
Those who have read amateur radio journals and magazines
closely over the last few years will have seen a large number of
references to software defined radios or 'SDRs'. If you are a tra-
ditionalist who likes his radios to fit onto the tabletop, have big
knobs, meters and dials that glow, the idea of a radio made of
software isn't going to be exactly appealing. However, it is in
terms of old-fashioned radio values - such as sounding great
and dealing well with weak signals in strong noise - that SDRs
hold perhaps one of their two biggest advantages over conven-
tional superheterodyne radios.

However, perhaps the biggest advantage is that SDR software
lets you see radio signals - not just one at a time as you would
hear them on a conventional radio, but all those that are pres-
ent in a reasonable chunk of an amateur band. This is possible
by means of highly-sensitive bandscopes which display signals
down to the nano-volt level. Fig. 8.1 shows a view provided by
the bandscope of the free Rocky SDR software by Alex
Shovkoplyas, VE3NEA [1]. It illustrates the 1.8MHz band on a PC
screen, when coupled to SoftRock
SDR receiver hardware [2].

Not only are we talking about 'see-
ing' radio signals but this is done in
3D - signals can be seen in their
amplitude, frequency and time
dimensions. Very expensive conven-
tional superheterodyne radios can
also do this now, but arguably not as
well as SDRs. Those who have seen
the built-in bandscopes that are now
standard on top-of-the line amateur
radio transceivers costing several
thousands of dollars will notice that,
for example, Rocky offers a much big-
ger and more dynamic view of a piece
of radio spectrum than the former.

Tuning for weak DX signals can be
a pretty hit-and-miss affair, as
Murphy's Law of DXing dictates that
as soon as you are about to tune
across that rare station that is calling
CQ, he will cease calling. In contrast,
with a SDR bandscope, rather than
tuning your radio, with the right ana-
logue-to-digital converter you can see
all the stations in a 192kHz (or possi-
bly larger) window and click your

mouse (or similar) onto whichever station you desire to listen to.
The bandscopes in both Rocky and the KGKSDR [3] software by
Duncan Munroe, M0KGK, (see Fig 8.2) can be adjusted in size
to covers the entire width of your PC screen!

In 2006, VK6VZ first tested a SoftRock 40 hardware/Rocky
software SDR on weak CW DX signals on the 1.8MHz band
against a Yaesu FT-1000 transceiver. He found that of every four
signals he could see on the SDR, he could usually only find one
of them by careful tuning of the FT-1000 (unless he cheated and
peeked at the SDR screen). Tuning between four signals using
Rocky and the SoftRock hardware was simply three clicks of the
mouse. As a CW operator for 37 years with over 220 countries
confirmed on 1.8MHz, VK6VZ is no slouch at tuning to find weak
signals, but reckons his country count would be much higher if
he had been using an SDR for all this time.

In addition to a bandscope, which has a high resolution in fre-
quency, most SDRs now offer a display which has a high resolu-
tion in time, known as a waterfall display (see Fig 8.3), owing to

The Radio Communication Handbook 8.1

8
Fig 8.1:
Part of an
S D R - e y e
view of the
1 . 8 M H z
band

Software Defined
Radio

Phil Harman, VK6APH and Steve Ireland, VK6VZ

Fig 8.2: Bandscope using Duncan Munroe, M0KGK’s KGKSDR software

© R
SGB 20

11

The Radio Communication Handbook8.2

the way it 'flows'
across the screen
from left-to-right or
top-to-bottom. The
waterfall display on
Rocky even enables
high-speed CW sig-
nals - up to about 40
words per minute - to
be visually copied.
Waterfall displays
also show up flaws in
the spectral purity of
signals - in particular the key clicks generated by some modern
transceivers. No more disputes as to how bad a friend's key clicks
are - if you have Rocky or a similar program you can e-mail them
a screen shot of their signal, captured from the waterfall display.

Over the last few years, some very significant developments
have been made to SDRs, which has taken them out of the
realm of the experimentally-minded and into the world of the
hard-core radio operator. However, before exploring them, we
need to look at some of the basic principles of SDR. Let's start
with a definition for an SDR that both the authors like:

"A software defined radio refers to wireless communication
in which the transmitter modulation is generated or defined
by a computer - and the receiver uses a computer to recov-
er the signal intelligence. To select the desired modulation
type, the proper programs must be run by the computer
which controls the transmitter and receiver."

It is in the recovery of the signal intelligence that the advan-
tages of an SDR lie - in which a digital signal is converted into an
analogue one, at which point essentially (almost) all the signal
filtering and processing is carried out.

When VK6APH and VK6VZ first started writing about SDRs in
RadCom magazine several years ago, essentially all the SDR
hardware designs intended for amateur radio were based on a
quadrature switching detector (QSD) followed by an analogue-to-
digital converter (ADC) which used a PC sound card or chip (see
Fig 8.4). The highly popular SoftRock series of simple receiver
and transceiver kits and the Flex-Radio SDR-1000 (and its suc-
cessor) the Flex-5000 [4] uses this design.

However, a second SDR hardware architecture of Digital Down
Conversion (DDC)/Digital Up Conversion (DUC) is now emerging,
where a high-speed ADC is connected directly to the receiver
antenna - see Fig 8.5. Examples of receivers using the DDC tech-
nique are the Perseus [5], SDR-IQ [6], Hans Zahnd HB9CBU's
ADAT ADT-200A [7], the High Performance Software Defined
Radio (HPSDR) Mercury [8] and the Quicksilver QS1-R [9].

VK6APH was converted to SDR from analogue radios through
the purchase of an early version of the Flex-Radio SDR-1000,
while both VK6APH and VK6VZ have been greatly enthusiastic
about the SoftRock receiver kits. VK6VZ has used various
Softrock receiver versions extensively on 1.8MHz and as the
basis for an out-board bandscope for an FT-1000 transceiver
and, latterly, an Elecraft K3. However, time has moved on and,
right now, both us are primarily interested in the use of DDC
hardware-based receivers and companion DUC transmitters,
configured as a transceiver.

The reason for this 'sea change' is that ADCs suitable for
building direct sampling receivers , such as the Linear
Technologies LT2208, are now available that provide sufficient
bits-per-sample so as to give blocking dynamic ranges over
100dB - comparable to, or better than, some top-of-the-range
conventional HF transceivers.

As an illustration of this high performance, the figures are
given nearby for the final 'alpha' version of the open-source
HPSDR Mercury DDC receiver, in which VK6APH has been
involved in the design and the boards are now being produced by
TAPR [10]. As you can see from Table 8.1, Mercury has a Blocking
Dynamic Range of 119dB, which is basically independent of fre-
quency spacing.

8: SOFTWARE DEFINED RADIO

Fig 8.3: A waterfall
display

Fig 8.4: Block diagram of a basic SDR, using a quadrature switching detector (QSD)

© R
SGB 20

11

VK6APH has been using prototype HPSDR transceiver hardware
for over a year now. VK6VZ has moved onto converting his DDC
receiver hardware into DDC/DUC transceiver hardware similar to
that used by VK6APH, with the addition of the HPSDR Penelope
DUC exciter/transmitter board and a 100W PA from a surplus
commercial HF transmitter. As we write in early 2009, a growing
number of radio amateurs around the world are taking to the air-
waves with 'home-made' transceivers, based on the Mercury,
Penelope and the Ozy boards which are being sold by TAPR.

In the time that SDRs have moved towards DDC/DUC hardware
architectures, the world of analogue transceivers has also moved
on, with superb performance (assisted by digital signal process-
ing and filtering) offered by radios such as the Ten Tec Orion,
Icom IC-7800, Yaesu FT-2000 and, latterly, from the Elecraft K3.
The Elecraft K3 currently tops Rob Sherwood NC0B's famous
Receiver Test Data table [11] with a wide-spaced BDR of 140dB
at 100kHz, but this falls to 101dB at 2kHz. (For more on com-
mercial equipment, see Peter Hart’s contribution at the end of
the HF Transmitters and Transceivers chapter.) In contrast,
although the HPSDR Mercury's BDR is about 21dB worse at

100kHz-wide signal spacing than the K3, the Mercury appears to
be about 18dB better than the Elecraft K3 at a 2kHz spacing -
which is obviously important if there is a very strong interfering
signal near to the one you are listening to. On the other hand, if
you have a very strong signal about 100kHz away from the signal
you are listening to, then the K3 should cope with this better.

In general terms, the BDR of the new breed of analogue radios
is similar to that achieved in DDC SDR hardware and the former
also offer bandscope facilities and easily-updatable firmware -
two of the major advantages that SDRs have had almost to
themselves in the past. The analogue radios also offer a very
familiar user interface - knobs and buttons, rather than a mouse
and a keyboard. So why would users actually want to use a true
DDC/DUC SDR, even given its superior bandscope facilities,
rather than an up-to-the-minute analogue superheterodyne-type
radio with a really good DSP back-end?

The answer is very simple and comes down to one of the most
crucial features of any radio receiver - because signals on a DDC
SDR sound clearer and better. There is also another reason - for
those of us that use computers every day, keyboards, mouses,
windows and pull-down menus are now even more familiar and
intuitive to use than knobs and buttons.

Owing to the signal processing and selectivity of SDRs being
provided digitally by a computer rather than crystal filters, you
can provide continuously variable selectivity down to a few tens
of Hertz - properly designed digital filters don't ring like crystal
ones. Similarly, noise filtering/blanking on SDRs are better than
anything we have experienced on analogue radios - or using the
digital signal processors that are available as add-ons or fitted
to the current generation of HF transceivers.

Both VK6VZ and VK6APH have owned Yaesu FT-1000MPs - a
fine transceiver with a relatively good built-in DSP noise reduc-
tion and filtering - but the DSP processing available in today's
SDR software such as the free and open source PowerSDRTM

[12], written mainly by Bob McGwier, N4HY, and Frank Brickle,
AB2KT, and VE3NEA's free Rocky is vastly superior to that avail-
able in the FT-1000MP in our opinion.

One of the best things about SDR digital filtering is that it is
usually continuously variable. For example, by simply clicking
with your mouse onto the filter bandwidth screen icon on the
Rocky spectrum display and dragging it, you can vary the band-
width of selected filter - in the case of the CW filter from 600Hz
down to 20Hz. This means the operator can actually optimise
the bandwidth of the received signal, in terms of signal-to-noise

The Radio Communication Handbook 8.3

8: SOFTWARE DEFINED RADIO

ADC overload -12dBm (preamp on),
+8dBm (preamp off)

MDS (500Hz) all amateur -138dBm (preamp on),
bands (1.8MHz to 50MHz) -118dBm (preamp off)

MDS (500Hz) on 50MHz via -146dBm
HPSDR Alexaires preamp

IP3 equivalent +33dBm (preamp on), >50dBm
(preamp off). Note the IP3 is
independent of tone spacing.

Blocking Dynamic Range 119dB. Blocking Dynamic
Range (BDR) was measured at
100kHz and 5kHz for 1dB gain
compression with similar results.

122.88MHz clock phase -149dBc/Hz at 1kHz spacing.
noise

NOTE: The BDR is set by the overload point of the ADC rather than
being phase-noise limited.

Table 8.1: HPSDR Mercury DDC receiver performance figures

Fig 8.5: Block diagram of a basic SDR, using digital down conversion (DDC)

© R
SGB 20

11

The Radio Communication Handbook8.4

ratio. As VE3NEA notes on his website, for CW signals in white
noise this is 1.5 times the words per minute of the CW signal you
are listening to - which for a 30WPM signal is about 45Hz.
VK6VZ uses this control on Rocky (which he uses in conjunction
with SoftRock receiver hardware) by simply dragging the filter
bandwidth narrow/wider until the weak CW DX signal he is lis-
tening to sounds most readable. On a noisy evening on 160m
this often seems to be around 150Hz.

The second key advantage of SDRs is that they are much nicer
to listen to in terms of their audio quality than conventional com-
munications-type radios (more of this in the next section) which
are based on the superheterodyne design. Most of the receiving
process is digital, and hi-fidelity digital signal processing can
therefore be applied. The combination of no crystal filters and a
high-quality PC sound-card makes current SDRs sound, as one
American acquaintance aptly observed: "as though you are
directly connected to the ionosphere." Without loads of mixers
and crystal filters in the way, good signals sound really good and
bad signals sound terrible - whereas a modern multiple conver-
sion superheterodyne receiver/transceiver makes them all
sound pretty much as muddy/woolly as each other.

Back in October 2008, three radio amateurs got together in
the VK6APH workshop - VK6APH himself, VK6VZ and our friend
Fred, VK6GE (an Elecraft K2 owner, very long-time radio ama-
teur and retired professional radio operator). On the bench were
an Elecraft K3 and a HPSDR Mercury (using the open-source
PowerSDRTM software), both connected to VK6APH's Moxon
Claw HF beam antenna via an antenna switch. In this case, the
bandwidth of the HPSDR was not being varied continuously to
improve signal-to-noise ratio, but 'standard' filter bandwidths (ie
2.4kHz and 500Hz) were being selected in PowerSDRTM that
matched the filters that were available in the K3.

For 45 minutes or so, we sought-out weak SSB and CW sig-
nals on a noisy 14MHz band and switched the antenna from one
radio to another - just simple A/B testing. The verdict was unan-
imous - whilst the Elecraft K3 was probably the best-sounding
(and performing) analogue radio the three of us had ever used,
the HPSDR sounded 'better' and weak signals were considerably
easier to understand.

Why was this so? The performance figures for the two radios
are very similar! The answer is actually very simple and relates
to the crystal filtering ('roofing filters' in the case of the K3) that
the K3 - and most analogue communications radios - use.

All the radio frequencies that amateurs use are covered in
noise - some of which is atmospheric, some of which is ionos-
pheric and the rest is man/machine made. When noise puls-
es/spikes pass through a crystal filter, the phase response of
the filter differs, depending on the noise frequency. However,
when noise pulses/spikes pass through an ADC with a linear
response, the phase response stays the same, because the ADC
treats them in a linear manner.

That's the theoretical explanation - what happens in practice is
that on a DDC SDR any noise actually sounds mellow and easy-
on-the-ear, in a manner that has to be heard to be believed. In the
case of an analogue radio, even one stage of crystal filtering
(such as is used on the K3) is enough to cause a phase response
to noise that eventually irritates/tires the user and makes them
want to switch the radio off. In the case of the noise response of
the DDC SDR Mercury, it was balm to the ears of VK6APH, VK6VZ
and VK6GE. The third key advantage of SDRs is that, owing to
their signal processing and selectivity being provided digitally by
a computer rather than crystal filters, you can provide continu-
ously variable selectivity down to a few tens of Hertz.

So what are the disadvantages of SDRs for radio amateurs?
Well, with the exception of Flex-Radio's FLEX-5000 and its

predecessor SDR-1000, there are (at the time of writing - early-
2009) no HF transceivers in SDR form that are commercially avail-
able as an 'off-the shelf' product. However, SoftRock 'sampler'
SDR transceivers and receivers are available in kit form which
cover parts of one or two HF amateur bands for a few tens of
pounds - and these kits can be a heap of fun for any radio ama-
teur with an experimental bent. In addition, the High Performance
Software Defined Radio (HPSDR) series of boards allows the tech-
nically-savvy to produce a complete state-of-the art SDR trans-
ceiver, capable of producing 0.5W for amplification by conven-
tional HF amplifiers. There is much experimentation being carried
out which you can read about by joining the SoftRock 40 reflector
[13], or the Flex-Radio user reflector [14].

The next disadvantage is that you need a high-end Pentium
IV personal computer, preferably capable of a 2GHz-plus clock
speed, running Windows XP, plus a really good soundcard,
often to serve as the analogue-to-digital converter (ADC) for
the SDR. For several years, the M-Audio Delta 44 soundcard,
which has a sampling rate of up to 96kHz, has been the cur-
rent de-facto soundcard for this purpose. On the other hand,
an up-to-date PC is a common household item for most fami-
lies these days.

The third and final disadvantage is that SDRs force you into a
very close relationship with your personal computer, its software
and peripheral devices. For those of a Luddite disposition such
as VK6VZ, this can be a considerable strain - and even VK6APH
has had the odd impulse to throw his PC through the shack win-
dow - but the benefits of SDR are too great to ignore.

The radio amateur of today can be working on household
tasks on their personal computer, such as e-mailing relatives or
doing the family budget on a spreadsheet, whilst leaving a 'win-
dow' open on the screen literally to keep an eye on the state of
their favourite band using an SDR's bandscope facility.

SDR WITHOUT A RADIO
The good news is that you don't need a SoftRock or an SDR-1000
to experience the performance that an SDR offers - you can try
out / emulate an SDR on your personal computer.

Since the audio presented to the soundcard associated with
PC-based SDRs is in the range of 0 - 48kHz, the I and Q signals
from the 'front end' of an SDR radio can be recorded as standard
.WAV files. Such .WAV files can then be simply played back with
SDR software such as Rocky and PowerSDRTM, as if the user
were actually connected to the hardware. By playing back I and
Q .WAV files in this manner, radio amateurs can experience oth-
ers use of SDRs. It is possible to download and experience .WAV
files of moonbounce contacts, microwave rain scatter contacts,
meteor scatter contacts and listen to what 7MHz sounds like in
the USA during a major contest [15].

DESCENDANT OF THE DC RECEIVER
Radio amateurs have had a love-hate relationship with the direct
conversion or 'DC' receiver for many years - and in essence many
SDRs, in particular those with a quadrature switching detector
(QSD) architecture (of which more later) - use direct conversion
principles. Whilst we love the simplicity and the pure sounds
that direct conversion receivers produce, the poor unwanted
image rejection of most designs has limited their mass appeal
as a communications receiver.

Whilst it is relatively easy to get 40dB of unwanted image sup-
pression with a direct conversion receiver, obtaining the level of
image suppression typically achieved by a receiver using super-
heterodyne principles has historically proven far more difficult.

Some direct conversion receiver designers have suggested that
DC receivers should be run without an automatic gain control

8: SOFTWARE DEFINED RADIO

© R
SGB 20

11

(AGC) circuit, in order to hide the poor image suppression. Whilst
this can help, it is necessary to continually 'ride' the volume con-
trol to prevent being deafened when tuning from a weak to a
strong signal - hardly a pleasant experience.

Whilst the introduction of digital signal processing (DSP) tech-
niques to direct conversion receivers can add a degree of
improvement to them by replacing the analogue audio filters
used to provide their selectivity with much sharper DSP filtering
[16], the problem of the lack of unwanted image rejection has
remained - until the development of SDR technology.

To give you an idea of how difficult it is to obtain good image
suppression with direct conversion receivers, an accuracy of one
degree and 0.1dB in the relative phase and amplitude of the I
and Q signals arriving at the input of the demodulation stage is
necessary to obtain 40dB of image rejection. In order to obtain
60dB of rejection, the in-phase (I) and quadrature (Q) signals
produced by the first stage of a QSD-based SDR - see Fig 8.4 -
need to be within 0.1 degree of phase and 0.01dB of amplitude
of each other! Even then, 60dB of image rejection is a long way
short of what is obtainable from a superheterodyne receiver that
uses a crystal filter in its IF amplifier chain. Traditionally, the bet-
ter DC receivers in this regard have used crystal oscillators that
operate at four times the desired reception frequency, driving
dual digital dividers to give two local oscillators with a 90°
phase difference from each other. This mostly takes care of the
requirement for an accurate 90° phase shift between the I and
Q signals provided by the local oscillators.

Unfortunately, this still leaves the problem of obtaining/
matching the phase and amplitude of the received signals that
appear at the antenna. Even if the local oscillator I and Q bal-
ance is perfect, there are still phase shifts present, caused by
the antenna, RF amplifier/preamplifier circuits, band pass filter-
ing, etc. Such amplitude and phase variations can be quite con-
siderable over the width of an amateur band and have a seri-
ously detrimental effect on the direct conversion receiver's
image rejection/performance.

QSD-based SDRs attempt to overcome this major flaw in a
number of ways. If used with the PowerSDRTM software, the lat-
ter provides up to 90dB of unwanted image rejection by allowing
the user, automatically or manually, to trim the amplitude and
phase of the incoming I and Q signals in software. As successful
as this approach is, it really only works over very narrow band-

widths - typically three to four kilohertz - before it has to be
adjusted again. As a result, the image rejection requires read-
justing as the receiver tunes over an amateur band - and when
it is switched from band-to-band.

During a 'TeamSpeak' forum [17] conducted by enthusiastic
users / designers of the SoftRock experimental SDRs which are
QSD based, VK6APH suggested there was a way around this
problem. Rather than the tradition of using a crystal oscillator at
four times the desired reception frequency for DC
receivers/SDRs, a crystal oscillator should be used at the recep-
tion frequency, followed by a simple resistance-capacitance (RC)
phase network to provide an approximate 90° phase shift. He
reasoned that whilst this was not ideal and would provide signif-
icantly greater variation in I and Q phase accuracy over an ama-
teur band, having an oscillator operating at/close to the recep-
tion frequency could be useful to solve this and other problems.

To optimise the 'approximate' I and Q amplitude phase accu-
racy provided by the RC network, VK6APH suggested that a
'database' or a form of look-up table could be used to store what
the 'optimum' I and Q amplitude and phase were for the SDR
every few kilohertz. The optimum phase information in the data-
base/lookup table could then be used to correct the approxi-
mate information provided by the RC network and provide a very
high degree of unwanted image suppression over the width of
an amateur band. In order to set-up the look-up table, it would
be necessary to sweep a signal generator over the passband of
the SDR, using a number of spot frequencies, and store the
resulting I and Q amplitude and phase values.

At around the same time, VE3NEA, author of a number of well-
known and respected amateur radio software programs, came
up with a much better solution to the problem of I and Q ampli-
tude and phase correction in QSD-based SDRs. Instead of using
a signal generator to generate a set of signals, he used actual
signals within the amateur band that the SDR was tuned to auto-
matically, and continuously update the look-up table to meet the
I and Q balance requirements.

VE3NEA pioneered this 'intelligent' technique in his free Rocky
software [1]. This technique reaches the 'holy grail' of DC
receivers of achieving around 90dB image suppression - com-
parable to a very good superhet - by means of a few lines of soft-
ware (see box). VK6APH reverently refers to these lines as "the
four lines of code that changed the SDR world."

The Radio Communication Handbook 8.5

8: SOFTWARE DEFINED RADIO

The four lines of code that changed the SDR world
I/Q balancing in VE3NEA’s Rocky software

Balancing of the phase/amplitude of the I and Q signals in the Rocky software to maximise image rejection in the Softrock 40 receiver is carried
out automatically and is around 90dB. This technique developed by the author of Rocky, Alex Shovkoplyas, VE3NEA, has revolutionised the way
image rejection is carried out in SDRs.The explanation below is taken from VE3NEA’s web pages on Rocky at [1.

“I/Q balancing in Rocky is automatic and does not require any lab equipment – all you have to do is to start the program when the band is
open. Rocky will use all the strong stations on the band as signal generators!”

“The algorithm works as follows. The power spectrum is scanned for signals that are at least 30dB above the noise. For each signal, synchro-
nous detection of the image is performed using the main signal as a reference oscillator. The synchronous detector has very high sensitivity and
can detect the image signal even if it is below the noise. For the signal in the j-th bin of the spectrum, the normalised out impedance of the detec-
tor is calculated as follows:

Z := ComplexMul(ASpectrum[j], ASpectrum[FftSize-j]);
Pwr := Sqr(ASpectrum[j].Re)+Sqr(ASpectrum[j].Im)+ Sqr(ASpectrum[FftSize-j].Re)+Sqr(ASpectrum[FftSize-j].Im);
Z.Re := Z.Re / Pwr;
Z.Im := Z.Im / Pwr;

“The Z value is complex and contains information about the amplitude and phase of the image in respect to the main signal. The program
averages Z over time, calculates the required amplitude and phase correction as a function of frequency, and fits a polynomial to the correction
coefficients. The I/Q correction filter is constructed from coefficients and applied to the input signal in the frequency domain.”

© R
SGB 20

11

The Radio Communication Handbook8.6

Fig 8.6 shows the I and Q balance of the SoftRock 40 SDR
fifteen minutes after first being switched on, and the much
improved I and Q balance of the SoftRock 40 the following day.
As far as we know, this is the first example of a receiver that
actually analyses and dynamically optimises its performance
during operation. The longer you leave your SoftRock receiver
and Rocky on, the better the image rejection gets.

Other radio amateurs have been quick to make use of
VE3NEA's revolutionary technique. Duncan Munroe, M0KGK,
has used it in his free KGKSDR software for SDR radios.

VK6APH's gentle goading of the mathematical Bob McGuire,
N4HY, appears to have born fruit in that Bob has recently
announced a fast and automatic way of compensating for I and
Q phase errors in PowerSDRTM. Bob reports that this is achieved
in a mere 20 lines of code. We can expect this breakthrough to
be rapidly adopted by these writing software for QSD-based
receivers.

