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MARCH OF PROGRESS. Integrated circuits
are now available that can directly convert 0-
30MHz analogue signals to and from the
digital domain. This article describes a project
undertaken by the authors to build the entire
signal path of an HF transceiver digitally. The
RF section is built on a 150x70mm printed
card, with most of the functions carried out 
by a field programmable gate array (FPGA).
The remaining signal processing is done in
computer software. A Universal Serial Bus
(USB) cable carries digital signals between
the two parts and also powers the card. 
It can be used as a general-coverage HF
receiver as it stands and the addition of a
power amplifier and antenna switching will
enable a complete transceiver to be
constructed. The configuration of the FPGA
logic is stored in a non-volatile memory on the
card and can be upgraded from the computer.

This article describes the fundamental
principles of the digital processes used,
outlines the block diagrams of the receive 
and transmit paths and describes the inner
working of the important blocks. The block
diagram of the hardware is also presented,
with details of the functions of the main
integrated circuits. The modulation and
demodulation processes that take place 
in the computer software may be described 
in a subsequent article.

FIRST PRINCIPLES. In the traditional
superhet receiver, a mixer converts the
incoming band to an intermediate frequency
at which the channel filter selects the signal of
interest. This is then passed to a demodulator
to produce the final output. In mathematical

terms, a mixer multiplies the signal by the
local oscillator. If both signal and oscillator
were pure sine waves and the mixer was a
perfect multiplier, its output would consist
only of the sum and difference signals or, to
put it another way, the mixer would only
respond to inputs on the wanted and image
frequencies. However, real analogue mixers
are imperfect and the best ones are more like
switches than multipliers. Such mixers give
excellent signal linearity but really bad
‘oscillator linearity’, which means they
respond to signals either side of multiples 
of the oscillator frequency. For example, an
analogue receiver with an oscillator on 1MHz
and an IF of 100kHz will respond not only 
to signals on 900 and 1100kHz, but also to
signals on 1900 and 2100kHz, 2900 and
3100kHz and so on. The magnitude of these
additional responses depend on the purity 
of the local oscillator. All but one of the
responses must be suppressed, usually with
filters. The design of the complete receiver 
is thus constrained by the achievable filter
performance. For example, the image
rejection requirement puts a lower limit 
on the choice of the intermediate frequency.

Digital mixers, on the other hand, are
perfect multipliers and do not exhibit
oscillator harmonic responses. A digital front
end using the above example frequencies
would only respond to inputs on 900 and
1100kHz. There is a technique using two
mixers, fed with 90-degree-shifted oscillators,
in which the outputs of the two mixers are
combined to cancel the image response.
Although this technique can be used in the
analogue world, the cancellation is far from

perfect. However, a pair of digital multipliers,
fed with digital sine and cosine waveforms,
makes a perfect mixer with a single response.
This removes the lower limit on the choice of
intermediate frequency. Even an intermediate
frequency of zero is possible. 

This last statement may be a surprise. 
IF amplifiers at very low frequencies are not
common in the analogue world because of
problems with voltage drift and low-frequency
noise, but these defects don’t affect digital
circuits. There is one practical difference
between a conventional IF and the zero-
frequency version: the two mixer outputs 
are not combined to form a single-response
output, but they are kept separate and
processed in parallel as two paths. This
makes the demodulation process much 
easier and is sometimes known as the I/Q
technique, where I and Q refer to Inphase 
and Quadrature, the names usually given to
the two paths in such a process.

It’s worth noting that in an I/Q path
carrying a signal with a spectrum of width B,
the signals in the I and Q paths each have a
width of B/2. One could say that the spectrum
of an I/Q signal extends either side of zero, in
the same sense that the spectrum of a
conventional signal extends either side of its
centre. However, it’s not true to say that the 
I channel represents one ‘side’ of the signal
and the Q channel represents the other.

HARDWARE BLOCK DIAGRAM. At the top
left of Figure 1, the receiver line-up starts 
with a transformer to match the 50Ω input
impedance to 125Ω, the optimum figure for
the low noise amplifier (LNA), an LT5514
device from Linear Technology. This is a 
33dB linear amplifier preceded by a 16-step
attenuator (1.5dB/step), which is controlled
by four lines driven from the FPGA.

Another transformer couples the LNA 
to the balanced 30MHz low-pass filter, 
which is a 9th order Chebyshev design that
aims to keep the alias response of the ADC
below -100dB.

The ADC, an LTC2254 device from Linear
Technology, has 14 data bits and an extra
‘overload’ bit. Fourteen bits can only handle
84dB, which might not seem enough to
capture the weaker signals, but in fact the
total input to the ADC (in a 30MHz
bandwidth) is always much larger that the
smallest digitisation step. The 14bit limitation
merely shows up in the digital data as noise
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spread uniformly across the whole 30MHz
band. Noise 84dB down in a bandwidth of
30MHz equates to noise 124dB down in a
bandwidth of 3kHz. This means we can copy
narrow-band signals way below the smallest
digitisation step. 14 bits is plenty.

On the transmit side, a 14-bit 210MHz
DAC, an AD9744 from Analog Devices is
followed by a step-down transformer and a
single-ended 9th order Chebyshev filter, to
deliver up to 10mW output into 50Ω.

The FPGA, an Altera Cyclone II type
EP2C8, contains 8256 general-purpose logic
cells and 18 multiplier cells, as well as about
160k bits of memory. Some 1600 of these
cells make up a 32-bit microprocessor which
handles many of the housekeeping functions.
A separate static RAM chip stores program
and data for this processor. Two phase-locked
loops generate the internal clock signals,
driven from either an on-board TCXO or an
external reference. The logic configuration 
is loaded from a non-volatile FLASH memory

at power-up. In addition to interfaces for the
ADC and the DAC, there are a number of
general-purpose I/O pins for bandswitching,
PTT and other things, some of that we haven’t
thought of yet. The forward and reverse power
sensors use an input and an output pin,
together with a few resistors and capacitors,
to implement a delta-sigm a converter.

The USB interface is handled by an 
Atmel AT89C5131A, which is a 24MHz
microprocessor with on-chip non-volatile
program storage. An 8-bit bi-directional bus
communicates with the FPGA. This device
can be programmed over the USB from a
computer and also interfaces to the FLASH
memory so that the FPGA configuration can
also be uploaded from a computer.

