,381 187 679 1.8 KH6CC('97)	1.8 3.5 7.0 14	VA1A('98)	1048 10 2,243 2 2 2,985 30 3,115	21 31 31 38	00 102 111 132	HC8N (1995) 14,302,820	1.8 3.5 7.0 14.0 21.0 28.0 Total	374 712 1,770 2,128 1,845 423 7,252	14 26 36 37 29 20 162	4 7 11 11 10 4 50	7 5 9 3 3 3
28 J79DX('89)	1.8 3.5 7.0 14 21	VA1A('98)	1048 2,243 2,985 30 3,115 2 2,829	21 31 31 38 37	102 111 132 115	HC8N (1995) 14,302,820	1.8 3.5 7.0 14.0 21.0 28.0 Total	374 712 1,770 2,128 1,845 423 7,252	14 26 36 37 29 20 162	4 7 11 11 10 4 50	7 5 9 3 3 3
Opr. AA5DX) Multi-Operator/Multi-Xmtr. (Opr. AA5DX) AF 5000000000000000000000000000000000000	1.8 3.5 7.0 14 21	VA1A('98)	10481048102,243102,243102,985103,115122,829	21 31 31 38 37	05 102 111 132 115	HC8N (1995) 14,302,820	1.8 3.5 7.0 14.0 21.0 28.0 Total	374 712 1,770 2,128 1,845 423 7,252	14 26 36 37 29 20 162	4 7 11 11 10 4 50	7 5 9 3 3 3
OCEANIA AF 5V7A('98) 34,658,186 14,381 187 679 1.8 KH6CC('97)	1.8 3.5 7.0 14 21 28	VA1A('98)	1048 1048 1048 1048 1048 1048 1048 1048 102,243 102,243 103,115 1048 10148 10148 10148 10148 10148 10148 10148 10148 10148 10148 10148 1114 </td <td>21 31 31 38 37 33</td> <td>00 102 111 132 115 98</td> <td>HC8N (1995) 14,302,820</td> <td>1.8 3.5 7.0 14.0 21.0 28.0 Total</td> <td>374 712 1,770 2,128 1,845 423 7,252</td> <td>14 26 36 37 29 20 162</td> <td>4 7 11 11 10 4 50</td> <td>7 5 9 3 3 3</td>	21 31 31 38 37 33	00 102 111 132 115 98	HC8N (1995) 14,302,820	1.8 3.5 7.0 14.0 21.0 28.0 Total	374 712 1,770 2,128 1,845 423 7,252	14 26 36 37 29 20 162	4 7 11 11 10 4 50	7 5 9 3 3 3
AF 5V7A('98) 34,658,186 14,381 187 679 3.5 9M6NA('96) 231,480 876 24 66 EU LX7A('98) 28,014,492 12,692 195 718 3.5 9M6NA('96) 231,480 876 24 66 EU LX7A('98) 20,0497,632 12,2532 189 718 7.0 9M6NA('97) 1,041,012 2,342 37 116 O KHØAM('92) 23,951,385 11,253 190 527 14 ZL3GQ('91) 1,148,418 2,396 66 126 SA PJ1B('88)	1.8 3.5 7.0 14 21 28	VA1A('98)	1048 10 2,243 2 2 3,115 2 2,829 2 2,661	21 31 38 37 33	05 102 111 132 115 98	HC8N (1995) 14,302,820	1.8 3.5 7.0 14.0 21.0 28.0 Total	374 712 1,770 2,128 1,845 423 7,252 Operator/Multi-X	14 26 36 37 29 20 162 mtr.	4 7 11 11 10 4 50	7 5 9 3 3 3
1.8 KH6CC('97)	1.8 3.5 7.0 14 21 28	VA1A('98)	1048 1048 1048 1048 1048 1048 1048 1048 102,243 102,243 103,115 1048 10148 10148 10148 10148 10148 10148 10148 10148 10148 10148 10148 1114 </td <td>21 31 38 37 33</td> <td>05 102 111 132 115 98</td> <td>HC8N (1995) 14,302,820</td> <td>1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C</td> <td>374 712 1,770 2,128 1,845 423 7,252 Dperator/Multi-X</td> <td>14 26 36 37 29 20 162 mtr.</td> <td>4 7 11 11 10 4 50</td> <td>7 5 9 3 3 3</td>	21 31 38 37 33	05 102 111 132 115 98	HC8N (1995) 14,302,820	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 Dperator/Multi-X	14 26 36 37 29 20 162 mtr.	4 7 11 11 10 4 50	7 5 9 3 3 3
3.5 9M6NA('96) 231,480 876 24 66 (Opr. JE1JKL)	1.8 3.5 7.0 14 21 28	VA1A('98)	1048 1048 10 2,243 10 2,985 10 3,115 12 2,829 10 2,661	21 31 38 37 33	05 102 111 132 115 98	HC8N (1995) 14,302,820 AF 5V7A('98)	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 7,252 Dperator/Multi-X 	14 26 36 37 29 20 162 mtr. 14,381	4 7 11 10 4 50 187	7 5 9 3 3 3 679
COpr. JE1JKL) NA EUXPR(92) Supervised of the system Supervised of the syste	1.8 3.5 7.0 14 21 28 1.8	VA1A('98)	1048 1048 10 2,243 10 2,985 10 3,115 12 2,829 10 2,661 10 593	21 31 38 37 33 17	00 102 111 132 115 98 22	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 7,252 Dperator/Multi-X 	14 26 36 37 29 20 162 162 mtr. 14,381 12,692	4 7 11 10 4 50 187 195	7 5 9 3 3 3 679 718
(Opr. Oblight) (Opr. Value) (Opr. Value)<	1.8 3.5 7.0 14 21 28 1.8 3.5	VA1A('98)	1048 1048 1048 1048 1048 1048 1048 1048 102 102 103 1048 1048 1048 1048 1048 102 103 103 103 103 103 103 103 103 103 103 103 103 103 1048 1048	21 31 38 37 33 17 24	00 102 111 132 115 98 22 66	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98 FU 1X7A('99)	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 7,252 Dperator/Multi-X 	14 26 36 37 29 20 162 162 mtr. 14,381 12,692 12 735	4 7 11 10 4 50 187 195 189	7 5 9 3 3 3 679 718 705
7.0 9MioNA(97) 1,012 2,342 37 110 O KHØAM(92) 23,951,385 11,253 190 527 14 ZL3GQ('91) 1,148,418 2,396 36 126 SA PJIB('88) 23,951,385 11,253 190 527 21 N7DF/NH2('89) 1,205,776 2,977 37 99 99 SA PJIB('88) 38,415,760 14,921 194 672 21 N7DF/NH2('89) 1,037,608 2,456 38 105 WORLD RECORD 672 1.8 YV3AGT('85)	1.8 3.5 7.0 14 21 28 1.8 3.5	VA1A('98)	1048 1048 1048 102 102 102 102 102 103 103 103 1048 1048 1048 102 103	21 31 38 37 33 17 24	00 102 111 132 115 98 22 66	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89)	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 7,252 Operator/Multi-X 	14 26 36 37 29 20 162 162 162 112,692 12,735 17,600	4 7 11 10 4 50 187 195 189 192	7 5 9 3 3 3 3 679 718 705 740
14 ZL3GQ('91) 1,148,418 2,396 36 126 SA PJ1B('88)	1.8 3.5 7.0 14 21 28 1.8 3.5	VA1A('98)	1048 1048 2,243 2,243 2,243 3,115 2,829 2,829 2,661 3,593 80 876	21 31 38 37 33 17 24	00 102 111 132 115 98 22 66 110	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89) NA 6Y2A('98)	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 Operator/Multi-X 	14 26 36 37 29 20 162 162 mtr. 14,381 12,692 12,735 17,609	4 7 11 10 4 50 187 195 189 192	7 5 9 3 3 3 3 679 718 705 740
21 N7DF/NH2('89) 1,205,776 2,977 37 99 28 KD7P/NH2('88) 1,037,608 2,456 38 105 WORLD RECORD 1.8 YV3AGT('85) 147,588 591 21 63 SOUTH AMERICA 1.8 YV3AGT('85) 147,588 591 21 63 3.5 P4ØJ('95)	 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 	VA1A('98)	1048 1048 2,243 2,243 2,2985 3,115 2,829 2,829 2,661 3,593 80 2,342	21 31 38 37 33 17 24 37	000 102 111 132 115 98 22 66 116	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89) NA 6Y2A('98) O KHØAM('9	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 7,252 Dperator/Multi-X 	14 26 36 37 29 20 162 162 162 112,735 17,609 11,253	4 7 11 10 4 50 187 195 189 192 190	7 5 9 3 3 3 3 679 718 705 740 527
28 KD7P/NH2('88) 1,037,608 2,456 38 105 SOUTH AMERICA WORLD RECORD 1.8 YV3AGT('85) 147,588 591 21 63 3.5 P4ØJ('95)	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14	VA1A('98)	1048 1048 2,243 2,243 2,2985 30 3,115 2 2,829 30 2,661 30 593 80 876 2 2,342 8 2,396	21 31 38 37 33 17 24 37 36	00 102 111 132 115 98 22 66 116 126	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88)	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 7,252 Dperator/Multi-X 	14 26 36 37 29 20 162 162 mtr. 14,381 12,692 12,735 17,609 11,253 14,921	4 7 11 10 4 50 187 195 189 192 190 194	7 5 9 3 3 3 3 679 718 705 740 527 672
SOUTH AMERICA WORLD RECORD 1.8 YV3AGT('85) 147,588 591 21 63 3.5 P4ØJ('95)	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21	VA1A('98)	1048 1048 2,243 2,243 2,2985 3,115 2,829 2,2,829 2,2,661 3,593 80 593 80 593 80 593 80 2,342 80 2,396 2,3977	21 31 31 38 37 33 17 24 37 36 37	00 102 111 132 115 98 22 66 116 126 99	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88)	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 7,252 Operator/Multi-X 	14 26 36 37 29 20 162 162 mtr. 14,381 12,692 12,735 17,609 11,253 14,921	4 7 11 10 4 50 187 195 189 192 190 194	7 5 9 3 3 3 3 679 718 705 740 527 672
SOUTH AMERICA WORLD RECORD 1.8 YV3AGT('85) 147,588 591 21 63 3.5 P40J('95) 641,245 1,650 28 103 Station Band QSOs Zones Countries 7.0 YV5A('95)	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 29	VA1A('98)	1048 1048 1048 102 102 102 102 103 1048 1048 102 103 103 1048 1048 1048 102 103	21 31 31 38 37 33 17 24 37 36 37 36 37 38	05 102 111 132 115 98 22 66 116 126 99 105	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88)	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 Dperator/Multi-X 	14 26 36 37 29 20 162 162 mtr. 14,381 12,692 12,735 17,609 11,253 14,921	4 7 11 10 4 50 187 195 189 192 190 194	7 5 9 3 3 3 3 679 718 705 740 527 672
1.8 YV3AGT('85) 147,588 591 21 63 3.5 P40J('95)	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28	VA1A('98)	1048 1048 2,243 2,243 2,2985 3,115 2,829 2,2,829 2,661 3,593 80 593 80 593 80 2,342 80 2,342 80 2,396 2,977 2,456	21 31 38 37 33 17 24 37 36 37 38	05 102 111 132 115 98 22 66 116 126 99 105	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89) NA 6Y2A('98) O KHØAM('9) SA PJ1B('88)	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 7,252 Operator/Multi-X 	14 26 36 37 29 20 162 162 mtr. 14,381 12,692 12,735 17,609 11,253 14,921	4 7 11 10 4 50 187 195 189 192 190 194	7 5 9 3 3 3 3 679 718 705 740 527 672
3.5 P4ØJ('95)	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28	VA1A('98)	1048 1048 2,243 2,243 2,2985 30 3,115 2 2,829 30 2,661 3 593 30 593 80 876 2,342 2,396 2,396 2,977 38 2,456	21 31 38 37 33 17 24 37 36 37 38	05 102 111 132 115 98 22 66 116 126 99 105	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88)	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 Operator/Multi-X 	14 26 36 37 29 20 162 162 mtr. 14,381 12,692 12,735 17,609 11,253 14,921	4 7 11 10 4 50 187 195 189 192 190 194	7 5 9 3 3 3 679 718 705 740 527 672
(Opr. WX4G) 1,364,465 3,095 35 122 (Opr. OHØXX) 1,883,700 3,521 38 142 (Opr. N7NG) 1,926,056 4,009 38 134 (Opr. LU2BRG) 1,991,895 3,810 37 148 Total 17,609 192 740	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5	VA1A('98)	1048 1048 2,243 2,243 2,2985 3,115 2,829 2,829 2,661 3,593 80 2,342 80 2,342 80 2,342 8,0 2,342 8,0 2,342 8,0 2,342 8,0 2,396 2,456 2,456	21 31 38 37 33 17 24 37 36 37 36 37 38 21	00 102 111 132 115 98 22 66 116 126 99 105 63	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89) NA 6Y2A('98) O KHØAM('9) SA PJ1B('88)	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 Operator/Multi-X 	14 26 36 37 29 20 162 162 mtr. 14,381 12,692 12,735 17,609 11,253 14,921	4 7 11 10 4 50 187 195 189 192 190 194	7 5 9 3 3 3 3 679 718 705 740 527 672
7.0 YV5A('95) 1,364,465 3,095 35 122 1.8 1,139 20 82 14 P4ØV('91) 1,883,700 3,521 38 142 GY2A 3.5 1,867 28 106 14 P4ØV('91) 1,926,056 4,009 3,521 38 142 GY2A 3.5 1,867 28 106 21 ZP5XF('97) 1,926,056 4,009 38 134 21.0 3,433 31 147 21 ZW5B('98) 1,991,895 3,810 37 148 28.0 3,175 32 120 28 ZW5B('98) 1,991,895 3,810 37 148 Total 17,609 192 740	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5	VA1A('98)	1048 1048 102 2,243 22 2,985 30 3,115 2 2,829 30 2,861 30 593 80 2,342 80 2,342 8,366 2,396 2,396 2,396 2,396 2,396 2,456 30 31 32 33 593 30 <td>21 31 31 38 37 33 17 24 37 36 37 36 37 38 21 28</td> <td>00 102 111 132 115 98 22 66 116 126 99 105 63 103</td> <td>HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88)</td> <td>1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C</td> <td>374 712 1,770 2,128 1,845 423 7,252 Operator/Multi-X </td> <td>14 26 36 37 29 20 162 162 mtr. 14,381 12,692 12,735 17,609 11,253 14,921 Zones</td> <td>4 7 11 10 4 50 187 195 189 192 190 194 194</td> <td>7 5 9 3 3 3 3 679 718 705 740 527 672 ntries</td>	21 31 31 38 37 33 17 24 37 36 37 36 37 38 21 28	00 102 111 132 115 98 22 66 116 126 99 105 63 103	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88)	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 Operator/Multi-X 	14 26 36 37 29 20 162 162 mtr. 14,381 12,692 12,735 17,609 11,253 14,921 Zones	4 7 11 10 4 50 187 195 189 192 190 194 194	7 5 9 3 3 3 3 679 718 705 740 527 672 ntries
7.0 YV5A(95) 1,364,465 3,095 35 122 6Y2A 3.5 1,867 28 106 14 P4ØV('91) 1,883,700 3,521 38 142 (1998) 7.0 3,896 35 132 14 P4ØV('91) 1,883,700 3,521 38 142 (1998) 7.0 3,896 35 132 21 ZP5XF('97) 1,926,056 4,009 38 134 21.0 3,433 31 147 21 ZP5XF('97) 1,991,895 3,810 37 148 28.0 3,175 32 120 28 ZW5B('98) 1,991,895 3,810 37 148 Total 17,609 192 740	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 7.0 14 21 28 1.8 3.5	VA1A('98)	1048 1048 2,243 2,2985 3,115 2,829 2,2,829 2,661 3,593 80 593 80 593 80 593 80 2,342 80 2,342 80 2,396 2,396 2,977 8 591 1,650 1,650	21 31 38 37 33 17 24 37 36 37 36 37 38 21 28	00 102 111 132 115 98 22 66 116 126 99 105 63 103	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88) Station	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 Operator/Multi-X 	14 26 36 37 29 20 162 162 mtr. 14,381 12,692 12,735 17,609 11,253 17,609 11,253 14,921 Zones	4 7 11 10 4 50 187 195 189 192 190 194 194 Cou	7 5 9 3 3 3 3 679 718 705 740 527 672 ntries
14 P4ØV('91) 1,883,700 3,521 38 142 (1998) 7.0 3,896 35 132 14 P4ØV('91) 1,926,056 4,009 38 142 (1998) 7.0 3,896 35 132 21 ZP5XF('97) 1,926,056 4,009 38 134 21.0 3,433 31 147 28 ZW5B('98) 1,991,895 3,810 37 148 Total 17,609 192 740	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5	VA1A('98)	1048 1048 102 102 102 102 102 103 <td< td=""><td>21 31 31 38 37 33 17 24 37 36 37 36 37 38 21 28</td><td>00 102 111 132 115 98 22 66 116 126 99 105 63 103 103</td><td>HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88)</td><td>1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C</td><td>374 712 1,770 2,128 1,845 423 7,252 Operator/Multi-X </td><td>14 26 36 37 29 20 162 162 162 11,253 17,609 11,253 17,609 11,253 14,921 Zones 20</td><td>4 7 11 11 10 4 50 10 195 189 192 190 192 190 194 194 8 8</td><td>7 5 9 3 3 3 679 718 705 740 527 672 ntries</td></td<>	21 31 31 38 37 33 17 24 37 36 37 36 37 38 21 28	00 102 111 132 115 98 22 66 116 126 99 105 63 103 103	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88)	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C	374 712 1,770 2,128 1,845 423 7,252 Operator/Multi-X 	14 26 36 37 29 20 162 162 162 11,253 17,609 11,253 17,609 11,253 14,921 Zones 20	4 7 11 11 10 4 50 10 195 189 192 190 192 190 194 194 8 8	7 5 9 3 3 3 679 718 705 740 527 672 ntries
14 P4ØV('91) 1,883,700 3,521 38 142 (1998) 7.0 3,696 55 132 14 P4ØV('91) 1,883,700 3,521 38 142 39,279,140 14.0 4,099 38 151 21 ZP5XF('97) 1,926,056 4,009 38 134 21.0 3,433 31 147 28 ZW5B('98) 1,991,895 3,810 37 148 28.0 3,175 32 120 28 ZW5B('98) 1,991,895 3,810 37 148 Total 17,609 192 740	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0	VA1A('98)	1048 1048 102 102 102 103 1048 102 103 <t< td=""><td>21 31 31 38 37 33 17 24 37 36 37 36 37 38 21 28 35</td><td>00 102 111 132 115 98 22 66 116 126 99 105 63 103 122</td><td>HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98 EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88) Station</td><td>1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C 3) 2) 2) Band 1.8 3.5</td><td>374 712 1,770 2,128 1,845 423 7,252 Operator/Multi-X </td><td>14 26 36 37 29 20 162 mtr. 14,381 12,692 12,735 17,609 11,253 17,609 11,253 14,921 Zones 20 28</td><td>4 7 11 11 10 4 50 10 195 189 192 190 194 194 194</td><td>7 5 9 3 3 3 679 718 705 740 527 672 ntries</td></t<>	21 31 31 38 37 33 17 24 37 36 37 36 37 38 21 28 35	00 102 111 132 115 98 22 66 116 126 99 105 63 103 122	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98 EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88) Station	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C 3) 2) 2) Band 1.8 3.5	374 712 1,770 2,128 1,845 423 7,252 Operator/Multi-X 	14 26 36 37 29 20 162 mtr. 14,381 12,692 12,735 17,609 11,253 17,609 11,253 14,921 Zones 20 28	4 7 11 11 10 4 50 10 195 189 192 190 194 194 194	7 5 9 3 3 3 679 718 705 740 527 672 ntries
(Opr. N7NG) 1,926,056 4,009 38 134 21 ZP5XF('97) 1,926,056 4,009 38 134 (Opr. LU2BRG) (Opr. LU2BRG) 3,810 37 148 28.0 3,175 32 120 28 ZW5B('98) 1,991,895 3,810 37 148 Total 17,609 192 740	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0	VA1A('98)	1048 1048 2,243 2,243 2,2985 30 3,115 2,829 30 2,661 30 593 30 591 30 591 30 591 30 591 30 591 30 593 30 593 30 591	21 31 38 37 33 17 24 37 36 37 36 37 38 21 28 35	63 102 111 132 115 98 22 66 116 126 99 105 63 103 122	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88) Station	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C 3) 2) Band 1.8 3.5 7.0 Weightson	374 712 1,770 2,128 1,845 423 7,252 Dperator/Multi-X 	14 26 36 37 29 20 162 mtr. 14,381 12,692 12,735 17,609 11,253 17,609 11,253 14,921 Zones 20 28 25	4 7 11 11 10 4 50 187 195 189 192 190 194 194 194 194 10 10 10	7 5 9 3 3 3 679 718 705 740 527 672 ntries
21 ZP5XF('97) 1,926,056 4,009 38 134 21.0 3,433 31 147 28 ZW5B('98) 1,991,895 3,810 37 148 100 17,609 192 740 (Opr. K5ZD) (Opr. K5ZD) 3810 37 148 147 148 147	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0	VA1A('98)	1048 1048 1048 102 102 103 1048 102 103 <	21 31 31 38 37 33 17 24 37 36 37 36 37 38 21 28 35 38	63 102 111 132 115 98 22 66 116 126 99 105 63 103 103 122 142	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98 EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88) Station 6Y2A (1998)	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C 3) 2) Band 1.8 3.5 7.0 We Band	374 712 1,770 2,128 1,845 423 7,252 Operator/Multi-X 	14 26 36 37 29 20 162 mtr. 14,381 12,692 12,735 17,609 11,253 17,609 11,253 14,921 Zones 20 28 35 20	4 7 11 11 10 4 50 10 195 189 192 190 194 194 194 194 194	7 5 9 3 3 3 679 718 705 740 527 672 ntries
21 ZP5XF(97)	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14	VA1A('98)	1048 1048 102 2,243 2,2985 30 3,115 2,829 30 2,661 30 593 30 591 30 591 30 3,095 30 3,521	21 31 31 38 37 33 17 24 37 36 37 36 37 38 21 28 35 38	00 102 111 132 115 98 22 66 116 126 99 105 63 103 122 142	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98 EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88) Station 6Y2A (1998) 39,279,140	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C 3) 2) 2) Band 1.8 3.5 7.0 14.0 We Band 1.8 3.5 7.0	374 712 1,770 2,128 1,845 423 7,252 Dperator/Multi-X 	14 26 36 37 29 20 162 mtr. 14,381 12,692 12,735 17,609 11,253 17,609 11,253 14,921 Zones 20 28 35 38	4 7 11 11 10 4 50 187 195 189 192 190 194 194 194 194 10 13 15	7 5 9 3 3 3 679 718 705 740 527 672 ntries 2 6 2
(Opr. LU2BRG) 28 ZW5B('98) 1,991,895 3,810 37 148 Total 17,609 192 740 (Opr. K5ZD) (Opr.	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14	VA1A('98)	1048 1048 102 102 102 102 103 <td< td=""><td>21 31 31 38 37 33 17 24 37 36 37 36 37 38 21 28 37 38 21 28 35 38 35 38</td><td>03 102 111 132 115 98 22 66 116 126 99 105 63 103 122 142</td><td>HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98 EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88) SA PJ1B('88) Station</td><td>1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C 3) 22) Band 1.8 3.5 7.0 14.0 21.0 28.0 We Band 1.8 3.5 7.0 14.0 21.0 28.0</td><td>374 712 1,770 2,128 1,845 423 7,252 Operator/Multi-X 34,658,186 28,014,492 20,497,632 39,279,140 23,951,385 38,415,760 ORLD RECORD QSOs 1,139 1,867 3,896 4,099 3,433</td><td>14 26 36 37 29 20 162 mtr. 14,381 12,692 12,735 17,609 11,253 14,921 Zones 20 28 35 38 31</td><td>4 7 11 11 10 4 50 187 195 189 192 190 194 192 190 194 194 195 194 195 195 195 195 195 195 195 195 195 195</td><td>7 5 9 3 3 3 679 718 705 740 527 672 ntries 2 6 2 1 7</td></td<>	21 31 31 38 37 33 17 24 37 36 37 36 37 38 21 28 37 38 21 28 35 38 35 38	03 102 111 132 115 98 22 66 116 126 99 105 63 103 122 142	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98 EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88) SA PJ1B('88) Station	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C 3) 22) Band 1.8 3.5 7.0 14.0 21.0 28.0 We Band 1.8 3.5 7.0 14.0 21.0 28.0	374 712 1,770 2,128 1,845 423 7,252 Operator/Multi-X 34,658,186 28,014,492 20,497,632 39,279,140 23,951,385 38,415,760 ORLD RECORD QSOs 1,139 1,867 3,896 4,099 3,433	14 26 36 37 29 20 162 mtr. 14,381 12,692 12,735 17,609 11,253 14,921 Zones 20 28 35 38 31	4 7 11 11 10 4 50 187 195 189 192 190 194 192 190 194 194 195 194 195 195 195 195 195 195 195 195 195 195	7 5 9 3 3 3 679 718 705 740 527 672 ntries 2 6 2 1 7
28 ZW5B('98) 1,991,895 3,810 37 148 Total 17,609 192 740 (Opr. K5ZD)	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28	VA1A('98)	1048 1048 102 2,243 2,2985 30 3,115 2,829 30 2,661 30 593 30 591 30 3,095 30 3,521 30 3,521 30 4,009	21 31 31 38 37 33 17 24 37 36 37 36 37 38 21 28 35 38 35 38 35 38 38	03 102 111 132 115 98 22 66 116 126 99 105 63 103 122 142 134	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98 EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88) Station 6Y2A (1998) 39,279,140	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C 3) 2) 2) Band 1.8 3.5 7.0 14.0 21.0 28.0 We Band 1.8 3.5 7.0 14.0	374 712 1,770 2,128 1,845 423 7,252 Dperator/Multi-X 	14 26 36 37 29 20 162 mtr. 14,381 12,692 12,735 17,609 11,253 17,609 11,253 14,921 Zones 20 28 35 38 31 32	4 7 11 11 10 4 50 187 195 189 192 190 194 194 194 10 13 15 14 12	7 5 9 3 3 3 679 718 705 740 527 672 672 ntries 2 6 2 1 7 0
(Opr. K5ZD)	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28	VA1A('98)	10481048102,24322,98533,11522,82933593859385938593859382,3428593	21 31 31 38 37 33 17 24 37 36 37 38 21 28 37 38 21 28 35 38 35 38 38 38	03 102 111 132 115 98 22 66 116 126 99 105 63 103 122 142 134	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98 EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88) Station 6Y2A (1998) 39,279,140	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C 3) 2) Band 1.8 3.5 7.0 14.0 21.0 28.0 We Band 1.8 3.5 7.0 14.0	374 712 1,770 2,128 1,845 423 7,252 7,252 Operator/Multi-X 	14 26 36 37 29 20 162 mtr. 14,381 12,692 12,735 17,609 11,253 14,921 Zones 20 28 35 38 31 32	4 7 11 11 10 4 50 10 195 189 192 190 194 192 190 194 192 190 194 10 13 15 14 12	7 5 9 3 3 3 679 718 705 740 527 672 ntries 2 6 2 1 7 0
(Opi.itoLD)	 1.8 3.5 7.0 14 21 28 	VA1A('98)	1048 1048 102 2,243 2,2985 30 3,115 2,829 30 2,661 30 593 30 593 30 593 30 593 30 593 30 593 30 593 30 593 30 593 30 593 30 593 30 593 30 593 30 593 30 593 30 593 30 593 30 593 30 591 30 591 30 3,095 30 3,521 30 3,810	21 31 31 38 37 33 17 24 37 36 37 36 37 38 21 28 37 38 21 28 35 38 35 38 35 38 35 38 35 38 35	00 102 111 132 115 98 22 66 116 126 99 105 63 103 122 142 142 134	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98) EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88) SA PJ1B('88) Station	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C 3) 22) Band 1.8 3.5 7.0 14.0 22) We Band 1.8 3.5 7.0 14.0 22)	374 712 1,770 2,128 1,845 423 7,252 7,252 Operator/Multi-X 34,658,186 28,014,492 20,497,632 39,279,140 23,951,385 38,415,760 ORLD RECORD QSOs 1,139 1,867 3,896 4,099 3,433 3,175	14 26 36 37 29 20 162 mtr. 14,381 12,692 12,735 17,609 11,253 17,609 11,253 14,921 Zones 20 28 35 38 31 32 192	4 7 11 11 10 4 50 10 195 189 192 190 194 192 190 194 192 190 194 10 13 15 14 12 74	7 5 9 3 3 3 679 718 705 740 527 672 672 0 1 7 0
	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28	VA1A('98)	10481048102,2432,9852,9853,1152,8292,8292,8292,8613,593859382,3422,3962,3962,3962,3962,3962,3962,3963,0953,0953,0953,0953,810	21 31 38 37 33 17 24 37 36 37 38 21 28 37 38 21 28 35 38 35 38 38 38 38 38 38	03 102 111 132 115 98 22 66 116 126 99 105 63 105 63 103 122 142 134 148	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98 EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88) Station 6Y2A (1998) 39,279,140	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C 3) 22) Band 1.8 3.5 7.0 14.0 21.0 28.0 We Band 1.8 3.5 7.0 14.0 20 14.0 28.0 Total	374 712 1,770 2,128 1,845 423 7,252 7,252 Operator/Multi-X 	14 26 36 37 29 20 162 mtr. 14,381 12,692 12,735 17,609 11,253 17,609 11,253 14,921 Zones 20 28 35 38 31 32 192	4 7 11 11 10 4 50 10 195 189 192 190 194 192 190 194 192 190 194 10 13 15 14 12 74	7 5 9 3 3 3 679 718 705 740 527 672 0 527 672
	1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28 1.8 3.5 7.0 14 21 28	VA1A('98)	10481048102,2432,985103,11522,829102,661122,3428593802,34283593802,342835938030593803059381593825938359384593853,095903,521953,810	21 31 38 37 33 17 24 37 36 37 38 21 28 37 38 21 28 35 38 35 38 38 38 38 38 38	03 102 111 132 115 98 22 66 116 126 115 98 121 126 116 126 103 103 122 142 134 148	HC8N (1995) 14,302,820 AF 5V7A('98) AS A61AJ('98 EU LX7A('89) NA 6Y2A('98) O KHØAM('9 SA PJ1B('88) Station 6Y2A (1998) 39,279,140	1.8 3.5 7.0 14.0 21.0 28.0 Total Multi-C 3) 2) Band 1.8 3.5 7.0 14.0 21.0 28.0 We Band 1.8 3.5 7.0 14.0 21.0 28.0 We Band 1.8 3.5 7.0 14.0 20 20 20 20 20 20 20 20 20 2	374 712 1,770 2,128 1,845 423 7,252 7,252 Dperator/Multi-X 	14 26 36 37 29 20 162 mtr. 14,381 12,692 12,735 17,609 11,253 17,609 11,253 14,921 Zones 20 28 35 38 31 32 192	4 7 11 11 10 4 50 10 195 189 192 190 194 192 190 194 192 190 194 10 13 15 14 12 74	7 5 9 3 3 3 679 718 705 740 527 672 ntries 2 6 2 1 7 0

October 1999 • CQ • 51

CQ World-Wide DX Contest All-Time U.S.A. Records **BY FREDERICK CAPOSSELA, K6SSS**

Tabulated below are the record-high scores achieved by U.S. Contesters in the CQ World-Wide DX Contest. Number groups following calls and bands are: year of operation, total score, contacts, zones, and countries.

	PHONE			
	Single Operator/Single E	land		
1.8	K1ZM('95)55,420	215	15	70
3.5	K1ZM/2('96)292,100	952	27	100
7.0	KC7EM('95)409,446	1,083	34	95
14	K1OX('85)1,131,328 (Opr. KC1F)	2,176	36	140
21	K3RV/4('88)1,270,478	2,298	39	148
28	WØZV('88)1,145,368	2,158	39	142

Single Operator/All Band

CW Single Operator/Single Band K1ZM('95).....142,358 1.8 470 23 83 3.5 1,059 30 106 7.0 1,783 34 125 144 14 1,955 39 W7WA('89)772,146 21 39 1,647 119 28 K1ZM('89).....732,564 1,447 37 134

Single Operator/All Band

Station	Band	QSOs	Zones	Countries	Station	Band	QSOs	Zones	Cou	Intries
K1AR (1992) 7,810,446	1.8 3.5 7.0 14.0 21.0 28.0	24 239 311 969 913 1,292	10 15 26 39 33 32	21 73 88 133 125 119	K1AR (1997) 7,681,280	1.8 3.5 7.0 14.0 21.0 28.0	50 400 1238 1063 982 314	12 20 32 38 32 24	3 7 10 11 10 7	18 '9 15 18 16 76
	Total	3,748	155	559		Total	4,047	158	52	2
KR2Q('90)		QRP 1,246,974	1,069	106 305	AA2U('92)		QRP 1,188,000	938	118	332
N8II('92)		Low Power 1,864,747	1,424	114 365	N5TJ('98)		Low Power 3,157,053	1,976	149	452
WM5G('92) (Opr. KRØY)		Assisted 6,631,513	2,800	171 662	K3WW('98)		Assisted 7,963,764	3,764	168	601
	Multi-	Operator/Single	Xmtr.			Multi-	Operator/Single 3	Xmtr.		
01-11-2	D. J				Station	Band	QSOs	Zones	Cou	Intries
K1AR (1990) 11,193,606	Band 1.8 3.5 7.0 14.0 21.0 28.0	32 197 154 1,370 1,167 1,517	20nes 12 18 26 39 38 37 170	Countries 30 76 95 167 165 170 703	K1AR (1998) 12,063,114	1.8 3.5 7.0 14.0 21.0 28.0 Total	49 569 1,384 991 999 1083 5,074	13 27 35 38 36 32 181	4 10 13 15 13 13 70	16 11 16 11 135 135 132
	Multi	-Operator/Multi-)	(mtr.	705	ine State	Multi-	-Operator/Multi-X	(mtr.		
Station	Band	OSOs	Zones	Countries	Station	Band	0900	Zones	Coi	Intrios
N2RM (1992) 19,603,032	1.8 3.5 7.0 14.0 21.0 28.0	95 485 721 1,654 2,367 1,688	14 23 32 40 40 36	41 98 128 178 178 170	KC1XX (1998) 22,473,282	1.8 3.5 7.0 14.0 21.0 28.0	238 971 2,120 2,228 1,812 1,565	21 29 37 38 39 35	7 11 14 15 14	75 13 12 57 13 33
line all	100 Sec 1 Sec			and the second se		16131				

CW - The Team ('98) 55,385,494

News/Views Of On-The-Air Competition

Remembering a Contesting Friend—Alan Dorhoffer, K2EEK

A swriting goes, this month is undoubtedly my toughest assignment to date. It's not because I'm pushing yet another deadline as I ride on a Delta Airlines flight destined for Seattle. Rather, it's because I'm thinking about a businessman/editor, former co-worker, and most importantly a fellow amateur and personal friend who has left us—Alan Dorhoffer, K2EEK.

Nontest Calendar

In thinking through the myriad of experiences I've had over the years with Alan, I was struck by the complexity of our friendship. Some of you may know that my long association with CQ began over two decades ago as a member of the CQ WW Contest Committee. It was at the urging of my good friend Bob Cox, K3EST, that I undertook the task (with many others) of checking logs and being a participant in the "rest of the contest," as many committee folks would say. At that time, I really didn't know Alan very well. For the most part, I knew him simply as CQ magazine's longstanding editor. From that early perspective, he had the task of being a ham's ham. And certainly, I never viewed him as a contester per se. After all, Alan never submitted competitive scores. His station was modest at best. To me, Alan was part of the glue of CQ, but not the adhesive that made the contesting machine tick at the magazine. However, little did I know how wrong I was. You'll learn more about that later. The first thing I learned about CQ Contest Committee operations in those early days was that there were a surprising number of times when the process included Alan. The more I worked with the contest, the more I learned what was really going on behind the scenes. It started with the logs themselves. In the 1980s there were no electronic logs. For you newcomers, we actually had to use paper and pencil, creating massive dupe sheets that required hours of post-contest work to prepare a log for final submission. And for hams around the world, those logs were mailed to 76 North Broadway, Hicksville, NY 11801. As it turned out, someone had to receive those logs, store them away, and eventually ship them to Bob Cox for adjudication by the committee. Well, you guessed it, that person was Alan, K2EEK. In fact, for years Alan kept a running tally of the shipping weight of CQ's logs. It was

CAL	ENDAR OF EVENTS
Sept. 25-26	CQ WW RTTY DX Contest
Sept. 25-26	Scandinavian Activity SSB
Sept. 26-27	Fall Classic Exchange
Oct. 2-3	VK/ZL SSB Contest
Oct. 2-3	California QSO Party
Oct. 2-3	F9AA Cup Contest
Oct. 3	RSGB 21/28 MHz SSB Contest
Oct. 7-9	YLRL Anniversary CW Party
Oct. 9	FISTS Fall Sprint
Oct. 9-10	VK/ZL CW Contest
Oct. 9-10	Pennsylvania QSO Party
Oct. 16-17	JARTS WW RTTY Contest
Oct. 16-17	Worked All Germany Contest
Oct. 17	RSGB 21/28 MHz Contest
Oct. 17-18	Illinois QSO Party
Oct. 21-23	YLRL Anniversary SSB Party
Oct. 23-24	Rhode Island QSO Party
Oct. 30-31	CQ WW SSB DX Contest
Nov. 6-8	ARRL CW Sweepstakes
Nov. 13-14	WAE RTTY Contest
Nov. 13-14	OK/OM DX Contest
Nov. 20-21	LZ DX Contest
Nov. 20-22	ARRL SSB Sweepstakes
Nov. 27-28	CQ WW CW DX Contest
Dec. 3-5	ARRL 160 Meter Contest
Dec. 11-12	ARRL 10 Meter Contest

a success metric of sorts, and one to which he was religiously dedicated year after year. This one simple function provided a window into the contesting friend we truly had at 76 North Broadway. As the years passed, however, I learned something else about Alan. When it came to CQ company policy, there were no shortcuts accepted for its contests. What surprised me was that the driving force behind this philosophy was Alan himself. While there's always pressure to conserve editorial space in publishing, Alan never pushed back on providing reporting real estate in his magazine for CQ's contests. This year's CQ WW results are no exception, as you can see in this very issue. In fact, robust contest reporting was encouraged by Alan, including the publishing of full rules, results, highclaimed scores, and yes, this very column—many items of which have become a thing of the past in other magazines. As time moved into the mid-80s, I became even closer to Alan. It was at that time that the CQ magazine contest column was in transition from Frank Arizalone, W1WY, to myself. Frank, a friend to contesting in his own right, was predictably concerned about the transition of his column. After all, he didn't really know me, and he wanted to make sure that whoever picked up the reigns had the same level of commitment and desire that he had shown over the years. In the final analysis, it was Alan's urging that allowed the transition to take place. The urging of Alan quieted W1WY's concerns over some young 31-year-old author who had less usable experience than what Frank simply had forgotten over the years. I'll never forget Alan's support in those days.

Over the years of my producing this column (and there have been nearly 130 columns to date), I never once received any negative feedback from my editorial friend. Alan totally supported my efforts. He always knew that I was an avid aficionado of my sport and trusted me. It was that kind of relationship that made him a friend to contesting in general. Alan never saw my commentary on a controversial aspect of contesting as a negative. Never once did Alan cut my column back because of space. He believed in what I did and supported me to the hilt. If that's not a contesting friend, I don't know what one could be.

What else can one point to with Alan? How about the CQ Contest Hall of Fame? Yet again, Alan inserted his influence behind the scenes as an ardent supporter of this prestigious program. Alan insisted on being part of the selection process, even though he didn't necessarily personally know everyone who was nominated. That wasn't as important as the fact that he wanted to be involved. A subtle supporter of contesting was what Alan was all about. Finally, there were the years when I joined CQ as a full-time employee. In the course of my employment at CQI truly got to know and love Alan. We would spend hours together, both in the office and on the road, talking about contesting. Although he never obtained the skill himself, he often marveled at how operators could maintain the drive to participate for 45+ hours in contests. And how could they possibly work guys at 300+ QSOs/hour? While I worked at CQ, Alan developed a greater interest in operating contests himself. His scores were never "barn burners," but he was always a regular on 10 meters in most CQ contests. And he loved to tell me about his on-air experiences as well as brag to others about how he had heard his buddy, K1AR, running his brains out during a particularly good 10 meter opening to Europe.

2 Mitchell Pond Road, Windham, NH 03087 e-mail: <K1AR@contesting.com>

In the years I spent playing a part in the hamfest circuit for CQ, I taught Alan a few

things about contesting and he helped me learn a great deal more about life. It was always a joy, together with Dick Ross, K2MGA, to speak on behalf of *CQ* in our booth or in a forum. Often I was the guy who had the predictable task of deciphering which one was Alan, as they both sported distinguishing beards. Now *CQ* only has one bearded gentleman, but the company can be proud to know that our other bearded comrade is watching from afar.

As I finish this month's column from 31,000 feet, I know I'm a little closer to Alan right now. He's watching me, saying, "John, will you ever get a column done on time?" Alan may be gone, but his influence on me in particular and contesting in general will remain forever. And, I know that every *CQ* contest log I submit in my remaining days will contain a thought of *CQ*'s contesting friend, K2EEK, because that's what Alan was—a friend to contesting and a great friend of mine. May you rest in peace, OM!

73, John, K1AR

Final Comments

As you might imagine, this was been a tough month for many of *CQ*'s authors and in-house staff, including myself. Hope-fully, you've gained insight into a part of K2EEK that few hams ever knew. It's the least I could do this month in memory of a man who loved his hobby more than anyone will ever know. And, to the thousands of hams around the world who met Alan over the years, you're fortunate to

October's Contest Tip of the Month

One of the worst experiences in contesting is to be visited by a neighbor complaining about some form of interference. This month, take some good advice and prepare an "RFI kit" that can easily be used to solve RFI problems. An assortment of filters, ferrite, and other items in a shoebox may keep you on the air and help avoid more serious neighborhood problems. Take the time to be RFI prepared. Not only will your scores improve, so will your future operations as the neighbors spend more time talking to others on the phone and not yourself during the next contest.

the phone sub-bands except for 160 meters. All contacts must be simplex. California stations that change counties are considered to be a new station and may be contacted again for point and multiplier credit. California stations operating on a county line may be counted as only one QSO.

Classes: Single Operator (High Power, Low Power, QRP), Multi-Single, Multi-Multi, California County Expedition, Mobile, Club, School, and Novice/Technician. Multi-Single entries must work only one band/mode for at least 10 minutes before changing band or mode. Single Operator and Multi-Single entries are allowed only one transmitting signal. All contacts must be simplex. Mobile is a station that is self-contained, capable of legal motion (street, water, or air) while operating, motion optional. A County Expedition is an operation from a temporary location using temporary antennas installed for the contest period, using temporary antenna supports (natural supports such as trees permitted). A Novice/Tech entry must use a Novice/Tech callsign and operate exclusively within the Novice/Tech bands. Exchange: QSO number and QTH. County for CA stations; state, province, or DX country for others.

WE ARE A FULL LINE DEALER. Call Today! Accessories, Antennas, Power Supplies, HF, VHF/UHF, Receivers, Scanners, Keys, Meters, Head Phones, Books, Kits, Packet, Batteries, Chargers, Amplifiers and more... Let us be your new and used Amateur radio dealer. We service most brands. Kenwood Factory Authorized Service Center.

Orders 1-800-497-1457

Tech & Info (913) 381-5900 Fax (913)648-3020 E-mail: sales@associatedradio.com http://www.associatedradio.com Send SASE for catalog.

> 8012 Conser Overland Park, KS 66204 M-F 9-5:30 Sat 9-1pm

have had the experience.

Well, the CQ WW contest season is upon us once again. As solar activity continues to improve, I hope you won't miss out on some of the finest operating available this fall. As always, please remember to send your contest calendar submissions to me for the January issue no later than November 1st.

73 John, K1AR

California QSO Party 1600Z Sat. to 2200Z Sun. Oct. 2–3

This year's party is sponsored again by the Northern California Contest Club. The usual extraordinary effort has been made to activate all CA counties, making this the most successful of all state parties.

Operating time is limited to 24 out of the 30-hour contest period for single operator stations (multi-ops may use the entire 30 hours, but observe the standard 10-minute rule). Off-times must be at least 15 minutes and clearly indicated in the log.

The same station may be worked on each band and mode, and CA stations may contact other in-state stations for QSO and multiplier credit. CA mobiles may be worked in each county change.

All CW contacts must be made outside

Scoring: Two points for phone contacts; 3 points on CW.

Multiplier: CA stations use states (50) and VE call areas (8). Out-of-state entries use CA counties (maximum of 58).

Final Score: Total QSO points times the sum of the multiplier.

Frequencies: 160 meters through 2 meters, except WARC bands. CW—1805 and 40 kHz up from band edge. Phone— 1815, 3850, 7230, 14250, 21300, 28450. Novices work 10 kHz up from edge of Novice bands and 28450; try CW on the half hour; 160 meters at 0500 UTC; 80/75 meters at 0300 and 0700 UTC; 147.54 MHz at 2000, 0000, and 0400 UTC.

Awards: The CQP has more award

opportunities than almost any other contest. Special CQP T-shirts are available for any entry with over 100 QSOs. Include your size and \$10 to order. A special award of a personalized bottle of California wine goes to the top 20 single operators in CA and out of state. There are a tremendous number of certificates and trophies available to winners of every category. Check out the contest at <www. cqp.org> for complete details and official rules, logs, and CQP logging programs.

Include a summary sheet showing the scoring, etc., and a dupesheet if you make more than 200 QSOs, with large SASE for a copy of the results. The mailing deadline is November 15th and entries go to: NCCC, c/o Al Maenchen, AD6E, 3330 Farthing Way, San Jose, CA 95132. Entries may be submitted in CT Version 8 or 9 format with .BIN, .SUM, and .ALL files on 51/4 or 31/2 inch diskettes (no 2.88M diskettes) with a signed hard copy summary sheet. Label each diskette with call entry category and state/county/province/ country. Electronic logs may also be submitted by e-mail to <cqp@contesting. com>. Electronic logs should be named with your call (for example, AD6E.SUM, AD6E.LOG, etc.), and preferably all files zipped into a single file such as AD6E.ZIP.

For a CQP paperwork package containing log and summary sheets, county abbreviations, and contest records, send a business-size SASE to Andy Faber, AE6Y, 16321 Ridgecrest Ave., Monte Sereno, CA 95030. A \$1.00 donation to help defray the costs of printing and postage is encouraged. For a copy of the two member-supported IBM contest logging programs for CQP, send \$1.00 for postage and diskette to AE6Y. A Macintosh program is also available commercially. For software downloads, try the CQP web site at <www.cqp.org>.

VK-ZL-Oceania Contest Phone: Oct. 2–3 CW: Oct. 9–10 1000Z Saturday to 1000Z Sunday

The object of this old classic is for stations throughout the world to contact as many stations as possible in VK, ZL, and Oceania (WAC boundaries) on 80–10 meters. Contacts between stations in different countries in Oceania are permitted, but contacts within the same country are disallowed.

Classes: Single Operator, Multi-Operator, and SWL.

Exchange: RS(T) plus a serial number indicating contact number.

Multipliers: The number of prefixes worked per band. The standard WPX prefix system is to be used.

Scoring: Credit 10 points/QSO on 80 meters; 5 points on 40; 1 point on 20; 2 points on 15; 3 points on 10 meters. The

final score is total QSO points multiplied by the total prefixes worked on all bands.

Awards: The CW entrant with the highest score will be awarded the Frank Hine. VK2QL, Memorial Trophy (plaque). In addition, special certificates will be awarded to the top scorers in each category per continent, country, and VK/ZL/JA call area. Single-band awards may be awarded as well.

Logs must be postmarked no later than

November 14th and should be sent to: VK/ ZL/Oceania Contest Manager, P. Nesbit, VK3APN, WIA, Box 2175, Caulfield Junction Vic. 3161, Australia.

Pennsylvania QSO Party

1600Z Sat. to 0500Z Sun., Oct. 9-10 1300-2200Z Sun., Oct 10

This one is sponsored again by the

Order Now! (24 hr/day)

800-425-2552

fax: 561-417-7732

success@qth.com

http://www.qth.com/cweasy/

CW Is Sooooo Easy!

Don't believe it? YOU WILL after you order CW Mental Block Buster II.

Imagine you copy code like an old-timer in no time at all-no matter how many times you have failed before with those other systems. This is the easiest, fastest Morse code training method in the world, because it taps the power of your subconscious mind. Succeed with hypnosis and NLP. Includes two (2) Tapes and Manual. Only \$27.95 plus \$4.50 S/H US-FL add \$1.95 tax. Order Now-Upgrade Now-Check Our New Web Site!!!!!

CAN DO VISA IT!

Success-Easy 123 NW 13th St, Ste 313 Boca Raton, FL 33432 **Formerly Alternative Arts**

This is NOT a mere CW practice tape.

Nittany ARC of State College, PA. The same station may be worked on each band and mode for QSO points. PA stations may also work other in-state stations for QSO and multiplier credit, and mobiles in each county.

Classes: Single Operator Low Power (150 watts), High Power, QRP, and CWonly 150 watts (only one signal on the air at one time); Multi-Single, Multi-Multi, Portable, Novice/Technician, and Mobile, and a new Rover class. The Rover division is intended for stations that cannot go true mobile, but would like to activate some rare counties by going to a state park or farmer's field and operate "field day" style. You must make 10 QSOs from each location to qualify for bonus points.

Exchange: QSO number and county (PA stations); ARRL/RAC section or DXCC country for others.

Scoring: One point for SSB/FM contacts, 1.5 points for CW, 2 points on 80 or 160 meters. PA stations multiply total by (ARRL sections + PA counties + 1 DX country). Others use PA counties for their multiplier (total of 67 possible). Mobiles add 500 points for each county operated from with a minimum of 10 QSOs (Rovers must also make 10 QSOs). Mobiles on a county line give one QSO number but receive credit for 2 multipliers. QRP stations multiply their score by 2, Novice/ Tech by 3 (times 5 if in both categories). This year the Carbon Amateur Radio Club (the Carbon ARCS) in recognition of their long-time support for the QSO Party will man the designated special event station using their club call, W3HA. Add 200 points for each QSO with this station. Bonus points are added after all other bonuses have been taken. Final score is total QSO points times multipliers. Frequencies: CW-1810 kHz and 40 kHz up from bottom of each band. SSB-1840, 3980, 7280, 14280, 21380, 28310, 50125, and 146550 kHz. Try 160 meters at 0300Z on Sunday. Awards: Plaques will be awarded to the top entries in all entry divisions plus single operator USA Time Zones, EPA, WPA, and others as warranted. Certificates will be sent to county and section winners. A trophy and gavel will be given to clubs with the top aggregate score (unlimited and local class [75 members]). There are many other awards available for this contest. You are encouraged to check out <http://members.aol.com/doughdh/ pagsoparty> for additional information. Logs need to be postmarked no later than November 15th and should be sent to: Douglas Maddox, W3HDH, Nittany Amateur Radio Club, RD #1, Box 760, Petersburg, PA 16669. E-mail logs are the preferred method of entry (out of state only). Send your entry as an e-mail attachment to: <na2x@arrl.net>. An information package for the contest is available by

CIRCLE 54 ON READER SERVICE CARD

56 • CQ • October 1999

sending \$1.00 to the sponsor's address to help defray printing and postage costs .

Illinois QSO Party 1800Z Sun. to 0200Z Mon., Oct. 17–18

This is the 37th anniversary of the Illinois QSO Party sponsored by the Radio Amateur Megacycle Society. It's a shorty, only 8 hours long. Special band activity times: 10 meters 2000Z; 15 meters 2100Z; 20 meters 2200Z. Note that 6 and 2 meter QSOs are also allowed this year.

Frequencies: 160 through 2 meters, excluding 30, 17, and 12 meters. Suggested frequencies are 3550, 7050, 14050, 21050 and 28050 kHz for CW and 3890, 7290, 14290, 21390, 28390 kHz for phone. Novices call 30 kHz above bottom end of Novice subbands for CW and 28390 kHz for phone.

Exchange: Illinois stations give RS(T) and county; others give RS(T) and state, province, or country.

Scoring: Count 1 point per phone QSO, 2 points per CW QSO. No repeater contacts. Stations may be worked once per band and mode, and once per band/ mode/county for Illinois mobile stations. Each vehicle is considered one station and must use only one call. All entries which embark as a mobile must use the mobile's call exclusively for the duration of the contest. Contacts with/by stations at the border of two (or more) counties count as two (or more) counties and QSOs, etc. Illinois stations multiply points by the sum of states, Illinois counties, VE provinces, and a maximum of 5 DXCC countries (W/K and VE included). Count additional DX as points but not multipliers. Non-Illinois stations multiply total points by the number of Illinois counties worked. All stations may earn one extra multiplier for every eight QSOs made with the same Illinois county. All stations may operate only one transmitter at a time. Awards: Plaques will be awarded to the highest scoring Illinois fixed station and mobile station. Certificates will be awarded to the top 10 IL fixed stations; the top 5 IL mobile stations; the top IL county line portable station; the highest score (reporting at least 5 IL contacts) in each state, province, and country; and the highest team/club aggregate score. Entrants must submit a log containing UTC, the call of the station worked, RST, state or province, Illinois county, band and mode. Please circle new multipliers as worked. Illinois mobiles must indicate county changes in the log. Any station with over 100 QSOs must submit a dupe sheet. A summary sheet must also be submitted with every log. Entries must be postmarked by November 15, 1999. Mail your entry to: RAMS, c/o John Matz, KB9II, 7079 West Ave., Hanover Park, IL 60103. To get a copy of the contest rules, summary sheet, and results, check out <http:// www.megsinet.com/~jematz/rams.html>.

CQ World-Wide DX Contest Phone: Oct. 30–31 CW: Nov. 27–28 0000Z Saturday to 2400Z Sunday

Complete rules were published in last month's issue. With the large number of operating categories, be sure to list your entry class on your summary sheet.

A few trophies have been eliminated,

but there are many new additions which fill in quite a few of the category gaps of previous years. The detailed trophy list can be found in the rules announcement.

All entries must be postmarked no later than December 1, 1999 for the phone section, and January 15, 2000 for CW. Please make note of *CQ*'s new mailing address. All logs must be sent directly to: CQ World-Wide DX Contest, 25 Newbridge Road, Hicksville, NY 11801. Be sure to indicate Phone or CW on the envelope.

acket User's Notebook

Connecting You And Packet Radio In The Real World

Higher Speed Backbone Nodes

Without editorializing, I'm going to define some of my recent comments regarding various networking protocols and techniques.

Survival of the Fit of the Fittest

By now you have seen and read about some of the new networking entries and schemes in the packet radio arena. Many of these new protocols are simply titles for an old technique. Others border on no more than someone's effort at changing a name in favor of an "ego" trip.

Whether it be the "fishNET," "CloNET," or "GooseNET," they all come down to one reality: They are still riding in the same AX.25 carriage that was defined over a decade ago by the ARRL and the Tucson Amateur Packet Radio (TAPR) associations. However exotic we make these networking protocols, we've yet to break away from the likes of the AX.25 undercarriage foundation.

We do have few tried and proven packet radio formats that work. As a seasoned user of packet radio networking protocols, believe me when I tell you that I've tried most of them, and I have found the best of the lot so far are contained in about five or six out of more than a dozen networking protocols being offered to the packet radio system node operators (SNOs). The six packet radio networking protocols that I reference are: The reason I am able to make this trek so fast is not due to some exotic networking protocol alone, but is due to two tried and proven factors, or methods, for data transmission. They are the speed and the protocol format. Notice I put "speed" first. I'll explain this in greater detail as you read on.