QSD VERSUS DDC
In this section we are going to compare the characteristics of the
two most-popular SDR receiver architectures.

The first - see Fig 8.4(a) - is the architecture most frequently
used by amateur radio designers and is based on a quadrature
switching detector (QSD) followed by an analogue-to-digital con-
verter (ADC) based either on a sound card or chip. The highly
popular SoftRock [2] series of receivers and transceivers and
the Flex-Radio SDR-1000 and Flex-5000 uses this design.

The second architecture - see Fig. 8.5 - is that of the emerging
digital down conversion (DDC) architecture, based upon on a
high-speed ADC connected directly to the receiver antenna - as
you will have read earlier in this chapter, this is the architecture
favoured by VK6APH and VK6VZ. Examples of receivers using
this technique are the Perseus [5], SDR-IQ [6], Hans Zahnd
HB9CBU's ADAT ADT-200A [7] and the HPSDR Mercury [8].

Both of these architectures have their advantages and disad-
vantages - some of these for each design are listed against a
number of key SDR receiver design parameters in Table 8.1.
Let's look at how they compare.

I & Q Balance
In order to eliminate the unwanted sideband, the amplitude of I
and Q signals - and their 90-degree phase relationship - must be
held to very high tolerances. For example, to achieve 60dB of
sideband (or image) suppression, the I and Q signals must
match within 0.01dB (of amplitude) and 0.1 degrees (of phase).

For an analogue-based design like those using QSD, this is a
tall order - particularly over the entire HF range. In practice,

there is a need to resort to some form of compensa-
tion to attain this level of sideband/image suppres-
sion, usually done in software as described earlier.

Other techniques based on single frequency cor-
rection, either manual or automatic, are able to
achieve very high levels of suppression. However,
such correction is often only effective over a narrow
frequency range and can become unacceptable at
band edges.

This is one area where a lot of innovative research
is going on and we can expect to see some exciting
new techniques to solve this problem in the near
future.

Sideband (image suppression and carrier suppres-
sion) is simply not an issue with DDC-based receivers
since the I and Q signals are generated mathematical-
ly and for practical purposes this suppression can be
considered to be perfect.

Local Oscillator Radiation
This item relates to unwanted radiation from the antenna sock-
et of the SDR receiver's local oscillator. With a QSD-based ana-
logue SDR receiver, the local oscillator frequency is close to the
receiver's actual frequency and thus is likely to find its way to the
antenna and be radiated. Measurements on such receivers can
yield signals at their antenna socket of -50dBm - and these will
be received by local stations. However, the addition of a pre-
amplifier can substantially reduce the level of such radiation.

Since the local oscillator in a DDC-based SDR receiver only
exists in the form of multiplication by digital values inside an
integrated circuit, it is not normally detectable at the antenna
socket. This does not necessarily mean that no internal signals
find their way to the antenna socket, since there will be a host
of clocks used by the DDC. However, with careful lay-out of the
DDC-based receiver components, the issue can be minimised.

Spurious Signals
Both types of SDR receiver architecture can present low-level
spurious signals due to the local oscillator used, as the receiver
is tuned across a range of frequencies. Since the SoftRock
receivers are based upon a spectrally-clean crystal oscillator,
these can be expected to produce either a very few spurs - or
none - over their relatively narrow tuning range.

SDR receivers based on currently-used direct digital synthesis
(DDS) chips (eg the popular Analog Devices AD9851) will exhib-
it numerous low level spurs. However, the latest DDS chips gen-
erate significantly fewer spurious signals than their predeces-
sors and, on the lower HF bands at least, those spurs that do
exist are frequently masked by band noise. The use of a pre-
amplifier on the higher HF bands will assist with spurs, but this
also reduces the large-signal handling capability of the receiver.

Since DDC-based receivers do not require a digital-to-ana-
logue converter (DAC) as part of a DDS to generate a local oscil-
lator signal, a significant source of spurs is removed. In addition,
it is possible to use a higher number of bits to synthesise the
local oscillator signal - typically 18 as opposed to 14 - for a DDS
chip, which again reduces the number of spurs.

Experience to-date with the range of DDC receivers currently
available indicates that local oscillator spurs are not a problem
in practice. In the case of the Perseus and HPSDR Mercury
receivers, the spurs are below -105dBc.

Both DDS and DDC-based SDR receivers are ultimately reliant
on the stability and spectral purity (ie phase noise) of their mas-
ter clocks - which is why there is so much interest among SDR
designers in having the best possible master clock.

8: SOFTWARE DEFINED RADIO

Fig 8.6: The I and Q balance of a SoftRock receiver with Rocky software at
switch-on (left) and after a day

© R
SGB 20

11

Frequency Coverage
In general, QSD-based receivers are usually effective on the
amateur bands from 1.8 to 52MHz. Whilst in theory the QSD
should perform effectively into the microwave bands, there
appears to be a technical issue with turn-on and turn-off times
of the QSD's solid-state switches that limits their performance
above 70MHz. The issue results in a noise figure - but not nec-
essarily conversion loss - that increases with frequency. This is
generally overcome in practice by using a low-noise preamplifier
before the QSD. However, although this reduces the receiver's
noise figure, it detracts from the receiver's large signal handling
performance. We will have more to say on QSD performance later
in this chapter, as there are some interesting developments in
this area.

The frequency coverage of a DDC-based SDR is basically
restricted by the sampling rate of the ADC, ie its clock speed.
Sampling theory provides us with a range of 0 to clock/2 MHz.
This means that for a modern 14 or 16-bit ADC clocked at
135MHz, continuous coverage up to 67.5MHz can be obtained. In
practice, life becomes difficult as operation approaches the actu-
al clock/2 frequency, but should prove quite practical up to, say,
67MHz. With suitable filtering, signals can also be received from
clock/2 to the clock speed - this is the so-called 'alias response'.
Such a receiver will normally tune in reverse (and invert an SSB
signal) but fortunately there are some simple software tricks that
can be used so that the user is unaware of this issue.

Given a high performance ADC, repeating alias responses can
be used to receive signals as high as upper UHF. For example,
the ADC used in the HPSDR's Mercury - a Linear Technologies'
LT2208 - will accept inputs up to 750MHz. However, in general,
the higher the frequency, the lower the sensitivity of the ADC
becomes. With a 125MHz clock, Mercury will receive strong
local signals on 144MHz 'as is' and, with suitable filtering and
pre-amplification, provides a very acceptable performance.

Harmonic and Sub-harmonic Responses
The QSD detector will respond to signals at odd harmonics of its
clock frequency - which can be both a blessing and a curse! This
effect is used to good effect in the SoftRock range of receivers
and transceivers, so that lower frequency crystal oscillators can
be used on the higher HF bands.

In order to eliminate high harmonic responses, a high-per-
formance low pass filter (LPF) is required prior to a QSD. The lat-
est FLEX-5000 uses an 11th order filter to provide over 70dB of
suppression on all amateur bands.

Whilst in theory the QSD should not respond to sub-harmon-
ics of the local oscillator frequency (in fact US mathematician
Bob, N4HY, strongly supports this theory), a number of experi-
menters, including VK6APH, have noticed this can happen in
practice. Further investigation appears to be in order.

Assuming the circuitry prior to the ADC is perfectly linear, DDC-
based receivers will not have harmonic responses. However,
maintaining linearity over a 125dB blocking dynamic range
(BDR), in particular for sub-harmonic signals, is a significant
design challenge. In particular, high pass filters (HPFs) in the sig-
nal path need to use carefully selected inductors. This can lead
to the use of large inductors that would normally look more at
home in a transmitter LPF! There is more on this subject in the
later section devoted to the HPSDR Alex HPF/LPFs.

RF Bandwidth
This is a feature that really shines in the QSD architecture. The
circuitry forms an LPF consisting of the antenna impedance,
switch losses and any other series resistance prior to the sam-
pling capacitors. This LPF will typically have a 3dB bandwidth of

3kHz (assuming a bandscope is not being used, in which case
48/96/192kHz would typically be used). Since this bandwidth
appears on both sides on the local oscillator signal, it will appear
as an RF bandwidth of 6kHz. For a QSD-based receiver operat-
ing at, say, 7MHz, this represents a Q of approximately 2,300. If
this is extended to 28MHz, the Q increases to 9,300 - a value
that will be extremely difficult to match with a conventional LC
filter. Since this Q is before any ADC, it offers a significant level
of attenuation to out-of-band signals.

The current crop of DDC-based receivers tend to be wideband,
covering from a few tens of kilohertz right up to 50MHz or high-
er. Bulk filtering in the form of a high order LPF, to remove VHF
aliasing signals, is the order of the day. A number of designs are
using half-octave band pass filters. The effect of large out-of-
band signals is not necessarily so much of a problem with DDC-
based receivers and at least one manufacturer [18] is initially
offering a receiver with just a 50MHz LPF at the input.

Intercept Point
Again this is an area where the QSD-based receiver has shone
for some time. Assuming the QSD is feeding a correctly-designed
post amplifier and a high-quality sound card, then IP3 values of
over 30dBm are common. The RadCom review of a SoftRock v6
receiver by Peter Hart [19] showed an excellent IP3 of +19dBm
(or about 93dB dynamic range in SSB bandwidths). The use of
IP3 when applied to DDC-based receivers is a controversial sub-
ject (as the authors have found out in the past when innocently
publishing the IP3 figures for the DDC HPSDR Mercury receiver
[20] in a RadCom column). However, we are also first to admit
that IP3 measurements on such receivers are not meaningful,
since the values obtained vary with the input signal levels.

Given that there are a number of different designs of DDC
receivers now in radio amateur hands, we can expect to hear
shortly if intermodulation issues are going to prove a problem. In
the case of the HPSDR Mercury receiver, it has a superb IP3 per-
formance: +33dBm (with the preamplifier on), rising to over
50dBm (with the preamplifier off). Note the IP3 of Mercury is
independent of tone spacing.

Noise Figure
The theoretical noise figure of a QSD is approximately 1dB. If it
is assumed that the combined noise figure of the post amplifier
that follows it and the sound card is also 1dB (which should be
achievable using modern integrated circuits) then an overall
noise figure of 2dB should be obtainable. This is well above what
is practically required on any of the HF bands and should serve
well into the VHF region. However, there appear to be some
issues in actually achieving this level of performance.

DDC-based receivers are currently yielding noise figures in the
region of 30dB. Although this sounds high, such a value would
be usable on the bands from 1.8MHz through to 10.1MHz with-
out a preamplifier. On the higher bands a preamplifier will be
required in order for those operators blessed with a low noise
level location to reap the benefits.

As ADC technology continues to improve, it is expected that
future generations of these devices will be usable on the HF
bands without the need for a preamplifier.

Cost
If it is assumed that both the QSD and DDC-based receivers use
a PC, together with one of the free SDR software programs (such
as Rocky, PowerSDRTM or KGKSDR), for signal processing then
it is reasonable to remove this cost from the comparison.

Again, the QSD is a winner. The cost of a complete RF front-end
for a QSD-based single band receiver (eg a SoftRock v6 lite) is in

The Radio Communication Handbook 8.7

8: SOFTWARE DEFINED RADIO

© R
SGB 20

11

The Radio Communication Handbook8.8

the order of U$10 to US$13, increasing to US$30 to US$51 for a
QSD-based single or dual-band transceiver. However, in order to
achieve the full performance of the QSD we need to use a high-
quality sound card in the PC such as the M-Audio Delta 44, which
(at the time of writing) will typically cost around US$150.

The high cost components in the DDC-based receiver are the
ADC and a high-performance VHF clock. Currently the most pop-
ular ADC for amateur radio applications is the Linear Technology
LT2208, which in low volume costs about U$100. A suitable
'clock' will cost about US$50. Granted, these components are
not inexpensive, but given that a high performance sound card
is not required then the cost appears reasonable. The LT2208
ADC is proving to be very popular, so it is possible that high sales
volumes will cause a price reduction in future.

Complexity
Once again, the QSD has the edge. A handful of common com-
ponents will produce a receiver front-end that will compete with
the best of current analogue designs. Even some of the more
advanced QSD designs do little to increase the complexity.

Whilst a DDC receiver, based on an ADC plus Field
Programmable Gate Array (FPGA), has a low component count,
the internal code required to suitably process the ADC data is
quite complex. Indeed, the Verilog code used in the HPSDR
Mercury DDC took VK6APH the best part of six months part-time
programming to develop.

However, given that much of this code is now in the public
domain (under the GNU General Public Licence) then those who
wish to develop their own variant have a significant head-start.

OPTIMISING AN SDR BANDSCOPE
By using a standard personal computer to undertake the pro-
cessing for an SDR, we obtain the significant benefit of a spec-
trum scope or bandscope.

Bandscopes are certainly not new - they have been used for
several decades by both radio professionals and amateurs for
monitoring weak signals. Heathkit made a bandscope you could
add onto a receiver in the 1970s. However, the new DSP-based
bandscopes in SDR radios offer many advantages over their
predecessors.

The limitation of the traditional bandscope is that the band-
width of the filters used is relatively wide. Those that did use nar-
row communications-style filters scanned very slowly over the
frequency bands they covered (to prevent the narrow filter from
ringing) and required a long-persistence cathode ray tube.

By using DSP techniques, in particular a Fast Fourier
Transform (FFT) to produce a bandscope for an SDR, an FFT 'bin'
in the order of 11Hz can be produced. What this means practi-
cally is that there is no need to sweep such a narrow filter slow-
ly across the SDR passband, since the FFT applies large num-
bers of 11Hz-wide filters in parallel to blocks of digital samples.

If we compare the 11Hz filtering possible with an SDR band-

scope to that of the 1KHz filters typically used in high-end
Japanese radios containing bandscopes, the former offers a
much higher sensitivity. In fact, such 11Hz filters enable very
weak signals to be seen on an SDR radio which cannot be actu-
ally be heard - a very strange phenomenon to experience.

With the bandscope available in his Rocky software, VE3NEA
has pioneered the use of a polyphase FFT, which greatly narrows
the spectrum that a signal occupies on a bandscope screen,
allowing a very clear and sharply defined image to be seen of
weak signals. VK6VZ has found that weak 1.8MHz CW DX sig-
nals that are only S2 to S3 in strength can be clearly seen on the
Rocky bandscope during summer, despite high levels of atmos-
pheric noise.

Fig 8.7 is a screen capture from VE3NEA's website showing
the effect of a SDR bandscope that uses a polyphase FFT and
one that does not. The use of a polyphase FFT now appears to
be almost mandatory for SDR bandscopes and they have been
added to both Flex-Radio's PowerSDRTM (see Fig 8.8) and
M0KGK's KGKSDR software.

Although a polyphase FFT narrows a signal nicely on an SDR
bandscope, VK6APH points out that there is no 'free lunch' since
the transient response of the bandscope is substantially
increased. For this reason, most SDR software enables the
polyphase FFT facility to be turned off. That being said, VK6VZ
keeps the polyphase FFT permanently enabled on 1.8MHz
because of the improved bandscope performance, despite this
band being heavily affected by transient signals/noise.

SDR HARDWARE
Up until 2006, the best way for amateurs to move into SDR was
to buy Flex Radio's SDR-1000 transceiver. Whilst reasonably
priced, this radio was not inexpensive and what was needed was
a cheap 'sampler' SDR to show radio amateurs all the advan-
tages of using an SDR - and see if such technology was for them.

A group of radio amateurs decided to create precisely such a
sampler. The SoftRock QSD-based hardware, developed by Tony
Parks, KB9YIG, and Bill Tracey, KD5TFD, was the result. These
kits, publicised by AmQRP, provide a simple and low-cost way for
radio amateurs to evaluate SDR techniques for themselves.

The first versions of the SoftRock hardware were single band
7MHz receivers, modifiable to other frequencies. Subsequently,
dual-band receiver and transceiver kits have been produced -
see Fig 8.9 (the transceiver is described in detail later in this

8: SOFTWARE DEFINED RADIO

Fig 8.7: The use of polyphase FFT produces better resolution of
the bandscope

Fig 8.8: Flex-Radio’s PowerSDRTM software, showing the use of
polyphase FFT

© R
SGB 20

11

chapter). Tony Parks KB9YIG, produces and markets the
SoftRock kits. Note that there is an excellent Internet forum
called 'SoftRock 40' hosted by Yahoo which people who are
interested in building or developing the SoftRock can join [13].

This range of radios allows you to tune plus/minus half the
sampling rate of your personal computer's soundcard from the
crystal frequency selected by the user for the SDR hardware. In
the case of the M-Audio Delta 44, this is ±48kHz. For example,
if the crystal frequency is 7.040MHz, then using a 96kHz sound
card sampling rate, the user can tune (using the software pack-
ages mentioned earlier) 48kHz either side of this frequency.

Whilst a standard motherboard-residing soundcard is sufficient
to evaluate SDR hardware and software, it may have some major
limitations in reproducing signals, due to 1/f flicker noise, hum
and picking up other sources of interference generated inside the
computer casing. The Delta 44 in contrast sits in its own slot well
away from the personal computer motherboard and all connec-
tions to and from it are in a remotely-sited screened box.

Most motherboard and low-end soundcards are limited to 16-
bit, which restricts the dynamic range of the SDR. Using a 24-bit
M-Audio Delta 44 connected to a SoftRock Version 4 converted
for 1.8MHz, VK6VZ has experienced a dynamic range in excess
of 90db - at bandwidths of a few tens of Hertz to 2.4kHz.

The most recent Softrock receivers (and transceivers) are now
using the Si570 microwave phase locked loop ('PLL') oscillator
chip that can be divided down to give variable frequency oscilla-
tor-like performance across all HF bands, removes the limited
tuning range issues of earlier designs. This gives a significant
advantage over the original method because it also alleviates
the need to accurately balance I (in-phase) and Q (quadrature)
signal components over a wide bandwidth. There is a section on
using the Si570 device with Softrocks at the end of this chapter.

SUPER SOFTWARE DEVELOPMENT -
INCLUDING LINUX CONSOLES
The low cost and mass appeal of the QSD-based SoftRock hard-
ware served to spur a number of radio amateurs (such as
VE3NEA, M0KGK and I2PHD) to develop free software for it [21].

Flex-Radio's PowerSDRTM software, developed for use with
the SDR-1000, has been modified to run with the SoftRock
range of radios. One of the outstanding features of
PowerSDRTM is the AGC system. This uses two AGC loops in par-
allel, one to handle fast signals such as noise pulses or the lead-
ing edge of CW signals, and the other to follow the slowing mov-
ing envelope of the signal.

In VK6APH's opinion (even allowing for the fact that he
designed the AGC system!) when the mathematical algorithm
was implemented by Dr Robert McGwier, N4HY, in the
PowerSDRTM software it resulted in an AGC performance - and
resulting clarity of received audio - that was unsurpassed by any
other receiver he had heard so far.

PowerSDRTM is open source, which has enabled a number of
programmers to develop variants of it, for example Phil Covington,
N8VB, has produced an excellent piece of SDR console software
(see Fig 8.10) based on PowerSDRTM [22]. N8VB's software was
the first to provide dual, independent receivers within the sam-
pling rate bandwidth. Given that each receiver is simply a copy of
a block of existing software, it is possible for N8VB to implement
multiple (many!) independent receivers in his software.

Others, like Bob Cowdery, G3UKB, have taken totally different
approaches. In his SmallTalk project [23], Bob's idea is to create
'building blocks' that can be joined together to allow different
configurations of an SDR to be easily constructed and tested.

In addition to PowerSDRTM and Rocky, there are two other
WindowsTM compatible popular pieces of 'free' software avail-
able for HF - the first of which is Duncan Munroe, M0KGK's
KGKSDR software [3], which was touched on briefly in the intro-
duction. Like VE3NEA's Rocky software, KGKSDR was designed
to work primarily with the SoftRock range of receivers and trans-
ceivers. However, whilst Rocky is optimized for weak signal CW
DXing and PSK31, KGKSDR is designed for a wider range of
modes/uses and has more user-selectable parameters.

In many ways, the KGKSDR bandscope display - see Fig 8.11
- has the best of both worlds of the Rocky and PowerSDRTM

band-scopes. Like Rocky, KGKSDR has intelligent I and Q bal-
ancing, enabling automatic image suppression, and polyphase
Fast Fourier Transformation, giving an extremely high resolution
bandscope. However, like PowerSDRTM, you have the choice of
several different AGC speeds, to suit the particular mode you are
using - the software allows CW, SSB, AM and PSK use; plus five
switchable CW receive bandwidths, varying from 100 to 500Hz.

The Radio Communication Handbook 8.9

8: SOFTWARE DEFINED RADIO

Fig 8.9: A SoftRock version 6 receiver (above) and a version 6
transceiver (below)

Fig 8.10: N8VB’s SDR console software

© R
SGB 20

11

The Radio Communication Handbook8.10

Winrad is written by Alberto di Bene, I2PHD, with assistance
from Jeffrey Pawlan, WA6KBL, a highly respected EME operator.
It is specifically tailored for weak signal SSB and CW reception
and can be downloaded free from Alberto's website [24]. This
web site has two excellent samples that show the effectiveness
of Winrad. One sample is an EME CW signal made completely
unreadable by static crashes. In the second sample, the same
signal is rendered decipherable by being filtered through
Winrad. Alberto has also developed another experimental SDR
application for free download called SDRadio, which can demod-
ulate modes including SSB, AM and FM.

For the experienced radio amateur who enjoys 'cutting code',
there are numerous opportunities to experiment with new SDR
ideas in software form. For the programmer who wants to play
around with SDRs, there are a number of options depending on
your skill level. For the relative beginner, planned changes to the
open source PowerSDRTM code, that will result in digital signal
processing (DSP) part of the software becoming separated from

the graphical user interface (GUI) part, mean that they have an
opportunity to develop their own GUI, in the programming lan-
guage of their choice.

Those who have the know-how to work in the bowels of DttSP
- the open source software written by Dr Frank Brickle, AB2KT,
and Dr Robert McGwier, N4HY, that commonly implements the
core DSP functions of a SDR - are already writing their own GUIs
or 'consoles', often running under the Linux operating system or
one of its variants.

DttSP implements "the basic modulation, demodulation, sig-
nal conditioning and synchronization processes required to
operate a high-performance transceiver using DSP as the detec-
tion and synthesis stages" [25]. DttSP is actually the DSP
core/engine that powers PowerSDRTM and its development is
carried out primarily on Linux.

To see how Linux software development for SDRs is done, let
us look at the 'consoles' developed by John Melton,
G0ORX/N6LYT, Edison Pereira, PU1JTE/N1VTN, and Rob
Frohne, KL7NA. A search of the internet will reveal other exam-
ples of Linux consoles, but these are some of the best known
and most recent examples.

That being said, by far the most famous of all Linux software
for SDR and the grand-daddy of them all is Leif Asbrink,
SM5BSZ's amazing Linrad, but this is effectively a stand-alone
SDR program of its own. Linrad can be run under Linux as well
as under Microsoft WindowsTM on an IBM PC-compatible com-
puter. It is available as source code from SM5BSZ's website [26]
with a 'makefile' that allows the generation of an executable with
a single command, both under Linux and Windows.

Linrad can operate with any soundcard for which the oper-
ating system on the PC has suitable driver routines. A conven-
tional radio receiver or a direct conversion radio is then used
to bring some part of the RF spectrum down to audio frequen-
cies.

The DSP core in Linrad software is independent of the hard-
ware and will processes any bandwidth that the latter can han-
dle. The origin of Linrad lies in software that was developed by
SM5BSZ for the reception of 144MHz CW during EME working.
Its noise blanker is to die for.

8: SOFTWARE DEFINED RADIO

Fig 8.11: Screenshot of the KGKSDR bandscope display

Fig 8.12: Linux console software for Flex Radio's SDR-1000 by John Melton, G0NRX/N6LYT

© R
SGB 20

11

John Melton, G0NRX/N6LYT's Linux console - see Fig 8.12 -
was actually written in the Java language to control the Flex Radio
SDR-1000 under Linux. Although most people with SDR-1000s
use the PowerSDRTM software running under Windows, there are
several experimentally-minded software-orientated SDR-1000
users who wish to use the open source Linux software. John has
decided to support the HPSDR project and news of his progress,
via his internet 'blog’ [27], makes interesting reading.

Linux, as its name suggests, is a Unix-like computer operating
system and one of the classic examples of open-source software
development - typically, all its underlying source code can be
freely modified, used, and redistributed by anyone. The Linux

operating system was developed by Linus Torvalds in 1991 and
its utilities and libraries usually come from the GNU operating
system, which goes back a further eight years

G0NRX's console will also run under Linux-like operating sys-
tems such as Ubuntu [28] and Apple's Mac OS X [29]. John's
console is intended to control the SDR-1000, Softrock and
HPSDR on both receive and transmit, but is still under develop-
ment. As of April 2009, the console supports 192K, 96K and
48K sampling, includes a waterfall display and, at present, is
essentially for reception use.