The printed circuit is a four-layer construction
with one continuous ground plane.

THE DIGITAL RECEIVE PATH. In Figure 2,
the analogue to digital converter (clocked 
at 98.304MHz) is preceded by a 30MHz

low-pass-filter (not shown).
This ensures that the receive
will hear everything up to
30MHz but not respond to 
anything in the range
68.304 – 98.304MHz,
which would 'alias' down to
the wanted signals below
30MHz and cause QRM.
The digital output of the ADC
is taken to two multipliers in
the FPGA, the other inputs 
of which come respectively
from a digital sine wave 
and a digital cosine wave.

THE SINE-COSINE
OSCILLATOR BLOCK. 
This is probably the most
important block in the
receiver [1] because any
defects in the oscillator
signals will give rise to
unwanted responses in 
the complete receiver. 
This block works very like 
a direct digital synthesiser
(DDS), but without the
digital-to-analogue
conversion. On each cycle 
of the 98.304MHz clock, a
9-bit frequency register (FR)
is added to a 9-bit phase
accumulator (PA), which
addresses a 512-step lookup
table containing a full-cycle
sinewave. To generate a
frequency of 192kHz
(98.304/512MHz), for
example, the FR is set to
000000001 and the lookup
table pointer will thus step 
by one position every cycle
and trace out a 512-step

sine waveform at 192kHz. The matching
cosine waveform is formed by another pointer
that is 90° 'further round' the table.

The FR is set to other values to generate
other multiples of 192kHz. However, a tuning
step size of 192kHz is far too coarse to be
useful, so the FR and the PA are extended by
another 9 bits, to 18 bits. However, only the
top 9 bits of the PA are used to address the
lookup table.The effect is a tuning step size 
of 375Hz. To generate a frequency of
192.375 kHz, a ‘1’ is set in the 9th bit and a
‘1’ in the 18th bit of the FR. This results in an
extra step in the lookup table pointer every
512 cycles. The resulting output has a
frequency of 192.375kHz, but the repeating
extra step shows up as a pair of spurious
sidebands 375Hz either side, at about 
54dB down.

These sidebands are reduced further by
using the additional 9 bits in the PA to
interpolate smoothly between the lookup
table steps. Calculus theory shows that the
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difference between two adjacent sine values
is proportional to the corresponding cosine
value and this makes it easy to calculate the
required adjustment. The cosine value, as
read from the lookup table, is first multiplied
by a constant and then by the interpolation
fraction, that is, by the second set of 9 PA
bits. This is added to the looked-up sine value
to give the interpolated value. The
interpolated cosine is done in a similar way.
To economise on the number of multiplier
blocks needed (there are a limited number of
these in the FPGA), a second lookup table is
used to store all 512 multiples of the
constant. This interpolation technique takes
the worst-case spurii down to -108dB.
This figure sets the ultimate unwanted
response level of the entire receiver. 

The tuning steps can be made much
smaller than 375Hz by further extending
the FR and the PA (eg to 32 bits). This
introduces more spurii, but none are worse
than -108dB.

THE DOWNSAMPLER BLOCK. The
outputs of the two multipliers go to the
two-path 'zero-IF strip' at a sample rate of
98.304MHz, but this rate is far too high
for comfort. The bandwidth of the signals
of interest are only a few kHz and the
bandwidth needed in the I and Q channels
is half that of the signal itself, so the
sample rate required by the demodulation
software is itself only a few kHz. For this
project we chose to feed the data down 
the USB cable to the computer at 48kHz.
This is enough to handle broadcast quality
signals and even a modest bandscope.
The reason for the odd choice of
98.304MHz for the RF sample rate now
becomes apparent – to get from here to
48kHz means reduction by a factor of
2048, which is a ‘nice’ number in 
digital terms.

Nyquist says that before the sample 
rate can be reduced to 48kHz, all traces 
of the input spectrum above half this
frequency must be removed. If this is not
done, unwanted signals around multiples 
of 48kHz will be ‘aliased’ down around 
zero and will interfere with the wanted
signal. The downsampler must therefore
incorporate a lowpass filter. 

The simplest form of digital lowpass filter
forms the average of a run of N input samples.
If N is chosen to be 2048, the frequency
response looks like Figure 3. It’s not a brilliant
filter but note that the notches between the
sidelobes are at precise multiples of 48kHz
and this is exactly what is needed to reject the
alias products that also occur at multiples of
48kHz. The notches are narrow, however, so
although an unwanted signal exactly 48kHz
away would be perfectly notched-out and
wouldn’t interfere with a wanted signal on 
the centre frequency, an unwanted signal 
47 or 49kHz away would not be completely

rejected. Care must therefore be taken to
ensure that this doesn’t become a problem 
at the edges of the wanted passband.

The running-average process is very easy
to do in an FPGA. Input samples are summed
continuously in a digital integrator. At
intervals of 2048 samples a copy of the
integrator output is saved. The difference
between consecutive saved copies is the
desired output. If one filter doesn’t give
enough alias rejection at the passband edges,
two or more can be cascaded. This is also
easy since it is possible to combine the
integrators into one block running at the input
rate and the differentiators into another block

running at the output rate; the end result is
the same. This technique is known as a
Cascaded Integrator Comb (CIC) filter [2]
(the differentiators behave like comb filters).
Another technique, which helps to minimise
the number of logic gates needed to achieve a
given performance, involves reducing the
sample rate in several stages. For this project
we chose to downsample from 98.304MHz
to 1.536MHz with 3 CICs, then down to
48kHz with 7 CICs. Figure 4 shows the
passband shape and the first alias response
(the worst one), plotted against frequency.
This graph was generated with a computer
simulation of the filter itself (the ‘noise’ at
about -144dB is the resolution of the 24-bit

arithmetic). We decided that ±5kHz was the
widest passband we would need in the
complete receiver, so we are not concerned
about the alias response levels further out and
-130dB at 5kHz is acceptable. The wanted
response ends up with a slight droop, about
1dB at 5kHz, but that can be dealt with in 
the computer.

The two 48kHz output streams are fed
down the USB cable to the computer, where
the software defines the finished passband
precisely and carries out the desired
demodulation.