Not only am I able to have a keyboardto-keyboard QSO with stations in central Alabama or Georgia, I have regular keyboard QSOs with Tom Nolan, KD4MWO,

- 1. X1J4 TheNET (Dave Roberts, G8KBB)
- 2. NETROM[™] (Software 2000)
- 3. TheNET™ (NORD><LINK)
- 4. TheNET Plus (Bill Beech NJ7P)
- 5. ROSE (Tom Moulton, W2VY)
- 6. G8BPQ (G8BPQ)

If It Isn't Broken, Don't Fix It

In many cases I see SNOs attempting to fix a problem of congestion on a network by adding more 1200 baud nodes. Read carefully: I said, "1200 baud" nodes.

When I can connect to a local node in central Virginia and then connect to K4ICT in Macon, Georgia, more than 600 miles away, in less than 10 seconds, there is nothing broken in the packet radio protocol that we use. However, there is one item that is not often mentioned when discussing the speed and velocity of a network when making a trek across more than a couple of hundred miles.

115 Luenburg Drive, Evington, VA 24550 e-mail: K4ABT@PacketRadio.com Fig. 1– Preparing the MFJ-1270"C" or "CQ Turbo" for X1J4 network node applications. The drawing shown here illustrates the changes made when modifying the 9600 baud version for backbone node use. To remove the PC board, remove the front faceplate (two screws), and then remove the screw that attaches Q3 (***) heatsink to the front of the TNC. Next remove the four screws that hold the PC board in place. Follow instructions in the text for complete TNC-to-node changes. in Jacksonville, Florida. This node route takes me through more than 1000 miles of SEDAN nodes.

While I'm putting mail into the mailbox of Frank, K4ICT-1, in Macon, Georgia, Tom, KD4MWO, is having a keyboard QSO with David, KE4UAS, in Griffin, Georgia. Joe (Buddy), WA4MVR, in Mullins, South Carolina is keyboarding with John in Columbia, South Carolina. Charlie, W40QT, is having a QSO from south Georgia to his son in central Georgia, or to Dennis, KU4OY, near Milledgeville, Georgia. In the meantime, another Dennis, KT4BT, in central Alabama is leaving mail in my mailbox (K4ABT-1) in central Virginia.

The network that we use is called the Southeastern Emergency Digital Association Networks, or simply the SEDAN. The SEDAN now spans a breadth from near Washington, DC well into Florida, and from the east coast to eastern Mississippi. In a message from Dennis Willmon, KT4BT, in central Alabama last week, he says, he is committed to seeing the western border of the SEDAN at the Mississippi River by the year 2000—now two months away.

The X1J4 Speaks for Itself

This network protocol we use across the SEDAN is the X1J4 node code written by Dave Roberts, G8KBB. The release that we use on more than 200 SEDAN nodes was the final release by Dave in 1996. It has not broken since we placed the X1J

node code into service, so with no great fanfare, the X1J4 theNET protocol speaks for itself.

The "Speed" Factor

The key to any packet radio network is not in the protocol alone. The "real," or crucial, factor for network continuity and reliability lies in the speed of the network "backbone."

Yes, I said, "the speed of the backbone." If you already have a network, but it is slow or it limits the distance over which you can communicate, you probably are relying on a 1200 baud LAN-to-LAN type network. A few years ago, many of us were caught up in the same trap. We expanded our networks, but we failed to make provision for the number of users and the distance these users would be traversing on our networks. As time passed, we found also that our 1200 baud networks could not support BBS forwarding and user keyboard-to-keyboard QSOs at the same time. Fortunately, the Internet came along around 1995 and gave us some relief by siphoning off some of the BBS traffic and users who just got tired of competing with the massive file transfers and BBS forwarding that was being dumped onto their single-line packets.

1502 Jones Street, Omaha, NE 68102 • Fax: 402-346-2939 • e-mail: grinnell@surplussales.com Call and Charge It on: Visa, MasterCard, American Express or Discover.

800-244-4567 • 402-346-4750

HamCall[™] CD-ROM U.S. & International Over 1.5 million listings

Now Updated Weekly! The HamCall CD-ROM allows you to look up over 1.5 million callsigns from all over the world, with over 300 DX call areas. HamCall allows look up of US and International hams by callsign, name, street address, city, state, postal code, county, and country. Custom label printing options in Windows 95/98, print to almost any size label. Data less than 1 week old every time you order. HamCall is still just \$50 plus \$5 s/h, \$8 international. Works in DOS, Windows 3.1, and Windows 95/98. Free 800 technical support available.

SUCKMASTER 6196 Jefferson Highway •Mineral, VA 23117 USA e-mail: info@buck.com 540:894-5777 • 800:282-5628 • 540:894-9141 (fax)

CHAMPION RADIO PRODUCTS

Loos Guy Wire Tensioners · Safety Equipment Rohn Catalogs · Tower Hardware Trylon Self-Supporting Towers —steel towers up to 96 feet! Only \$1974.00

T-Shirts • Tribander Comparison Report CQ Worldwide Contest Products

Call Toll Free (888) 833-3104 State online • www.championradio.com

WIRE/CABLE Multi-Band AERIALS. Connelimatine, insulators, baluns. "FLEX-WEAVE" "Hybrid, "Cadillac" aerial wire: 168 strand cop. bare or U.V. PVC, \$.14/h. avg. 8X, RG213, RG8 w/U.V. NONCONTAM. LOW PRICES "BURY-FLEX" LOW LOSS flex/bury cable \$.57/h. avg. (Why pay more for flex LMR?). LMR 400: 53/h. Ladder Line. ROPE ROPE ROPE: ANTENNA/TOWER SUPPORTS: WHY RISK COSTLY FAILURES? DACRON DOUBLE braided, \$.06/.11/.16 for 3/32";3/16";5/16". 1,000/L discounts. -Full Satisfaction Gty. FRIENDLY SERVICE. Dealers welcome. CUALITY prevents costly failure & replacements.

Fig. 2– This drawing illustrates the comport, or gateway interface cable used between the 1200 and 9600 baud X1J4 nodes. Note that the transmit data and receive data lines between pins 2 (TxD) and 3 (RxD) are rolled (crossed) between connectors "P1" and "P2." **Do not** omit the jumper between pins 10 and 23 on each connector.

Make Hay While The Sun Shines

This was a time for us to "make hay, while the sun was shining." We took advantage of the slump in network use and began building our 9600 baud backbone nodes. Never did we even dream that it would make such a difference!

Never thinking about the difference it would make, going from 1200 baud to 9600 baud, we soon discovered something wonderful: Not only was 9600 baud handling the packets faster, it was handling many more users at the same time and with ease. Best of all, 9600 baud radios were becoming available from many surplus sources and most OEM vendors. help you understand the hierarchy of data flow across the higher speed backbones, and how it is disseminated to the local area (LAN) nodes.

Reference and Support Material and Information

In the last six issues of CQ this column has covered several radio modifications for use at 1200 and 9600 baud. I'm now reminded that I should make certain that we include the modification of the TNC2 clones to 1200 and 9600 baud service to complete this duet. To support this month's move to building high-speed backbone nodes, the reader should also refer to the most recent issues of CQ and the "Packet User's Notebook" articles of May, June, July, and August 1999 for specific 9600 baud modifications and radio-to-node interface configurations. All of the TNC manufacturers offer some form of networking or node-based TNC EPROMs or TNC-to-node modification. I know of two TNCs that can easily be converted into X1J4 (theNet) network nodes. They are the PacComm and the MFJ-1270B and "C," which represent the TNC-2 or a clone thereof. The Kantronics TNC or KPC will not work as an X1J4 node. However, Kantronics does offer an EPROM that enables a "TheNET" look-alike. When used in the KPC-9612, this networking EPROM offers a good theme for a gateway between 1200 and 9600 baud. In addition, it enables the gateway between the backbone frequency and the local area (LAN) frequency without having to build an umbilical node-to-node interface cable. For now, let's look at one of the TNCs used for the X1J4 network node modifi-

Put your next wire antenna up the EZ Hang way! \$49.95 + \$5.95 s&h

EZ Hang, Inc. 8645 Tower Dr., Laurel, MD 20723 Phone: 540-286-0176 www.ezhang.com

INTERNATIONAL 41 Mill Dam Lane, Burscough, Ormskirk L40 7TG. ENGLAND PH/FAX 0044 1704 894299 E-MAIL g4zpy@lineone.net 2 LR.C.'s or \$2 US for hard copy Brochure.

Eight Times Faster

What a "hoot"! We had hardly thought about all the benefits that would be manifested by opening a backbone that was eight times faster than we had been accustomed to with the old 1200 baud LANto-LAN nodes.

Many readers of this column can relate to what I'm saying here. Many new packet radio users are beginning to come online, and the fun we are having is more gratifying as we once again have QSOs with many of the callsigns we used to see on packet.

The novelty of the Internet is either wearing away, or there is a payoff from having added the higher speed backbones to our networks. The masses are now helping us build and expand our 9600 baud backbones.

In upcoming issues of CQ I will cover the techniques we use to address and configure out 9600 baud backbones. I'll also provide drawings and tables that will cation. The only difference between X1J4 node modification of the MFJ-1270"C" (1200 baud TNC) and the MFJ-1270"CQ" Turbo (9600 baud TNC) is the addition of the MFJ-9600 baud modem already installed in the MFJ-1270"CQ" Turbo. Before you write to me asking, yes, the MFJ-1270"C" can easily be retrofitted with the MFJ-9600 modem.

Preparing the MFJ-1270C X1J4 (The NETTM) for Node Mod

Here we are dealing with the MFJ-1270C, Rev 11, TNC with all mod notations and pointers to locations.

To remove the PC board, remove the front face plate (two screws). Then remove the screw that attaches Q3 (regulator) heat sink to the front of the TNC. Next remove the four screws which hold the PC board in place. Proceed as follows:

 Disconnect all power-supply voltages from the TNC in which the installation to be done.

2. Remove all interconnecting cables, including terminal, power supplies, and computers.

3. Remove the four screws that secure the top cover and remove the top cover.

4. Remove the faceplate screws and remove the faceplate. Set the faceplate aside.

5. Remove all screws that secure the PC board and the voltage regulator to the chassis.

Remove the MFJ-TNC2 PC board from the chassis. node from hearing itself. Cutting JMP "X" is optional. If you are concerned with the node hearing itself, then *cut* JMP "X."

Note: For gateway operation all MFJ-1270C Rev 11 built after July 1996 have R14 and R15 installed. If they are not installed in your MFJ-1270C Rev 11, there is no problem unless you plan to use the TNC in a node gateway, between two trequencies, or in a node stack with a diode matrix. If R14 and R15 are missing and your node is to be used between two frequencies or in a node stack with a diode matrix, then you should proceed to step 8. 8. If the TNC is to be used as a *gate-way* between two frequencies or baud rates, ensure that R14 and R15 are installed. If they are not, remove the PC board and add R14 and R15. R14 and R15 are 100 ohms @ ¹/4 watt each.

Fig. 2 illustrates the comport, or gateway, interface cable used between the 1200 and 9600 baud X1J4 nodes.

The X1J4 TheNET node code can be downloaded at: http://wwwPacketRadio.com. We're having fun at 9600 baud.

73 de BucK4ABT k4abt@packetradio.com

7. Locate IC **U40** on the MFJ-TNC2 PC board and remove it from its socket. This IC is not needed when running the X-1J4 firmware. Be sure to put it where you can find it at a later date, should you ever convert the MFJ-TNC2 back to normal.

The following steps outline the procedures to transform the MFJ-1270C Rev 11 (fig. 1) into a TheNET X-1J4 node.

1. Remove any jumper from JMP 9.

 Remove IC U40. After the modification is complete, place U40 into a plastic wrapper and tape it inside the front faceplate for later use if the node is ever returned to normal TNC service.

3. Remove jumper from JMP 15.

- 4. Add a jumper at JMP 16.
- 5. Add a jumper at JMP 21.

6. Remove the TNC (stock) EPROM at IC location U23. *Carefully* install your new X-1J4 EPROM into the socket at U23. Be sure all pins are inserted into the socket (be sure there are no bent pins). Pin number 1 is *not* left out of the socket as it was with earlier revisions of this TNC. This modification applies only to MFJ-1270C "Rev 11."

7. Cut trace at JMP "X." Notice that tiny traces are close to JMP X: *Do not cut* any other trace. Cut *only* the trace between pads of JMP X. *Use extreme caution when cutting*. This jumper cut prevents the

RT-832	8.0	43.75	32"	8	6	4.8	120 lbs.	30	\$234.00
RT-936	9.0	43.75	36"	18	13.5	10.5	130 lbs.	54	\$394.00
RT-1832	17.5	37.62	32"	12	9	7.2	110 lbs.	60	\$528.00

CIRCLE 56 ON READER SERVICE CARD

Factory authorized distributor for Alpha, Amphenol, Belden, Kings, Times, Cablewave Entire Catalog w/Ordering Info www.nemal.com * uters of Cable and Connectors **NEW! EXCLUSIVE** CONNECTORS NE5080 UHF Plug For RG217 MADE IN USA COAXIAL CABLES Teflon/Gold Pin NE720 Type N plug for (per ft - 100tt prices) \$22.50 1181F flexible 9913F BELDEN 62 Belden 9913. \$3.75 NE723 Type N jack for 1180 BELDEN 9913 very Belden 9913 4.85 low loss (real Belden)..... .52 HARDLINE 50 OHM 1102 RG8/U 95% shield PL259TS PL259 tellon FLC12 1/2" Cablewave 1.39 1110 RG8X 95% shield ins/silver plated ... corr. copper blk jkt..... 1.85/ft PL258AM Amphenol FLC78 7/8" Cablewave female-female (barrel)...... 2.25 corr. copper blk jkt..... 4.55/ft 1130 RG213/U 95% shield UG175/UG176 reducer for RG58/59 NM12CC N conn 1/2" corr. 1140 RG214/U dbl silver copper m/f 26.50 shid mil spec 1.85 UG21D N plug for NM78CC N conn 7/8" corr. copper m/f 64.50 1705 RG142B/U dbl silver UG83B N jack to PL259 UM12CC PL259 for 1/2" shid, teflon ins 1.50 1450 RG174/U 50 ohm. UG146A SQ239 to N plug adapter. FLX14 1/4" super teflon 5.75 1410 RG58/U mil type 50 ohm UG255 SO239 to BNC plug FLX12 1/2" super 4.75 flexible 2.95/1 adapter ROTOR CABLE SO239AM UHF chassis Prices do nat include shipping. 8 CONDUCTOR mt receptacle, Amphenol 1.50 Visa Mastercard \$30 min. COD add \$5. 8C1822 2-18ga and 6-22ga22/ft UG88C BNG plug Call or write for complete price list. RG58,223,142 2.09 8C1618 2-16GA and 18GA42/lt

12240 NE 14th Ave., N. Miami, FL 33161 (305) 893-3924 24hr. FAX (305) 895-8178 (800) 522-2253 SAO PAULO, BRASIL - TEL: 011-535-2368 E-MAIL: INFO@NEMAL.COM Home Page On Internet: http://www.nemal.com

CIRCLE 70 ON READER SERVICE CARD

Automated Fax-Back System

(305)981-9800. Obtain catalog

pages and product info 24hrs a day

News Of Communication Around The World Islands On The Air

This month we are presenting information on the IOTA Award which was published back a few years, with some updates. Chod had an illness in the family so he could not be with us this month, but he will be back with current DX happenings next time. —ed.

The premier DX awards are closed ended. That is, there are clearly defined limits to the total entities that qualify for the award, and it is possible to "work 'em all." The Worked All Zones Award from CQ, for example, provides recognition for working 40 zones. Once the DXer has worked (and confirmed) all 40 zones, that award offers no more challenges. The ambitious DXer can always work toward the most difficult of all the major awards, 5-Band WAZ, but again, once the 200 band-zones are worked and confirmed, the DXer is left without a goal.

The same holds for the DX Century Club. While it is very difficult to "work 'em all," it is a straightforward process. The active and well-informed DXer, by not missing any of the occasional operations from and DXpeditions to rare countries, can keep up to date, and need only read a DX newsletter to keep track of operations from the very rare countries. True, the DXCC country list changes from time to time, but only very slowly. Thus, the active DXer gets to the 290 level in a couple of years of serious operating and then waits for DXpeditions to activate the remaining countries. Aside from the 5-band and single-band awards, the DXCC program offers few challenges to that DXer. There is one major, open-ended award, and that is the Worked All Prefixes (WPX) Award from CQ. There is a constant flow of new prefixes available, thanks to the FCC's system of issuing callsigns, and the fact that some countries' telecommunications departments are generous in granting special callsigns. However, thanks to the FCC's hard-nosed attitude about special-event callsigns, U.S. amateurs have great difficulty in coming up with "new ones" for WPX, except through new Extra class licenses. There is one open-ended award program in which U.S. amateurs can be "rare" and maybe even activate a "new one." That program is the Islands On The Air (IOTA) program, handled by the Radio Society of Great Britain (RSGB). IOTA consists of a basic award for working and confirming stations on 100 off-shore islands, and a dozen or so additional awards for working more islands, or islands in particular parts of the world, such as the West Indies.

The IOTA program was started by DX Hall of Famer Geoff Watts in 1964. Geoff was then editor of the weekly newsletter "DX News Sheet" and noted that DXers were "retiring" after the superb conditions in the late 1950s had given many DXers all available DXCC countries. Geoff provides the rationale behind the IOTA program: "Now that propagation conditions are poor, DX getting scarce, the possibility of 'brand new' DXCC countries eventually becoming extremely remote, top DXers 'retiring' because there is nothing left to work, it is proposed that an entirely new DX-achievement 'yardstick' come into being, the All Islands of The World Award, to promote more activity and interest among DXers, many of whom could then go on a 'brand new island' DXpedi-

Wayne Mills, N7NG, was recently inducted into the CQ DX Hall of Fame.

	The WPX	Program
SSE 2711JA1BUQ 271 2712HL5YAW 271	JK1QJE 5HK3PLB	WB4SIJ, DL7AA, ON4QX, 9A2AA, OK3EA, OK1MP, N4NO, ZL3GQ, W4BQY, IBJX, WA1JMP, KØJN, W4VQ, KF2O, W8CNL, W1JR, F9RM, W5UR, CT1FL, W8RSW, WA4QMQ, W8ILC, VE7DR, K8RG, W1CU, G4RUE, N2ED, LU2YLAWA

P.O. Box 50, Fulton, CA 95439 e-mail: <chod@compuserve.com>

CW: 350 HB9JAP, K9GWH, WW5XX. 400 HB9JAP, K9GWH. 450 HB9JAP, K9GWH. 500 HB9JAP, K9GWH. 550 K9GWH, WA2VQV. 2700 W4VQ. 2750 W4VQ. 2800 W4VQ. 2850 W4VQ. 2900 W4VQ. 2950 W4VQ. 3000 W4VQ. 3500 N4N0. SSB: 350 JK1QJE, HK3PLB. 400 HK3PLB. 600 K9GWH. 650 K9GWH. 700 K9GWH. 750 K9GWH. 800 K9GWH. 650 K9GWH. 900.K9GWH. 1050 8K5MEQ. 1100 IK5MEQ. 1150 WM4R. 1300 VE6BF. 1350 VE6BF. 1400 VE6BF. 1650 I3ZSX. 2950 .N4NO. 4300 WA2HZR.

MIXED: 450 K9GWH. 500 K9GWH. 550 K9GWH. 600 K9GWH. 650 K9GWH. 700 K9GWH. 750 K9GWH. 800 K9GWH. 850 K9GWH. 900 K9GWH. 1150 K1NU. 1350 VE6BF. 1400 VE6BF. 1450 VE6BF. 2950 N4NO. 3000 IK2ILH. 3050 IK2ILH. 3950 N4NO. 4000 N4NO. 4450 W2FXA.

10 meters: VE6BF, HB9JAP, K1NU 15 meters: VE6BF, HB9JAP, JH7GZF 20meters: VE6BF, HB9JAP 40 meters: VE6BF, HB9JAP, JH7GZF 80 meters: HB9JAP 160 meters: HB9JAP, K1NU

Asia: VE6BF, HB9JAP, JH9GZF Africa: HB9JAP No. AmericaA: VE6BF, HB9JAP So. America: VE6BF, HB9JAP Europe: VE6BF, HB9JAP Oceania: VE6BF, HB9JAP, JH7GZF

Award of Excellence Plaque Holders: K6JG, N4MM, W4CRW, K5UR, K2VV, VE3XN, DL1MD, DJ7CX, DL3RK,

HOLD, YEIDE, NODO, HIOD, GADDE, NOLD, LOOILINA NN4Q, KA3A, VE7WJ, VE7IG, N2AC, W9NUF, N4NX SMØDJZ, DK5AD, WD9IIC, W3ARK, LA7JO, VK4SS, I8YRK, SMØAJU, N5TV, W6OUL, WB8ZFL, WA8YTM, SM6DHU N4KE, I2UIY, I4EAT, VK9NS, DEØDXM, DK4SY, UR2QD ABØP, FM5WD, I2DMK, SM6CST, VE1NG, I1JQJ, PY2DBU HI8LC, KA5W, K3UA, HA8XX, K7LJ, SM3EVR, K2SHZ UP1BZZ, EA7OH, K2POF, DJ4XA, IT9TQH, K2POA, N6JV W2HG, ONL-4003, W5AWT, KB0G, HB9CSA, F6BVB YU7SF, DF1SD, K7CU, I1POR, K9LJN, YBØTK, K9QFR, 9A2NA, W4UW, NXØI, WB4RUA, I6DQE, I1EEW, I8RFD I3CRW, VE3MC, NE4F, KC8PG, F1HWB, ZP5JCY, KA5RNH, IV3PVD, CT1YH, ZS6EZ, KC7EM, YU1AB, IK2ILH, DEØDAQ, IQWXY, LU1DOW, N1IR, IV4GME, VE9RJ, WX3N, HB9AUT, KC6X, N6IBP, W5ODD, IØRIZ, I2MQP, F6HMJ, HB9DDZ, WØULU, K9XR, JAØSU, I5ZJK, I2EOW, IK2MRZ, KS4S, KA1CLV, KZ1R, CT4UW, KØIFL WT3W, IN3NJB, S5ØA, IK1GPG, AA6WJ, W3AP. OE1EMN, W9IL, S53EO, DF7GK, I7PXV, S57J, EA8BM, DL1EY, KØDEQ, KUØA, DJ1YH, OE6CLD, VR2UW, 9A9R, UAØFZ, DJ3JSW, HB9BIN, N1KC, SM5DAC, RW9SG, WA3GNW, S51U, W4MS, I2EAY.

Award of Excellence Plaque Holders with 160 Meter Endorsement: K6JG, N4MM, W4CRW, N5UR, VE3XN, DL3RK, OKMP, N4NO, W4BQY, W4VQ, KF2O, W8CNL W1JR, W5UR, W8RSW, W8ILC, G4BU, LU3YL/W4, NN4Q, VE7WJ, VE7IG, W9NUF, N4NX, SMØDJZ, DK5AD, W3ARK LA7JO, SMØAJU, N5TV, W6OUL, N4KE, I2UIY, I4EAT, VK9NS, DEØDXM, UR1QD, AB9O, FM5WD, SM6CST I1JQJ, PY2DBU, HI8LC, KA5W, K3UA, K7LJ, SM3EVR UP1BZZ, K2POF, IT9TQH, N8JV, ONL-4003, W5AWT, KBØG, F6BVB, YU7SF, DF1SD, K7CU, I1POR, YBØTK K9QFR, W4UW, NXØI, WB4RUA, I1EEW, ZP5JCY KA5RNH, IV3PVD, CT1YH, ZS6EZ, YU1AB, IK4GME, WX3N, W50DD, IØRIZ, I2MQP, F6HMJ, HB9DDZ, K9XR, JAØSU, I5ZJK, I2EOW, KS4S, KA1CLV, KØIFL, WT3W, IN3NJB, S50A, IK1GPG, AA6WJ, W3AP, S53EO, S57J, DL1EY, KØDEQ, DJ1YH, OE6CLE, HB9BIN, N1KC, SM5DAC, S51U.

Complete rules and application forms may be obtained by sending a business-size, self-addressed, stamped envelope (foreign stations send extra postage if airmail desired) to "CQ WPX Awards," P.O. Box 593, Clovis, NM 88101 USA.

5 Band WAZ

As of July 30, 1999, 494 stations have attained the 200 Zone level.

New recipients of 5 Band WAZ Award with all 200 Zones confirmed:

None.

The top contenders for 5 Band WAZ (zones needed, 80 meters):

N4WW, 199 (26)	W3NO, 199 (26)
W4LI, 199 (26)	K4UTE, 199 (18)
K7UR, 199 (34)	K5RT, 199 (23)
WØPGI, 199 (26)	UT5UGR, 199 (10)
W2YY, 199 (26)	K4PI, 199 (23)
VE7AHA, 199 (34)	HB9DDZ, 199 (31)
IK8BQE, 199 (31)	N3UN, 199 (18)
JA2IVK, 199 (34 on 40)	UA3AGW, 198 (1, 12)
K1ST, 199 (26)	EA5BCK, 198 (27, 39)
ABØP, 199 (23)	G3KDB, 198 (1, 12)
KL7Y, 199 (34)	KG9N, 198 (18, 22)
OE6MKG, 199 (31)	DKØEE, 198 (19,31)
HA8IB, 199 (2 on 15)	KØSR, 198 (22, 23)
IK1AOD, 199 (1)	K3NW, 198 (23, 26)
DF3CB, 199 (1)	UA4PO, 198 (1, 2)
DF3CB, 199 (1)	JA1DM, 198 (2, 40)
F6CPO, 199 (1)	9A5I, 198 (1, 16)
W6SR, 199 (37)	K4ZW, 198 (18, 23)
W3UR, 199 (23)	OH2VZ, 198 (1, 31)
KC7V, 199 (34)	RAØFA, 198 (2 on10,15)
GM3YOR, 199 (31)	LA7FD, 198 (3, 4)
V01FB, 199 (19)	K5PC, 198 (18, 23)
KZ4V, 199 (26)	NT5C, 198 (18, 23 on 40)
N4CH, 199 (18 on 10)	VE3XO, 198(23, 230n40)
OE1ZL, 199 (1)	K4CN, 198 (23, 26)
W6DN, 199 (17)	KF2O, 198 (24, 26)

The following have qualified for the basic 5 Band WAZ Award:

Endorsements:

1096 Stations have attained the 150 Zone level as of July 30, 1999.

N8PR, 195 zones

**PLEASE NOTE: Due to supplier increases, effective September 1, 1998 cost of the 5 Band WAZ Plaque is now \$80 (\$100 if airmail shipping is requested).

Rules and applications for the WAZ program may be obtained by sending a large SAE with two units of postage or an address label and \$1.00 to: WAZ Manager, Jim Dionne, K1MEM, 31 DeMarco Road, Sudbury, MA 01776. The processing fee for all *CQ* awards is \$4.00 for subscribers (please include your most recent *CQ* mailing label or a copy) and \$10.00 for nonsubscribers. Please make all checks payable to the Award Manager. Applicants sending QSL cards to a *CQ* checkpoint or the Award Manager must include return postage. Questions regarding the WAZ Award may be sent to K1MEM with an SASE. Programme, P.O. Box 9, Potters Bar, Herts, England EN63RH. Price is UK 10.49 pounds, or US \$17, or 26 IRCs for nonmembers of the RSGB. The price for members is UK 8.99 pounds, US \$15, or 23 IRCs. (Add US\$3 or 4 IRCs to these rates for airmail postage. RSGB accepts most credit cards.

The U.S. checkpoint is Dewitt L. Jones, W4BAA, P.O. Box 8695, Lacey, WA 98509. The book is available from him for US\$16 postpaid.

Separate Islands On The Air have an IOTA designation consisting of the continental abbreviation and a serial number. Thus, Montserrat is (NA-103) and Western Samoa is (OC-97). Check the DX newsletters for IOTA activity. Also the principal gathering place for IOTA enthusiasts is 14260 kHz. Other suggested frequencies are SSB 28560, 28460, 24950, 12260, 18128, 7055, 3755; and CW 28040, 24920, 21040, 18098, 14040, 10115, and 3530. Internet site is: <http:// www.rsgb.org/operate/iota/iota.htm>.

The nature of the IOTA program encourages short, simple DXpeditions, especially on weekends. Many islands without resident amateurs are within driving distance of groups of amateurs, and in the summer many IOTA enthusiasts pack up

The WAZ Program Single Band WAZ

12 Meter SSB

Mr. NiCd's BATTERIES AMERICA OCTOBER 1999 SPECIALS!

NEW! THE UDQ-9000 CHARGER Charges / Conditions your NiCd or NiMH battery packs! Adjustable sensor contacts! Operates from wall outlet or Car cigarette lighter! Smart quick charge with Automatic shut-off! \$49.95

NEW For ICOM I	C- T8A / T	8A-HP / T81	IA:
BP-199 pk (NIMH)	6.0v	700mAh	\$39.95
BP-200 pk (5w NiMH)	9.6v	700mAh	\$49.95
BC-6011 Hap	d/Trickle	Charger	\$54.95
DD 20	OD TH-G	1050mAb	\$46.05
NEW for VAESU	VX-1R.	103011/41	\$40.55
ENB-52 MIMUS	3 6V	500mAh	\$19.95
NEW for ALINCO	DI-G5TH	1/191T/19	1T-HP:
EBD-34xh at attact	4.8v	2400mAb	\$30.05
EBP-36 pk (Sw Nildel)	9.64	650mAh	\$36.95
NEW for ADI HT-	600 & RE	ALISTIC HT	X-204:
ADI-600X (5w NIMH)	12.0v	1000mAh	\$39.95
For ICOM IC-Z1A	/ T22-424	A / W31-32A	/ T7A
BP-180xh pk-(NIMH)	7.2v	1000mAh	\$39.95
BP-173 pk. (5w NMH)	9.6v	700mAh	\$49.95
BC-601d Ra	pid/Trickl	e Charger	\$54.95
For ICOM IC-W21	A / 2GXA	T/ V21AT (8	llack or Gray)
BP-131xh (NMH)	7.2V	1500mAh	\$39.95
For ICOM IC-2SA	T/W2A/	354T / 454	Tetc:
BP-83yh Multi-	7.24	1500mAb	\$39.95
BP-84X NIMH pk	7.24	1700mAh	\$43.95
BC-79A Rap	id/Trickle	Charger	\$52.95
For ICOM 02AT e	tc & Radio	Shack HTX-	202 / 404:
BP-8h pack	8.4v	1400mAh	\$32.95
BP-202s pk (HTX-202)	7.2v	1400mAh	\$29.95
IC-8 8-Cell AA M	NiCd/Alka	line Case	\$15.95
BC-350 Ra	pid Char	ger	\$49.95
For KENWOOD T	H-79A / 4	2A / 22A:	
PB-33xh pk.(NIMH)	6.0v	2000mAh	\$39.95
For KENIWOOD T	9.00	1000mAn	233.93
PD 10	1-70740	1000-11	624.05
PB-13X (original size. 1 DB 12vb	VIMH) 7.2V	1200mAn	\$34.95
FO-IJXII pk (NMH)	1.20	55 46 45 C	\$33.35 26.25
POR KENWOOD T	7.0	1200 - 45, 2	\$24.05
For VAESULET S	DR/ 40P/ 1	0B:	\$34.95
ENB-47yb and	7.00	1800mAb	\$49.95
FNB-41xh (Sw NIMH	9.6v	1000mAh	\$49.95
BC-601c Rapi	d/Trickle	Charger	\$54.95
For YAESU FT-51	R/41R/	11R:	
FNB-33xh pk.(NIMH	4.8v	2000mAh	\$39.95
FNB-38 pk. (5W) BC-601b Por	9.6V	Charger	\$54.95
For YAESU ET-5	30 / 416 / 8	816 / 76 / 26	004.00
ENB-25x	7.24	1000mAh	\$28.95
FNB-26x pack (NAMH	7.2v	1500mAh	\$32.95
FNB-27x (5w NIMH)	12.0v	1000mAh	\$45.95
BC-601a Rap	oid/Trickle	e Charger	\$54.95
For YAESU FT-41	1/470/7	3/33/23:	000.00
FNB-10 pack	7.2V	600mAh	\$20.95
FBA-10 6	-Cell AA	case	\$14.95
Packs for ALINCO	O DJ-580/	582/180/2	80
EBP-20nh pk (NIMH	7.2v	1700mAh	\$32.95
EBP-22nh pack (5w)	12.0v	1000mAh	\$36.95
EDH-11	6-Cell A	A case	\$14.95
	Conditioner f	or AA & AAA bat	\$22.95 teries!
Carl And	(1) Desktop u up to 4 Nil	nit can charge or MH or NICd cells	condition
- Star	(2) Has select	table conditioning	g feature!
1000	(4) Automatic	shut-off at end o	of charge!
	(5) UL-listed (power supply inc	luded?
Mail, Phone, & F	ax orders	welcome! Pa	ay with
Mastercard /	VISA / DIS	COVER / AN	IEX
the state of the s	E FOR OIL	R FREE CA	TALOG!
CALL OR WRIT	E FUR UU	THE PERSON NAME	
CALL OR WRIT	E FUR UU BATTER	IES AMERI	CA
CALL OR WRIT Mr. NiCd's 2211-D Parviev	BATTER v Rd., Mid	IES AMERI Idleton, WI	CA 53562
CALL OR WRIT Mr. NiCd's 2211-D Parview Phone:	BATTER v Rd., Mid	IES AMERI Idleton, WI 831-34	CA 53562 43
CALL OR WRIT Mr. NiCd's 2211-D Parview Phone: Fax: 608-831-1082	BATTER v Rd., Mid 608-0 E-mail: e	IES AMERI Idleton, WI 831-34 hyost@midp	CA 53562 43 Iains.net
CALL OR WRIT Mr. NiCd's 2211-D Parview Phone: Fax: 608-831-1082 Visit our website	BATTER v Rd., Mid 608-4 E-mail: e e: www.bat	IES AMERI Idleton, WI 831-34 hyost@midp tteriesamerica	CA 53562 43 Iains.net a.com
CALL OR WRIT Mr. NiCd's 2211-D Parview Phone: Fax: 608-831-1082 Visit our website CIRCLE 87 O	BATTER v Rd., Mid 608-4 E-mail: e e: www.bat	IES AMERI Idleton, WI 831-34 hyost@midp tteriesamerica SERVICE CA	CA 53562 43 lains.net a.com

tion themselves, for there are few countries where amateurs could not make trips to several islands which could never count under present DXCC rules."

For many years the IOTA program enjoyed a limited popularity outside of Europe, where it was considered one of the top awards. During the years when the DXCC list stagnated, and few of the rarer DXCC countries came on the air, many U.S. DXers began to get involved in the IOTA program. Today there are hundreds of active, dedicated IOTA chasers, and dozens of island DXpeditioners who activate many of the rarer islands. Thousands more DXers collect islands more casually. The top certificate holder is F9RM, who is listed as being credited with 900, so there are at least this many islands available.

IOTA publishes an annual RSGB IOTA Directory and Yearbook with rules, lists, all certificate holders, island stories, etc. This is a 112-page slick, well-done publication and is available from RSGB IOTA

525JA1PAP	67 SSB 526
20 Met	er SSB
499	ter CW
8T	ТҮ
All 139N5TK	CW 140N3NN
All Ban SS	Id WAZ
4501N3ZOM 4502issued last month 4503W5GWC 4504ZL3AZ	4505EA6BE 4506K9GWH 4507OZ5JQ
CW/P	hone
7872	7875JT1BH (All CW) 7876K9GWH 7877JA8GTO
Rules and applications for the tained by sending a large SA an address label and \$1.00 to K1MEM, 31 DeMarco Road, 5 cessing fee for all CQ awa (please include your most rece and \$10.00 for nonsubscribe payable to the Award Manag cards to a CQ checkpoint of include return postage. Questi may be sent to K1MEM with a	e WAZ program may be ob- E with two units of postage or WAZ Manager, Jim Dionne, Sudbury, MA 01776. The pro- rds is \$4.00 for subscribers ant CQ mailing label or a copy) ers. Please make all checks ger. Applicants sending QSL or the Award Manager must ons regarding the WAZ Award an SASE.

www.cq-amateur-radio.com

THE WPX HONOR ROLL

The WPX Honor Roll is based on the current confirmed prefixes which are submitted by separate application in strict conformance with the CQ Master Prefix list. Scores are based on the current prefix total, regardless of an operator's all-time count. Honor Roll must be updated annually by addition to, or confirmation of, present total. If no up-date, files will be made inactive. Lifetime Honor Roll fee is \$4.00 (U.S.) for each mode, with no fee for additions.

MIXED 2273 YU7JDE 4892 9A2AA 1732.....LU8DY 1223 ... VE6BMX 3482.N4MM 2990.....HA8XX 2727.....IK2ILH 2018N3XX 1389.....KØKG 4773 F9RM 2940K9BG 2270KS4S 1371 F6HMJ 1198 S52QM 3424...SM3EVR 2689 HAØIT 2001 ... OE6CLD 1653AE5B 3405.....YU1AB 4256 W2FXA 2670 KØDEQ 1628 JN3SAC 1339N1KC 1195 W2CF 2934 ... WB2YQH 2264 K2XF 1919...SM6CST 3891 EA2IA 3390 I21 PJA 2926 ... YU7BCD 2669 S53EO 2259 W9IL 1875.....HA9PP 1625KØNL 1328 W9IAL 1162....JR3TOE 3889.....F2YT 3386N9AF 2926KF2O 2660.....4N7ZZ 2242K5UR 1871 DJ1YH 1607 ... OZ1ACB 1319.....WT3W 1142 VE6FR 3262.....N5JR 3797 UA3FT 2906 12MQP 2546 ... SM6DHU 2238 9A4RU 1851 ... VE4ACY 1591 W7CB 1311..WB2AQC 1058 RA9FY 3787......K6JG 3240 9A2NA 2832 HA5NK 2512 ... JH8GOE 2237 W6OUL 1836 F5NBX 1580...J1-21171 1308 WØIZV 1010.....F5RRS 3775 W1CU 1307 NH6T 3103 I1EEW 2787 W9HA 2484.....K8LJG 2224 W8UMR 1802 ... PY2DBU 1544 Z32KV 989.....US7MM 2346.....S58MUN4NO 3099 YU7SF 1522 AA1KS 3708. 2776.W2ME 1767.....IØAOF 1280.....W2EZ 906 N3KR 2776.....I1POR 2159 W4UW 3652 ...N6JV 3085 .. WA8YTM 2281N6JM 1765.....K5IID 1499 YU1ZD 1268 ... KW5USA 762.....K6UXD 1759 I2EAY 611JH2IEE 3566 VE3XN 3059...PAØSNG 2745 12EOW 2019 G4OBK 1395 VE68F 2276...WA1JMP 1264 VE6BF SSB 4180.....IØZV .N4NO 2397 ... WA8YTM 2033.....IN3QCI 1714.....K2XF W2ME 1271 W2FKF 1010.....EA7CD 792....EA5GMB 2844. 1525. 3743 VE1YX 2802 .12MQP 2396. 18KCI 1975. .W4UW 1685 KS4S .AE5B 1252 1002 790.....N3DRO 1518 .T30JH ...N1KC 3779 ZL3NS 2731 HABXX 23854X6DK 1975 HADIT 1659.....K8LJG 1452....LU5DV 1229 YC2OK 965. ...DJ4GJ 786.....N3SAC 3522.....K6JG 2725 I1EEW 2380 12EOW 1921K5UR 1650.....HA5NK 1451.....IT9SVJ 1196KØNL 954EA1AX 729.....F5RRS 3476 F6DZU 1649...EA5CGU 1443N3XX 946.....LU4DA 2714.....N5JR 2329 KF7RU 1882 .. SM6DHU 703 VE6BMX 2657 ... PAØSNG 1396 W9IL 1127 EABAG 3384 I2PJA 2360 EA5AT 1867 ... OE6CLD 1569K3IXD 933 DF1IC 697 I2VGW 1809 LU8DY 3049 N4MM 1570 W6OUL 921 HA9PP 2509 ... CT1AHU 2291 ... YU7BCD 1395 EA5KY 1090 ... LU3HBO 660 F5LIW 2978 EA2IA 2507 9A2NA 2260 KD9OT 1802 ... OE2EGL 1366.....DF7HX 919 CP1FF 1567..CT1BWW 1061.....WT3W 643.....BD4DW 2491....LU8ESU 2257.....I1POR 1770 YU7SF 1560 K8MDU 1353.....K5IID 1030NH6T 896 JR3TOE 613.....SM5DAC 2976.....F2VX 894 EA3EQT 2935 ... EA8AKN 2487 UA3FT 2213 EA1JG 1757N6FX 1546.....IKØEIM 1336 G4OBK 1028....DL8AAV 608LU3HL 2211 CX6BZ 2921 OZ5EV 2446 KF2O 1754 W2WC 1544 DK5WQ 1299...SV3AQR 1017....IK4HPU 894.....EA5DCL 608KE4SCY 2134.....K5RPC 1535......I3ZSX 1288.....I3UBL 2913 CT4AH 2401 PY4OY 1741 KBØC 1011 I2EAY 605N7VY 836.....AG4W 2888 I4CSP CW 3984 ... WA2HZR 2613 VE7DP 1906......G4SSH N3XX 1055......W4UW 2127.....HAØIT 1694. 1513.....IK5TSS 1270..... ...W9IL RAØFU 821 DJ4GJ 3638N6JV 2479......G4UOL 2124 JA9CWJ 1871 OZ5UR 1652 KS4S 1509 9A3SM 820K3WWP 1268. 1041 W9IAL 3272.....N4NO 2468 W2ME ...KA7T 1816 ... SM6CST 1651 IK3GER 1506.....I2EAY 2089. 1217.....AC5K 998.K2LUQ 815.....WT3W 3251 UA3FT 2451N4MM ..KF20 1804K5UR 1641.....G4OBK 1482 ... EA7AAW 1211.....I2MOP 993.HA9PP 741.....DL3NEO 2079. 3239 VE7CNE 2423N5JR 2046 HA8XX 1804.....LU2YA 1621.....DJ1YH 1411...SM5DAC 1175.....EA2CIN 906YU1TR 741 K6UXO

1599 EA6BD

1590....JA1GTF

1546.....9A2HF

1537 JH3SAC

1514 EA5YU

1349.....N1IA

1335.....VE6BF

1298 EA6AA

1271LU3DSI

1270.....K5IID

1799.

1798......W2WC

1795.....W1WAI

1750.....IT9VDQ

1711 W6OUL

2043 S58MU

1973 G3VQO

1956.....K8LJG

1927...SM6DHU

1927.....N6FX

for a weekend mini-DXpedition to a rare island. Thanks to bridges and ferries, IOTA DXpeditioners can put many islands

884 PY4WS

870 HB9CSM

847.....NH6T

844JK1AJX

823 VE6BMX

725.....KØNL

678 IK8VRP

659N1KC

619 F5RRS

603.....OE6CLD

1156.....4X6DK

1094....LU7EAR

1083 I2EOW

1078.....9A3UF

1058 DF6SW

ZEIT

3049.....K6JG

2940.....EA2IA

2926.....YU7LS

2881N4UU

2811 K9QVB

2786 YU7SF

2415LZ1XL

2384...WA8YTM

2362 ... YU7BCD

2196 VR2UW

2194.....9A2NA

2179 HA5NK

Time Pieces Synchronized to the US Atomic Clock Accurate to ten billionth of a Second!

You can now have the world's most accurate time 24 hours a day. These smart clocks tune into the radio signal emitted by the US Atomic Clock in Colorado, which deviates less then 1 second over a million year period. They synchronize themselves automatically to the precise time and adjust for daylight savings. These precision ZEIT

timepieces are engineered in Germany and are easy to use using the latest in radio-controlled technology. Just set the time zone and the built-in microchip does the rest. "ZEIT Atomic Time" Precise, Reliable, Convenient

ZEIT Atomic Dual Alarm & ZEIT Atomic PC

Sleek European design with large 2 line LCD display with exact time in hours, minutes, seconds, month and date, or any two US and world times. At 8oz. ideal for travel; incl. dual alarm with nighttime illumination, time zones and lithium battery

backup. Super sensitive built-in receiver. 2AA. incl. Black or Silver arch SALE \$69.95 design at 5"x4"x2 1/2" Sale! \$69.95. Buy any two Clocks 8 get 20% off 2nd. ZEIT PC with serial cable and software for WIN. Also shows UTC Time in 24 hrs mode. Sale! \$99.95

ZEIT Atomic Wall Clock

with regular or Roman numerals. For home or office. One AA Battery, Large 12" Only \$79.95 (\$99.95 in wood)

ZEIT Atomic Watches are the world's most accurate watches. Shock-resistant polymer case

with built-in receiver, hardened mineral lens, water resistant. Black or white dial & leather band. Only \$149.95 **NEW ZEIT Digital Atomic** Sportswatch with UTC etc. Just \$99.95

Call for full line of atomic clocks & watches THE FUTURE IN TIME KEEPING Credit Card Orders call toll free 800-339-5901

send checks / money orders for the total amount incl. 5 & H \$7.00 to: ATOMIC TIME, INC. 1010 Jorie Blvd., Suite #332, Oak Brook, IL 60523- Please mention promotional Code 8484 when ordering Fax: 630.575.0220 http://www.atomictime.com

CIRCLE 37 ON READER SERVICE CARD

on the air without getting out of their car. Mount Desert Island in Maine, Martha's Vineyard, Chesapeake Bay islands, Hatteras islands, the Florida keys, the San Juan islands, and the Channel islands are examples of IOTA entities within the reach of any amateur. Other rarer islands may require more planning, but are still readily accessible. Many more IOTA islands await the DXpeditions. Will you be the next one to put a "new one" on the air for IOTA?

The Art of QSLing: Card Design

Successful QSLing begins with selection of a good QSL card design. Your choice of a QSL card can significantly improve your QSL return percentage. A distinctive card will stand out from the masses of nearly identical commercial cards. Here are some of the factors to consider when designing your card.

1. Use a one-sided card, or put your callsign on the back with the QSO information. QSL managers and DXpeditions who handle thousands of QSL cards hate the two-sided card. The person answering the card has to note the callsign, flip the card for the QSO data, flip it back to confirm the call, and flip it again when filling out the return QSL. Flip, flip, flip, flip. Soon the

64 • CQ • October 1999

CQ DX Awa	ards Pro	gram
5	SB	
2279KB5VNM 2280N3RB	2281 2282	K9EWH HK3PLB
SSB End	orseme	nts
320OZ5EV/330 320XE1AE/330 320W4NKI/329 320KX5V/327	320 310 250 150	W5RUK/325 CT1AHU/316 KA5OER/272 HK3PLB/166
CW End	orseme	nts
320EA2IA/329 320VE7CNE/325	310 275	K1FK/311 I3ZSX/276
RTTY En	dorsem	ent
320K2ENT/327		

non-subscribers, it is \$10. In order to qualify for the reduced subscriber rate, please enclose your latest *CQ* mailing label with your application. Endorsement stickers are \$1.00 each plus SASE. Updates not involving the issuance of a sticker are free. Rules and application forms for the CQ DX Awards Program may be obtained by sending a business-size, No. 10, self-addressed, stamped envelope to CQ DX Awards Manager, Billy Williams, N4UF, Box 9673, Jacksonville, FL 32208 U.S.A. Currently we recognize 330 active countries. Please make all checks payable to the award manager.

manager wants to flip all two-sided cards into the trash can. If you must have a twosided card, put your call in large letters on the back as well as on the front.

2. Include all basic information. The card should contain your callsign in large, easily read letters. This means avoiding the fancy typefaces. The card should also contain your name, full mailing address, exact QTH (if different from your mailing address), and DXCC country. Your grid square is very important if you operate above 30 MHz. 3. Use a large block-format for QSO data. QSO data should provide sufficient space for the DX station's callsign, the UTC date, UTC time, frequency (not band), RS(T), and mode, marked "2x." The words "confirming QSO" should precede the QSO data. 4. Optional information can include a list of amateur awards you have earned, former callsigns, ITU and CQ zones, membership in societies and foundations, and even equipment and antennas. Be careful about the latter, however, as many amateurs change rigs and antennas frequently. Don't put so much information on the card that it looks cluttered. 5. Use a standard card size. Cards smaller than 51/2" × 31/2" cannot be mailed in the U.S. Cards much larger than normal won't fit in a standard #6 envelope. Use a card stock heavy enough to survive mailing without an envelope, but not so thick that it increases your postage costs. Thanks to sophisticated word-processing and graphics programs, many amateurs can design their own QSL cards for that personal touch. Quick-print shops can turn out a short run of a few hundred cards in a matter of days. 73, Chod, VP2ML

TOWER INSTALLATIONS AVAILABLE NATIONWIDE

24 different tower models in 4 distinctive configurations for every budget -Towers range from 38 feet to 106 feet and up to 60 sq. ft. windload.

ONLY FIRST CALL COMMUNICATIONS GIVES YOU:

· Very personal care - we'll answer your questions & address your concerns.

We will help plan your installation and discuss your needs.

dis.

- Better than competitive pricing We want your tower business.
 Partial and full "turn-key" tower installations exclusively available with First Call Communications in most states - We also install outside the US.
- If this is your first tower, we will hold your hand and walk you through all aspects from start to finish. We take the worry out of buying a tower.

UNMATCHED CUSTOMER SUPPORT

FOR OUR US TOWER CUSTOMERS, WE OFFER A LOT OF EXTRA HELP. • PRE-TOWER GUIDE

Tower mechanical drawings, stress analysis documents, PRB1 basics, basic zoning ordinances, grounding basics, rebar construction, technical specs, antenna loading, mast specs, understanding masts, ice specs, pier footing, forms, model of a tower permit application and up to date rotator comparison charts are available from us.

FULL PICTORIAL US TOWER INSTALLATION GUIDE

Exclusively available for First Call Communications customers only is a new step by step pictorial guide for US Tower installations. Pictures, suggestions, and notes from ground breaking all the way up to the final antenna mounting process is covered. The guide also includes proper grounding techniques, rebar cages, forms, concrete, tower maintenance, wire rope maintenance, raising fixtures, masts and rotators, etc. etc. The pictures and commentary in this booklet were provided by tower installers hired by First Call in an actual installation setting.

• FIRST CALL COMMUNICATIONS NEWSLETTER - THE INFORMA

First Call Communications, Inc. proudly announces our quarterly newsletter call THE INFORMA. THE INFORMA is a summary of information for potential US Tower buyers for the novice or experienced person. There are various sections covering maintenance of wire rope, obtaining town approval for a tower, etc. The newsletter offers the potential tower buyer three unique ways to buy and have a tower installed all the way up to a complete "TURNKEY SYSTEM". The newsletter is free with a S.A.S.E. For a complete package of US Tower and First Call Communications literature or even a special price quote, call 800-HAMTOWER (800-426-8693) or e-mail us.

BIG BOY commercial (ham) double worm gear rotators have arrived with three models to choose from with the largest model handling up to an amazing 81 sq. ft. of antenna. With outstanding **ROTATING**, **BRAKING** and **STARTING TORQUE**, **BIG BOY** rotators are much stronger and less money than the M2 Orion, Hygain, Yaesu and Emoto. With a two year warranty available through First Call, **BIG BOY** is the strongest rotor made and <u>may be the last rotator</u> <u>you'll ever buy</u>. Complete catalog, prices, specifications and comparison charts can be found on our web page www.firstcallcom.net/bigboy.html.

SHOP AMERICA - A NEW unique buying service for radio amateurs located outside the United States - see our web page for details

FIRST CALL COMMUNICATIONS, INC.
 32 Grove Street, Spring Valley, NY 10977
 Phone: 914-352-0286 800-HAMTOWER (800-426-8693)
 Fax: 914-357-6243 E-mail: firstcall@cyburban.com
 Web: www.firstcallcom.net Hours 9-5 pm ET Mon.-Fri.

CIRCLE 53 ON READER SERVICE CARD

October 1999 • CQ • 65

Zero Bias (from page 4)

ite phrases, "Words are our biz." Maybe someday we'll do a "Best of Zero Bias"; a colleague and I had once discussed this as being a perfect gift for AI. But the best part, for me, was the almost twenty years I was able to work side by side with him, as my co-worker and most of all my friend, doing what we both loved and did best. Thank you, AI, for all those years.

88s, Gail, KC2DHK Managing Editor, CQ

My Memories of Al

This past July 19 a good friend of mine and amateur radio, Al Dorhoffer, K2EEK, lost his battle with cancer and passed on. There was certainly the side of Al that everyone saw at different public events which he attended as a member of the *CQ* staff. There was also another side of Al, and I would like to share some of my personal thoughts and memories of the man I knew.

I met Al approximately 11 years ago. My good friend and Elmer Ed Hammond, WN1I, who is with Cushcraft Corporation, introduced me to him at a lunch meeting he had with Al and Arnie Sposato to which I was invited to tag along. When I first met Al, I thought him to be a very quite individual. He didn't say too much to me at the time, and I felt that he was sort of studying me to actually see what I was like.

I started speaking to him about various subjects, and the subject of my occupation, law enforcement, came up. Al's eyes lit up and he proceeded to tell me of his experiences in law enforcement with the Glen Cove Harbor Patrol. Al was a New York State Harbor Master working for the city of Glen Cove at the time, and I could see that he had a genuine interest in this field of work. Next to writing, I always thought Al would have loved to be a law enforcement officer as a full-time career. He had a keen street sense and knew how to size up an individual quickly. Most of Al's assessments on people were right on the money and it was downright uncanny how he was able to do this in such a short amount of time. I always considered him to be a real student of human nature, as he consistently studied people and made very quick assessments based on his observations. This was a real gift which I seldom see individuals grasp. I became good friends with AI and invited him to attend a meeting of our newly formed club, the Suffolk Police Amateur Radio Club, which we held at Police Headquarters in Yaphank. Al really hit it off with all the guys, and we all had a great time. I showed him around headquarters, and he was extremely interested in the operation. He loved the whole experience and just liked being around cops. I also experienced another side of AI, the side of him that was able to listen to a problem and come to a very logical conclusion as to the remedy of the situation. He always stressed that you should not worry about the small stuff and concentrate on the much broader context of the problem. In other words, get to the meat and potatoes of the problem and throw away all the small stuff because that just clouds up the situation. This was often told to me by him in a little more "colorful" terminology, but you get the picture. He wasn't afraid to vary his use of the English language to make his point.

Always his happiest after making a great discovery in a fleamarket, here's Al several years back proudly carrying his "fleamarket finds" back to the CQ booth at some hamfest or another. After attending several hundred over the last three decades, they seemed to blend together.

Al was never too busy for me and would always take my calls. I would often speak of the many problems of the job and my experiences with it and always felt much better about situations after I had spoken to him. I remember one instance in particular that comes to mind. I was involved in the recovery operation of the TWA flight 800 victims. I saw sights which I realized when I went into this occupation I might one day have to see, but never really thought that day would come. I was clearly out of sorts with the magnitude of this situation and it had visibly shaken me up. No person could really have prepared himself for the devastation that I witnessed, especially with young victims involved. I continued to do my job in a pro The weeks that followed were difficult for me, and I felt the need to get out of the house and visit Al. I went to lunch with him at a local diner very close to the CQ offices. I remember how when we sat down and ordered he asked me, "How are you doing, Jeff?" I then went into the long explanations of what I had seen and what my feelings were. I rambled for approximately 15 minutes straight. He sat there for the whole time I was talking and just nodded his head with a concerned look on his face. Once I had finished, he looked at me almost like a concerned parent would and told me that the situation was beyond my control and no matter how bad it was at the time, I had to try to separate myself from the situation so that I could continue to do my job the best I knew how. He also told me how I had to protect myself by continuing to talk of my experiences and not holding these feelings inside. Al always had some great advice, and I felt much better about things after I spoke to him. He had a very soothing voice and was very understanding.

observed everything that was going on while I completed my daily on-the-job routine. He admitted to me that it was a bit strange being on land enforcing the law, as he had always done it on the water. I jokingly offered to drive the car by a lake to make him feel more at home, but he said it wasn't necessary. He never felt apprehensive about my driving, so he must have been at ease and having to good a time. I must admit that I felt guilty because no one is allowed to have as much fun at work as I did with AI on that day. As much as he enjoyed being there, I enjoyed having him there with me more. I will never forget that day; it stands out as being one of the special days in my life, and I'm glad he was able to experience this, as he had always wanted to.