In his own words, Edson, PU1JTE /N1VTN's SDR-Shell (see Fig
8.13) is "a simple SDR GUI for controlling the DttSP sdr-core" and

can be downloaded from his website [30].
It was implemented to be used with simple
SDR receivers like the SoftRock series [2]
and SDRZero [31]. SDR-Shell was devel-
oped using the Qt Toolkit under the
Ubuntu flavour of Linux. The transmit func-
tions are currently being implemented to
enable transmit on simple SDR trans-
ceivers like the SoftRock RXTX 6.2. A block
diagram of Edson's popular and flexible
SDR-Shell software is given in Fig 8.14.

Rob Frohne, KL7NA, has used
PU1JTE/N1VTN's SDR-Shell as the jump-
ing-off point for his special version of the
latter - one of the main ideas behind
open-source software is that a software
writer can take what someone else has
written and adapt it for a different pur-
pose. In the case of KL7NA, Rob's aim
was to produce SDR software that he
could run under the Ubuntu flavour of
Linux - see Fig 8.15 - in order to give his
TS-850SAT receive section an add-on sen-
sitive bandscope and a DSP receiver
back-end (that he can listen to, rather
than listening to audio from the TS-
850SAT).

Rob tapped the 455kHz third interme-
diate frequency (IF) chain in the receive
section of the TS-850SAT and fed this out-
put into a SoftRock receiver modified for
455kHz, so as to provide DSP and a band-
scope display using his specially modified
version of SDR-Shell and digital-to-ana-
logue conversion using his PC's sound-
card. According to KL7NA's web pages
[32], which give a full description of his
SDR-Shell project, Rob used the Synaptic
graphical management package to get
the low-latency kernel, then used Roger
Rehr, W3SZ's excellent DttSP and Linux
help pages [33] and the Debian package
[34] to get DttSP and SDR-Shell going on
his computer, which was running the
Ubuntu Feisty (7.04) operating system.

KL7NA says the SDR-Shell script had to
be modified a little and that he learnt a lot
about how the DttSP system worked with
first-in first-out (FIFO) memories and the
JACK audio connection kit [35] that he
used by reading the shell script and "both-
ering the experts on the DttSP-linux mail-
ing list" [36].

The Radio Communication Handbook 8.11

8: SOFTWARE DEFINED RADIO

Fig 8.13: Edison PU1JTE/N1VTN's SDR-Shell

Fig 8.14: Block diagram of PU1JTE/N1VTN's SDR-Shell Linux console (from his website)

Fig 8.15: KL7NA's version of SDR-Shell for receiver IF applications

© R
SGB 20

11

The Radio Communication Handbook8.12

KL7NA's SDR-Shell/SoftRock set-up with his TS-850SAT
enables him to look at around 12kHz of spectrum at a time. It
also provides Rob with synchronous AM detection, automatic
notch filtering and binaural audio. Rob's web pages provide
details of how he modified his TS-850SAT and his version of
PU1JTE/N1VTN's SDR-Shell can be downloaded from there.

INTRODUCING THE HPSDR PROJECT
The High Performance Software Defined Radio (HPSDR) is an
ambitious project being carried out cooperatively by a group of
radio amateurs. Its ultimate aim is to make an SDR that covers
all the bands from 160m to 6m, with a performance that is
superior to existing analogue and SDR radios.

The HPSDR is a hardware and software project based on the
open-source GNU concept. First of all, a bit about the oddly-
named GNU (pronounced 'noo' or 'new') project - this originated
in 1984 to develop a complete and free UNIX-like operating sys-
tem. Variants of this GNU operating system, which use the Linux
kernel, are now widely used - such in the GNURadio described in
the previous section - and one of these will run the HPSDR in
addition to Microsoft Windows™.

The HPSDR is being designed and developed by a multina-
tional group of SDR enthusiasts - including VK6APH. The mem-
bership of the web-based group is well over 100 and includes
other well-known experimentally-minded radio amateurs such
as Phil Covington, N8VB, Lyle Johnson, KK7P, Graham Haddock,
KE9H, and Bill Tracey, KD5TFD. The project has a dedicated web
site [8] and wiki which explains the basic ideas behind the
HPSDR and how to subscribe to the project's e-mail reflector.

The rationale behind the HPSDR project is to break the overall
design of a high performance SDR up into a number of self-con-
tained modules. Each module is designed by an individual or
small group and connects to the other modules using a prede-
fined and common bus-type 'backbone' - in a similar manner to
plugging boards into a PC motherboard. As the HPSDR project is
'open source', the circuits of each module and PCB design files,
and any software they use, are made freely available on the web.

One of the first modules produced was the Janus board,
which replaces a PC soundcard as an analogue to digital con-
verter and is being used to improve the performance of the
Flex-Radio SDR-1000 transceiver and SoftRock receivers and
transceivers. However, its major achievement is the production
of three modules - the Mercury Digital Down Conversion (DDC)
receiver, the Penelope Digital Up Conversion (DUC) transmitter
and the Ozy SDR to PC communications board - which together
form the basis of a high-performance 0.5W digital SDR trans-
ceiver.

This modular open source approach allows radio amateurs to
incorporate just the modules that interest them into their own
personal HPSDR. They can also design their own variants of the
modules. The approach encourages the development of new
ideas, circuits and techniques. One key philosophy behind
HPSDR is for its builders/users to be able to replace the digital
modules contained within it as better digital devices, such as
analogue-to digital converters (ADCs), become available, but to
retain those analogue modules, such as RF bandpass filters,
where the technology is unlikely to improve in any significant way.

This is because in a couple of year's time, it is hoped there will
be an ADC available that will offer significantly better perform-
ance at an affordable price than the Linear Technology LTC2208
130Msps 16-bit ADC that the current version of Mercury uses.
On the other hand, inductance-capacitance (LC) bandpass filter-
ing technology is unlikely to change, so this is better kept on a
separate board (such as HPSDR's Alexaires module) to the
receiver ADC.

The HPSDR modules vary considerably in complexity - from
simple bandpass filters and input/output interfaces to full-blown
digital signal processing (DSP) functions. Such a variety of mod-
ules and complexity enables experimenters - both experts and
novices - to make a genuine contribution to the project. Some of
the HPSDR modules are being designed so that they can be
either used in conjunction with others or in a stand-alone man-
ner. Most of the main modules are shown in Fig 8.16 and have
the following functions and features.

Atlas - the Backplane
This HPSDR module consists of a passive backplane / backbone
that all the other HPSDR modules will plug into - see the picture
of an Atlas board in Fig 8.17.

The circuit board carries six DIN41612 connectors. In addi-
tion, an ATX 20-pin power connector is fitted to the board so that
12V, 5V and 3.3V supplies from a standard PC power supply can
be used to power the HPSDR. Since such power supplies are
readily available, both new and on the surplus market, this neat-
ly solves the HPSDR's power requirements. The DIN connector
spacing and board size have been chosen such that the back-
plane can be fitted into a standard PC enclosure.

The Atlas board was prototyped back in March 2006 and, if
available, can be ordered from the not-for-profit Tucson Amateur

8: SOFTWARE DEFINED RADIO

Fig 8.16: Block diagrams of the main current HPSDR modules

© R
SGB 20

11

Packet Radio organization [10]. The various files for the
design/construction of the Atlas board can be found on the
Internet [37].

Note that each module for the HPSDR has a project leader -
just like in the development of a commercial electronics product.
For example, in the case of the Atlas module, this was Phil
Covington, N8VB. Eric Ellison, AA4SW, is overall project manager
for the HPSDR and his job is to work with each of the project lead-
ers to foster and support the development of a full-blown HPSDR.

Janus - the DAC and ADC board
Named after the mythical god who can look in opposite direc-
tions simultaneously, the module is a very high performance,
dual, full-duplex, analogue-to-digital converter (ADC) and digital-
to-analogue (DAC) converter board.

Whilst the M-Audio Delta 44 soundcard has become the de-
facto standard for A/D conversion for use with SDRs, there are
a number of advantages to making your own ADC. These include
having complete control of any software drivers needed to com-
municate with the ADC chips, as well as the optimisation of sam-
pling rates and bit depths for individual signals.

It is also now possible to develop an ADC board which
approaches the performance of professional sound cards -
which is where the Janus board comes in. One great side effect
of the consumer demand for high-quality PC sound cards has
been the availability of a number of very high-performance, and
low-cost, ADC and DAC converter chips that are ideal candidates
for this project.

During the initial development of the Janus board, the
Wolfson WM8785, Texas Instruments PCM4202 and Cirrus
Logic CS5381 A/D chips were evaluated for use as the prime I
and Q ADC converter. Whilst all three chips gave very high per-
formance at 48k and 96ksps (kilosamples per second), it was
found the noise floor beyond about ±60kHz increased substan-
tially when operating at 192ksps. As a result, after a suggestion
from Bob McGwier, N4HY, an AKM AK5394A was then evaluat-
ed and chosen for the prime ADC converter.

The Janus module has been interfaced to the open source
PowerSDRTM software by Bill, KD5TFD and enables users to
select I/Q sampling rates of 48k, 96k and 192kbps at 24-bits.
VK6APH's development board for Janus is shown in Fig 8.18.

The Texas Instruments TLV320AIC23B was used as the ADC
for microphone and line inputs, and D/A converters for audio out
and I/Q signals for the transmitter. This remarkable chip con-
tains a microphone amplifier, with bias feed for an electret
microphone, stereo line in and out and has stereo 16-bit A/D
and D/A converters, together with a 35mW stereo headphone

amplifier. Originally, the TLV320AIC23B was designed for use in
MP3-format music players and the one-off price for this chip is
U$7 - we have a lot to thank MP3 design engineers for!

Since reserving lines on the Atlas backplane at such an early
stage is fraught with future issues, the Janus module incorpo-
rates a Complex Programmable Logic Device (CPLD) to provide
complete flexibility in pin assignments.

The purpose and operation of the Janus board- and the prac-
tical reasons for it - will be described in more detail later in this
chapter.

Ozymandias - Connecting to the World
Ozymandias (Ozy) is a Field Programmable Gate Array (FPGA)-
based interface controller card that provides the input and out-
put connections to the real world, so the HPSDR can be easily
controlled by a personal computer and its operator.

Firstly, an Altera Cyclone II FPGA (EP2C5Q208C8) is used to
provide numerous control lines for interfacing the various
boards connected to the Atlas backplane. The Cyclone II con-
tains over 4,600 logic elements and some 26 4k RAM blocks
plus almost 120,000 RAM bits.

The Ozy module also provides a high-speed USB 2.0 interface
to the controlling PC. The USB interface uses a Cypress FX2
chip, which greatly simplified the design and development effort
necessary for the interface. The FX2 supports full-duplex USB
communications at a measured 35MB/s - enough speed to
allow sufficient bandwidth for future requirements.

The FPGA also provides the necessary control logic and data
formatting for the Janus board, as well as serial and parallel
interfaces for user-defined I/O. The software interface to the
Janus module has been written in Verilog by VK6APH and
KD5TFD.

One highly useful feature of the Ozy board is its potential abil-
ity to measure the various high-frequency crystal oscillators
used by the HPSDR through the use of a 10kHz or 1Hz clock
from a Global Positioning System (GPS) receiver. A GPS clock
could be used to 'gate' the various oscillators and report the
count to the operator's personal computer via the USB interface.
Since the personal computer will have prior knowledge of exact-
ly what these frequencies should be, then any errors can be cor-
rected in software. The result of this would be that the HPSDR
will be a radio with extremely high frequency accuracy and sta-
bility - a boon for microwave and earth-moon-earth operators.

Discussions on the HPSDR reflector have indicated there is
interest in designing a GPS-locked reference for the project on
its own Atlas-compatible board. This board will be named
'Gibraltar'! The project leader for Ozy was Phil Covington, N8VB.
Ozy and its purpose and operation - and the practical reasons

The Radio Communication Handbook 8.13

8: SOFTWARE DEFINED RADIO

Fig 8.17: Prototype HPSDR backplane/backbone [Photo: Phil
Covington, N8VB]

Fig 8.18: VK6APH’s development board for the Janus DAC/ ADC

© R
SGB 20

11

The Radio Communication Handbook8.14

for a board of this kind - will be described in more detail later in
this chapter in the section on PC to SDR communications.

Mercury Receiver - Analogue to Digital
Conversion at the Antenna
Perhaps the most exciting of all the HPSDR modules, the
Mercury board enables direct sampling/reception of the 0 -
55MHz radio spectrum, effectively at the antenna.

Based on a Linear Technology LTC2208 130Msps 16-bit ADC,
the board contains its own FPGA to undertake 'Direct Down
Conversion' (DDC) to approximately 200ksps for transfer over
the Atlas bus to the USB interface on the Ozy board. Mercury
down-samples' in its own Altera Cyclone II FPGA, not unlike Mark
Ettus's commercial USRP SDR [38].

The Mercury sampling converter/receiver covers the range 0 -
55MHz when fundamental sampling is used - and well into the
UHF range on harmonic sampling. What is even better is
Mercury has a Blocking Dynamic Range (BDR) of 119dB. The
BDR was measured at 100kHz and 5kHz for 1dB gain compres-
sion with similar results. Even the original Mercury prototype had
a dynamic range of about 100dB. A screen shot of the Mercury
prototype running into the PowerSDRTM software (Fig 8.19) illus-
trates this point.

The LT2208 was connected via a Xylo FPGA board [39] over
USB 2 to PowerSDRTM, with an input signal level of 0dBm.
Special thanks must go to KD5TFD for modifying PowerSDRTM to
take the 16-bit data from the LT2208. A Linear Technology LTC
2208 evaluation board was used in early trials of the Mercury
principles.

One huge - and often unrealized advantage of the direct
sampling approach is that no I/Q phase or amplitude balanc-
ing is required, since these signals are generated from the
incoming signal and are created in software. This neatly gets
rid of the age-old problem of image rejection associated with
direct conversion receivers and latterly with down-conversion
SDRs such as the Flex-Radio SDR-1000 and the SoftRock

series. In the case of direct sampling and
the Mercury module, there is simply no
image to get rid of.

The Mercury board will be discussed in
more detail later in this chapter, in the sec-
tion on Digital Down Conversion (DDC). It is
currently available from the TAPR as a com-
plete and assembled printed circuit board.

Penelope - Companion
Exciter for Mercury
Penelope is a half-watt transmitter/exciter
board, intended as a companion to the
Mercury HF receiver board.

The Atlas bus-compatible Penelope
transmitter uses Digital Up Conversion
(DUC) techniques and processes the I and
Q signal from a PC (or a future HPSDR
Sasquatch DSP board) directly without the
need for a sound card. I and Q balancing is
not needed in Penelope, due to the RF
waveform being digitally generated.

The DUC is FPGA-based, so as to enable
future software upgrades and has a USB
interface to a PC via the Ozy board.

Some of the features of Penelope
include:

• 1.8 - 55MHz frequency coverage.
• 0.5W PEP output.
• Low level output for VHF/UHF transverters.
• Capable of SSB, AM, C-AM, FM, CW, PSK etc.
• RF phase and magnitude outputs for future 'Envelope

Elimination and Restoration’ (EER) power amplifier
• Open drain FET for Press-To-Talk (PTT) control of external

amplifiers.
• Seven open collector outputs for the control of external

devices (eg a linear power amplifier).
• Optional on-board microphone ADC for use without a

Janus card
• An ADC is used for Automatic Level Control (ALC) or PA lin-

earization, etc.
• The ALC is processed in the FPGA so as to avoid delays

associated with PC processing.

In addition, the Penelope board has a number of different
options for controlling its frequency, to suit different forms of fre-
quency standard. These are:

• On-board high performance 125MHz crystal oscillator.
• External 125MHz source.
• On-board oscillator can be phase locked to 10MHz refer-

ence (e.g. HPSDR Gibraltar board).
• On-board 10MHz OCXO/TCXO option.

Alexaires - Receiver BPF / Transmitter LPF
Alexaires - 'Alex' for short - is a combination RF receiver prese-
lector and transmitter low pass filter bank for use with the
HPSDR's Mercury receiver and Penelope transmitter, and
optionally, with an associated RF power amplifier up to 100
watts peak. It has been designed by Graham, KE9H, and Phil,
VK6APH.

As a receiver preselector, the purpose of Alex is to reduce
the level of out-of-band signals at the input of Mercury and,

8: SOFTWARE DEFINED RADIO

Fig 8.19: Screen shot of Mercury digital down conversion receiver running into
PowerSDRTM software

© R
SGB 20

11

importantly, to suppress any signals at the sampling image or
alias frequencies. As a transmitter low pass filter, Alex will
suppress the harmonic energy typically generated by an RF
power amplifier, as well as the images or aliases that appear
at the sampling clock frequency (122.8MHz) plus/minus the
operating frequency. The transmit low pass filters are also
used for additional Mercury receiver input band limiting.

Normally one of the low pass filters on the Alex transmit board
will be paired-up with one of the high pass filters on the Alex
receiver board. There is an additional 33 or 55MHz low pass fil-
ter on the receiver board, plus the 6-metre transmit low pass fil-
ter is in-line at all times to help suppress VHF images.

At the time of writing, Alex was undergoing beta testing and is
expected to be available as two complete assembled PCBs from
the Tucson Amateur Packet Radio Group (TAPR).

Pennywhistle 20W RF Power Amplifier
Pennywhistle is a compact RF power amplifier stage that can be
used with the Penelope transmitter and the Alexaires filters to
make a complete 16 to 20 Watt transmitter. This inexpensive
amplifier can quickly be used to get an HPSDR on the air - either
'bare-foot' or as a driver for a larger HF linear amplifier. It covers
the long-standing amateur bands between 1.8 and 54MHz - the
same as the rest of the HPSDR transmit/receive boards - and
measures 10 cm by 8 cm (half Euro-board size.)

The output stage of Pennywhistle is a single stage amplifier
that uses a pair of TO-220 16-Watt Mitsubishi RD16HFF1
devices in push-pull. The amplifier has approximately 19dB gain,
depending where it is biased, and will deliver 16 to 20 watts
output with 0.25W of drive.

At the time of writing, an alpha version of Pennywhistle was
being tested by its designer, Graham, KE9H, Phil, VK6APH, Bill
KD5TFD, and Dick, K9IVB. It is anticipated it will be sold as a
bare printed circuit board 'build-it-yourself’ kit by the TAPR.

LPU - a Linear Power Unit
The 'LPU' is a simple HPSDR power supply and provides a con-
venient low-noise solution to power the Mercury receiver,
Penelope transmitter, Ozy PC communications board and
Alexaires filter board from a 12V supply until the more complex
Demeter power supply is completed, in order to make a basic
and functional HPSDR transceiver.

Demeter has the following specifications:

Input power: 12.5V - 14.5V regulated DC input
Outputs: +12V@2A, +5V@2A, +3.3V@2A (optional),

-12V@100mA
There is a poly fuse on each regulator input: +12V, +5V, +3.3V

(optional) and -12V.

The LPU plugs into the Atlas backplane ATX connector and can
be directly mounted on the backplane. Other features include a
strap disable for -12V to reduce noise, dual power-pole input
connector and an internal dual power-pole output connector for
a power amplifier or other accessories. At the time of writing, the
LPU was undergoing alpha testing by its designer, Scotty
WA2DFI and is expected to be available as a kit from the TAPR.

Sasquatch - DSP Back-end for ‘PC-less’
Operation
The Sasquatch board is a hardware digital signal processor-type
'back-end' for the HPSDR, intended for use by constructors who
would like to operate the HPSDR as a stand-alone radio rather
than as an attachment to a PC. The board may even allow real

knobs and buttons to control the radio, rather than the software
keyboard/mouse controls of a PC-based SDR. The project leader
for the board is Lyle KK7P.

The board, which is presently in the planning phase, is antici-
pated to have the following features:

• Texas Instruments TMS320C6726 32-bit Floating Point
Digital Signal Processor.

• Its own Field Programmable Gate Array (FPGA).
• A Flash memory for self-booting / starting.
• Connector for a JTAG-based emulator.
• Analogue and digital Input / Output.
• Power consumption of less than one watt.

Other HPSDR Modules
Other modules are being developed by various project leaders.
These include a high efficiency HF power amplifier (Thor), an
enclosure to contain the HPSDR boards (Pandora), the Demeter
high-performance power supply and a general purpose
input/output board that sits on the Atlas bus (Epimetheus).

There is still much to be done in bringing the HPSDR to
fruition. For those experimentally-minded radio amateurs
involved in the project, this may turn out to be the golden age of
(software defined) radio. If you have an interest in 'bleeding
edge' technology, surf to the HPSDR website [8] and reflector
and sign-up- it should be a fun ride.

μWSDR VHF/UHF/MICROWAVE PROJECT
Like the High Performance Software Defined Radio project, the
μWSDR is a GNU-based next generation SDR. However, while
HPSDR is mainly aimed at 0-55MHz, the μWSDR - or ‘microwave
SDR’ is squarely targeted at microwaves and VHF/UHF. GNU is a
free UNIX-like operating system. Variants of GNU, which use the
Linux kernel, are now widely used. As in the HPSDR, one of these
GNU variants will run the μWSDR in addition to Windows™.

The μWSDR is being designed and developed by a group of
microwave enthusiasts, which includes Chris Bartram, GW4DGU,
and Grant Hodgson, G8UBN, who are working on the RF design
for the project. Other key members of the team are Tobias Weber,
DG3YEV (firmware and digital hardware design), Jonathan Naylor,
ON/G4KLX (PC software and web pages), David Wrigley (PIC
firmware for the front-end boards) and Chris Bryant, G3WIE.

The European-based project has a dedicated web site [40]
which explains the basic ideas behind the μWSDR.

Like the HPSDR, the rationale behind the μWSDR project is to
break the overall design of a high performance SDR into two self-
contained modules - a separate RF front-end for each band and
a standardised digital 'back-end', which will build into a self con-
tained unit (with the exception of the PC which carries out control
and digital signal processing functions). Each of the RF front-end
modules is being designed by an individual or small group and
connects to the digital back-end using a standard connector.

The philosophy behind μWSDR is strongly 'open source' - the
same as the HPSDR - so the circuit of each module, and any

The Radio Communication Handbook 8.15

8: SOFTWARE DEFINED RADIO

Fig 8.20: μWSDR control panel, as it will appear on a PC

© R
SGB 20

11

The Radio Communication Handbook8.16

software it uses, will be published on the Internet and freely
available to anyone who wishes to use them. Fig 8.20 shows the
μWSDR control panel, as it could appear on a PC screen.

Neither the microwave SDR nor the HPSDR will use PC sound-
cards for analogue-to-digital or digital-to-analogue conversion,
as does the Flex-Radio SDR-1000 or the SoftRock kits.

By now, some of you will probably be thinking that μWSDR and
HPSDR appear to have an awful lot in common and it would
seem a waste of resources if each group were to develop all of
its own hardware, firmware and software, when the other group
may have already done some suitable work. Luckily this thought
has already occurred to members of both groups and discus-
sions have already taken place so ideas, circuits and code can
be exchanged freely.

There are a couple of key philosophical differences between
the μWSDR and HPSDR designs.

Whilst the μWSDR project is aimed at attracting newcomers to
try out the microwave bands and thus has a low-cost aim for the
basic kit, HPSDR is aimed primarily for no-compromise high per-
formance on the amateur bands between 1 and 54MHz, what-
ever the cost. That being said, the HPSDR team are confident
their radio will cost much, much less than a current top-line HF
radio, such as the Ten Tec Orion 2.

The basis of the μWSDR, in common with most SDRs, is to
move many of the functions of the intermediate frequency and

audio stages of a conventional analogue superheterodyne radio
transceiver into software, but still use hardware to down-convert
the operating frequency to a very low intermediate frequency (of
around 24kHz) and then digitize the signal to enable the pro-
cessing of it to be done on a personal computer.

A block diagram of the μWSDR signal path is shown in Fig
8.21. Each RF front-end module of μWSDR is anticipated to
incorporate the local oscillator, receive RF amplifier and mixer,
transmit mixer and associated amplifier. The two major design
goals are to generate a 200mW transmit signal at the signal fre-
quency and have a receiver with a noise figure that does not
exceed 3dB.

By using a different RF front-end module for each desired
band, only some minor reprogramming of the SDR's CPU (cen-
tral processing unit) should be necessary to support each band.
The first band module to be available will be the one for 13cm.
In September 2008, the GeMMA transmit board was in the
process of being tested.