THE DIGITAL TRANSMIT PATH. The transmit
side (Figure 5) does not take so long to
describe. It is most easily explained
backwards since the process mirrors that
of the receiver. A digital to analogue
converter (DAC) generates the RF output
at a few mW and this goes direct to the
output connector via a 30MHz lowpass
filter. The input to the DAC is derived from
the sum of two multipliers exactly like
those on the receive side, each one
multiplying one IF signal by one of the
outputs of a sine/cosine block exactly like
the one in the receiver. The discussion on
receiver spurious responses applies
equally to the transmitter – just replace
the word 'response' by 'emission' wherever
it appears.

The need to downsample the receive
path is mirrored by the need to upsample
the transmit signal. Upsampling is done
with exactly the same type of CIC filter
that was used in the receiver, but with the
integrate and difference processes
transposed. Connected this way round,
these devices can be thought of as
interpolators rather than filters. Once
again, the discussion on the alias
responses in the receive downsampler
also applies to the transmit upsampler in
respect of spurious emissions. The slight
droop in the passband is also present in
the transmitter, but rather than pre-
compensate for this in the computer
software, we chose to do it in the FPGA
with a 3-tap delay-line (FIR) filter.

There is another difference between
the receive and transmit paths in our design.
The device we chose for the USB interface
can only handle one 48kHz I/Q stream so we
dropped the transmit sample rate down to
16kHz. This means that the line-up of the
transmit upsampler is not quite the same as
that of the receive downsampler.

To complete the digital transmit function,
we have placed a gain-control element
(another multiplier) between the output
mixers and the DAC. This performs the
essential transmitter ALC function. We chose
to put it here rather than in the computer
software so that the drive to the PA can be
reduced quickly in the event of an overload,
regardless of how slow is the loop back via

FIGURE 3: Frequency response of a run-of-2048
filter clocked at 98.304 MHz.

FIGURE 4: Overall response of the receive
downsample filter showing the first alias response
folded back to 48kHz.
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the computer. To complete the ALC function,
there are two auxiliary low-spec ADCs on the
card, implemented in the FPGA. These take
DC voltages in the range 0-3.3V derived from
conventional forward and reverse power
sensors in the transmitter PA.

Note that the transmitter and receiver can
operate simultaneously. This leaves open the
interesting possibility to develop techniques
for improving the transmitter PA linearity.

FIRMWARE. The FPGA logic was written in
the Verilog language using the Quartus II
design software. The code for the USB
processor was written in the C language and
that for the 32-bit processor in C++. All this
represents about 800 hours work, carried out
by Steve, by far the largest part of the total
workload in the project so far. 

PERFORMANCE MEASUREMENTS. At the
time of writing only the receiver has been
measured. We should be should be  to
publish the transmitter measurements at 
a later date.

All measurements (except noise figure)
were made at 14MHz with the LNA
attenuator at zero.

The rise in phase noise at 500kHz is
unusual, but not in itself a poor figure. 

Third-order intercept point, usually quoted
for analogue receivers, is of dubious value in
the context of digital receivers, since the
unwanted products in a digital receiver do not
obey a third-order law [3]. However, everyone
asks us what it is, so we had to do the
measurement. It was +31dBm at all tone

spacings and is almost certainly set by the
LNA. The second-order intercept point
measured +60dBm. 

With the LNA at maximum gain the 
ADC reaches full-scale with a single-tone
input of -20dBm.

FINISHING THE JOB. To make a complete
transmitter/receiver using the All-Digital
Transceiver (ADT) card as developed so far, 
a computer with a USB interface is required.
As well as the receive and transmit data
paths, there are some auxiliary control
functions that share the USB, for example the
programming of the FPGA is done this way as
mentioned earlier. Setting the frequency
registers in the sine/cosine oscillators is done
via the USB, as is the control of the receiver
input gain/attenuation. Up to now we have
used the receiver without sub-octave
bandpass filters and not encountered any
overload problems, but there are spare pins
on the board to switch such filters. They will
be needed in any case for switching
transmitter low-pass filters. In the other
direction, we can foresee that it will be
necessary to signal such things as the
receiver ADC over-drive indication and the
ALC sensor readings.

In a subsequent article, we plan to
describe how the computer software
processes the receive data, first to define the
channel width to match the signal being
received and then to demodulate it. The SSB
demodulation process will be described of
course, but other modes will be covered for
completeness, since two-path zero-IF
equivalents of traditional demodulation
techniques will be new to many readers. 
We will show, for example, how to perform
the apparently impossible task of
demodulating FM from a carrier whose centre
frequency is below the audio band! The
matching transmitter modulation functions
will also be described, together with some of
the other features normally found in modern
transceivers, such as noise blankers, notch
filters and speech processors. This article may
also describe further developments to the
ADT board hardware and firmware.

The flow of receive and
transmit data between the ADT
board and the computer is very
similar to that of audio data
between a computer and a semi-
professional soundcard, but we
have run into problems using the
soundcard application interface
in the Windows operating system.
Nevertheless, we have the
transceiver operating on the air 
at the time of writing (September
2008). By the time the second
article appears we should have
overcome these problems, so it
should then be possible to drive

the ADT board using Software Defined Radio
programs of the kind that are already
available for SDR designs using analogue RF
and soundcards. We don’t believe that the
ADT board is suitable for home construction
by the average amateur, but, in due course, 
we hope to be able to give details of the
availability of assembled boards, should 
there be a demand for them.
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SMA connectors are used for the RF In, 
RF Out and external clock. Prototype boards 
were hand-soldered, a difficult task for the
average home constructor.
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RECAP. Part 1 of this article appeared in the
March 2009 RadCom, and described the RF
unit of the authors' all-digital transceiver
project. This described how the high-speed
digital circuitry in the RF unit 'tunes in' a band
of frequencies around a chosen centre
frequency in the 0-30MHz range, and passes
this in a digital form down the USB cable to
the computer. This part will describe how the
computer software processes this digital data
to the point where it can be heard in the
computer speaker. Part 3 will describe the
path from the microphone (or from audio-
based digital-mode software) through the
computer software and out to the USB interface
to the RF unit. Part 3 will also describe some
of the techniques for interfacing the transmit
and receive audio signals digitally, for example
to/from other digital audio processing software.