We often would speak of our mutual hobby, amateur radio. Al was probably one of the most devoted members of our ranks. He was never short of thoughts on the hobby, which he would share with me. I often told him that my highlight each month in getting my monthly issue of CQ was his editorials. They often made me think, ponder, and sometimes chuckle out loud. My wife sometimes couldn't figure out what I was so obviously mesmerized by at the beginning of each month. She stopped asking after she figured out that I had CQ in hand and knew not to bother me for at least 10 minutes until I had read the editorial. I remember in one issue he mentioned the ham who "had to have another handie-talkie even though he had six already, but he had to have it." That ham was me, and until now no one ever knew this except Al and myself. We laughed about this editorial often.

Most of Al's editorials really made you think, as they always made some very excellent points. There was one in particular which really hit home for me. It was around 1992, and he spoke about a nor-easter type storm which had just occurred here on Long Island. He went on to speak about just how ill equipped some government entities were at dealing with communications networks in disasters, and how ham radio operators seem to transcend these difficulties and always provide efficient, reliable communications at a fraction of the cost. In this editorial Al also spoke of the 1990 Avianca plane crash in the nearby north shore of Long Island town of Cove Neck. Al did an excellent job of explaining how the crash took place in Nassau County, very close to the Suffolk County border. Multiple agencies from the Nassau, Suffolk, and New York City governments responded. Local hams also responded to lend a hand. The remarkable thing was that with all the top-line equipment all these agencies had, they had major problems communicating with each other. As it turned out, the hams ended up conducting the communications efforts for the local triage area to various hospitals. Al wrote at the end of this editorial, "We as amateurs manage to communicate with relative ease during any trying situation and also manage to organize as we go along. It is no longer amazing that we do it time after time. We know we can. What is amazing after all of this time is that no governmental agency, with all of their resources, can do it once." This was for me vintage Al Dorhoffer at his best. I still use this editorial at forums and talks about amateur radio I give. Al will certainly be missed in amateur radio. With the changes occurring in this hobby due to all the competitive technologies, Al gave us a sort of reassurance that all was going to be

On another occasion, I invited AI to ride with me while I was at work on a 4-12 tour. He fine and that amateur radio would in fact emerge unharmed when the smoke cleared. He often spoke of how it would still go on for generations. He made us all feel good about our hobby and was always there to pick us up when we thought that something was wrong with the health of the hobby. In my opinion, Al was one of the best spokesmen for amateur radio. We need more people like him. Al's passing is amateur radio's loss.

Finally, on a very personal level, I will miss Al very much. I never got to work with him on a daily basis. As a matter of fact, I only saw him a couple of times a year and spoke to him on the phone a couple more times throughout each year. I now wish that it had been more. At Al's funeral I remember telling Dick Ross, K2MGA, how our life style in the New York area is so fast paced. We always say we want to get together more, but we seldom have time due to the many commitments in our life. New Yorkers always seem to have too many commitments. This was certainly my loss, for I wish I had seen and spent more time with my friend. The late Harry Chapin in the song "Cats in the Cradle" might have summed it up best when he sang about a father promising to spend time with his son. As the words state in the song, "we'll get together then, you know we'll have a good time then." Unfortunately, that day never comes.

If I have learned anything from my friend's passing, it is to pause in your life and think what a precious commodity life is. I will try to spend more time with those who mean something to me and not assume that there is always tomorrow, because tomorrow might not be here. I will miss AI dearly, and it will be difficult for me to visit my friends at *CQ* without AI being around. It certainly will not be the same for me, but I will still drop in from time to time just to say hello and maybe just to reflect on how AI was a very

was always willing to help me out. I for one will miss him. We have lost a good friend and fellow amateur.

John Fisher, K2JX

ARC-5 Stories

Al was a genuine individual who was one of the shining stars of truth in our hobby. His uncanny ability to speak the truth, be it in person or in his editorial, will be sadly missed. Whether catching him at a show, while visiting *CQ* headquarters on Long Island, or even with a phone call, Al always had a kind word to say and was an upbeat and realistic person. I will miss his "ARC-5 stories" and the funny ramblings about the Gonset Gonkulators with a bright yellow Civil Defense sticker sitting in a bomb shelter somewhere in our past. Our hobby and the ham radio industry have suffered a great loss, and I can only hope and pray his efforts are carried on.

> Ed Hammond, WN11 Cushcraft Corp.

From Around the World

"When the late Jock White, ZL2GX, passed away, I inherited all his boxes of *CQ* magazines which go back many, many years. I think I might have read every one of AI's editorials up until the early 1990s, and these gave me a great deal of inspiration when I was Editor of our NZART Branch Newsletter for six years. They still do today! He will be sadly missed by many New Zealand amateurs."

Ric Coleman, ZL2RIC

"Alan was a true friend and strong supporter of AMSAT and the amateur radio satellite program over the years. His strong voice and perceptive editorial style will be sorely missed in amateur radio." "Alan was always a friendly face at hamfests and conventions. Years ago as part of the hamfest committee here in Atlanta, I always looked forward to his editorials on food at hamfests. For a couple of years Alan gave us the highest marks on hamfest cuisine, an honor we worked hard to achieve.

"He was a great guy, always positive but slightly jaded and off center. He could have increased *CQ* circulation by taking a negative editorial policy, but he never fell for such a quick fix. His editorials were thoughtful and contributed much to the common-sense dialogue among responsible hams."

Sandy Donahue, W4RU

"Seeing Alan and the crew at the various shows is one of the things I miss most after getting out of the amateur radio business, so I regularly read every word of his editorials. It has kept me connected to friends. His spirit will live on in everyone he touched."

Ken Sartain, KS91

"I really enjoyed the time I had to visit with Alan at Dayton last year because I share his perspective on ham radio that it is supposed to be, more than anything else, fun. I looked forward to his editorials every month. I believe his perspective served us all well and reminded us why we got into this hobby in the first place."

Bill Cross, W3TN FCC

"I remember Alan as a wonderful person deeply devoted to ham radio. Our meetings at Dayton each year were always special, and on each occasion they left something in me."

Alex Novelli, I6NOA

"Alan did the job the right way. He was the guy amateur radio needed to succeed, and it

special person to me.

I can't help but think that AI is looking down at us and smiling. I'm sure he knows how positively he has affected so many people's lives and how he did make a difference for them. I would like to end these memories I have of AI with just a short common phrase which we use every day in our hobby. For some reason I think it is very appropriate for this occasion. I would just like to say to my good friend, "'Til we meet again, best 73's my friend, and thanks so very much for the great contact!"

Jeff Savasta, KB4JKL

A Storehouse of Knowledge

Alan was one of the first hams I ever worked on 10 meters. I was surprised and overjoyed that a "famous" ham such as Alan was my neighbor back in 1975 when I was a resident of Port Washington and a new ham. A long friendship began back then with a visit to his shack and a look at some vintage gear of which he was very proud. Of course, I was thrilled to be able to visit the man who was the editor of a popular ham radio magazine. Even more so it was wonderful to be able to speak to Alan "off the record" about the ham issues of the day. He was a storehouse of knowledge about the hobby and the people in the hobby, of which then I knew very little.

In my shack there is a copy of *The Vertical* Antenna Handbook that Alan gave me back in 1976 when I was thinking of putting up a vertical antenna. He said, "Here, read this book and you will know all about vertical antennas!" Alan in annalour radio.

Keith Baker, KB1SF President, AMSAT-NA

"Alan and I never met, but he was like an old friend. I guess I developed the feeling that I knew him well from his editorials. It always seemed as if he was talking directly to me." *George Murphy, VE3ERP*

"Alan was a fixture in amateur radio, someone who was there for everybody—all the time. It's difficult to imagine *CQ* without him, as he actually 'was *CQ*' to us and had been for the more than 23 years that we knew him. He was always a pleasure to work with, and to say that we will miss him is an understatement."

Karl, W8FX, and Millie, KD4SHM, Thurber

"It is with great sadness that I learned through the ARRL of Alan's passing. I had a nice conversation with him at the 1996 Atlanta Hamfest. Although new to ham radio and sporting the 2×3 call KD4CDB, and my wife the brand new call KF4GPJ, Alan was friendly, informative, and very congenial. We talked about HF, DX, and VHF/UHF. He told me several anecdotes of his early days in ham radio and had the same enthusiasm level that you would find in a new ham like myself (licensed in 1991). While handing out free copies of CQ, K2EEK represented to me fellowship, respect, and Elmering, traits lacking in many amateurs today. In my opinion he was a credit to CQ and to ham radio in general. He will be missed on a grand scale." James, W4AMP, & Donna, WA4SEX, O'Brien

was under his reign that the French CQ magazine was born. CQ and the entire amateur radio world have lost a great "radio man."

> Mark Kentell, F6JSZ Editor, CQ Radioamateur

"Alan was a mentor for me when I entered this business, spending all the time I asked for to help me understand the ins and outs of the business and the hobby. He was always looking for a way to make things work out, with always a positive outlook. I respected his integrity and work ethic immensely."

> Chris Lougee, N7TJM ICOM America

"What I remember most vividly about Alan was that he was always having FUN in amateur radio and wanted others to share in that fun. Maybe it was not the same kind of fun (10 meter DX was his favorite), but he wanted you to get into ham radio and discover something new and different."

Chip Margelli, K7JA

"I got into ham radio probably at about the same time as Alan (1953 for me). I subscribed to CQ even before QST and was a subscriber when Alan came to CQ. I left the air in 1965 and returned in 1995, and there was Alan, still at CQ. What a record!

"Alan did indescribable good for ham radio and for CQ magazine. Long live CQ!"

George H. Shands, W9WUU

Results (from page 27)

Thanks

Once again thanks to the CQ WW log checkers who helped validate the winners and provided insight into many contesting topics. The 1998 crew included: K1DG, K3UA, K3WW, K6NA, KR2Q, N2NC, N3ED, N6ZZ, N9RV, W7EJ. Special advisors were K3ZO, N8BJQ, N2AA, K3LR, N5TJ. Decoding problem logs was led by W3ZZ and his crew of N5NJ, JE1CKA, and I2UIY. Our DX advisors were helpful in offering good advice, providing information, and sorting out potential problems: CT1BOH, DL6RAI, EA3DU, F6BEE, G3SXW, HSØ/G4UAV, I2UIY, JE1CKA, OH2KI, OH2MM, ON6TT, PY5EG, S50A, UA9BA, VE3EJ. The CQ WW call database would not be of such a high quality if it were not for Dick, N6AA. He again spent countless hours to make the CQ WW database the best in contesting. The CQ WW uses the constantly updated software developed by Tree, N6TR, in order to create the database. John, K2MM, created the entire WWW log entry information. His robot worked smoothly in acknowledging receipt of a log. Tack, JE1CKA, has created the appearance and non-log data on <cqww.com>. Translations of the rules into Spanish, Japanese, German, and French were done by EA3DU, JE1CKA, DL6RAI, and F6BEE. Larry, N6TW, was invaluable in retrieving and processing data from e-mail submissions. Thanks to the counsel of John, K1AR, and his hard work to make the CQ WW successful.

Congratulations to all the winners! This year try to get a friend on in the contest. He and you will find the CQ WW a real contesting experience. To participate and have fun is what contesting is all about! 73, Bob, K3EST

DX QRM

ZM2K at 1412Z big shock; assume it was correct 9HBA. We did break the record score of OC Multi-Single which we made last year, if the reduced score is less than we expect ... AH2R. I've beaten the guy I was competing against-myself (with last score)! CT1BQH. Your super contests are the ideal lab for studying the frontiers of QRP operation. Lots of big ears are desperately looking for a multiplier, and a CW CT1 is not very common. I limited it to 100 mw. Maybe 143 QSOs or 20,145 claimed points is not very huge, but I think I could get one of the best scores of points per watt! ... CT1ETT. I had a lot of fun with the 3-ele noodle beam (W9XR/W3GH design) at only 15m height. 1... DF4SA. It isn't easy to work single band with mostly just a dipole, but it was fun the whole time, especially if stations like VK9LX, 9M6AAC, and other rare DXers gave me a call. ... DK8FD. My second COWW CW entry from HI land. This was the most wet contest I ever worked HI8/DL1HCM. Fifty percent more points than the old Low Power DL record, but with condx like these I may end up as #3 in DL only. ... DL2HBX. Most of the stations I called often returned at once. Low power and a German callsign seem to be a handicap ... DL2HQ. Final tuning of the C31XR beam was made on the tower at minus 15 degrees Celsius. Thanks to Force 12 and SWL Holgi. ... DL4NAC. High sunspots and low noise—cool! Trix again to our friends in Ibiza EA6IB. Apologies to all who tried a 160m QSO with us and got no reply. A broadcast AM station just 50 meters away on 1584 Khz kept 1.830-1.850 segment quite "clean," making reception almost impossible EA9EA.

My computer was broken after 1300 QSOs! I have now only last part of the log, which I made on paper ... ERSAA. No team to use TM1C, so I took the antenna farm for a week for the CO WW CW. I tried a single band 10m. My CW level is not very high. I trained with PED to improve my code speed. Thanks very much to many American stations who repeated their calls and made a little QRS for me! I was pleased to contact China. and Mongolia. 3E1AA was going too fast. It took 10 minutes to understand his call. ... F5ITK. QRP is the best; with a good antenna you don't need lots of power . . . GBVQR. Fifteen meters was in very good shape, but with hindsight I think it would have been even better on 10m. ... G3MXH. Enjoyable as always, but I cannot get near GIØKOW's scores from plain old G-land. Great conditions on 10m, but the HF bands are still shutting early. It can get better than this! ..., G4BUO. This is my best score to date and the first one from GD where I spent a lot of the time CQing for a change and holding the frequency, on 100W! The rotator for the 3-ele Yagi was damaged in the recent storms, so the whole contest had the Yagi facing East. ... GD4UOL.

Amazed to make over 2000 QSOs; disappointed to not get all 40 zones, as I know zones 2 and 34 were active ... GM4YXI. On Sunday afternoon we had all six bands open. Practically impossible to find few hundreds of Hertz free for running ... IKØHBN. Really great 15 and 10 meters! For me 1.127 QSOs and 791.700 points was a dream before now. Only wire antennas and 100W, but next year hope better antennas ... IK4EWX. Strong signals from USA and many stations from Japan. Great pile-up on 40m for XX9X and XZ1N ... Wind broke my antenna at half of the contest ... IR9T (Op. IT9GSF). Finally, I've got zone 011 ... IT9TWC.

As the condx during test was good, I enjoyed very much. But I lost many mults because of pile-up . . . JQ3UDL. It was suffering in freezing temperatures—minus 35 both C and F assembling beams and struggling through 48 hours with three stations, but it was fun to experience that rare zone 23 and meet those who provides it regularly to us Deserving . . . JT1A. Have not heard for years such a fine contest. I was assisted by my son LZ1ABC . . . LZ1AQ. Thanks to LZ1DB, the President of "TELZET," for equipping the station with transceiver and amplifier. Great propagation to JA! LZ5W. Sunspots are back! Had a clean sweep on 15 into NA. Highlight: Getting called by KC1XX and others on 80m . . . OE5OHO.

Missed VK6; heard later a couple of others missed them, too. This time heard only a few mults that could not hear me; the /VE2 was one of them. I hope conditions would be better to Japan next year also on CW. Hear you all next year with a shorter callsign1 ... OH&JJS (OH6LI). First time trying to put some signals in the air from Argentina. I wish I could get a local call next year ... LU/OH&WW. The biggest thrill was to work V63X through W/JA pileup at 2200Z on Sunday just after JX7DFA double mult! ... OH1F (OH1NOA). What a great conreports received as ENNN ... SP5DDJ. I love CW. I am 17year-old blind boy ... SQ9BZK. OT of 82 years. Most QSOs ever in CQ WW SSB or CW. Tried manual and computer log at same time! Previously V2/G6QQ, but now been given local license ... V29QQ (G6QQ). Biggest thrill was breaking the pileup on the Azores on 15. Thanks to VE7CFD, for his hospitality and use of his station. Original goal was to break 500 Qs; maybe 1000 Qs will be possible for QRP from the west coast soon. ... VE7CFD (VE7CQK).

What a weekend for a contest! Tnx to VP5JM ... VP5GN (K5GN). This old goat only managed 38 hours operating, which included some equipment problems. Band conditions were great, but I lacked the antennas to take full advantage of the conditions. Next year I'll be better prepared and hope that conditions are as good ... VP5M (N4TO). Many thanks to VE1JF (Jim and Hannalore) for hosting my DXpedition to Nova Scotia

XJ1JF (VE7SV). All bands were UFB, and specially 15m and 10m. This is my best effort in this category ... Z31JA. First time like "BIG GUN." Excellent conditions on 40m. Sorry for many stations from W6/7 and JA I couldn't copy because my receiver was very poor ... Z39Z. I operated from Quartz Hill Amateur Radio Station located on a farm near Wellington. The station is a former Radio New Zealand facility for reception of international broadcasts. ZL6QH is a special callsign for use by members of the Quartz Hill User Group ... ZL6QH (ZL1AZE). Thanks to PY5EG for a memorable experience and a new world record! ... ZW5B (K5ZD).

USA QRM

We should be classed as multi-multi unassisted as we do not use packet, the Internet, or any other outside sources for our contacts as the east coast packet slaves do! All of our contacts came from inside the shack ..., K4VX/8. Welcome back sunspots! This is what we've been waiting for since 1993 . K5MDX. Like so many others this is a personal best for me. Was great fun, even with modest antennas and low power ... K7HBN. All I could get up before the contest was a 2-ele 40 at 130 ft. Just thought I would work a few guys and have some fun. Turns out that I was competitive! ... K8DX. This looks like a new CQ WW CW M/M record! Conditions were outstanding on all bands! Ed, K1TR, graciously helped out on 20m and on the spotting radio setup. Thanks, Ed! As usual, Matt's XYL, Christine, provided moral support and food throughout the contest ... KC1XX. First ever CQ WW on CW. Thanks to all who slowed down for my slow copy. Really got my code speed back up, though KE1FO. After 20 years without a single CW QSO I made 175 in just under 13 hours!.... KE1KD. This was a great effort for the first time in this contest, with a great team of operators. We missed the first 38 minutes of the contest, as we were still outside raising antennas! ... KG6OK. Set a goal to beat my last year's scores and totals. With a modest station I could not hold a run frequency, but maybe that was good, as S&P and the TR bandmap yielded a wealth of multipliers, especially on 10! KJ9C. What a contest! Can't imagine what the top of the cycle will bring in a few years. Activity this weekend puts claims of dying interest in CW to rest for good! ... N1DG. This was my personal best all time from Stateside in CQ WW. N2BA. Great conditions all around. Highlights: three new countries worked (280), busting pileups. Lowlights: not even hearing XX9 ... N2CU. For the most part I was "packet pouncing," but there was so many spots I was kept busy all weekend. Were I a better CW operator I would have been able to run. Conditions were really great and I was hoping to work over 100 countries on 10, 15, or 20 meters . . . N2FF. Could not find much chance for sleep. Shut down after EU sunrise for an hour, got up to check EU secondary, only to hear JT1 booming through. Hard to believe WW condx can improve much over what they were this weekend, but sorry to see beloved low bands suffer . . N4AF. Biggest thrill: finding VK9LX all alone on 20m after midnight and working them first call! ... N5TW. This was my first contest from the home QTH using a beam. What a difference over wires! Working XZ1N just after sunrise on 20m (first call) and VK's, VK9LX long path on 15m just before our sunset ... N6RFM/1. JA runs went for many hours and running Europe on 10 meters made me feel like I had moved to the east coast! 1999 should be a really great DX and contest year! ... WOTM. This is as good as it gets! My best score ever, and longest time awake W1WEF.

test! Passing mults to other bands went also very smoothly. The highlight was XU1A answering to our CQ on Sunday 2050Z.... OH2U.

The very best of all operators I heard was HC2SL ... OZ8AE. After many years of single-band operating, I wanted to try something new in the form of an all-band attempt. By the way, I really appreciate the UBN report. It gives very good advice for self-improvement ... PA3AAV. Back to basics: no more DXcluster, no more big Yagi, no more 3-500Z, but had the best time in years! Contesting as it is supposed to be? ... PA3BUD. 300 QSOs on first 3 hours! 22 hours of operation and more QSOs than WW SSB—breaking my own record using R7 vertical—no other antenna, no amplifier ... PY2NY.

Was lucky to find nice conditions on 15m in RA3-land after many years of waiting. Have got joy ... RA3XO. We've just finished the construction of 3-el Yagi for 80m 3 hours before the contest began. Antenna worked fantastic! It was the first time for us we've made QSO in contest on 80m with 6D2X, zone 6 through big pileups USA, KL7Y, long path 3 zone W6RJ ... RU1A. 80m is a real band ... S50A. Better than last year on 10 meters! Couldn't work zones 6 and 29. No aurora. Funny

What a thrill to break the LP record! This contest was action-

Station Operators Multi-Op Single Transmitter

4U1VIC: DJØIP, DJ1AT, DL1MGB, DL3NCI, DL5RDO, DL5RMH, DL6RDR, DL9NEI, S57NW. 8Q7DV: UA9CI, UA9CDC, UA9CDV, UA9CLB, UA9CFF, UA9CKP. 9A5D: 9A3DU, 9A3NY, 9A4NC, 9A4SG, 9A6DX, 9A6KKB. AA2FB & K20MF, AA3JU & WF3H, AE2F & WR2I, AH2R: KH2/JHØUSD, KH2/JRØBQD, JR70MD/WI3O. CE3F: CE3/ SM3SGP, CE3FIP, CT3FN & CT3/DL2HYH, D44BC & DL2OBF, DK7YY, DFØCI: DL5ZL, DL8AKI, DFØXG: DL4FCX, DH8MCB, DJ3XG, DJ6OT & DL1EFD, DL1EFO, DKØFFO: DL1BZA, DL28WM, DL7UGN DKØTZ: DL1SBF, DL4AAE, DF5EN, DKØZG: DJ5WG, DL6MPG, DL8CYG, DL8MUG, DK1II & DL5EBE, DK5MV & DL7MAE, DLØAO: DJ3TF, DJ5RE, DJ6RN, DK1RP, DK6NJ, DL6RDE, DLØBO/P: DF2CH, DJ8BD, DL3DAZ, DL4DZ, DN1DF, DL2NBU & DL4RDJ, DL6RAI, EA5BY & EA3CB, EA5ABE, EA5BXT, EA5EU, EA5FID, EA5GRV, EA5KW, EA5SM.

EA6IB: EA3AIR, EA3AJW, EA3ALV, EA3DU, EA3GGO, EA3KU, EA5BM, EA5ZF, EA6ACC, EA6FB. ED7UR: EA7BJV, EA7ESH, EC7AEN, EC7DZD, EC7AJL. F5KPG: F5SDT, F5TLF, F6IFY. F5PED & F5CW. F6ENO & F6CEL F6DKV F5AKL. G3TMA & GØWAT. GM8C: GM4WLN, GMØKMD, GMØRLZ, MMØBSM, GMØKWL, GMØAZC. HA1KRR: HA1ZZ, HA1ZN, HA1XU, HA1XO, HA3KW, HA1DRR. HG1S: HA1TJ, HA1DAE, HA1DAC, HA1AH, HA1DAL HSØAC: HS1BZY, HS1CKC, HSØSCK, HSØGBI, HS6NDK, E21EIC, E21ENF. HS5AC: HS1NIV, HSØOAG. II3T: IV3TAN, IV3TRK, IV3YYK, IV3SHF, IV3OWC, IV3ZLC, I3BLF, IK2NCJ, IK2JUB. IK10BT & IK1LWL, I1NVU, IK1CLP, I1WXY, IO2A: IK2HKT, IK2CIO, I2IFT, IK2AHB, IK2PFL, I2CZO, IO2L: IK2NCF, IK2PIG, IZ2AAJ, IU2C: Club. IY2ARI: IZ2AVK, IK2UCK, IK2XYU, IK2BUF, IK2NVU, I2MQP.

JA1YQH: JI7GBI, JRØEFE. JA2ZJW: JM2NFQ, JE2PCY, JH2CMI JL2ICO. JA9YBA: JR9QNJ, JFØEGG. JE2YHS: JA2OLJ, JE2WWB JG2NUD, JR2JVR. JF2SKV & JE6MYI. JH7PKU: JH7PKU + JA9SSY JI1CUP, JN3PYO, JO1BMV, JI2ZEY: JA2BIV, JA2BIL, JM2CCL JI3BFC & JF3GKE, JJ1ZXE: JA1RIZ, JG1TCB, JL1RUC, JQ1SQI. JP10GO. JR1ZTT: JK1JHU, 7L1ETP, JM3CRK, 7N3PZJ, J02HK0, 7L3COP, JRØUUU, JRØXHL, 7M4AZB, JM4HHH, JHØKHR, K.Hiromi and Y.Megumi, JY90J & DL5MBY, KØZM & KØVXU, K1AR & K1EA W2RQ. K1ZZ & K1RO, N1RL. K2TE & K1HL K2XR & WB2BHC WB2WIK, K2OWR, N2YFH, K3PH & W3MF, K3TUP & KJ3L, ND8L WA3SES, WA3HAE. K5MDX & WQ5L, W5UE, N5FG. K6ANP & N6AD. K70N & NU71, K8AZ & K8BL, K8MR, K8NZ, K8PP, W8CAR, W8GN W8KIC, KG8TS, KO8M, N8TR, W1MD, WB8K, WT8C. K8LX & K8GM N8EA, WA8ZDT K9KJ & W9YYG. KA1GJ & K1VR. KBØVVT & KGØUS. KG6OK & N6HC, W1HIJ, AA6PW, KI6X, KQ6ES, KJ6ZH, KA6SAR, KH7R & KH6ND, K1ER, K9PG, K9NW, WE9V, ND3A, K5TSQ, AH6LV, NH6XO AH60Z, AH7R, KH7L, KL7Y & WL7E, WA2GO, KL7U, KQ4QM & KF4KL KVØQ & NØNR, W7XM, AEØQ. LA1K: LA7UJA, LB7JE, LB7VE. LA8W: LA4DCA, LA8SDA, LA9EEA, LA9HW, LU8XW: LU3XQ, LU6XQI LU6XQG. LW6EFP & LW1EXU, LW9ETY, LX/DL4SDX & DL5SEJ, DL4SDW, DL8SCG. LY3AV: LY1CQ, LY1CX, LY3BP. LZ1AQ & LZ1ABC. LZ5Z: LZ1AX, LZ1UQ, LZ1BMV, LZ1HST, LZ3FN, LZ3FR, LZ3SM, LZ4AX, OK2DF, LZ6A: LZ2EG, LZ4BC, LZ2HR, LZ2VO, LZ9A: LZ2DF, LZ2EV, LZ2HM, LZ2JE, LZ2PL, LZ2PO, LZ2PS, LZ2WF, LZ3TX LZ4UU. NOIJ & AAOBY, WJOM, AAOAW, AAOSI. NOLM: WOETT, WØNT, NØNI: NØAV, NØAC, KØRX, KØKD, WOØV, WØFLS, N1AU & WC1D. N2LBR & WA1KKM, N2NU & K2WI, W2REH, WB2REM, N2SS & N2MT. N3RS & N2SR, N3ED, N3RD, N3OC & WR3Z, N4RV & N4RA KT4W. N8RA & NJ2L. NE3F & K3ATO. NY3M & Dave Long. OH5M: OH5CW, OH5MLH, OH5UX, OH5TQ. OH6NIO & OH6KZP. OH6X: OH6UV, OH6MW, OH6NJ, OH6KSR, OH6MSZ. OH7M: OH4LYX, OH4XX, OH6LNI, OH7MS, OH7MHL, OH7KIR, OH7KD, OK1KCF: Club. OK2KDS: OK2VWB, OK2HIJ, OK2-22266. OK2KOD: OK2BNX, OK2BJ. OK5W: OK1AEZ, OK1CF, OK1WF, OK1TA, OK1FKD, OK1DDO, TA2ZW. OK1JR. OL2A: OK2PDK, OK2HBY, OK2PEM. OL3A: OK1AY, OK1CM, OK1DRQ, OK1DX, OK1FCJ, OK1FJD, OK1FWM, OK1MR. OL50: OK1HRA, OK1FLC, OK1AYE, OK1FFU, OM3A: OM3CGN, OM2DX OM6TY, OM7RU, OM8AM, OM8AW, OMØWR. OM8A: OM3RM. OM3GI, OM3LU, OM3JW, OM3EA, OM3XX, OM5RW. OT8K: ON4ON. ON5DI, ON5SY, ON6HH, ON4ADZ, ON7PQ, ONL-39Ø8, ONL-4531 OT8P: ON4GO, ON4LAM, ON4LDJ, ON5OO, ON6AH, ON6MH, ON6VL, ON6QR, ON7PC, ON5AV, Visitors ON5AV & ON4LZ PA3HBB & DF5RF. PI4CC: PA3ALK, PA3BSQ, PA3EPD, PBØAIT, PBØAIU, PI4COM: PA3BBP, PA3BWD, PA3CAL, PA3EBT, PA3ERC, PA3EWP, PA3FDO, PA3GBO, JH9GGH. RKØSXF: RUØSN, RUØST. RK3AWE: RU3DGD, RK3FM, RA3FF, RK3FT, RK3PXP: RW3PN, UA3PNO, UA3PBE, RV3PE, UA3PMT, UA3PMW. RK3WWA: UA3WU, RV3WW, UA3WGA, RA3WDK. RK4CWA: RA4CO, RW4CG, RA4CTR, UA4COM, RK4WWA: UA4WA, RW4WA, RK4YYM: Club, RK6AYN: UA6AH, RU6BP, RN6BP, RK9AWN: RA9AA, RA9AC, RA9AX, RN9AA, RZ9AW, UA9AR, RK9CWW: RZ9CO, RU9CO, RA9CMO, RA9CKO, UA9FQY, UA9CDT, UA9CIR, RK9CXM: Vlad Kaliichenko, Arkady Medyakov, Oleg Khabarov, Serge Bankin, RK9KWI: UA9KJ, UA9KDZ RM6A: RN6BN, RA6CM, RA6CO, RA6AX, RX6BA, RW6YY, RN3R: UA3RAR, UA3RA, UA3RJ, RU1A: RW1AC, RV1AW, RU1AA, RN1AM, UA1ARL, RX1AA, RA1ARZ, R-1400, Alex, Vadim, RY9C: RW9CF, UA9CGA, UA9CR, UA9DD.

RZ9AR, RZ9AZ, UA9BA, UA9AJ, UN4L, UN9LG. S5ØG; S51F, S56M, S57AW, S57MW. S52C: S52E, S52F, S510, S52P, S580. SK2AU: SM2VHD, SM2ODB. SK6FM: SM6BGA, SM6DYK, SM6FKF, SM6LJU, SM6MCN, SM7BUA. SNØKRT: SP9ADU, SP9EMI, SP9UXL, SP9-1753-KA. SP1KYB: S01DNJ, S01EIU. S06Z: SP3ASN, SP3HRN, SP3RBI, SP3RBR, SP6HEQ, SP8NR, TA/DL5YM & DL5YL, DL1CW, TM2Y: F6BEE, F6ARC, F6FGZ, F6FVY, F5MUX, F5NLY, UA90XC: RW90X, UA90SV, UA90QA. UD6M: UA6LO, UA6LV, RV6LNA, UR5MVZ, UA6LFQ, RN6LG, RU6LG, UA4AJF/6, UT6IZ/R6. UR3IWA: UR5IFB, UR3IBM, UR5IFX, US2IM, US2IES, US7IM, UY3IM, UR4LWY: UR5LJC, UR4LQA, US-L-1046, UR4LZA: UY5DV, UR4LEP, UR4LEQ, UR4MWU: UR5MB, UR0MM, UR4MEU, US5MAX, UR5MIA.

UT3IZZ: UT3IW, UX3IW, UT3IT, UA9KO, UX3IA, UT7Z: UR52MH, UR7ZZ, UTØZZ, UT1ZZ, UT4ZO, UXØZZ. V63X: WA1S, K01F, K1XM VE6AD: VE6AMR, VE6CIZ, VE6KC, VE6SI, VE6ZE, VE6BIR, VE6JKZ VE6RTL, VE6TC. VE6SV: VE6EX, VE6EKP, VE6EZ, VE6AKY, VE6NTF, VE6NAP. VK9LX: K6KM, N4RU, NØTT, NM7N, VK2ICV. VQ9IO: VQ9JT(K5DIY), VQ9QM(W4QM), VQ9SF(N5SF), VQ9SS(N6SS) VQ9ZX(K7ZX), VQ9MG(KB8YHV), Baran. VU2WAP & W1NN. W1NR & W1BK. W1SRG: N1XYR, KE4GI. W2CG & K2WJ, W2NO. W2RE & AA2DY, N2IX. W2SEX: K2YW, K2ZR. W4PRO & WB4DNL, W4HIR. W6XR/2 & N2AU, W7LT: K7TJR, K7ZUM, AL7W, WAØDIM, W7VJ: Others. W8ZA & WD3A, K8OQL, N8II. W9JA & K9GY, K9JY, N9AW, W9VU, W9XT, WG9L, WN9O & W9IU, WR3L & N3YHC, WXØB/5: AD50, NM5M, N5NU, K50T, AD4PU, K5GA, YT1Z; YT1WN, YU1YR, YU1PD, Dragan Manojlovic, Ivan Petkovic, Sanja Jocic. YU1HFG: YU1ML, 4N1FTD, 4N1FMN, 4N1DX, 4N1YL, 4N1FYL, YT1SA, YT1PNR. YU7AL & YZ7EM, 4N7RGH. YZ7A: Lacy, YU7CM. YZ7W: Club. ZM2K: ZL2AZ, ZL2AGY, ZL2BA, ZL2BSJ, ZL2ST, G4PIQ, ZL2DX.

Station Operators Multi-Op Multi-Transmitter

5V7A: G3SXW, G3VMW, G3ZEM, GM3YTS, G4FAM, G4BWP, G4ZVJ, K5VT, KC7V, KY7M, GY2A: K2KW, N6BT, N6TV, N6BV, AF7Y, K7CO, W4SO, KE7X, AG9A, W9QA, A61AJ & KE3Q, PA4AO/T94S, T93Y, T97M, W3UR. BWØR: BV2KI, BV2KS, JH3GCN, JP1RIW. DFØHQ: DK8YY, DL1AUZ, DL3ALI, DL3OI, DL3TD, DL4ALB, DL5ANT, DL5AXX, DL5LYM, DL5MX, DL7URH, DL7VOA, DL8WAA, DLØCS: DF1LX, DF9LJ, DJ5LA, DK2OY, DK6WL, DK8LV, DL1QQ, DL8UD, DL8WPX, DL9LBA, HA1AG. DLØKF: DL4LBK, DJ3UL, DJ6TK, DJ6TN, DJ7SW, DL9LBA, HA1AG. DLØKF: DL4LBK, DJ3UL, DJ6TK, DJ6TN, DJ7SW, DL8PY, DL3HAX, DK3UA, DF4PA, DL3LBX, DL5XJ, DL2ZT, DF3LZ, EA4ML: EA1DAV, EA4AHD, EA4AKQ, EA4AMO, EA4ET, EA4KA, EA4MC, EA4TX, EA7WA, EB4AKI, EB4EPJ, EC4AGN. EA9EA: EA9AI, EA9AZ, EA9EU, EA9GK, EA9KB, EA9UG, EA7DPU, EA7GTF, EA7KW, EA7TL, EA5FV, EA5RS, EA4KR, EA2CLU, EA1AK, ES5Q: ES5MC, ES5MG, ES5QX, ES5RN, ES5RY, ES7RE. EW1WN: EW1FV, EW1MN, EU1CO.

HG6N: HA2RX, HA5BSW, HA6ND, HA6NF, HA6NL, HA6NQ, HAGNY, HAGOB, HAGOI, HAGON, HAGOY, HAGPX, YO5BRZ, J3A: NJ1V, W5UDA, JK3GAD, W1WFZ, N9KAU/2(JF3NRI), K2KQ, J45T: SV5TH, SV5VR, SV5ADD, SV5BYT, SV5BYV, SV5DDP, SV5DZS, SV5DZT, KB4PMS, G40BK, J6DX: ACØS, K8NOZ, K9JE, K9LU, K9MMS, KI6T, N2GA, N6JRL, N8BJQ, N8NR, N8SM, N9AG, S5ØR, W8ILC, W80K, W80ID, WØCG. JA1YPA: JA1PEJ, JF1MIA, JH1HLC. JA1YXP: JE1CKA, JF7TFK, JG4KEZ, JG7PSJ, JHØNZN, JI2DLF, JL2FJA, JM1UWB, JP10GL, J018RW, N3NOL, H.Masuda. JA3YKC: JP3PZD, JS30GO, JG4LSR, JJ4HWC, JL4CVB, JE5DTS, JE6EKC, JL6BMJ, JP6RBN, Sakusha. JA4EKO: JE3MAS, JG3KIV, J 30PA, JA4EKO, JF4ETK, JF4FUF, JG4CLV, JH4NMT, JH4VDP, JN4FEU, JR4ISF. JA5BJC & JA5FDJ, JA5JCC, JA5THU, JH5RXS, JR5JAQ, JR5VHU. JT1A: JT18H, JT18V, JT1CD, OH1RX, OH2BH, OH8PF. K1KI & K1CC, KM1P, W1RM, W2XX, W1NT, N2YHK, K1RX & K1EPJ, KR1G, N1TO, AA1SI, KF1V, K10Z, K2LE & W2AX, W2LK, NB1B, N2UN, N1BB, W1MA, W1VE, W1FJ. K3II & K3CT, K3TEJ. K3LR & W2YQ, K3UA, K8GL, N2NC, N2AA, K3EST, N3RA, KA3JWJ, W9KNI, K9VV, K8CX. K4VX & K2VV, N5DX, K5GO, K5LG, KM5G, K9BGL, N9JF, KMØL, KØVBU, NSØZ. K8CC & AC8W, K8DD, K8JM, K8MM, K9TM, N8COA, W8MJ, WD8S. KB1H & AA1CE, NB1U, K1EBY, KB1DFB, N1XS, K1NG. KB1SO & N1SNB, W1GO, K9NS; AA9D, K9BG, K9DX, K9HMB, K9KM, K9PPY, K9PW, K9QVB, K9RS, KS9U, KS9W, WV9T, KC1XX & KM3T, K1GO, K1DG, N1RR, N2IC, T93M, Christine. KV1W & K1IR, LY5A: LY2PAJ, LY2FY, LY1BA, LY2CO, LY4CW, LY2KW, LY2PX, LY2IJ. LY7A: LYR-346, LYR-728, LY2BMX, LY2OC, LY3DA, LY2FN, LY3KS, LY3HD, LY4AA, LY2KZ, LY2AO, LY2NK. N2BIM & K2BM. N2MM & AA2WN. NI5M & K5RT. NJ4F & K7SV. K4EC, WA4JUK, K1SE, K4GMH, K5IMC. OH1AJ: OH1JM, OH1MKT, OH1WR. OH2U: OH1JT, OH2BVI, OH2BZY, OH2HE, OH2IW, OH2JA, OH2RA, OH2XX, OH6CT, OH6DD, OH6EI, OH7BX, OH7JR, OH8KXK. OL7W: OK1DUT, OK1FUT, OK1VBA, OK1FDR, OK1DRY, OK1FHL OZ5W: 021FTU, 023W, 029Y. 025WQ & 021BIZ, 023PE, 0232W. P3A: RA9JX, UA3DPX, RA9JR, RZ3TX, RZ3QU, UT7QF, RW2F: RA2FA, RA2FZ, RN2FA, EU1MM, UA2FB, UA2FF, UA2FJ, UA2FM, UA2FP, UA2FZ. SKENP: SM6FUD, SM6BUV. SL3ZV: LA8ZJA, SMØTGA, SM2CEW, SM2EKM, SM2EZT, SM2ODB, SM3BDZ, SM3CER, SM3CVM, SM3GSK, SM3JLA, SM3OJR, SM3VDX, SM5CLE, SM3EQF, SM3HFD, SM3MXR, SM3PXO, SM3UKE, SM3SZW, SM3UQD. SM5HJZ & SMØGNS. TI1C: TI12CF, W6NV, N5RZ, N5ZO, N6TJ, K6NA, N6CW, N7BG, N7NG, OH2KI. VE3EJ & G4VXE, UT4UZ, VA3NA, VE3FU, VE7CC, VE7NTT, VE7ZO WØAIH/9: KB9S, KTØR, NE9U, KØTG, KUØJ, NØSTL, WAØRBW, KMØO, WRØDK, WØUC, KØAD. W3EA & W3CF, W8FJ, WB3FIZ, WO3E, WT3O, WU3M, W3EA & W3CF, W8FJ, WB3FIZ, W03E, WT3O, WU3M. W3EEE & N3BNA. W3FRC: N3MKZ, WA2VYA. W3LPL & K1HTV, W2GG, K2YWE, ND3F, AA3KX, K3LP, K3MM, K3MOH, K3RA, K3RV, KD4D, K4ZW, K6AW, W3MM & W2YC, W3FV, W3PP & AA1K. KE3ZR, KS3F, KW3Z, NW3Y, NX3A, W4MYA & K4BAM, K4GAU, W4HZ, W4HJ, WA40DM, WU4G, Lilly. W6BA & W6GA, W6KK, AD6DO, K6AM, N6AW, N6KI, N6RT, W7RM & KI7Y, K5ZM, N7WA, NØAX, N7EPD, WJ7R, K7NT, W7BX, KK7GW, KR7X, WG7A, N7OU. W7CAJ, DL6UST, W8AV & K3JT, K4LT, AF8A, K8KM, K8RF, KU8E, N8DCJ, W8RZ, W8WTS. W01N: K1TTT, K1TWF, K1WD, KC2CIT, KG2JZ, KB1W, N1RHY, N1GA, N2TX, XZ1N: WA6CDR, N5IA, AF70, N7MB, K7SP, WF5T. ZP9X: PY2TI, PY58I, ZP9XG.

	GORDON WEST
ł	HAM TEST PREP TAPES
	BOOKS SOFTWARE VIDEOS
•	Prepare for your ham test with "Gordo"
	WB6NOA as your personal instructor.
i	• THE THEORY on audio cassettes
•	No-Code Technician (6 tapes)\$29.95
ī	General Class (2 tapes)\$ 9.95
•	Advanced Class (4 tapes)\$19.95
I	Amateur Extra Glass (4 tapes)
	Learning CW (0-7wpm 6 tapes) \$29.95
	General CW (5-16wpm 6 tapes)\$29.95
1	Extra CW (10-28wpm 6 tapes) \$29.95
•	STUDY MANUALS by "Gordo"
I	No-Code Technician (2&3A)\$12.95
	General Class (3B)\$11.95
1	Advanced Class (4A)\$11.95
:	A IPM COETWARE with manual
ł	No Code Technician (2834) \$29.95
I	Tech./Tech+/Gen. (+ Code.Windows) \$49.95
•	General Class (3B+Code, Windows) \$34.95
I	Advanced Class (4A + Code)\$29.95
î	Ham Operator (NovExtra + Code)\$69.95
•	Morse Software Only \$12.95
T	VIDEO VHS with 2&3A manual
	No-Code Tech Video Course\$29.95
	Add \$3.00 shipping 1st item, \$1.50 each additional
	Priority Mail 2-3 day service available
	VISA, Masterbaid, Discover & AMEX Accepted
1	The W5YI Group, Inc.
•	P.O. Box 565101 Dallas, TX 75356
I	Call Toll Free 1-800-669-9594
1	

CIRCLE 80 ON READER SERVICE CARD

RZ1AWO: UA1ASG, RA1AIM, KB2WKC, UA1ACC, KB2WKD, UA1AOF, RZ4SWM: UA4SCB, UA4SBL, RZ9AZA: RU9AN, RU9AZ,

WORLD

Single Operator All Band

P4ØE	14,372,964
EA8EA	.13,717,801
HC8N	.12,971,803
P40W	.12,108,798
CN8WW	.11,904,984
8P9Z	9,991,863
C4A	9,904,510
A45XR	9,067,345
3V8BB	8,589,180
6V6U	8,127,504

28 MHz

ZW5B	1,991,895
LT1F	1,824,312
ZY2DX	838,532
HC2SL	837,774
LU4FPZ	
H2ØA	768,405

21 MHz

5X1Z	1,361,360
9Y4VU	1,222,485
5B4AGC	1,139,608
CX5X	935,375
ZV5A	833,671
K2SS/1	770,355

14 MHz

_		100		
		<i>r.</i>		
-	- C - C - C - C - C - C - C - C - C - C			
- 21				
		~		
	-		10.20	
	_			
		_		

/OK1AUT	1,456,400
K2WK	1,007,781
OHØZ	901,230
OK1RF	852,488
GM3POI	820,080
DJ7AA	768,768

7 MHz

V8A	952,416	
9A9A	908.694	
OT8T	772.530	
9A5Y	734,570	
LZ5W	639.912	
OH9DX	608.548	
3.5 MH	z	
IH9/OL5Y	671,703	
XJ1JF	497,280	
S50A	458,738	
SN3A	437,904	
W1MK	413,576	
5B4/EU1AA	412,482	
1.8 MH	z	
VA1A	246,238	
IR4T	159,654	
9A5W	158,652	
4X4NJ	144,045	
S50U	134,784	
OM5ZW	117,771	
Low Pow	or	
All Ban	d	
V26K	185,562	
N5TJ	157.053	
W2TZ 2	678.662	
S59AA	595.303	
XO7X	584,983	
LY3BA	543.038	
W3EF	401.695	
HA1CW.2	331.648	
T95A	297.344	
KM1X	282,097	
28 MHz		
CX5AO	887,556	
WP2Z	806,124	

21 MHz

E/

L

EA8NN	545,100
9A6A	494,025
IK4DCT	490,196
CT1BQH	
LU5FF	
UA4LM	

14 MHz

VK2APK	442,566	į
S58AL		I
CX9AU		-
EA3BCM		1
IT9XUC	320,320	į
JR4PMX/1	300,960	1

7 MHz

EA8CN	
HI3K	
LZ4ZP	294,857
4L8A	294,210
IQ7A	292,420
UAØCM	274,500

3.5 MHz

UA9JLJ	166,200
TA3D	163,846
UUØJM	123,250
RA9AE	119,935
HA8RH	110,865
UT7CC	107,507

1.8 MHz

HA3MQ	49,192
EU1AZ	
EI7IU	31,507
YU1RA	
Y20U	
UXØHA	

QRP

All Ba	ап	d	
A2SX	1	,002	822
6MU		.857	395
/2FE		.795	874

N1TM701,679

N7IR.....569,192

NØKE/KH6 532.575

JR4DAH.....528,363

Assisted

All band

K3WW.....7,963,764

KI1G.....6,477,468

K2NG5,951,043

K2TW 5,685,240

WP3R5.495.235

KH2/N2NL....5,406,660

N3AD4,964,695

W2UP4,695,670

RZ3BW4.642.688

Multi-Operator

Single Transmitter

K1AR12,063,114

TM2Y10,357,360

N2NU9,313,019

K8AZ9,259,470

Multi-Operator

Multi-Transmitter

EA9EA29,532,750

TOP SCORES

USA All Band

V1KM	7,379,711
/4AN	7,141,453
1ZM	7,119,308
/9RE	6,875,625
1TO/4	6,293,104
Q2M/1	6,112,282
2NT	6,086,220
3ZO	6,054,048
2LT	5,831,100
1RU	5,214,551

28 MHz

N4BP	483,705
K4WX	422,919
K9IG	415,552
W6YA	371,159
W6NL	359,077
W9WI/4	339,456

21 MHz

K2SS/1	770,355
WØUN	713,565
NN4T	584,824
W9LT/8	535,804
WØSD	
K40AQ	443,022

14 MHz

<2WK	1,007,781
N9OF	382,356
(2BA	
V8UD	168,750
AD7U	149,643
W8TWA	73,830

7 MHz

W5UN	5	4	2	0	2	5
K8DX	5	3	2,	1	0	5
W3GG	3	3	4.	6	3	2
KAOD	4	e	4	A	0	0

K2MFY1	59,453
N2001	56,500
K2ACW1	43,507
K9WA1	14,840

21 MHz

I4CT	.294	602
I4MO	282	218
9RN/M	213	705
F9DX	.122	884
AØTY	.122	815
E9F/6	.113	870

V8UMR	97,030
VB2DVU	94,764
19WI	17,760
VT8P	15,643
6CEO	8,880
9GBB	8,800

14 MHz

7 MHz N5DO.....102,340 K4LDR51,552 W5CWQ......34,191

1	.8 MHz	
K9MK		2,640

QRP All Band 857,395

N6MU	857,395
N1TM	701,679
K1RC	
W3ZZ	
N7IR	
KV8S	503,750
N9CIQ	
WA3NKO	
AA1CA	203.058

EUROPE All Band

S58

G4

GU

DL

OF

GIØKOW	6,961,240
S58A	6,628,059
G4BUO	5,073,750
GU6UW	
4N9BW	
DL4NAC	4,872,882
GØIVZ	4,722,406
OH1MM	4,374,240
OM5M	4,157,721
OH5LF	

28 MHz

9HØA......840,434726,193511.932487,494

MHz

Τ	769,484
1IAO	723,492
14YXI	672,175
1F	607,338
6A	
17M	584 150

14 MHz

OH02	901,230
OK1RF	852,488
GM3POI	820,080
DJ7AA	768,768
SN2B	759,330
YT7A	

30

7 MHz

9A9A	908,694
OT8T	772,530
9A5Y	734,570
LZ5W	639,912
OH9DX	608,548
S57AL	

IK4DCT	
CT1BQH	
UA4LM	
OH5BM	
EI6FR	

14 MHz

S58AL	.388,	680
EA3BCM	.366.	560
IT9XUC	.320,	320
ES2RJ	.282	757
RU3HD	.274	822
RW4WM	.194	100

7 MHz

LZ4ZP	
IQ7A	292,420
S54A	217,800
S53F	175,934
YZ7ED	162,265
LY2BM	158,136

3.5 MHz

122,750
110,865
107,507
95,700
86,102
85,025

1.8 MHz

HA3MQ	.49	192
EU1AZ	.47	047
EI7IU	31	507
YU1RA	28	535
LY20U	26	605
UXØHA	25	264

QRP

All B	land
A2SX	.1,002,822
Y2FE	795.874
M3CCT	
L3KVR	

97,030 94,764 17,760 15,643 8,880	GW3YDX G3MXJ GW3WVG T99W IQ4A
8,800	21
02 340	IR4T DL1IAO GM4YXI

OH 40 ON

9A9

NP3A477,	A61AJ28,014,492
KP3L468,	J6DX25,596,764
72 • CQ • Oct	her 1999

LU5WW689,568

9A7R536,580

72 .

KØOD1	Í,	61.	432	
W6KP1	t	56	457	
W6YJ1	t	04	448	

3.5 MHz

W1MK	413,576
K1LZ	236,529
WB9Z	120,797
K5NA	94,581
N2GC	77,616
WØSF	

1.8 MHz

W8LRL	
W8UVZ	19,532
W2VO	
K1VW	9,028
K4TEA	5,130
W9PNE	1.740

Low Power		
All Band		
N5TJ	3,157,053	
W2TZ	2,678,662	
N8AA	2,474,012	
W3EF	2,401,695	
KM1X	2,282,097	
NA2U	2,213,580	
K1VUT	2,139,800	
WT10	1,741,560	
K5KLA	1,437,000	
WD5K	1,420,923	

28 MHz

WB4	TDH	 208	,372
W3E	P/1	 167	,040

K3WWP 160,800

Assisted		
All	Band	
K3WW	7,963,764	
KI1G	6,477,468	
K2NG	5,951,043	
K2TW	5,685,240	
N3AD	4,964,695	
W2UP	4,695,670	
K1TI	4,649,790	
K5MA/1	3,961,105	
K5KG/2	3,780,392	

Multi-Operator Single Transmitter K1AR12,063,114 N3RS9,681,880 N2NU.....9,313,019 K8AZ.....9,259,470 K1ZZ.....8,930,278

K3NZ.....3.586.593

Multi-Operator Multi-Transmitter

KC1XX	22,473,282
W3LPL	21,271,495
K3LR	20,897,569
K1KI	17,808,700
K2LE/1	13,276,122
K9NS	11,526,040

3.5 MHz

S5ØA	458,134
SN3A	437,328
SP7GIQ	343,476
GMØGAV	249,000
OH1MA	240,828
LA6YEA	209,677

1.8 MHz

IR4T 159,654 9A5W158,200 S5ØU.....134,784 OM5ZW117,771 LY3BS......96,720

Low Power All Band

S59AA.....2,595,303 LY3BA.....2,543,038 HA1CW 2,331,648 T95A2,297,344 DL2MEH 2,240,217 DL2HBX 2,100,324 YU7CB.....2.025.342 9A2EU1,997,082 YO3APJ 1,954,437 DKØMM 1,908,816

28 MHz

9A7R	536,580
9A1AA	330,544
SP3SUX	201,117
EI8GP	191,394
ER100	169,514
T99T	165,891

21 MHz

9A6A.....494,025

YU1LM......500.148 IØZUT......452,403 GØOGN......446,879 UR9MM......304,370

Assisted All Band

RZ3BW	4,642,688
DF3CB	3,640,994
M8Z	3,295,396
UT5UGR	3,235,392
YZ7AA	2,798,640
OK2FD	2,681,000
RZ3AZ	2,504,584
SM3EVR	2,450,682
DL70N	2,424,840
S56A	1,977,570

Multi-Operator

Single	Transmitter
TM2Y	10,357,360
EA6IB	9,522,048
RU1A	9,044,874
SQ6Z	8,775,480
DL2NBU	7,925,400
OM8A	7,360,440

Multi-Operator Multi-Transmitter

DFØHQ 18,897,540 OH2U......18,387,820 RW2F.....16,862,016 SL3ZV.....14,495,360 DLØCS 13, 194, 288 EA4ML.....12,587,520

C-31 XR The Magnum Tribander that has no equal Anything else is just an antenna

> Based on our proven C-3, multi-monoband, no trap design > Highest gain, superior patterns, stepped gain for stacking. > Wide-spaced 3el 20 & 4el 15, 7el on 10 mtrs, all full size > Single feedline OR individual feedlines, your choice > 5KW, 100 mph standard, 31' tapered boom > Less than 100 in/lbs mast torque @ 70 mph > 30" open space for side mounting > Fast, "plug and play" assembly

The C-31XR is truly the next generation in tribanders; designed for maximum performance on 20-15-10 mtrs, plus strength, ease of assembly, low mast torque, side mounting and stacking. The C-31XR is 3 monoband Yagis overlaid on the same boom. There is a wide spaced 3el 20, a wide spaced 4el 15 and 7 elements for 10 mtrs. The gain target to beat was our own C-3, which was shown to have the most gain across 20 & 15 mtrs according to independent testing by K7LXC and NØAX. We did it! The C-31XR exceeds the C-3 by 1.4dB on 20, 1.5 on 15 and 3dB on 10 mtrs. F/B and side nulls are exactly what you would expect; excellent. There is nothing better than the C-31XR.

Specifications: 31' boom, 14 elements, 85lbs, 10.5sqft, 100mph, 5KW, single feedline, no traps, all elements full size

CONGRATULATIONS!

6Y2A set a new Multi-Multi CW World Record using all Force 12 antennas, primarily verticals. This is especially impressive, as it is from a 2-point country, with 18,000 QSO's (on CW!!).

P40E (Jose, CT1BOH) operating from P43P's QTH (Jacob) used all Force 12 antennas, too, to set a new Single Op CW World Record. These are all Force 12 Yagis, an EF-180B rotatable 80 and C-4XL. More and more top stations are putting up Force 12 antennas.

Force 12 Inc. is now the exclusive manufacturer and dealer for Tri-Ex. Amateur Towers call us for the finest crank-up, free standing and guyed towers

Call or write for a comprehensive brochure on the Force 12 product line. The brochure includes true specifications and explanations of terms. For the best \$10.00 you will ever spend (\$12.50) w/postage), ask for the book entitled, ARRAY OF LIGHT (Straight talk about Antennas and Related Information). These 76 pages are a compilation of practical subjects, questions and answers, installation tips, operating helps and data on antenna design including a section on traps.