The back-end of the μWSDR will contain high quality ana-
logue-to-digital (for receive) and digital-to-analogue (for transmit)
converters, the Central Processing Unit (CPU) and an Ethernet
interface to the personal computer.

In contrast to the HPSDR, which uses a USB 2-type PC inter-
face, 100Mbps Ethernet was chosen for this purpose on the
μWSDR.

LOCAL OSCILLATORS FOR SDR
The Direct Digital Synthesis (DDS) local oscillators
used to control the operating frequencies of most
modern HF, VHF and UHF transceivers can provide
very low phase noise, but can also produce numer-
ous spurious outputs. Although there has been a
considerable reduction in the level of spurs in the
latest generation of DDS devices, they can still be
significant when designing very high performance
receivers.

An option often used to reduce spurs is to feed
the output of the DDS into a 'clean-up' Phase
Locked Loop (PLL). Whilst this can be effective in
reducing the level and number of spurs, the phase
noise of the overall local oscillator is degraded due
to the oscillator used in the PLL.

A number of high performance receivers over-
come this problem by dividing down a VHF oscilla-
tor that uses a DDS to provide fine tuning steps.
Each time the oscillator frequency is divided by two,
the phase noise is theoretically reduced by 6dB.
Examples of receivers that use this technique are
the TT Orion (which has an oscillator around
550MHz) and the CDG2000 [41].

Given a conventional SDR digital signal process-
ing (DSP) back-end (eg a PC using a sound card as
an ADC/DAC and running PowerSDRTM, Rocky or
KGKSDR application software), we can tune using
the software a few kilohertz around the wanted
frequency and can also tune by moving the sound
card sampling rate around the local oscillator fre-
quency). This relieves us from the need to 'step'
the main local oscillator in fine steps - and instead
this can 'tune' in say 10kHz steps, with the fine
tuning being done in software.

This greatly simplifies the design of the local oscil-
lator for an SDR. By using a microwave oscillator
and dividing this down to the HF range, a substan-
tial reduction in phase noise can be achieved. In the

8: SOFTWARE DEFINED RADIO

Fig 8.21: Block diagram of μWSDR signal path

Fig 8.22: Block diagram of μWSDR local oscillator and control circuit

© R
SGB 20

11

proposed Horton module for the HPSDR, The intention is to use a
'canned' 2.4GHz VCO that 'tunes' in 800kHz steps. This is subse-
quently divided to produce I and Q inputs to the mixer stages.

The μWSDR team favour the use of fractional-N phase lock
loops for the local oscillator - technology that is likely to be famil-
iar to microwave enthusiasts. For the lower frequency bands, the
μWSDR oscillator will also be a microwave fractional- N synthe-
sizer, followed by a divider. A block diagram of the μWSDR local
oscillator and control circuit is shown in Fig 8.23.

The μWSDR team is looking to tune the local oscillator in
10kHz steps, which simplifies its design. Provided the band-
width available at the intermediate frequency is wide enough,
there is no need for the local oscillator to tune in small steps;
the gaps in between are filled by a software 'oscillator' running
within the PC.

ADDING AN SDR BANDSCOPE TO YOUR
ANALOGUE HF TRANSCEIVER
DXers or contesters who have experimented with SoftRock hard-
ware and Rocky or KGKSDR software often wish their analogue
HF transceivers had the amazingly sensitive bandscope facilities
that the combination of the SoftRock/Rocky [1] or KGKSDR [3],
their personal computer and a 'prosumer' grade sound card pro-
vide.

One option is to go and buy a software defined radio trans-
ceiver that will run software of this kind. However, a Flex-Radio
SDR-1000 or FLEX-5000 are not cheap and are a big leap of
faith for a radio amateur who is more operator than experi-
menter.

The good news is there is a middle way available. This involves
'tapping' one of the intermediate frequency (IF) chains in the
receive section (see Fig 8.23) of a commercial HF transceiver
and feeding this output into a SoftRock receiver, so as to provide
digital signal processing and a display using Rocky or KGKSDR,
and digital-to-analogue conversion using an M-Audio Delta 44
soundcard.

The majority of the HF transceivers popular over the last
decade - such as the Yaesu FT-1000 series or the Kenwood TS-
850 - have a first IF at VHF and a second IF between 8 and
9MHz; 8.215MHz in the case of the FT-1000 and 8.83MHz in
the case of the TS-850. If this second IF output is fed into a
SoftRock that is fitted with a suitable crystal and a bandpass fil-
ter, then the SoftRock can be used to provide a separate receiv-
er of its own. This second receiver can provide a bandscope, dig-
ital filtering and high-quality digitally-processed audio output (if
fed into a soundcard like the Delta 44).

In this application, the wide bandpass filters and first IF roof-
ing filters (which in the case of the latter may have a bandwidth
of up to 10 to 15kHz) typically used in this architecture of radio
are an advantage, ensuring that the bandscope facilities provid-
ed by the SoftRock/transceiver/software combination are sen-
sitive across a wide chunk of frequency spectrum.

Using a SoftRock in this manner was pioneered in 2005 by
Alex Shovkoplyas, VE3NEA, the author of Rocky, who used a
SoftRock as a digital back-end to his Kenwood TS-570S.

A few years ago, KB9YIG built up a v6 SoftRock for VK6VZ to
experiment with using his Yaesu FT-1000 as an IF signal proces-
sor (connected before the 8.215MHz 2nd IF crystal filter). VK6VZ
is a very keen 160m weak signal CW DX operator and the idea
was to have a very sensitive bandscope that could 'see' weak sig-
nals appearing across the CW portion of 160m at sunset/sunrise
times. It would also enable him to compare the FT-1000's famous
analogue receiver (with 500Hz crystal filters in both the second
and third IFs, plus a brilliant audio peaking filter and IF shift and

width controls) with the Softrock back-end, which was to use
Rocky and KGKSDR software that have digital filtering variable
down to several tens of Hz.

For the FT-1000’s 8.215MHz IF application, KB9YIG used an
11.0MHz crystal, used with 1/3 sub-harmonic sampling. The
centre frequency is about 3* (11.0 - 0.003) / 4 = 8.248MHz, ie
33kHz above the IF frequency. The modified SoftRock v6 was
fed into a M-Audio Delta 44 soundcard (for analogue-to-digital
conversion) that can sample at 96kHz, so the IF tuning with the
SoftRock is from 8.2MHz to 8.296MHz. This gave excellent cov-
erage of the FT-1000D 2nd IF passband. The M-Audio Delta 44
soundcard ran from a Pentium IV personal computer.

KB9YIG's completed SoftRock v6 was mounted in a diecast
aluminium box by VK6VZ and then VK6APH worked out how to
interface it to the FT-1000D and modified the latter. VK6APH
had to drill a hole in the rear of the case of the FT-1000, in order
to get the second IF connection out via a new RCA socket.

In essence, VK6APH got the IF output from the FT-1000 by
'tapping' an IF buffer amp (Q2003) at a low impedance point
(one of the gates, to be precise) with a 22pF capacitor, following
this with a 10k/47ohm attenuator - see Fig 8.27.

Note that the surgery necessary to the FT-1000 in order to get
the second IF 'tap' was difficult to perform and required some
dismantling of the radio, a cool head, superb soldering skills
and the use of a very fine point soldering iron. It is potentially a
very good way to break your beloved/expensive FT-1000.

To power the SoftRock, the 13.8V available at an RCA socket
on the rear of the FT-1000 was used.

With the antenna socket of the Softrock connected to the new
FT-1000 IF output, the SoftRock connected to the PC's sound
card in the usual manner, a resonant antenna connected to the
FT-1000 and the latter tuned to the centre of the 7MHz band,
this level of attenuation gave a noise floor on the KGKSDR band-
scope of about 10dB above the bandscope's base line noise
when there was no antenna connected to the FT-1000.

The 10 kilohm variable resistor was set between one third and
a half of its value, in order to provide the correct level signal into
the SoftRock. This adjustment isn't critical but care should be
taken so as not to overload the SoftRock/soundcard combination.

The Radio Communication Handbook 8.17

8: SOFTWARE DEFINED RADIO

Fig 8.23: Modifications to the Yaesu FT-1000D to allow connection
of a SoftRock v6 ‘back-end’

© R
SGB 20

11

The Radio Communication Handbook8.18

The adjustment is easiest carried out by using the Rocky soft-
ware and a signal generator. Making sure that the FT-1000
noise blanker is switched off, a signal of around S7 (on the FT-
1000 'S' meter) was injected into the FT-1000 antenna input
and the variable resistor adjusted until the point that the level of
the signal shown on the Rocky bandscope no longer increased.

Next, the FT-1000 noise blanker was switched on and the sig-
nal level checked to make sure it was the same as before on the
Rocky bandscope. If not, it may be necessary to adjust the pot
slightly until this situation is achieved (ie that the signal level on
the Rocky bandscope looks the same with the noise blanker
switched on or off).

The SoftRock v6 can be overloaded with signal from the
FT1000, so care needs to be taken to adjust the gain of the
SoftRock in KGKSDR and Rocky so that this does not happen.

Results

The results were terrific - VK6APH and VK6VZ could see ±30kHz
from the frequency that the FT-1000 was tuned to, using Rocky
or KGKSDR as our bandscope. Given the narrow nature of the
section of 160m where CW operation takes place (1800 to
1835kHz) this enabled us easily to see all of this part of the
band in one view.

The SoftRock back-end also gives a useful second receiver
(strictly speaking, a third) for the FT-1000. You can see on the

Rocky or KGKSDR bandscope where the main FT-1000D receiv-
er is tuned, since the 8.215MHz crystal filter leaves a 'suck out'
in the passband (ie in the form of a depression in the level of the
trace) on the Rocky and KGKSDR bandscopes.

In Rocky, we set the local oscillator (LO) frequency to 0 in the
Settings dialog, while in KGKSDR we had to set the LO frequen-
cy to 0.001kHz because it wouldn't accept a 0kHz LO. We also
found that in KGKSDR, the bit depth needed to be set to 16-bits
for acceptable performance.

After experimenting with the FT-1000 / SoftRock combina-
tion for a few weeks, VK6VZ found the best way to use it for CW
was with the Rocky software in waterfall bandscope mode - see
Figs 8.24 and 8.25. The screen was set-up so that the IF offset
of the SoftRock (in practice with FT-1000 on CW, about
33.34kHz) was in the centre of the screen. This means that the
SoftRock receiver is essentially tuned to the same frequency as
the FT-1000 receiver, so you can transceive, using either receiv-
er for reception.

The comparison showed that weak CW signals were, on bal-
ance, about equally readable on both the FT-1000 and SoftRock
receivers. However, the Rocky bandscope (particularly in water-
fall mode) could clearly see signals that were inaudible or bare-
ly audible on the FT-1000.

On one amazing occasion, VK6VZ watched K3NA appear slow-
ly from the noise at VK6 sunrise on 1.8MHz on the Rocky water-
fall, actually reading characters from his callsign on the screen
several minutes before his signal actually became audible. If
VK6VZ hadn't been able to 'see' K3NA's signal, he would proba-
bly given up listening.

At the same time whilst listening for K3NA's signal, VK6VZ
could watch the rest of the CW band on the waterfall display, to
see what other weak signals came up.

When it came to SSB operation, signals were much more
readable/pleasant to listen to from the SoftRock than from the
FT-1000. VK6VZ's preferred software for SSB reception was
KGKSDR, with its excellent AGC characteristics for SSB. VK6VZ's
observation was that good SSB signals sounded awesome and
poor ones sound poor on the FT-1000/SoftRock/KGKSDR
combo - in comparison, on the FT-1000 alone, they all sounded
similar and relatively muddy.

This performance isn't just down to the direct conversion
SoftRock receiver and KGKSDR software, but to the excellent
analogue-to-digital conversion of the Delta 44 soundcard and
the hi-fi audio it provides to a pair of PC speakers.

The main thing to understand here is that the bandscope you
get from Rocky/KGKSDR, etc is able to 'see' signals that you can
hardly hear (and in some cases, not hear). In comparison, appar-
ently the bandscopes used in the current generation of HF trans-
ceivers are fine at seeing strong signals, but not necessarily very
weak ones.

The only downside VK6VZ has found is that if you use the
SoftRock as the main receiver, it acts as a monitor receiver on
transmit and the audio coming out is delayed by a few hundred
milliseconds - which is terribly distracting when you are speak-
ing or sending CW!

However, it is a relatively simple process to arrange for the
SoftRock to be muted on transmit - KB9YIG has provided two ter-
minals for this facility on the v6.

For those who are interested in finding out how to modify their
particular HF transceivers to work with a SoftRock in this man-
ner, the SoftRock 40 web pages [13] contain a section devoted
to 'application notes' on a variety of radios [42]. If you cannot
find your particular model of radio, join the SoftRock 40 reflec-
tor and you can e-mail its members to find out if any of them
have devised modifications for it.

8: SOFTWARE DEFINED RADIO

Fig 8.25: Activity during a 7MHz CW contest during October
2006 viewed using the Rocky bandscope display function

Fig 8.24: Activity during a 7MHz CW contest during October
2006 viewed using the Rocky waterfall display function. The
small arrow head on the right hand side of the display shows
the frequency to which the FT-1000D/SoftRock v6/Rocky 1.5
combo are tuned.

© R
SGB 20

11

WHY SDRS NEED I AND Q SIGNALS
Most of the Software Defined Radios (SDRs) we have talked
about so far - from the Flex Radio SDR-1000 to the various
SoftRock receivers to the G3PLX Zero IF method, have had one
thing in common - they all process two signals, consisting of an
I (for in-phase) and a Q (for quadrature) signal.

Why do we need these two signals when perhaps at first con-
sideration we only need one? Understanding this idea is the key
to truly understanding the current generation of SDRs.

Fig 8.26 shows the block diagram of the front-end of a direct
conversion receiver. The signals picked up by its antenna are
first filtered to ensure so that only those within the frequency
band of interest is passed and then these signals are applied to
a mixer. The other signal 'input' to the mixer is a local oscillator
which, in the case of a CW signal, is set to be a few 100Hz away
from the wanted signal, in order to give us the audible beat note
required to decipher the signal.

The output of the mixer is filtered to preserve the difference
between the wanted signal and the local oscillator signal. Since
this difference is within the audio range, the resulting audio fre-
quency signal is passed on to our PC sound card for processing.

With the SDRs we have considered so far, they have what
seems to be two identical receiver chains - see Fig 8.27, which
shows a block diagram of the classic SDR. As you can see, we
have a second mixer which takes the same filtered antenna sig-
nal as the first, as well as having an identical local oscillator fre-
quency feeding into it and an identical filter on its output. The
output from this second receiver chain apparently provides the
same audio signal output as the first.

So these two output signals are the same - right? Well, not
quite - there is actually an important difference between them.
If you look closely at Fig 8.31, you will see that the local oscilla-
tor connection to the second mixer is passed through a block
that is marked '90 degree phase shift'.

This means that whilst the frequency of the local oscillator fed
to the second mixer is exactly the same as the first, the phase
has been shifted by 90°. This 90° phase shift - or difference will
also be present on any signal that passes through the second
mixer, hence the audio output signal from the second mixer will
be at 90° to that being produced by the first mixer. Because of
the phase difference between the two local oscillator signals,
the I and Q signals have a 90° phase difference.

If just the Q signal is fed through a band pass filter, note that
this causes an additional 90 degrees phase shift for all signals
passing through the filter. The filter bandwidth depends on the
mode being used; for CW this filter could be, say, 500Hz and for
SSB, say, 3kHz.

The I signal goes though a similar bandwidth filter but does
not get the additional phase shift. So now the I and Q signals
have a 180° phase shift and if we add them, we get double the
signal out and if we subtract them we get zero.

This is the key point in understanding how I and Q demodula-
tion works - as we tune across a signal from, say, 1kHz above the
signal to 1kHz below the signal, then as we pass through zero-
beat the phase relationship between the I and Q signal changes
by 180°.

So let's say that the above zero-beat I leads Q by 90°, the below
zero-beat I will lag Q by 90°. If you have a dual channel oscillo-
scope and look at the I and Q outputs of a SoftRock SDR and tune
a signal generator through zero-beat, you will see this effect.

What this means is that a signal above the local oscillator fre-
quency is received and any which are below the local oscillator
frequency are not received, ie we have an USB (upper sideband)
receiver. Similarly, if I and Q are subtracted rather than added at
the output, then the reverse applies - we get an LSB receiver.

If a dual channel oscilloscope is connected to the output of the
two mixers, we would see a trace similar to that shown in Fig 8.28.
We can also represent the two signals as vectors with equal ampli-
tudes and an angle of 90° between them - see Fig 8.29.

The Radio Communication Handbook 8.19

8: SOFTWARE DEFINED RADIO

Fig 8.27: SDR front-end

Fig 8.26: Direct conversion receiver

(left) Fig 8.29: I and Q
as vectors

(above) Fig 8.28:
I and Q signals at the
output of the mixers© R

SGB 20
11

The Radio Communication Handbook8.20

The vectors are both rotating at the difference in frequency
between the input (signal) frequency to the mixers and the local
oscillator frequency, but Fig 8.33 shows a 'snap shot' at a
moment in time, so they appear stationary. The vector repre-
sentation of the I/Q signals is very useful for understanding
some additional theory, as we will see in a moment.

The two audio signals are said to be 'in quadrature', or 'phase
quadrature', and are labelled 'I' (for in-phase) and 'Q' (for quad-
rature). The I signal by convention is the one that reaches its
most positive value first. You will also see this I and Q signal pair
referred to as a complex signal (though hopefully not complicat-
ed after the preceding explanation!).

In order to get a complete understanding of what is going on,
it is necessary to get mathematical for a moment. The basis for
DSP processing of a modulated signal is the use of complex
exponential representations, instead of sines and cosines.

Now, the cosine signal is simply the 'real' part of the complex
exponential, while the sine signal is the 'imaginary' part of the
complex signal, as per Euler's formula:

exp^jt = cos(ωt) +j sin(ωt)

If you consider the real and imaginary parts of the complex
signal as components of a vector that rotates around a point,
you will see that if ω is positive, the vector rotates counterclock-
wise, while if ω is negative, the vector rotates clockwise.

If the local oscillator signal is also considered as a complex sig-
nal, multiplying the complex input by the complex local oscillator
produces only a sum frequency - there is no difference frequen-
cy. In mathematical terms, when multiplying two exponentials,
you simply add the exponents - which simplifies processing:

Z = exp(j*f1) * exp(j*f2) = exp(j*(f1+f2))
= cos(f1 + f2) + j sin(f1 + f2)

So, back to our original question: "why go to all the trouble and
expense to generate two signals that are 90° out of phase with
each other?"

Someone once said "give me I/Q and I can demodulate any-
thing" [43]. And that, quite literally, is the reason we go to all this
trouble. If you have I and Q signals then you can demodulate any
signal - be it AM, FM, SSB, CW, PSK31, etc, or any new modula-
tion system that anyone may dream up in future. Similarly, in the
case of a transmitting a signal, if we generate the appropriate I
and Q signals we can transmit any form of modulation.

AM Demodulation
Let us now look at some modulation systems and see how they
can be demodulated if we have I and Q signals available. Let's
start with a simple system - good old fashioned Amplitude
Modulation (AM).

To demodulate an AM signal, we simply use Pythagoras'
famous theorem about triangles (the square on the hypotenuse
- the longest side of a triangle - is equal to the sum of the square
of the other two sides) and take the square root of the sum of I
squared plus Q squared, as per Fig 8.30.

AM = √ (I2 + Q2)

Each of the I and Q vectors will be varying in amplitude in
sympathy with the amplitude modulation on the incoming sig-
nal. Hence the hypotenuse of the triangle that we have just
formed from the I and Q vectors will also vary in sympathy with
the modulation.

This mathematical process is really easy to do in software and
the following is the actual line of code inside a module of code

8: SOFTWARE DEFINED RADIO

Fig 8.30: AM
demodulat ion
using I and Q

Fig 8.31: (a) AM signal at the input to the sound card; (b) Sampled
AM signal; (c) Magnitude of AM signal

(a)

(b)

(c)

© R
SGB 20

11

called am_demod.c (from the open source PowerSDRTM code
and contained within DttSP, see [44])

am->lock.curr = Cmag (CXBdata (am->ibuf, i));

At this stage you may be thinking "hang on a minute, if both I
and Q are amplitude modulated in their own right, then why not
just take one of these signals and measure its magnitude direct-
ly, since this would give us the original modulation back?" This is
rather like using a diode to demodulate AM as we do in an ana-
logue receiver.

That's a very good question and the answer is "yes, you could."
However, there is a good reason for not simply doing it that way
but using both the I and Q signals instead, which is as follows.

Let's say we have mixed the incoming signal down to a fre-
quency within the input range of a PC sound card, generally in
the range 10 to 20kHz.

We will assume our signal has been mixed down to 10kHz and
is being amplitude modulated with a 1kHz sine wave. As a result,
at the input of the sound card we have a signal that looks like
the one in Fig 8.31(a).

Inside the sound card we convert the signal to a series of sam-
ples represented by the dots in Fig 8.31(b). We then calculate
the magnitude of each sample, which results in the signal
appearing in Fig 8.31(c).

If we were to feed this signal directly to the D/A converter in
our sound card, we would end up with a strong component at
10kHz. We could pass the signal through a low pass filter before
passing it to the sound card, but let's see what happens if we
use the I and Q signals as proposed above.

Fig 8.32(a) shows the I and Q signals being fed into the sound
card - note the 10kHz carriers are 90° out of phase with each
other. As before, we then sample each signal inside the sound
card, which results in the values shown with black or grey dots
in Fig 8.32(b).

We now apply Pythagoras theorem and the resulting signal is
shown in Fig 8.32(c). Notice that the 10kHz carrier component
is no longer present in the output signal. By using the I and Q
signals, we have eliminated the need to filter the demodulated
signal.

What is even more useful is what would happen if we had
mixed the AM signal down to an even lower IF, say 1kHz. Since
this is within the audio range of a typical AM signal, it would have
been impossible to filter out of our demodulated signal.
However, when using the above I and Q technique, the IF fre-
quency does not appear in the demodulated output. Note that
the technique works even if we use zero Hz as the IF.

CW and SSB Demodulation
Now let's look at how we demodulate a CW or SSB signal. We
could simply tune the local oscillator in Fig 8.30 to give us
either the desired beat note for CW reception or to give us the
frequency of the suppressed carrier in the case of an SSB sig-
nal. Whilst this would work, again there are benefits from
using both the I and Q signals, as does the SDR receiver shown
in Fig 8.27.

Let us analyse this further, by using some 'real' figures. If we
assume that the wanted CW signal is at 14.101MHz and we
would like to listen to a 1kHz beat note, we could tune the local
oscillator to 14.100MHz since:

14.101MHz - 14.100MHz = 1kHz

However, if we have an additional, unwanted, CW signal at
14.099MHz, this also produces a 1kHz beat note since:

14.100MHz - 14.099MHz = 1kHz

If we look at the I and Q waveforms that result from applying
a 14.101MHz signal to the SDR receiver shown in Fig 8.27, we
see two one-kilohertz sine waves with 90° phase difference -
see Fig 8.33(a). Note that the Q signal leads the I signal in time.

If we now feed a 14.099MHz signal into the receiver, we again
see two 1kHz sine wave with 90° phase difference (Fig 8.33(b)).
However, note that the Q signal now lags the I signal in time (the
phase of the Q signal has been shifted by 180°). It is this phase

The Radio Communication Handbook 8.21

8: SOFTWARE DEFINED RADIO

Fig 8.32: (a) AM I and Q signals at the input to the sound card;
(b) Sampled I and Q AM signals; (c) AM demodulation using
I and Q

(a)

(b)

(c)

© R
SGB 20

11

The Radio Communication Handbook8.22

shift that enables us to remove the unwanted signal, as follows.
In Fig 8.34, the I and Q signals have been passed to two low
pass filters. Each has the same frequency response but the
phase of all signals passing through the Q filter are shifted by
90°. Fig 8.35(a) shows the resulting I and Q signals for the
wanted 14.101MHz signal, while Fig 8.35(b) shows the resulting
I and Q signals for the unwanted 14.099MHz signal.

If the I and Q signals are now added together, the result is that
we end up with a signal of double the amplitude of I or Q in the
case of the wanted signal (Fig 8.35(c)), and zero amplitude in
the case of the unwanted signal (Fig 8.35(d)).

The end result is that we have produced a receiver that
responds to signals above the local oscillator frequency (ie
Upper Sideband or USB) and rejects those below (ie lower side-
band or LSB). If instead of adding the I and Q signals together
we subtract them, then the reverse applies.