POSTSCRIPT TO PART 1. In March we said
we hoped to give details of the availability
of assembled boards. We cannot do this yet.
It's possible that the board may need to be
redesigned to accommodate a later version
of the FPGA chip, and this would also enable
us to upgrade to a faster, more powerful USB
chip, which will in turn make it possible to
incorporate the microphone and speaker
interfaces on the ADT board. More about
this in part 3.

THE COMPUTER SOFTWARE. The digital
data from the RF unit to the computer can be
treated as if it was equivalent to the intermediate
frequency signal of a conventional analogue
superhet receiver, but with the IF frequency
being centred on zero rather than at a frequency
well above the audio band. We hinted that the
DSP software in the computer would be able
to handle this strange 'zero IF' concept. The
key feature that makes this possible is that the
digital data from the RF unit to the computer
takes the form of two independent channels,
known as the Inphase (I) and Quadrature (Q)
channels. In the RF unit the I channel is
derived by multiplying the RF input signal by
the cosine output of the oscillator block and
the Q channel by multiplication with the
corresponding sine output.

The receive I/Q data from the RF unit is
transferred to the host computer via the USB
connection formatted as a pair of 24-bit
signed binary numbers, transmitted at a rate

of 48,000 pairs per second. This is the same
format that is used for stereo audio. This
makes it fairly easy to write the computer
software to use the same operating system
interface that would be used by software
intended for stereo sound processing.

Nyquist tells us that a signal sampled at
48kHz can convey information in a band
from 0 to 24kHz. The usefulness of the I/Q
format is that we can treat the combination of
the two channels as if it represented the band
of signals extending up to 24kHz on both
sides of the 'zero' centre frequency, mirroring
the way that signals at the antenna are 'both
sides' of the HF centre frequency in the RF
unit. In this part we will describe how we
process and demodulate signals in this form.

A BAND-SCOPE. Before we think about
demodulating the signal, we can digress to
process the 48kHz-rate I/Q data from the RF
unit as a spectrum or waterfall to display on
the screen. This is done by feeding the I and
Q data into two buffers. At suitable intervals
(determined by the rate at which we want to
update the display), the last 1024 I and Q
values in these buffers are processed by a

Fast Fourier Transform (FFT) algorithm. This
is a mathematical process that transforms the
input time-domain data into the equivalent
frequency-domain form. The clever thing
about using an FFT with I/Q data is that the
spectrum output displays the band both sides
of zero, so the band-scope display is already
centred on the dial frequency. A 1024-point
FFT at 48kHz is capable of a resolution of
about 50Hz.

Although Nyquist says that we should be
able to make a bandscope that extends to
±24kHz, the RF unit filtering has narrowed the
useful bandwidth, leaving us with a response
some 30dB down at ±24kHz. We chose to
display ±9kHz, at which bandwidth the RF
unit response is a few dB down. This droop
can be corrected in the display itself. Note that
the dynamic range of this bandscope is rather
more than we would get with a spectrum
display on an analogue receiver – the vertical
extent of this display is a full 140dB.

THE MAIN RECEIVER PASSBAND. For HF
working we are usually interested in signals
with bandwidths of a few kHz. The signal
from the RF unit is rather wider than this, so
before we start to think about demodulating it
we must pass it through a filter of the chosen
width, for example 2.7kHz for SSB or 6kHz
for AM. The simplest way to do this is to pass
the I and Q signals through identical low-pass
filters, the cut-off frequency of which is chosen
as half the required bandwidth, for example
1.35kHz for the SSB filter. This is done with
the same basic 'summing of delays' structure
that was used by the Cascaded Integrator
Comb (CIC) filters in the RF unit. There we
were primarily concerned with reducing the
sample rate and suppressing the attendant

All Digital
Transceiver part 2
The series continues with a look at the
software and mathematics of receiving
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FIGURE 1: Two-stage SSB filter.
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alias responses, and not too worried about the
shape of the main response. Here, though,
we really do want a flat top and steep sides,
so we need a more complex set of filter
coefficients – not just the summing process
that we used in the RF unit CIC filters.

A typical SSB filter passes signals up to
±1.35kHz and rejects everything outside
±1.65kHz. To do this with a tapped delay
line at a sample rate of 48kHz we would need
something like 450 coefficients, which would
require a total of 43 million multiplies per
second (450 x 2 x 48000). Since the signal
from the filter is just a few kHz wide and the
Nyquist limit is just over twice this value, we
can reduce the computation requirement
considerably by doing the filter in two stages.
The second stage (and the demodulator that
follows it) can be at a lower sample rate. 12kHz
was chosen for the second stage. At this rate
only 128 coefficients are needed to make a
good SSB filter, and that corresponds to just
128 x 2 x 12000 = 3 million multiplies/sec.

The first stage filter, at a sample rate of
48kHz, is needed to reject signals around
±12kHz before we can reduce the sample
rate to 12kHz. Since we want the finished
filter to reject everything outside ±1.65kHz,
the lowest 'alias' response that we must

suppress is at
12-1.65kHz =
10.35kHz. The
first stage filter
must also be flat
up to 1.35kHz,
but it only
needs about 20
coefficients to
achieve this
performance,
which comes to
1.92 million
multiplies/sec.

We can
economise even
further when
we notice that
we only need to

calculate the output of the first-stage filter at
the second-stage rate. This brings the total
number of multiplies down to 3.5 million/sec,
a useful improvement over the single-stage
design. The frequency responses of the two
stages, in bandpass form, are shown in Figure
1 and the flow diagram in Figure 2. The filters
in Figure 1 were designed using the Parks-
McClellan method, which is widely available
[1]. This method delivers a filter with equal
amplitude passband and stopband ripples.

In an analogue receiver, the channel filter
would normally be followed by an IF amplifier
incorporating a gain control of some kind, not
just for listener comfort but to avoid overloading
the later stages. With DSP we can easily
handle the full dynamic range (up to 384dB
with floating-point arithmetic!) right up to the
speaker output, so we don't need to put the
AGC control just downstream of the channel
filter if we don't want to. We will do it later.

SSB DEMODULATION. At this point our
signal is still a pair of I and Q signals that
extend from zero to 1.35kHz. A received
SSB signal would be centred on zero with its
carrier offset by 1.65kHz. We clearly have
more work to do before we can listen to the
demodulated audio.