Force 12 - Proudly brings you the future. Electrically and mechanically superior. If it's riveted, it's a Force 12! There are more than 60 antennas to meet your needs and your dreams!

Antennas and Towers

Order line: 800.248.1985, Technical 805.227.1680, FAX 805.227.1684 Force 12 East: Natan Huffman, W6XR (607) 275-9747

Internet: force12e@lightlink.com www.force12inc.com

Why imagine the ultimate when you can have it?

FORCE 12, Inc. P.O. Box 1349, Paso Robles, CA 93447

CIRCLE 22 ON READER SERVICE CARD

Number groups after call letters denote following: Band (A = all), Final Score, Number of QSOs, Zones, and Countries. An asterisk (*) before a call indicates low power. Certificate winners are listed in boldface. (All country terminology re- flects the DXCC list at the time of the contest.) CWRESULTS	K2DM 256,542 343 92 194 KU2X 244,133 361 68 173 W2EZ 238,492 350 54 164 K2JL 234,240 340 60 184 N2UM 206,050 337 96 221 KE2VB 204,525 324 56 169 W2HCA 202,536 318 63 169 W2OMV 159,080 274 54 151 K020 141,321 327 49 114 W2BE 137,611 264 72 169 WE2Y 110,448 191 61 147	WC4E * 3,914,204 2632 145 457 W4RX * 3,654,864 2326 149 463 W4MR * 3,558,746 2244 138 440 (Opr. N4CW) W4PA * 3,555,681 2308 144 425 AA4S * 2,867,580 1965 131 403 N6AR/4 * 2,709,564 1804 136 436 K4LTA * 1,534,689 1402 131 376 AA4NN * 1,274,400 1255 111 289 W3VT/4 * 1,246,233 907 124 363 W4YE * 1,209,600 938 108 342	W5JRP 14 13,338 81 19 38 W5UN 7 542,025 1262 37 128 K5NA 3.5 94,581 334 27 86 W5EU 21,208 125 21 67 *N5TJ A 3,157,053 1976 149 452 *K5KLA 1,437,000 1046 132 368 *WD5K 1,420,923 1038 122 375 *N5AW 1,043,474 817 123 355 *KY5N 571,272 666 81 231 *W5GAI 356,655 433 85 210 *NN5T 230,463 365 77 184	N7UN 234,608 411 96 248 N7JXS 164,710 333 59 123 KC7UP 130,290 308 72 130 W7ZI 43,681 131 42 79 KI7LS 858 27 15 18 K700 28 245,737 785 29 108 K7NPN 21 193,664 617 31 97 NX7K 188,101 588 34 103 W8EQA/7 101,878 309 31 102 W7AYY 48,024 183 28 64 AD711 14 149 543 517 31 86
SINGLE OPERATOR NORTH AMERICA UNITED STATES W1KM A 7,379,711 4027 155 488 K1ZM * 7,119,308 3837 169 517 K02M/1 * 6,112,282 3424 149 500 K1RU * 5,214,551 3489 136 411 W1WEF 4,972,275 2972 148 467 K1AM 3,691,149 2472 134 417 KC1F 3,540,731 2282 130 417 W1UK 2,707,146 2043 116 387 K1ZR 2,682,211 2546 109 360 W1ZT 2,282,148 1469 128 433 WC1M 2,236,600 1922 102 320 KS1J 2,046,148 1842 104 332 K1YT 1,675,590 1240 113 392 W1TE 1,228,110 983 110 360 W0MHK/1 1,221,759 959 112 339 KG1D 1,014,475 1375 99 286 N1RJF 908,269 1121 92 261 W1XK 795,960 711 94 308 K1SM 605,320 591 101 269 K1SM 605,320 591 101 269 K1SM 605,320 591 101 269 K1SM 302,064 615 34 140 K1SM 302,064 615 34 140 K1SM 302,064 615 34 140	W2UDT 109,174 305 62 159 KG2BI 60,799 176 50 113 K2YR 48,910 139 53 93 N2LKF 35,910 150 36 99 W2OP 22,608 142 48 96 N2MR 21,400 81 39 61 K2FR 11,009 85 33 68 K2WB 312 8 5 8 KD2I 28 335,020 940 27 113 NA2X 128,385 342 29 106 K2WK 14 1,007,781 1955 39 144 K2BA 310,542 832 35 111 NA2X 128,3580 1704 111 356 WZVO 1.8 17,400 106 20 55 WZVO 1.8 17,400 106 20 55 WZVO 1.8 17,400 106 20 55 WZVO 1.8 17,401	N4XM 831,402 724 116 302 W8PC/4 772,148 690 100 303 N4MM 758,334 628 114 308 K4LQ 529,184 552 99 269 K4YR 455,175 513 89 226 K9HUY/4 357,870 424 78 224 N3JT/4 295,480 405 65 195 K4LM 249,033 304 85 238 W4IF 234,856 328 66 182 W4RW 152,672 266 56 152 K4LM 94,600 193 73 142 W4KYW 85,808 175 56 117 N4EK 69,440 194 52 108 W4ZYT 61,612 154 54 92 K6ETM/4 44,895 137 41 82 K4ZT 440,022 177 21 66	*AA5CK 208,427 369 86 171 *KN5L 100,926 234 59 130 *AF5Z 98,280 214 63 126 *WK5K 83,328 195 60 108 *AJ4F/5 38,316 134 43 81 *N5XT 31,152 110 41 77 *K5IUA 26,894 126 37 76 *K6AZA/5 20,235 97 43 52 *W5ZO 28 109,951 373 26 92 *W5WYN 42,873 163 25 68 *N5DO 7 102,340 321 30 89 *W5CWQ 34,191 156 24 53 W6AX A 4,417,426 2733 165 433 (Opr. N6IG) W6RU 3,141,840 2354 142 352 (Opr. KR6X) K6LA 2,851,800 2252 128 362 K6XV 1,367,409 1348 119 262 NW6S 1,066,720 901 122 350 AC6DD 596,400 682 115 240 WA5VGI/6 592,401 631 115 246 N6IC 557,550 580 110 240 K6NR 457,164 544 108 198 K6XX 415,548 647 94 144 W6FSJ 400,452 605 111 91 W6NKR 395,870 501 96 214 K6FO 382,109 444 113 210 K6GT 354,528 567 97 191 N6TW 322,624 432 95 189 W6KNB 289,413 437 84 159 K6III 259,854 411 95 174 WA6URY 159,796 320 71 111 W6NKB 141,075 264 76 133 K6WC 136,026 251 73 125 K76TT 130,548 191 65 107 W60V0 101,016 148 65 119 W60V0 101,016 148 65 119	W8AEF/7 3.5 18,675 130 23 52 *K7ZA A 1,031,274 908 124 290 *K7ED " 953,771 1035 107 222 (Opr. WA0FLY) *K7HBN 809,640 817 114 246 *N7AN 697.956 840 94 200 *N7RO 654.775 887 87 188 *K7ZZ 580.290 710 98 192 *AB7RW 254.130 485 65 132 *W7HS 183,744 300 78 154 *W7QDM 160,506 278 78 144 *WX7G 100,398 215 64 110 *W7ZMD 77.462 290 60 94 *K7JJ 66.248 170 73 123 *KN7T 56.048 177 54 70 *W7GD 77.462 290 60 94 *K7JJ 61.620 109 71 107 *WA20C6/7 41
K1SF 28 2.030 27 9 20 K2SS/1 21 770,355 1812 34 125 W1MK 3.5 413,576 1103 30 106 K1LZ " 236,529 831 25 98 K1VW 1.8 9,028 103 17 44 *KM1X A 2,282,097 1642 115 378 *K1VUT 2,139,800 1514 116 404 *WT10 1,741,560 1398 109 351 *W1ED 1,320,200 1076 108 352 *K1ND 1,257,580 1057 114 340 *N1WR 1 133,860 948 108 337 *K1HT 1,070,182 925 98 323 *WF1L 938,196 913 96 282 *WA1FCN 773,836 806 99 307 *K1VSJ 419,276 516 79 207 *KD1YN 404,735 524 79 226 <td>K2MFY 28 159,453 448 27 112 *N2OO " 156,500 452 25 100 *K2ACW " 143,507 406 28 105 *WA2RZJ 21 42,622 156 27 74 *WB2DVU 14 94,764 319 26 91 K3ZO A 6,054,048 3441 154 470 W3BGN * 5,008,964 2948 149 458 K0DQ/3 * 4,622,540 2814 139 459 WF3J 1.737.024 1277 123 375 W3MC 1.624,398 1379 109 338 AA3TT 1.452,632 1203 103 325 K3OSX 1.351,818 1097 124 353 W3GN 1.059,288 972 107 330 W3RJ 931,233 1092 96 243 K4JLD/3 824 140</td> <td>W3AU/4 111,186 403 35 107 N4IJ 14 47,726 208 26 72 K4VV "9,062 75 15 31 W40D 7 11,252 94 14 44 N4SLR 3.5 28,014 179 19 68 K4TEA 1.8 5,130 47 16 29 *W040 A 1.381,412 1093 128 354 *NA4K " 1,158,850 1016 125 348 *W4HR 979,925 789 121 354 *K4FPF 771,897 661 98 315 *K4IE 718,960 675 102 278 *N4PSE 578,614 628 99 287 *K7CMZ/4 369,360 516 86 238 *N8LM/4 353,601 468 90 213 *NATG/4 347,378 435 77 212 *K4MX 335,523 423 80 211 W</td> <td>AC6BW 90,545 236 70 129 K6ZM 75,078 291 50 79 N6IBP 68,250 152 70 112 N6VH 50,699 159 47 74 W6RFF 49,408 166 46 82 W6YM 37,700 136 36 64 W6MFC 30,956 113 41 68 NY6Y 11,913 75 24 33 W6YA 28 371,159 932 32 117 W6NL 359,077 1066 29 108 K6DB 318,816 854 31 113 W6DCC 92,800 287 29 87 K6MA 23,120 122 23 45 W6ISO 7,524 47 22 35 KC6X 21 201,150 532 34 116 N62B 188,985 525 32 97 K65E 87,312 313 30 72</td> <td>N8LBI 20,910 90 26 33 W9LT/8 21 535,804 1334 35 114 W8UD 14 168,750 643 33 92 W8TWA 7 532,105 1431 36 125 K8DX 7 532,102 141 50 W8LR 1.8 36,864 166 23 73 W8UZ 19,532 120 21 55 N8AA 4 2,474,012 1569 133 436 'W8BYJF 1,280,110 1147 120 310 'K8EP 955,269 838 115 298 'WU8A 309,225 405</td>	K2MFY 28 159,453 448 27 112 *N2OO " 156,500 452 25 100 *K2ACW " 143,507 406 28 105 *WA2RZJ 21 42,622 156 27 74 *WB2DVU 14 94,764 319 26 91 K3ZO A 6,054,048 3441 154 470 W3BGN * 5,008,964 2948 149 458 K0DQ/3 * 4,622,540 2814 139 459 WF3J 1.737.024 1277 123 375 W3MC 1.624,398 1379 109 338 AA3TT 1.452,632 1203 103 325 K3OSX 1.351,818 1097 124 353 W3GN 1.059,288 972 107 330 W3RJ 931,233 1092 96 243 K4JLD/3 824 140	W3AU/4 111,186 403 35 107 N4IJ 14 47,726 208 26 72 K4VV "9,062 75 15 31 W40D 7 11,252 94 14 44 N4SLR 3.5 28,014 179 19 68 K4TEA 1.8 5,130 47 16 29 *W040 A 1.381,412 1093 128 354 *NA4K " 1,158,850 1016 125 348 *W4HR 979,925 789 121 354 *K4FPF 771,897 661 98 315 *K4IE 718,960 675 102 278 *N4PSE 578,614 628 99 287 *K7CMZ/4 369,360 516 86 238 *N8LM/4 353,601 468 90 213 *NATG/4 347,378 435 77 212 *K4MX 335,523 423 80 211 W	AC6BW 90,545 236 70 129 K6ZM 75,078 291 50 79 N6IBP 68,250 152 70 112 N6VH 50,699 159 47 74 W6RFF 49,408 166 46 82 W6YM 37,700 136 36 64 W6MFC 30,956 113 41 68 NY6Y 11,913 75 24 33 W6YA 28 371,159 932 32 117 W6NL 359,077 1066 29 108 K6DB 318,816 854 31 113 W6DCC 92,800 287 29 87 K6MA 23,120 122 23 45 W6ISO 7,524 47 22 35 KC6X 21 201,150 532 34 116 N62B 188,985 525 32 97 K65E 87,312 313 30 72	N8LBI 20,910 90 26 33 W9LT/8 21 535,804 1334 35 114 W8UD 14 168,750 643 33 92 W8TWA 7 532,105 1431 36 125 K8DX 7 532,102 141 50 W8LR 1.8 36,864 166 23 73 W8UZ 19,532 120 21 55 N8AA 4 2,474,012 1569 133 436 'W8BYJF 1,280,110 1147 120 310 'K8EP 955,269 838 115 298 'WU8A 309,225 405
N2NT A 6.086,220 3461 152 493 N2LT * 5.831,100 3290 147 480 N2BA * 4.618,074 2892 142 449 N2RM * 3.097,326 2286 124 365 N2CU * 2.497,256 1657 131 410 W2EN * 2.060,068 1542 129 353 K2NV * 1.709,050 1238 124 390 K2FU * 1.529,122 1171 122 356 N2ED * 1.243,788 1109 120 349 K8FC/2 * 1.028,218 881 124 399 N2WLG 942,560 809 111 319 KW2J * 727,726 731 100 291 WA2C * 696,865 982 90 265 KE2WY * 673,728 675 91 261 K2CS * 359,984 495 80	*WF3M 618,336 724 64 240 *W3DAD 467,688 561 72 240 *W3TB 365,490 486 84 226 *NI3I 347,700 412 61 160 *NY3C 329,705 382 82 223 *W7FKF/3 307,230 424 50 245 *AD8J/3 216,450 362 53 172 *W3EVW 194,208 295 72 166 *N3UN 180,499 328 76 193 *N3UN 180,499 328 76 193 *N3UMA 140,526 220 66 156 *N9GG/3 107,198 225 55 127 *N3NZ 83,053 201 44 113 *W3TWI 78,400 210 68 128 *K3TG 40,920 121 49 75 *N3RW 28 17,496 126 22 50 *W3CP 21 106,480 325 26	*W4CAT 7,708 73 15 26 *N4CT 21 294,602 695 35 119 *N4MO " 282,218 792 34 112 *KN4V 2,574 276 18 48 *K4LDR 7 51,552 222 23 73 K5YAA A 2,959,691 1891 142 421 NA5B 2,251,855 1976 129 356 AC5KA 521,595 569 100 235 K5VG 436,150 512 82 243 K5YP 393,008 490 88 220 W5WMU 176,532 313 57 131 K5NZ 164,175 384 55 110 W5IBM 75,978 194 63 126 K5ZR 15,300 65 36 49 AC5RX 12,555 116 45 48 (Dpr. 7M4KSC) AE4PB/5 3,080 36 24 32 K5SZ 28 </td <td>*W6PLJ 30,674 122 38 60 *N6WR 29,832 137 41 47 *K06DJ 4,418 85 23 24 *W6EUF 28 63,690 203 28 82 *N16G 30,954 174 22 44 *KU6T 25,594 137 23 44 *AE9F/6 21 113,870 300 28 90 *W06DX 7,955 70 17 26 *K6CEO 14 8,880 92 21 53 N7DR A 2,568,104 1908 136 348 W7GG 2,053,425 1650 143 332</td> <td>WI9WI 1,996,749 1733 125 322 W9OP 1,546,232 986 137 420 K9ZO 1,494,954 1131 139 390 K9CAN 1,130,372 858 121 340 WA9TPQ 731,352 788 105 267 K9UQN 722,007 703 93 270 K9BWI 678,612 847 85 206 KI9A 327,915 462 92 223 W9KTP 119,054 385 70 171 AA9TK 14,364 65 22 54 N9WKW 1,025 257 72 133 K9IG 28 415,552 1008 32 119 W9GIL 100,838 346 26 101 W9OF 14 382,356 781 37 135 K9CJ 7 69,312 270 28 86 W9GXR 57,116 218 28 81 W9AV 1,20,797 457</td>	*W6PLJ 30,674 122 38 60 *N6WR 29,832 137 41 47 *K06DJ 4,418 85 23 24 *W6EUF 28 63,690 203 28 82 *N16G 30,954 174 22 44 *KU6T 25,594 137 23 44 *AE9F/6 21 113,870 300 28 90 *W06DX 7,955 70 17 26 *K6CEO 14 8,880 92 21 53 N7DR A 2,568,104 1908 136 348 W7GG 2,053,425 1650 143 332	WI9WI 1,996,749 1733 125 322 W9OP 1,546,232 986 137 420 K9ZO 1,494,954 1131 139 390 K9CAN 1,130,372 858 121 340 WA9TPQ 731,352 788 105 267 K9UQN 722,007 703 93 270 K9BWI 678,612 847 85 206 KI9A 327,915 462 92 223 W9KTP 119,054 385 70 171 AA9TK 14,364 65 22 54 N9WKW 1,025 257 72 133 K9IG 28 415,552 1008 32 119 W9GIL 100,838 346 26 101 W9OF 14 382,356 781 37 135 K9CJ 7 69,312 270 28 86 W9GXR 57,116 218 28 81 W9AV 1,20,797 457

74 • CQ • October 1999

Visit Our Web Site
*W9IL * 275,730 385 80 193 *AK9N * 249,255 429 73 188 *K9WX * 63,744 177 53 113 *N9NW * 46,150 130 39 91 *N9TU * 14,751 103 32 67 *W9RM/M * 13,588 70 32 54 *KB9MU * 10,480 72 30 50 *W9FHA * 9,153 84 21 60 *K9PY * 9,089 57 27 34 *WB9AYW * 3,350 46 17 31 *K9WA 28 114,840 348 25 95 *K9RN/M 21 213,705 536 30 105 *AF9DX * 122,884 359 30 94 *N4TZ/9 * 60,027 207 26 81	VE3BR 1,155 20 9 12 VA3RU 28 516,802 1500 30 109 VE3KZ 459,492 1370 27 105 VE3KZ 200,445 788 25 90 VA3KA 166,320 558 25 95 VE3KLM 13,038 122 15 38 VE3QAA 21 154,308 480 30 102 VE3WO 7 107,118 658 14 52 VE3KP A 865,908 1103 104 255 *VE3STT 700,572 916 77 239 *VE3OM 465,864 503 89	AFRICAN ITALY H9/0L5Y 3.5 671,703 1899 28 99 CANARY ISLANDS EA8EA A 13,717,801 6563 176 543 (Opr. OH2MM) EA8 /OH2BCI 3.5 107,756 636 16 63 EA8ZS 1.8 79,350 453 15 60 *EA8 /DJ10J A 1,130,058 1308 76 230 *EA8ASJ * 784,707 1774 58 173	RW9QA * 609,178 785 83 240 RU9DJ * 547,170 641 89 256 UA9XEN * 234,210 83 46 211 RZ9UR * 183,074 348 81 158 UA9XEN * 234,210 83 46 211 RZ9UR * 183,074 348 81 158 UA9OS * 76,076 179 63 146 RX9LW 28 100,144 467 22 66 RX9JC * 14,040 168 16 44 RA9JP 21 243,593 986 30 89 RU9WZ * 114,716 456 24 68 UA9JEP * 7,316 254 18 44 RX9SX 14 583,072 1436 36 116 RA9DZ * 297,346 940 33 101 RA9FF 7 40,768 175 23 68	ISRAEL 4X/OL7D 21 666,400 1486 38 132 4X4WN 3.5 211,200 1214 21 79 4X4NJ 1.8 144,045 605 22 77 *4Z5DB A 47,960 188 36 74 *4X /TF1MM 28 121,440 673 17 49 *4Z5FW 21 225,504 974 18 63 *4Z4TA 14 88,320 376 21 59 *4X1VF 3.5 23,171 170 7 40 JAPAN JH10GC A 1,979,356 1615 142 277 JA100W * 607,724 685 122 216
"W9DYQ 51,704 227 23 69 "N9WI 14 17,760 99 18 56 "N9G8B 8,800 63 14 36 "K9MK 1.8 2,640 38 11 22 KØRF A 4,029,435 2511 153 440 WPRO " 2,511 587 1597 159 400	*VE3GEN 267,028 452 61 180 *VA3RJ 150,331 242 71 168 *VA3SWG 32,451 172 34 53 *VA3JPM 17,386 222 35 79 VE4JB A 286,642 526 76 175 *VE4ME 21 30,444 128 28 58	*EA8AF * 4,312 33 21 28 *EA8BYL * 1,480 19 18 19 *EA8NN 21 545,100 1400 31 107 *EA8IN 14 11,985 80 12 34 *EA8CN 7 519,932 1484 29 95 *EA8NQ * 173,952 650 21 75	 RV9JR 788,389 1005 73 214 RN9XA 732,354 799 106 265 RU9CZ 440,220 499 98 250 RZ9WZ 370,800 565 75 225 UA9JMS 273,000 510 57 153 UA9JKT 206,388 484 53 129 RZ90U 28 213,060 979 23 83 	JA1HP * 411,247 556 98 191 JA1GTF * 289,541 406 115 196 JR1LEV * 211,974 379 88 118 JJ1VEZ * 157,710 281 82 128 JH1CTV * 74,800 202 66 104 J010ZI * 20,726 91 29 57 JH1YHS * 11,371 82 31 52
KØEU 2,495,724 1876 146 372 WØML 451,220 536 84 209 WØHW 414,090 468 108 213 NØRN 286,520 429 74 173 KSØM 211,905 312 77 178 WØYK 149,384 277 100 184	*VE5SF A 1,309,279 2041 99 214 *VE5CPU 100,492 384 54 94 *VE5AAD 21 73,130 454 22 49 VE6JY 3.5 4,050 83 11 14 *VE6BMX 21 186,784 856 27 77	IVORY COAST TU2MA 28 207,603 1286 24 75 LIBERIA *EL2WW A 1,570,426 1956 80 206 (Opr. ON4WW)	RX9SR 127,872 600 27 84 UA9SBC 20,865 135 18 47 "RA9MC 19,665 109 19 50 UA9WOK 16,280 131 17 41 RX9FB 21 214,743 582 31 110 UA9AB 98,900 350 23 77	JH1NXU 6,448 50 23 29 JS1KQQ 28 2,262 30 11 18 JA1YBK 21 421,200 1104 35 100 (Opr. JL1WFD) JJ1JRH 20,938 141 20 38 JA1BHZ 13,797 116 25 38 JA1YGX 4,905 74 19 26
KØHY 86,172 248 53 119 KØJPL 40,256 116 53 83 KCØCOP 31,392 129 43 66 KØXD 24,150 130 61 89 KIØE 15,210 115 24 45 WØUN 21 713,565 1682 35 122 (Opr. WØUA) % 501,234 1326 32 107	VE7IN A 269,720 527 81 139 VE7FJE 28 67,008 434 22 42 VA7A 14 445,248 1349 34 110 *X07X A 2,584,983 2830 135 282 (Opr. VE7AHA) * 28 62,031 451 23 46	*5A1A A 450,865 779 48 145 MALI TZ6DX A 1,514,760 2004 65 195	UA9BS 14 281,484 805 32 94 RZ9AN 115,440 425 29 75 RA9AN 7 43,384 209 23 65 UA9JLJ 3.5 166,200 773 22 78 RA9AE 119,935 607 15 70 RW9AV 88,506 501 13 53 UA9FGJ 21,015 165 7 38	(Opr. 7L4WEZ) JR1XFS 14 267,502 713 33 98 JK1LUY 24,030 110 27 62 JH1RFM 7 135,176 406 32 90 JF1NZW 42,024 160 31 72 JK1AFI 39,121 198 22 49 JA1XEM 13,939 103 19 34 7M3PSK 5588 52 17 27
(Opr. WØDB) WØRA 105,240 349 32 88 KGØUA 102,684 288 31 98 KØOD 7 161,432 484 32 104 WØSF 3.5 34,040 147 23 69 KØCS 1.8 1,408 34 13 19 WØRXL 1,344 28 11 13	CHURA CAYMAN ISLANDS ZF1A A 1,139,448 2694 56 141 (Opr. W5ASP) ZF2LA 1.8 88,515 698 15 48 (Opr. K9LA)	MADEIRA ISLANDS *CT3KN A 37,430 266 28 67 *CT3 /DF5AN 28 37,548 283 23 61	Image: Registration of the state in the	JH1AEP 3.5 49,875 298 25 50 *JL1ARF A 1,530,450 1384 143 307 *JS10YN " 891,790 996 126 221 *JF1SQC " 759,182 848 113 221 *JJ1VRO * 740,558 865 116 222 *JK1ASO * 610,500 775 114 186 *JN1NOP * 529,802 689 108 179
*KEPUI * 463,203 672 96 237 *NN7A/Ø * 351,101 404 108 215 *KØCF * 114,840 230 65 133 *AAØAI * 58,320 211 46 116 *ADØH * 5,160 69 39 47 *KKØDX/Ø28 10,416 61 17 45 *AAØXJ * 2,852 56 14 17	*CO8ZZ A 706,368 1546 60 148 *CO8LY * 431,023 655 97 240 *CM2KC * 313,560 663 45 156 *CO8DM 14 89,958 467 23 64 *CO2JD 7 234,825 1261 24 77 *CO8TW 1.8 2,793 75 6 13	MAURITIUS *388 /DL9GFB A 1,024,920 1188 85 207 MOROCCO CN8WW A 11,904,984 6492 143 489 (Opr. DL6FBL)	RAØCG 3.5 77,616 601 22 44 UAØSR 27,790 191 14 39 UAØJQ A 2,220,574 3022 161 381 'NUAØJQ A 2,220,574 3022 161 381 'NUAØANW 556,885 1036 68 177 'UAØSJ '515,171 913 83 188 'UAØYAY 513,890 718 80 215	*JR1XKU * 511,589 636 106 193 *JI1RXQ * 382,536 584 102 162 *JH1SVO * 351,152 481 94 178 *JA1IVL * 318,420 470 99 162 *JK1ATT * 318,283 465 103 184 *JN1MSO/1 * 288,704 522 83 125 *JH8KYU/1 * 264,196 400 95 162 * JA1PUL * 255 252 410 94 145
*AAØTY 21 122,815 447 31 90 *KØVX * 35,036 169 19 57 *KØBCN * 7,474 85 12 25 *WBØB 14 2,378 29 12 17 ALASKA	DOMINICAN REPUBLIC HI8 /DL1HCM A 2,597,125 3092 98 297 *HI3LFE 28 5,358 136 10 9 *HI3K 7 372,372 1463 28 96	NIGERIA 5NØ /OK1AUT 14 1,456,400 2954 38 138 *5N3CPR 28 211,680 869 22 68	*RAØJX 283,140 900 80 118 *UAØUAG 191,897 599 47 80 *RUØAT 102,222 361 48 114 *RAØZD 101,660 189 90 131 *UAØZC 58,975 173 70 105 *UAØZY 19,006 92 35 51 *UAØLH 28 103,900 382 30 70	*JF1RPZ * 216,812 348 98 170 *JJ1JGI * 215,340 360 82 140 *JJ10JP * 205,119 367 79 134 *7L4I0U * 195,576 306 115 166 *JA1BPN * 194,728 371 77 125 *JA1TRP * 193,456 344 78 136 *JA1CP * 189,072 355 81 127
KL7RA 21 538,208 1931 33 88 *KL1R A 448,945 1485 54 73 ANTIGUA *V26K A 7,185,562 5337 135 406 (Onr AA3B)	GUADELUUPE FG58G A 4,480,538 3932 141 373 *FG5EY A 1,804,176 2201 99 297 MARTINIQUE FM58H A 4,687,712 4216 129 397	SENEGAL 6V6U A 8,127,504 5316 128 400 (Opr. K3IPK) SOUTH AFRICA ZS6EZ A 5,379,840 3328 156 420	•UA0SAD 14 164,917 610 30 79 *RUØUQ 88,020 396 30 78 *UAØYM 26,334 183 23 40 *UAØCM 7 274,500 1032 32 93 *RUØBB 70,560 320 26 70 *UAØBGZ 60,171 297 27 66 *UAØCAY 3.5 1.479 77 9 8	*JA1PS * 188,256 332 84 128 *JF1FEV * 138,205 265 78 133 *7K4GUR * 119,320 271 50 107 *JA1XUY * 118,608 274 72 96 *JM1KNI * 116,450 283 64 106 *JP1SRG * 111,232 252 64 94
*V29QQ * 639,956 989 74 204 BAHAMAS *C6AKP A 675,393 1269 91 198 (Opr. N4RP)	FM5FJ * 102,968 359 63 148 MEXICO 6D2X A 4,338,864 4707 139 325 (Opr. W5VX) XE1VV * 713,790 1335 91 218	ZS6KR 28 439,965 1271 31 104 *ZS6AJS A 225,568 470 72 140 *ZS1NF 28 39,974 150 24 55 *ZS5RON 782 37 7 10 SWAZILAND	AZERBAIJAN *4K9W A 547,962 746 70 201 CHINA	*JA1WHG 84,304 181 80 96 *JR1KSK 83,790 247 54 79 *JG1TVK 80,004 172 71 106 *7M3LDC 77,010 173 69 101 *JA1KI 70,668 176 61 90 *JH1PXY 66,300 186 55 75 *JE1BEU 58,813 210 40 63
BARBADOS 8P9Z A 9,991,863 6498 155 454 (Opr. K4BAI) BRITISH VIRGIN ISLANDS	XE2MX * 638,608 776 110 224 *XE1RGL 7 84,000 589 21 54 PANAMA 3E1AA A 7,002,610 5311 143 422 (0pr. DL5XX)	3DAØCA A 1,322,362 1555 109 214 TANZANIA 5H3US A 791,427 1061 84 189 (Opr. K8MN)	*BY4SZ A 532,480 1228 78 130 (Opr. BD4ST) *BD4DW * 221,960 677 56 99 CYPRUS	*JF1LKM * 55,912 183 47 69 *JA1PUK * 53,784 174 68 94 *7K1EQG * 46,990 148 56 71 *JF1LQP * 44,020 145 60 82 *JG3NKP/1 * 38,064 134 39 65 *JH10LB * 35,802 128 47 70
VP2VF A 5,811,300 4327 147 440 (Opr. KL2A) CANADA VE1GN A 3,804,320 3018 121 375 V01MP 2 508 872 2591 101 323	*H03A A 490,325 796 84 191 (Opr. KG6UH) PUERTO RICO KP3W 28 122,010 645 22 61 NP3D 6858 55 18 36	TUNISIA 3V8BB A 8,589,180 5033 149 487 (Opr. YT1AD) UGANDA	C4W " 5,341,945 3958 138 413 (Opr. 5B4ADA) C4W " 5,341,945 3958 138 413 (Opr. 5B4WN) H2ØA 28 768,405 2169 34 131 (Opr. YL3CW) 5B4AGC 21 1,139,608 2698 37 130	*JA1BCP 27,435 103 42 50 *JH1SBE 25,814 188 54 82 *JR1LQK 25,511 127 44 53 *JE1QHT 24,480 129 48 54 *JA1KZP 15,747 76 27 60 *JA1EJD 14,690 85 31 34 *7M4SZG/1* 1,782 31 14 19
VE1ZJ 2,283,730 1835 118 352 VE1AI 1,084,274 1174 95 291 XJ1JF 3.5 497,280 1740 29 99 (Opr. VE7SV) VA1A 1.8 246,238 1048 21 85 (Opr. K3BU)	NP3D 7 10,912 80 20 42 *WP3C A 949,284 1799 70 182 *WP4LNY 45,198 223 27 54 *NP3A 28 477,664 1853 29 89 *KP3L * 468,814 1732 27 91	ASIA ARMENIA	P38M 600,150 1732 35 115 (Opr. YL2KL) 5B4 /EU1AA 3.5 412,482 1478 32 106 GEORGIA	*JA1MQS 1,296 19 11 13 *JG1FGL 320 8 8 8 *JR1BTG 28 201,528 659 32 76 *JA1NLX 68,544 298 28 56 *JH1DYV 55,980 245 30 60 *JH1BDS 44,252 221 25 49 *JA1SJV 40.875 190 26 49
*VE9DX 60,858 201 41 85 VE2/N6ZZ A 7,023,425 5295 138 425 VE2AYU 1,776,430 2066 100 301 VE2SG 184,008 498 51 136 VE2FFE 37,468 157 42 74	ST. KITTS & NEVIS V47KP A 1,146,346 1917 83 228 (Opr. W2OX) TURKS & CAICOS ISLANDS VP5GN A 7,661,577 5765 139 422	*EK4JJ A 10,020 59 25 35 ASIATIC TURKEY *TA4 /OK8EAN A 1,050 19 14 16 *TA3D 3.5 163,846 969 15 64	4L2M 3.5 207,756 884 18 87 *4L1UN 21 60,940 382 12 43 *4L8A 7 294,210 1173 23 82 HONG KONG 	*JG10WV * 6,171 45 23 28 *JR7CJ0/1 * 4,324 57 19 28 *JA1AAT * 3,816 210 15 21 *JE1HXZ * 3,472 43 13 18 *JP1IXV * 3,070 37 13 17 *7K2PBB * 1,482 23 12 14 *7N3WBN * 406 13 6 8
*VE2AWR A 858,544 1000 95 273 *VE2WAT 368,010 574 85 205 *VE2WAT 25,050 230 14 36 *VE2BWL 21 87,324 399 27 87 VE3AT A 1,837,170 1724 98 313 VE3AT A 1,837,170 1724 98 313	(Opr. K5GN) VP5M 5,087,556 4523 126 363 (Opr. N4TO) U.S. VIRGIN ISLANDS *NP2I A 436 852 841 67 204	ASIATIC RUSSIA RZ9UA A 3,927,066 2681 145 452 RK9CZO * 1,461,636 1395 101 295 (0pr. RX9CAZ) UA9MB * 825 552 650 126 378	*VR2 /OH6YF A 368,683 923 71 146 *VR2LL 73,416 198 59 102	*JH1SWD 21 161,928 526 32 85 *JJ1GQH * 99,042 360 29 73 *JA1EA * 12,992 88 23 33 *7M1L0T * 8,944 95 21 31 *JE1HJV * 7,125 74 22 35 *JR1UMO * 7,124 51 19 33
VE3XN 1,254,428 937 129 368 VE3ST 456,500 487 30 120 VE3DC 451,260 725 80 196	*WP2Z 28 806,124 2458 30 102 (Opr. WD5N)	UA9KM 692,241 793 104 259 RA9U0Z 610,540 894 110 246	*AT2UR 28 14,400 85 21 51 *AT2AJ 21 34,532 154 25 64	*7K3BKY * 6,510 77 14 16 *J01ZGN * 4,752 41 20 28

*7L2V08 24 4 2 2 * *JR4PMX/1 14 300,960 699 35 125 * *JL1MUT 177,580 551 34 96 * *JA1XPU 1,296 24 9 18 * *7L2ICS 279 13 3 6	*JF5FGY * 10,146 72 23 34 *JA5JGV * 4,864 45 17 21 *JA5APU 21 152,448 712 29 67 *JA5PDS 3.5 740 26 10 10	*JABADO 3.5 9,145 141 23 36 *JADADY 1.8 2 1 1 1 KAZAKHSTAN	*EA5YW A 22,654 101 30 64 *EA5 /DL8NBY 21 48,840 249 23 65	9A4D * 19,260 305 11 49 (Opr. 9A2D) *9A2EU A 1,997,082 1912 130 428 *9A9R * 864,604 1422 85 253 *9A9R * 553 781 766 102 299
*JH1AZO 7 49,680 230 28 52 J *JS1UMQ 3.5 6,164 64 19 27 J *JE1LPZ * 5,838 83 18 24 J *JM1NKT * 1,760 38 9 11 J *JE1SPY 1.8 476 14 8 9 J	JA6ZLI A 1,155,682 1137 130 271 JQ6NAW " 1,030,324 1046 120 238 JA6SRB 686,475 836 111 228 JA6COW 605,228 571 130 282 JO6GIV 114,432 227 73 119	UN7TX 28 204,078 888 27 86 UN9GD ' 53,760 281 26 70 UN5J 21 237,276 784 34 122 UP4L 14 427,032 1163 35 127 (Opr. UN7LZ) UP0E ' 8 256 101 7 25	BELARUS EW8EW A 2,665,131 2993 128 409 EU2ØØA 797,742 979 115 359 (Opr. EU4AA) EW2AA 511,868 816 98 264	*9A2N0 553,781 766 102 299 *9A2TN 471,344 925 91 265 *9A3SM 361,872 617 84 252 *9A2UA 132,398 373 55 138 *9A3CY 69,160 360 32 108 *9A7B 28 536,580 1498 36 129
JH28CN A 1,125,940 1212 126 254 JA2VQF * 609,588 780 100 187 JA2AXB * 608,855 693 114 209 7J6AAK/2 * 154,440 260 86 120 J	JA6WW'76,13026095135JA6WIF28226,38058735105JA6TO'60,6622333068JA6BZI7100,7103093798JA5ZPR3.546,7252512451	UPOL 7 420,912 1483 35 113 (Opr. UN9LW) UN7JX 1.8 34,122 207 15 51 *UP6P A 1,227,045 1620 125 332 *UP6F 28 250,373 1084 28 81	EU5A 7 352,314 1618 30 108 EU1DX 301,344 1179 34 112 EW6TU 3.5 68,552 708 15 61 EW2DD 67,830 691 13 57 *EU1SA A 297,171 523 79 188 *EW1BA 20,000 78 41 62	*9A1AA " 330,544 1001 34 112 *9A7P * 154,638 551 29 92 *9A2FK * 104,748 537 26 60 *9A3RE * 91,809 403 29 72 *9A6A 21 494,025 1572 39 136
(Opr. VK2EKY) JA20VP 106,872 242 78 105 JF2FIU 57,086 164 58 88 JE2LUN 28 52,690 184 33 77 JA2MOG 14 78,200 288 28 72	(Opr. JH6SOI) *JA6UBK A 1,020,832 895 141 296 *JH6OPP * 447,470 625 103 187 *JH6TYD * 313,491 459 90 159 *JA6AKV * 78,472 214 53 83	*UN7RBD 21 159,036 568 24 78 *UP5F 14 154,215 548 31 84 (Opr. UN7FW) *UN7GG 7 39,474 172 23 63	*EW10A 20,909 78 41 62 *EU7SD * 13,320 79 35 55 *EW4AB * 13,248 141 10 59 *EW8DZ * 12,975 270 42 70 *EW1NA 21 19,398 182 13 40 *EW8DX 14 76,700 529 28 72	*9A5YA 14 67,680 450 23 67 *9A5J 3.5 38,038 381 13 64 CZECH REPUBLIC 0K1AVY A 1,715,285 1863 103 339
*JA2BY A 799,693 823 123 244 *JH2NWP * 556,100 643 114 218 *JA2UOT * 468,006 715 90 141 *JA2CUS * 372,145 545 95 188 *JA2KKA * 273,702 419 87 155	*JA6JVY * 71,466 204 53 76 *JA6HJP * 23,432 92 36 65 *JM6CIP * 14,317 141 44 59 *JK6ISK * 6,440 50 21 25 *JA6WFM 21 154 330 574 31 84	KYRGYZSTAN EX8W A 4,373,712 3608 124 380 EX2A 7 49,973 246 17 60 *EX8MZ A 165,034 633 24 77	*EW80S * 50,787 376 16 65 *EW6BN * 36,010 306 17 48 *EV6M 7 59,224 411 17 71 *EW3CW * 8,710 59 17 50 *EW3WJ * 2,666 80 6 25	OK1EP " 1,554,506 1749 121 370 OK2PDT " 1,269,216 1512 97 319 OK1FPS ' 1,139,476 1393 101 341 OK1DOL ' 876,544 1187 99 329 OL4M ' 783,840 1341 81 264
*JA20J * 171,495 341 72 113 *JH2AMH * 169,391 358 91 142 *JJ2TKX * 63,756 190 56 76 *JA2H0 * 26,334 85 56 70 *JA2IU * 22,509 125 28 33	*JH6QIL 52,626 212 31 67 *JR6IKD 126 6 4 3 *JG6MQI 7 157,080 439 35 101 *JE5JHZ/6 26,296 144 27 49	KOREA *HL1CG A 386,804 487 106 192 *HL5BUV * 60,564 200 57 90 *HL5AP 28 21,980 123 26 44	*EU6AA 3.5 34,170 416 12 55 *EU1AZ 1.8 47,047 692 14 63 BELGIUM 0T8A A 857,964 1098 101 325	OK1JOC 696,340 986 89 281 OK2PAD 413,463 800 74 209 OK1AXB 356,644 587 87 239 OK2EQ 327,120 763 66 224 OK1FRO 202,658 569 61 153
*JE8KKX/2 * 7,975 54 25 30 J *JJ2IER * 234 9 6 7 *JG2MLI 28 139,536 519 32 76 J *JA2KVB * 111,244 359 34 82 J *JA2MEI * 7,056 65 18 24 J	JH7AFR A 3,788,148 2537 168 378 (Opr. N6AA) JH7WKO * 3,494,880 2711 142 338 JH7XGN * 2,057,950 1988 128 267 JA7JHT * 254,826 442 93 141	*005PL A 331,712 932 40 106 MACAO	(Opr. ON5UM) ON4CBW * 61,152 326 46 122 ON4AKL 14 365,516 1444 32 105 OT8T 7 772,530 2402 36 129 (Opr. ON5UK)	OK2KJ 73,439 310 23 80 OK1AES 28 132,264 386 32 100 OK1AUC 83,032 390 29 78 OK2BJT 53,680 239 25 63 OK1FZM 21 309,876 944 35 112 OK2SAT 218,088 679 36 120
JA2BOX 14,454 130 23 50 J *JA2BOX 14,454 130 23 50 J *JA2BOX 10,074 77 20 26 J *JI2LCE 5,530 60 16 19 J *JL2LPX 14 50,460 217 25 62 J *JH2WIC 20,221 111 19 54 J	JA7JI 28 65,096 231 33 70 JA7ERJ ' 1,178 24 10 9 JA7KBG 21 391,756 998 36 112 JA7FTR 14 484,218 1177 36 126 JA7COL ' 27 048 142 25 44	AX9X A 3,795,670 3249 163 402 (Opr. OH2PM) JT1CO A 1,235,806 2109 101 218	ON4AEK 302,763 1485 28 101 *ON4XG A 454,542 770 68 223 *ON4ADL 116,427 340 52 145 *ON4OSA 104,859 501 44 147 *ON7SS 56,260 238 47 98 *ON4KMB 44 160 215 34 81	OK1RF 14 852,488 2138 38 144 OK2GZ 357,717 1279 33 108 OK1XC 129,010 629 33 100 OK2BVG 7 209,592 762 31 111 OK1IE 70,620 307 27 83
*JA2MZ 2,912 33 14 18 J JS3CTO A 2,842,494 2299 140 314 JF3CCN 1,181,521 1078 139 268 JO3UDL 640,946 753 106 228	JA7EMH 3.5 10,488 88 21 36 JA7NI 1.8 11,700 91 18 32 *JA7NVF A 505,175 663 196 169 *JA7ARW " 296,958 440 95 163 *JI7OED ' 254,538 416 88 149	MYANMAR XZ1N 28 174,240 1010 25 65 (Opr. N7MB) XZ1N 21 384,370 1498 33 100	*ON7WF 29,532 184 23 69 *ON6NR 28 99,944 394 28 96 (Opr. ON4RU) *ON6TJ 21 96,193 396 24 83 *ON6CW 14 85,170 576 27 75	OK1CW 3.5 183,718 1312 23 74 OK2ZC ' 77,045 823 18 77 OK1KZD ' 76,630 747 18 79 (Opr. OK1TO) OK1FC ' 75,081 696 18 69 OK1PP 1.8 73 341 787 18 59
JA3UWB 213,640 382 67 151 JA3UWB 132,342 294 59 102 JA3CE 3,375 27 22 23 JA3X0G 28 120,450 400 32 78 JR3NZC 21 267 145 809 35 88	JA7DNO 101,870 236 63 104 *JA7DNO 85,329 230 60 111 *JA7SYA 58,220 173 61 81 *JF7GDF 18,531 105 32 39 *JM7JMG 13,790 75 30 40 *JA7MGH 8,856 74 16 25	(Opr. AF70) OMAN A45XR A 9,067,345 4821 159 526	BOSNIA-HERZEGOVINA T99W 28 492,582 1536 37 122 T94JS 7 3,350 58 9 41 *T95A A 2,297,344 2833 119 393	OK1DWJ 2,052 25 13 23 OK1DJ 1,536 57 5 27 *OK1DSZ A 1,415,477 1534 102 365 *OK1BA 1,111,320 1283 107 334 *OK1HX 1,106,640 1449 90 334
JM3LWR 2,450 31 15 20 *JE3HHT A 551,372 704 105 202 *JH3CUL 227,959 374 91 166 *J03JYE 123,914 354 69 98 *JM3XEJ 83,380 299 82 138	*JM7JMG 5,760 48 21 24 *JH7FUI 3,168 34 14 19 *JA7AXP 1,736 24 14 17 *JR7HAN 28 24,684 135 27 41 *JA7VEI 15,602 100 23 35	*AP2NK A 534,909 1027 63 174 SAUDI ARABIA	*T95C 90,396 289 50 112 *T99T 28 165,891 589 26 95 *T95MZZ 21 45,290 547 18 52 *T92M 7 108,205 804 21 74 *T97Y 67,412 731 15 61	*OK1PG *850,850 1148 102 323 *OK2TBC 737,100 1091 92 233 *OK1AYY 653,248 1064 77 269 *OK2PTZ 652,769 1120 87 250 *OK1ZP 650,760 1117 82 292
*JF3BTR * 77,044 191 75 112 * *JH3TXP * 54,120 167 43 77 * *JA3AVO * 18,711 72 41 58 * *JA3BQC * 15,910 83 34 40 * *JH3BIL * 12,616 76 39 44 *	*JI7NUF 21 181,485 581 35 76 *JA7DOT ' 77,040 261 31 76 *JH7NPF ' 19,698 138 18 31 *JR7XGL ' 11,252 78 23 35 *JH71MX 7 50,406 215 29 64	TAIWAN BV7FF 28 237,765 999 34 87 *BV	BULGARIA LZ1BJ A 637,871 1248 90 263 LZ1LZ 510,624 718 95 324	*OK2PO * 570,710 922 75 235 *OK2PO * 512,664 834 83 245 *OK2PMN * 512,148 1011 72 222 *OK1FF * 465,985 794 81 254 *OK5ACR * 452,920 813 72 188 *OK1MKI * 421.064 816 73 219
*JA3WFQ * 1,333 17 16 15 *JA3QOS * 100 39 26 26 *JA3GN 28 85,012 300 32 74 *JH3AIU 21 243,711 858 32 85 *JK3GWT * 204,848 628 35 89	JH7FUJ * 1,272 32 12 12 *JU1UKK/71.8 294 12 7 7 JA8RWU A 2,712,231 2177 145 314	/JH3GCN 28 147,684 774 27 66 TAJIKISTAN EY8MM A 3,598,356 2897 141 428	LZ10Z 245,072 627 68 221 LZ2DL 195,621 548 57 140 LZ1MC 52,746 178 57 92 LZ1RN 23,940 150 24 46 LZ1BG 9,804 51 32 44	*OK1SI * 419,661 815 77 220 *OK1HFP * 388,561 675 79 258 *OK1MZO * 387,192 701 79 233 *OK2HBR * 379,638 879 67 195 *OK1BMW * 342,090 657 78 237
*JF3IYW/3 * 35,313 192 26 53 *JH3JZI * 3,596 42 13 18 *JN3DSH 14 51,579 220 30 69 *JJ3QXW 7 390 13 5 5 *JR3EDI 3.5 31,185 174 24 53	JE8JYD 21 1,612 51 20 12 JA8JCR A 433,845 603 116 195 *JA8DCG 198,387 111 71 130 *JA8XDD 130,400 269 72 128 *JA8LN 28 12,540 91 24 36	TURKMENISTAN *EZBAB A 967,024 1178 74 230 (Opr. UA4FAO)	LZ1NG 28 198,240 871 36 124 LZ2UF 27,755 215 20 41 LZ1CW 21 175,674 652 31 103 LZ5W 7 639,912 2635 38 118 (Opr. LZ5DB)	*OK2BND * 325,809 680 74 223 *OK1KZ * 299,871 733 57 176 *OK2BRV * 161,590 546 54 172 *OK2SWD * 152,764 502 45 166 *OL7C * 124,264 632 41 155
JG3LGD 207 11 5 4 JH4UYB A 4,470,430 2961 169 421 JH4ADK 812,058 976 135 242 JA4ESR 192,303 346 78 129 JA4HIX 27 738 117 63 71	*JR8SGE 21 7,800 65 20 30 *JA8TEZ 7 742 19 8 6 JA9CWJ A 646,651 849 103 190 JA9JFO 14 118,720 386 30 82	3W7TK A 2,720,442 2978 117 330 (Opr. OK1HWB) WEST MALAYSIA	LZ1PM 3.5 102,060 630 23 82 LZ3AB 1.8 10,176 147 11 42 *LZ2NB A 130,064 341 57 119 *LZ4BU ' 21,912 100 35 48 *LZ2GS 28 87,543 325 33 104	*OK1FRT * 91,530 354 44 162 *OK1FTW * 71,394 198 71 75 *OK2AJ * 54,655 304 25 60 *OK2BWC * 14,700 182 17 67 *OK1DVX * 10,368 98 26 55
JA4XRN 28 43,125 214 23 46 JL4DJM 32,040 154 27 62 JH4JUK 1,066 21 12 14 JH4JUK 20,400 122 23 52	*JA9RO A 11,830 72 23 42 *JH9VSF/9 28 107,800 505 30 68 *JR9KZR/9 46,725 244 24 51 *JH9KVF 21 230,580 772 34 88 *JR9NV8 191,757 552 32 91	*9M2TO A 1,047,051 1395 120 247 EUROPE ALAND ISLANDS	*LZ2RF 69,552 298 26 86 *LZ1CF 58,864 220 28 76 *LZ1IA 24,750 148 22 44 *LZ3YY 21 252,720 947 35 109 *LZ1FJ 14 7,752 123 10 41	*OK1DDV * 7,125 102 16 41 *OK1JDJ * 2,613 39 13 26 *OK1CZ 28 90,688 374 27 77 *OK1MGW * 73,831 304 26 75 *OK2HZ * 73,710 264 26 79
*JE4MHL A 301,461 454 92 165 *JE4QGF * 226,156 448 73 124 *JA4CZM * 194,256 353 73 140 *JA4BAA * 167,616 333 65 127 *JJ4PPK * 38,475 155 35 60	JAØQWO A 808,520 963 114 226 JHØGHZ " 703,179 681 133 254 JBØWZB " 457 832 556 105 197	ОНОZ 14 901,230 2957 37 128 (Орг. ОН2МАМ) AUSTRIA 0550H0 A 1 153 185 1800 80 230	*LZ2MP 11,100 119 15 45 *LZ3DP 4,855 60 15 30 CRETE	*OK1DKZ * 64,818 333 20 58 *OK2PCL * 60,515 232 28 63 *OK2BNF * 54,774 243 25 62 *OK2PMM * 29,040 161 22 44 *OK2BHE * 12,740 106 17 32 *OK1DKM * 6,790 74 14 21
*JA1XCZ/4 * 14,632 91 23 39 *JA4A0R * 7,467 53 19 38 J *JR4GPA 21 186,890 618 31 79 J *JK480X * 22,508 131 28 40 J *JE4GJV * 5,226 50 17 22 J	JAØHC 195,500 339 82 148 JHØFUW 28 336,336 910 34 98 JHØFWV 21 21,824 89 29 59 JAØRCK 1,508 19 12 17 JAØFVU/Ø 14 756 13 9 12	OE9SLH ' 144,746 360 57 154 OE3I 28 238,944 796 34 118 (Opr. OE1JNB) OE3TL 21 68,788 300 26 90 OE3GSA 1.8 48,360 624 14 64	CROATIA 9A10 A 2,082,429 1972 132 415 9A2AJ 28 333,387 1031 33 120	*OK2SBL 21 183,820 690 34 106 *OK1MNW " 152,040 515 32 108 *OK2QX 136,948 511 31 103 *OK2PCN 104,181 423 31 90 *OK2PKY 17,799 157 17 34
*JL4LWL * 3,959 41 17 20 *JI4HKA 3.5 6,696 58 21 33 *JA4YPE 1.8 150 7 5 5 (Opr. JF3EBO)	*JEØUXR A 1,533,600 1349 138 312 *JAØNCE 81,130 233 74 116 *JEØKAM 26,445 101 41 88 *JHØNEC 25,920 103 58 77 *JAØBPY 16,400 96 34 46	*OE1EMS A 609,180 886 102 288 *OE1JIS ' 47,652 150 40 92 *OE1BKA 21 18,703 142 18 41 AZORES	9A7A 14 720,837 2134 38 145 (Opr. 9A7V) 9A3GW 716,716 2213 37 142 9A9A 7 908,694 2944 36 135 9A5Y 734,570 2462 37 133	*OK1ILM 7,266 110 11 31 *OK2SGY 14 78,538 421 26 81 *OK1DKO 70,416 273 26 82 *OK1AXA 56,753 375 26 77 *OK1DVK 17,484 117 16 46
JA5DQH 21 704,025 1479 37 138 JA5APU ' 223,176 767 29 73 *JH50XF A 839,020 916 117 247 *JE5XIC ' 10,496 68 29 35 *JR5EHB 28 28,258 149 25 46	*JAØGEY 28 3,330 45 15 22 *JAØIOF 21 17,696 118 21 35 *JAØDOW 480 18 12 12 *JHØEPI 14 148,851 513 35 76 *JHØSGG 7 931 23 9 10	CU2V A 3,728,874 4069 116 331 (Opr. DL3KDV) BALEARIC ISLANDS EA6GP A 159,732 551 48 156	(Opr. 9A40Z) 9A3MA 337,250 1536 33 109 9A3MR 283,016 1358 30 106 9A2WJ 36,177 245 20 73 9A4RU 3.5 121,166 887 20 74 9A5W 1.8 158,652 1115 25 88	*OK1FCA 99,495 559 20 79 *OK1GS 56,990 402 17 65 *OK2PBG 45,198 309 14 67 *OK2BRA 15,820 105 16 54 *OK1DXR 4,860 124 9 36 *OK1FHI 3.5 85,025 722 17 78