Phase and Frequency Modulation
To round off on demodulating the popular analogue modes
using our SDR receiver, given I and Q signals we can demodulate
a Phase Modulated signal using:

PM = tan-1(Q/I)

8: SOFTWARE DEFINED RADIO

Fig 8.33: (a) Wanted signal I & Q phase relationship; (b) Unwanted
signal I & Q phase relationship (Q is the lighter coloured wave-
form)

Fig 8.35: (a) I & Q phase relationship for wanted signal; (b) I & Q
phase relationship for unwanted signal; (c) Result of adding I & Q
for wanted signal; (d) Result of adding I & Q for unwanted signal

Fig 8.34: SDR front-end with Q phase shift

(a)

(b)

(a)

(b)

(c)

(d)

© R
SGB 20

11

And for Frequency Modulation

FM = (Qn x In-1 - In x Qn-1)/(In x In-1 + Qn x Qn-1)

where n = current sample and n-1 = previous sample

We hope you now have a better understanding of why generat-
ing these two signals is so useful. As you can see, the processing
of I and Q signals is fundamental to the operation of an SDR.

THE KEY ROLE OF THE FIELD PRO-
GRAMMABLE GATE ARRAY
One technology that has been rapidly taken up by those experi-
menting with SDR is the Field Programmable Gate Array or
'FPGA'. It is convenient to think of an FPGA as a hardware inte-
grated circuit whose internal function can be configured, and
altered, by downloading software into the device. For those of us
who cut their teeth using the TTL 7400 series of integrated cir-
cuits (ICs), this is an interesting development. Rather than keep-
ing a stock of the various kinds of ICs - for example, AND gates,
counters, etc - we can use an FPGA and determine its function
by downloading the relevant software into the device.

We can also connect the inputs and outputs of the gates we
have created within the FPGA using software. Rather than using
physical wires and a soldering iron, this software configuration
can be done by drawing a connection on the screen of a PC or
by writing a few lines of code. Rather than having access to indi-
vidual logic gates, an FPGA will typically hold a specific configu-
ration of gates called a Logic Element. The number of Logic
Elements can vary considerably - from a few hundred in a small
FPGA to well over a million in a large device.

As well as Logic Elements, some FPGAs contain dedicated
complimentary functions such as memory, Phase Locked Loop
(PLL) synthesizers and frequency multipliers, as well as high-
speed interfaces.

The Advantages of FPGAs
An FPGA costing a few tens of pounds can be programmed to
replace hundreds of equivalent discrete ICs, yielding both size
and cost advantages. Since the 'wiring' between the devices that
make up an FPGA is performed in software, rather than tracks
on a circuit board, the circuit can be corrected, improved or mod-
ified without needing to physically change the board.

For the experimenter, a PCB containing an FPGA can be repro-
grammed numerous times as a project evolves, or the same PCB
design can be used for different functions. Whilst many of these
projects could be developed using a low-cost microprocessor,
the FPGA has one major advantage: it can perform multiple
tasks in parallel - a real boon for SDR work.

There are a number of ways to design the circuit you want an
FPGA to perform. You can draw the schematic of the circuit on a
personal computer (using the appropriate applications soft-
ware), write software or use a combination of these methods.

For those first starting to experiment with FPGAs, it is tempt-
ing to draw the schematic of the required circuit, since all of the
symbols will be familiar. Fig 8.36(a) shows the schematic of a
phase/frequency detector that is to be implemented in an FPGA.

The advantages of schematic entry are soon diminished
once a design uses more than a handful of logic functions. The
schematic can grow to cover many pages on the personal com-
puter screen, making understanding the FPGA's operation dif-
ficult - as well as complicating the inevitable debugging
process.

The Radio Communication Handbook 8.23

8: SOFTWARE DEFINED RADIO

Fig 8.36: (a) Phase-frequency detector by
VK6APH as might be programmed into an
FPGA (b) Fragment of Verilog code from
an oversampling DAC

(a)

(b)

© R
SGB 20

11

The Radio Communication Handbook8.24

Whilst it is possible to develop very complex designs using
schematic entry, the beginner is strongly advised to take some
time to learn one of the FPGA programming languages. These
are generically referred to as Hardware Description Languages
or 'HDL'.

There are two languages that dominate the FPGA industry,
namely Verilog and VHDL (the latter translates to 'Very high
speed integrated circuit Hardware Description Language').

Verilog seems to be most popular in the USA, whilst Europe
prefers VHDL. Having tried to learn both languages, VK6APH
found Verilog much easier to learn since it has a lot of similarities
with the C programming language. VK6VZ finds the very mention
of either give him a bad headache.

Whilst the Verilog language is quite extensive, the FPGA imple-
mentation seems to use a relatively small subset. This enables
the beginner to become proficient whilst only knowing a rela-
tively small part of the language.

Fig 8.36(b) is an extract from the Verilog code used to imple-
ment a stereo over-sampling, Digital to Analogue Converter
(DAC), used by the Janus card in the HPSDR project [8]. These
seven lines of code are converted into some 40 logic gates in
the FPGA. As you can see, this is a clear indication of the effi-
ciency of writing in Verilog to configure an FPGA, rather than
drawing the equivalent schematic.

In practice, the FPGA designer uses a combination of
schematic entry and an HDL. For example, the phase/frequency
detector in Fig 8.31(a) was copied from the data sheet of an
existing IC. At the press of a key, this was automatically convert-
ed to Verilog code and included in the rest of the program.

The converse - being able to see how the HDL has been con-
verted into logic gates - can also be useful when debugging a
program.

There is also a considerable amount of free open-source
Verilog and VHDL code available. This is fertile ground for the
beginner, since 'example code' can be downloaded from the
Internet, simulated and then loaded into an FPGA.

A good source of sample FPGA code can be found in the vari-
ous lecture notes that the computing or engineering depart-
ments of numerous universities place on the Internet.

Kirk Weedman, KD7IRS, has recently developed a series of
web-casts that present the basics of Verilog programming and
much of the code used in the HPSDR project. You can view Kirk's
presentations at [50].

Getting Started with FPGAs
So how does the beginner dip their toe in the pool of FPGA devel-
opment? One way is to purchase one of the low-cost develop-
ment boards that are produced specifically for this purpose. The
two major FPGA manufacturers - Xilinx and Altera - both provide
suitable boards, as do a number of smaller companies.

VK6APH's entry into the world of FPGAs came via a beginner's
board called the Xylo [39] - see Fig 8.37. This board contains an
Altera Cyclone EP1C3 FPGA, an FX2 microprocessor, full-speed
USB interface (480Mbps) as well as Ethernet, VGA, I2C and
RS232 capabilities plus some 38 additional input/output pins.

Since the Xylo board contains its own voltage regulator, no
external supplies are required to use the board as it is powered
from 5V via its USB connection to a personal computer.

The Xylo board comes with example C and Verilog code so as
to enable the various communications and interface facilities
to be fully investigated by the user. Whilst more suited for learn-
ing and simple projects, it should be noted a Xylo board was
used to develop the entire Ozy_Janus FPGA code for the HPSDR
project [8].

An alternative is the Ozy board [46] - see Fig 8.38 - that forms
the FPGA backbone to the HPSDR project. This uses a physical-
ly larger FPGA (an Altera Cyclone II EP2C5Q208C8) so as to pro-
vide more inputs and outputs, together with other features.

Since the HPSDR project is open source, both for software
and hardware, all the circuits and driver code, etc, are freely
available from the HPSDR website.

Either the Xylo or the HPSDR Ozy board will make an excellent
introduction and learning platform for anyone interested in work-
ing with FPGAs. The HPSDR Ozy does have the advantage of
being open source and intended for use with SDRs - this is mar-
keted by the Tucson Amateur Packet Radio group (TAPR) [10].

Both Xilinx and Altera provide free development tools that can
be downloaded from the web and used to develop code for a
particular FPGA. In fact, testing the code on a physical FPGA is
often the last thing that a developer does.

The development tools enable the code to be simulated run-
ning on the target FPGA and include the ability to attach virtual
signal generators to input pins, and attach multi-trace oscillo-
scope probes to outputs, as well as to various test points within
the program.

Fig 8.39 shows the stereo over-sampling, digital to analogue
converter (DAC) (used by the Janus card in the HPSDR project)
being simulated using Altera's Quartus II™ software.

8: SOFTWARE DEFINED RADIO

Fig 8.37: A Xylo Board
Fig 8.38: An Ozy board

© R
SGB 20

11

As the beginner will soon learn, just because a design works
in the simulator does not necessarily mean that it will work when
loaded into an actual FPGA! However, as one moves up the
learning curve, this inconvenience happens less often.

When power is applied to a FPGA, it does not normally contain
any code - the necessary code needs to be loaded into the
device by some external means. For a completed project, this is
often done from a small EEPROM (erasable programmable read-
only memory) attached to the FPGA. For projects that are in
development, there are many other options including JTAG, seri-
al, parallel and USB methods of loading the code. There are also
FPGAs that are based on Flash memory technology that retain
their code when power is removed from the FPGA.

One of these is used in the Janus ADC (analogue-to-digital
converter) and DAC board in the HPSDR project. This is a 'sister'
device to an FPGA called a Complex Programmable Logic
Device (CPLD).

CPLDs are generally small FPGAs that are used to 'glue' vari-
ous other chips together or to replace a number of discrete ICs.
VK6APH and VK6VZ regard the use of 'complex' as part of the
name of CPLDs to be an unfortunate choice of terms and poten-
tially discouraging the would-be user - whilst CPLDs are complex
in the number of gates they contain, they are relatively simple
devices to understand and use.

The particular CPLD used on the HPSDR Janus board is an
Altera EPM240T that provides for 240 logic elements and uses
Flash memory technology, so that it only requires initial program-
ming. The reason for the use of a CPLD on the Janus board will
be explained below.

REPLACING THE PC SOUNDCARD AS AN
A- D CONVERTER - THE JANUS BOARD
One of the major factors in the performance of most of the first
generation of software defined radios (what is often termed
Quadrature Switching Detector or QSD architecture) is the a PC
sound card that is used to digitize the analogue I and Q signals
produced by the radio hardware/front-end.

In addition, a sound card with four input and four output chan-
nels is also necessary for a contemporary SDR transceiver (such
as Flex-Radio's SDR-1000) in order to implement functions such
as VOX (voice operated switching) and monitoring of transmitted
audio or CW signals.

Many of the consumer and 'prosumer'-grade sound cards
available in the personal computing market are quite good for
these purposes. Of these, the M-Audio Delta 44 is probably the

best known and most widely preferred, with its four
inputs, four outputs and 24-bit sampling at rates
up to 96kHz.

However, the sound cards available on the mar-
ket today have some limitations when it comes to
using them as analogue-to-digital converters and
digital-to-analogue converters for SDR. For exam-
ple, few of the prosumer and consumer cards on
the market today can sample at a greater fre-
quency than 96kHz. In addition, these cards often
have filtering on their inputs and outputs that start
to roll-off above 20kHz - definitely not desirable
when carrying out sampling for an SDR!

Another problem with these PC sound cards is
that only a handful that are capable of sampling
above 96kHz use the popular USB connection
method.

Given these limitations, in November 2005 a
number of SDR enthusiasts including VK6APH and

Bill KD5TFD decided to design and build a sound card specifi-
cally for SDR applications, as part of the High Performance
Software Defined Radio (HPSDR) project [8].

The goals of the board, which was called 'Janus', would be to
provide:

• 192kHz, 24-bit sampling;
• High signal-to-noise ratio - at least as good as the Delta

44;
• Single connection to the computer - eg using the high

speed USB 2 interface;
• Full duplex;
• Four input and four output channels to provide VOX and

transmit monitoring facilities; and
• Facilities to handle press-to-talk transmit and (possibly)

RF hardware control.

In addition, building a dedicated sound card like Janus would
mean that the designers would have complete control over any
software drivers that were needed to communicate with the A/D
chips, as well as being to potentially optimise sampling rates
and bit depths for individual signals.

The basic design of Janus called for an ADC for I and Q signals
and a DAC for transmitting I and Q signals, as well as an ADC for
microphone input and a DAC for received audio. In order to con-
nect to these various converters, 'glue logic' or a microcontroller
was required.
Additionally, a USB interface was needed to send the digitized
data to the PC and to receive the processed audio from the PC
that needs to be sent to the DACs. A block diagram of Janus is
shown in Fig 8.40.

To meet these design goals, a high quality ADC was neces-
sary for digitizing the I and Q signals from the RF 'down-con-
verter' hardware. After looking through the specifications of
many high-end audio A/D chips, the design team decided to
investigate the Wolfson WM8785, Texas Instruments PCM
4202 and the Cirrus Logic CS 5381. All of these devices are 24-
bit, capable of sampling up to 192kHz and claim a 110dB, or
better, dynamic range.

After breadboard testing these chips at a 192kHz rate, it was
discovered there were some noise issues, apparently due to
their design aliasing any noise above the audio frequency range
in order to provide sampling at 192kHz. Whilst all of these
devices will perform extremely well in an audio application, for
SDR use the noise above ±48kHz would intermodulate with in-
band signals and render a receiver unusable.

The Radio Communication Handbook 8.25

8: SOFTWARE DEFINED RADIO

Fig 8.39: Screenshot of stereo oversampling DAC, simulated in Altera’s
Quartus II™ software

© R
SGB 20

11

The Radio Communication Handbook8.26

As a result, after a suggestion from Bob McGwier, N4HY, an
AKM AK5394A was then evaluated and chosen for the 24-bit
A/D role in Janus.

The team also needed an ADC for a microphone input and a
DAC and audio amplifier for the received audio output. Luckily,
the dynamic range, bit depth and sampling requirements on
these converters are not as stringent as that required on the I
and Q converter, so the team chose the TLV320AIC23B - a high-
ly integrated stereo audio CODEC-type 'chip' with a built-in head-
phone amplifier - for this purpose, operating at 48kHz sampling
rate and 16-bits.

Intended for the MP3 player mass-market, this device pro-
vides totally adequate performance at a very low price (around
US$7 at the time of writing).

For the DACs driving the I and Q outputs, a single bit over-sam-
pling configuration was used. By sampling at 48kHz, a simple
low pass filter is able to provide sufficient attenuation of the
sampling frequency and minimize any phase difference between
the two channels. The final design used a 16-bit over sampling
single bit DAC, implemented in an Altera FPGA.

In order to interface the ADC and DACs to a graphical user
interface (GUI) program running on a personal computer, a USB
2 interface was selected. Although USB 2 is specified to operate
at 480Mbps, other experimenters using USB 2 for a similar func-
tion reported being able to obtain a maximum combined (ie
simultaneous input and output) transfer rate of 240Mbps.

The fastest transfer rate occurs from the Janus board to the
personal computer. At a 192kHz sampling rate, this consists of
two-times 24-bit I/Q data, plus 16-bit microphone data, which
requires a sustained transfer rate of approximately 12Mbps -
well within the practical rates reported by others.

The designers chose to implement the USB interface using the
Cypress FX2 family of devices, which provide a USB 2 interface

and an 8051 microprocessor in the same
chip. These devices have been used success-
fully in a number of similar projects and are
well supported with open source code and
development tools. As mentioned previously,
the Janus board forms part of the HPSDR
project. All the HPSDR boards plug into a stan-
dard backplane (called 'Atlas') that uses
DIN41612 connectors.

As Janus was the first card to be designed
following the design of the Atlas bus, it was
considered unwise to define - and fix - a con-
siderable number of bus signals at such an
early stage in the project. In order to provide
total flexibility for the Janus pin definitions,
and to enable multiple Janus boards to be
connected to the Atlas bus, an Altera Max II
Complex Programmable Logic Device (CPLD)
was used for the interface.

The CPLD basically provides a software
configurable 'patch panel', allowing any Janus
signal pin to be connected to any signal pin
on the Atlas bus. At US$6 each, the CPLD was
considered to be cheap insurance for pin
assignments that will most certainly be
altered in the future.

Design Considerations
Given the full duplex data requirements of
Janus and the desirability of parallel process-
ing, an FPGA solution was selected to inter-

face to the FX2 USB chip. The FPGA and FX2 USB chips are con-
tained on a second PCB called 'Ozy' that will be described in the
next section of this chapter which deals with PC to SDR commu-
nications.

Prototype development of Janus was undertaken using an
FPGA development board (manufactured by Jean Nicolle) called
a Xylo board [39]. This consists of an Altera Cyclone EP1C3T100
FPGA interfaced to an FX2 chip and provides a USB 2 interface
to a personal computer.

The PowerSDRTM [12] software was modified to use the Xylo
USB 2 interface for audio input and output. USB bulk transfer
mode was used, in the hope that at USB 2 speeds (480 Mbps)
isochronous mode would not be needed to achieve acceptable
performance. This turned out to be correct and simplified initial
development of the code necessary to 'talk' to the early Janus
prototypes.

The Xylo board comes complete with drivers and sample code,
which reduced the start-up learning curve and risks consider-
ably. Since neither VK6APH or KD5TFD had any prior experience
with FPGA development, nor programming in a high level defini-
tion language (HDL), the use of the development board seemed
a good idea. It proved highly successful and very enjoyable.

VK6APH and KD5TFD chose to program the FPGA in the
Verilog language rather than in schematic. Advice from those
experienced in this art suggested that schematic design was
easy for those with an electronics background but soon became
unwieldy on larger designs.

At this point, Lyle Johnson, KK7P, undertook the design of a
suitable PCB for Janus. One issue that had emerged during pro-
totyping was that at 192kHz sampling, the 48kHz clock used
for the TLV320 was visible in the Janus noise floor. However,
with careful layout, and separation of analogue and digital
ground planes, Lyle was able to eliminate the clock pick-up
completely.

8: SOFTWARE DEFINED RADIO

Fig 8.40: Block diagram of Janus board

© R
SGB 20

11

Whilst the Xylo FPGA was ideal for developing the code to
interface the ADC and DACs to USB, it did not provide sufficient
spare input/output pins for all the facilities required.
Additionally, the Cyclone EP1C3T100 FPGA on the Xylo was
somewhat limited in the number of RAM bits it provides. The
RAM bits in the FPGA were primarily used as first-in-first-out
(FIFO) memory to buffer the data going to, and from, the PC.
VK6APH and KD5TFD found they were a little short on FIFO
space at 192kHz sampling rates.

As part of the HPSDR project, as mentioned earlier, an FPGA
based - USB 2 interface card, called Ozy has been developed.
Originally christened 'Ozymandias', this has been designed and
developed by Phil Covington N8VB, and provides the necessary
FPGA resources, together with the requisite number of I/O pins
required by the Atlas bus and sufficient RAM bits for buffer
FIFOs.

Results
Measurements on Janus have been limited to comparing the sig-
nal-to-noise, noise floor and dynamic range against the M-Audio
Delta 44 sound card. In all respects, Janus exceeds the already
excellent performance of the Delta 44. A completed Janus card
is shown in Fig 8.41.

One interesting discovery is whilst the AK5394A is specified
as a 24-bit device, in reality it was only useable at 20-bits, the
lower four bits apparently being simply noise. Whilst this may
sound disappointing, this is consistent with professional sound
cards in general - VK6APH points out that some of the 16-bit
sound cards that are built into PC motherboards yield an
Equivalent Number of Bits (ENOB) of only 12-bits!

As the result of the beta testing of the Janus PCB, a new fea-
ture was added, namely the ability to phase lock the 12.288MHz
Janus master clock to a 10MHz reference. This in turn may be
locked to a one pulse per second timing reference from a GPS
receiver. The phase locking enables phase coherence of all

oscillators in the HPSDR to be achieved. Production PCB files for
Janus are available at [47].

PC TO SDR COMMUNICATIONS - THE
HPSDR OZY BOARD
In the previous section of this chapter, we looked at replacing
the PC soundcard as an analogue-to-digital converter (ADC) and
how the HPSDR Janus board does this. Janus provides both very
high performance ADCs and digital-to-analogue converters
(DACs) for use with a SDR.

Although in the future the Janus board will be usable as part
of a stand-alone SDR, on its own it is not able to communicate
with a host PC. In order to send the digitised audio from the
ADCs and DACs to, and from, the host PC in the HPSDR project
[8] an additional interface board is required. For the HPSDR this
board is called the Ozymandias (Ozy for short) - and its functions
are shown in block diagram form in Fig 8.42. The prototype Ozy
PCB shown in Fig 8.44 was designed by N8VB.

There are several communications options for transferring the
digitised audio data from the Janus board to the PC - these
include Ethernet, USB and FireWire. Before deciding which of
these options to consider, we need to work out the maximum
data rate between the PC and the HPSDR hardware.

The Radio Communication Handbook 8.27

8: SOFTWARE DEFINED RADIO

Fig 8.42:
Block dia-
gram of Ozy
board

Fig 8.41: A Janus board plugged into the HPSDR
Atlas bus and Pinocchio extender board

Fig 8.43: Prototype Ozy board

© R
SGB 20

11

The Radio Communication Handbook8.28

If we assume that for the time being that we will be using a
fast sound card technology, then the currently available ADC
chips have an upper limit of 192kbps, at 24-bits per sample. For
the 'receive audio', microphone input and I & Q transmitter sig-
nals, a data rate of 48kbps, at 16-bits per sample, is quite suf-
ficient.

Assuming we would like to operate the data transfer in full
duplex, the mathematics is in Table 8.2. Having calculated these
values, let's look at the speeds - and features - the various
options provide.

Option 1: Ethernet

From practical experience, confirmed by a number of sources on
the Internet, the actual speeds that the various Ethernet options
provide is as follows:

10-T Ethernet: specified at 10Mbps (1MBps in practice).
100-T Ethernet: specified at 100Mbps (10MBps in practice).

Since most modern PCs support 100-T Ethernet, this looks
like a possible option. The advantage of 100-T Ethernet is that it
allows a long length of cable between the PC and an SDR (eg for
mounting a microwave SDR on a tower). In fact, it is for this rea-
son that the uWSDR group [40] has selected Ethernet as its
interface standard.

Option 2: USB

USB supports a number of speeds as follows:

USB 1.1 Low Speed: specified at 1.5Mbps (100kBps in prac-
tice).

USB 1.1 Full Speed: specified at 12Mbps (1MBps in practice).
USB 2.0 High Speed: specified at 480Mbps (30MBbps in prac-

tice and up to 40MBps with a very fast PC).

All modern PCs support High Speed USB 2.0 connections. The
disadvantage of USB is that the cable lengths are restricted to
between three and five metres, depending on the speed used,
but for HF work where the SDR is located close to the PC this is
not an issue.

The advantage of USB is that there is a plentiful supply of
interface chips readily available, as well as open source drivers
and sample code.

The fact that we can sustain 30MBps over USB will be an
advantage in the future, as the HPSDR project adds high speed

ADC boards to the range of options available. For this reason,
USB 2.0 was chosen for the HPSDR project.

Option 3: Firewire

'FireWire' is officially known as IEEE 1394 and comes in the fol-
lowing speeds:
400Mbps: in practice it runs faster then USB 2.0 since it uses

less of the PC resources.
800Mbps: no practical figures are available.

Many modern PCs have FireWire ports built into them and
older PCs can be upgraded by adding a suitable PC card. The
advantage of Firewire is the higher speeds available, but the dis-
advantage is that it requires a special built-in chip in the device,
so it is more expensive to build into products. It has similar cable
length restrictions to USB.

Other Requirements
Apart from the ADC and DAC data requirements we need to be
able to send Command and Control (C&C) data between the PC
and SDR hardware. This C&C data includes press-to-talk (PTT),
bandpass and lowpass filter selection and SWR, etc. In compar-
ison with the ADC and DAC data, the C&C requirements are of
low volume and frequency.

The C&C requirements of the HPSDR project are met by send-
ing data that requires low latency - eg PTT, dot and dash signals
within the ADC and DAC frames and other signals via dedicated
USB end points.

The other C&C functions provided by the Ozy board can be
seen in Fig 8.42. These include an I2C master to provide com-
munications to other I2C devices over the HPSDR's Atlas bus;
two RS232 interfaces (one from the FX2 microprocessor and the
other from the FPGA); and a parallel port (actually a printer port
equivalent) that can be used to control SDR hardware (eg a Flex-
Radio SDR-1000).

Atlas Bus Interface
Since the Ozy board needs to provide signal processing and PC
communications for the Janus and other HPSDR boards, we
need to consider how it will connect to the Atlas bus.

However, at what is a relatively early stage in the HPSDR proj-
ect - and in full expectation that over time many other boards will
be developed for the Atlas bus - it is difficult to 'set in stone'
exactly what signals should appear on what line of the bus.
Apart from the power supply voltages, which do need to be spec-
ified at an early stage, we need to be flexible in allocating signals

to the bus.
In the previous section of this chapter

it was mentioned that Janus used a com-
plex programmable logic device (CPLD)
to connect to the Atlas bus. The CPLD is
used as a programmable 'patch panel',
so that any signal required by, or sent out
by, the Janus board could be patched to
any Atlas bus pin.