In a previous article [2], a DSP-based
phasing-type SSB modulator was described,
using a pair of 'twisted' bandpass filters to
implement the 90° phasing network. The
same technique can be used for SSB
demodulation of the I/Q signal in this receiver.
In the phasing demodulator the outputs of the
two bandpass channels are added together
for USB reception and subtracted for LSB.
But we have already designed the main filter
and we don't want to introduce further
filtering just for the purpose of generating the
90° phase shift, and there is still the 1.65kHz
carrier offset to deal with.

The solution is to transform the existing
filter into a 'twisted' form. The outputs of the
two twisted channel filters can then be added
and subtracted to give USB and LSB outputs
in the same way as is done in the phasing
method. The chosen transform also has the
useful property that it can slide the passband
off-centre by any chosen amount, for example
by 1.65kHz. The finished demodulator can
now receive USB or LSB (or both) with a
central suppressed carrier frequency.

Without going into the mathematics too
deeply, the twist transform involves
multiplying the set of I-channel filter
coefficients by a sequence of cosine values
and multiplying the set of Q-coefficients by
the corresponding sine values. The sine and
cosine sequences 'spin' at the chosen offset
frequency.

Because of the twists applied to the filters,
the coefficients are no longer the same for both
channels, so Figure 2 isn't quite right now.
Figure 3 shows the modified arrangement,
including the add and subtract operations
used to form the USB and LSB outputs. Note
that the twist calculations need only be done
once when the filter is designed, although
there is an interesting possibility for recalculating
the offset frequency while receiving and thus
implement 'passband tuning'.

Having demodulated the SSB signal, we
are about to feed it to the speaker but we
must first implement the AGC that we
postponed earlier. This is much easier in DSP
than in an analogue design - we just divide
the signal by its peak value. We can also use
this value for the S-meter display, after
converting it to decibels or S-points.

AM/FM DEMODULATION. The receive path
for AM and FM starts with the filter arrangement
shown in Figure 2, except that the 2nd-stage
filter is 6kHz wide rather than 2.7kHz. In part
1 we hinted that it is possible to demodulate
these modes from a zero-IF signal without the
carrier appearing in the output. To understand
how this is done, it helps to visualise the I and
Q components of a signal as the rectangular
co-ordinates of a point in a plane. Figure 4
shows a graph with the axes labelled as I and
Q. Any signal can be represented as a dot
somewhere on this graph. The origin represents
the 'no-signal' condition and a stationary dot

FIGURE 3: The SSB filter and demodulator.

E-MAIL: PETER.MARTINEZ@BTINTERNET.COM

FIGURE 2: Channel filter flowchart.

© R
SGB 20

11



28

TECHNICAL FEATURE NOVEMBER 2009 ♦ RADCOM

at (1, 0) represents an I signal value of +1
and a Q value of 0. If we work back to see
what signal at the antenna would give this
combination of I and Q, it's a carrier on the
receiver centre frequency with an amplitude
of 1 at zero phase. If this carrier is modulated
in amplitude to a depth of 100%, the dot in
the I/Q plane will swing along the I axis,
outwards to the point (2, 0) and inwards to
the origin. If we want to listen to the
modulation, we could, in this particular case,
just feed the I channel to the speaker after
removing the DC component.

However, if the carrier phase changes by
90°, the dot moves to the point (0, 1). The I
channel signal is now zero and it's the Q channel
that contains the modulation. If the unmodulated
carrier moves 100Hz low of the centre, it
becomes a dot spinning anticlockwise around
the black circle in Figure 4 at 100 revolutions/
sec and such a carrier modulated with a 1kHz
sine wave traces out the red squiggle, which
shows 9 cycles of modulation as the carrier
spins. How do we recover the AM modulation
in all these cases, and at the same time make
sure we don't hear an off-frequency carrier as
a tone in the speaker?

We calculate the length of the hypotenuse
of the right-angled triangle formed by the I and
Q values. For a signal represented by the point
P in Figure 4, the I value is the distance OA,
the Q value is the distance AP, and the value
we want is the distance OP, which Pythagoras
tells us is the square-root of the sum of the
squares of the I and Q signals. It is this value
that we pass to the output. Not only do we get
the correct output regardless of the carrier
phase, but since an unmodulated off-frequency
carrier traces out a perfect circle around the
origin, the output signal contains no trace of
the 100Hz 'beat-note' that is present in both
the I and Q channels individually. We can
tune right through the passband and not hear
a heterodyne.

The hypotenuse signal contains a DC
component that must be removed before we
pass it to the speaker, but we don't discard it
completely. This value is proportional to the
carrier level, and if we divide the recovered
audio by it, the output is independent of
signal strength. AGC is really easy with DSP!

The I/Q plane representation also helps to
us see how we demodulate FM. Instead of
finding the length of the hypotenuse, we
calculate the angle between it and the I axis.
Ignoring the AM modulation shown in Figure
4, this is the angle POA. The tangent of this
angle is the ratio of the distance AP to the
distance OA, and it is the inverse tangent
function that we use to calculate the phase
angle. This 'arctan' function only works properly
over a 180°arc, but there is a special 'arctan2'
function that takes the I and Q values
individually rather than as a ratio, and this can
be used over the full circle. This gives us the
signal phase. Frequency deviation is the rate
of change of phase and we can derive this by

subtracting the phase
calculated at each signal
sample from the phase
of the previous sample.
Since an unmodulated
off-frequency carrier will
be rotating at a constant
rate, it will just appear as
DC at the output, so once
again there is no sign of
a heterodyne as we tune
through the passband. The
FM demodulator output
is already independent
of signal level so no AGC
is needed.

CW RECEPTION. If we go
back to Figure 2 and use a
pair of 50Hz lowpass filters
in the 2nd stage, we get a
100Hz wide passband
centred on the 'dial'
frequency. To make this
sub-audio I/Q signal audible in the speaker, we
transpose it up into the audio band by forming
the quantity I*cos(2*ã*F*t)+Q*sin(2*ã*F*t),
where F is the ratio of the desired 'CW pitch'
to the sample rate and t is a number that
increases by one for each sample processed.
Regardless of the chosen CW pitch, the
passband stays on the dial frequency. AGC
is done in the same way as for SSB.

We have now demonstrated demodulation
of all the traditional modes from zero-IF signals.
Even if someone invents a new modulation
method that we don't know about yet, we can
be confident that we will be able to write the
DSP software to demodulate it.