76 • CQ • October 1999

Visit Our Web Site

*0K2HI * 74,646 588 19 68 *0K1F0G : 59,670 469 16 74 *0K2DU * 36,719 467 11 62 *0K2BTK * 5,412 142 6 27 *0K2PSA * 693 29 5 16 *0K2PWJ1.8 11,725 147 12 55 *0K1FFC * 11,373 281 6 45 *0K2OU * 693 37 3 21 DZ1LO A 3,779,440 3162 152 443 025MJ * 456,435 725 78 267 028SW * 196,770 487 54 156 025RM * 12,403 122 22 57 028RO 7 92,493 352 33 96 *0Z8AE A 645,816 806 97 282 *0Z8NJ * 497,004 1051 78 254 *0Z5ABD * 241,366 687 60 169 *0Z5UR * 147,114 378 62 136 *0Z5NJ * 497,004 1051 78 254 *0Z5ABD * 241,366 687 60 169 *0Z5UR * 147,114 378 62 136 *0Z5ABD * 241,366 687 60 169 *0Z5UR * 147,114 378 62 136 *0Z5ABD * 241,366 687 60 169 *0Z5UR * 147,114 378 62 136 *0Z6TL * 109,011 306 49 130 *0Z5DK * 98,343 510 55 168 *0Z4FF * 24,500 128 34 64 *0Z1APA 28 2,400 35 12 18 *0Z1AV 21 31,878 222 19 47 *0Z6NF * 1,230 29 11 19 *0Z1BMA 14 56,463 327 23 64 *0Z7BMA 14 56,463 327 23 64	UA10Z 606,424 971 97 267 RK3DK 555,076 1119 78 224 RA3UF 315,000 664 92 268 UA1AUA 307,179 627 70 209 RV1CC 235,755 481 67 212 UA1AJW 212,444 356 79 228 RZ6FZ 184,440 487 75 190 UA4LY 76,760 204 71 131 RN3FA 63,492 236 53 90 RW4CW 61,824 268 37 124 UA3XGM 52,326 212 40 113 RX3AEX 51,404 270 55 126 RK3FY 41,503 150 48 73 RK3FV 14,184 111 30 42 UA3UCD 13,608 76 26 58 RA3XR 9,200 51 33 47 UA4RZ 28 133,736 511 30 116	OH18V 153,360 412 55 158 OH180I 53,949 178 48 99 OH2AQ 28 190,720 748 33 116 (Opr. OH2NRV) 39,990 210 23 70 OH7JL 39,990 210 23 70 OH7F 21 607,338 1744 37 126 (Opr. OH1NOA) 0H2BR 383,308 1183 37 121 OH3WS 151,256 543 32 114 OH7WW 127,617 661 29 74 OH1F 14 710,710 2127 36 118 (Opr. OH1MDR) 0H8L0 417,152 1958 37 91 OH48L0 417,152 1958 37 91 OH48L0 25,296 228 16 51 OH9DX 7 608,548 2051 36 131 OH62H 51,040 187 30 </th <th>DL1.JF 706,482 1020 89 289 DL2MDU 678,972 890 108 305 DF1DV 601,762 937 95 276 DF30L 514,745 741 97 288 DJ2IA 507,400 650 100 244 DL8UI 495,720 858 96 228 DL3BQD 476,088 866 76 256 DL8YR 457,600 774 78 247 DL6AG 427,720 647 82 214 DL9XY 350,703 786 68 211 DM3XRF 218,890 522 72 193 DU8UV/P 216,619 556 58 189 DU2YE 178,000 535 49 151 DL3DRN 129,115 280 57 160 DL4KBS 122,816 402 56 146 DK8RE 118,726 330 48 130 DL6DVU 115,045 341 54 119 DL3DBY 99,224 333 43 114 DL5ZB 77,973 180 87 150 DK7AN 39,675 150 39 76 DJ400 36,934 174 39 79 DL2DSA 26,596 100 50 82 DL3DCY 24,592 140 32 74 DL3DCY</th> <th>*DL4AAE 17,272 91 25 43 *DL2MIH 12,584 55 30 58 *DH3MG 12,103 150 28 63 *DL3JRA 10,864 76 24 32 *DL11A 9,639 73 22 59 *DF5ZV 7,370 63 20 35 *DL5ANS 3,924 43 16 20 *DL4ABR 3,818 67 13 33 *DL6UOF 2,781 47 8 19 *DL5FCO 864 27 6 6 *DL7AU 28 126,144 364 29 177 *DL7WMM 119,320 357 38 114 *DL4UL 77,226 296 33 89 *DJ2QV 66,726 255 24 75 *DL4WA 15,912 114 19 33 *DM3PKK 1,770 27 13 17 *DJ8FR 1,419 29 13 20 *D</th>	DL1.JF 706,482 1020 89 289 DL2MDU 678,972 890 108 305 DF1DV 601,762 937 95 276 DF30L 514,745 741 97 288 DJ2IA 507,400 650 100 244 DL8UI 495,720 858 96 228 DL3BQD 476,088 866 76 256 DL8YR 457,600 774 78 247 DL6AG 427,720 647 82 214 DL9XY 350,703 786 68 211 DM3XRF 218,890 522 72 193 DU8UV/P 216,619 556 58 189 DU2YE 178,000 535 49 151 DL3DRN 129,115 280 57 160 DL4KBS 122,816 402 56 146 DK8RE 118,726 330 48 130 DL6DVU 115,045 341 54 119 DL3DBY 99,224 333 43 114 DL5ZB 77,973 180 87 150 DK7AN 39,675 150 39 76 DJ400 36,934 174 39 79 DL2DSA 26,596 100 50 82 DL3DCY 24,592 140 32 74 DL3DCY	*DL4AAE 17,272 91 25 43 *DL2MIH 12,584 55 30 58 *DH3MG 12,103 150 28 63 *DL3JRA 10,864 76 24 32 *DL11A 9,639 73 22 59 *DF5ZV 7,370 63 20 35 *DL5ANS 3,924 43 16 20 *DL4ABR 3,818 67 13 33 *DL6UOF 2,781 47 8 19 *DL5FCO 864 27 6 6 *DL7AU 28 126,144 364 29 177 *DL7WMM 119,320 357 38 114 *DL4UL 77,226 296 33 89 *DJ2QV 66,726 255 24 75 *DL4WA 15,912 114 19 33 *DM3PKK 1,770 27 13 17 *DJ8FR 1,419 29 13 20 *D
J45KLN A 569,772 1612 61 191 (Opr. SMØCMH) ENGLAND ENGLAND 4 5,073,750 3566 148 467 GØIVZ 4,722,406 3735 135 463 463	HW3WV 112,042 650 23 83 RW3F0 3.5 98,792 709 25 81 UA6BAD 66,458 628 19 75 UA6LTI 64,512 442 18 78 RW3XX 57,469 514 18 83 RA4PO 47,960 351 17 71 RX3AP 6,105 95 6 31 UA6XT 850 24 20 34	*OH2VF 489,846 733 63 244 *OH6RC 200,645 338 80 234 *OH7HMC 144,207 435 49 140 *OH3NM 132,525 282 61 164 *OH3WW 128,616 371 48 136 *OH3IR 120,400 355 54 146 *OH2FS 97,554 216 72 141 *OH2FS 97,554 216 72 141 *OH7JHI 87,840 277 44 139 *OH1JMH 87,468 162 43 154	DK3WW ' 79,209 302 28 89 DL1IAO 21 723,492 1815 38 136 DKØSR ' 399,898 1266 37 121 (Opr. DJ5PA) DL8UAT ' 78,366 334 27 84 DLØLR ' 68,425 493 31 84 DJ7AA 14 768,768 2070 37 145 DHØDX ' 296,808 1268 37 112	*DL9CC * 6,765 76 19 22 *DJ5MN * 1,380 25 9 24 *DL6MTA 3.5 73,563 560 16 77 *DF5WN * 6,407 132 7 36 GIBRALTAR *ZB2E0 28 65,475 348 24 73
G3UFY 1,201,200 1415 93 307 G3UFY 944,125 1288 89 326 GØJQN 755,430 1319 84 254 G3WUX 226,003 562 60 133 M8W 220,088 426 70 174 (Opr. G4IIY) G3NAS 31,243 190 51 106 G3MXJ 28 620 172 1577 36 125	UA4CJJ 19,468 281 10 52 *RA1ACJ A 1,055,556 1390 97 339 *UA3ABJ 978,208 1330 102 295 *UA4WAN 936,124 1259 115 354 *UA4FER 917,285 1268 113 366 *RA3CW 820,105 1147 114 367 *UA4LA 818,040 1167 109 299 *RK3BY 720,892 988 111 347	*OH2MJW * 66,552 311 36 105 *OH2LYP * 56,496 446 41 135 *OH5PA 28 26,877 120 22 71 *OH4LJL * 22,493 118 23 60 *OH2EJ * 21,250 104 22 63 *OH3KOH * 2,015 26 12 19 *OH5BM 21 359,531 1205 35 116 *OH8NLC * 142,978 476 32 102	(Opr. DL1YAW) DF4SA 7 542,720 1633 35 125 DK8FD 294,624 1093 31 113 DL5JAN 120,902 563 28 94 DL1EMH 106,359 508 28 93 DL7ALM 3.5 100,152 683 21 83 DJ7RJ 47,616 393 19 74 DK5IM 1.8 14,250 240 8 49	GREECE *SV1DKR A 961,630 2058 84 286 *SV2BFL * 195,206 410 75 134 *J41Y * 117,260 706 58 162 *SV2BBJ * 82,290 247 59 136 *SV1DPJ 21 175,734 1015 28 89 *SV1RP/SV7 14 12,230 163 15 40
G3TBK 293,846 879 33 139 GØORH 221,112 1119 31 80 G4ODV 168,338 566 35 111 G8G 21 412,794 1380 34 119 (Opr. GØLII)	*RW1AI * 653,672 1043 91 313 *RV6LFE * 539,537 997 83 254 *RW10N * 497,710 811 88 267 *UA10MX * 478,515 701 100 265 *RU3AQY * 371,308 787 69 229	*OH3KRH * 130,350 354 40 118 *OH7MN * 79,121 401 30 97 *OH9JIW * 57,816 258 26 73 *OH6MBQ * 52,718 305 23 63 *OH1UP * 11,417 116 15 34	DJ3XD * 7,585 200 6 31 DL2MEH A 2,240,217 2062 132 435 DL2HBX * 2,100,324 1819 124 419 DKØMM * 1,908,816 1725 126 420 (Opr. DJ7IK)	GUERNSEY GUGUW A 5,047,170 4194 127 428 (Opr. G3XTT)
G3PJT 375,744 1217 34 118 G4HTD 7 359,226 1582 31 95 G3WGN 3.5 187,566 951 27 102 *G3WGV A 1,898,000 1963 112 388 *G3KKP 745,500 1120 80 270 *G5LP 745,500 1120 80 270 *G5LP 727,909 1226 98 323 *G3NKS 713,754 1000 84 258 *GØLZL 572,592 1015 77 239 *G3RSD 459,218 910 70 228 *G3VQO 395,032 804 64 204 *G3KKQ 342,838 652 76 181 *G3JKY 252 120 631 50 170	*RX4CD * 323,010 688 81 210 *UA3AGS * 307,008 554 82 206 *RA1QJA * 282,653 573 61 210 *RA1QX * 282,396 520 76 227 *UA4YG * 250,952 711 56 161 *RA3UAG * 246,400 572 73 235 *RV4LM * 197,650 391 76 219 *UA6AK * 174,900 330 62 150 *UA6AK * 155,040 585 53 187 *RV3YR * 154,395 549 58 177 *UA6AGK * 131,100 257 79 149 *RX3AHY * 125,664 403 47 140	*OH2LP 14 62,700 303 27 83 *OH3MC 56,385 251 27 78 *OH2BPA 52,788 269 26 80 *OH4TY 38,016 243 25 63 *OH2BSO 3.5 45,738 532 13 64 *OH3GD 34,884 173 20 88 FRANCE TM9C A 2,928,660 3701 101 298 (Opr. F5IN) F6IRA 896,000 1329 86 264	DL3JAN 1,065,494 1367 104 342 DL7QU 985,130 1220 97 298 DL2HQ 875,350 1098 104 323 DL7ANR 675,648 955 94 274 DF3QG 655,285 794 110 305 DL3BRA 607,750 925 94 280 DL1SAN 559,650 1011 76 249 DL8ZAW 558,126 858 78 229 DL1VDL 462,000 632 91 239 DL4JYT 433,805 778 67 198 DK7ZH 420,576 660 80 232 DJ8EW 365,637 705 72 235	HUNGARY HA8FM A 3,734,322 3955 142 385 HA8JV " 2,865,016 2649 153 463 HA3LI 1,628,121 2096 115 364 HAØIT 1,266,636 1498 115 361 HA5AGS 1,072,140 1387 105 323 HA3PT 124,925 742 64 199 HG1W 28 296,072 1183 34 102 (Opr. HA1YA) HA8UH 5,960 74 14 26 HA3JB 21 118,708 445 31 87
*G3GGS 233,616 424 59 189 *G3HZL 106,743 328 51 170 *G3ECS 82,992 289 44 89 *G4DDX 36,138 195 33 81 *MØAAA/P 7,906 103 14 53 *G3ESF 28 83,629 433 22 69 *G4UZN 18,009 106 25 44 *G4ZME 12,060 131 14 22 *G9MTN 21 256,100 1018 32 98 *G3VXJ 95,489 354 36 101 *G3MXH 50,112 312 21 66	*UA4QK * 109,434 263 67 116 *RW10X * 108,953 397 59 162 *UA1RJ * 93,771 199 78 129 *RA6LAE * 93,280 250 46 130 *RU6JJ * 60,344 226 51 101 *UA4A0 * 43,848 187 34 74 *RW1QF * 27,720 129 41 79 *UA6JY * 22,770 72 47 68 *UA3UMT * 19,596 140 24 68 *RW3VA * 11,468 83 28 33 *RA3XA * 7,808 91 17 47	F5HAB 219,258 459 61 173 F2AR 106,578 342 50 141 F6CWA 1.8 39,585 411 18 69 F5NBX 14,196 251 7 45 *F5JBR A 664,815 974 82 263 *F5JBR A 664,815 974 82 263 *F5DIH 472,815 1030 110 285 *F5OIH 395,424 698 70 218 *F5ROX 265,356 710 64 179 *F5NQL 258,120 746 64 206 *F5JLV 185,820 582 49 141 *F6DZD 172,608 504 42 132 *F6CAV 151,512 501 46 131	*DL5JRA * 354,705 834 63 192 *DFØIT * 327,978 758 66 200 (Opr. DF6QC) *DL3ZAI * 324,380 693 59 186 *DL7CF * 297,250 535 69 181 *DL5SVB * 289,710 558 71 190 *DL1TH * 280,577 720 63 190 *DL1ARJ * 273,728 306 125 204 *DL7IZ * 260,100 485 56 169 *DL7IZ * 260,100 485 56 169 *DL7UXG * 200,128 548 60 176 *DL2ANM * 194,964 419 76 155	HG5J 14 573,695 1627 37 142 HG5C 277,065 1335 33 108 HA5JP 111,366 418 34 104 HG9X 7 346,773 1500 32 115 HG5A 3.5 183,436 1332 27 94 (Opr. HA7VB) (Opr. HA7VB) (Opr. HA7VB) 1460KHT 55,610 501 17 66 HA6VA 31,894 333 11 63 148BE 1.8 82,800 756 20 80 *HA1CW A 2,331,648 2297 143 464 *HA4YF 770,640 1163 94 296
*G3KTT 14 11,505 182 15 44 *G5MY 7 68,310 306 17 93 *G3WRR 46,552 300 17 71 *GØBMS 3.5 23,856 298 13 58	*RV3UC * 700 21 18 17 *RW6BN 28 43,674 247 24 63 *UA3XBB * 38,412 224 26 73 *UA4LM 21 389,025 1236 38 137 *UA4PFO * 159,294 604 33 90	*F6ABI * 90,720 540 42 126 *F5LBG * 45,050 248 35 70 *F50IU * 38,784 199 36 65 *F50RE * 38,160 212 30 60 *F6DCH * 15,884 125 29 59 *E5NLX * 15 198 100 19 32	*DF1QQ * 162,732 400 58 155 *DL4TJ * 162,400 400 53 150 *DL1ZU * 151,088 281 88 216 *DF6VI * 146,452 463 52 112 *DJ4PT * 146,174 389 54 143	*HA0DD 191,672 434 66 181 *HA8IC 176,217 480 47 104 *HA6QD 24,045 144 36 69 *HA1VE 21 111,399 646 22 49 *HA6KNX 14 121,278 467 30 93
*ES10D A 1,173,816 1410 134 414 *ES4RD * 179,346 468 63 150 *ES2NA 28 51,360 276 23 57 *ES7LGM * 26,424 162 22 50 *ES1TM * 11,074 133 16 33 *ES3HO 21 36,036 200 23 68 *ES2RJ 14 282,129 984 38 119	*RN3AU 92,620 472 29 81 *UA3ABT 79,860 323 28 93 *UA3SAQ 41,515 400 29 86 *RU3HD 14 274,822 1107 31 106 *RW4WM 194,100 711 36 114 *UA1ANA 133,125 526 34 91 *UA3VCS 110,352 530 30 91 *RU4HH 101,036 478 30 86	*F2FX 14,050 69 22 50 *F6FTB 12,848 118 24 64 *F5ITK 28 93,195 519 27 68 *F5LJY 50,974 257 25 52 *F5TRO 18,984 158 19 37 *F6EXV 21 88,650 561 25 65 *F/OK1EE 7 165,060 778 29 102 *F5MMX 44,814 460 14 52	DJ30E 132,966 346 52 126 *DF1LON 127,218 369 51 131 *DL5WS 122,159 321 48 103 *DL8NBJ 120,712 337 53 138 *DL5ST 118,802 302 57 134 *DL2FDD 114,276 310 50 128 *DL8UL0 113,827 410 44 117 *DL5DBH 106,392 410 38 118	(Opr. HA6NW) *HA3RG ' 12,474 89 19 44 *HA8RH 3.5 110,865 954 18 77 *HA7JJS ' 95,700 906 17 70 *HA8IB ' 78,015 776 21 84 *HG6V ' 59,007 540 16 73 *HA3MQ 1.8 49,192 657 14 74
*ES6C0 3.5 1,225 43 9 26 EUROPEAN RUSSIA UA4LU A 2,500,084 2689 135 482 BN6BY " 2,348 400 2593 141 459	HX3H2 44,344 276 25 67 *RW4PL 7 139,916 574 31 102 *UA3VL0 ' 10,880 124 12 52 *RZ6FR 3.5 87,696 797 14 70 *UA1TAN 1.8 6,400 226 8 42 *UA6LP ' 4,982 48 15 38	*F5JDG 25,200 236 15 55 *F5ICX 390 26 5 5 *F3AT 1.8 6,030 124 7 38 GERMANY	*DL2GBB * 102,429 200 81 110 (Opr. DL1ZQ) *DL6QW * 96,390 331 47 123 *DF1ZN * 84,296 292 50 114 *DL6UAM * 83,578 320 37 94	IRELAND EI4BZ A 810,030 1295 83 252 *EI4DW A 680,685 1040 79 266 *EI4II 198,000 546 58 142 *EI8GP 28 191,394 817 20 73 *EI6EB 21 246 848 1171 32 101
UA4HTT " 2,207,413 2366 146 467 RW4WR 1,892,134 1840 136 415 UA10MS 1,716,336 1839 133 389 RA4AR 1,488,650 2088 114 361 RX3APM 1,286,376 1524 121 411	OYICT A 991,684 2074 69 263	DL4NAC A 4,872,882 3216 154 487 DK5PD " 2,159,616 1949 136 456 DL4MCF " 2,083,816 1820 129 457 DJ9DZ 1,878,963 1801 114 423 DJ5JH 1,721,590 1549 129 404	*DL3BZZ * 80,707 261 41 80 *DL3HRT * 71,980 237 30 92 *DL5A0J * 66,555 250 42 111 *DL3YEI * 59,640 249 37 83 *DL7AXM * 46,250 134 45 80 *DE1TL * 42,722 234 20 82	*EI7IU 1.8 31,507 482 11 50 ISLE OF MAN GD4UOL A 1,517,714 2402 101 362
RO3A 1,280,994 2093 104 325 (Opr. UA3-170) RX3ARI 1,089,890 1548 93 272 RW1QW 974,525 1474 95 330 RK3AD 967,632 1285 111 345 RU6AV 863,898 1217 123 346 RV3LO 750,820 1066 103 331 UA3TU 747,088 1111 95 329 RA10J 632,082 883 93 273	OH1MM A 4,374,240 3379 143 481 OH5LF " 3,994,272 3094 156 492 OH6RX " 2,725,254 2489 128 375 OH8LAE ' 2,329,470 2022 137 448 OH4JFN ' 1,380,350 2051 117 358 OH5XL ' 1,336,552 1942 112 294 OH6KN ' 1,198,512 1318 117 387 OH6RE ' 577,486 838 83 183	DL20X 1,362,330 1436 143 367 DL48QE 1,261,575 1522 98 347 DK3KD 1,067,556 1628 90 268 DL2KUW 988,172 1181 110 357 DL5BUT 975,456 1227 105 327 DFØFS 945,820 1447 88 292 (Opr. DL1EKC) DL6UNF 762,135 1033 87 254 DK7CX 708,630 905 94 296	*DL6ZNG * 42,182 160 48 83 *DM3XI * 40,375 155 42 53 *DL40CM * 38,862 180 51 102 *DL1ECG * 29,904 201 37 75 *DL2AL * 27,462 290 32 71 *DL5JMN * 27,300 153 27 51 *DL8UVG * 24,864 146 27 69 *DK9KW * 19,565 80 37 54	ITALY I3EVK A 1,224,405 1538 113 342 " 1,171,170 1720 123 332 (Opr. IK6SNO) IK4WMB 1,107,294 1526 94 264 IK3ORD 624,169 902 89 272 I3FDZ 275,400 571 91 215

www.cq-amateur-radio.com

October 1999 • CQ • 77

IR7A 271,260 643 72 202 (Opr. 17ALE)	*LY3BA A 2,543,038 2246 127 439 *LY2BTA * 1,835,808 2325 140 484	SP8FHK " 1,474,739 1858 113 348 SN7N " 1,025,766 1388 104 337	*Y03APJ A 1,954,437 1891 133 458 *Y03FRI * 948,789 1311 104 319	*S53AU * 177,240 411 59 151 *S53BM * 165,568 459 51 148
INZEGL 106,683 501 45 84 I6FDJ 91,800 381 43 110 IZ48BA 41,922 193 43 94	*LY18W * 681,296 1187 69 247 *LY2GV * 640,288 1069 86 266 *LY3CW * 489,880 524 78 253	(Opr. SP7NMW) SP5UAF 454,080 700 92 252 SP3FZN 323 420 524 86 228	*Y03FWC 931,845 1657 92 273 *Y08FR 798,867 1003 76 257 *Y02DFA 780,278 1269 104 318	*S51NM 79,200 410 32 100 *S57C0 28 100 163 15 41 *S51TA 21 230 945 826 34 109
IK1ZOH 21,836 101 44 62 IQ4A 28 487,494 1342 36 123	*LY2FN * 450,522 901 73 236 *LY2LA * 321,280 714 64 192	SP4KGB 283,575 705 82 203 SP3HUU 131,328 263 83 145	*Y06BHN 453,586 810 91 267 *Y08BPK 444,027 801 77 206	*S59DBC 195,582 841 31 80 *S51MF 102,360 352 31 89
105Z 195,507 770 35 82 (Opr. 125AXA)	"LY2PBM ' 128,872 525 39 139 "LY2GF ' 125,568 551 36 108	SP2KJH " 112,117 364 50 141 SP6AZT " 76,570 255 48 142	*Y05DAS * 48,604 262 36 80 *Y04GDP 21 84,788 491 25 69	*S58AL 14 388,680 1357 35 129 *S54A 7 217,800 835 32 118 *S53F " 175,934 780 25 96
IR4T 21 769,484 1896 38 150 (Opr. IK2QEI)	*LY2CX 60,280 250 42 95 *LY1XA 77,181 83 32 51	SP1PLA 41,280 113 57 103 SP2DKI 36,566 186 32 62	*Y04GJS * 100 17 9 9 *Y03CTK 14 115,346 677 24 83	*S54W ' 86,652 478 28 88 *S52G0 3.5 78,624 652 20 76
(Opr. 12VXJ) IK2RJK 12,506 124 22 52	*LY2BM 7 158,136 796 30 102 *LY3JY 134,504 713 32 104	SP1MHV 30,600 89 58 78 SP4EAK 8,440 79 9 31 SP4TKO 2,992 71 8 36	*Y088XP 7 23.058 281 14 47	*S51HJ * 63,684 597 16 71 *S54AC * 39,785 437 15 58
II1H 3.5 146,475 1062 23 82 (Opr. I1HJT)	*LY1DD ' 95,352 525 28 88 *LY2BLO ' 67,588 564 28 94	SP6AYP 1,323 28 22 27 SP2FOV 28 240,318 689 35 123	*YO9FJW 6,625 109 10 35 *YO9AYN 3.5 16,560 360 16 40	SPAIN FA3NY A 3 215 612 3226 132 389
IR4T 1.8 159,654 1051 26 92 (Opr. IK4UPB)	L1200 1.0 20,000 387 11 57	SP3KFH 194,129 582 33 104 (Opr. SP3GTS) SP5DDJ " 144,300 478 34 96	CADDINIA	EA1FBU " 491,470 1314 65 180 EA2BDS " 358,924 732 66 178
*I3JSS A 1,712,050 1888 119 366 *IK1RQQ * 1,430,805 1595 107 358	LX4B 1.8 95,374 1022 16 70 (Opr. 0H2PO)	SP7ELQ 96,228 295 32 100 SP6LV 44,469 233 23 58	SANDINIA ISØ /Y03RA 28 113 620 448 31 84	EA5DCL " 164,161 536 50 117 EA1BHR 127,050 382 50 104 EA1BAF 103,936 452 55 148
*IV3TQE * 723,320 900 101 327 *IK4EWX * 710,616 1102 84 264	*LX1JH A 42,880 192 38 90	SP5GRM 21 584,972 1546 40 139 SP3SLA 355,907 1059 32 119	*ISØHQJ A 279,510 1061 63 179 *ISØIGV 209,880 537 47 112	EA10J 75,600 203 52 116 EA7CA 73,524 230 50 82
*IV3NVN * 420,810 537 114 301 *IZBAIS * 310,310 491 78 232 *I4ECC * 235,470 522 62 173	MACEDONIA Z31GB 21 377,760 1267 37 123	SP9W * 260,420 1172 34 111 SP5BB * 1,275 32 7 10	*ISØUWX * 47,736 245 37 80 *ISØSDX 28 28,832 244 19 33	EATEXV 54,846 192 58 140 EATHAB 38,212 193 34 48 EATBXW 29,876 114 42 55
*IKØXFD * 221,779 487 64 163 *IK3HUG * 196,600 614 46 154	Z39Z 7 511,344 2188 33 111 (0pr. Z32AF)	(Opr. SP8GQU) SN2B 7 759,330 2319 39 138	SCOTLAND	EA1CMP 6,240 51 28 32 EA5WU 28 303,455 1014 32 105
*IKØCNA * 161,230 354 62 168 *IØKHP * 138,096 377 47 151 *I2WLI * 133,824 327 54 110	Z32KV 3.5 378 18 5 13 *Z31DZ 14 5,060 61 14 30	(Opr. SP2FAX) SP3EQE 64,155 318 25 80 SP0ABU 57 456 265 25 82	GM4YXI 21 672,175 2002 39 122 GM3P0I 14 820,080 2517 36 117 GM3P0I 25 840,080 2517 36 117	EASTD 26,059 118 32 71 EA1JO 21 133,301 456 33 104 EA1FEL 79,705 568 23 72
*IZ8BLZ 121,550 368 52 118 *I4JEE 102,588 264 67 182	MALTA 9404 28 840 424 2545 25 127	SN3A 3.5 437,904 1870 34 110 (Opr. SP3HLM)	GM4AFF 154,936 1152 20 87 *GM4SID A 886,704 1199 92 300	*EA7TG A 1,122,917 1105 115 376 *EA2BNU * 868,335 1435 73 232
*IK8WEI * 91,935 337 41 94 *IK2TQG * 86,765 280 54 131 *IO0A * 79,376 281 47 117	*9H3YQ 7 107,779 963 20 69 (Opr. DJ7PR)	SP7GIO 343,980 1708 31 95 SP3KCL 78,960 731 18 76 SP5CH 48,600 182 18 00	*GM3CFS 21 105,792 433 26 88	*EA3BOW * 352,185 775 68 197 *EA7AJR * 297,330 681 71 184
*IZØANC * 73,408 253 46 102	MOLDOVA	*SP2QCH A 1,532,440 1867 113 342 *SP2EWQ * 998,440 1309 106 352	SICILY IR9T 21 456,980 1582 35 111	*EC5AEB * 259,056 797 41 127 *EA5DNO * 223,296 526 52 140
*I7PXV * 41,340 145 35 71 *IKØADY * 32,970 169 34 71	ER5AA A 1.206,584 1851 92 284 ER7N 28 240,298 778 33 104 ER10A 21 114 950 489 33 88	*SP6CYX * 890,240 1360 100 316 *SP1NY/MM * 675,011 1241 76 261 *SP1AFN * 621,810 850 90 288	*IT90RA A 256,486 619 67 190 *IT9TWC * 155,344 481 76 190	*EA7MT ' 200,028 453 61 150 *EA7GXX ' 197,010 439 58 141
*IK70HS 27,615 172 36 69 *IK4NPC 23,625 183 25 50	ER5 /UX3FW 14 296,209 1574 34 105	*SP6CDP 504,252 749 81 241 *S09BZK 460,096 1027 84 232	*IT9VDQ * 45,220 185 43 90 *IT9ZYT * 15,330 105 36 69 *IT9AE 21 138 509 787 31 93	*EA1FD " 182,965 474 61 154 *EA5LA 116,290 308 45 100 *EA5ABC 112,217 395 53 100
*IK2IKW * 10,906 62 34 48 *IK1NLZ * 9,504 93 16 38	ER2GR 1.8 8,722 149 8 41 *ER100 28 169,514 665 34 97	*SP3VT * 381,744 868 60 181 *SP9GKM * 250,701 604 65 148 *SP88SO * 229,824 613 59 193	*IT9XUC 14 320,320 1593 26 86	*EA5AGW 90,650 321 44 131 *EA4ECF 67,308 210 49 93
*10LTX * 6,642 94 27 54 *1K8YFW * 3,655 103 19 45	MONACO 3A/N9NC A 2,927,808 3211 127 417	*SP3JUN * 216,153 657 51 168 *SP9NSV/7 * 199,987 518 57 170	SLOVAK REPUBLIC OM5M A 4,157,721 3393 150 437	*EA4ANN 36,874 200 40 63 *EA2CR 32,340 180 26 80 *EA7E7 27 225 161 23 52
*IØYQV * 1,888 45 15 17 *IK1YEE * 100 81 16 22	NETHERLANDS	"SP5GKN * 150,480 349 54 136 "3ZØXR * 136,000 383 48 112	OM30M * 801,964 1778 90 289	*EA4BT 15,048 114 25 51 *EA4BNQ 13,926 119 26 40
*IK5RLS * 100 11 8 10 *I1XPQ 28 158,267 629 28 87 *I3MLU * 56,700 284 24 66	PA3HBI A 325,710 617 78 204 PA3GUA ' 89,240 352 34 81 PA3GUA ' 18,120 210 12 28	*SP5CGN * 126,474 386 61 136 *SP1DPA * 104,720 273 58 118 *SP6CYH * 07,590 214 40 121	OM1GM 23,874 120 32 37 OM7M 21 584,150 1520 38 137	*EA5IL * 6,300 38 25 38 *EA7BUU * 4,982 32 15 38
*IK4DCT 21 490,196 1350 36 128 *IK2YSE 14 43,962 241 25 77	PAØCLN 1.8 64,032 583 18 78 *PAØRCT A 861,273 1549 78 265	*SQ2HEB * 85,340 346 45 125 *SP6BEN * 72,520 142 69 116	(Opr. OM5RM) OM3NA 14 633,435 1995 37 128 OM57W 1.8 117 771 837 23 88	*EA5NU 2,982 25 17 25 *EA4CIE 2,142 25 19 23
*IQ7A 7 292,420 1328 31 105 (Oor IK7XIV)	*PA3AAV * 663,309 756 103 328 *PA0LOU * 522,792 663 110 301 *PA0LR * 348 743 598 78 197	*SP6YGB/9 * 67,986 306 40 124 (Opr. SQ9CAQ) *SO5BUO * 66.600 287 50 100	*OM8ON A 743,442 773 111 323 *OM3GB * 631,449 799 87 264	*EA1BID * 1,769 23 14 15 *EA1DFP * 567 11 10 11
*I500V * 4,788 94 9 27 *II2P 1.8 15,216 289 7 41	*PA3BFH * 322,560 645 68 184 *PA3ELD * 304,234 679 62 155	*SP8NTW * 63,350 278 48 127 *SP5NZL * 62,463 291 42 99	*OM4DN * 425,505 1029 62 223 *OM7PY * 376,390 685 69 214 *OM3BA * 208,600 406 70 210	*EA7AFD * 100 35 9 13 *EA3AQQ * 100 38 26 32 *EA2A7 28 45 275 287 24 50
JERSEY	*PA3DUS * 140,999 428 51 130 *PA3GRM * 138,012 461 61 156	*S09DXN * 60,102 195 57 132 *SP2MKT * 51,183 218 41 100 *SP9KJU * 26,976 159 25 71	*OM1AF * 160,512 578 42 150 *OM1ADM * 32,830 239 38 96	"EA7AKJ " 44,714 268 21 58 "EA7ASZ 26,426 161 24 49
(Opr. F5SHQ)	*PAØCOR * 108,329 365 45 124 *PA3ECJ * 81,760 281 46 100 *PA3CEH * 52,316 242 42 122	(Opr. SP9MDY) *SP9KAT 20,124 234 23 63	*OM3CAE 28 15,652 153 14 38 *OM7YC 21 49,344 208 26 70	*ED700 * 22,043 161 12 35 (Opr. EA700) *EA4ATI * 4 158 81 9 18
KALININGRAD UA2CZ A 143,115 447 56 147	*PAØSKP * 46,498 208 36 98 *PA3DMH * 44,799 155 45 92	*SP6CRU 17,020 114 32 42 *SP6NIF 14,608 66 31 52	*OM4RM * 41,076 175 24 60 *OM9TR 14 46,251 332 20 61	*EC3ACR 4,130 59 11 24 *EA3EHE 100 33 9 13
RA2FB A 122,310 353 39 123	*PA3ASC * 10,541 73 25 58 *PABRBS * 8,804 100 31 31 *PA3RE1 * 7,626 77 20 62	*SP7ICE 14,444 62 42 50 *SP3DBD 11,232 60 29 43 *SP3SUV 28 201 117 531 37 120	*OM2TB * 21,150 154 20 55 *OM2AW * 4,750 49 18 32	*EA7GYS * 59,058 373 24 78 *EC3AHO 3,550 189 13 37
YL2KO A 2,115,016 2133 117 365 YL80MB 757 440 1468 80 240	*PA3BUD 28 80,704 347 26 78 *PAØJED * 79,560 356 25 77	*SP3LWP 102,250 351 31 94 *SQ5EWG 38,556 150 23 61	*OM3TU * 4,530 100 11 20 *OM3ROS * 4,250 70 10 30 (Onr_OM3CMM)	*EA1EVR 2,772 54 7 14 *EA5WX 875 27 7 18
YL2IP 160,550 300 69 178 YL2GN 7 110,282 521 31 103	*PAOMIR 3.5 22,632 273 13 56	"SQ9HYM" 25,023 173 18 39 "SP1AFU" 20,680 160 17 38	*OM4WW 7 83,304 457 22 82 *OM1AW 20,100 211 12 55	*EA4BL " 93,104 685 26 62 *EA1ND " 47,742 355 16 57
YL2SM 1.8 58,520 576 17 71 YL2PJ ' 32,485 376 11 62	NORTHERN IRELAND GIØKOW A 6,961,240 4788 164 551	*SP3AOT * 13,426 111 19 30 *SP4AAZ * 8,664 94 14 24	*OM3WQQ1.8 16,268 152 4 30	*EA5AFH * 495 11 4 11
*YL2KA A 967,542 1208 100 338 *YL2KF 122,208 342 51 150 *YL3EW 14 105 040 635 27 77	(Opr. GIØNWG) *GI4SNC A 398,736 794 56 178 *GIØKVO 21 19.844 234 12 32	*SP988H 21 238,810 752 34 109 *SP2AVE * 191,268 636 31 107	S58A A 6.628.059 4541 168 559	SM6NM A 735,680 903 98 320 SK6AW 598,752 826 95 301
*YL2PP 7 18,160 174 19 61	NORWAY	*SP9DAE/9 * 93,009 441 28 75 *SP90J * 63,835 315 23 62 *SP18LE * 21,903 179 16 33	\$55A 1,246,076 1513 102 301 \$53MA 1,052,312 1489 96 302 \$500 1450 200 049 90 302	(Opr. SM6DER) SM7EH 229,779 550 55 156
LITHUANIA LY5W A 2,988,110 2585 154 501	LA7MFA A 1,595,230 1844 107 348 LAØCX 951,180 1207 108 307 LA5ZC 281 274 764 51 120	*SP8BAB 14 86,515 276 27 94 *SP6SYF 48,958 288 22 69	S55L 469,200 948 82 190 S51NY 268,758 567 73 170 S51AY 28 385,352 1129 35 116	SM/01B 19,074 91 36 66 SMØKV 21 333,576 973 38 126 SMØDRD 200,925 722 32 109
(Opr. LY1DR) LY6M " 2,230,392 1587 145 452 (Opr. LY1DS)	LA6PB 205,568 526 65 191 LA4XT 28 23,256 130 22 54	*SP5ICS * 45,448 337 18 58 *SP5ICS * 27,750 233 19 55 *SP4DEU 7 65,920 389 23 80	S50K 21 461,448 1460 36 117 S53M 14 416,100 1645 33 113 S57AI 7 532 535 1437	SM2DMU 14 513,560 1736 37 111 SM5RE " 12,276 141 15 29 SM6KCO 7 521 444 1924 25 140
LY2MM 1,100,757 1259 108 483 LY2HN 897,128 1074 119 389	LATPHA 7 2,772 69 10 26 LAGYEA 3.5 209,677 1174 28 99 LA20 1.8 10,120 241 8 47	*SP3AIT 5,576 105 7 34 *SP3GTS 3,402 41 11 31	S57DX * 531,180 1856 32 124 S520 519,680 2088 32 108	SM2VHD 53,040 653 19 59 SM5CEU 3.5 110,848 563 27 101
LY2BBF 93,626 312 45 124 LY3BU 46,767 317 34 97	*LA9HFA A 720,360 1281 87 261 *LA2HFA 400,810 708 71 227	*SQ1BVG 1.8 1,274 49 4 22	S530 345,780 1482 35 118 S560 197,640 1006 28 92 S56A 3.5 458,738 1793 34 117	*SM6BSK * 545,006 852 77 241 *SM6BSK * 513,540 832 76 241 *SM5JBM * 430 947 774 69 228
LY2CI 28 297,594 981 36 126 LY2KM 178,996 571 32 114 LY2BB 100 983 344 26 97	*LA5KW * 43,326 32 18 29 *LA9AU * 19,228 159 21 71	PORTUGAL CT/F6EPY 21 213,413 1211 26 75	S5101 132,090 1031 27 75 S580 1.8 134,784 1024 23 85	*SM4SX 423,232 744 70 202 *SM2KAL 326,268 671 81 243
LY8X 14 280,756 1174 34 114 (Opr. LY1FF)	*LASIFA 7,081 84 27 46 *LA8LA 6,136 40 24 35 *LA2MJA 21 6,144 87 6 7	*CT1BQH 21 443,120 1606 35 110 *CT1BQH 21 535 110	*S59AA A 2,595,303 2034 148 483 *S57J " 1,415,232 1383 119 367	*SM5CIL * 241,120 382 54 220 (Opr. SM7CIL)
LY2BN 265,968 993 35 109 LY1DI 58,752 465 24 72 LY3BX 7 179,270 1038 29 101	*LA8WG 1.8 11,352 144 10 56	ROMANIA	*S54X 936,100 1198 104 303 *S53F0 672,008 987 84 250 *S51WA 570 266 717 02 266	*SK3LH 240,538 1081 61 193 (Opr. SM3WMV) *SM7B IW 164 901 471 50 150
LY3BS 1.8 96,720 743 22 82 LY3C1 40,348 449 14 63	SP4Z A 3,658,850 3042 150 500	Y03ND A 1,145,808 1709 107 329 Y04FRF 7 260,729 1190 26 93	*S55WW * 555,900 916 77 263 *S51T * 211,536 591 52 182	*SM5VZY * 62,700 436 40 110 *SM3WMU* 59,800 314 36 94

78 • CQ • October 1999

Visit Our Web Site

*SM7BQX * 45,387 248 38 85 *SM5COP * 19,500 93 40 60 *SM0DZH 28 45,592 250 21 61 *SM6JY 14 25,460 236 17 50 *SK2IV * 17,766 280 12 35 (Opr. SM2CDF) *SM3ARR * 506 16 6 5 *SM3DXC 7 19,458 147 17 52 *SM5AJV 3.5 8,580 147 9 43 SWITZERLAND	•UT7CC • 107,507 814 21 79 •UT3QW • 78,204 613 20 78 •UT1FA • 76,500 576 18 72 •US2WU • 47,712 216 23 89 •UY2ZZ • 4,182 94 7 34 •UXØHA 1.8 25,264 367 12 53 •UU4JMG • 7,030 581 18 77 WALES GW3JXN A 974,850 1335 110 292 GW3KDB • 973,488 1294 99 309	INDONESIA YCOLOW 1.8 144 8 5 7 *YE3C A 858,261 1467 76 143 *YB5QZ 482,118 918 93 180 *YB4JIM 95,200 273 52 108 *YB1KOR 36,414 163 54 99 *YB9BON 28 52,756 210 30 79 *YB2UU 21 186,258 806 30 81 NEW CALEDONIA TX8UFT A 920,535 1532 86 145	*PP7CW * 44,330 148 41 69 *PY20JD * 11,718 97 40 53 *PY2NZR * 10,165 188 20 58 *ZZ4W * 7,353 52 23 35 *PY20ZF * 4,879 45 22 19 *PR2M 28 589 19 10 9 *PY2EL 21 19,136 232 22 30 *PY3FBI * 11,072 224 15 17 *PR2W * 9,381 113 19 34 (Opr. PT2AW) *PY4ZF * 6,191 55 19 22 *PY2WDM * 1,540 23 14 14	9A2EY * 124,758 505 38 136 YO4AAC * 118,980 392 41 139 KRØI * 117,392 246 59 117 UT5UJY * 115,813 469 44 135 DJ3GE * 109,218 340 46 121 DH2UL * 102,243 322 46 127 ON7CC * 98,638 358 39 110 DL4XU * 82,360 321 42 100 N5TW * 82,264 316 75 151 RW3VM * 80,017 268 42 119 DL1LAW * 77,910 300 39 108 DK6AJ * 74,698 350 54 115
HB9RC 21 35,883 171 20 61 HB9FMD 3.5 67,795 718 18 73 *HB9ARF A 910,459 1143 101 306 *HB9CBR 290,924 560 68 189 *HB9CBR 37,675 131 49 88 *HB90A 32,224 149 39 67 *HB9NL 32,224 149 39 67 *HB9HAW 7 65,720 339 20 86 *HB9CPS 1,734 61 9 25	GW3YDX 28 726,193 1966 35 134 GW3WVG * 511,932 1600 35 113 *GW3NJW A 370,645 663 74 219 *GW3SYL * 176,730 398 62 153 *GW3WWN * 63,675 389 23 52 *GW4MVA 14 53,238 226 29 85	*TX8FU 14 131,313 424 30 81 (Opr. FK8FU) ZL6QH A 2,555,024 2558 120 248 (Opr. ZL1ANJ A 17,920 129 34 36	•PR7FB 14 116,676 323 34 92 *PS7ZZ 17,784 103 24 52 *PY3JRG 16,821 199 23 66 *PY1BLL 9,063 60 18 29 *PY2EYE 1,917 25 12 15 *PU2WMW7 28,046 133 21 53 *PY2IQ 11,211 104 9 28 *ZZ3Z 304 31 8 8	OH6FW 62,650 295 42 133 JA5CDL 60,900 194 60 80 US8UA 57,280 214 39 121 OK1AIJ 57,112 319 28 90 KH6
UKRAINE EN1I A 2,343,785 2279 150 485 (Opr. US1ITU) UX7IA * 2,195,578 2302 128 410 UX5UO * 2,089,798 2321 123 403 UX1UA 1,535,990 1668 126 412 UTØU 1,366,284 1803 121 371 UT5UB 1,125,894 1228 113 349 UR5UW 1,121,444 1343 112 379 UX3ZW 799,176 906 101 325 UT3UZ 722,533 1228 113 330 UT4EK 701,499 1047 98 299 UR5ON 694,260 996 108 327 UR5ON 694,260 996 108 327	Initial State Initian State Initial State Initial	NORTHERN MARIANAS *NHØE A 388,104 992 63 94 *WHØV 28 349,561 1303 32 69 PHILIPPINES DU3NXE A 541,371 1145 76 105 *DU1 /DL5ZAH A 889,680 1261 94 170 *DU1ODX 621,225 1093 81 144 *DU3RCM 14 221,936 866 29 68 *A35RK A 388,040 661 85 133	CHILE XR3Z A 347,956 776 65 107 (Opr. CE3/NE4F) (Opr. CE3/NE4F) *CE3AA A 735,715 1090 89 180 *CE6TBN * 735,715 1090 89 180 *CE6TBN * 735,715 1090 89 180 *CE6TBN * 784 107 27 29 COLOMBIA HK6KKK A 396,952 917 66 170 HK5QGX * 8,820 72 21 21 *HJ1RRL A 536,544 1535 50 88 *HJ3PXA * 5,025 47 31 44	K4GEL 42,291 138 33 78 LU5DYV 42,192 240 32 40 NQ7X 39,000 162 50 75 NM1K 35,754 114 38 80 US9PA 33,062 184 33 89 VE2ABO 29,988 135 35 63 KL7TS 25,599 145 28 41 NØQT 24,860 104 49 61 GØKZO 24,516 137 34 74 UT5IZ 23,349 216 36 93 AF9J 22,944 101 37 59 DJ5QK 22,791 213 26 81 AA3GM 21,525 130 45 60 K50I 19,998 128 43 56
UR5E * 486,048 855 78 254 (Opr. UR5EDX) UT5HP * 128,832 222 80 164 UR4SXU * 108,768 449 67 166 UU2JA * 104,880 256 61 167 UX1KR * 79,373 314 41 78 US7VL * 69,915 177 56 121	YU7NU 7 551,925 1774 35 130 YT1BB * 374,884 1707 35 114 YU1KR 3.5 168,010 1215 22 84 YZ6A 1.8 78,866 826 18 76 *YU7CB A 2,025,342 1816 132 447 *4N7CA 403,112 750 88 240 *YU7KM 211,404 515 63 174	SOUTH AMERICA ANTARCTICA EM1LV A 479,320 793 81 149	HC2SL 28 837,774 2404 29 97 GALAPAGOS ISLANDS HC8N A 12,971,803 6661 171 518 (Opr. N5KO)	OK1DMP 17,538 95 29 50 CT1ETT 16,745 137 23 62 DL1HTX 13,680 144 25 70 K6MI 8,330 59 33 37 JN2FSE 7,434 59 25 38 PAØRBO 5,626 58 15 43
UU2JZ 67,344 163 68 115 UU2JQ 64,436 147 72 109 UT4ZO 37,490 108 60 103 UT8AQ 7,344 73 10 41 UT4UWC 5,755 52 15 29 (Opr. US-U-Ø9) UR6QS 1,235 37 9 10	*YU7FY 105,704 266 72 109 *YU7LS 90,396 282 54 108 *YU1HA 28 129,536 435 28 100 *YU7FF 53,486 234 24 70 *YU10W 46,330 218 27 55 *4N1FG 21 76,612 360 30 77 *YU7YZ 63,155 343 23 62	ARGENTINA LU /OHØWW A 614,262 988 73 154 LW1DX * 389,008 1103 51 113 LU7DW * 43,368 199 48 56 LU5GPL * 33,784 127 42 61 LT1E 28 1 824 212 3885 35 133	SURINAME PZ5JR A 6,731,410 4644 141 377 (Opr. OHØXX) TRINIDAD & TOBAGO 9Y4VU 21 1,222,485 2774 36 119	DL2PY 5,610 60 15 29 OM3CUG 5,400 40 24 30 DL2TM 4,446 38 19 20 W07T 3,024 29 15 21 EC5ALP 2,700 94 12 38 F5IYJ 255 21 7 8 KK70X 100 48 21 23
UR7VA 28 343,441 992 33 130 US6L 203,904 845 29 99 UT11A 198,144 734 34 110 UT7LA 24,864 157 21 53 UR30T 21 267,057 1255 37 120 UT8IM 236,979 1000 36 95 US1E 45,990 1196 35 111 (Opr. UT7EZ)	*YZ7ED 7 162,265 746 29 85 *YZ1V * 91,887 684 23 86 (Opr. YU1AAV) *YU1FG * 74,205 446 21 76 *4N7A * 51,216 427 19 78 (Opr. YU7AJH) *YU1CC 3.5 86,102 678 19 79 *YU1RA 1.8 28,535 470 8 57	(Opr. LU5CW) LU4FPZ * 789,888 2593 32 104 LU5FA 21 350,578 1480 35 83 LU1FAM * 124,047 563 31 68 *L36E A 1,279,854 1288 107 239 *LU1EWL * 470,877 788 77 132 *LU3DSI * 7,488 53 25 27	URUGUAY CX5X 21 935,375 2005 39 136 (Opr. CX6VM) CX7BY * 503,792 1310 36 112 *CX5A0 28 887,556 2206 33 115 *CX9AU 14 387,985 1271 34 93	UBTDX 28 104,300 458 25 75 W9JUV * 81,060 269 25 80 JA2XI * 73,332 281 29 68 HAØGK * 56,880 274 25 54 2EØAOK * 52,890 284 23 63 EA2CAR * 44,919 238 28 65 JG2LGM * 42,739 208 27 52 PY2TNT * 32,548 230 17 30
UX3HA 39,970 282 19 51 US5WE 14 498,432 1541 37 140 US90 307,965 1351 35 112 (Opr. US90A) UY5DX 269,988 1001 32 117 UY5ZZ 7 464,023 1703 33 118 US2IP 312,852 1140 35 110	MARITIME MOBILE •KC7JEF/MM A 983,467 1191 71 218	*LW7DX * 28 689,568 1908 28 194 *LW7DX * 200,556 1004 23 58 *LU1AEE * 186,750 815 24 66 *LW9DKB * 181,280 888 22 66 *LU1XSI * 56,925 326 14 55 *LW3HAQ/D * 22,401 236 18 39 *LU4FAK * 4,495 53 14 17	VENEZUELA *YV70P 28 100 167 18 41 *YY4GLD 21 227,256 1077 28 74	K7MM " 27,216 146 23 49 WT3W " 20,736 107 21 51 W6ZH " 18,894 122 23 44 UN6G ' 8,064 91 7 29 JL3SBE ' 6,380 58 20 24 HA8DL ' 5,110 65 13 22 JR3NDZ/1 '' 3,780 48 14 16
US2IN 313,652 1149 35 119 US2YW 275,064 1509 33 113 UR3IOB 73,700 420 21 79 UT5UGQ 156 8 6 7 US2IZ 3.5 63,519 534 18 75 UU3JM 42,742 467 14 57 UR5FEL 35,700 594 19 66	AMERICAN SAMOA KH8 /N50LS A 2,889,842 2412 152 281 AUSTRALIA	*LU5FF 21 424,799 1188 36 113 *L5ØV * 208,936 947 29 62 *LU7AWP * 199,210 775 31 79 *LU3EAQ * 5,664 47 20 28 *LW2EU 7 18,720 121 22 50	QRP HA2SX A 1,002,822 1253 98 323 N6MU " 857,395 798 119 266 LY2FE " 795,874 1243 86 297 N1TM " 701,679 722 87 276 SM3CCT " 666,050 1076 78 268	LU1FNH 21 147,204 672 25 69 LU6HI " 144,552 491 33 81 OH7NVU " 121,176 529 27 81 US4EX " 106,424 495 28 78 9A3GU " 74,970 336 25 77 W4DEC " 63,750 251 23 79
US5ELM * 27,010 250 13 60 UYØZG 1.8 7,182 88 7 47 *UY8IF A 916,180 1891 98 282 *UT2UZ * 722,624 812 105 343 *UY1HY * 644,360 829 119 326 *UT4XU * 585,095 868 89 276 *US3IZ * 550,376 893 86 270	VK4XY 28 521,577 1626 33 86 VK4EMM 14 153,408 550 28 74 VK6VZ 7 451,584 1435 32 96 VK3IO 1.8 860 34 9 11 *VK2AYD A 1,386,240 1651 105 199 *VK6AJ 28 23,616 102 22 60 *VK4IV 21 19 110 100 25 45	ARUBA P48E A 14,372,964 6853 176 553 (Opr. CT1BOH) P48W * 12,108,798 6279 159 543 (Opr. W2GD)	KTHC 659,880 692 96 280 W3ZZ 628,304 683 100 267 N7IR 569,856 626 108 228 NØKE/KH6 532,575 754 105 158 JR4DAH 528,363 694 102 195 DL3KVR 525,358 839 84 263 OE2S 507,000 933 76 249	DL8TWA " 54,684 300 24 60 (0pr. K3TW) JR1NKN/2 " 44,311 249 23 50 OH2YL ' 31,936 213 17 47 K8UCL '' 28,864 127 23 59 SP6JOE '' 21,528 172 18 51
*UY2UZ * 545,650 1025 85 265 *UTØH * 485,488 992 81 223 *UX5EF * 428,687 793 78 251 *UY3QW * 218,152 553 67 201 *UR5WII * 206,736 772 44 129 *UT2IW * 188,616 393 71 161 *UR4MRT * 169 128 394 56 205	*VK4XW 2,592 28 13 23 *VK2APK 14 442,566 1243 33 105 *VK4TT 70,110 290 24 58 *VK2EBP 41,514 154 28 74 BRUNEI	BOLIVIA 415,480 1029 60 110 BRAZIL PY2GG A 40,002 211 34 79 9,243 68 35 44	(Opr. OE2VEL) KV8S * 503,750 559 84 241 YU1LM * 500,148 1084 68 229 BMØQRP * 484,330 1260 83 155 (Opr. BV3FG) IØZUT * 452,403 742 73 228 GØOGN * 446,879 846 63 208	LY21X " 20,769 189 20 49 SP5MNJ/7 13,802 87 18 49 SP3FPF ' 11,682 77 19 47 I4KRF ' 9,417 131 11 32 JM1XTB ' 5,256 57 16 20 JJ4IYG ' 5,022 60 15 16 Y04ATW ' 3,128 50 9 14
*UT8IT * 167,616 459 56 160 *UR3UJ * 167,433 477 52 149 *UT2IO * 164,728 446 57 179 *UR5BCJ * 130,200 318 57 118 *UT4XX * 81,792 287 44 84 *UY2IZ * 73,248 214 53 115	V8A 7 952,416 2339 36 108 (Opr. JO1RUR) EASTERN KIRIBATI T32IW A 212,940 695 59 71	(Opr. PY2KP) PY2KQ * 3,008 46 19 28 PY2NFE * 2,135 51 25 36 ZW5B 28 1,991,895 3810 37 148 (Opr. K5ZD) ZY2DX * 838,532 2005 36 128 (Opr. PY2NE)	N9CIQ " 383,052 507 74 200 HA7YS ' 340,901 715 71 209 F5NZY '' 318,024 796 61 191 UR9MM '' 304,370 650 75 237 VE7CFD '' 298,908 882 68 103 (Dpr. VE7CQK) '' 296,460 829 70 235	2UØARE 2,492 74 8 20 JH3HYT 1,914 25 16 17 JH1HTK 1,060 25 10 10 HB9LDO 924 22 6 15 SM4KL 3 1 1 1 ES1CW 14 123,340 458 34 106 DF4ZL 98 520 436 31 89
*UR5EIT 55,444 190 40 100 *UT4UM 34,385 212 26 89 *UT5HA 32,976 112 54 90 *UR5ZRK 12,628 120 21 61 *UY5YA 5,750 57 16 30 *UX8IX 28 162,900 537 34 116 *UT4PZ 67,303 271 27 80 *UR8RF 61,568 264 27 77 *UT5ECZ 2,850 52 9 21	EAST MALAYSIA 9M6NA A 5,979,138 3737 171 390 (Opr. JE1JKL) 9M6AAC * 4,844,320 3537 150 394 (Opr. DK3GI) 9M8YY 21 701,848 1609 36 115 (Opr. JR3WXA)	PP1CZ 62,050 310 20 53 ZV5A 21 833,671 2299 35 116 (Opr. PY1KN) *PU1KDR A 1,013,504 1486 79 177 *PY2NY 723,841 1003 85 186 *PY1KS 677,625 792 119 256 *PY5BLG 528,528 873 67 141 *PY2XE 349,272 663 57 139 *ZW2Z 295,856 619 54 122	WA3NKO 292,950 429 69 201 OK2PP 271,776 807 69 229 EA7AAW 241,864 603 52 144 PAØADT 236,470 568 59 155 UAØKCL/3 227,745 400 63 178 7K4QOK 212,135 415 71 132 (Opr. JR2BNF) 204,732 656 70 212 UA3AD 204,216 460 71 183	VE3XL 95,056 397 24 80 JA2HUN 43,990 205 23 60 GØVQR/P 13,301 164 12 35 DL40BJ 12,243 147 13 40 NP4FW 10,906 120 11 30 Y04CSL 5,150 89 10 40 RV9CLF 2,288 62 7 19 DL1DQY 752 17 8 8 SP2HPD 7 46,458 436 17 70
*UR5EPV 51,708 243 33 60 *UR5EPV 51,708 243 33 60 *UR5TAU 43,470 221 26 64 *UY5WA 36,375 272 19 56 *UR3PFM 3,348 264 27 84 *UT7EG 14 45,479 383 20 69 *UT3IB 5,346 83 13 41 *UUØJM 3.5 123,250 978 26 99	GUAM KH2/K4SXT 1.8 39,678 278 21 30 HAWAII NH7A A 2,648,535 3077 124 193 KH6/AI6V 21 498,512 1608 33 79 KH6CC 1.8 47,545 429 18 19	(Opr. PY2ZI) *PP7JR * 129,870 339 55 130 *PY2MNL * 114,342 252 60 117 *PP7CI * 101,150 222 56 114 *ZW2F * 58,322 215 43 78 (Opr. PY2ORF) *PY4MBJ * 51,062 180 44 77	AA1CA 203,058 357 73 188 G4FDC 172,776 416 52 132 K3WWP 160,800 293 51 150 UA9SG 156,620 340 62 143 DK4CU 143,000 450 49 151 SM5DQ 139,968 357 56 187 UA4YJ 133,536 361 54 175	KH6 /W80ZA * 39,616 216 27 37 JA6GCE * 36,360 186 24 48 DL6MHW * 21,775 205 13 52 RW3AX * 21,681 201 16 57 NC6M * 17,537 104 24 47 (Opr. W6REC)