This use of the CPLD provides great
versatility in the future and would also
enable multiple Janus boards to operate
simultaneously on the one Atlas bus.
This can be achieved by patching com-
mon signals to the same bus pin, eg
clock signals and unique signals to sepa-
rate bus pins. The use of an FPGA or
CPLD to connect a board to the Atlas bus
will be a common feature, as the HPSDR
develops.

8: SOFTWARE DEFINED RADIO

From Janus to PC

2 x 192,000 x 24 = 9,216,000bps (ie received I and Q signals at 24-bits)
4 x 48,000 x 16 = 3,072,000bps (ie mono microphone at 16-bits(note 1))

Total = 12,288,000bps (or approximately 1.5MBps)

From PC to Janus

2 x 48,000 x 16 = 1,563,000bps (ie stereo received audio at 16-bits)
2 x 48,000 x 16 = 1,563,000bps (ie transmit I & Q signals at 16-bits)

Total = 3,072,000bps (or approximately 0.4MBps)

NOTES:bps = bits per second, MBps = Megabytes per second).
Note 1: The data from Janus to the PC is sent in a packet that contains the received I & Q signals
plus the microphone data. Since it is desirable that the packet length is constant, the microphone
data is sent at four times its actual sampled rate of 48kHz and the sampling rate is corrected in the
PC software.

Table 8.2: Full duplex data transfer for a fast sound card

© R
SGB 20

11

DIGITAL DOWN CONVERSION
PRINCIPLES
The 'holy grail' of Software Defined Radio is to be able to directly
digitize a wide RF spectrum by connecting an antenna directly to
an analog-to-digital converter (ADC). The signals are then digitally
processed and converted back to analog with a digital-to-analog
converter (DAC) for audio amplification purposes (see Fig 8.44).

At the moment, at least for other than very expensive and spe-
cialized military projects, this is not economically feasible.
However, just like the speed of PCs has increased enormously
over the years, in the future we can expect to see amateur
receivers using this architecture.

To date, the majority of amateur SDRs designed for high fre-
quency radio purposes have used PC sound cards as their ADC.
In fact, by using semi-professional sound cards in a PC, an SDR
with high performance can be realized. However, for those who
write the history of SDR, this usage is likely to be a relatively
short trend in the transition to direct digital conversion.

At present, the technical stumbling block to direct digital con-
version is that even with the processor speeds of modern per-
sonal computer CPUs, there is still a processing bottleneck.
However, by compromising our design so that we process a nar-
rower band of frequencies rather than the entire HF radio spec-
trum, it is now actually possible to produce a cost effective, very
high performance 'almost direct-digital-conversion' receiver,
using what are called Digital Down Conversion (DDC) tech-
niques. Earlier in this chapter, we covered some of the commer-
cially available DDC receivers, plus a basic description of the
HPSDR Mercury receiver, which uses this technique.

A key hardware item in such a DDC SDR is the ADC used for
the RF front-end. Until recently, ADCs had either had too low a
dynamic range to be useful on the HF bands or were too costly
or both.

Luckily for amateur SDR enthusiasts, the massive take-up of
cellular phone technology has produced a mass market for high
performance ADCs that amateur constructors can benefit from.

One of the highest performance ADCs on the market at pres-
ent is the Linear Technologies LT2208. At a one-off cost of
U$100 it is not inexpensive, but its high performance in a DDC
makes this price tag relatively easy to justify. After all, the ADC
will form the major part of the DDC radio.

A block diagram of the LT2208 taken from the Linear
Technologies data sheet is shown in Fig 8.45. The LT2208 pro-
vides 16-bits of data at a sampling rate of up to 130MHz. This
provides enough dynamic range and speed to sample the entire
radio spectrum from 0 - 65MHz in real time.

When connected to a PC via
a high speed USB 2 connec-
tion, the LT2208 makes an
impressive spectrum analyzer.

Phil Covington, N8VB, has
already experimented with
using the LT2208 as a broad-
band spectrum analyzer and a
screen shot from his PC soft-
ware is shown in Fig 8.46.

If we are unable to directly
digitize the entire HF spectrum
and process it in real time,
what compromises do we need
to make in order to make use
of DDC technologies?

The answer is that basically
we use superhet techniques
where a band of frequencies
are mixed down to a lower and
narrow range of frequencies

The Radio Communication Handbook 8.29

8: SOFTWARE DEFINED RADIO

Fig 8.44: Ideal direct down conversion receiver

Fig 8.45: Functional block diagram of LT2208, reproduced from Linear Technologies Inc data sheet

Fig 8.46: Screen shot of LT2208 used as a spectrum analyser by
Phil Covington, N8VB

© R
SGB 20

11

The Radio Communication Handbook8.30

that are within the processing speed of the current generation of
digital processors.

In order to make this idea perfectly clear, the analogy of the
Intermediate Frequency (IF) stages in an analogue radio is very
helpful. Compare the block diagram of an analogue superhet
receiver to that of a DDC one - see Fig 8.47.

We will explain in detail how the digital local oscillator in the
DDC-based receiver is generated in a later section of this chap-
ter.

Additional information on this technique is available in an arti-
cle by Analog Devices, ‘Single Chip Digital Synthesis versus the
Analog PLL’ [48] and is highly recommended.

In the case of the analogue superhet, a local oscillator signal
is mixed with the incoming signal, so that the sum or difference
of these signals is equal to the desired IF. In contrast, in a DDC-
based receiver a software oscillator is used to 'translate' the fre-
quency band of interest down to a lower frequency band that
can be sampled at a lower rate.

Since we wish to generate I and Q signals, two local oscillator
signals at 90° to each other are used (ie a sine and a cosine sig-
nal).

In the analogue superheterodyne receiver design, the mixer is
followed with a narrow band filter - either inductor and capacitor-
type (LC), crystal, ceramic or mechanical. The purpose of the fil-
ter is to reject high level signals on either side of the wanted sig-
nal, so as to prevent these high level signals from overloading
the following stages of the receiver.

Often the analogue 'superhet' uses a relatively wide 'roofing'
filter at this stage, with narrower filters being used further down
the IF strip, to keep out the high level unwanted signals. In the
DDC receiver, we use a similar technique, although in this case

the filtering is done digitally and the data speed reduced using
a technique called decimation.

For example, if the DAC is sampling the signals at the anten-
na socket at, say, 130MHz and we need to reduce this data rate
to, say, 130kHz, for subsequent transfer over a USB 2 connec-
tion to a personal computer, then the filter will decimate by:

130,000,000/130,000 = 1,000

The act of decimation is simple in the extreme; we simply
throw away all but every 1,000th sample. There is also a most
useful side effect to using this decimation technique - which is
to increase the signal-to-noise ratio of the overall DDC by the
decimation ratio.

Since the ADC converts the instantaneous RF input signal
level to one of 216 levels, there will frequently not be an exact
level that matches the incoming sample. This error is referred to
as a quantizing error and is responsible for noise at the output
of the ADC.

The improvement in dynamic range can be explained by refer-
ring to Fig 8.48. Here the noise generated by the ADC is seen to
be spread over the entire frequency range of clock/2, so with a
clock of 130MHz this will extend from 0 - 65MHz.

If we only select a narrower band of these frequencies at the
output of the DAC, then the amount of noise we decode is pro-
portionally less.

Considering the above example, decimating by 1,000 will
increase the dynamic range by:

10 log 1000 = 30dB.

This is the best theoretical improvement - although not all of
this improvement in dynamic range will be realized in practice, it
is still a most useful feature, as we will see.

If the ADC in our DDC is an Linear Technologies LT2208, then
based on the specification of this device the overall perform-
ance of an HF receiver using DDC with this as its ADC can be cal-
culated. If it is assumed that the input impedance of the LT2208
is 50 ohms and the maximum input signal level (derived from
the LT2208 datasheet) is 2.25V peak-peak, then this translates
to +11dBm.

The IP3 (level of third-order Intermodulation Products gener-
ated) of the LT2208 device is specified at -1dB below maximum
input (ie +10dBm).

From the datasheet, at this power level the maximum spuri-
ous level is -85dBm. If the graphs provided in the datasheet are
used, this translates into an IP3 of +54dBm - a very respectable
figure indeed for a radio receiver.

The signal-to-noise ratio of the ADC converter is typically
75.2dB at 30MHz and 75.3dB at 5MHz, suggesting that the

8: SOFTWARE DEFINED RADIO

Fig 8.47: Block diagrams showing a comparison between (a) an
analogue superhet receiver and (b) a digital down conversion
receiver

(a)

(b)

Fig 8.48: Decimation signal-to-noise (S/N) improvement

© R
SGB 20

11

noise can be taken as being evenly spread across the sampling
bandwidth.

Normally with a single ADC, the Nyquist bandwidth is half the
sampling frequency but we will be generating in-phase and
quadrature (I and Q) signals so the noise is spread across the
full sampling bandwidth (ie it can be thought of as two samples).

The noise then will be bandwidth-limited in the signal pro-
cessing, thus reducing the noise referred back to the input of

the ADC by the ratio of the sampling bandwidth to the final band-
width (ie the decimation gain).

If the LT2208 clock is run at 100MHz, then for a 500Hz CW
bandwidth the noise referred ADC is equal to:

= -75.2dB below -1 dB FS - 10 Log(100 MHz/500Hz)
= -128.2dBm

This equates to a noise figure of 19dB. However, if we ensure
that the external received noise is 10dB above the (internally
generated) receiver noise, the internal noise will only add
0.46dB to the received noise floor.

In practice, the external noise picked up by even the best
radio receiver over the 0 -30MHz radio spectrum is going to be
generally at least 10dB above its internal noise - and on amateur
bands such as 160m or 80m, it is going to be well over double
this level.

The maximum noise figure for a given frequency to meet this
requirement has been determined by a number of authors [49].
Using these values, the following noise figure requirements for
an HF Bands receiver can be calculated- shown in Table 8.3.

As can be seen, the noise figure calculated for the LT2208-
based DDC receiver is acceptable in practice for all amateur
bands below 15m. In order to meet the noise figure require-
ments on 10m, it is necessary to add a conventional pre-ampli-
fier to the receiver.

If it is assumed a pre-amplifier can be built with a 3dB noise
figure, then this will need to have a gain of 12.5dB to give an
overall noise figure of 8dB.

If it is assumed the pre-amplifier has an input IP3 of +35dBm -
an IP3 which most good current designs can provide - then this
would match the system well and yield an overall IP3 of +33dBm.

In summary, the overall performance of the LT2208-based
DDC receiver is shown in Table 8.4: The good news is that the
HPSDR [8] Mercury receiver board which uses the LT2208 ADC
has shown that these figures can be achieved in practice.

THE HPSDR 'MERCURY' DIGITAL DOWN
CONVERSION RECEIVER
Basic Operation of Mercury
The 'Mercury' receiver design is able to receive signals over the
range 10kHz to 55MHz and uses the popular PowerSDRTM [12]
PC software for demodulation and control. A photo of the initial
Mercury prototype by VK6APH is shown in Fig 8.49. In this sec-
tion, we will go into detail regarding the design of Mercury since
we firmly believe that the Digital Down Conversion (DDC)
approach used in it is the future of amateur radio receivers.

A block diagram of Mercury is shown in Fig 8.50. A signal
received at the antenna is first 'band limited' and then optionally
attenuated or amplified, depending on the frequency band in use.

This signal is then fed into an LT2208 ADC that produces a 16-
bit digital output stream at 125Msps*. This data stream is in
turn fed to a 'CORDIC' Numerically Controlled Oscillator or NCO.
The operation of a CORDIC NCO is described later, but for now
readers should consider it as equivalent to the local oscillator
and mixers in a direct conversion receiver.

The output from the CORDIC NCO is in the form of two data
streams - the I & Q streams that have been mixed down to 'base
band' (ie to a range of frequencies equal to the RF input minus

The Radio Communication Handbook 8.31

8: SOFTWARE DEFINED RADIO

Band External noise (dB above kTB*) Noise figure (dB)
80m 38 28
40m 33 23
20m 28 18
15m 23 13
10m 18 8

NOTE: External noise is measured professionally in receivers in “dB
above kTB” (where k is Boltzman’s constant, T is 288K and B is
bandwidth).

Table 8.3: Noise figure requirements for an HF (amateur bands)
receiver

Without pre-aamplifier With pre-aamplifier
Noise figure 19dB 8dB
Input IP3 54dBm 33dBm
Maximum signal s9+80dB s9+68dB

Table 8.4: Performance of the LT2208-based DDC receiver

Fig 8.50: Prototype of the Mercury receiver (with HPDSR Ozy
board attached)

NOTE: * Msps = Millions of samples per second
** ksps = Thousands of samples per second

© R
SGB 20

11

The Radio Communication Handbook8.32

the local oscillator frequency). In the case of Mercury, a pass-
band of 96kHz is used, which will result in a bandscope width of
192kHz.

At this stage, the data comprising the I and Q signals is still
16-bits wide at 125Msps - too fast to be processed economical-
ly by a signal processing chip or a personal computer. This data
rate needs to be reduced to a more manageable speed - this is
done using a process called 'decimation'.

For example, in Mercury we initially decimate by 320, which
drops the data rate from 125Msps** to 125/320 =
390ksps**. To decimate, the unwanted samples are simply dis-
carded, hence we simple keep each 320th 16-bit sample and
ignore the rest. Decimation also has the effect of increasing the
signal-to noise ratio and to use this additional range, the num-
ber of bits per sample grows from 16 to 24.

The resulting data stream now needs to be filtered in a simi-
lar manner to that of the roofing filter of an analogue receiver.
Whilst there are numerous digital filtering techniques that could
be used here, most SDR designers use a filter called a
'Cascaded Integrator Comb' or CIC.

The big advantage of the CIC filter is that
it can be implemented without the use of
multipliers - these tend to be at a premium
in silicon-based signal processors. Instead,
the CIC uses addition and subtract func-
tions, which are usually plentiful.

Another good thing about a CIC filter is
that it also allows us to combine the steps
of filtering and decimation into one stage.

A block diagram of a CIC filter is shown in
Fig 8.51. You can see why the filter gets its
name if you look at the block diagram - the
filter literally consists of cascaded integra-
tors and comb filters.

The frequency response of a CIC filter is
shown in Fig 8.52. In fact, this plotted
response is of the actual CIC filter used in
Mercury. The response consists of a
series of nulls at integer multiples of

clock/decimation. In the case of Mercury, these will be at a spac-
ing of 125MHz/320 = 390kHz.

The overall shape of the CIC filter response is known as a
sin(x)/x or sinc shape. As can be seen from the frequency
response, the CIC filter also has a massive gain - some 400dB -
as the result of using cascading integrators. This gain can be
simple removed by truncating the output data width.

Whilst elegant in its simplicity - and frugal in its use of silicon
- there are several drawbacks to the use of a CIC filter. The first
is evident from the frequency response - ideally we would like a
flat-topped 'brick wall' filter. As Fig 8.53 shows, the filter has
about 6 dB of droop in its passband in the region we are inter-
ested in, namely 0 to 96kHz.

Secondly, the CIC filter suffers from significant 'alias' respons-
es. Any signal within ± 96kHz of a null will be reflected back into
the passband and appear as an unwanted spurious signal. It is
important to understand that once an unwanted signal has been
aliased back into the passband, then no amount of filtering past
this stage can remove it.

8: SOFTWARE DEFINED RADIO

(above) Fig 8.50:
Mercury receiver
block diagram

Fig 8.51: Block
diagram of a deci-
mating CIC filter

Fig 8.52: Frequency response of the Mercury CIC filter

© R
SGB 20

11

The bands of frequencies where these
alias signals can occur are shown shaded
in grey in Fig 8.54 - as you can see there are
lots of them! We need to ensure that the
level of alias signals that can be reflected
into the passband are reduced to an
acceptable level.

For Mercury, the spurious response level
has been set by the designers to be 100dB
below maximum input level. This means
that at the worst case of (n x 390kHz) ±
96kHz, the filter must have an attenuation
of 100dB.

For Mercury the only area of concern is
around the first null at 390kHz, since the
signals that will be aliased around all high-
er nulls are well below this 100dB level.

As can be seen from Fig 8.55, the filter
designed for Mercury meets this require-
ment. The level of attenuation is achieved
by using a filter of the appropriate 'order' -
the order simply being the number of inte-
grators and comb filters used. In the case
of Mercury, this is an 8th order filter (ie it
uses eight cascaded integrators, a decima-
tor (divide by 320), followed by eight cas-
caded comb filters).

Higher alias attenuation can be achieved
by using a higher order filter, but then the
droop in the passband increases, so a com-
promise needs to be made between alias
attenuation and passband droop.

Referring again to Fig 8.50, the CIC filter
is followed by a more conventional filter;
typically a Finite Impulse Response (FIR)
design. Since the bulk of the filtering has
been taken care of by the CIC, we can spare
some valuable multipliers in the silicon to
implement this filter. Rather than going off-
topic here and explaining FIR filters, think
of them as analogous to the main crystal fil-
ter in a conventional analogue radio.

The response of the basic FIR filter used
in Mercury is shown in Fig 8.60 - as can be
seen, it is most impressive. The -3dB point
is about 92kHz and it reaches -110dB at
96kHz - a specification that most analogue filter designers
would find extremely challenging! In fact, a slightly different FIR
is used in Mercury and this is called a Compensating Finite
Impulse Response (CFIR) filter. Rather than being flat, the pass-
band of the CFIR has the opposite shape to the droop of the CIC
that precedes it. When the two filters are cascaded, the droop is
cancelled and a nice flat passband results.

The CFIR filter also decimates by a factor of two, bringing the
final data rate - which is passed via USB2 to the personal com-
puter - to a very manageable 195ksps at 24-bits per sample.

The overall frequency response of the cascaded CIC and CFIR
filters used in Mercury are shown in Fig 8.56. This response has
been achieved in the prototype Mercury receivers.

Mercury & Digital Direct Down Conversion
As explained in the previous section, in a Digital Down
Conversion (DDC) SDR receiver such as the HPSDR Mercury, we
need to mix the incoming RF signal down to a lower frequency in
order for it to processed by a Digital Signal Processor (DSP).

The Radio Communication Handbook 8.33

8: SOFTWARE DEFINED RADIO

Fig 8.54: Alias responses of the Mercury CFIR filter

Fig 8.53: CIC filter passband droop

Fig 8.55: Frequency response of the Mercury CFIR filter

© R
SGB 20

11

The Radio Communication Handbook8.34

The mixing process is similar to that used in a conventional
analogue receiver to convert to a fixed Intermediate Frequency
(IF). In the case of an SDR we need to produce two data streams
- I and Q - in order to simplify subsequent demodulation.

Whilst conventional analogue techniques could be used (ie
a local oscillator feeding two mixers) and then pass these
mixer outputs to analogue-to-digital converters (ADCs), there
are fully digital techniques that have significant advantages
over the former.

One major advantage is that the generation of I and Q signals is
for all practical purposes perfect. This means there is no need to
provide phase and amplitude balance controls to null-out unwant-
ed images on receive (or unwanted sidebands on transmit).

Let us assume that an RF input signal has already been
passed to an ADC and it is desired to generate our I and Q sig-
nals digitally. This is achieved by multiplying the digital data from
the ADC by sine and cosine at the local oscillator frequency (see
Fig 8.57).

So how do we generate this local oscillator without the use
of conventional analogue components (eg. inductors, capaci-
tors, etc)? The technique most often used is Direct Digital
Synthesis (DDS - see also the chapter on Oscillators) which
works as follows.

In order to generate a sine wave, the value of the sine of a
series of uniformly incremented angles is stored. For example, if
we assume that our angle is incremented in one degree steps,
then we can form the sine (angle) in a table, part of which is
shown in Table 8.5.

If these values are now stored in a memory device such as a
ROM (read-only memory) or an EPROM (erasable programmable
read-only memory), the sine of any angle can be accessed if we
know which address it is stored in. For simplicity, assume the
address of each value is equal to the sine of the value, eg

Address 0 contains sine(0) = 0.0
Address 45 contains sine(45) = 0.707106781 etc

If the address lines of our ROM are now connected to a count-
er that counts from 0 to 359, each value in the table from 0 to
359 degrees can be stepped through in sequence. If we then
connect a DAC to the output of the ROM, and feed that into a
Low Pass Filter (LPF), a sine wave can be obtained at its output
(Fig 8.58).

The frequency of the sine wave will depend on the speed at
which the address counter is incremented. For example, if it is

assumed that a 36MHz crystal clock is used to clock the
address counter, then the frequency of the sine wave will be:

36MHz/360 = 100kHz.

The purity of this sine wave will depend on:

• The accuracy of the sine data stored in the ROM table;
• The accuracy of the 36MHz clock;
• The stability of the 36MHz clock; and
• The accuracy of the DAC.

If we wanted to produce a different frequency, say 200kHz,
there are two options - either increase the clock rate to 72MHz
or change the address counter so that it increments by two at
each clock pulse. The ROM output now skips alternate address-
es, so the complete 0 - 360 count is completed in half the time,
ie the output frequency is doubled.

It is generally more convenient to alter the address incre-
ments rather than the clock frequency each time it is desired to
change frequency. Following the above example, if the address
increments by three at each clock pulse, the output frequency
becomes 300kHz. The limit is reached when the address is
incremented by 180 on each clock pulse, in which case the out-
put frequency becomes (a square wave at) 18MHz.

8: SOFTWARE DEFINED RADIO

Fig 8.56: Overall frequency response of the Mercury receiver

Fig 8.57: Generating the I and Q signals

Address Angle sine (Angle)
0 0 0
1 1 0.017452406
2 2 0.034899497
3 3 0.052335956
--
357 357 -0.052335956
358 358 -0.034899497
359 359 -0.017452406

Table 8.5: Part of the contents of a sine table

Fig 8.58: Block diagram of Direct Digital Synthesiser (DDS)

© R
SGB 20

11

Also note that as we increase the frequency, the number of
samples that is used to reproduce the sine wave is reduced.

If the DDS output is to be used as the local oscillator for a
receiver, then 100kHz steps are likely to be far too coarse, as
most modern radios tune in 1Hz or less steps.

In order to provide such fine steps, a much larger ROM is
used, which contains finer angular resolution steps. For exam-
ple, let's assume our clock remains at 36MHz and it is desired
to tune in 1Hz steps. In this case, we will need to store the
sine(angle) at:

1Hz/36MHz = 0.000000027 degree steps

Hence for 360 degrees, a ROM is needed with:
360/0.000000027 = 129.86 x 108 locations

DDS are available in integrated circuit form - the Analog
Devices AD9951 is popular with amateur radio designers and
experimenters. This device uses a ROM with 232 addresses,
hence when clocked at, say, 500MHz the step size becomes:

500MHz/232 = 0.011Hz

This resolution should be fine enough resolution for most
applications!

In practice, it is possible to get away with a quarter of the num-
ber of addresses, since we only need to store the first quadrant
(0 to 90º) of our sine wave. The other quadrants can be calculat-
ed by clocking backwards for 91 to 180º, clocking forwards but
inverting the sign of the ROM data (ie multiplying by -1) for 181 to
270º and by clocking backwards and inverting for 271 to 359º.

Whilst this sounds fine in theory, in practice the issues identi-
fied above that affect the accuracy of our sine wave result in
unwanted spurs being present in the output waveform. Fig 8.59
shows the spurs produced by an early DDS chip - the AD9951
whilst Fig 8.60 shows the significantly better performance of
later chips - an AD9912 in this case.

These spurs appear as low-level, unwanted signals as the
receiver is tuned across a band of frequencies. Note that the
level and number of spurs tends to increase as the local oscilla-
tor frequency is increased.

Even so, the latest DDS chips are significantly better than the
first generation and, with a suitable pre-amp on the higher HF
bands to raise the band noise above the spur level, are accept-
able for the local oscillator of a high performance receiver.

To date, DDS techniques have typically been used to mix the
incoming RF signal to a lower frequency so that a low-cost PC
sound card can be used as an ADC and a PC provides the DSP
function. This technique is used by the Flex-Radio SDR-1000
and FLEX-5000 SDRs, the latter having the sound card built in.

Preliminary performance of Mercury

Table 8.6 shows some performance figures measured on the
final prototype for the first commercially available Mercury sys-
tem. As you can see, the figures are very promising!

Unlike a conventional analogue radio, a Digital Down
Conversion radio such as the Mercury receiver will have a sud-
den overload point, as the Analogue-to-Digital Converter (ADC) in
it reaches full scale. This overload point is the limiting factor in
terms of performance.

In the case of the ADC used in Mercury, the LT2208 is a satu-
rating ADC so increasing the input signal beyond the overload
point does not produce a sudden catastrophic degradation in
performance.

The phase noise of the 125MHz clock has been estimated at
-149dBc/Hz, which VK6APH thinks is very good for a packaged
crystal oscillator. Note that the 125MHz oscillator was not phase
locked to a 10MHz reference for these tests.