A NOISE BLANKER. High-amplitude, short-
duration RF spikes can often be encountered,
especially in urban environments. In the
traditional analogue receiver, a broadband
detector in an early part of the signal path can
be used to mute the later narrow-band section,
and this helps to reduce the disturbance
caused by these spikes. The output from the
RF unit is about 20kHz wide, which is enough
to let us do the noise blanker in software.

A problem occurs with noise blankers of
this type if there is a strong adjacent signal
within the blanker bandwidth. The fast edges
of the blanker gate, modulating the strong
adjacent signal, cause it to 'splatter' across the
wanted signal. In this situation a conventional
noise blanker can often make the situation
worse rather than better.

To overcome this problem we can slow
down the blanking action, so that the rise
and fall times are rather longer than those
of the spikes we are trying to suppress. This
will reduce the splatter sidebands around
the strong adjacent signal. However, for this
to be effective we must start the slow blanking
action before the arrival of the spike that we
are trying to suppress. We cannot predict

when the spike will arrive, so we can only
attempt this technique if we also delay the
signal path.

In the analogue world this requires the
use of an expensive broadband delay line
but it's very easy to make delay lines in
DSP. The incoming 48kHz I/Q signal goes
through a 1ms (48-sample) delay line,
and we examine the signal half way along.
If we detect that there is a high-amplitude
short-duration spike here, we apply a
smoothly-curved blanking function to the
entire delay-line, which completely blanks
the middle samples (containing the spike)
and leaves the two end values at their original
levels. The 1ms delayed output thus has the
spike removed but surrounded by a rounded
gap which doesn't cause adjacent channel
signals to splatter.

This completes the descriptions of some
of the DSP techniques that have been used
in the receive side of the software section
of the All-Digital Transceiver. In part 3, the
transmitter processes will be described,
working through from the microphone audio
input through the modulators, ending with
the I/Q data stream that is fed along the USB
cable to the RF unit for upconversion to the
desired RF frequency. Part 3 will also go into
the details of some of the processes needed in
the digital transceiver for which there are no
equivalents in the analogue world, specifically
the problems of synchronising digital audio
inputs and outputs and the techniques needed
to interface between the transceiver and other
audio-based software such as might be
used for modes like RTTY or slow scan TV.

REFERENCES
[1] www.dsptutor.freeuk.com/remez/

RemezFIRFilterDesign.html or just Google for "Parks
McClellan"

[2] A digital SSB phasing network. Peter Martinez G3PLX.
RadCom June 2004 p84.

FIGURE 4: Demodulating
AM in the I/Q plane.
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INTRODUCTION. In this final part we cover
the transmitter software, from the microphone
input to the point where the digital data
output from the computer is fed along the
USB cable to the RF unit for upconversion to
the transmit frequency. The last paragraphs
describe how the various digital parts of the
project synchronise to each other and to other
digital systems.

But first, a topic left over from the earlier
parts. In the RF unit there is a step-attenuator
between the receive antenna input and the
ADC, which has 16 x 1.5dB steps controlled
from the computer via the USB. The ADC has
an auxiliary ‘overload’ output pin, arranged to
light a LED on the board. In an analogue
receiver the distortion products increase
smoothly with input level so we keep the gain
low but just high enough to hear the antenna
noise. There is no such ‘smooth’ distortion
in a digital receiver so we keep the gain high
but just below the overload point. In the early
work it was clear that even if the overload LED
flashed occasionally, there was no sign of
distortion in the receiver output. This gave
us an idea for an automatic process to set
the attenuator to the optimum point. This
involved adding logic to the RF unit that
counts the number of times the ADC
overloads. A process in the computer uses
this result to adjust the attenuator up or down

to keep the overload
count somewhere
between zero and the
level at which distortion
appears. This process
is quite unobtrusive
in normal use but the
attenuator can also be
controlled manually.

SPEECH
PROCESSING. The
microphone input
would normally come
from a sound card,
either plugged into
the computer or built
into it. The frequency
response of this input
will be flat but for

communication purposes a rising response
is often preferred. Special microphones are
available that achieve this but we can do it
in DSP very easily. If we subtract a chosen
fraction (P) of the previous input sample from
the current sample, the result is a frequency
response that is flat when P=0.0 and rises
at 6dB/octave when P=1.00. Figure 1
shows the response of this process, plotted
over a range of values of P. Good reports
have been received with P=0.6, using a
‘flat’ microphone.

To cater for variations in microphone
level, an automatic gain control is included.
The same ‘divide by the peak’ process, used
in the receiver AGC, is employed but with a
much longer time-constant.

Human speech is quite ‘peaky’ and it’s
not easy to handle it efficiently with practical
transmitters. However, clipping the peaks
can be an unsatisfactory way to improve the
‘talk-power’, introducing significant audible
distortion. Also, in the case of an SSB
transmission, the clipped audio waveform
from such a clipper does not produce a
clipped SSB envelope, so most of the benefit
of clipping is lost. A variety of techniques
have evolved over the years to overcome
these problems, but in the analogue world
these techniques can be expensive and
usually involve processing the modulated

SSB signal rather than the speech itself. In
this DSP design, a much simpler solution is
proposed that does process the speech itself
and is therefore usable for other modulation
methods, not just SSB.

If we form a control signal from the
instantaneous magnitude of the audio input
and divide the input by this if it exceeds a
threshold level, the result will be the same
as if we hard-clip the audio. This isn’t
a solution as it stands but if we could
ensure that the control signal contained
no components at the signal frequency or
its harmonics, this would guarantee that
the controlled output was free of harmonic
distortion. In part 2 we used Pythagoras’
theorem to form the envelope of a received
I/Q signal to ensure that the input signal
didn’t appear in the output of the AM
demodulator, and this is exactly what we
need here. If the microphone audio was
available in I/Q form, we could make a
signal-frequency-free magnitude detector
and use it to make a harmonic-free clipper.