www.cq-amateur-radio.com

RV6AF 17,490 153 15 5 G3VPW 15,300 167 10 4 UR4UU 10,431 128 13 4 SP9XCJ 8,614 120 11 3 ND8MS 2,530 50 13 3 UX3M 37,206 356 13 6 UX3M 37,206 356 13 5 RU3WW 27,648 316 14 5 UA3XAC 16,929 308 8 4 OM3TKR 13,320 286 5 4 OK2KRT 8,160 193 5 3 JA1AA 1,104 31 11 1 HA9RA 266 21 3 1 OM2FY 1.8 21,600 376 9 5 DJ3RA 15,904 262 8 4 RA3FO 13,110 201 9 4	N2VW NA2M K2BX W2LK AA2WN WB2WPN KA2AEV N2KJM K3AD K3AD K3AD K3AD K3AD K3AD K3AD K3AD	 277,200 342 103 247 217,160 308 85 220 191,250 361 61 164 139,564 361 39 109 116,580 276 84 206 112,404 200 58 146 59,410 174 33 97 15,168 74 26 53 A 7,963,764 3764 168 601 4,964,695 2549 156 563 3,586,593 1775 166 595 2,373,065 1356 158 497 2,369,928 1524 132 441 2,022,806 1373 134 413 1,941,710 1446 137 425 1,914,075 1277 113 430 1,774,125 1382 116 359 1,743,328 1024 153 475 1,452,318 862 148 539 1,451,790 1031 126 387 1,435,700 1060 124 366 	AA8U WA8WV 21 3.5 414,951 11,505 1009 75 34 45 123 45 N9UA NO9Z A 1,525,898 1210 124 349 349 313 WO9Z 1,005,204 964 109 313 313 WO9S 645,123 645 102 257 N9FH 593,325 602 100 305 N9XX 482,667 505 101 248 N9CK 381,744 520 75 189 W9RN 381,282 412 105 222 W9ILY 356,820 414 90 223 K9NI 283,751 406 76 223 KA9FOX 163,098 275 87 159 K9OSH 139,682 241 63 148 N9AU 7 229,788 566 35 121 WØTM A 1,714,895 1365 137 318 NØAT 637,886 626 110 284	F6FII A 660,672 1075 78 255 DF3CB A 3,640,994 2123 172 570 DF3CB A 3,640,994 2123 172 570 DL7ON 2,424,840 1981 162 498 1070,415 1645 93 312 DL2ZAE 1,070,415 1645 93 312 312 DL6NCY 1,008,450 1062 117 369 348 DJ9IE 866,484 1064 104 348 357282 948 125 374 DJ9MH 835,758 1006 115 354 DL6KVA 294,100 319 120 220 DL10W 189,996 434 72 212 DF6OV 161,728 384 61 163 DK9IP 151,536 267 76 170 DL4MIFP 126,246 372 51 108 DF2UU 73,485 140 75 132 DF8MW 53,040 238 52 118 DL7BY 28 142,245 447 33 112 DL1LH 21 273,300 841 35 115 DJ6LV 3.5 69,120 507 16 74	PS2E 220,206 575 48 99 PT2H0 29,256 109 46 60 PT2H0 A 1,655,365 2226 106 249 PT2H0 PT2H0 PT2H0 PT2H0 24 44 PT2H0 PT2H0 PT2H0 PT2H0 24 44 PT2H0 PT2H0 PT2H0 PT2H0 PT2H0 44 44 PT2H0
ASSISTED NORTH AMERICA UNITED STATES KI16 A 6,477,468 3185 162 57 K1TI * 4,649,790 2455 157 55 K5MA/1 * 3,961,105 2488 136 44 K1YR * 3,013,114 1967 139 43 W1NG * 3,000,448 1576 160 54	K3PP K3SA K3JGJ W3HV0 W3GK K3CP N3ZA W3AP K3DI WT3P K3AR	1,364,769 897 128 453 1,203,840 916 112 368 1,193,696 900 129 382 1,167,424 1045 120 344 1,108,080 857 106 350 964,910 755 107 363 940,056 697 138 414 750,321 853 124 305 715,002 612 111 332 647,622 595 90 312 593,145 518 103 338	CANADA VE1RX 21 30,388 175 19 52 VA3DX 7 201,856 561 34 118 VE6LB 1.8 5,592 124 10 14 PUERTO RICO WP3R A 5,495,235 4362 139 406 (Opr. DL2CC) <	HAØHW A 500,122 883 98 284 IK5TSS A 1,133,902 1257 99 308 IK0HBN 938,598 922 125 378 IK3SCB 140,418 392 54 120 IK3QAR 28 250,952 757 35 117 I4IKW 7 722,736 2017 36 132	N2NU 9,313,019 4053 182 675 AA2FB 5,079,408 2680 154 558 K2XR 3,541,626 2264 157 525 W2RE 3,188,970 2146 144 491 W6XR/2 2,900,550 2073 156 454 K2TE 2,858,834 1628 146 507 W2CG 2,207,238 1350 148 483 N2LBR 1,314,402 998 109 365 N2SS 534,520 493 106 309 AE2F 308,698 434 92 311 W2SEX 58,212 137 47 107
W1GD 2,974,140 1696 140 48 KZ1M 2,145,798 1713 110 36 KA1CLX 1,637,185 1192 121 39 KS1L 1,569,893 986 140 47 N6RFM/1 1,416,584 1025 118 39 N1DG 1,330,369 929 133 43 W1BH 1,317,593 894 140 44 K1VV 1,307,922 1142 97 30 W1CSM 1,289,834 1003 118 37 K1AJ 1,188,768 1069 96 33 W1HR 1,136,678 959 100 36	W3KV W3SB N3MLV KB3X KE3VN WF3T KU3X K3NL K03F N3QQ W3TMZ	583,275 551 104 281 509,220 520 86 283 499,626 491 109 260 495,430 495 107 263 243,991 578 108 343 237,533 487 47 132 213,044 339 64 177 95,216 196 47 129 72,320 168 44 116 58,437 160 47 104 7 47,120 145 29 95	U.S. VIRGIN ISLANDS KP2AD A 3,562,181 3076 124 387 ASIATIC RUSSIA RAØFF A 1,285,818 1293 146 300 JAPAN	LITHUANIA 21 365,904 1183 34 120 MACEDONIA 231JA A 2,271,840 2755 119 361 231GX * 2,076,624 2435 119 394 NETHERLANDS PA3GDR 28 85,300 439 26 74	N3RS 9,681,880 4222 183 677 K3TUP 5,143,752 2828 155 563 K3PH 3,007,092 1777 145 482 N3OC 2,872,653 1795 141 468 NE3F 1,549,104 1510 131 416 AA3JU 1,396,500 1289 105 395 NY3M 453,963 476 98 291 WR3L 279,708 685 34 122
W1AX 1,119,560 800 125 39 W1RZF 1,100,268 1060 113 35 AA1V 1,094,608 743 138 45 W1RH 968,275 962 93 29 W1RH 918,592 707 133 36 W1CU 901,310 700 115 35 K1DC 762,439 683 108 32 K1NU 742,144 648 101 34	K3JJG N4XR N4VZ N4ZJ W8ZF/4 N4DW K4PB	1.8 3,626 56 11 26 A 2,794,342 1776 135 431 * 1,957,248 1218 145 431 * 1,727,354 1194 123 419 * 1,406,444 973 143 416 * 1,134,980 887 114 370 * 921,456 713 124 350	JH8SLS A 1,313,760 1221 141 279 JA9XBW " 1,219,810 1035 140 306 JE3HDD " 817,663 760 131 276 JK2VOC " 461,760 716 116 204 JH8MWW 376,970 554 91 162 JH7AJD/1 269,825 430 96 155 JA7SUR 269,618 458 92 134 JAØBMS/1 " 195,926 438 55 108	LA9GX 14 761,200 2186 38 138 POLAND SP9LAS A 152,368 320 62 152 SP3FAR 36,500 126 52 94	W4PR0 1,371,573 1035 125 406 K040M 818,448 683 119 353 WX08/5 5,781,600 2978 179 624 K5MDX 2,118,711 1659 126 371 K660K 2,026,525 1719 143 372 K660NP 1,207,650 986 144 341
K1HV 664,306 693 95 29 K1MY 561,450 559 118 35 W1QK 478,160 537 95 24 NQ1K 472,056 453 106 30 N1KWF 463,570 584 81 22 K1AE 455,126 468 112 30 K1TH 440,412 588 78 24 AK1N 431,340 474 91 22 KT1M 408,807 548 78 23	NT4D AA4R K4MA N1CC/4 N4GN W4NZC K4NR W4WNT W4SI	703,545 627 126 319 684,740 546 130 381 534,660 563 107 273 319,335 396 83 222 274,176 329 91 215 240,198 323 77 189 144,926 244 70 163 34,071 103 45 78 24,900 104 28 72	JAØBJY 156,022 302 97 153 JAØBJY 156,022 320 71 110 J01VRL 138,990 272 85 120 JR40ZH 90,131 200 67 126 JR3PZW/1 61,910 149 79 126 JH1FSF 28 204,930 586 34 104 JH6WHN 20,493 126 27 54 JQ1NGT 14 21,528 116 24 45 JA1KVT 7 43,788 205 25 57	ROMANIA YO2LDE A 30,140 96 54 83 SLOVENIA S56A A 1,977,570 1507 144 486 S53R * 1,130,714 1007 141 413 S58MU * 223,944 483 68 190	W7VJ 2,557,856 1865 152 380 W7LT 1,224,671 1396 116 255 K70N 486,528 588 108 228 K8AZ 9,259,470 4164 179 567 K8LX 6,701,035 3297 175 628 N8RA 4,061,808 2456 137 466 W8ZA 3,165,164 1857 155 510
K1JN 401,330 485 89 24 N1MD 330,435 382 76 23 NZ10 305,316 439 96 30 K1E0 246,561 513 99 31 K1Z0 223,020 364 76 19 N1SP 218,155 306 63 20 W1T0 197,446 286 76 19 K1EP 195,104 316 71 19 K1TR 169,650 273 66 15	KUBC/4 W4DR N5JR KR5V W05W K5HDU NA4M/5 N3BB/5	21 344,129 1636 37 114 1.8 25,481 115 21 62 A 1,928,838 1258 138 425 " 1,238,076 790 151 427 ' 142,923 286 58 155 ' 127,050 284 64 146 ' 124,488 220 75 159 ' 85,020 160 78 117	EUROPE ALAND ISLANDS OHØJJS 21 716,520 2122 37 131 (Opr. OH6LI) OHØJJS 3.5 173,850 1408 25 89 (Opr. OH4.II V)	SPAIN SPAIN EA7AGW A 1,011,172 1526 93 286 EA3BHK 299,115 432 103 242 EA3AEK 14 31,525 259 25 72 SWEDEN A 2,450 682 1732 164 538	W9JA 5,123,928 2975 173 603 WN90 1,347,570 996 153 477 K9KJ 1,055,250 1005 121 329 NØNI 5,590,850 2971 180 595 KVØQ 4,974,696 3039 171 477 NØIJ 2,753,388 1926 140 421 KØZM 1,019,655 864 110 305
N1TB 82,386 384 55 14 WF1B 81,356 195 53 11 K1KU 75,240 204 53 14 KE1KD 70,680 168 64 12 N1KO 66,528 220 46 10 K1ST 60,021 147 59 11 N1AO 51,510 179 60 14 N1NQD 42,704 110 48 10 K1BW 39,468 93 59 8	KD6WW KD6WW K7BV/6 K6RO K6CT W6OAT K6CU	A 2,797,112 1589 163 465 2,350,803 1639 161 392 1,286,936 1039 133 336 923,991 749 127 352 493,641 430 139 284 190,152 302 100 178	AUSTRIA 24,047 117 49 90 CROATIA 9A3ZG A 71,258 253 49 109 CZECH REPUBLIC	SM3PZG 21 537,795 1567 38 133 HB9FAP A 806,174 1151 105 257 HB50K 342,768 1064 52 170 UKRAINE A 3,235,392 3202 144 512	NØLM 262,440 467 78 192 KBØVVT 23,040 96 47 73 ALASKA KL7Y 8,758,280 5704 177 454 CANADA VE6SV 3,293,024 3411 135 353 VE6A0 497,468 1051 91 170
WV1M 26,780 96 44 8 K1IR 26,144 128 20 5 W1AY 11,016 120 30 7 K2NG A 5,951,043 2659 183 66 K2TW 5,685,240 2774 156 57 W2UP 4,695,670 2523 152 53 K5KG/2 3,780,392 1927 155 56 K2SX 3,576,780 2192 163 47	AJ6V NF6R AK6L K6JG K6CTA KA6BIM N6ND	 79,937 184 71 98 73,753 203 51 80 39,843 152 66 105 21,012 77 42 60 20,516 90 38 54 28 108,609 371 28 95 21 400,320 1002 37 123 A 1,318,050 988 154 368 	OK2FD A 2,681,000 1952 160 540 OL6X " 1,547,635 1889 129 356 (Opr. OK1DIG) (Opr. OK1DIG) (Opr. OK1DIG) 0K1FDY 1,411,254 1741 107 374 OK1DXW 397,769 727 78 233 0K1DWC 278,080 463 106 246 OK1DXI ' 53,360 218 38 77 OK1FPG 28 35,442 155 26 73	YZ7AA YT8A YT8A A 2,798,640 2700 142 443 3.5 309,757 1493 32 105 (Opr. YT7AO) OCEANIA	AFRICA CAPE VERDE D44BC 7,453,420 5098 131 395 CHAGOS ISI ANDS
K2XA 3,473,550 1919 152 52 K2NJ 3,007,342 1739 139 47 K2RD 2,995,806 1753 142 48 AB2E 2,775,864 1625 145 50 K20NP 2,643,511 1717 131 42 N2TX 2,035,135 1353 156 52 N2ZX 1,962,912 1388 122 38 KF2O 1,794,520 997 158 52	K9JF/7 W7OM K7ABV K7GJ K7WP W7NN K7BG W7UB	1,263,693 1041 142 329 933,644 959 132 272 792,688 690 124 288 591,822 629 114 252 377,300 450 119 231 375,287 442 101 212 195,138 270 96 197 94,956 282 65 99	ENGLAND M8Z A 3,295,396 3184 126 382 (Opr. G3VHB) G3RTU 48,506 244 38 120 EUROPEAN RUSSIA RZ3BW A 4,642,688 3559 162 574	AUSTRALIA A 1,090,795 1662 88 181 GUAM GUAM KH2/N2NL A 5,406,660 3991 154 336 KH2D 28 346,737 1022 36 87	VQ910 792,448 1007 90 238 MADEIRA ISLANDS CT3FN 3,069,374 2832 103 315 ASIA
N2CQ 1,106,830 622 161 57 N2CQ 901,476 713 119 37 K2XF 793,104 763 103 30 K2PS 776,620 684 100 31 KD2TT 727,320 671 97 34 K2OWE 711,619 750 105 33 N2JT 621,070 627 85 27 N2FF 477,576 463 97 30 WK2H 464,156 712 72 20 K2EP 443,118 499 80 25	W7CT W8JGU ND5S/8 NO8C AA8TC W8PT K8PYD AG8L K8EI	21 169,056 427 33 111 A 1,870,911 1266 131 382 * 1,185,153 783 144 443 * 454,770 504 95 231 * 363,132 429 101 295 * 179,775 330 77 178 * 132,440 230 80 140 * 20,412 78 39 69 * 14,288 80 29 47	RZ3AZ 2,504,584 2324 148 526 UA10V 1,300,455 1616 118 395 UA1RG 100 93 31 53 FINLAND OH2VZ A 292,000 549 75 217 OH2LU 201,760 475 52 156 OH3BU 3.5 65,637 547 18 81 OH2BO 1.8 23,205 162 20 71	SOUTH AMERICA ARGENTINA LU1APG 28 51,060 389 23 51 LU7EAR 21 94,636 338 32 86 ZZZZ A BRAZIL 810,255 1203 81 204 (0pr. PY2YP)	ASIATIC TURKEY TA4/DL5YM 2,158,650 2277 86 283 ASIATIC RUSSIA RZ9AZA 6,681,460 3834 164 576 RK9CWW 6,575,859 3213 172 599 RK9AWN 4,528,160 2922 145 477 RK9KWI 1,951,190 1797 107 303 RK9CXM 1,519,890 1471 109 326

80 • CQ • October 1999

Visit Our Web Site

RY9C UA9OXC RKØSXF	1,177,813 3391 152 485 267,716 705 77 177 1,087,016 1197 110 282	DK5MV 2,277,790 1964 143 458 DK1II 2,094,150 1998 132 443 DFØCI 1,433,498 1545 127 379 DKØTZ 1,343,314 1475 114 344	MULTI-OPERATOR MULTI-TRANSMITTER	FINLAND 0H2U 18,387,820 9381 205 802 0H1AJ 2,623,500 2542 133 450	CHECK LOGS Our thanks to the following stations who sent in check logs. 9A2OU, DJ6TF, DK5OS, DL1ARD,
VU2WAP	INDIA 3,408,819 3478 130 359	DKØZG 861,120 1803 97 263 DKØFFO 323,993 707 65 216 DLØBO/P 209,338 626 62 200 DFØXG 29,165 158 29 75	UNITED STATES KC1XX 22,473,282 8936 199 763 W3LPL 21,271,495 8303 202 763	GERMANY DFØHQ 18,897,540 10289 204 751 DLØCS 13,194,288 7356 203 741 DLØKE 5.967.034 4829 169 618	DL1DWT, DL2KWW, DL2RSH, DL2RU, DL3JON, DL3NEO, DL3PB, DL5AMF, DL5CD, DL5DSA, DL5NA, DL6KWU, DL6MWG, DL7AQT, DL7VAF, DL8DZV, DM5AA, FA1BYA, FA1FAF, FA3GIP
JH7PKU JR1ZTT JA2ZJW JI3BFC	5,405,400 3239 170 460 4,343,125 2827 172 453 1,300,725 1414 120 249 1,070,328 847 146 337 832,782 850 128 230	HUNGARY HG1S 8,601,558 5977 181 652 HA1KRR 2,384,964 3000 117 316	K3LR 20,097,309 6101 197 702 K1KI 17,808,700 7334 190 720 K2LE/1 13,276,122 6165 174 648 K9NS 11,526,040 5900 189 667 K4VX/B 11,066,276 5691 176 591	HUNGARY HG6N 11,044,143 8269 180 663	EA3JB, EA4FW, EA5AKM, EA5GRC, EA50I, EA50X, EA7KN, EC4CZE, EW3EO, GØWAZ, G3HCT, GWØVSW, HA5AEX, JA4XHF, K3APM, K3SWZ, K8KFJ, KA1RJI, KE9EY, LA1EW, LA2EG, LA4BN, LA4IAA
JE2THS JF2SKV/2 JA1YQH JJ1ZXE JI2ZEY JA9YBA	447,460 765 92 168 351,034 528 116 218 59,478 216 55 83 6,528 70 30 34 4,125 46 10 23	ITALY II3T 4,982,934 3761 165 568 IO2A 4,293,828 3168 159 534 IY2ARI 3,353,658 3157 133 428 IK10BT 2,274,000 2458 121 379	K8CC 10,861,630 5426 184 661 W3PP 10,682,007 5401 174 639 W01N 10,428,219 5622 175 626 K1RX 10,328,448 5217 175 657 W4MYA 10,219,584 4904 179 637 W8AV 9,884,992 4749 182 650	KALININGRAD RW2F 16,862,016 9251 211 781	LA4NE, LA4OGA, LA4YW, LA5QC, LA7SI, LA8CD, LA8CE, LA8HGA, LA8XM, LA9DFA, LA9OI, LA9PHA, LA9VGA, LA9WDA, LZ1KZ, LZ1NJ, LZ2FM, LZ2SX, NØXCF, NJ9Z, NQ9M, OH2JXA, OH3TY,
LOPYL	JORDAN 6.112.620 3967 139 441	IU2C 143,871 415 60 161 IO2L 70,720 340 33 52	W6BA 8,973,690 4397 184 582 WØAIH/9 8,454,555 4405 179 622 W7RM 7,273,814 4441 185 509	LY5A 8,998,444 7300 186 640 LY7A 6,995,150 6117 175 600	OK1DSF, OK1DSU, OK1ABE, OK1DP, OK1DSF, OK1DSU, OK1DUB, OK2BCJ, OM5RJ, OZ5PA, OZ7QB, PAØRBA, DA3CNU PA3CKK PV1APS/A PV11VE
8070V	ALDIVE ISLANDS	LITHUANIA LY3AV 2,088,314 1960 137 441	W3EA 7,184,826 4087 169 617 K3II 7,118,514 3554 163 591 W3EEE 6,510,520 3275 162 578 W3MM 6,141,012 3184 172 627	SPAIN EA4ML 12,587,520 8747 175 593	PY2DBU, PY3CEM, PY3CJI, PY7OJ, RAØZN, RA4LC, RN3AM, RU3DG, RU3DX, RV6HA, RW3XA, RW9SG.
64764	THAILAND	LUXEMBOURG LX/DL4SDX 3,193,992 3385 117 369	KB1H 5,828,103 3380 157 566 K40J 4,991,336 3028 160 526 NJ4F 4,908,915 3319 161 544	SWEDEN SL27V 14 495 360 8616 200 728	SMØBNK, SMØCSX, SMØNJO, SMØXG, SM3CBR, SM4HCM, SM5BEU, SM5BFJ, SM5BUH, SM5CZK, SM5OJH, SM5OL,
HS5AC HSØAC	529,534 1304 82 189 136,422 903 87 147	PI4COM5,094,6424064162545PI4CC3,622,2273477140461PA3HBB1,425,110185197318	W3FRC 4,454,984 2278 157 555 N2MM 2,931,066 1859 160 506 N2BIM 2,922,368 1775 141 491 NI5M 2,726,784 1811 157 491	SK6NP 657,460 1283 86 269 SM5HJZ 458,591 529 112 231	SM7CZC, SP2GUC, SP2HMT, SP2SCX/9, SP3MEP, SP3VA, SP4GDC, SP5AHR, SP5CEQ, SP5FLB, SP5OXJ, SP6AUI, SP6BGZ, SP6CES, SP7BDS, SP7EJS, SP7FCX, SP7FGA, SP7HQ, SP7XK,
4U1VIC	4U-VIENNA 3,619,560 3823 147 473	NORWAY LA8W 5,829,442 4289 166 552 LA1K 5,848 69 25 43	KV1W 1,650,265 1515 117 336 KB1SO 1,456,621 2583 134 437 CANADA VE3EJ 24,413 191 10539 190 739	OCEANIA HAWAII KH7R 20,908,825 10430 192 541	SP8FHM, SP8HKT, SP8JMA, SP9MDY, SQ2AJI, SQ2AJS, SV5DZX, UAØBA, UAØFGN, UAØFZ, UA3AFH, UA3LEO, UA3PIU, UA4RC, UA9XK, UN7FW, UN7FZ, UN9FR, US1PM, UT2XX, UUQUC, UV5TE
EA6IB BA	LEARIC ISLANDS 9,522,048 6145 179 643	POLAND SQ6Z 8,775,480 5142 188 652	COSTA RICA	SOUTH AMERICA	VE3AWE, W4WS, W5AN, WAØOTV, WB4FNH, WB4MSG, Y02AIX, Y02AQB, Y03BWK, Y05ALL, Y06ADW, Y06FGN/P
EW1WN	BELARUS 228,018 626 65 202	SNØKRT 780,896 1155 90 278 SP1KYB 81,286 443 23 74	GRENADA	ZP9X 1,227,094 1759 83 206	Y08GF, Y08MI, Y08OH, Y08R00, Y09BGV, Y09GVN, Y09IF.
OTSP	BELGIUM 2,327,808 3106 116 332	GM8C 1,243,452 1877 94 299	JAMAICA		
UISK	BULGARIA	SLOVAK REPUBLIC OM8A 7,360,440 4669 181 649 OM3A 6,005,610 4053 162 592	5Y2A 39,279,140 17609 192 740 ST. LUCIA		
LZ9A LZ5Z LZ6A LZ1AQ	6,154,848 4841 167 607 4,147,200 4363 175 625 1,035,450 1509 96 294 929,788 1419 95 287	SLOVENIA 5,007,123 3418 161 572 320,222 1425 35 143	J6DX 25,596,764 14292 179 620 AFRICA	DUP	LEXERS
9A5D	CROATIA 2,356,714 3377 117 337	SPAIN EA5BY 4,231,458 4074 138 464 ED7UR 119,340 553 48 105	CEUTA & MELILLA EA9EA 29,532,750 12888 178 667	* QUALI *	TY * SERVICE PRICE
OK5W OL3A OL50 OK2KOD	ZECH REPUBLIC 6,573,238 3898 187 667 3,933,762 3444 163 524 2,322,552 2878 105 321 1,295 552 1393 116 380	SWEDEN SK6FM 3,757,008 3244 164 532 SK2AU 351,780 640 79 251	TOGO 5V7A 34,658,186 14381 187 679	WE'VE	GOT IT ALL!
OK2KDS OL2A OK1KCF OK5SAZ	1,137,270 1284 107 347 986,832 1698 85 251 65,208 244 44 112 10,998 109 23 55	UKRAINE UR3IWA 4,607,850 3402 169 526 UT7Z 3,307,803 3566 140 431	ASIA CYPRUS P3A 24,422,471 12908 175 622	Duplexers with patented B _p B _r	our
G3TMA	ENGLAND 1,313,654 1799 122 344	UR4LZA 294,415 665 60 205 UR4MWU 250,299 611 76 185 UR4LWY 86,526 245 62 145	JAPAN JA5BJC 14,115,675 6788 190 615 JA4EKO 9,968,112 5329 186 558 JA1YXP 9,623,520 5267 189 549	Circuit* Filters provide superio performance	
EU RU1A UD6M	ROPEAN RUSSIA 9,044,874 4579 203 751 7,033,078 4841 184 690	YUGOSLAVIA YU7AL 1,978,812 2132 124 402 YZ7A 765.600 1412 84 246	JA3YKC 4,941,032 3685 162 406 JA1YPA 813,588 1087 109 193	especially at close frequency	H
RM6A RK4WWA RZ1AWO RK3AWE RN3R	5,346,555 3966 183 644 2,246,412 2264 136 428 1,801,624 2273 112 360 1,735,794 2414 108 330 1,486,275 2553 118 357	YZ7W 404,415 851 76 209 YT1Z 364,511 1011 67 234 YU1HFG 342,662 1339 37 109	MONGOLIA JT1A 10,771,354 8112 164 474	separation.	
RK6AYN RK3PXP RK4CWA	725,592 1490 100 292 692,043 1151 75 238 681,616 1314 90 287	OCEANIA GUAM	MYANMAR XZ1N 5,464,341 5486 159 438		Tier (
RK3WWA RK3YYM RZ4SWM	395,266 887 76 181 205,800 815 67 213 42,276 323 35 121	AH2R 8,902,349 5027 177 476	UNITED ARAB EMIRATES A61AJ 28,014,492 12692 195 718		A Set 20
OH7M	FINLAND 6,776,410 3830 185 680	VK9LX 6,154,205 4437 139 364	EUROPE	PHONE 254-6 FAX 254-6	848-4435 848-4209
OH5M OH6X OH6NIO	3,644,586 2848 164 535 3,265,698 3047 160 559 2,749,185 2311 137 460	V63X 7,481,874 5020 161 373	CZECH REPUBLIC 0L7W 3,252,510 3099 132 507		COM
TM2Y	FRANCE 10,357,360 5480 188 678	ZM2K 6,239,018 4192 155 411	DENMARK 0Z5W 4,406,832 3752 144 462 075W0 3,483 311 3880 144 467		PRODUCTS, INC.
F6EN0 F5KPG	2,561,362 2874 129 360 1,340,148 2511 91 257 407,238 780 80 219	ARGENTINA LU8XW 515.619 1855 31 82	DODECANESE	P.O. BOX 211 e-mail:wacc	45 • WACO, TX 76702 m@wacomprod.com
DL2NBU DJ6QT DLØAO	GERMANY 7,925,400 4223 186 664 4,847,840 3401 165 574 2,449,645 2018 145 460	LW6EFP 56,059 390 25 36 CHILE CE3F 4,170,642 3617 134 365	ESTONIA ES50 5,250,636 3932 165 567	CIRCLE 89 O	N READER SERVICE CARD

www.cq-amateur-radio.com

October 1999 • CQ • 81

Books, Videos, Calendars, Cards Wisit Our Web Site

Fax us at 516-681-2926 Call us toll free al-1-800-853-9797

CQ Award Pins

If you've earned any of CQ's Awards, you can also display the corre-

sponding CQ Award pin. Available for WAZ, 5 Band WAZ, 160 Meter WAZ, CQ DX, CQ DX Honor Roll, WPX, WPX Honor Roll, and USA-CA **ONLY \$5.00 EACH.** awards.

Playing Cards

Top quality, plastic coated playing cards. **ONLY \$9.95** per deck

1999/2000 Calendars

33 Simple Weekend Projects

by Dave Ingram, K4TWJ

Do-it-yourself electronics projects from the most basic to the fairly sophisticated. You'll find: station accessories for VHF

FMing, working OSCAR satellites, fun on HF, trying CW, building simple antennas, even a complete working HF station you can build for\$100. Also includes practical tips and techniques on how to create your own electronic projects.

Order No. 33PROJ \$15.95

W6SAI HF Antenna Handbook

by Bill Orr, W6SAI Inexpensive, practical antenna projects that work! Guides you through the

loop, Yagi and vertical antennas.

Order No. HFANT \$19.95

The NEW Shortwave Propagation Handbook

by W3ASK, N4XX & K6GKU A comprehensive source of HF propagation principles,

Amateur Radio Equipment **Buyer's Guide**

This 144-page book is your single source for detailed information on

Amazoni Hain

EQUIPMENT

practically every piece of Amateur Radio equipment and accessory item currently offered for sale in the USA complete with specs and prices. Also

includes the most comprehensive directory of Ham product manufacturers and dealers in the USA.

Order No. EBG \$15.95

The Quad Antenna by Bob Haviland, W4MB

An authoritative book on the design, characteristics and quad antennas.

Order No. QUAD

McCoy on Antennas by Lew McCoy, W1ICP

Unlike many technical

Building and Using Baluns and Ununs by Jerry Sevick, W2FMI

This volume is the source for the latest information and designs

on transmission line transformer theory. Discover new applications for dipoles, yagis, log periodics, beverages, antenna tuners, and countless other examples.

Order No. BALUN ... \$19.95

The Vertical Antenna

Handbook by Paul Lee, N6PL

Learn basic theory and practice of the vertical antenna. Discover easy-tobuild construction projects.

THE BRITE PARTY NAME VERTICAL NOTEDNA (DOBDCIA)

Order No. VAH \$9.95

Keys, Keys, Keys

by Dave Ingram, K4TWJ

You'll enjoy nostalgia with this visual

building of wire,

Anteona Second Printing Flandbool

construction. applications of

Fifteen month calendars -January 1999 through March 2000

Please specify Amateur Radio or Classic Radio Calendar

sunspots, ionos-The NEW Shortwave pheric predictions, Propagation landbook with photography, charts and tables

Order No. SWP \$19.95

publications, Lew presents his invaluable antenna information in a casual, nonintimidating way for anyone!

\$15,95

Lew McCoy

On Antennas

Order No. MCCOY \$15,95

celebration of amateur radio's favorite accessory. This book is full of pictures and historical insight.

Order No. KEYS

\$9.95

Getting Started Videos - "How-To," Tips, Techniques & More!

Ham Radio Horizons: The Video . . Order No. VHOR Getting Started in VHF ... Order No. VVHF Getting Started in Ham Radio . . Order No. VHR Getting Started in DXing . . Order No. VDX Getting Started in Packet Radio . . Order No. VPAC Getting Started in Amateur Satellites . . Order No. VSAT Getting Started in Contesting . . Order No. VCON

Only \$19.95 each Buy more and save!

Buy 2 or 3 for \$17.95; Buy 4 to 6 for \$15.95 Buy all 7 for your Club for only \$99.95

	State	Zip	
Item #	Description	Price	Total Price
dd \$4 shinning (handl	no "EDEE S/N on orders \$50 and over Eareign , shipping /handling charges are	Shinning/Handling	
ight & destination. *A	4 credit will be applied for Foreign orders over \$50.	Total	
	Item # add \$4 shipping/handli ight & destination. *A \$	State Item # Description Idd \$4 shipping/handling. "FREE S/H on orders \$50 and over. Foreign - shipping/handling charges are ight & destination. "A \$4 credit will be applied for Foreign orders over \$50.	State Zip Item # Description Price Idd \$4 shipping/handling. "FREE S/H on orders \$50 and over. Foreign - shipping/handling charges are ight & destination. "A \$4 credit will be applied for Foreign orders over \$50. Shipping/Handling Total Total

Awards

News Of Certificate And Award Collecting

The Seacoast Wireless Association, W1BQL (operated by Percy Ford, KA1JPR) earned USA-CA #966 in December of last year. The club had originally held the call KB1CCW, and Percy began his county hunting with that call. When Charlie Howe, W1BQL, passed away in 1998, the club took on his callsign. Charlie had begun his amateur radio operating in 1918, and was awarded a plaque in 1996 by the QCWA honoring his 75 years as a radio amateur.

Percy would like to thank those who helped him achieve USA-CA All Counties for the Seacoast Wireless club: all the mobiles and net controls and their assistants, and a special thanks to Jim Grandinetti, KZ2P, for getting the last county for the whole ball of wax.

Tips for Award Hunters

Use of *IRCs in Germany* for awards purposes is questionable because of the difficulty in exchanging the coupons at many post offices. When applying for a German award, consider substituting dollars for IRCs, or at least verify from the sponsor that IRCs are accepted.

Award certifications (GCR) when you live in a remote area. One reader says that he lives a very long distance from the next amateur who might be able to certify awards. "How do I handle getting two certifications for awards?" My suggestion is to be forthright about this situation when you apply for the award, and either send copies of the cards or offer to send representative cards on demand. This won't work for awards such as 5B WAZ or DXCC, of course, since the actual cards are needed. And I wouldn't try it for "inconvenient" distances to the next ham. I'd suggest it for the run-of-the-mill small organization or individual sponsored award. This advice is strictly unofficial, but I'll bet it works.

Arden H Fonda AAØIP
USA-CA All Counties #975 July 7, 1999
Ronald P. Cox KE3DK USA-CA All Counties #976 July 14, 1999

York County in the 1800s with an artist's mural of York County's most famous buildings on the upper half of the certificate. The certificate is signed by the four commissioners of the county. Send a photocopy of your log or the received QSL with 3 IRCs or \$US3 to: Pete deVolpi, KC3TL, 408 Hillside Ave., New Cumberland, PA 17070-3036. Check out their Internet page: http://www.york250.com>.

Lebanon's Worked Oscar Delta Award. After several years of inactivity, as the country dissolved into war and anarchy, Lebanon is returning to normal. A good outcome of this is the re-establishment of amateur radio and an award as shown here.

The award is sponsored by the Association of Radio Amateurs of Lebanon (RAI) and is available to all amateurs worldwide who submit proof of having contacted a minimum of 5 different OD

USA-CA H	Ionor Roll
500	2000
KE3DK	N3TA
ON7ZV	AAØIP1164
HB9APJ3085	KE3DK1165
1000	2500
AAØIP1517	WA5VGI 1087
IKØAZG1518	AAØIP1088
KE3DK1519	KE3DK1089
1500	3000
AAØIP1264	AAØIP
KE3DK1265	KE3DK976

The total number of counties for credit for the United States of America Counties Award is 3076. The basic award fee for subscribers is \$4.00. For nonsubscribers it is \$10.00. To qualify for the special subscriber rate, please send a recent CQ mailing label with your application. Initial application may be submitted in the USA-CA Record Book, which may be obtained from CQ Magazine, 25 Newbridge Road, Hicksville, NY 11801 USA for \$2.50, or by a PC-printed computer listing which is in alphabetical order by state and county within the state. To be eligible for the USA-CA Award, applicants must comply with the rules of the program as set forth in the revised USA-CA Rules and Program dated March 1, 1997. A complete copy of the rules may be obtained by sending an SASE to Ted Melinosky, K1BV, 65 Glebe Road, Spotford, NH03462-4411 USA. DX stations must include extra postage for airmail reply.

land stations in Lebanon, all bands and modes, on or after 1 January 1990. Contacts must have been made from the same location and must be confirmed in writing.

Awards Available

250th Anniversary York County, Pennsylvania (short-term award). Contact the York County ARC club special event station KY3ORK one time on any band during the period February 10, 1999 to December 31, 1999. The York ARC will distribute up to 2500 certificates by no later than March 1, 2000. The York County 250th Anniversary Commission has designed this award on high-quality gold parchment paper, displaying the history of

65 Glebe Road, Spofford, NH 03462-4411 e-mail: k1bv@top.monad.net

Alex Pashkov, UA9OA, Novosibirsk, Siberia, holder of USA-CA 500 county level #3053, December 1998. Alex is an enthusiastic awards chaser, as can be seen by the collection above his operating position. (Thanks, WV2B, for photo).

October 1999 • CQ • 83

哥	ALBOCIATION OF RADHO AMATELINE OF LERANON	وسية هواة لرعيو البنانية	a
B	The Balle Anstrans of Laboratory	D washing	2
11	white to	40	認
将	The finite start	alphare :	Q
码	-79		D
B	Refered Annual Ranger	- A	發
3	the sity of the site	and a starting	3
20	44-9-9-9-9-9-9-		-

The Worked Oscar Delta Award sponsored by the Association of Radio Amateurs of Lebanon.

Table I- List of Swedish LANs and requirements for the Worked All Sweden Award.

No use of repeaters. All stations contacted must be land stations; contacts with ships or aircraft may not be counted. The OD station you contact must be a member of the RAI.

Write for the award application, which must be signed by two witnesses. Fee for the award is \$US10 (or the equivalent in IRCs).Write to: Awards Manager, Association des Radio Amateurs Libanais, P.O. Box 11-8888, Beirut, Lebanon. Swedish Radio Society Series (SSA). Following are the general requirements for this series of awards. Contacts must be made after 1 January 1988 and from the same QTH or within a radius of 150 km. Surface stations only, and no repeaters allowed. Endorsements for band, mode, or combination are available at the applicants request. GCR accepted. Fees: Basic award is 30 SEK, or 6 IRCs. Sticker is 5SEK, or 1 IRC. Rosette (Field) is 30 SEK, or 6 IRCs. Plaque is 125 SEK, or 25 IRCs. (German, English, and American currency is accepted at current exchange rates.) Apply to: Diploma Manager-SSA, Ostmarksgatan 43, S-123 42 Farsta, Sweden. Note: Comprehensive record books providing complete lists of LANs (WASA, HASA), Locators (SLA), and Fields (Field Award) with maps and room to record all necessary data are available from SM6DEC at a very reasonable cost. These are highly recommended tools for these awards. The cost for printed matter surface mail are 20 SEK, or 4 IRCs. Write to: Bengt Hogkvist, SM6DEC, Harengatan 11A, SE-531 34 Lidkoping, Sweden. The Field Award. Contact different fields as defined by the Maidenhead locator system all over the Earth after 1 January 1985.

Six classes: Bronze (Basic) = 100, Silver (Rosette) = 150, Gold (Rosette) = 200, Platinum (Rosette) = 250, Plaque = 300, Gold Seal Plaquette = 324.

All modes and bands. No endorsements. Surface stations only. QTH must be on the QSL with enough accuracy so that the field may be determined. SSA reserves the option to request a sample of your cards. GCR list with name of city/ town contacted, or in the case of Maritime Mobiles, the latitude and longitude. Worked All Sweden Award (WASA). Contact Swedish counties (Lan) and callsign districts as shown in Table I. Heard All Sweden Award (HASA). Available under the same conditions as WASA, but for SWLs only. No shields will be awarded. Swedish Locator Award (SLA). Issued for verified contacts with various locator squares in Sweden as defined by the Maidenhead system. SWL okay. Basic diploma requires 25 squares. Endorsements at 35, 45, 55, 60, 61, 62, 63, and 64 squares.

The Field Award offered for contacting different fields as defined by the Maidenhead locator system all over the Earth. The award is sponsored by The Swedish Radio Society.

The Worked All Sweden Award also offered by the Swedish Radio Society.

URL of the Month

The newest category of "collectible" seems to be lighthouses. DXCC led the way with countries, then IOTA with islands, and then the Spanish / Portuguese with castles. K2JXW has a very interesting page with lighthouse awards at: <http://www.waterw.com/~weidner/ Id.htm>. If you can pack a mobile or portable signal, and can't quite make it out to a rare Pacific atoll or a new country, per-

The Swedish Locator Award is issued for verified contacts with various locator squares in Sweden.

haps you can operate on or in the vicinity of one of the listed lighthouses and gain some degree of fame this way. All the data is there, and K2JXW has done a nice job organizing it.

I'm still looking for your club or group's award or certificate. Please send me details plus a sample and you'll get excellent publicity to jumpstart your program.

Slim line, efficient, single whip multiband mobile antennas. No extra resonators, "porcupine" extenders or coffee can size coils are required.

All WARC Bands are built-in. (Check the competition). Check out the entire line - you'll be amazed at the versatility, such as:

NEW! THE Outbacker[®] OUTRUNNER[™] HF Mobile Antenna! A hot new mobile whip providing hot performance over a wider range of ham bands.

- Covers all HF ham bands 160 thru 10 meters (including WARC)
- 9ft overall length (6ft shaft with 3 ft collapsible stinger)
- 150 watts PEP
- Terminates in standard 3/8-24 threads \$349.00

THE Outbacker® STEALTH™ PLUS: A single whip - only 4' long that covers 75 thru 10 meters plus 6 and 2

OUTBACKER® MODEL DESCRIPTION AND PRICING

OUTBACKER® PERTH The PERTH has a 4ft, shaft with a 3ft. stinger, low resistance and hatch mountable with high performance. Rated at 150 watts P.E.P, with 75 through 10 meters. Model # PERTH \$289.00

OUTBACKER® PERTH PLUS Over all length is 6 ft. Offers 75 through 10 meters. PLUS 6 meters and 2 meters. Rated at 100 watts P.E.P. Low profile. Model # PPLUS.\$299.00

This column is being written just a few days after the sad news of K2EEK's passing was flashed over the Internet. Alan "recruited" me to write this column back in July 1997. He was a gentle but persuasive person who loved the "operating" side of our hobby, and his editorials stressed the "fun" aspect of modern amateur radio. All of us who enjoy operating have lost a dear friend.

73, Ted, K1BV

meters. No larger than a VHF/UHF colinear whip! \$269.00

OUTBACKER® - 8 6 ft 300 watts P.E.P. 8 Bands 75-10m. Perfect for the Condo. Model # OB8\$279.00

OUTBACKER® - HP Same as above - 500 watts P.E.P. Model # OB8HP \$299.00

OUTBACKER® STEALTH PLUS™ 4 ft 150 watts P.E.P. 8 Bands 75-10m PLUS 6 & 2m. Model # ST PLUS\$269.00

OUTBACKER® SPLIT 6 ft 300 watts P.E.P. Breaks down into two 3 ft sections for easy storage. 8 Bands 75-10m. Storage pouch included. Model #OBS8.....\$299.00

OUTBACKER® TRI SPLIT Same as above except breaks down into 3-2ft sections. Model #OB8TRI.....\$329.00

OUTBACKER® MARINE Although all OUTBACKER®s can be used in a marine environment the OBM includes ham, and ITU bands. 5 Amateur bands 75-10m, ITU bands 2.182MHz, 4.1MHz, 6.2MHz, 8.2MHz, 12.4MHz, 16.5MHz, 22.1MHz. 6 ft black, rated at 300 watts P.E.P. Model #OBM......\$429.00

OUTBACKER® TRUNK LID MOUNT This mount is used for trunk and hatch mounts. It is fully adjustable. Comes with spring and coax. Suitable for Perth, Perth Plus and Stealth Plus models only. Model #OB360\$99.00

The OUTBACKER® Spring Base has standard 3/8-24 threads. The spring is made of zinc plated steel. The base is nickel-plated machined brass with an SO-239 female connector. Requires 1/2" hole for mounting. Model #OBSB\$99.00

At your Alpha Delta dealer or add \$5.00 for shipping and handling in the continental United States. Exclusive U.S. Importer of Terlin Aerials.

ALPHA DELTA COMMUNICATIONS, INC. AA) P.O. Box 620, Manchester, KY 40962 • (606) 598-2029 Moster Cord fax • (606) 598-4413 Alpha Delta - Where Imagination And Reality Merge VISA Website: www.alphadeltacom.com

BY FREDERICK O. MAIA, W591

By FREDERICK Regulatory News In The World Of Amateur Radio

Sorting Out the New Amateur Application Forms Used in ULS

y the time you read this, the Amateur Service will have switched to the FCC's new Universal Licensing System. The objective of ULS is for all radio services to file electronically into one massive database which will contain all wireless radio services. ULS also reduces the number of application forms from 40 to just five. The new forms are FCC Forms 601, 602, 603, 604, and 605. As mentioned last month, the Amateur Service will use the new FCC Form 605 and its accompanying Schedule "D."

The FCC Form 605 is a general-purpose form consisting of a main form and several schedules for collecting information in five different radio services. Its lengthy title is the "Quick Form Application in the Ship, Aircraft, Amateur, Restricted and Commercial Operator, and the General Mobile Radio Services". The main form is to obtain information sufficient to identify the applicant and establish his or her basic eligibility. Schedule "D" is for additional data for the Amateur Radio Service. Also, there are nine pages of instructions, much of which does not apply to the Amateur Service. The FCC's version of Form 605 is confusing at best to radio amateurs, since it uses two-letter Application Purpose codes and asks questions which are completely different from the current system. For example, you enter the letters "AU" (which stands for Administrative Update) when you merely change your mailing address, phone number, fax number, or e-mail address. There are also blanks to request Special Temporary Authorizations, Amendments, or Withdrawal of pending applications, Requests for Waiver which are not used in the Amateur Service. A Request for Waiver is not the same as requesting a high-speed code exemption available to applicants who obtain a "Physician's Certification of Disability." You use Schedule "D" to request a 13 and 20 wpm code exam exemption.

the case of an amateur, his or her 9-digit Social Security number (SSN)-as the "key" (or "unique identifier") with which to identify the record. A corresponding "Licensee ID" number (obtained by registering with the FCC) can be used in place of your SSN. The current amateur database uses the applicant's callsign as the "unique identifier."

For the first time, applicants for new, upgraded, or renewed amateur radio operator/station licenses are being asked to provide their Social Security number (SSN) to the FCC. This is being required of all government agencies by Congress as part of the Debt Collection Act of 1996.

The FCC Form 605 and its Schedule "D" are not enough to handle all of the collection needs of the Amateur Service, however. Neither of these two forms, for example, contain places where volunteer examiners (VEs) can enter such needed information as the applicant's license class, examinations passed, or blanks where Volunteer Examiners can certify that they have complied with the Administering VE requirements. The current FCC Form 610 provides for collecting this information.

warded to a VEC for handling. The FCC will still accept the manual filing of paper documents, but you must use their version of the Form 605 and Schedule "D".

FCC Details Use of Their FCC Form 605

On August 16, 1999 the Wireless Telecommunications Bureau began the use of the Universal Licensing System (ULS) for all application and licensing activity in the Amateur Radio Service.

ULS is a new, interactive licensing database developed by the Bureau to consolidate and replace eleven existing licensing systems used to process applications and grant licenses in wireless services, including the Amateur Radio Service. ULS provides numerous benefits, including fast and easy electronic filing, improved data accuracy through automated checking of applications, and enhanced electronic access to licensing information.

The FCC has now released a Public Notice explaining their FCC Form 605, which is used in cases not involving a VE or VEC. The Public Notice summarizes the procedures that took effect on August 16, 1999 for station and operator licensing in the Amateur Radio Service using ULS and in accordance with the ULS rules. The conversion of the Amateur Radio Service to ULS will affect the filing of applications with the Bureau, and the FCC encourages licensees to become familiar with these changes now (even if you do not anticipate renewing or modifying your license in the near future). For further information regarding the ULS rules and procedures, refer to the FCC's ULS Internet site at <http://www.fcc.gov/ wtb/uls.

The new ULS system uses the Taxpayers Identification Number (TIN)-in

National Volunteer Examiner Coordinator, P.O. Box 565101, Dallas, TX 75356-5101 (telephone 817-461-6443) e-mail <fmaia@prodigy.net>

VECs Agree on New NCVEC Form 605

The VECs have now agreed to use an internally created single-sheet application form they call the "NCVEC Form 605." It contains all the information needed to be collected by the new ULS and VEC System. It was designed to be very similar to the current FCC Form 610 to minimize confusion caused by the transition from the Form 610 to the new information collection requirements.

The NCVEC Form 605 is to be used to renew amateur licenses or in connection with the examination process carried out by Volunteer Examiners. It will also be used once the FCC assigns Club Coordinators to establish or renew amateur club or military recreation licenses and to renew RACES licenses.

It is important to know that this is an internal VEC form and cannot be sent to the FCC. The form can only be used in conjunction with applications filed electronically by a VEC. The "NCVEC Form 605" must be presented to a VE or for-

Overview of ULS Conversion

New FCC Form 605. On August 16, 1999 the Bureau will begin use of FCC Form 605 (OMB Control Number 3060-0850) for Amateur Service application filings for license renewals, modifications, cancellations, application withdrawals and amendments, requests for duplicate licenses, and administrative updates (i.e., a change of address or other clerical license modification). FCC Form 605 may also be used to apply for vanity callsigns under the Vanity Call Sign System program.

Applications for new licenses, a change in operator class, or renewals filed by a VEC will continue to be filed through a Volunteer Examiner Coordinator. The NCVEC Form 605 is used for this purpose. Applications for Club, Military Recreation, and RACES licenses will continue to be made on FCC Form 610B until further notice.

New Filing Procedures

Renewals and "administrative updates" (address changes) may also be filed electronically by Amateur Service licensees using the interactive FCC Form 605 or manually (see "ULS Filing Procedures" below).

Electronically filed applications will be subject to automated edit checking, enabling the applicant to make corrections before filing the application. Manually filed applications will not be checked automatically, and may be subject to dismissal if they are defective or incomplete.

Amateur Service licensees may continue to use pre-ULS application forms (that is, the FCC Forms 610 and 610V) for a six-month transition period (i.e., until February 16, 2000) as long as the applicant provides his or her Social Security Number written in at the top of the form.

Beginning August 16, 1999 Amateur Radio Services licensing data will be available online to the public. The format will be different and the pre-ULS database will no longer be available online.

dent aliens). The FCC will provide these applicants with an FCC-generated identification number for access to ULS if and only if they are not required by law to have a TIN. To determine whether you fall within this category, call ULS Technical Support at 202-414-1250. Foreign nationals taking VE-administered examinations will be supplied with an "Assigned TIN" (ATIN) by their VEC.

Trustees and custodians of Club, Military Recreation, and RACES licenses should not use their personal Social Security Number as the TIN for these licenses, but should instead use an EIN (when one is available). Otherwise, contact ULS Technical Support to obtain a FCC-generated identification number. It is possible that renewals of Club, Military Recreation, and RACES stations filed by a VEC may be able to be assigned an ATIN by the VEC. This procedure is being worked out.

The FCC urges Amateur Service applicants and licensees to register their TINs as soon as possible. You only need to register your TIN once.

Important: If you do not register your TIN, you will be unable to electronically file applications in ULS. Additionally, manually filed applications that do not contain your TIN on or after August 16 will be dismissed as defective.

There are several ways to register your TIN in ULS:

Electronic TIN Registration: The Bureau strongly recommends electronic registration. To register electronically, access the FCC's ULS Internet site at <http://www.fcc.gov/wtb/uls>, click on the "ULS TIN/Call Sign Registration" link, and follow the on-line instructions.

When you register your TIN electronically, you select a password to identify yourself in future private transactions with the FCC database. (This is analogous to setting a PIN when your bank gives you a new ATM card.) Your password can be 5 to 30 characters (letters and/or numbers) long and is case-sensitive. For additional security, you must also specify a personal or corporate identifier. We recommend you not use your Amateur Service callsign or any other callsign that can be associated with you as a password or identifier.

After registering your TIN, you will be asked to enter your callsign(s). Associating your callsign(s) with your TIN in ULS will enable you to file renewals, modifications, notifications, and other filings with respect to the callsign(s) identified.

Automatic TIN Registration Through VECs. As a convenience for Amateur Service applicants and licensees, the FCC has established an automatic TIN regis-

Under ULS, applicants may file FCC Form 605 electronically at any time 24 hours a day, seven days a week. Automated processing of electronically filed applications will occur nightly on each business day, beginning at approximately 11 PM EDT. When the nightly processing run is completed. ULS will generate a file listing the day's licensing activity, and processing results will be available for query through the ULS Internet public access system. Applications filed on weekends and holidays will be given a receipt date for, and will be processed on, the next business day.

Registration of Taxpayer Identification Numbers (TINs)

In order for an amateur to file any application in ULS electronically or manually, you must (1) register your TIN in ULS and associate your current callsign(s) with your TIN; and (2) provide your TIN on all applications filed on or after August 16.

For individuals, the TIN is your Social Security Number (SSN). For businesses, the TIN is the Employer Identification Number (EIN) of the business. Under some circumstances, Amateur Service applicants or licensees may not be required by law to have a TIN (e.g., citizens of foreign countries and certain nonresi-

CIRCLE 76 ON READER SERVICE CARD

Dertically AF KF' VERSATILE MULTIBAND VERTICAL ANTENNAS TRAP • HF6V FREE HF9V Offering 2, 6 and 9 Band Verticals with optional 160 Meters. Butternut's unique, patented design solves traditional problems that are associated with vertical antennas. Many verticals rely on lossy traps to offer multiband performance - which causes narrowed bandwidth. The Butternut trap-free design

tration process for Amateur Service applications filed through VEs/VECs. If you are filing an application through a VE/VEC and have not previously registered your TIN, you may submit your TIN to the VE/VEC with the application. When the VEC files the application with the Commission on your behalf, your TIN will be automatically registered in ULS. Note that if you register your TIN through the automated VEC registration process, you must still obtain a password if you want to file in ULS electronically in the future. To obtain a password, call ULS Technical Support at 202-414-1250.