The Radio Communication Handbook 8.35

8: SOFTWARE DEFINED RADIO

Fig 8.59: Spurs produced by an AD9951 when operating at 158MHz
using a 500MHz clock (photo by Carmignani Giuliano, I0CG)

Fig 8.60: Spurs produced by an AD9912 when operating at
189MHz using a 1GHz clock (photo by Carmignani Giuliano
I0CG)

Mercury prototype Pre-aamp off Pre-aamp on

Minimum Discernible Signal (MDS): -117dBm -135dBm

Third order intercept point (IP3): +50dBm +30dBm

Blocking Dynamic Range (BDR): 125dB 125dB

Overload: +8dBm -10dBm

The IP3 at +50dBm is approximate since it is at the limits of
VK6APH’s test equipment. The MDS was measured in a 500Hz
bandwidth. Note that the IP3 is independent of tone spacing.

BDR was measured at 100kHz and 5 kHz for 1dB gain compression
with similar results. Note that the BDR is set by the overload point of
the ADC rather than being phase noise limited.

Table 8.6: Measured performance of Mercury prototypes
© R

SGB 20
11

The Radio Communication Handbook8.36

The preamp used by VK6APH consisted of a noiseless feed-
back power FET with 2dB noise figure and 8dB of gain, driving a
Norton BJT stage with 12dB of gain. ZL3IX used a two stage
Norton BJT preamp.

It was noted the MDS with the pre-amp off is a little high -
most receivers give about -127dBm - so a small pre-amp gain
may be needed at all times to reach this level.

The figures are very good for a wide band receiver. In particu-
lar, the 5kHz BDR compares favourably with that published by
the ARRL [50] when testing the ICOM IC-7800 (where a 5kHz
BDR of 107dB was obtained). Although the 100kHz BDR
(135dB) of the IC-7800 is better than that obtained with
Mercury (125dB) the addition of a tracking RF preselector in
front of Mercury (as used by the IC7-800) would substantially
improve this figure.

IMPLEMENTING DDC IN A FIELD
PROGRAMMABLE GATE ARRAY
Whilst there are several chips that provide either a partial or a
complete Digital Down Conversion (DDC) function, most experi-
menters are tending to use Field Programmable Gate Arrays
since this provides tremendous flexibility as to exactly how the
DDC is implemented and potential for much experimentation.

The architecture to implement a DDC in an FPGA is illustrated
in Fig 8.61. This shows the block diagram of the Verilog code
used to implement the HPSDR Mercury DDC receiver in an
FPGA. Note that the CIC and CFIR filters shown in the diagram
were described earlier in this chapter.

It is possible to implement a DDS local oscillator in an FPGA,
given one with sufficient RAM or Flash PROM to hold the sine

table. However, this would require a large - and hence expensive
- FPGA, or external memory.

An alternative technique, called CORDIC (which is an acronym
for COordinate Rotation DIgital Computer), is more frequently
used. This technique was developed many years ago to enable
early electronic calculators to generate trigonometric identities.
This class of algorithm is often referred to as a Numerically
Controlled Oscillator (NCO).

The CORDIC algorithm basically calculates the sine and cosine
of a given angle 'on-the-fly' rather than require these to be pre-
calculated and held in some form of read-only memory (ROM).

The algorithm can be simply implemented in an FPGA and
does not require any multiplier functions which, as previously
discussed, are in rather short supply in FPGAs.

In addition, if the ADC data and desired frequency is fed into
the CORDIC function, the I and Q outputs can be directly pro-
duced without the need for additional multipliers. Yet one more
advantage of the CORDIC is that the multiplication by sine and
cosine to produce the I and Q outputs is done without the need
to convert to an analogue waveform. This means that the errors
caused by non-linearity in a DAC, which result in spurs, are
avoided.

However, unfortunately, this does not mean that the CORDIC
algorithm is without its problems. It is necessary to generate
sine and cosine of the required angle sufficiently accurately to
maintain the level of spurs at an acceptable level - which is not
an easy task.

With the accuracy of the sine and cosine necessary to keep
the spurs down, the amount of room in the FPGA that the
CORDIC code takes can become excessive. As a result of the
increased size of this code, timing errors make it more difficult

8: SOFTWARE DEFINED RADIO

Fig 8.61: Block diagram of the
Verilog code used by the
Mercury DDC receiver

© R
SGB 20

11

to operate the CORDIC at the high end of the local oscillator fre-
quency range.

Despite these issues, it is possible to produce a very effective
CORDIC NCO that, by using a 125MHz clock, will step in frac-
tions of a Hz between 10kHz and 55MHz, with all spurs greater
than 100dB down on the fundamental signal.

As with the DDS explained previously, the quality of the signal
produced by the NCO is dependent on the stability and phase
noise of the clock used to drive it. High stability and low phase
noise VHF crystal oscillators are used for the NCO clock in high
quality receivers to yield the best performance.

DIGITAL UP CONVERSION SDR TX
- THE HPSDR PENELOPE EXCITER
Whilst much of this chapter so far has been specifically about
SDR receivers, this does not mean that the transmitter side is
being ignored by radio amateurs interested in SDR.

As has been mentioned earlier, the HPSDR project [8] has a
digital transmitter project named 'Penelope' as part of it.

Penelope is a Digital Up Converter (DUC) exciter that gener-
ates about 0.5W of RF output over the amateur bands from
1.8MHz through to 52MHz.

The basic block diagram of a DUC-based exciter is shown in
Fig 8.63. As old hands will observe, this is basically a phasing-
type transmitter, but since the more conventional phase shifts in
the audio and RF sections are done digitally, the levels of carri-
er and sideband suppression achieved are substantially higher
than those attainable in an analogue phasing exciter.

The process starts in Penelope by digitising the microphone
signal. As long as we sample at more than twice the highest
modulating frequency, say 8ksps, then the exact sampling fre-
quency is not important. However, it is useful to sample at a rate
whereby a standard PC sound card can be used to listen to the
digitised audio, so for the HPSDR project a 48kHz sampling rate
at 16 bits is used.

The digitised microphone signal is passed to two digital band-
pass filters. These set the ultimate bandwidth of the RF signal typ-
ically 300Hz to 2.4kHz for an SSB signal. The actual bandwidth
can usually be set by the user, since it is under software control.

One of the outputs
from the bandpass filters
is passed through an
additional stage called a
‘Hilbert transform’. This
stage shifts the phase of
all signals passing
through it by 90º.

The Radio Communication Handbook 8.37

8: SOFTWARE DEFINED RADIO

The CORDIC algorithm used by the HPSDR Mercury
DDC receiver and Penelope DUC (Digital Up
Converter) transmitter is based on an iterative
algorithm.

The advantage of the algorithm is that the sine
and cosine of an angle is calculated using simple
shifts and addition, rather than by multiplication.
This greatly simplifies the implementation in an
FPGA.

Consider the point (X, Y) in Fig 8.63. Suppose it
is desired to rotate this by an angle Z. The coordi-
nates for the new point (Xnew, Ynew) are:

Xnew = X. cos(Z) – Y. sin(Z)
Ynew = Y. cos(Z) + X. sin(Z)

This can be re-written as:

Xnew/cos(Z) = X – Y. tan(Z)
Ynew/cos(Z) = Y + X. tan(Z)

If the angle is broken into smaller pieces so that their tangents are
always a power of two (eg tan-1 (1/2n)) the equation can be rewritten
as follows:

X(n+1) = P(n). (X(n) – Y(n)/2n)
Y(n+1) = P(n). (Y(n) - X(n)/2n)
Z(n) = tan-1(1/2n)

The angle, tan-1(1/2n), needs to be pre-calculated and results in val-
ues of 45°, 26.565°, 14.0362° . . . etc.

P(n) is called the aggregate constant and can be calculated by mul-
tiplying all the P(n)s together as follows:

P = cos(tan-1(1/20) . cos(tan-1(1/21) . cos(tan-1(1/22) ……. cos(tan-1(1/2n)

This is a constant equal to 0.607253 - we can
either start with a vector of this length, rather than
1, or multiply the sine and cosine values generat-
ed by the CORDIC algorithm by P at the end. For
use in SDRs, normally P would not be used, the
then effective gain of the CORDIC stage either
being used or removed by truncation.

Ignoring P, the final equations are:

Xnew = sum(X(n) – Y(n)/2n)
Ynew = sum(Y(n) + X(n)/2n)

The Y(n)/2n and X(n)/2n terms can be simply
implemented by shifting the data one bit to the
right. In pseudo code, the algorithm looks as fol-
lows:

An excellent explanation of the CORDIC algorithm can be found at:
http://www.dspguru.com/info/faqs/cordic.htm. This includes the
CORDIC algorithm implemented using an Excel spreadsheet, as well as
in the C language.

The CORDIC Algorithm

Fig 8.62: Vector rotation using the
CORDIC algorithm

For i = 1 to n-1
If (Z(n) >= 0) then

X(n + 1) = X(n) – (Yn/2n)
Y(n +1) = Y(n) + (Xn/2n)
Z(n + 1) = Z(n) – tan-1(1/2i)

Else
X(n + 1) = X(n) + (Yn/2n)
Y(n +1) = Y(n) - (Xn/2n)
Z(n + 1) = Z(n) + tan-1(1/2i)

End if
End For

Fig 8.63: Block diagram
of a Digital Up
Conversion (DUC)
exciter

© R
SGB 20

11

The Radio Communication Handbook8.38

Although the Hilbert transform is shown as a separate block in
Fig 8.68, in practice it is often included as part of the bandpass
filter.

At this stage, there are two digital data streams - both at
48ksps and 16bits - that can be considered as equivalent to the
I and Q signals of a conventional analogue phasing exciter.

We now need to increase the effective sampling rate of the I
and Q signals in order to generate an RF signal. Sampling theo-
ry requires that the I and Q signals must be sampled at least
twice the highest frequency that it is desired to generate. If it is
assumed that that the 6m amateur band (i.e. 52MHz) is the
highest required frequency, then we need to sample at greater
than 104MHz. A sample rate of 125MHz was chosen for the
HPSDR project in order to simplify filtering of 'alias' products
when operating on 52MHz.

The question then is: "How do we increase the sample rate
from 48ksps to 125Msps?" This is achieved by using a similar
technique to that used in the Mercury receiver, where the sam-
pling rate is reduced from 125Msps to 320ksps. In the case of
the Mercury receiver, every 320th sample was simply removed.
For the Penelope DUC transmitter, we add - or 'bit-stuff' as it is
sometimes called - additional zeros to make up for the missing
samples.

In this case, it is desired to interpolate from 48ksps to
125Msps - which is a speed increase of 125,000/48 = 2,604
times. In which case 2,603 zero samples are added, each of 16
bits, following each real 48ksps sample to make up the 2,604
samples required.

This 'bit-stuffing' significantly increases the bandwidth of the
original I and Q signals. As a result, before we finally mix to our
desired RF frequency the new 125Msps data stream needs to
be filtered - which can be done in a similar manner to the
Mercury receiver.

As explained earlier, a class of digital filter called a Cascaded
Integrator Comb (CIC) is a very efficient way of filtering a digital
signal, particularly when the filter is required to be implemented
in a Field Programmable Gate Array (FPGA).

Just as in the case of the Mercury receiver, we are able to
combine the function of interpolation and filtering in the one
stage - which is achieved by using an 'interpolating CIC' filter.

Again, as previously explained, the CIC filter has deep nulls at
multiples of its clock/division rate - 48kHz in this case. The filter
also has a 'droop' in its passband, which in the case of the
Mercury receiver was corrected with the use of a CFIR filter. In
the case of the Penelope transmitter, since the droop is less
than 1dB at 5kHz for AM, FM and SSB modes, this does not nec-
essarily need correcting.

The I and Q signals, suitably interpolated and filtered, now need
converting to the desired RF frequency. Just as in the Mercury

receiver, we could convert each of these signals into an analogue
signal and apply them to two mixers and a local oscillator.

However, wishing to remain digital as close to the antenna as
possible, it was decided to do the frequency conversion digitally,
using multipliers for the mixers and a Numerical Controlled
Oscillator (NCO) for the equivalent local oscillator.

Similarly to the case of the Mercury receiver, a Direct Digital
Synthesiser (DDS) could have been chosen for this purpose, but
it was decided to follow the CORDIC NCO route.

Not only is the CORDIC route very economical, since no multi-
pliers are required to implement the algorithm in an FPGA, but it
also completely eliminates the unwanted sideband that would
normally require nulling using a conventional analogue design.
This feature is explained in more detail in the nearby box
'Multiplying complex sinusoids'.

The output of the CORDIC NCO contains just the wanted side-
band, which is converted to an analogue RF waveform using a
Digital to Analogue Converter (DAC) chip.

The level of RF here is in the order of a few milliwatts and con-
ventional analogue techniques are used to amplify up to the
desired power level.

The overall block diagram of the HPSDR Penelope transmitter
is shown in Fig 8.64. Here the Penelope DUC is connected to an
HPSDR Atlas backplane together with an Ozy PC interface board.

Penelope contains an ADC for the microphone signal, the out-
put of which is passed to the Atlas bus. An Ozy board collects
these samples and passes them, via a USB 2 interface, to the
host PC.

Software on the PC (eg PowerSDRTM [12] provides the neces-
sary bandpass filtering, phase shift and compression, etc and
passes the resulting I and Q signals back over the USB link to
Ozy. Ozy in turn decodes these signals and places them on the
Atlas bus. Penelope receives the I and Q signals and applies
them to the CIC filter, as described previously in this section.

An overall block diagram of the Verilog code used to imple-
ment the Penelope DUC transmitter in an Altera EP2C8 FPGA is
shown in Fig 8.65. Like all the code used in the HPSDR project,
this is open source and can be downloaded using SVN - see the
HPSDR [8] web site for further details.

PROTECTING SDR 'FRONT-ENDS' -
THE ALEXAIRES HPF/LPF SYSTEM
There are some areas of leading-edge receiver and transmitter
design where both analogue and SDR radios share similar prob-
lems. In analogue receivers, the combination of narrow multi-
pole crystal roofing filters and fast bus switches (such as the
famous FST3125 and the later FSA3157) as mixers has result-
ed in designs of the latter providing third order intercept points
(IP3) of 40 to 50dBm.

Similarly, in SDR digital down conversion receiver boards such
as the HPSDR's Mercury the use of high performance analogue-
to-digital converters (ADCs) like the Linear Technologies LT2208
has meant that ADC overload levels of +10dBm can be
obtained.

What this means is the one-time weak-point of both types of
radio is now very strong - and that the limitation of the strong sig-
nal performance of both types of receiver is more often deter-
mined now by design of the RF preselector/high pass filtering
which precedes the mixer (in analogue radios) or ADC (in SDRs).

Receiver high pass filters (HPF) - or to use their traditional
name, RF preselectors - have been traditionally designed to
keep out-of-band signals out of the input of a receiver. Over the
last four decades, their design has been fairly straightforward,
as it was relatively easy task to produce one that did not affect

8: SOFTWARE DEFINED RADIO

Multiplying complex sinusoids

A complex sinusoid can be represented by the expression

exp(jω) = cos(ω) + j sin(ω)

If two complex sinusoids, f1 and f2, are multiplied together
then the result, Z, is given by

Z = exp(jf1) x exp(jf2) = exp(j(f1+f2))
= cos(f1 + f2) + j sin(f1 + f2)

which contains only the sum (f1 + f2) and not the difference
frequency (f1 – f2).

© R
SGB 20

11

The Radio Communication Handbook 8.39

8: SOFTWARE DEFINED RADIO

Fig 8.65: Block diagram of the Verilog code used to implement a DUC

Fig 8.64: Block diagram of the HPSDR ‘Penelope’ DUC

© R
SGB 20

11

The Radio Communication Handbook8.40

the relatively poor IP3 performance of
the first mixer of most receivers/trans-
ceivers.

About 18 months ago, VK6APH start-
ed some design experiments with
Graham Haddock, KE9H, to produce an
RF preselector for the HPSDR. This proj-
ect was given the name of Alexaires -
'Alex' for short - named after one of the
Greek gods of defence. Fig 8.66 shows
a block diagram.

As a receiver preselector, the pur-
pose of 'Alex' is not only to reduce the
level of out-of-band signals at the
receive input of the HPSDR's Mercury
receiver board, but, equally important-
ly, to suppress any signals at the
images or alias frequencies that
appear at multiples of its sampling
clock frequency/2 (122.8MHz/2) plus
and minus the operating frequency.

'Alex' also has a built-in transmitter
low pass filtering (LPF) and will sup-
press the harmonic energy typically
generated by a 100W RF power amplifi-
er. The bank of transmit low pass filters
(LPFs) are also used to provide addi-
tional input band limiting for Mercury.

When VK6APH was testing out some
experimental prototypes of Alex using
off-the-shelf inductors, he quickly dis-
covered that for receivers such as
Mercury with a potential equivalent IP3
of +50dBm you need to be very careful
as to the choice of inductors used at the
front-end if one is not to significantly
degrade the IP3 performance. VK6APH
found that the problem lay with the
toroidal cores used in the preselector
inductors, which, although relatively lin-
ear at low flux values, quickly became non-linear as the flux val-
ues increased. Air cored inductors were perfectly linear, but get-
ting a high-enough Q from them was a problem - as was their
size and unwanted ability to couple with each other.

In a bid to solve this problem, VK6APH tried increasing the
size of the core being used, going as far as using the T200-2
specification of toroidal core, which is five centimetres across
and more usually used in HF transmitting baluns. Even with a
core of this size and type there was loss of flux linearity at very
high signal levels, apparently resulting in a very slight degrada-
tion of IP3.

At this point, VK6APH started to suspect his own test equip-
ment and do some serious searching on the Internet. He found
some fascinating information on the website [51] of Martein
Bakker, PA3AKE, a well-known experimenter in leading-edge
analogue HF receivers, who had run into exactly the same prob-
lem with an RF preselector he had built to go in front of a H-
mode mixer. PA3AKE was helped in his analysis by Colin
Horrabin, G3SBI, who was one of the designers for the
CDG2000 transceiver which appeared in RadCom a few years
back [41].

A few days later, VK6APH found himself at the Dayton
Hamvention and happened across the German Hilberling
PT8000A high-performance receiver, which actually used T200-
2 cores in its preselector -see Fig 8.67. It seemed that everyone

had come across the same problem. At this point, VK6APH and
KE9H started working very seriously on a final design for Alex.

As outlined earlier, there are at least three major issues to
consider with a preselector for a DDC SDR receiver such as
Mercury - and first is protecting the receiver from overload. The
LT2208 ADC used in Mercury is highly linear and robust, but it
does have limits. The maximum input level that the LT2208 con-
verter can accept before its overall performance becomes
degraded is 2.25V peak-to-peak or +11dBm, which is S9 plus
84dB.

8: SOFTWARE DEFINED RADIO

Fig 8.66: Block diagram of the Alexaires (Alex) preselector / filter system

Fig 8.67: Hilberling PT8000A preselector board, showing its
T200-2 core

© R
SGB 20

11

A local broadcast transmitter or very local amateur transmit-
ter might generate this kind of level. Signals of this level do not
need to be eliminated - just reduced so that the ADC is not over-
loaded.

The second issue is that of linearity, which has been detailed
earlier. The native linearity of the LT2208 ADC is so high that it
is difficult to measure with traditional test equipment and the
potential limitation on receiver performance is the non-linearity
of toroidal inductors - and electronic switches - in a multi-band
RF preselector that precedes it.

The large-signal performance of an SDR receiver using the
LT2208 will be degraded due to the gain of any preamplifier that
is used (typically 10 to 20 dB with an LT2208 if you wish to use
it on all the amateur bands from 1.8 to 54MHz), so a preselec-
tor IP3 target performance of around +40 dBm was used.

The third is image suppression. As mentioned earlier, the
Mercury receiver uses a sampling frequency of 122.88MHz for
the ADC. This means it will directly sample signals in the spectrum
from 0 to 61.44MHz band, but signals above those frequencies
may also appear in the data converter output. For example,
assume that a signal at 10MHz is desired to be received, so a sig-
nal at 132.88MHz and a signal at 112.88MHz will appear as
'aliases' unless they are prevented from getting to the ADC input

Of more practical concern are the VHF TV and FM signals that
could 'fold back' (ie alias) into the 1.8 to 54MHz amateur bands
if not eliminated. For example, the 88 to 108MHz FM band could
appear as images from 15 to 35MHz, while the US TV Channel
4 audio sub-carrier at 71.75MHz will fold back to 51.13 MHz.

As the ADC has no native selectivity or rejection at alias fre-
quencies, the total system selectivity of the antenna system,
matching networks and preselector frequency rejection must
add up to about 120 to 140dB, depending on how strong VHF
TV and FM signals are in your area. This also has implications for
requirements for shielding the SDR ADC and the RF preselector
filters.

The HPSDR Alex consists of two Euroboard-sized printed cir-
cuit boards (10 cm by 16 cm), intended to be mounted in a com-
mercial Euroboard extruded aluminum housing, such as a
Hammond 1455N1601. It does not plug into the HPSDR Atlas
bus, but is intended for separate mounting and controlled by an
SPI bus, provided via an IDE connector on Mercury.

The first PCB is the receiver filter board and consists, firstly, of
a 33 or 55MHz 7th-order LPF that is always in line with the
receiver. If the user is going to operate on the 50MHz amateur
band the 55MHz version should be used, otherwise the 33MHz
version is recommended (for better VHF image suppression).

The receiver filter board (Fig 8.68) also contains a 6m low-
noise preamplifier; selectable 20MHz, 13MHz, 9.5MHz, 6.5MHz
and 1.6MHz high pass filters (HPFs), plus a switchable 'front-
end' attenuator, configurable for 0, 10, 20 or 30dB attenuation.
It has five external BNC connectors for interconnections and the
selection of three different receive antennas in addition to the
transmit antenna.

The second PC board is the transmitter filter board and con-
sists of seven relay-switched LPFs for transmitter harmonic sup-
pression, used in conjunction with the receiver HPFs to provide
a flexible variable bandwidth receiver input filter function. It has
four external BNC connectors for interconnections and the selec-
tion of three transmit antennas.

Each active board contains three LEDs, so that an indication
of power, transmit/receive switching and SPI bus operation can
be seen.

In terms of specifications for Alex, its insertion loss is variable
according to frequency, but typically will not exceed 2dB total for
receive paths, and 0.5dB for transmit paths. The transmit har-
monic filter banks and associated relay switches are intended to
handle up to 100 watts with a CW or SSB duty cycle. Its total
power consumption should be less than 1.5W.

So, getting back to where we started, what is Alex's contribu-
tion to receiver IP3 performance? VK6APH and KE9H are glad to
say that in the Alpha versions it was measured at approximately
+50dBm - that is to say that there is no measurable degradation
of Mercury's native IP3 performance.

NEED FOR AN SDR 'CRYSTAL SET' TO
TEACH DSP
For the experienced radio amateur who enjoys ‘home brewing’,
there are numerous opportunities to experiment with new
Software Defined Radio ideas and techniques – in both hard-
ware and software.

For the hardware enthusiast, we have already seen that very
high performance SDRs can be built at a low cost, and have a
low level of complexity when it comes to their components – for
example, the SoftRock range of kits [2] and the High
Performance Software Defined Radio (HPSDR) range of ready-
made boards [8].

This trend is likely to continue in the future since, as faster sig-
nal processing devices become available, more and more of the
SDR hardware will be consumed/replaced by software.

For the programmer who wants to play around with SDRs,
there are a number of options, depending on your skill level. For
the relative beginner, the planned changes to the open source
PowerSDRTM code [12], which will result in the separation of the
Digital Signal Processing (DSP) part of the software from the
Graphical User Interface (GUI), will provide the opportunity for
them develop their own GUI for PowerSDRTM, in the programming
language of their choice.

For the more experienced programmer, working in the bowels
of DttSP [25] - the software that commonly implements the core
DSP functions of a Software Defined Radio (SDR) - can be a
rewarding experience.

There is little doubt that having a basic understanding of the
concepts behind DSP is a valuable asset as you progress along
the path to understanding SDR.

However, the main issue facing most radio amateurs is how to
make the transition from understanding analogue radio to that
of understanding SDRs.

Back in the old days, if you were a beginner in (analogue)
radio, the usual starting point for your education was to build a
crystal set. This ‘hands-on’ approach also introduced many new

The Radio Communication Handbook 8.41

8: SOFTWARE DEFINED RADIO

Fig 8.68: HPSDR Alex receiver filter board

© R
SGB 20

11

The Radio Communication Handbook8.42

practical skills – such as soldering, fabrication of parts, etc - that
could be built-on, as your interest and understanding of radio
grew.