There is a DSP function called a Hilbert
transform that, for our purposes, is a
broadband 90° phase shift network. With
a sine wave input, the output is a cosine
wave. Such a device can be used to convert
an audio waveform into I/Q form. If we label
the input to the Hilbert transform as ‘I’, then
its output can be labelled ‘Q’. Calculating the
square-root of the sum of the squares of I and
Q will give us the control signal we need. The
finished DSP speech processor then consists
of a Hilbert transform block (a kind of all-pass
delay-line filter), the ‘hypotenuse’ calculation,
and a division operation. Apart from a low-
frequency limitation related to the length of
the delay line, this gives us a broadband,
harmonic-free clipper. The flowchart of a
speech processor using this technique is
shown in Figure 2. Note that since the
Hilbert transform introduces a delay to the
‘Q’ signal, an equal delay is applied to the
‘I’ signal by tapping halfway along the delay
line. Good results can be obtained with about
14 – 20dB of clipping. Figure 3 shows a
comparison between a conventional clipper
(in red, shown inverted for clarity) and this
speech processor. The input, in both cases,
is a sine wave rising linearly to twice the
clipper threshold.

THE MODULATION PROCESSES. In the
earlier parts of this article, the concept of
a zero intermediate frequency signal was
introduced for the receive path. The same
concept applies to the transmit path but
we don’t need a wide bandwidth or a high
dynamic range. We can manage with a
sample rate of 12kHz and 16-bit signed
digital data for the I and Q signals. The job
of the transmit software is to transform the
microphone audio to zero-IF I/Q data with
the chosen modulation and send this along
the USB cable to the RF unit, from where it

All Digital
Transceiver part 3
In this third and final part we look
at the mechanics of transmission
and timing issues.

PETER MARTINEZ, G3PLX & STEVE GRAY, G7LHS

FIGURE 1: Pre-emphasis response curves.
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will be up-converted to become a band of
modulated RF centred on the chosen ‘dial’
frequency.

The SSB modulation process needed to
convert the microphone audio to I/Q form is
essentially the reverse of the receiver process
outlined in part 2. In the transmit version,
which is similar to the DSP phasing generator
described in [1], the audio input is fed along
a tapped delay line. Two sum-of-product
processes implement a pair of 300 – 3000Hz
bandpass filters with identical amplitude
responses but phase responses that differ by
90°. One filter output becomes the I-channel
signal to be fed to the RF unit and the other
becomes the Q-channel. When combined in
the RF unit, one sideband adds and the other
cancels, in the same way as in a traditional
phasing-type SSB generator.

For AM and FM we must remember that
the audio path up to this point is broadband,
so the first item on the agenda is a 3kHz
low-pass filter. In a traditional transmitter
this would be preceded by a clipper to guard
against overmodulation, but the speech
processor already described does this better,
so an overmodulation clipper is not needed.
To generate AM we just scale the signal to
swing over the range 0.0 to +1.0, and that
becomes the I-channel output to the RF
unit. The Q-channel stays at zero. The final
transmitter output will be an AM modulated
carrier at a fixed phase on the centre
frequency.

For FM modulation, the standard 750μs
pre-emphasis is applied first followed by the
speech processor and the low-pass filter. The
signal is scaled so that the clipped peaks are
equal to the desired deviation divided by the

samplerate.
To convert from
frequency to
phase, we sum
this, on each
sample, into a
‘cycle accumulator’,
discarding whole
cycles and
keeping only
the fractional
part. This is
multiplied by 2π
to give the desired
carrier phase Φ

in radians. To generate a carrier at this phase
as a zero-IF signal, we form I=cos(Φ) and
Q=sin(Φ) and these go straight to the RF
unit as an I/Q pair. The final transmitter
output will be a constant-amplitude carrier
swinging either side of the centre frequency.

In part 2 we described how CW reception
was arranged so that the centre of the
received passband was exactly on the dial
frequency. To ensure that the transmitted CW
frequency is the same, we need to generate
our software CW signal in the centre of our
zero IF. A keyed DC signal followed by a key-
click filter feeds straight to the I channel. CW
enthusiasts would probably expect to have a
key-jack provided, but so far only a software
Morse keyboard sender has been used.

SYNCHRONISING THE ADT HARDWARE
TO THE COMPUTER. The ADT hardware is
configured so that the computer ‘thinks’ it’s
a USB soundcard. The USB specifications
define that all data passing along the bus is
timed from a 1kHz clock supplied from the
computer. A conventional USB sound card
will typically derive its sample rate timing
from this clock by means of a phase locked
loop, but in our application we really want to
use the clock in the ADT hardware to generate
the timing for the whole system. Our clock is
far more accurate and stable than anything
else in the computer.

A conventional USB sound card handles
48kHz input by sending exactly 48 samples
down the USB on every 1kHz clock pulse.
Because there may be a tolerance offset
between the ADT sample-clock and the USB
clock, the USB chip on the ADT board may
need to send 47 or 49 occasionally. The USB

specification handles this without problems.
The data arriving in the software is thus in
blocks of uneven size, but every sample from
the ADT board is delivered to the software.

In the transmit direction the same process
occurs, with the number of samples per USB
clock cycle being modified from the nominal
figure (12), but in this case it’s the ADT
hardware that has to decide how many
samples it wants the computer to send on
each clock pulse. The USB specification
defines a ‘flow-control’ signal to do this,
which the USB chip on the ADT board
sends. Again, the data arrives at the ADT
board in blocks of uneven size but every sample
from the software is transmitted on time.

SYNCHRONISING THE SOFTWARE TO
THE SOUNDCARD. A standard computer
sound card input consists of an analogue
to digital converter (ADC), which is clocked
by a hardware timer that determines the rate
at which digital samples are captured and
sent to the associated software. The operating
system and the application software process
this data, for example to record incoming
audio to a file. Although the software may
well handle the data in blocks or buffers,
the mean rate at which it must do so is
ultimately set by the hardware. A computer
sound card output likewise has a digital-to-
analogue converter (DAC), also clocked by
a hardware timer, and any software that is
‘playing-back’ an audio signal, for example
from a file, must feed data to the DAC at the
rate set by the hardware.

This works fine for simple record-to-file
and playback-from-file tasks, and even
audio pass-through applications will
work successfully without data overflow
or underflow if we know that the ADC and
DAC clocks are derived from the same source
and will not drift relative to each other.

Our receiver is effectively a ‘pass-through’
process but with different clocks, one in the
ADT hardware and the other in the speaker
soundcard. There will inevitably be a
tolerance error between these two and we
do not have the ability to lock one of them
to the other. We must solve this one somehow
or risk corruption of the speaker audio.