Manual TIN Registration: To register your TIN manually, use FCC Form 606 (TIN Registration Form). This form can be obtained from the Internet at <http://www. fcc.gov/formpage.html>, or by calling the FCC's Forms Distribution Center at 1-800-418-FORM (3676). FCC Form 606 also allows you to associate your callsign(s) with your TIN. If you register your TIN manually, you must call ULS Technical Support at 202-414-1250 to obtain a password before you can file applications electronically in ULS.

A manually-filed FCC Form 606 should be mailed to:

Federal Communications Commission Information Technology Division Attention: Kathy McLucas 1270 Fairfield Road

Gettysburg, PA 17325-7245

For more information on TIN registration: Fact Sheet Number 206-U, released Call Sign applications) must include a TIN.

For applications that a VEC files on your behalf after August 16, you will have the option of providing either your TIN or your Licensee Identification Number to the VEC. Because you obtain a Licensee Identification Number when you register your TIN, you:

 should register your TIN prior to qualifying for an Amateur Service license if you plan to provide a Licensee Identification Number; and

 cannot use the Automatic TIN Registration Through a VEC feature and provide the VEC your Licensee Identification Number as part of the same filing.

If you do not provide your TIN with an application filed on or after August 16, your application will be dismissed.

Filing Procedures Under ULS

FCC Form 605 replaces all letter requests and old forms (FCC Form 610 and FCC Form 610-V) previously used by Amateur Radio Service licensees (except Form 610B, as described below). FCC Form 605 will be used for all Amateur Service licensing applications filed directly with the FCC or via Mellon Bank. Manual filers must use an edition of FCC Form 605 with a July 1999 edition date or later. Filings on earlier editions of FCC Form 605 will be dismissed as defective.

To file FCC Form 605 electronically you must use your browser to connect to ULS through the Commission's wide-area network via a toll-free number: 1-800-844-2784. Instructions for connecting to ULS are contained on the ULS website at <http://www.fcc.gov/wtb/uls>. For instructions on filing FCC Form 605 manually, refer to the instructions on the form.

CIRCLE 40 ON READER SERVICE CARD

in April 1999, discusses TIN registration in a question-and-answer format. A link to this Fact Sheet is available on the ULS Internet site <http://www.fcc.gov/wtb/uls> under the "ULS Headlines" section. The ULS Internet site contains additional information about registering your TIN under the topic "Getting your Login and Password (Tin/CallSign Registration)." The site also contains a list of Frequently Asked Questions (FAQs) about TIN registration.

Confidentiality of TIN Information

Once registered, your TIN will not be disclosed to the public. Instead, the ULS will generate a *Licensee Identification Number* that will be used in place of your TIN on publicly available records.

Providing Your TIN On Applications

In addition to registering your TIN, you must also include the TIN (Social Security Number) or Licensee Identification Number on all applications filed in ULS. All applications filed on or after this date that do not include the information described below will be *dismissed* as defective.

All paper applications filed directly with the FCC or via Mellon Bank (i.e., Vanity

Required and Optional Applicant Information

All Amateur Radio Service licensees must provide a U.S. mailing address on their applications; the Bureau will not accept foreign addresses. FCC Form 605 also includes fields for applicant telephone number, fax number, and e-mail address. These fields are optional for amateur applicants and licensees, and any information that is provided in these fields will not be made available to the public.

Use of Pre-ULS Forms

Amateur Service licensees may continue to use FCC Form 610 and FCC Form 610-V until February 16, 2000, provided they submit their TINs and certain other required information with the application. Applications filed on FCC Form 610 and FCC Form 610-V after February 16, 2000 will be dismissed as defective.

Although licensees have the option of continuing to use pre-ULS forms during the six-month transition period, the Bur-

eau strongly urges applicants and licensees to begin using FCC Form 605 immediately. The choice of application form and filing method will affect processing in the following way:

1. FCC Form 605 filed electronically is the most efficient filing method and will result in expedited processing compared to filing manually.

2. FCC Form 605 filed manually will result in expedited processing compared to filing pre-ULS forms or letter requests.

3. Pre-ULS forms or letter requests is not recommended and will result in slower processing than the options described above.

Use of Form 610B for Club, **Military Recreation, RACES**

Until further notice, applicants should continue to use FCC Form 610B for Club and Military Recreation station licenses and requests for modifications and renewals of Club, Military Recreation, and RACES station licenses. In the future, ULS will accommodate the processing of these license applications through callsign administrators. This program is not yet in place.

Important: Beginning August 16 you must provide the EIN or FCC-generated ID number on each FCC Form 610B you submit. Applications that do not include this information are subject to dismissal.

Vanity Callsign Applications Which Require Fees

ing credit card payments online. The Bureau will release a public notice and provide information on its web site when this option becomes available.

The FCC will still accept Vanity Call Sign filings made on FCC Form 610-V ("Amateur Station Vanity Call Sign Request"), provided the TIN (Social Security Number) is provided on the application.

Where to send payments for electronically-filed applications:

All payments for electronically filed applications should be sent to: Federal Communications Commission **ULS Electronic Filings** P.O. Box 358994 Pittsburgh, PA 15251-5994

Manually filed applications that do not require fees should be sent to: Federal Communications Commission 1270 Fairfield Road Gettysburg, PA 17325-7245

Manually filed Vanity Call Sign applications that require fees: Federal Communications Commission Wireless Telecommunications Bureau P.O. Box 358130 Pittsburgh, PA 15251-5130

For Further Information **Or Assistance**

For general information about ULS, including answers to frequently asked questions regarding submitting applications, finding the status of pending applications, and searching the ULS database, the Commission recommends first consulting the ULS web page at <http://www.fcc.gov/ wtb/uls>. Individuals having specific questions not addressed on the web page may contact Commission staff via phone or e-mail as described below. FCC Technical Support Hotline: 202-414-1250, or via e-mail at <ulscomm@ fcc.gov>. Contact the Technical Support Hotline about questions concerning computer access to ULS, TIN registration, uploading files, or submitting attachments in ULS. The hotline is available Monday through Friday, from 8 AM to 6 PM EDT. In order to provide better service to ULS users and ensure the security of the electronic filing system, all calls to the hotline are recorded. ULS Licensing Support: 1-888-CALL-FCC (225-5322), or via e-mail at <ulshelp @fcc.gov>. Contact Licensing Support with questions about which application purpose(s) are appropriate for a particular filing, what information is being requested on a ULS Form or Schedule, or any other ULS-related licensing matter. ULS Licensing Support is available Monday through Friday, from 8 AM to 5:30 PM EDT. Comments on ULS should be sent via e-mail to: <ulscomm@fcc.gov>. 73, Fred, W5YI

Amateur Service applicants filing vanity callsign applications in ULS remain subject to the current \$14 application fees required under Section 1.1102 of the rules. ULS, however, will simplify the process of submitting fees to the Commission.

When an applicant submits an application electronically, ULS will assign a file number and show the correct fee amount due and the payment type code on a confirmation screen.

Clicking on the "Form 159" button will pre-fill this information on the FCC Form 159. ULS will then instruct the applicant on how to print out the pre-filled FCC Form 159 so that it can be mailed to Mellon Bank at the address specified below.

Note: Applicants who do not use the pre-printed FCC Form 159 in connection with an electronically filed application must enter the ULS-generated file number in the FCC Form 159 box labeled FCC Code 2. If problems arise while trying to print FCC Form 159, call the FCC Technical Support Hotline at 202-414-1250 for assistance (available Monday through Friday, from 8 AM to 6 PM EDT). Mellon Bank must receive the FCC Form 159 and accompanying fee within ten calendar days of submitting the application. In the near future, ULS will be capable of accept-

LAST-MINUTE FORECAST

Day-to-Day Conditions Expected for October 1999

	Expe	Expected Signal Quality			
Propagation Index Above Normal: 7-8, 15-16,	(4)	(3)	(2)	(1)	
23	Α	A	B	С	
High Normal: 3-5, 9, 13-14, 17 24-25, 28-31	A	в	с	C-D	
Low Normal: 1-2, 10, 12, 18 21-22, 26-27	в	C-B	C-D	D-E	
Below Normal: 6, 20	С	C-D	D-E	E	
Disturbed: 11, 19	C-D	D	E	E	

Where expected signal quality is:

- A—Excellent opening, exceptionally strong, steady signals greater than S9.
- B—Good opening, moderately strong signals varying between S6 and S9+, with little fading or noise.
- C—Fair opening, signals between moderately strong and weak, varying between S3 and S9, with some fading and noise.
- D—Poor opening, with weak signals varying between S1 and S6, with considerable fading and noise.
- E-No opening expected.

HOW TO USE THIS FORECAST

1. Find the propagation index associated with the particu-

BY GEORGE JACOBS, W3ASK

The Science Of Predicting Radio Conditions

Sunspots Soar!

sibly increasing to Above Normal at times on middle- and low-latitude paths on the 30th. See the Last-Minute Forecast box for additional information concerning expected day-to-day conditions for the entire month of October. An updated day- to-day forecast for the SSB contest weekend will appear as a bulletin at the beginning of next month's column. The November issue of *CQ* should reach most subscribers before the SSB contest begins.

Remember to carefully check conditions on October 4 and 5, since this would be one 27-day cycle before the SSB contest weekend of October 30–31. There is better than a 90% chance that conditions observed on October 4 and 5 will recur during the contest weekend.

The rapid rise in the sunspot level, and the generally High Normal geomagnetic and ionospheric conditions expected during the SSB contest weekend, could result in record-breaking scores. At the very least, barring any solar flares or radio storms, this should be the best SSB contest weekend in the past eight years, particularly on the 10 and 15 meter bands.

Great Conditions! Expect Record-Breaking CQ WW Contest

The 1999 CQ World-Wide DX Contest will be held on the following dates:

SSB: 0000 UTC Saturday, October 30 to 2400 UTC Sunday, October 31

CW: 0000 UTC Saturday, November 27 to 2400 UTC Sunday, November 28

For the 49th consecutive year, this month's Propagation column is devoted to special forecasts and information applicable to both the SSB and CW WW DX Contest weekends. The accuracy of the forecasts for the previous 48 contests is greater than 95%!

Included in this month's column is a summary of Internet web sites that can assist in optimizing scores during the contest.

- lar path opening from the Propagation Charts appearing on the following pages.
- 2. With the propagation index, use the above table to find the expected signal quality associated with the path opening for any given day of the month. For example, an opening shown in the Propagation Charts with a propagation index of 3 will be fair to good (C-B) on Oct. 1st and 2nd; good (B) on the 3rd through 5th; fair to poor (C-D) on the 6th, etc. Good conditions (B) are expected during the CO WW DX SSB Contest weekend of Oct. 30–31.

Sunspot cycle 23 continues its rapid rise. A running smoothed sunspot number in the neighborhood of 110 is expected during the SSB weekend. This will be the highest level of solar activity during any CO World-Wide DX Contest weekend since 1991, and on the order of 40 points higher than the count during last year's contest (see Table I).

High Normal Conditions For Most of SSB Contest

At the time of writing, during early August, a long-range *CQ* day-to-day forecast based primarily on the 27- day recurrence tendencies of geomagnetic, solar, and ionospheric conditions indicates a great probability for High Normal propagation conditions on October 30 and 31, and pos-

11307 Clara Street, Silver Spring, MD 20902 e-mail: <george@gjainc.com>

Solar Cycle Progress

The monthly mean sunspot number for June 1999 as reported by the Royal Observatory of Belgium, was 137. A high count of 195 was recorded on June 24, with a low of 62 reported on the 20th.

June's mean level results in a 12-month running smoothed sunspot number of 78 centered on December 1998. This is an increase of five in the count from the previous month. A smoothed sunspot number of approximately 110 is predicted for October 1999.

Canada's Dominion Radio Astrophysical Observatory reports a corresponding 10.7 cm solar flux level of 175 for June 1999. This results in a smoothed value of 137 centered on December 1998. A smoothed solar flux level of approximately 157 is forecast for October.

If you plan to participate in the 1999 WW DX Contest, the DX propagation charts and other information appearing in this month's column are designed to help you stay sharp and informed, and to make the best use of the ionosphere for piling up as many contacts and points as possible.

Band-By-Band Conditions

The following is a band-by-band summary of DX propagation conditions expected

W3ASK "salted the ionosphere" for this year's CQ WW DX Contest at the Galileo monument, University of Padua, Italy.

	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
October	157	142	142	76	45	27	12	9	32	71	110*
November	158	142	138	74	41	26	11	10	35	73	113*

Table I- Smoothed sunspot numbers recorded during CQ WW DX since 1989.

from mid-October through mid-December and centered on the WW contest periods.

10 Meters: Best conditions in years expected. Good, solid openings should be possible to just about every corner of the world during the daylight hours, and the band should remain open to southern and tropical regions well into the early evening. Openings towards Europe and in a generally easterly direction should peak an hour or two before noon, while those towards South America and Africa are expected to peak during the early afternoon hours. Optimum conditions towards the Far East, Australia, southeast Asia, etc., are forecast for the late afternoon and early evening hours. Expect exceptionally strong signal levels on most openings, especially if conditions should rise to High or Above Normal.

15 Meters: Fantastic might well describe DX conditions expected on 15 meters! Excellent propagation conditions should exist from shortly after sunrise

through the early evening hours, and possibly to as late as midnight. Look for a peak on 15 meters towards a particular geographical area about an hour or so after the peak has occurred to the same geographical area on 10 meters. Expect good, solid openings to all areas of the world, with exceptionally strong signals most of the time. This should be the best band for DX openings during most of the daylight hours, but it could be a toss-up with 10 meters during the afternoon.

20 Meters: DX openings should be possible on this band just about around the clock. Conditions should peak from about an hour or two after sunrise, and again during the late afternoon and early evening hours. Expect to work into most areas of the world between sunrise and sunset. Excellent openings should be possible to many areas of the world well into the hours of darkness as well. When conditions are High or Above Normal, expect 20 meters to remain open for world-

EVERY ISSUE OF [1] on Microfiche!

The entire run of m from January 1945 through last year is available. Over 1,000 fiche!

You can have access to the treasures of m without several hundred pounds of bulky back issues. Our 24x fiche have 98 pages each and will fit in a card file on your desk.

We offer a battery operated hand held viewer for \$150, and a desk model for \$260. Libraries have these readers.

The collection of microfiche, is available as an entire set, (no partial sets) for \$395, plus \$10 shipping (USA). Annual updates available for \$10, plus \$3 shipping.

Ham Radio magazine available for \$245. Satisfaction guaranteed or money back!

BUCKMASTER VISA 6196 Jefferson Highway Mineral, Virginia 23117 USA 540:894-5777-800:282-5628 Fax 540:894-9141 e-mail: info@buck.com

Huntsville, AL 1-800-723-5922

www.cq-amateur-radio.com

October 1999 • CQ • 91

Fig. 1– Intersection of the given values of solar flux and geomagnetic activity determine expected HF ionospheric propagation conditions. (Example: Solar flux is 170 and A-index is 13; expect High Normal conditions.)

wide DX during most of the night. Look for long-path openings for about an hour or so after sunrise and again for an hour or so before local sunset. Signal levels are expected to be exceptionally strong during peak periods of propagation. If you plan to operate on a single band during the contest, this should be it! 40 Meters: The band should open first for DX towards Europe and in a generally easterly direction during the late afternoon hours, and steadily improve towards evening. During the hours of darkness expect good DX openings to most parts of the world. Signals should peak from an easterly direction about midnight, and from a westerly direction just after sunrise. Conditions towards the south should be excellent throughout the nighttime period. When conditions are no better than Low Normal, 40 meters is likely to be the best band for DX openings during the hours of darkness. When conditions are High or Above Normal, this honor will be shared between 40 and 20 meters. 80 Meters: This should be a good band for DX openings to many areas of the world during the hours of darkness and into the sunrise period. The band should peak towards Europe and in a generally easterly direction around midnight. For openings in a generally westerly direction, expect a peak just after sunrise. The band should remain open towards the south throughout most of the night. Propagation on this band

is quite similar to that expected on 40 meters, except signals will be somewhat weaker on the average, noise levels a bit higher, and the period for band openings in a particular direction a bit shorter.

160 Meters: Expect some DX openings on this band during the hours of darkness and into the sunrise period. Signals tend to peak at local sunrise at the more easterly terminal of a particular path. Greater ionospheric absorption, higher levels of static, and the lower power levels used on this band should result in generally noisy and weak DX openings, but some good ones should be possible. Look for openings towards Europe and towards the south from the eastern half of the USA, and towards the south, the Far East, Australasia, and the South Pacific from the western half of the country. Other DX openings should also be possible. The best propagation aid for this band (and for 80 and 40 meters as well) is a set of sunrise and sunset curves, since DX signals tend to peak when it is local sunrise at the easterly end of the path.

For up-to-the-minute information on Top Band propagation and DX check the web at: http://solar.uleth.ca/solar/www/ 160pred.html/>.

For a grayline sunrise-sunset map, check: ">http://solar.uleth.ca/solar/www/160gray.html/.

Contest Work Charts

The DX Propagation Charts on the following pages show the times when each amateur band 10 through 160 meters is expected to open from the United States to the major areas of the world. The information contained in the charts can easily be reorganized into more convenient types of operational work plans, or operating schedules, which can serve as valuable guides during the contest. Experience gained during previous contests has shown that such plans can be extremely useful in piling up contacts and points with a minimum of wasted time. Table II is an example of one of several type plans that can be devised. It is a single-band operational work schedule for 20 meters, which shows the times when propagation conditions are expected to be optimum to various areas of the world (propagation index 3 or 4), for each three hour period throughout the day. A Pacific time zone QTH has been chosen for this example, but similar plans can be devised for other time zones and other bands.

92 • CQ • October 1999

WARC Bands

While the WARC bands are not yet included in the World-Wide DX Contest, expect 12 meter openings during the same time periods as shown for 10 meters, but with the band opening a bit more frequently

Visit Our Web Site

1. Use Eastern U and KV4	HOW PROPA chart approp ISA Chart can areas in the L	TO USE T GATION riate to your be used in to ISA and add	THE DX CHARTS transmitter he 1, 2, 3, 4, acent call ar	location. The 8, KP4, KG4, eas in Cana-	Southern	15-16 (3) 16-17 (2) 17-18 (1) 07-08 (1)	15-18 (4) 18-19 (3) 19-22 (2) 22-00 (1) 06-08 (1)	16-17 (3) 17-01 (4) 01-03 (3) 06-09 (1)	18-19 (1)	Europe & North Africa	08-11 (4) 11-12 (3) 12-13 (2) 13-14 (1)	08-12 (4) 12-13 (3) 13-14 (2) 14-15 (1)	08-12 (2) 12-14 (3) 14-16 (4) 16-18 (3) 18-20 (2) 20-00 (1)	20-23 (3) 23-01 (2) 01-02 (1) 19-20 (1)* 20-23 (2)* 23-00 (1)*		
da; the Ce USA Cha accuracy 2. The appropria particular	entral USA Cha in the f6 ar in the KH6 ar predicted tin te meter band DX region, as	art in the 5, 9, nd 7 areas; nd KL7 areas nes of open d column (15 s shown in th	and 0 areas and with so s. ngs are four through 80 e left-hand c	the Western mewhat less nd under the meters) for a column of the	Africa	08-10 (3) 10-14 (4) 14-16 (3) 16-17 (2) 17-18 (1)	08-11 (2) 11-13 (3) 13-16 (4) 16-18 (3) 18-20 (2) 20-22 (1)	11-14 (1) 14-15 (2) 15-17 (3) 17-21 (4) 21-02 (3) 02-05 (2)	19-22 (2) 22-23 (1) 19-21 (1)*	Northern & Central Europe & European	06-07 (1) 07-08 (2) 08-10 (3) 10-11 (2)	06-07 (1) 07-08 (3) 08-11 (4) 11-12 (3)	00-03 (2) 02-06 (1) 06-07 (2) 07-09 (3) 09-11 (2)	18-20 (1) 20-23 (2) 23-01 (1) 20-23 (1)*		
charts. Ar openings. openings. 3. The () after th cates the r	n * indicates An ** indicates propagation the time of each number of day	the best tim tes best tim index is the h predicted s during the place as follo	e to listen fo e to check number that opening. The month on wh	for 160 meter for 10 meter at appears in he index indi- ich the open-	Central & South Asia	08-09 (1) 09-10 (2) 10-11 (1) 20-22 (1)	07-08(1) 08-10 (2) 10-11 (1) 18-20 (1) 20-22 (2) 22-00 (1)	06-07 (1) 07-09 (3) 09-10 (2) 10-11 (1) 18-20 (1) 20-21 (2)	18-21 (1) 06-08 (1)	013	11-12(1)	13-14 (1)	16-17 (4) 17-19 (3) 19-20 (2) 20-22 (1) 22-02 (2)			
(4) Or (3) Or (2) Or (1) Or Refer this colum specific <i>p</i> quality the	 (4) Opening should occur on more than 22 days (3) Opening should occur between 14 and 22 days (2) Opening should occur between 7 and 13 days (1) Opening should occur on less than 7 days Refer to the "Last Minute Forecast" at the beginning of column for the actual dates on which an opening with a cific propagation index is likely to occur, and the signality that can be expected. 4. Times shown in the charts are in the 24-hour system are 00 is midnight: 12 is noon: 01 is 1 A.M.: 13 is 1 P.M. 		ening should occur on more than 22 days ening should occur between 14 and 22 days ening should occur between 7 and 13 days ening should occur on less than 7 days o the "Last Minute Forecast" at the beginning in for the actual dates on which an opening with opagation index is likely to occur, and the sign t can be expected.		Id occur on more than 22 days Id occur between 14 and 22 days Id occur between 7 and 13 days Id occur on less than 7 days It Minute Forecast" at the beginning o ctual dates on which an opening with Index is likely to occur, and the signa opected.		Southeast Asia	10-12 (1) 12-14 (2) 14-15 (1) 17-18 (1) 18-20 (2)	09-10 (1) 10-12 (2) 12-13 (1) 17-18 (1) 18-19 (2)	21-23 (3) 23-00 (2) 00-01 (1) 02-06 (1) 06-09 (2) 09-11 (1) 18-21 (2) 21-23 (1)	18-20 (1) 05-07 (1)	Eastern Mediter- ranean & Middle East	07-08 (1) 08-09 (2) 09-12 (3) 12-13 (2) 13-14 (1)	06-07 (1) 07-08 (2) 08-11 (3) 11-12 (4) 12-13 (3) 13-14 (2) 14-15 (1)	06-07 (1) 07-09 (2) 09-11 (1) 11-13 (2) 13-16 (3) 16-18 (4) 18-20 (3) 20-22 (2) 22-00 (1)	17-19 (1) 19-22 (2) 22-23 (1) 20-22 (1)*
4. Tim where 00 etc. Appro to GMT, a hours in F Zone, and Washingto geles, it is	es shown in t is midnight; 1 opriate standa add to the tim PST Zone, 7 d 5 hours in E on, D.C. is 18 o 4 GMT, etc	he charts ar 2 is noon; 0 and time is us es shown in hours in MS ST Zone. F GMT. When	e in the 24-h 1 is 1 A.M.; ed, not GMT the approp T Zone, 6 h or example, it is 20 hour	nour system, 13 is 1 P.M., 7. To convert riate chart 8 ours in CST 13 hours in rs in Los An-	Far East	20-21 (1) 08-10 (1) 16-17 (1) 17-18 (2) 18-20 (3) 20-21 (1)	19-21 (3) 21-22 (2) 22-23 (1) 08-09 (1) 09-11 (2) 11-12 (1) 16-17 (1)	00-04 (2) 04-06 (1) 06-07 (2) 07-09 (3)	04-05 (1) 05-07 (2) 07-08 (1) 05-07 (1)*	Western Africa	06-07 (1) 07-11 (3) 11-15 (4) 15-16 (3) 16-17 (2) 17-18 (1)	05-06 (1) 06-10 (2) 10-14 (3) 14-18 (4) 18-19 (3) 19-21 (2) 21-22 (1)	05-12 (1) 12-15 (2) 15-17 (3) 17-23 (4) 23-01 (3) 01-05 (2)	17-19 (1) 19-21 (2) 21-22 (1) 19-21 (1)*		
5. The watts CW, a quarter- and a half and a way each 10 d gation ind	charts are ba , or 1 kw, PEI wavelength a l-wavelength velength above IB gain above lex will increas	P on sidebar bove ground above ground e ground or these refe se by one le	nd, into a dip d on 160 and d on 40 and 1 15 and 10 rence levels vel; for each	bower of 250 bole antenna d 80 meters, d 20 meters, meters. For s, the <i>propa</i> - 10 dB loss,	South Pacific &	09-12 (1) 12-14 (2)	17-18 (2) 18-19 (4) 19-20 (3) 20-21 (2) 21-22 (1) 08-09 (1) 09-11 (2)	09-10 (2) 10-11 (1) 16-18 (1) 18-20 (2) 20-00 (3) 13-19 (1) 19-21 (2)	00-02 (1) 02-03 (2)	Eastern & Central Africa	07-09 (1) 09-11 (2) 11-15 (3) 15-16 (2) 16-17 (1)	06-07 (1) 07-12 (2) 12-15 (3) 15-17 (4) 17-18 (3) 18-20 (2)	06-14 (1) 14-16 (2) 16-19 (3) 19-21 (4) 21-23 (3) 23-00 (2)	20-00 (1) 21-23 (1)*		
6. Prop pared from communic Boulder, C	bagation data m basic data cation Scienc Colorado 8030	L contained in published b es of the U)2.	the charts h by the Institu S. Dept of	as been pre- ite for Tele- Commerce,	New Zealand	14-16 (3) 16-19 (4) 19-20 (3) 20-21 (2) 21-22 (1)	11-15 (1) 15-17 (2) 17-18 (3) 18-20 (4) 20-21 (3) 21-23 (2) 23-00 (1)	13-21 (2) 21-22 (3) 22-02 (4) 02-04 (3) 04-07 (2) 07-10 (3) 10-13 (2)	03-07 (3) 07-08 (2) 08-09 (1) 03-04 (1)* 04-07 (2)* 07-08 (1)*	Southern Africa	e07-08 (1) 08-09 (2) 09-11 (3) 11-14 (4) 14-15 (3) 15-16 (2)	20-21 (1) 06-07 (1) 07-10 (2) 10-12 (3) 12-15 (4) 15-17 (3) 17-18 (2)	00-02 (1) 06-13 (1) 13-15 (2) 15-17 (3) 17-20 (4) 20-23 (3) 23-02 (2)	18-19 (1) 19-21 (2) 21-22 (1) 19-21 (1)*		
Tim	e Zone: EASTI	EST (24 ERN US 15 Meters	-Hour T A TO: 20 Meters	40/80 Meters	Australasia	08-09 (1) 09-11 (2) 11-12 (1) 14-16 (1) 16-17 (2) 17-18 (3) 18-19 (4)	07-08 (1) 08-11 (2) 11-16 (1) 16-17 (2) 17-18 (3) 18-20 (4) 20-22 (3)	07-08 (3) 08-10 (4) 10-11 (3) 11-12 (2) 12-14 (1) 17-19 (2) 21-23 (1)	03-05 (1) 05-07 (2) 07-08 (1) 05-07 (1)*	Central & South Asia	16-17 (1) 07-08 (1) 08-10 (2) 10-11 (1) 18-19 (1) 19-21 (2) 21-22 (1)	18-20 (1) 06-07 (1) 07-10 (2) 10-11 (1) 17-18 (1) 18-19 (2) 19-21 (3)	02-04 (1) 04-06 (1) 06-07 (2) 07-09 (3) 09-10 (2) 10-11 (1) 17-18 (1)	18-20 (1) 06-08 (1)		
Western & Central Europe & North Africa	06-07 (1) 07-08 (3) 08-13 (4) 13-14 (3) 14-15 (1)	06-07 (1) 07-08 (3) 08-14 (4) 14-15 (3) 15-16 (2) 16-17 (1)	04-06 (2) 06-09 (4) 09-10 (3) 10-12 (2) 12-14 (3) 14-18 (4)	16-17 (1) 17-18 (2) 18-20 (3) 20-01 (4) 01-02 (3) 02-03 (2)		19-20 (2) 20-21 (1)	22-23 (2) 23-00 (1)	23-00 (2) 00-01 (3) 01-03 (4) 03-04 (3) 04-07 (2)				21-22 (2) 22-23 (1)	18-19 (2) 19-21 (3) 21-23 (2) 23-02 (1) 02-04 (2)			
Northern	06-07 (1)	06-07 (1)	18-20 (3) 20-22 (2) 22-00 (1) 00-02 (2) 02-04 (3) 04-06 (1)	02-03 (2) 03-04 (1) 19-21 (1)* 21-23 (2)* 23-01 (3)* 01-02 (2)* 02-03 (1)* 17-19 (1)	Caribbean, Central America & Northern Countries of South America	07-08 (2) 08-11 (4) 11-13 (3) 13-18 (4) 18-19 (3) 19-20 (2) 20-21 (1)	06-07 (1) 07-08 (3) 08-11 (4) 11-13 (3) 13-20 (4) 20-21 (3) 21-23 (2) 23-01 (1)	07-09 (4) 09-11 (3) 11-14 (2) 14-16 (3) 16-02 (4) 02-03 (3) 03-06 (2) 06-07 (3)	18-19 (1) 19-21 (3) 21-04 (4) 04-06 (2) 06-07 (1) 19-21 (1)* 21-03 (2)* 03-05 (1)	Southeast Asia	07-08 (1) 08-09 (2) 09-10 (3) 10-11 (2) 11-13 (1) 15-16 (1) 16-19 (2) 19-20 (1)	07-08 (1) 08-09 (2) 09-10 (3) 10-12 (2) 12-13 (1) 16-17 (1) 17-18 (2) 18-20 (3)	06-07 (1) 07-10 (2) 10-12 (1) 18-19 (1) 19-21 (2) 21-23 (1)	04-07 (1)		
Europe & European CIS	07-08 (2) 08-09 (3) 09-11 (4) 11-12 (2) 12-13 (1)	07-08 (3) 08-13 (4) 13-14 (3) 14-15 (1)	06-07 (2) 07-09 (3) 09-11 (2) 11-17 (3) 17-19 (4) 19-21 (3) 21-23 (2) 23-01 (3) 01-04 (2)	19-02 (2) 02-04 (1) 20-03 (1)*	Peru, Bolivia, Paraguay, Brazil, Chile, Argentina & Uruguay	06-07 (1) 07-09 (4) 09-11 (3) 11-15 (2) 15-16 (3) 16-20 (4) 20-21 (2) 21-22 (1)	06-07 (1) 07-09 (4) 09-11 (3) 11-15 (2) 15-17 (3) 17-22 (4) 22-23 (3) 23-00 (2) 00-01 (1)	06-08 (2) 08-11 (1) 14-16 (1) 16-17 (2) 17-19 (3) 19-02 (4) 02-03 (3) 03-05 (2) 05-06 (3)	20-23 (1) 23-04 (2) 04-06 (1) 23-04 (1)*	Far East	15-16 (1) 16-19 (3) 19-20 (2) 20-21 (1)	20-21 (2) 21-22 (1) 08-10 (1) 15-16 (1) 16-17 (3) 17-19 (4) 19-20 (3) 20-21 (2) 21-22 (1)	04-05 (1) 05-07 (2) 07-09 (3) 09-10 (2) 10-11 (1) 17-19 (1) 19-20 (2)	02-03 (1) 03-07 (2) 07-09 (1) 03-06 (1)*		
Eastern Mediter- ranean & Middle East	07-08 (1) 08-09 (3) 09-13 (4) 13-14 (3) 14-15 (1)	06-07 (1) 07-08 (3) 08-10 (4) 10-13 (3) 13-15 (4) 15-16 (3)	07-12 (1) 12-15 (2) 15-17 (3) 17-22 (4) 22-00 (3) 00-01 (2)	18-20 (1) 20-22 (2) 22-00 (3) 00-01 (2) 01-02 (1) 20-00 (1)*	McMurdo Sound, Antarctica	16-17 (1) 17-19 (2) 19-20 (1)	15-17 (1) 17-18 (2) 18-21 (3) 21-22 (2) 22-23 (1)	16-18 (1) 18-21 (1) 21-22 (2) 22-03 (3) 03-05 (2)	00-06 (1)	South	09-12 (1) 12-13 (2)	08-11 (1) 11-13 (3)	20-22 (3) 22-23 (2) 23-00 (1) 11-17 (1) 17-18 (2)	23-01 (1) 01-02 (2)		
Western Africa	06-07 (1) 07-12 (3) 12-16 (4) 16-17 (3) 17-18 (2) 18-19 (1)	16-17 (2) 17-18 (1) 04-05 (1) 05-07 (2) 07-14 (3) 14-20 (4) 20-22 (3) 22-00 (2)	01-03 (1) 03-04 (3) 04-06 (2) 06-13 (1) 13-15 (2) 15-17 (3) 17-03 (4)	18-22 (1) 22-01 (2) 01-03 (1) 00-03 (1)*	1	Time Zor (24-	hour tin	05-07 (1) 07-09 (2) 09-10 (1) T & MST ne)		& New Zealand	13-15 (3) 15-18 (4) 18-19 (3) 19-20 (2) 20-21 (1)	13-16 (2) 16-17 (3) 17-20 (4) 20-21 (3) 21-22 (2) 22-23 (1)	18-20 (3) 20-01 (4) 01-03 (3) 03-07 (2) 07-09 (4) 09-10 (3) 10-11 (2) 11-12 (2)	02-07 (3) 07-08 (2) 08-09 (1) 00-02 (1)* 02-07 (2)* 07-08 (1)*		
Eastern &	07-08 (1)	00-01 (1)	03-05 (2)	19-22 (1)	-	10 Motors	15 Motors	20 Meters	40-80 Meters	Australasia	08-09 (1) 09-11 (2) 11-13 (1)	06-08 (1) 08-09 (3) 09-11 (2)	06-07 (2) 07-09 (4) 09-10 (3)	02-04 (1) 04-07 (2) 07-08 (1)		
Central Africa	08-09 (2) 09-12 (3) 12-15 (4)	07-09 (3) 09-13 (2) 13-15 (3)	05-09 (1) 12-14 (1) 14-16 (2)	22-00 (2) 00-01 (1) 22-00 (1)*	Western & Southern	06-07 (1) 07-08 (3)	06-07 (1) 07-08 (3)	03-06 (1) 06-08 (3)	17-18 (1) 18-20 (2)		15-16 (3) 16-18 (4)	16-18 (1) 18-19 (2)	11-12 (1) 15-17 (1)	03-04 (1)* 04-06 (2)* 06-07 (1)*		

1. Use	HOW PROPA	TO USE T GATION riate to your	THE DX CHARTS transmitter	location. The		15-16 (3) 16-17 (2) 17-18 (1)	15-18 (4) 18-19 (3) 19-22 (2) 22-00 (1)	16-17 (3) 17-01 (4) 01-03 (3)		Europe & North Africa	08-11 (4) 11-12 (3) 12-13 (2) 13-14 (1)	08-12 (4) 12-13 (3) 13-14 (2) 14-15 (1)	08-12 (2) 12-14 (3) 14-16 (4) 16-18 (3)	20-23 (3) 23-01 (2) 01-02 (1) 19-20 (1)*		
and KV4 da; the Ce USA Cha accuracy 2. The appropria	areas in the U entral USA Cha in the KH6 ar in the KH6 ar e predicted tin te meter banc	ISA and adjust ISA and adjust art in the 5, 9, ad 7 areas; ad KL7 areas nes of openi t column (15	acent call an and 0 areas and with so s. ings are four through 80	the Western mewhat less nd under the meters) for a	Southern Africa	07-08 (1) 08-10 (3) 10-14 (4) 14-16 (3) 16-17 (2) 17-18 (1)	06-08 (1) 08-11 (2) 11-13 (3) 13-16 (4) 16-18 (3) 18-20 (2)	06-09 (1) 11-14 (1) 14-15 (2) 15-17 (3) 17-21 (4) 21-02 (3)	18-19 (1) 19-22 (2) 22-23 (1) 19-21 (1)*	Northern & Central Europe &	06-07 (1) 07-08 (2) 08-10 (3)	06-07 (1) 07-08 (3) 08-11 (4)	02-06 (1) 02-06 (1) 06-07 (2) 07-09 (3)	23-00 (1)* 18-20 (1) 20-23 (2) 23-01 (1)		
particular charts. Ar openings. openings. 3. The () after the	DX region, as n * indicates An ** indica propagation the time of eac	s shown in the the best tim tes best tim index is the h predicted	e left-hand o e to listen fo e to check number that opening. Th	tolumn of the or 160 meter for 10 meter at appears in the index indi-	Central & South Asia	08-09 (1) 09-10 (2) 10-11 (1) 20-22 (1)	20-22 (1) 07-08(1) 08-10 (2) 10-11 (1) 18-20 (1) 20-22 (2)	02-05 (2) 06-07 (1) 07-09 (3) 09-10 (2) 10-11 (1) 18-20 (1)	18-21 (1) 06-08 (1)	European CIS	10-11 (2) 11-12 (1)	11-12 (3) 12-13 (2) 13-14 (1)	09-11 (2) 11-16 (3) 16-17 (4) 17-19 (3) 19-20 (2) 20-22 (1) 22-02 (2)	20-23 (1)*		
ing is exp (4) O (3) O (2) O (1) O	ected to take bening should bening should bening should bening should	place as foll occur on m occur betwo occur betwo occur betwo	ows: ore than 22 een 14 and 1 een 7 and 1 ss than 7 da	days 22 days 3 days ivs	Southeast	10-12 (1)	22-00 (1)	20-21 (2) 21-23 (3) 23-00 (2) 00-01 (1) 02-06 (1)	18-20 (1)	Eastern Mediter- ranean & Middle	07-08 (1) 08-09 (2) 09-12 (3) 12-13 (2)	06-07 (1) 07-08 (2) 08-11 (3) 11-12 (4)	06-07 (1) 07-09 (2) 09-11 (1) 11-13 (2)	17-19 (1) 19-22 (2) 22-23 (1) 20-22 (1)*		
Refer this colum specific p quality the 4. Tim	to the "Last I in for the actu ropagation in at can be expe es shown in t	e "Last Minute Forecast" at the beginning of r the actual dates on which an opening with gation index is likely to occur, and the signa n be expected. hown in the charts are in the 24-hour system idnight: 12 is noon: 01 is 1 A M : 13 is 1 P M		t Minute Forecast" at the beginning of ctual dates on which an opening with a index is likely to occur, and the signa xpected. In the charts are in the 24-hour system		beginning of bening with a nd the signal nour system,	Asia	12-14 (2) 14-15 (1) 17-18 (1) 18-20 (2) 20-21 (1)	10-12 (2) 12-13 (1) 17-18 (1) 18-19 (2) 19-21 (3)	06-09 (2) 09-11 (1) 18-21 (2) 21-23 (1)	05-07 (1)	EdSi	13-14 (1)	12-13 (3) 13-14 (2) 14-15 (1)	13-16 (3) 16-18 (4) 18-20 (3) 20-22 (2) 22-00 (1)	
where 00 etc. Appro to GMT, a hours in F Zone, and Washingto geles, it is	where 00 is midnight; 12 is noon; 01 is 1 A.M.; 13 is 1 P.M. to Appropriate <i>standard</i> time is used, not GMT. To conver o GMT, add to the times shown in the appropriate chart i hours in PST Zone, 7 hours in MST Zone, 6 hours in CS Zone, and 5 hours in EST Zone. For example, 13 hours i Vashington, D.C. is 18 GMT. When it is 20 hours in Los An			13 is 1 P.M., To convert riate chart 8 ours in CST 13 hours in rs in Los An-	Far East	08-10 (1) 16-17 (1) 17-18 (2) 18-20 (3)	21-22 (2) 22-23 (1) 08-09 (1) 09-11 (2) 11-12 (1) 16-17 (1)	00-04 (2) 04-06 (1) 06-07 (2) 07-09 (3)	04-05 (1) 05-07 (2) 07-08 (1) 05-07 (1)*	Western Africa	06-07 (1) 07-11 (3) 11-15 (4) 15-16 (3) 16-17 (2) 17-18 (1)	05-06 (1) 06-10 (2) 10-14 (3) 14-18 (4) 18-19 (3) 19-21 (2) 21-22 (1)	05-12 (1) 12-15 (2) 15-17 (3) 17-23 (4) 23-01 (3) 01-05 (2)	17-19 (1) 19-21 (2) 21-22 (1) 19-21 (1)*		
5. The watts CW a quarter- and a half and a way each 10 d gation ind	charts are ba , or 1 kw, PEI wavelength a l-wavelength velength above B gain above lex will increas	sed upon a f on sidebar bove ground above ground e ground or these refe se by one le	a transmitted power of 2 band, into a dipole anter and on 160 and 80 meter ound on 40 and 20 meter on 15 and 10 meters. eference levels, the pro- level; for each 10 dB lo		South	20-21 (1) 09-12 (1)	17-18 (2) 18-19 (4) 19-20 (3) 20-21 (2) 21-22 (1) 08-09 (1)	09-10 (2) 10-11 (1) 16-18 (1) 18-20 (2) 20-00 (3) 13-19 (1)	00-02 (1)	Eastern & Central Africa	07-09 (1) 09-11 (2) 11-15 (3) 15-16 (2) 16-17 (1)	06-07 (1) 07-12 (2) 12-15 (3) 15-17 (4) 17-18 (3) 18-20 (2)	06-14 (1) 14-16 (2) 16-19 (3) 19-21 (4) 21-23 (3) 23-00 (2)	20-00 (1) 21-23 (1)*		
it will lowe 6. Prop pared from communic Boulder, 0	6. Propagation data contained in the charts has been pre- red from basic data published by the Institute for Tele- mmunication Sciences of the U.S. Dept of Commerce, ulder, Colorado 80302.		Pacific & New Zealand	12-14 (2) 14-16 (3) 16-19 (4) 19-20 (3) 20-21 (2) 21-22 (1)	09-11 (2) 11-15 (1) 15-17 (2) 17-18 (3) 18-20 (4) 20-21 (3) 21-23 (2) 23-00 (1)	19-21 (2) 21-22 (3) 22-02 (4) 02-04 (3) 04-07 (2) 07-10 (3) 10-13 (2)	02-03 (2) 03-07 (3) 07-08 (2) 08-09 (1) 03-04 (1)* 04-07 (2)* 07-08 (1)*	Southern Africa	e07-08 (1) 08-09 (2) 09-11 (3) 11-14 (4) 14-15 (3) 15-16 (2)	20-21 (1) 06-07 (1) 07-10 (2) 10-12 (3) 12-15 (4) 15-17 (3) 17-18 (2)	00-02 (1) 06-13 (1) 13-15 (2) 15-17 (3) 17-20 (4) 20-23 (3) 23-02 (2)	18-19 (1) 19-21 (2) 21-22 (1) 19-21 (1)*				
Tim	e Zone: I	EST (24 ERN US	-Hour T A TO:	ime)	Australasia	08-09 (1) 09-11 (2) 11-12 (1) 14-16 (1)	07-08 (1) 08-11 (2) 11-16 (1) 16-17 (2)	07-08 (3) 08-10 (4) 10-11 (3) 11-12 (2)	03-05 (1) 05-07 (2) 07-08 (1) 05-07 (1)*	Central & South	16-17 (1) 07-08 (1) 08-10 (2) 10-11 (1)	18-20 (1) 06-07 (1) 07-10 (2) 10-11 (1)	02-04 (1) 04-06 (1) 06-07 (2) 07-09 (3)	18-20 (1) 06-08 (1)		
Western	10 Meters	15 Meters	20 Meters	40/80 Meters		16-17 (2) 17-18 (3) 18-19 (4) 19-20 (2)	17-18 (3) 18-20 (4) 20-22 (3) 22-23 (2)	12-14 (1) 17-19 (2) 21-23 (1) 23-00 (2)	00.01 (1)	Haid	18-19 (1) 19-21 (2) 21-22 (1)	17-18 (1) 18-19 (2) 19-21 (3) 21-22 (2)	09-10 (2) 10-11 (1) 17-18 (1) 18-19 (2)			
& Central Europe & North Africa	07-08 (3) 08-13 (4) 13-14 (3) 14-15 (1)	07-08 (3) 08-14 (4) 14-15 (3) 15-16 (2)	06-09 (4) 09-10 (3) 10-12 (2) 12-14 (3)	17-18 (2) 18-20 (3) 20-01 (4) 01-02 (3)		20-21 (1)	23-00 (1)	00-01 (3) 01-03 (4) 03-04 (3) 04-07 (2)				22-23 (1)	19-21 (3) 21-23 (2) 23-02 (1) 02-04 (2)			
Northern	06-07 (1)	06-07 (1)	14-16 (4) 18-20 (3) 20-22 (2) 22-00 (1) 00-02 (2) 02-04 (3) 04-06 (1)	02-03 (2) 03-04 (1) 19-21 (1)* 21-23 (2)* 23-01 (3)* 01-02 (2)* 02-03 (1)* 17-19 (1)	Caribbean, Central America & Northern Countries of South America	07-08 (2) 08-11 (4) 11-13 (3) 13-18 (4) 18-19 (3) 19-20 (2) 20-21 (1)	06-07 (1) 07-08 (3) 08-11 (4) 11-13 (3) 13-20 (4) 20-21 (3) 21-23 (2) 23-01 (1)	07-09 (4) 09-11 (3) 11-14 (2) 14-16 (3) 16-02 (4) 02-03 (3) 03-06 (2) 06-07 (3)	18-19 (1) 19-21 (3) 21-04 (4) 04-06 (2) 06-07 (1) 19-21 (1)* 21-03 (2)* 03-05 (1)	Southeast Asia	07-08 (1) 08-09 (2) 09-10 (3) 10-11 (2) 11-13 (1) 15-16 (1) 16-19 (2) 19-20 (1)	07-08 (1) 08-09 (2) 09-10 (3) 10-12 (2) 12-13 (1) 16-17 (1) 17-18 (2) 18-20 (3)	06-07 (1) 07-10 (2) 10-12 (1) 18-19 (1) 19-21 (2) 21-23 (1)	04-07 (1)		
Europe & European CIS	07-08 (2) 08-09 (3) 09-11 (4) 11-12 (2)	07-08 (3) 08-13 (4) 13-14 (3) 14-15 (1)	06-07 (2) 07-09 (3) 09-11 (2) 11-17 (3)	19-02 (2) 02-04 (1) 20-03 (1)*	Peru, Bolivia, Paraguay,	06-07 (1) 07-09 (4) 09-11 (3)	06-07 (1) 07-09 (4) 09-11 (3)	06-08 (2) 08-11 (1) 14-16 (1)	20-23 (1) 23-04 (2) 04-06 (1)	Far East	15-16 (1)	20-21 (2) 21-22 (1) 08-10 (1)	04-05 (1)	02-03 (1)		
	12-13 (1)		17-19 (4) 19-21 (3) 21-23 (2) 23-01 (3) 01-04 (2)		Brazil, Chile, Argentina & Uruguay	11-15 (2) 15-16 (3) 16-20 (4) 20-21 (2) 21-22 (1)	11-15 (2) 15-17 (3) 17-22 (4) 22-23 (3) 23-00 (2) 00-01 (1)	16-17 (2) 17-19 (3) 19-02 (4) 02-03 (3) 03-05 (2) 05-06 (3)	23-04 (1)*		16-19 (3) 19-20 (2) 20-21 (1)	15-16 (1) 16-17 (3) 17-19 (4) 19-20 (3) 20-21 (2) 21-22 (1)	05-07 (2) 07-09 (3) 09-10 (2) 10-11 (1) 17-19 (1) 19-20 (2)	03-07 (2) 07-09 (1) 03-06 (1)*		
Eastern Mediter- ranean & Middle	07-08 (1) 08-09 (3) 09-13 (4) 13-14 (3)	06-07 (1) 07-08 (3) 08-10 (4) 10-13 (3)	07-12 (1) 12-15 (2) 15-17 (3) 17-22 (4)	18-20 (1) 20-22 (2) 22-00 (3) 00-01 (2)	McMurdo Sound, Antarctica	16-17 (1) 17-19 (2) 19-20 (1)	15-17 (1) 17-18 (2) 18-21 (3) 21-22 (2)	16-18 (1) 18-21 (1) 21-22 (2) 22-03 (3)	00-06 (1)	South	09-12 (1)	08-11 (1)	20-22 (3) 22-23 (2) 23-00 (1)	23-01 (1)		
East	14-15 (1)	13-15 (4) 15-16 (3) 16-17 (2) 17-18 (1)	22-00 (3) 00-01 (2) 01-03 (1)	01-02 (1) 20-00 (1)*			22-23 (1)	03-05 (2) 05-07 (1) 07-09 (2) 09-10 (1)		Pacific & New Zealand	12-13 (2) 13-15 (3) 15-18 (4) 18-19 (3)	11-13 (3) 13-16 (2) 16-17 (3) 17-20 (4)	17-18 (2) 18-20 (3) 20-01 (4) 01-03 (3)	01-02 (2) 02-07 (3) 07-08 (2) 08-09 (1)		
Western Africa	06-07 (1) 07-12 (3) 12-16 (4) 16-17 (3) 17-18 (2) 18-19 (1)	04-05 (1) 05-07 (2) 07-14 (3) 14-20 (4) 20-22 (3) 22-00 (2) 00-01 (1)	03-04 (3) 04-06 (2) 06-13 (1) 13-15 (2) 15-17 (3) 17-03 (4)	18-22 (1) 22-01 (2) 01-03 (1) 00-03 (1)*	1	Time Zor (24- CENTR	nes: CST hour tin RAL US	r & MST ne) A TO:		Australasia	19-20 (2) 20-21 (1) 08-09 (1)	20-21 (3) 21-22 (2) 22-23 (1) 06-08 (1)	03-07 (2) 07-09 (4) 09-10 (3) 10-11 (2) 11-12 (2) 06-07 (2)	00-02 (1)* 02-07 (2)* 07-08 (1)* 02-04 (1)		
Eastern & Central	07-08 (1) 08-09 (2)	06-07 (1) 07-09 (3)	03-05 (2) 05-09 (1)	19-22 (1) 22-00 (2)	284	10 Meters	15 Meters	20 Meters	40-80 Meters		09-11 (2) 11-13 (1) 13-15 (2)	08-09 (3) 09-11 (2) 11-12 (1)	07-09 (4) 09-10 (3) 10-11 (2)	04-07 (2) 07-08 (1) 03-04 (1)*		
Africa	09-12 (3) 12-15 (4)	09-13 (2) 13-15 (3)	12-14 (1) 14-16 (2)	00-01 (1) 22-00 (1)*	Western & Southern	06-07 (1) 07-08 (3)	06-07 (1) 07-08 (3)	03-06 (1) 06-08 (3)	17-18 (1) 18-20 (2)		15-16 (3) 16-18 (4)	16-18 (1) 18-19 (2)	11-12 (1) 15-17 (1)	04-06 (2)* 06-07 (1)*		

www.cq-amateur-radio.com

October 1999 • CQ • 93

	18-19 (3) 19-20 (2) 20-21 (1)	19-20 (4) 20-21 (3) 21-22 (2) 22-23 (1)	20-22 (1) 22-00 (2) 00-04 (3) 04-06 (1)	
Caribbean, Central America & Northern Countries of South America	06-07 (1) 07-08 (3) 08-10 (4) 10-12 (3) 12-17 (4) 17-18 (3) 18-19 (2) 19-20 (1)	05-06 (1) 06-07 (2) 07-08 (3) 08-10 (4) 10-13 (3) 13-18 (4) 18-19 (3) 19-21 (2) 21-23 (1)	06-07 (3) 07-09 (4) 09-11 (3) 11-14 (2) 14-16 (3) 16-00 (4) 00-02 (3) 02-06 (2)	18-19 (1) 19-21 (3) 21-03 (4) 03-05 (2) 05-07 (1) 19-21 (1)* 21-02 (2)* 02-05 (1)*
Peru, Bolivia, Paraguay, Brazil, Chile, Argentina, & Uruguay	06-07 (1) 07-08 (3) 08-10 (4) 10-14 (3) 14-17 (4) 17-18 (3) 18-19 (2) 19-20 (1)	05-06 (1) 06-07 (2) 07-09 (3) 09-13 (2) 13-15 (3) 15-20 (4) 20-21 (3) 21-23 (2) 23-00 (1)	04-06 (1) 06-08 (2) 08-14 (1) 14-16 (2) 16-18 (3) 18-00 (4) 00-02 (3) 02-04 (2)	19-21 (1) 21-01 (2) 01-03 (1) 03-04 (2) 04-06 (1) 21-05 (1)*
McMurdo Sound, Antarctica	07-08 (1) 08-09 (2) 09-10 (1) 17-18 (1) 18-20 (2) 20-21 (1)	06-07 (1) 07-09 (2) 09-10 (1) 14-16 (1) 16-18 (2) 18-22 (3) 22-23 (2) 23-00 (1)	06-08 (2) 08-09 (1) 16-18 (1) 18-20 (2) 20-02 (3) 02-04 (2) 04-06 (1)	23-05 (1)

Time Zone: PST (24-hour time) WESTERN USA TO:

	10 Meters	15 Meters	20 Meters	40/80 Meters
Western & Southern Europe & North Africa	06-07 (1) 07-08 (2) 08-11 (3) 11-12 (2) 12-13 (1)	06-07 (1) 07-08 (2) 08-10 (3) 10-12 (4) 12-13 (2) 13-14 (1)	05-06 (1) 06-08 (2) 08-10 (1) 10-12 (2) 12-14 (4) 14-16 (3) 16-18 (2) 18-20 (1) 23-01 (2)	18-20 (1) 20-22 (2) 22-00 (1) 19-23 (1)*
Central & Northern Europe & European CIS	07-08 (1) 08-10 (2) 10-11 (1)	06-07 (1) 07-08 (2) 08-10 (3) 10-11 (2) 11-12 (1)	05-07 (1) 07-09 (3) 09-10 (2) 10-14 (1) 14-17 (3) 17-19 (2) 19-23 (1) 23-02 (2) 02-03 (1)	18-20 (1) 20-22 (2) 22-23 (1) 19-22 (1)*
Eastern Mediter- ranean & Middle East	07-08 (1) 08-10 (2) 10-11 (1)	06-07 (1) 07-08 (2) 08-10 (3) 10-11 (2) 11-12 (1)	06-07 (1) 07-10 (2) 10-14 (1) 14-16 (2) 16-18 (1) 18-20 (2) 20-22 (1) 00-02 (1)	18-22 (1) 06-08 (1)
Western Africa	06-07 (1) 07-08 (2) 08-11 (3) 11-13 (4) 13-15 (3) 15-16 (2) 16-17 (1)	05-06 (1) 06-07 (2) 07-13 (3) 13-16 (4) 16-17 (3) 17-18 (2) 18-19 (1)	05-10 (1) 10-14 (2) 14-15 (3) 15-20 (4) 20-22 (3) 22-02 (2) 02-03 (1)	18-19 (1) 19-21 (2) 21-22 (1) 19-21 (1)*
Eastern & Central Africa	07-08 (1) 08-10 (2) 10-14 (3) 14-15 (2) 15-16 (1)	06-08 (1) 08-12 (2) 12-16 (3) 16-17 (2) 17-19 (1)	06-14 (1) 14-16 (2) 16-22 (3) 22-23 (2) 23-00 (1)	18-21 (1) 06-08 (1)
Southern Africa	07-08 (1) 08-10 (3) 10-14 (4) 14-15 (3) 15-16 (2) 16-17 (1)	06-10 (1) 10-12 (2) 12-13 (3) 13-16 (4) 16-17 (3) 17-19 (2) 19-21 (1)	06-12 (1) 12-14 (2) 14-16 (3) 16-19 (4) 19-22 (3) 22-01 (2) 01-03 (1)	17-19 (1) 19-20 (2) 20-21 (1) 06-08 (1) 18-19 (1)*
Central & South Asia	16-17 (1) 17-19 (3) 19-20 (1) 07-09 (1)	16-17 (1) 17-19 (3) 19-20 (2) 20-21 (1) 07-09 (1)	06-07 (1) 07-09 (3) 09-10 (2) 10-11 (1) 16-17 (1) 17-19 (3) 19-21 (2) 21-22 (1)	17-19 (1) 04-09 (1)
Southeast Asia	08-09 (1) 09-10 (3)	07-08 (1) 08-11 (3)	06-07 (1) 07-08 (2)	02-03 (1) 03-06 (2)

	10-11 (4) 11-12 (3) 12-13 (2) 13-14 (1) 14-15 (2) 15-17 (4) 17-18 (3) 18-19 (2) 19-20 (1)	11-12 (2) 12-15 (1) 15-17 (3) 17-19 (2) 19-21 (3) 21-22 (2) 22-23 (1)	08-10 (3) 10-11 (2) 11-12 (1) 19-22 (1) 22-01 (2) 01-03 (3) 03-06 (2)	06-08 (1) 03-06 (1)*
Far East	13-14 (1) 14-15 (3) 15-19 (4) 19-20 (3) 20-21 (2) 21-22 (1)	07-08 (1) 08-09 (2) 09-11 (3) 11-13 (2) 13-15 (3) 15-17 (2) 17-19 (4) 19-20 (3) 20-21 (2) 21-22 (1)	06-07 (1) 07-08 (2) 08-10 (4) 10-12 (3) 12-14 (2) 14-18 (1) 18-20 (2) 20-21 (3) 21-23 (4) 23-02 (3)	23-01 (1) 01-05 (2) 05-07 (3) 07-08 (1) 01-05 (1)* 05-06 (2)* 06-07 (1)*
South Pacific & New Zealand	08-09 (1) 09-10 (2) 10-19 (4) 19-21 (3) 21-23 (2) 23-00 (1)	07-08 (1) 08-11 (4) 11-18 (3) 18-00 (4) 00-02 (3) 02-03 (2) 03-04 (1)	11-18 (1) 18-19 (2) 19-21 (3) 21-04 (4) 04-07 (3) 07-09 (4) 09-10 (3) 10-11 (2)	21-22 (1) 22-00 (2) 00-07 (3) 07-08 (2) 08-09 (1) 22-00 (1)* 00-06 (2)* 06-07 (1)*
Australasia	09-11 (1) 11-12 (2) 12-14 (4) 14-18 (3) 18-20 (4) 20-21 (3) 21-22 (2) 22-23 (1)	07-08 (1) 08-12 (3) 12-14 (2) 14-18 (1) 18-20 (2) 20-21 (3) 21-00 (4) 00-01 (3) 01-02 (2) 02-03 (1)	18-20 (1) 20-22 (2) 22-00 (3) 00-04 (4) 04-07 (3) 07-09 (4) 09-10 (3) 10-12 (2) 12-14 (1)	02-03 (1) 03-04 (2) 04-07 (3) 07-08 (1) 03-04 (1)* 04-06 (2)* 06-07 (1)*
Caribbean, Central America &	06-07 (1) 07-08 (3) 08-10 (4)	05-06 (1) 06-07 (2) 07-10 (4)	06-07 (3) 07-09 (4) 09-10 (3)	18-19 (1) 19-21 (3) 21-02 (4)

Northern Countries of South America	10-12 (3) 12-16 (4) 16-17 (3) 17-18 (2) 18-19 (1)	10-13 (3) 13-18 (4) 18-19 (3) 19-21 (2) 21-22 (1)	10-13 (2) 13-15 (3) 15-23 (4) 23-01 (3) 01-06 (2)	02-05 (2) 05-06 (1) 19-21 (1)* 21-02 (2)* 02-05 (1)*
Peru, Bolivia, Paraguay, Brazil, Chile, Argentina & Uruguay	06-07 (1) 07-13 (3) 13-17 (4) 17-18 (3) 18-19 (2) 19-20 (1)	05-06 (1) 06-07 (2) 07-09 (3) 09-13 (2) 13-15 (3) 15-20 (4) 20-22 (3) 22-00 (2) 00-01 (1)	12-14 (1) 14-16 (2) 16-18 (3) 18-23 (4) 23-01 (3) 01-03 (2) 03-05 (1) 05-07 (2) 07-09 (1)	20-22 (1) 22-04 (2) 04-05 (1) 22-04 (1)*
McMurdo Sound, Antarctica	07-08 (1) 08-09 (2) 09-10 (1) 19-20 (1) 20-22 (2) 22-23 (1)	06-07 (1) 07-09 (2) 09-12 (1) 14-17 (1) 17-20 (2) 20-23 (3) 23-01 (2) 01-02 (1)	16-18 (1) 18-20 (2) 20-04 (3) 04-05 (2) 05-06 (1) 06-08 (2) 08-10 (1)	00-05 (1)

*Indicates best time to listen for 80 meter openings. Openings on 160 meters are also likely to occur during those times when 80 meter openings are shown with a propagation index of (2) or higher. F-2 layer DX openings on 6 meters may occur at the same times and over the same paths shown with a propagation index of (4) under the 10 meter column.