The solution involves re-sampling the
audio data stream as it comes from our
software (at a sample rate of precisely 12kHz,
derived from the ADT hardware), re-timing it
to the actual sample rate of the speaker
soundcard. To visualise how this is done,
imagine first that we just want to delay an
incoming audio stream by a fixed fraction
of a sample interval, to feed an output at the
same sample rate. Instead of simply copying
the delayed input sample across to the
output, we will do a linear interpolation
between the preceding and following input
sample values. For example, if we choose the
output to be one-third of the way along the
input sample interval, we add 2/3 of the
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preceding sample to 1/3 of the following one.
Now imagine that we want to vary the delay
fraction between zero and one. We just vary
the proportions of the two adjacent input
samples that we use to calculate the desired
output value.

Now suppose we move the chosen output
sample point continuously in one direction,
and continuously update the interpolation
equation as the chosen output point slides
between and through the input samples.
The output will always be a smoothly
interpolated version of the input but at
the offset sample rate. To finish the job we
need to know in which direction to move the
interpolation point and how fast to move it.
This is done by examining the state of the
output sound card buffer, sliding the chosen
output point one way or the other in response
to the amount of data in the buffer, aiming
to keep this buffer approximately half full.

This simple linear interpolation introduces
a slight modulation of the high-frequency
response as the interpolation point varies
but this can be corrected by calculating the
output value from a run of 3 input samples
instead of 2.

A similar synchronisation problem exists in
the transmit direction, since the microphone
audio comes from the computer sound card
and the transmit data is clocked by the
hardware in the ADT board. Another retiming
process deals with this by monitoring the
state of the microphone input sound card
buffer and adjusting the rate at which
microphone samples are converted to
transmitter samples.

SYNCHRONISING BETWEEN OUR
SOFTWARE AND OTHER SOFTWARE.
The above retiming process is sufficient for
listening to speech and CW, but we might
want to feed the audio output to some other
software, for example to demodulate some
digital data or analyse the received spectrum.
If we were to do this with a conventional
analogue receiver, we would do it with an
audio cable from the auxiliary output of
the receiver to a sound card input.
We could do the same here but somehow it
doesn’t seem right to be linking two digital
audio programs with an analogue interface.

One popular way of linking two digital

audio programs in
this way is to use
a software device
known as a virtual
audio cable (VAC).
Such a device
behaves like a
sound card output
linked digitally to a
sound card input,
but there is no
physical hardware
and the signal path
is entirely digital.

In use, one program will be run with a VAC
selected as its output, and the other program
is run with the other end of the VAC selected
as its input. Since all such programs must
derive their timing from the selected
soundcard, the VAC software itself must
supply this timing to both ends. This is
derived from a hardware timer in the
computer. The tolerance error of this timer
doesn’t cause any problem where a VAC is
used to link a playback-from-file program
to a record-to-file program – the data is
transferred accurately even if it takes slightly
more or less time to transfer it.

If we route the output of the ADT receive
software to one end of a VAC instead of to a
speaker, the tolerance error of the VAC timer
is handled by the retiming process already
described, but the program on the other
end of the VAC will experience the VAC
timer tolerance error. For example, a
frequency-measuring program would not
read modulation tone frequencies accurately.
This also means errors in the data rates of
digimode programs. Some digimode
programs have the ability to calibrate-out
the sample rate tolerance error, and in a lot
of cases the error may not be so bad that it
causes trouble, but it’s worth discussing here
because there is a better way. Since the clock
in the digital receiver is the same one that
determines the accuracy of the RF frequencies,
and this is by far the most accurate source in
the entire chain, it’s worth trying to maintain
this accuracy throughout the chain. The
virtual audio cable method will not do this.

What is needed is a ‘virtual’ sound card
interface in the digital radio software itself,
which although it doesn’t exist physically as
a soundcard, behaves like one. The ‘other’
software should ‘plug into’ the digital radio
software ‘soundcard’ rather than having both
programs plug into a virtual back-to-back
connector. We have created such an
interface, which installs into Windows as
a device driver, and streams audio to and
from our software when it’s running. The
‘virtual sample rate’ of this interface is
determined by the digital radio software,
in turn determined by the digital radio
hardware, not by the rather less accurate
crystal in the computer sound card, nor
by the timer used by a virtual audio cable

device. The virtual sound card also has a
matching output port which handles the
corresponding transmit-from-software
function. The end-user will simply run his
favourite digimode program, select our virtual
sound card instead of a real one, and be
confident that the frequencies and data
rates within the program will be accurate.

With the data streams accurately timed
from the ADT board right through the entire
software path, time and frequency
calculations in the software will be as
accurate as the reference oscillator in the
ADT. This opens up interesting possibilities
which would be very difficult to engineer in
an analogue design. For example, with the
ADT board driven from an external frequency
standard locked to a GPS-based source, it’s
possible to receive a broadcast frequency-
standard signal, display it on a software-
referenced phase display such as a Lissajous
figure, and hold it rock-steady for ever.
Transmissions from an ADT driven by a
software source will likewise be as stable
as the reference input.

CONCLUSION. Figure 4 shows how a
complete transceiver could be constructed
using an ADT board. At G3PLX, most of the
RF parts were rescued from an old analogue
transceiver.

This series of articles has described the
authors’ all-digital transceiver project, which
we have worked on for about three years now.
The results are very encouraging and we are
sure that the all-digital approach has a place
in amateur radio but it does mean learning
some new tricks. In these articles we have
thrown out some of the traditional analogue
signal-processing ideas, such as the superhet
and the AGC loop and introduced new ones,
in particular the concept of the I/Q signal
path. We have also highlighted some of the
aspects of the digital approach for which there
are no equivalents in the analogue world,
such as synchronisation of the data streams.
We are both continuing the development of
the all-digital approach, but we hope that
others may pick up some of these ideas and
carry them forward.

APOLOGIES AND THANKS. In part 1 we
expressed the hope that ready-built ADT boards
could be made available at a reasonable cost
for amateur use, but this has not yet been
possible.

In Part 2 there was a typographical error
half way down the middle column on page 28.
The formula should have read I*cos(2*π*F*t)
+Q*sin(2*π*F*t). The π character became
corrupted in the production process.

Thanks are due to Andrew Senior, G0TJZ
for helpful comments during the preparation
of all three parts of this article.
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© R
SGB 20

11