*Indicates best time for 80 meter openings. Openings on 160 meters are also likely to occur during those times when 80 meter openings are shown with a propagation index of (2) or higher.

For 12 meter openings interpolate between 10 and 15 meter openings.

For 17 meter openings interpolate between 15 and 20 meter openings.

For 30 meter openings interpolate between 40 and 30 meter openings.

than 10 meters. Seventeen meters should behave much as shown for 15 meters. Openings on 30 meters should resemble 40 meter openings during local sunrise and sunset times, but the band is expected to open less frequently than 40 meters during the hours of darkness. NOAA auroral activity reports, including real-time auroral maps.

 NASA current solar images from the SOHO satellite and Yohkoh soft-Xray telescope.

Useful Web Page

Through the arduous efforts of Doug Brandon, N6RT, a web site is now available that contains dynamic ionospheric, geomagnetic, solar, HF propagation, and auroral data, and much more. The web site is: <http://dx.qsl.net/propagation>.

The N6RT Web Page summarizes a wealth of data from, and has links to, a large number of well-known research organizations throughout the world. Much of the information is real-time, updated every five minutes or so, or whenever new data is available.

The following is a sampling of the many useful items to be found on this web page:

 Current solar and geomagnetic indices (10 cm solar flux, A and K values) and three-day forecasts.

WWV current solar and geomagnetic conditions and 24-hour forecasts.

 Penticon, Canada solar flux measurements.

Recent major solar flare activity.

• NOAA daily sunspot (American) number. The International number runs approximately 70% of the American value.

* GOES-8 and GOES-10 satellite background solar X-ray flux. the part of the pa

 A dynamic grayline map (sunrise-sunset) updated every five minutes.

 The Solar Terrestrial Dispatch worldwide MUF map which makes do-it-yourself, real-time band-opening prediction possible. The map also contains updated date and time, NOAA sunspot number, planetary A-index, grayline position, auroral data, and sun position!

If time is available during the WW DX Contest to check at least one web page, the N6RT site should be that one. It contains all of the necessary information that can be very useful in piling up points.

Again, the url for this web page is: http://dx.qsl.net/propagation>.

The site can also be reached through my web: http://www.gjainc.com>.

Amateur radio owes a big thank you to Doug Brandon for taking the time and making the effort to put together such an informative web page, and for keeping it updated. His e-mail address is: <n6rt@ qsl.net>.

VOACAP for Windows Now Available

The VOACAP computer propagation program, used worldwide by communication professionals, is available in an updated and much easier to use version from the

94 · CQ · October 1999

PST Time	UT Time	Areas to which good openings are expected
00-03	08-11	SE Asia, Far East, South Pacific, New Zealand, Australasia, Antarctica
03-06	11-14	South Pacific, New Zealand, Australasia
06-09	14-17	Central and South Asia, SE Asia, Far East, South Pacific, New Zealand, Australasia, Europe, Caribbean, Central America, and Northern Countries of South America
09-12	17-20	Far east, Caribbean, Central America
12-15	20-23	Western & Central Europe, North Africa
15-18	23-02	Europe, Africa, Caribbean, Central America, South America
18-21	02-05	Africa, Central & South Asia, South Pacific, New Zealand, Caribbean, Central America, South America
21-24	05-08	Far East, South Pacific, New Zealand

Table II- Sample 20 meter single-band work plan for western USA QTH.

Institute of Telecommunication Sciences, U.S. Department of Commerce. Bundled with two other professional programs, ICEPAC and REC533, the three can be downloaded without charge from the following web site: <http://elbert.its.bldrdoc. gov/pc_hf/hfwin32.html>.

The new version of VOACAP, updated this past July, is for use with Windows 95/98 and NT. It will not work with Windows 3.1. Approximately 6 MB of harddrive space is required for the download. The new version is well menued and easy to follow. VOACAP can also be downloaded from: <http://www.gjainc.com>.

Do-It-Yourself Forecasting

If you do not have access to the Internet, solar flux, geomagnetic indices, and ionospheric reports can be obtained by calling 303-497-3235, where a WWV recorded announcement is updated every three hours, or by calling the "on-duty forecaster" for a live report at the Space Environmental Center, 303-497-3171. WWV, Ft. Collins, Colorado, has similar geophysical alert broadcasts 18 minutes past each hour on 2.5,5,10,15, and 20 MHz. Similar information is also carried at 45 minutes past each hour on 2.5, 5,10, and 15 MHz from WWVH, Kauai, Hawaii. Fig. 1 can be used to determine the quality of ionospheric propagation by using the solar flux values and geomagnetic indices that are provided by modem, telephone, or radio.

els. Paths passing through the polar regions and the upper latitudes are often more adversely affected than signals coming from mid- and lower latitudes.

Conditions on 40, 80, and 160 meters are likely to become erratic as well. During certain types of storms conditions may actually improve at times for openings on all bands towards southern and tropical areas, and on 40, 80, and 160 meters during the hours of darkness.

If a radio storm should develop, concentrate on working trans-polar paths on 10, 15, and 20 meters during the daylight hours. Check the 40, 80, and 160 meter bands for possible openings to some areas of the world during the hours of darkness. chance for some new DX records to be established.

Trans-continental and 6 meter openings over shorter distances are also expected to increase dramatically during October and the fall, winter, and early spring months, with conditions likely to peak during the afternoon hours.

A major meteor shower, which could produce meteor-reflection-type ionospheric openings on the VHF bands, is expected October 20–22. Called the Orionids, the shower should reach peak intensity on October 21, with an hourly meteor count of approximately 25. Peaks in minor meteor showers are expected on October 3 and 12.

Auroral activity generally increases during October, and an increase in auroral-scatter-type VHF openings can be expected. There is also the likelihood for increased short-skip sporadic-*E* propagation resulting from expected auroral activity, particularly on 10 and 6 meters. The best time to check for such openings is when conditions on the HF bands are expected to be Below Normal or Disturbed, as shown in the Last-Minute Forecast at the beginning of this column.

CW Contest Forecast

This month's DX Propagation Charts are valid for both the SSB and CW sections of the contest. Be sure to keep them handy for use during next month's CW section as well. Short-Skip Propagation Charts for use during October appeared last month. The NEW Shortwave Propagation Handbook makes an excellent companion during the CQ WW DX Contest. It contains a considerable amount of additional information concerning propagation, radio storms, do-it-yourself forecasting, and computer propagation programs. Copies can be obtained from CQ by calling 1-800-853-9797 (\$19.95 plus \$4.00 s/h). Experience from the past 48 contest years has shown that DX contests are excellent periods in which to test the accuracy of prediction and forecast methods used in this column. Contests generate a large amount of activity in every corner of the world and on all HF bands. Previous results and observations have helped considerably in improving the accuracy of this column. Comments concerning the 1999 contest and the accuracy of these forecasts and predictions would be appreciated, and should be sent to W3ASK, at P.O. Box 1714, Silver Spring, MD 20915, or e-mail to <george@gjainc.com>.

Radio Storm

If Mother Nature should play a trick and produce a radio storm during the contest periods, expect conditions to drop to Below Normal or Disturbed to many areas of the world, depending on the storm's severity. The storm's influence will generally extend outwards from the polar regions, the more severe the storm becomes. Under storm conditions, expect considerably fewer openings on 10, 15, and 20 meters, with weaker signals, increased fading, flutter fading, and higher noise lev-

VHF lonospheric Propagation

Solar activity is now high enough so that exceptionally good DX openings can be expected on the 6 meter band during the hours of daylight. During October it should be possible to work stations in most areas of the world where this band is allocated for amateur use. Although the DX Charts contained in this month's column do not include the 6 meter band directly,6 meter DX openings can be expected at those times and to those areas of the world where 10 meter openings are shown with a propagation index greater than 3.

Generally speaking, check for openings from the eastern half of the USA towards Europe and the east before noon, and towards Africa an hour or so after noon. The best chance for 6 meter DX openings towards the Caribbean and Central and South America from all areas of the USA should be during the afternoon hours. Look for openings towards the Far East, the South Pacific area, New Zealand, and Australasia during the late afternoon hours. These openings will favor stations located in the western half of the USA, but some openings should extend considerably eastward. There will be lots of DX surprises in store for the 6 meter band during the next six months, with a good

I would like to dedicate this special WW DX Contest column to the memory of the late Alan M. Dorhoffer, K2EEK. He was a fellow radio amateur, a fellow editor of CQ, and most important, a friend, and one heck of a guy. He will be sadly missed. 73, George, W3ASK

for AMATEURS Insure all your radio and computer equipment. (except towers and antennas)

INSURANCE

VISA

REPEATERS ARE WELCOME

HAMSURE

E Mail:tom@hamsure.com www.hamsure.com Toll Free 800-988-7702 Call anytime Available only in 48 contiguous US

CIRCLE 57 ON READER SERVICE CARD

Ham Shop

Advertising Rates: Non-commercial ads are 20 cents per word including abbreviations and addresses. Commercial and organization ads are \$1.00 per word. Boldface words are \$1.50 each (specify which words). Minimum charge \$2.00. No ad will be printed unless accompanied by full remittance. All ads must be typewritten double-spaced.

Closing Date: The 10th day in the third month preceding date of publication (example: Jan. 10th for the March issue). Because the advertisers and equipment contained in Ham Shop have not been investigated, the Publisher of *CQ* cannot vouch for the merchandise listed therein. The publisher reserves the right to reject any advertisement. Direct all correspondence and ad copy to: CQ Ham Shop, 25 Newbridge Road, Hicksville, NY 11801.

CB-TO-10M CONVERSIONS: Frequency modifications, FM, books, plans, kits, high-performance CB accessories. Catalog \$3. CBCI, Box 1898A, Monterey, CA 93942. <www.cbcintl.com>

FOREIGN AIRMAIL POSTAGE for successful QSLing! Many countries, monthly bargains, plus EUROPEAN NESTING AIRMAIL ENVELOPES! We offer QSLs, EYEBALL CARDS, QSL ALBUMS, Wall Hangers. Bill Plum, 12 Glenn Road, Flemington, NJ 08822-3322 (weekdays: 908-788-1020; fax: 908-782-2612).

QSLs FOR DX STATIONS: Our new "International Division" was established to handle QSL needs of DX hams. We understand the problems of packaging, shipping, and dealing with the customs problems. You can trust us to deliver a quality QSL, usually much cheaper than you can find locally. Write, call, or FAX for free samples and ordering information. "The QSL Man—W4MPY," 682 Mount Pleasant Road, Monetta, SC 29105 USA. Phone or FAX 803-685-7117.

LEARN CODE BY HYPNOSIS: http://www.qth.com/ cweasy/ or 1-800-425-2552.

TOWER HARDWARE, SAFETY EQUIPMENT,

NEW CD-ROM release for 1999, for the PC with the PicturePacket (LITE) program ready to install on your Windows 95, 98, or NT based PC. The CD also contains many of K4ABT's articles, PacketRadio Handbooks, and hundreds of TNC to transceiver drawings, transceiver modifications (both 9600 baud and some commercial radio conversions), TNC to node conversions, and text file radio modifications. Some documents are in MSWord format. Here is a library of files and drawings from 15 years of the "Packet User's Notebook." Most drawings are in GIF and JPG formats. All orders are shipped PRIORITY, FIRST-CLASS MAIL within 24 hours of received order. Send check or MO (\$20.00 US) payable to Buck Rogers, K4ABT, 115 Luenburg Drive, Evington, VA 24550.

KNOW FIRST! Ham radio fanatics—you need THE W5YI REPORT, a twice-monthly award-winning Hot Insider Newsletter Acclaimed best! Confidential facts, ideas, insights, nationwide news, technology, predictions, alerts. Quoted coast-to-coast! We print what you don't get elsewhere! \$19.50 annually to new subscribers! Money-back guarantee! FREE sample for S.A.S.E. (two stamps). W5YI, P.O. Box 565101, Dallas, Texas 75356.

ANTENNA HARDWARE – S.S. "U" bolts, Aluminum Saddles, Element and Boom Plates, S.S. Hose Clamps. Write for list to HARBACH ELECTRONICS – WA4DRU, 2318 S. Country Club Road, Melbourne, FL 32901-5809 (http://www.harbach.com).

Interested In Satellite Communications? Subscribe to: OSCAR Satellite Report

Published twice a month to keep you informed of what is happening in space communications, DX, Keps, What's Up! USA \$35 - Canada \$38 - DX \$46

Interested in Amateur Television? Subscribe to: Amateur Television Quarterly

Everything you need to know to get started and use Amateur Television, SSTV, ATV Activities, Technical Info, and MORE! USA \$18 - Canada \$20 - DX \$26

ORDERS 1-800-557-9469 ORDERS 815-398-2683 VOICE 815-398-2688 FAX VISA - M/C - AMEX ATVQ@hampubs.com OSR@hampubs.com visit our site --> http://www.hampubs.com Harlan Technologies - 5931 Alma Dr. - Rockford, IL 61108

CIRCLE 50 ON READER SERVICE CARD

CIRCLE 84 ON READER SERVICE CARD

weatherproofing, T-shirts, and MORE. Champion Radio Products, telephone 888-883-3104, or <www.championradio.com>.

ALUMINUM CHASSIS-CABINET KITS, UHF and VHF Antenna Parts. K3IWK, 5120 Harmony Grove Road, Dover, PA 17315-3016.

AMERICAN HAM GEAR manufactured between 1930 & 1980 needed to illustrate *CQ* book and calendar projects. Photography can be done at your location. Contact Joe Veras, N4QB, P.O. Box 1041, Birmingham, AL 35201. Tel: 205-967-2384 days, 205-967-0639 evenings and weekends.

CERTIFICATE for proven contacts with all ten American districts. SASE to W6DDB, 45527 Third Street East, Lancaster, CA 93535-1802.

HALLICRAFTERS Service Manuals. Amateur and SWL Write for prices. Specify Model Numbers desired. Ardco Electronics, P.O. Box 95, Dept. C, Berwyn, IL 60402.

FREE IBM DISK CATALOG! Ham Radio, Shareware, and CD-ROMs. MOM 'N POP'S SOFTWARE, P.O. Box 15003-HE, Springhill, FL 34609-0111 (phone 1-352-688-9108; e-mail: <momnpop@gate.net>).

B&B WITH A HAM! Enjoy hamming from Hawaii. Join those who have chased DX from beautiful upcountry Maui! (Non-smokers only, thanks.) "SEA Q MAUI," call 808-572-7914; <kh6sq@seaqmaui.com> <http:// www.seaqmaui.com>.

FREE Ham Gospel Tracts, SASE. KW3A, 265 West Ave., Springfield, PA 19064. SX88 Hallicrafters receiver wanted. Jim, W6OU, 714-528-5652.

WORK RARE CW DX? CW CONTESTS? Contest Code is the answer. Powerful hypnosis audio tapes teach you to copy High Speed (30/40 WPM) or Ultra High Speed (50/60 WPM). Subliminals speed you along! 20 min/day for 30 days yields results. Each tape \$15.95 ppd US. \$3.00 shipping/handling. Specify 30/40 or 50/60 tape. Amex/VISA/ MC Order now! Call 1-800-425-2552, Alternative Arts.

TRYLON SELF-SUPPORTING TOWERS: Steel towers available up to 96 ft. Terrific value and reliability. The popular T-500 72-footer will take 45 square feet of antennas at 70 mph and is only \$1825.00. <www.championradio.com> or 888-833-3104 for more info.

PICTURE QSL CARDS of your shack, etc., from your photo or black-ink artwork. 500 \$30.00, 1000 \$44.50. Also non-picture cards. Custom-printed cards, send specifications for estimate. Send 2 stamps for illustrated literature. Generous sample kit \$2.00, half pound of samples \$3.00. **RAUM'S**, 8617 Orchard Road, Coopersburg, PA 18036. FAX or phone 215-679-7238.

FOR SALE: CQ/Ham Radio/QST/73 magazines and binders. SASE brings data sheet. W6DDB, 45527 Third Street East, Lancaster, CA 93535-1802.

FREE HAM RADIO GOSPEL TRACTS: Christian youth leaders needed for out-reach areas. Membership is free. Send #10 SASE with call letters for details. Ray Bohmer, W1REZ, P.O. Box 8, Harmony, ME 04942.

P49V's ARUBA COTTAGE FOR RENT with 2 bedrooms, rig, and antennas. For info write Carl Cook, 2191 Empire Ave., Brentwood, CA 94513.

IMRA-International Mission Radio Assn. helps missioners-equipment loaned; weekday net, 14.280 MHz, 1:00-3:00 PM Eastern. Sr. Noreen Perelli, KE2LT, 2755 Woodhull Ave., Bronx, NY 10469.

WANTED: HAM EQUIPMENT AND RELATED ITEMS. Donate your excess gear-new, old, in any condition-to the Radio Club of Junior High School 22, the Nation's only full time non-profit organization working to get Ham Radio into schools around the country as a teaching tool using our EDUCOM-Education Thru Communication-program. Send your radio to school. Your donated material will be picked up ANYWHERE or shipping arranged, and this means a tax deduction to the full extent of the law for you as we are an IRS 501(c)(3) charity in our 18th year of service. It is always easier to donate and usually more financially rewarding, BUT MOST IMPOR-TANT your gift will mean a whole new world of educational opportunity for children nationwide. Radios you can write off; kids you can't. Make 1999 the year to help a child and yourself. Write, phone, or FAX the WB2JKJ "22 Crew" today: The RC of JHS 22, P.O. Box 1052, New York, NY 10002. Twenty-four hours call 516-674-4072; fax 516-674-9600; or e-mail <wb2jkj@juno. com>. Join us on the WB2JKJ Classroom Net, 7.238 MHz, 1200-1330 UTC daily and 21.395 MHz from 1400 to 2000 UTC.

FOR SALE: Transmission Line Transformers (Baluns and Ununs). Due to QTH downsizing, I have to dispose of the many transformers used in my study of these broadband and highly efficient matching transformers. A suggested price is \$20, covering labor, packaging, and shipping. Oldest transformers will be shipped first. They will include a short personal note on the particular experiment. Please, no special requests.Most transformers are uncased. Jerry Sevick, W2FMI, 32 Granville Way, Basking Ridge, NJ 07920 (908-766-6122). Note: These are one of a kind, for experimental use only.

Advertiser's Index

Acom International	29
Advanced Specialties, Inc	57
AEA (Division of Tempo Research).16
Alinco Electronics	7
Alpha Delta Comm2	1,85
Alternative Arts	56
Alternative Energy Engineering	99
Aluma Towers	98
AM-COM	55
Ameritron	19
Amidon	22
Antique Electronic Supply	42
Antique Radio Classified	96
Associated Radio	54
Astron Corp	9
Atomic Time Inc.	.64
Rilal Co /Isotron Ants	98
Buckmaster Publishing 6	191
Bull Dog Keve	60
Burgbardt Amatour Conter	57
Burgharut Antonnon	
Butternut Antennas	00
C & S Sales	3/
CABLE X-PERIS	41
CBC International	98
Champion Radio Products	60
Champion Radio Wear	32
CometAntennas/NCG	1
Command Productions	42
Communication Concepts Inc	32
Communications Quarterly	25
Contest Results CD-ROM	57
CQ Merchandise	82
Creative Services Software	8
Cubex Quad Antennas	42
Cushcraft	5
Davis Instruments	43
Davis RF	60
Denver Amateur Radio Supply	92
DWM Communications	98
DX4WIN(Rapidan Data Systems).	30
EQF Software	
FZ Hang Inc	.60
Fair Badio Sales	.56
First Call Communications	65
Force 12 Antennas	73
G47PY Paddle Kevs	60
GAP Antenna Products	100
Gom Quad Antonnas	08
Glop Martin Engineering Joe	61
Hem Dadia Outlat	10
Ham Hadio Outlet	10
Hamsure	90
Harlah Technologies	90
High Sierra Antennas	97
(continued on page 99)	

From MILLIWATTS to KILOWATTS[™]

rfparts.com

an address to remember

Svetlana · Motorola · Eimac · Taylor Toshiba · Mitsubishi Complete line of tubes, transistors, rf power modules for Broadcast, Marine, 2-Way & Amateur Radio service. 760-744-0700 800-737-2787 Tel:

760-744-1943 E-Mail: rfp@rfparts.com

888-744-1943

Fax:

CIRCLE 75 ON READER SERVICE CARD

VISIT THE "K8CX HAM GALLERY" at <http:// paradox2010.com/ham/>, the largest Ham site on the Internet!

THE 59(9) DX REPORT: Weekly DX and Contest bulletin. SASE for sample. P.O. Box 73, Spring Brook, NY 14140.

ASTRON Power Supply, brand new w/warranty, RS20M \$99, RS35M \$145, RS50M \$209, RS70M \$249. Call for other models, AVT 626-286-0118 <www.aventrade.com>.

ATTENTION SB-200 & SB-220 OWNERS: Restore and up-grade your tired old amplifier with our parts and kits. Power supply boards, soft keys, soft starts, new fans & motors, many more items. Write for details-Please specify the model. Harbach Electronics-WA4DRU, 2318 S. Country Club Rd., Melbourne, FL 32901-5809 (http://www.harbach.com).

W7FG Vintage Manuals and Ladder Line: Most manuals in stock. SASE for Catalog. 600 Ohm Ladder Line. VISA/MASTERCARD accepted. 402731 W. 2155 Dr., Bartlesville, OK 74006 (telephone 918-333-3754 or 800-807-6146; website http://www.w7fg. com).

Tel: 530-273-3415, fax: 530-273-7561 http://www.hsantennas.com/info e-mail: cobler@hsantennas.com

NEW! ALL 1300 ACTUAL QUESTIONS! FCC Commercial **General Radiotelephone Operator License (GROL) Plus Ship Radar**

Only \$34.95 Plus \$3.00 shinning Complete FCC Element 1, 3 and 8 Question Pools **Become FCC licensed Electronic Technician** 496-page fully-illustrated textbook covers everything you need to know to get your FCC commercial radiotelephone operator license w/radar endorsement. Contains every possible word-for-word examination question (including the new updates), multiple choices, and answers with explanation of the answer. Complete information on every commercial radio license examination ... and how you can qualify. FCC Commercial radio regulations included! Commercial radio operator testing available. National Radio Examiners Div., The W5YI Group, Inc. P.O. Box 565206, Dallas, TX 75356

Visa, MasterCard, or Discover

CIRCLE 81 ON READER SERVICE CARD

NO ENTERTAINMENT FEE

That's right. There's never an entertainment charge at the Solder-It Booth (PACIFICON-CONCORD,CA 10/16-17, SEE OUR NEW PRODUCTS). Come and see for yourself why the reviewers agree that the Solder-It Kit makes soldering PL-259s, miniature connectors, aluminum, and so many other nasty soldering jobs so easy. Last year at Dayton we had a lineup of folks who needed emergency soldering

jobs... Monel eyeglass frames for a fellow from Kenwood, a clasp on a gold bracelet for a YL ham from NJ, a few PL-259s, din plugs and other connectors for new rig owners, a cracked HTcase, a pot metal toy gun for a buding cowpoke. One women fixed a hole in her truck radiator so she could get home.

THIS IS EASY!

The Solder-It Kit is still \$59.00 + \$6.50 S&H (Ohio add 7%) Check, VISA, MC to Solder-It Box 20100 Cleveland, OH 44120 (800)897-8989 FAX (216)721-3700 http://www.solder-it.com

"Specialist in RF Connectors and Coax" Part No. Description Price UHF Male Phenolic, USA made PL-259/USA \$.75 PL-259/AGT UHF Male Silver Teflon, Gold Pin 1.00 10/\$9.00 N Male RG-8, 213, 214 Delta UG-21D/U 3.25 UG-21B/U N Male RG-8, 213, 214 Kings 5.00 9913/PIN N Male Pin for 9913, 9086, 8214 Fits UG-21 D/U & UG-21 B/UN's 1.50 UG-21D/9913 N Male for RG-8 with 9913 Pin 4.00 N Male for RG-8 with 9913 Pin UG-21B/9913 6.00 N Male to SO-239, Tetion USA UG-146A/U 7.50 N Female to PL-259, Tellon USA UG-838/U 7.50 Celebratino The R.F. Connection 213 North Frederick Ave., #11 CQ Gaithersburg, MD 20877 - (301) 840-5477 800-783-2666 FAX 301-869-3680 www.therfc.com Complete Selection Of MIL-SPEC Coax, RF Connectors And Relays **WORLD FAMOUS!!** "TINY-TENNA" Indoor Amplified Shortwave Antenna Great for apartment/condo, traveling, camping! (requires 9V battery or AC adapter-not included) credit card orders welcome at: 1-517-563-2613 **DWM Communications** P.O. Box 87-CQ, Hanover, MI 49241 **BOOMLESS QUADS** \$23995 - 3 Band - 2 Element HF 3-4 Elements available. Also W.A.R.C. Bands. 2 meter loop FREE. Sold world wide for over 15 years. GEM QUAD Box 291, Boissevain, Manitoba, Canada ROK 0E0 Telephone 1-204-534-6184 Price F.O.B Factory Over 20 Years Experience in Meeting owers Amateur & Commercial Tower Needs. · Crank-up Towers 40' to 100' All Aluminum Construction

· Light-Weight-Easy to Install

100

TRIBANDER COMPARISON REPORT: Find out the real lowdown on HF antenna performance. K7LXC and NØAX test the KT34XA, TH7, TH11, C-3, Skyhawk, and more. Over 60 pages. \$15 plus \$3.00 s/h. <www.championradio.com> or 888-833-3104.

PACKET RADIO AND MORE! Join TAPR, connect with the largest amateur radio digital group in the U.S. Creators of the TNC-2 standard, now working on Spread Spectrum technology, Benefits: newsletter, software, discount on kits and publications. \$20/year US/Can/Mex; \$25 elsewhere. Visa/MC. When joining, mention CQ and receive TAPR's Packet Radio: What? Why? How? (\$12 value) FREE! Internet: tapr@tapr. org Web: <http://www.tapr.org> Phone: 817-383-0000 Address: 8987-309 E Tanque Verde Road, #337, Tucson, AZ 85749-9399.

PHASED ARRAY NETWORKS by COMTEK SYS-TEMS deliver gain and front to back. Call 704-542-4808; fax 704-542-9652. COMTEK SYSTEMS, P.O. Box 470565, Charlotte, NC 28247,

QSL CARDS Many styles. Top quality. Order Risk Free. Plastic cardholders, T-shirts, Personalized caps, mugs, shirts. Other ham shack extras. Information and samples: Rusprint 1-800-962-5783; 913-491-6689; or fax 913-491-3732.

FREE GUIDE "THE TEN MOST COMMON TOWER BUILDING MISTAKES": Written by well-known tower expert Steve Morris, K7LXC, this guide will help you avoid dangerous mistakes. TOWER TECH, Box 572, Woodinville, WA 98072; e-mail <UpTheTower@ aol.com> or call 800-TOWERS8 or on the web: <www.championradio.com>.

VP5 - Be DX: Newly constructed 2BR/2BA villa with rig and antennas overlooking north coast of beautiful Middle Calcos. Telephone 904-282-0158, or e-mail <islands@southeast.net>.

OVER 2500 DIFFERENT DX AWARDS from 122 DXCC countries listed. K1BV DX Awards Directory. Put your QSLs to work for you! \$21 postpaid. Ted Melinosky, 65 Glebe Road, Spofford, NH 03462-4411. <http://top.monad.net/~k1bv>.

HEARD ISLAND commemorative T-shirts, same shirt as team is wearing on QSL card. Proceeds benefit VKØIR DXpedition. Personal checks on U.S. banks okay. Please no credit cards. Sizes remaining: large, extra-large. 100% cotton, U.S. made. \$20 Priority Mail stateside, \$25 DX Air Mail, postage included. Tom Anderson, WW5L, 3505 Cliffwood Drive, Bedford, Texas 76021-2043 (phone 817-498-2820; e-mail <WW5L@gte.net>).

RAINBOW AMATEUR RADIO Association, the gay/ lesbian club. Active HF nets, newsletter, uncensored listserv, web page: <www.rara.org>. Privacy respected. E-mail: <rara@en.com> or Dept. A, P.O. Box 191, Chesterland, OH 44026-0191.

RF TRANSISTORS & TUBES: SD1446, 2SC1969, MRF454, MRF455, MRF422, 2SC2290, 2SB754, 2SC2312, 2SC2166, SAV17, MRF448, MRF151G, 3-500ZG, 3CX3000A7, 3CX400A7/8874, 4CX250B, 572B. WESTGATE 800-213-4563.

Join the LAMBDA AMATEUR RADIO CLUB (LARC) since 1975, the only open and visible public-service oriented ham club for gay and lesbian hams. Monthly newsletter, HF skeds, internet listserv and IRC, hamfest meetings, chapters, DXpeditions. Write LARC, P.O. Box 56069, Philadelphia, PA 19130-6069 or email <lambda-arc@geocities.com>; <http://www. geocities.com/WestHollywood/1686>.

KK7TV COMMUNICATIONS: See our display ad.

QSLs & RUBBER STAMPS – Top Quality! Free Ebbert QSLPAK, D-2, P.O. Box 103, Prospecy, OH 43342.

GREAT CIRCLE MAPS computer generated for your exact QTH, \$20 ppd worldwide. Printouts \$12 ppd. SASE for info. Bill Johnston, K5ZI, Box 640, Organ, NM 88052 (505-382-7804).

MACINTOSH MULTIMODE SOFTWARE: CW/ RTTY/SSTV/FAX/ACARS/PSK31/Hellschreiber and more, without any additional hardware, on your PPC Mac. Download functional demo from <http://www. blackcatsystems.com> or send \$3 P&H for disk. Chris Smolinski, N3JLY, 4708 Trail Court, Westminster, MD 21158.

TUBES, USED: \$2.00 each tested. Winton Radford, 1408 Second Rd., Baltimore, MD 21220.

19" RACKMOUNT PC CHASSIS <www.cti-texas. com>.

INTERESTED IN VIEWING the Earth from space? Subscribe to Weather Satellite Report. Since 1992 the international quarterly of Earth and atmospheric imagery. Woodhouse Communication, telephone 616-226-8873; fax 616-226-9073; e-mail <www. view2earth.com>.

SOVIET HAND CW KEYS, Svetlana tubes, and old radios for sale. Tony e-mail: <tony@megastyle.com>; site: <http://cq.hypermart.net>.

WANTED: (1) Vibroplex Deluxe Semiautomatic keyer in WW II battleship gray. (2) J-36 military keys by Vibroplex, Bunnell, Lionel, etc. (3) Coast Guard, Navy RM, or MM Radio Officer's speed key in carrying case—for private collection by senior Coast Guard officer. Also other straight keys/bugs/keyers with paval bistory and incomplete/broken bugs for restora-

ICOM America, Inc Cov. II, Cov.IV International Radio .56 J. Martin Systems .57 Juns Electronics .89 K1EA Software .44 K2AW's "Silicon Alley" .38 Kenwood, USA .3 KK7TV Communications .87 Lewallen, Roy, W7EL .38 Lightning Bolt Antennas .49 M&S Computer .42 MFJ Enterprises .35 Motron Electronics .48 Nemal Electronics .61 Paddlette Co. .48 Palomar Engineers .39 Peter Brothers .39 Peter Dahl Co. .70 QSLs by W4MPY .38 QSLs by WX9X .44 RF Applications .55 RF Connection .98 RF Parts .97 RT Systems .91 Radcomm Radio .87 Radio Club of JHS 22 .28 Radio Engineers .71 Radio Engineers .71 Radio Engineers .71	Advertiser's Index (cont	'd)
International Radio.56J. Martin Systems.57Juns Electronics.89K1EA Software.44K2AW's "Silicon Alley".38Kenwood, USA.3KK7TV Communications.87Lewallen, Roy, W7EL.38Lightning Bolt Antennas.49M&S Computer.42MFJ Enterprises.35Motron Electronics.48Nemal Electronics.61Paddlette Co.48Palomar Engineers.38Peter Dahl Co.70QSLs by W4MPY.38QSLs by W4MPY.38QSL by W4MPY.38<	ICOM America, Inc Cov. II,Co	VI.vo
J. Martin Systems	International Radio	
Juns Electronics	J. Martin Systems	
K1EA Software .44 K2AW's "Silicon Alley" .38 Kenwood, USA. .3 KK7TV Communications .87 Lewallen, Roy, W7EL. .38 Lightning Bolt Antennas .48 M² Antennas .49 M&S Computer .42 MFJ Enterprises .35 Motron Electronics .48 Paddlette Co. .48 Palomar Engineers .38 Peet Brothers .39 Personal Database Applic. .98 Peter Dahl Co. .70 QSLs by W4MPY .38 QSLs by W4MPY .38 QSLs by W29X .44 RF Applications .55 RF Connection .98 RF Parts .97 RT Systems .91 Radcomm Radio .87 Radio Engineers .71 Radio Engineers .71 Radio Works .59 Ross Distributing .71 Solder-It .98 Spectrum International .47 Spider Antennas	Juns Electronics	
K2AW's "Silicon Alley".38Kenwood, USA.3KK7TV Communications.87Lewallen, Roy, W7EL.38Lightning Bolt Antennas.48M² Antennas.49M&S Computer.42MFJ Enterprises.35Motron Electronics.48Nemal Electronics.61Paddlette Co.48Palomar Engineers.39Peter Dahl Co.70QSLs by W4MPY.38QSLs by W4MPY.38QSLs by W4MPY.38QSLs by W4MPY.38RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W & M Associates.43Wacom Products.81Warren Gregoire & Assoc99WBØW, Inc27Warren Gregoire & Assoc99WBØW, Inc27	K1EA Software	44
Kenwood, USA.3KK7TV Communications.87Lewallen, Roy, W7EL.38Lightning Bolt Antennas.48M² Antennas.49M&S Computer.42MFJ Enterprises.35Motron Electronics.48Nemal Electronics.61Paddlette Co.48Palomar Engineers.39Peter Dahl Co.70QSLs by W4MPY.38QSLs by W4MPY.38QSLs by W4MPY.38QSLs by W4MPY.38RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W & M Associates.43Wacom Products.81Warren Gregoire & Assoc99WBØW, Inc27Warren Gregoire & Assoc99WBØW, Inc27	K2AW's "Silicon Alley"	38
KK7TV Communications.87Lewallen, Roy, W7EL.38Lightning Bolt Antennas.48M² Antennas.49M&S Computer.42MFJ Enterprises.35Motron Electronics.48Nemal Electronics.48Paddlette Co48Palomar Engineers.39Peter Dahl Co70QSLs by W4MPY.38QSLs by W4MPY.38QSLs by WX9X.44RF Applications.55RF Connection.98RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44WSYI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	Kenwood, USA	3
Lewallen, Roy, W7EL.38Lightning Bolt Antennas.48M² Antennas.49M&S Computer.42MFJ Enterprises.35Motron Electronics.48Nemal Electronics.48Paddlette Co48Palomar Engineers.39Peter Dahl Co70QSLs by W4MPY.38QSLs by W4MPY.38QSLs by W4MPY.38QSLs by WX9X.44RF Applications.55RF Connection.98RF Parts.97RT Systems.91Radio Club of JHS 22.28Radio Engineers.71Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5Y1 Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	KK7TV Communications	87
Lightning Bolt Antennas.48M² Antennas.49M&S Computer.42MFJ Enterprises.35Motron Electronics.48Nemal Electronics.48Nemal Electronics.61Paddlette Co48Palomar Engineers.39Peter Brothers.39Peter Dahl Co70QSLs by W4MPY.38QSLs by W4MPY.38QSLs by W4MPY.38QSLs by W29X.44RF Applications.55RF Connection.98RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	Lewallen, Roy, W7EL	38
M² Antennas.49M&S Computer.42MFJ Enterprises.35Motron Electronics.48Nemal Electronics.61Paddlette Co48Palomar Engineers.38Peet Brothers.39Peter Dahl Co70QSLs by W4MPY.38QSLs by W4MPY.38QSLs by WX9X.44RF Applications.55RF Connection.98RF Parts.97RT Systems.91Radcomm Radio.87Radio Engineers.71Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	Lightning Bolt Antennas	48
M&S Computer.42MFJ Enterprises.35Motron Electronics.48Nemal Electronics.61Paddlette Co.48Palomar Engineers.38Peet Brothers.39Personal Database Applic.98Peter Dahl Co.70QSLs by W4MPY.38QSLs by W4MPY.38QSLs by W4MPY.38QSLs by W4MPY.38QSLs by W4MPY.38QSLs by W29X.44RF Applications.55RF Connection.98RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co.98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	M ² Antennas	49
MFJ Enterprises.35Motron Electronics.48Nemal Electronics.61Paddlette Co48Palomar Engineers.38Peet Brothers.39Personal Database Applic.98Peter Dahl Co70QSLs by W4MPY.38QSLs by W4MPY.38QSLs by W4MPY.38QSLs by WX9X.44RF Applications.55RF Connection.98RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	M&S Computer	42
Motron Electronics.48Nemal Electronics.61Paddlette Co48Palomar Engineers.38Peet Brothers.39Personal Database Applic98Peter Dahl Co70QSLs by W4MPY.38QSLs by W4MPY.38QSLs by W4MPY.38QSLs by WX9X.44RF Applications.55RF Connection.98RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	MFJ Enterprises	35
Nemal Electronics.61Paddlette Co48Palomar Engineers.38Peet Brothers.39Personal Database Applic98Peter Dahl Co70QSLs by W4MPY.38QSLs by W4MPY.38QSLs by W4MPY.38QSLs by WX9X.44RF Applications.55RF Connection.98RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	Motron Electronics	48
Paddlette Co48Palomar Engineers.38Peet Brothers.99Personal Database Applic.98Peter Dahl Co70QSLs by W4MPY.38QSLs by W4MPY.38QSLs by WX9X.44RF Applications.55RF Connection.98RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Engineers.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	Nemal Electronics	61
Palomar Engineers	Paddlette Co	48
Peet Brothers.39Personal Database Applic.98Peter Dahl Co70QSLs by W4MPY.38QSLs by WX9X.44RF Applications.55RF Connection.98RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc99WBØW, Inc27	Palomar Engineers	38
Personal Database Applic	Peet Brothers	39
Peter Dahl Co70QSLs by W4MPY.38QSLs by WX9X.44RF Applications.55RF Connection.98RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc.27	Personal Database Applic	98
QSLs by W4MPY.38QSLs by WX9X.44RF Applications.55RF Connection.98RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	Peter Dahl Co.	70
QSLs by WX9X.44RF Applications.55RF Connection.98RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	QSLs by W4MPY	38
RF Applications.55RF Connection.98RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	QSLs by WX9X	44
RF Connection.98RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	RF Applications	
RF Parts.97RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	RF Connection	98
RT Systems.91Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	RF Parts	97
Radcomm Radio.87Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	RT Systems	91
Radio Club of JHS 22.28Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	Radcomm Radio	87
Radio Engineers.71Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27Versatel Conville.27	Radio Club of JHS 22	28
Radio Works.59Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27Versatel Conv. III.27	Radio Engineers	71
Ross Distributing.71Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27Versatel Convilue.27	Radio Works	
Solder-It.98Spectrum International.47Spider Antennas.39Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co.98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27Versation.27	Ross Distributing	.71
Spectrum International47Spider Antennas39Surplus Sales of Nebraska59Ten Tec23The Better RF Co98Universal Radio, Inc25Vectronics31Versatel Communications71Vibroplex44W5YI Marketing47,1,87,97W9INN Antennas96W & W Associates43Wacom Products81Warren Gregoire & Assoc99WBØW, Inc	Solder-It	
Spider Antennas	Spectrum International	
Surplus Sales of Nebraska.59Ten Tec.23The Better RF Co98Universal Radio, Inc25Vectronics.31Versatel Communications.71Vibroplex.44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	Spider Antennas	39
Ten Tec	Surplus Sales of Nebraska	59
The Better RF Co98Universal Radio, Inc25Vectronics31Versatel Communications.71Vibroplex44W5YI Marketing.44,71,87,97W9INN Antennas.96W & W Associates.43Wacom Products.81Warren Gregoire & Assoc.99WBØW, Inc27	Ten Tec	23
Universal Radio, Inc	The Better BE Co	98
Vectronics	Liniversal Radio Inc.	25
Versatel Communications	Vectronics	31
Vibroplex	Versatel Communications	71
W5YI Marketing	Vibronley	44
W9INN Antennas	W5VI Marketing 44 71 8	7 97
W & W Associates	WOINN Antennas	96
Wacom Products	W & W Associates	43
Warren Gregoire & Assoc	Wacom Products	81
WBØW, Inc	Warren Gregoire & Assoc	99
Veren Fleetrenien 14 15 Cov III	WRØW Inc	27
Yaesi Flectronics 14 15 OV III	Yaesu Electronics 14.15 Co	ov III
Yost & Co	Yost & Co.	63

navar history and incomplete bit	onen buga tor reatora
tion parts. <wb4rhb@arrl.net></wb4rhb@arrl.net>	

TESLA. WIZARD by Marc Seifer. Citadel Press. Definitive biography. "AN IMPORTANT BOOK," Newsday. <www.netsense.net/tesla>

WANTED: McMurdo-Silver 802 HF ham receiver, circa 1948. <jmiller@Basit.com>, 914-644-2603. Jim Miller, 32 Garretson Road, White Plains, NY 10604.

WANTED: Older model bugs, unusual bugs, and miniature hand keys. State price, condition. Dave Ingram, K4TWJ, 4941 Scenic View Drive, Birmingham, AL 35210.

CALLSIGN BRASS BUCKLES and Custom Ham Products. <www.TheMaineStore.com>

LIKE-NEW COPIES OF CQ December 1964 through March 1979; 73 November 1963 through December 1978; QST November 1963 through December 1978; HAM March 1968 through July 1979 available. Cost \$2.00 per copy plus shipping. W.L. Brown, Box 541, Sullivan's Island, SC 29482 (843-883-3574).

RADIOAMADORES BRASILEIROS, compre ICOM, Kenwood no Brasil. Tel/Fax: +19-875-6174 ou <www. bestway.com.br/radiohaus>.

The famous copper J-POLE antenna for 2 meters. KF6TSS 5/8 wave version. \$29.95. http://home.earthlink.net/~drduggee/jpole.htm> or toll-free 1-888-881-5670.

KENWOOD TS520S \$350, TS530S \$475, TS-830S \$500. Yaesu FT901DM \$500. K1BW, 413-538-7861.

It's easy to advertise in CQ. Let me know what I can do to help. Arnie Sposato, N2IQO (516) 681-2922 or FAX (516) 681-2926 e-mail:arniecq@aol.com

GAP: THE PERFECT ANTENNA

We at GAP realize there isn't a perfect antenna. No singular antenna will scream DX on 80 and be the best for local nets on 10. If anyone tells you there is, bewarel The perfect antenna does not exist, but the right one for you may. If you want something to bust the pile on the low bands, then consider the Voyager. Just starting out in ham radio and need a great general coverage antenna, the Challenger is easy to assemble and for little effort will

yield superior performance, especially on DX. Maybe you knowingly or unknowingly moved into one of those "restricted areas" where the Eagle's limited visibility, but unlimited ability is desired.

Eagle DX

Challenger DX

Voyager DX

This chart helps you select the right GAP antenna. W hen comparing GAPs, bandwidth is not a concern. With few exceptions, a GAP yields continuous coverage under 2:1 for the ENTIRE BAND.

All antennas utilize a GAP elevated asymmetric feed. A major benefit is the virtual elimination of the earth loss, so more RF radiates into the air instead of the ground. This feed is why a GAP requires **NO RADIALS**. Just as elevating a GAP offers no significant improvement to its performance, adding radials won't either, making set up a breeze.

A GAP antenna has no traps, coils or transformers. This is important. The greatest sources of failure in multiband antennas are these devices. Perhaps you heard someone discuss a trap that had melted, arced or became full of water. Improvements to these inherent problems are the focus of the antenna manufacturer, while the basic design of the antenna remains unchanged. GAP improved the trap by eliminating it! Removing these devices means they don't have to be tuned and, more importantly, won't be detuned by the first ice or rain. The absence of these devices improves antenna reliability, stability and increases bandwidth.

Another major advantage to a GAP antenna is its NO tune feature. Screws are simply inserted into predrilled holes with a supplied nutdriver.

The secret is out and peo CQ-"The GAP consistently ou 73-"This is a real DX antenn RF-"To say this antenna is el forth on 40m between anot son. Signals were always stre Worldradio - "These guys h awful lot of RF is wallowing bound. A half-wave vertical half-wave vertical does not (IEEE-"Near field and power (asymmetric vertical dipole): avoids power dissipation in t almost independent of group efficiency in the MF AM stand plane, so as to yield easier in

MODEL				BAN	NDS C	DF OP	ERATI	ON				LIT	WAT	MOUNT	COUNTER-	COST
MODEL	2m	6m	10m	12m	15m	17m	20m	30m	40m	80m	160m	H1	WI	MOUNT	POISE	COST
Challenger DX												31.5	21 lbs	Drop In Ground Mount	3 Wires @ 25'	\$279
Eagle DX				-					-			21.5	19 lbs	1-1/4" pipe	80" Rigid	\$289
Titan DX												25'	25 lbs	1-1/4" pipe	80" Rigid	\$319
Voyager DX										-	-	45'	39 lbs	Hinged Base	3 Wires @ 57'	\$399

- The secret is out and people in the know say:
- CO-"The GAP consistently outperformed base-fed antennas. .and was quieter."
- 73-"This is a real DX antenna, much guieter than other verticals."

RF–"To say this antenna is effective would be a real understatement. Switching back and forth on 40m between another multiband HF vertical and the GAP, there was no comparison. Signals were always stronger on the GAP, sometimes by S units, not just DBs." **Worldradio** – "These guys have solved the problem associated with verticals. That is, an awful lot of RF is wallowing around and dropping into the dirt instead of going outward bound. A half-wave vertical does need radials if it is end fed (at the bottom). But the same half-wave vertical does not (as much, hardly at all) if is fed in the center."

IEEE–"Near field and power density analyses show another advantage of this antenna (asymmetric vertical dipole): it decreases the power density close to the ground, and so avoids power dissipation in the soil below it. The input impedance is very stable and almost independent of ground conductivity. This antenna can operate with high radiation efficiency in the MF AM standard broadcast band, without the classical buried ground plane, so as to yield easier installation and maintenance."

This all purpose antenna is designed to operate 10m-80m, WARC bands included. It sits on a 1-1/4" pipe and can be mounted close to the ground or up on a roof. Its bandwidth and no tune feature make it an ideal antenna for the limited space environment as well as a terrific addition to the antenna farm.

ROMOBILE FIELS() WORLD'S SMALLEST HIGH-POWER DUAL-BAND MOBILE!

Another Engineering Breakthrough from Yaesu : the FT-90R! **Big Power, Big Performance,** Micro-Miniature Size!

Actual Size

SOL

Features

- Frequency Coverage:
- RX: 100-230 MHz, 300-530 MHz,
 - 810-999.975 MHz (Cellular Blocked)
- TX : 144-146 MHz or 144-148 MHz (144 MHz) 430-440 MHz or 430-450 MHz (430 MHz)
- 50 Watts Power Output (430 MHz: 35W)
- Ultra Compact: 100 mm x 30 mm x 138 mm WHD (3.9" x 1.2" x 5.4")
- AM Aircraft Receive
- Built-In CTCSS/DCS Encoder/Decoders
- Selectable TX Power: HIGH (50W), MID1 (20W), MID2 (10W) and LOW (5W)
- Programmable VFO Steps: 5/10/12.5/15/20/25/50 kHz per Step
- 186 Memories with 7-Character Alpha/Numeric Labels
- Direct Keypad Frequency Entry via MH-36A6J DTMF Microphone
- Smart Search[™] Automatic Memory Loading
- Programmable Front Panel/Microphone Key Functions
- Battery Voltage Meter
- Auto-Range Transponder System (ARTS™)
- TX Time-Out Timer (TOT)
- Automatic Power-Off Battery Saver (APO)

©1999 Yaesu USA, 17210 Edwards Road, Cerritos, CA 90703 (562) 404-2700

Specifications subject to change without notice. Specifications guaranteed only within Amateur bands. Some accessories and/or options are standard in certain areas. Check with your local Yaesu dealer for specific details.

U.S. version includes MH-36A6J DTMF Microphone.

- Remote-Head Operation using Optional YSK-90 Separation Kit
- 16-Digit 8-Memory DTMF Autodialer (requires MH-36A6J Mic)
- ADMS Windows[™] PC Programmable
- Automatic Repeater Shift
- 1200/9600 bps Packet Compatible

ALT PALL MAN PORT PERSON NAME OF TAXABLE PARTY.

the star part little little

THE SHORESSING THE

- RF-Level Squelch for Quiet Monitoring of Busy Channels
- DCS Code # Search

- Versatile Scanning Features
- Priority Channel Monitoring
- Menu for Feature Customization
- Adjustable Display Brightness and Contrast
- Aluminum Diecast Chassis with Cooling Fan

For the latest news, hottest products: Visit us on the Internet! http://www.yaesu.com

GETOUTH ICOM MOBILES Plenty of Power, PC Programmable,

and Ready for FUN!

OST says: "Those shopping for a wide variety of advanced features in an economically priced 2-meter mobile will find the ICOM IC-2100H worthy of serious consideration." - 0ST 1/99 IC-2100H ► 2 meters has never been easier or more fun! 55 watts of power; PC programmable^{*}; 113 memory channels; die-cast aluminum chassis; full control mic; CTCSS; highly intermod resistant; and a cool DUAL color display.

ONLY 4.3" WIDE The IC-207H's super compact remote head* boasts a large display with soft key menu controls.

MIL STD

810 C/D/E

GREEN OR AMBER Select which color you want the display to show. The large alphanumerics and soft key controls are easy to see

IC-207H The ultra-compact remote control* head of this 2 meter/440 MHz dual bander fits on just about any kind of dashboard. Also enjoy: CTCSS encode/decode; up to 9600 bps packet*; built-in duplexer; 182 memory channels; full control mic; auto repeater; and more.

IC-2800H ► Audio excellence, video excitement. 2M/440MHz dual bander with: remote control head; independent tuning & control knobs; cross band

repeat; TFT color LCD display; NTSC video port; 118 - 174, 440 - 450 MHz wide band receive**; band scope; 9600 bps data port; CTCSS encode/decode; 232 memory

channels; PC programmable^{*}; die-cast aluminum chassis; full control mic; and MUCH more.

*Optional equipment required. Check with your authorized ICOM dealer.

Get out and have MORE fun. Whatever your 2 meter or 440 MHz needs, ICOM has the rig for you. Contact your authorized ICOM dealer today or call for a free brochure, 24 hours a day: **425-450-6088**

**Reception guaranteed on U.S. ham bands only. ©1999 ICOM America, Inc. 2380 116th Ave NE, Bellevue, WA 98004 • 425-454-8155. The ICOM logo is a registered trademark of ICOM, Inc. All specifications are subject to change without notice or obligation. Questions? Contact your authorized ICOM dealer or contact ICOM America Tech Support on CompuServe's® HamNet forum at 75540,525 or send e-mail to 75540.525@compuserve.com. CompuServe is a registered trademark of CompuServe, Inc. MBFAM699Y

OPTIONAL WIRELESS MIC Available for each mobile radio shown. Enjoy cablefree control and operation.