The problem with understanding SDR technology, in particular
DSP, is that there is no equivalent teaching aid to the ‘crystal
set’. To the beginner, or even a seasoned analogue engineer for
that matter, most DSP text books seem to be to be written in a
foreign language and appear mostly unintelligible.

Below is an attempt to provide a newcomer to SDR and DSP
techniques with some practical experience in actually process-
ing signals digitally, so they can feel confident about under-
standing the brave new digital world - and perhaps, ultimately,
even a DSP text book!

So, if we consider that a soldering iron is the main tool needed
to build our first crystal set, what is its software equivalent? There
are many excellent tools available for simulating DSP systems, but
since most are aimed at the professional engineer they carry a
hefty price tag, together with a significant learning curve.

One afternoon, on a long boring plane flight to Tokyo, VK6APH
came up with the idea of using simple, low-cost, spreadsheets –
Microsoft™ Excel™ or its Open Office [52] equivalent – as the
software equivalent to the soldering iron when it came to the
digital world.

After some hours of experimentation, he found that many fun-
damental DSP principles can be easily explained using a spread-
sheet. In fact, as we will see a little later in this section, quite
advanced DSP processes can be both modelled and designed
using this tool.

Perhaps the major advantage of using Excel™ in this way is
that many radio amateurs that do not have a technical back-
ground are familiar with its use - in fact, many will use it each day
in their work for financial calculations, etc.

INTRODUCTION TO DIGITAL SIGNAL
PROCESSING
Analogue to Digital, Digital to Analogue
In order to use digital signal processing (DSP) the real world ana-
logue signals must be converted to digital (A-D) and back again
(D-A). A detailed description of these processes can be found in
the Principles chapter.

DSP Learning Laboratory
Whilst there are several excellent DSP teaching tools currently
available, these tend to be expensive for the beginner. As a
result, instead of using one of these, the following examples are
based on the use of a spreadsheet.

In order to conduct a number of DSP experiments, it is first
necessary to develop some items of test equipment. Using a
spreadsheet, the following will be developed:

• An Analogue-to-Digital Converter;
• A Digital-to-Analogue Converter;
• An Oscilloscope;
• A Signal Generator, providing CW, AM and FM modulation

modes, together with a sweep function and in-phase (I) and
quadrature (Q) outputs;

• A Digital Filter; and
• A Spectrum Analyser

A signal generator

In order to test and evaluate the building
blocks that are used in DSP, a signal source is
needed. Whereas in the analogue world, either
an off-the-air signal or a signal generator would

be used, in the DSP/SDR world either a fixed frequency or a noise
source is used instead.

Actually, what we are going to do in this case is to simulate
generating a test signal in a very simple manner using a spread-
sheet - which will enable us to explain some aspects of digital
‘sampling’ at the same time.

In the analogue world, a signal generator can produce a sine
wave output at a specific frequency and amplitude – as is shown
in Fig 8.69.

In the digital world, rather than generating a continuous sig-
nal, a sine wave is produced which is sampled at regular inter-
vals – see Fig 8.70. Each of these samples is held in a ‘cell’ with-
in a spreadsheet – see Fig 8.71. It is convenient therefore to
think of each spreadsheet cell as representing a signal sample
value.

To generate a sampled sine wave, we could calculate the
value of the wave at a fixed incremental angle and enter these
into the spreadsheet. However, there is a much easier way to
generate this sine wave - let the spreadsheet software do all the
calculations for us!

To create a sine wave using a spreadsheet, we simply enter
the line below into a cell:

= sine(value)
where ‘value’ is in radians and 1 radian = 180 / π degrees

If we gradually increase the ‘value’ in incremental steps,
entering each increment into a separate cell, a sampled sine

8: SOFTWARE DEFINED RADIO

Fig 8.69: Sine wave from a signal generator

Fig 8.70: Sampled sine wave

Fig 8.71: Samples held in a spreadsheet

© R
SGB 20

11

wave is produced. The more cells we enter data into, the longer
(in time) the sine wave will exist.

It is very important to understand the concepts of ‘current’,
‘previous’ and ‘future’ samples, so we will examine these in
more detail. First, let us consider the row of cells in the spread-
sheet, shown in Fig 8.72.

If, say, cell D1 is selected and called ‘n’, then the cell imme-
diately to the left (cell C1) will be n-1, and the cell to the left of
that (cell B1) will be n-2, and so on.

Similarly the cell to the immediate right of D1 (cell E1) will be
n+1 and to the right of that (cell F1) n+2.

The amplitude of the sine wave can be plotted using Excel’s
graphing tools, resulting in Fig 8.73. Note: This Excel file (sine.xls)
can be found on the disc that accompanies this handbook.

The sine wave consists of a series of discrete samples, rather
than a continuous waveform. In order to convert these samples
into an analogue signal, a digital-to-analogue conversion needs
to be performed.

This can be done by simply joining the sample dots together
with straight lines. Fortunately, Excel’s graphing tools allow us to

do this with a simple click of the mouse and the result is shown
in Fig 8.74.

Whilst a fixed-frequency signal generator is useful, what would
be even more useful is one that would sweep over a frequency
range. This way, it could be connected to the input of a digital cir-
cuit and we could plot the frequency response of the latter.

Producing a frequency sweep is again very easy in ExcelTM -
rather than incrementing ‘value’ with equal amounts, we simply
add progressively larger values with each sample, for example:

sine[value + (previous value * x)]

This is shown in Fig 8.75 and is available in the file sweep.xls,
which can be found on the compact disc which accompanies
this handbook.

In-pphase (I) and Quadrature (Q) signals

The importance - and concept - of I (in phase) and Q (quadra-
ture) signals for Software Defined Radio (SDR) has already been
explained earlier in this chapter.

Since processing I & Q signals is essential for SDR, it’s really
useful to be able to simulate/generate them using ExcelTM –
which is relatively simple to do.

If you recall, I and Q signals are displaced in phase from each
other by 90º or π/2 radians. If we consider that the sine wave
generated in Fig 8.75 is the I signal, then to create the Q signal
we simply add π/2 to each value, ie

Q = SIN(value + π/2)

The result of this is shown in Fig 8.76. Notice that both sine
waves have the same frequency and amplitude, but are 90º out
of phase with one another. Another way of thinking about these

The Radio Communication Handbook 8.43

8: SOFTWARE DEFINED RADIO

Fig 8.72: Sample identification

Fig 8.73: Sine wave graph produced by spreadsheet. At the top
is part of the series used to plot the points on the graph

Fig 8.74: Using a spreadsheet to perform an analogue to digital
conversion

Fig 8.75: Sweep generator

Fig 8.76: I and Q waveforms

© R
SGB 20

11

The Radio Communication Handbook8.44

two signals is that one is a sine wave and the other a cosine
wave. In fact, the Q signal could have been generated in ExcelTM

using:

Q = COS(value)

See the file I&Q.xls, which can be found on the compact disc
which accompanies this handbook.

Amplitude modulation

ExcelTM can be used very effectively generate and demodulate
an Amplitude Modulated (AM) signal.

An AM wave can be described by multiplying the carrier sine
wave by a modulating signal. Let’s use the sine waves we have
previously generated as our carrier and create another sine
wave as our modulation. Since our modulation is usually at a
lower frequency than our carrier, let’s use 1/5th of the carrier
frequency for our modulating signal.

This means our modulation becomes:

Modulation = SIN(value/5)

To create AM, the modulation is multiplied by the carrier, so in
Excel we use:

AM = (0.5 + M*SIN(Modulation) * SIN(Carrier)
where M is the modulation depth (0 – 100%)

If this is plotted using Excel’s graphing facility, we see the
familiar AM waveform - Fig 8.77 (see the file AM.xls, which can
be found on the compact disc which accompanies this hand-
book).

Since we would like to demodulate the AM signal from the I &
Q signals we need to also generate a Q signal with the same for-
mat. We do this the same way but this time we use:

AMQ = (0.5 + M*SIN(Modulation) * COS(Carrier)

Again we can plot the I and Q signals and the result is Fig
8.78. Notice that both I and Q have the same form, they are just
phase-shifted with respect to their carriers by 90º.

To demodulate these signals and recover the modulation we
use Pythagoras’ Theorem:

AM = √ (I2 + Q2)

or as an ExcelTM formula

= SQRT(I^2 + Q^2)

This result is shown in Fig 8.79 which demonstrates that we
have recovered the original modulation signal (see the file
AM2.xls, which can be found on the compact disc which accom-
panies this handbook).

As has been explained before, this technique works for any
carrier frequency, even one that has the carrier within the audio
frequency range or at 0Hz.

Phase and frequency modulation

In a similar manner to AM, phase modulated (PM) and fre-
quency modulated (FM) signals can be simulated and demodu-
lated.

An FM signal can be generated in a similar manner to our AM
test waveform. In this case:

FMI = SIN*(Carrier + Modulation)

and FMQ = COS*(Carrier + Modulation)

I and Q signals can be used to demodulate these waveforms
as a frequency modulated signal, using:

FM = (Qn. In-1 – In.Qn-1)/(In2 + Qn
2)

where n is the current sample and n-1 is the previous sample.
The result of performing this process on the I and Q signals is

8: SOFTWARE DEFINED RADIO

Fig 8.77: Amplitude modulation

Fig 8.78: I and Q AM waveforms

Fig 8.79: I and Q AM demodulation

© R
SGB 20

11

shown in Fig 8.80 (see the file FM.xls, which can be found on
the compact disc which accompanies this handbook).

A couple of things should be noted about this technique.
Firstly, since frequency modulation is the rate of change of
phase, it can be seen that the process involves subtracting the
previous samples from the current samples. In effect, this gives
us the slope of the signal, which is the same as the rate of
change of phase.

Secondly, the resulting signal is determined by the ratio of the
I and Q signals and not their absolute values. Hence the recov-
ered modulation will remain constant over a wide range of sig-
nal levels and any AM noise or interference will not appear on
the output signal.

This is similar to the effect we get when receiving an FM sig-
nal on a conventional analogue radio, where the signal has
passed through a limiter.

Digital filters

For those of us like VK6APH and VK6VZ who have been brought
up in an analogue world, understanding the concept of being
able to filter a signal digitally takes a little patience. After all, we
know that resistors, capacitors and inductors can be used to
create all sorts of filters and have been using them for this pur-
pose for years and, well, they just work!

So how can we take a series of signal samples and filter them,
just like we have done for years in the analogue world?

Well it turns out that not only can all the filters used in the
analogue world be reproduced digitally, (eg low-pass, high-pass,
band-pass) but when implemented digitally they often have sig-
nificantly better performance.

By better, we mean:

• Digital filters are always 100 per cent reproducible, since
there are no hardware component tolerances to worry
about.

• Digital filters do not alter their characteristics with time,
temperature, humidity, shock or vibration.

• The performance of digital filters can be accurately predict-
ed and modelled.

• There is no need to ‘tweak’ or align digital filters.
• Any changes to digital filters are made by changing soft-

ware, not component values, so different filters - or vari-
able filters - can be implemented easily. These changes
can be made whilst the filter software is running, ie ‘adap-
tive’ filters can be produced.

• Compared with, say, a bank of narrow-band, high-perform-
ance CW or SSB filters, digital filters are low cost.

• The performance of digital filters (eg shape factor) can
exceed that of conventional analogue filters.

• Digital filters can be implemented that would be either
impossible or very expensive to produce using analogue
techniques.

This doesn’t mean that an analogue filter can always be
replaced with a digital one, since before a digital filter can be
used on a signal, the latter needs to have first been digitized.
Even then, a digital signal needs to be at a suitable sample rate
that currently available digital signal processors can handle.
That being said, the fact is that digital filters are replacing ana-
logue ones at a rapid rate.

The fundamental building block of a digital filter is the delay
element. This element simply stores a sample for a clock cycle
and then passes it on. Now, we can think of each cell in our

The Radio Communication Handbook 8.45

8: SOFTWARE DEFINED RADIO

Fig 8.80: (a) FM generation and (b) FM demodulation

Fig 8.81: Spreadsheet samples

Fig 8.82: Cascaded delay element Fig 8.83: Adder and multiplier

(a)

(b)

© R
SGB 20

11

The Radio Communication Handbook8.46

ExcelTM spreadsheet as a delay element. For example, if the sam-
ples in Fig 8.81 are available in our spread sheet, we could con-
sider them as delay elements, as shown in Fig 8.82.

In order to create a digital filter we need to introduce two other
elements, the adder and multiplier - see Fig 8.83 These ele-
ments operate much as expected - the output of the adder is
simply the sum of its inputs, while the output of the multiplier is
the multiplication of its inputs.

In ExcelTM we can use:

Output = A + B

for an adder, and:

Output = A*B

for a multiplier.
The simplest digital filter that can be made is a comb filter, so-

called because of the shape of its frequency response. A comb
filter can be made from a delay element and an adder, as per Fig
8.84. This can easily be implemented in ExcelTM, as follows:

Output = Current Cell + Previous cell

For explanations sake, we could assume that the input signal
is a 1kHz sine wave and the delay is 0.5mS. In which case the
output of the delay element will be exactly 180° out of phase
with the other input to the adder. As a result, adding these two
signals will result in zero output. The output will also be zero for
all harmonics of 1kHz, ie 2, 3, 4 kHz, etc.

If our sweep generator is applied to the input of the filter and
the output plotted again using ExcelTM, the results can be

shown as the graph in Fig 8.85 (see the file comb.xls, which
can be found on the compact disc which accompanies this
handbook).

The frequency response has recurring notches that repeat at
multiples of the signal sampling rate. As you can see, the
response has a comb-like structure, hence the filter’s name.

The location of the filter nulls depends on the length of the
total delay - the plot shown in Fig 8.81 uses a delay of six
cells.

At first sight, the usefulness of a comb filter may not be appar-
ent - after all, it’s not the sort of filter you would want to pass
14MHz SSB signals through! But what if you had a signal that
contained significant 50Hz mains ‘hum’? Typically, such hum
comprises the 50Hz fundamental plus numerous harmonics, eg
100Hz, 150Hz, 200Hz, etc.

A suitably designed comb filter would remove the funda-
mental 50Hz signal plus its entire harmonics and have rela-
tively little effect on other frequencies that are passing
through it.

Admittedly, such a filter would also be relatively easy to imple-
ment using analogue components; a simple switched capacitor
filter would do the trick.

Comb filters are used extensively in Digital Up/Down
Converters (see earlier) since they provide a high performance
without the need for multipliers.

Finite impulse response filters

The Finite Impulse Response Filter (FIR) is a very popular digital
filter that is inherently stable (which is more than can be said for
a number of analogue filters that VK6APH has built over the
years!). The ‘finite’ in its name comes from the fact that the fil-
ter only uses a finite number of input samples in order to pro-
duce its output.

A simple FIR digital filter can be evaluated that has a fre-
quency response that is similar to the simple low-pass RC net-
work shown in Fig 8.86. The way the various digital elements are
connected is shown in Fig 8.87.

In addition to the delay and components of our comb filter, we
have added a multiplier with a coefficient of an. In the FIR filter
shown, we set:

8: SOFTWARE DEFINED RADIO

Fig 8.84: Comb filter

Fig 8.85: Comb filter frequency response

Fig 8.86: Analogue low pass filter

Fig 8.87: Digital low pass filter

© R
SGB 20

11

a0 = 0.25
a1 = 0.5
a2 = 0.25

Each cell in the filter spreadsheet will have the following for-
mat:

Output = (0.25*n) + (0.5* n-1) + (0.25*n-2)
where n = current cell

The frequency response of this FIR filter can be plotted by
feeding the input from our sine wave sweep generator. This
gives the result shown in Fig 8.88 (see the file LPF.xls, which
can be found on the compact disc which accompanies this
handbook).

As can been seen, this looks exactly like the response we get
from the analogue-equivalent RC low-pass filter.

By using more delay sections in the filter (which is called mak-
ing it a ‘higher order’ filter), different coefficients and adding the
relevant multipliers and adders, filters can be created with dif-
ferent characteristics, eg faster roll-off with frequency, as well as
high-pass and band-pass filters.

The multiplier constants an can be obtained from existing
design tables of digital filters.

There are also numerous software programs where you can
enter the desired filter response and the program will calculate
the values for you - the free ScopeFIR program [53] being a good
example.

Spectrum displays

One of the most useful features of a SDR is its ability to display
the spectrum of a signal, or band of signals within a region of
interest. Such spectrum displays - also called bandscopes or
panadapters - have been available in high-end professional and
amateur radio equipment for many years. However, the use of
DSP techniques in recent years for bandscopes has significant-
ly increased their resolution, and hence usefulness, for weak
signal detection/reception.

The limitation of previous analogue-based spectrum displays
has been that to obtain high sensitivity and frequency resolution,
a narrow filter was required. Such a narrow analogue filter was
‘swept’ across the frequency band of interest, but to retain the
signal amplitude this needed to be done slowly, so as to prevent

the filter from ‘ringing’. In practice, such a slow-moving filter is
unable to display CW signals in real time.

The digital solution is not to sweep a digital filter across the
frequency band, since this would have the same speed limita-
tions as an analogue filter, but rather use thousands of similar
filters in parallel. Each filter can be a few Hz wide and stacked
side-by-side to cover the frequency band of interest.

As a frequency band is ‘swept’ across, the output of each fil-
ter is selected in turn and the resulting values graphed to pro-
duce a frequency display.

Whilst it would be possible to use this multiple filter-type tech-
nique in an analogue bandscope, the cost and size of the result-
ing hardware would be prohibitive to say the least!

So, how are we able to implement so many filters digitally?
The answer is to use a mathematical technique called Fourier
analysis and in particular what is termed the Fourier Series.

In simple terms, the Fourier Series assumes that any repeti-
tive waveform can be broken down into a series of waveforms,
consisting of a fundamental sine wave plus its harmonics. Each
sine wave has a particular amplitude and phase and they are all
added together to give the original waveform. If we can deter-
mine what these are, then we can plot the frequency spectrum
that corresponds to the waveform.

This concept is illustrated in Fig 8.89, where a square wave is
converted to its frequency spectrum. As can be seen, the spec-
trum consists of a fundamental sine wave plus its odd harmonics.
The amplitude of the harmonics are equal to the amplitude of the
fundamental sine wave divided by the harmonic number, eg A/n.

The mathematical explanation of how the Fourier Series works
is a little beyond this introductory chapter. For those who are
interested, a very well written explanation can be found at [54].

The particular Fourier analysis that is desired to be performed
is the conversion of the signals that we have as a series of sam-
ples into a plot of amplitude against frequency.

A Discrete Fourier Transform (DFT) is used to do this conver-
sion. The term ‘discrete’ comes from the fact that the input sig-
nal consists of a number of discrete samples, rather than a con-
tinuous signal.

It is quite possible to implement the DFT using standard for-
mulas in ExcelTM. In fact, for the reader that wants to get a really
solid understanding of exactly how this process works, then this
would be a great exercise.

The Radio Communication Handbook 8.47

8: SOFTWARE DEFINED RADIO

Accessing DSP analysis tools in ExcelTM 2003

As initially installed, Microsoft ExcelTM does not provide access to a
number of tools that are required to undertake the Digital Signal
Processing tasks used in this chapter. To add these tools to the ver-
sion of this program you have installed, select: Tools\Add-
Ins\Analysis ToolPak and click OK.

To use the built-in FFT analysis tool in ExcelTM, click on ‘Tools’ in
the menu bar and select ‘Data Analysis’.

In the window that opens, select ‘Fourier Analysis’ and enter the
range where the input samples are to be found and where the results
are to be placed.

Fig 8.88: Excel implementation of a low pass filter and the
resultant graph

Fig 8.89: Fourier representation of a square wave

© R
SGB 20

11

The Radio Communication Handbook8.48

However, for those less committed - like both the authors -
there is a much simpler solution. Conveniently, the DFT is such
a useful analysis tool that it is already built into ExcelTM. All that
is necessary is to ‘point’ ExcelTM at that range of sample values
(which must be a power of two, eg 22 = 4, 23 = 8, 24 = 16, etc)
and all the hard work is done for us.

Note that the Fast Fourier Transform (FFT) and a few other
functions are not normally activated in ExcelTM - see the side bar
Accessing DSP analysis tools in ExcelTM that explains how the
DSP analysis functions we require can be added.

The use of an existing function or library is how most pro-
grammers would implement a DFT. The PowerSDRTM software
uses FFTW [55] (the Fastest Fourier Transform in the West –
even mathematicians have a sense of humour it would seem!)
whilst the Mercury project in HPSDR uses Ooura’s FFT algorithm
[56] that has been ported to C# by Phil Covington, N8VB.

To create our bandscope display, we simply use the FFT function
in ExcelTM and graph the results.

Some samples are obviously needed to feed into the FFT, so
this time we will use some real data captured from the output of
a sound card connected to a SoftRock receiver [2] and this has

been placed on the disk which accompanies this handbook (see
the file FFT.xls which can be found on the compact disc which
accompanies this handbook). This concept is illustrated in Fig
8.90(a).

This data was captured as 24-bit I and Q signals, sampled at
48kHz and consists of 4,096 samples - see Fig 8.90(b). The
input signal to the SoftRock was at approximately 11kHz from
zero beat and about 50dB above the noise floor.

Incidentally, the data could be captured thanks to a program
written by Bill Tracey, KD5TFD, which stores the data into a file
suitable for directly importing into ExcelTM.

Before we can use ExcelTM to calculate the FFT, the I and Q
data captured from the PC sound card needs to be converted
into the required format. This is termed complex notation, where
the I and Q samples are formatted as I + Qi.

Fortunately, complex notation is frequently used and a func-
tion to convert to this format is built into ExcelTM Fig 8.91(a):

The FFT function in ExcelTM is then applied to the complex data
which results in new I and Q terms being calculated. In order to
plot the amplitude of the FFT result, we need to calculate the
magnitude of the result.

We do this by taking √ (I2 + Q2). Again, this is a function that
is built into ExcelTM. Finally we take log10 of the magnitude, so
the amplitude can be expressed in dB. The resulting ExcelTM for-
mula is shown in Fig 8.91(b):

The result of using Excel’s FFT function, followed by taking the
log of the magnitude of the FFT, is shown in Fig 8.92 (see the file
FFT.xls, which can be found on the compact disc which accom-
panies this handbook). Whilst this is starting to look like a sig-
nal, you would expect to see on a bandscope, something about
its appearance is not quite right.

For a start there is no noise along the bottom of the display
and the overall shape of the display looks odd. So what’s gone
wrong?

Well, in fact, nothing is wrong - ExcelTM has produced the FFT
of the input samples we provided it with and correctly graphed
the output. Let’s look again at what our input samples look like
(see Fig 8.93).

8: SOFTWARE DEFINED RADIO

(a)

(b)

Fig 8.90: (a) Data capture from a SoftRock receiver. (b) SoftRock
I & Q data imported into ExcelTM

Fig 8.91: (a) Converting to complex notation in Excel and (b) The
resultant Excel formula

Fig 8.92: Result of using Excel’s FFT function

Fig 8.93: The input signal

(a)

(b)© R
SGB 20

11

The FFT is intended to be applied to a continuous stream of
data, but what we have provided it with is actually a short
‘burst’ of data, 4,096 samples long. As a result, the input sig-
nal looks like a single CW ‘dot’ and, since it has a very short rise
and fall time, what could be termed ‘key clicks’ have been gen-
erated.

The FFT spectrum that has been calculated is effectively a sin-
gle CW dot with very bad key clicks, which account for the wide
skirt to the signal. The sharp rise and fall times of the input sig-
nal produce numerous additional signals that add together and
appear in the bandscope as an increase in the signal level along
the bottom of the display.

In the analogue world, key clicks can be got rid of by passing
the generated CW signal through a filter that slows down the rise
and fall times before it is actually transmitted - see Fig 8.94.
Exactly the same thing can be done in the digital world, using a
technique called ‘windowing’.

There are several windowing functions that have slightly dif-
ferent characteristics, but all tend to smooth off the leading and
trailing edges of the sequence of samples that are going to be
converted.

The popular windowing functions, generally named after their
originators, have different advantages and disadvantages.
Some of these are shown in Table 8.7:

Our input data shown in Fig 8.90 has effectively been multi-
plied by a rectangular window having a maximum value of one.

Along with other SDR software, the PowerSDRTM software
allows the user to select from a range of different windowing
functions that includes those in the table.

The Hanning window is very easy to demonstrate using
ExcelTM, the formula being:

Output = 0.5 + 0.5cos(n π / (M + 1))
where n is the current sample, M is the total number of samples

If this window function is plotted in ExcelTM, then the result
shown in Fig 8.95 is achieved.

If we now multiply our I and Q samples by the Hanning window
function, the rise and fall times of the signal are smoothed out
and the ‘key clicks’ removed - see Fig 8.86.

If this windowed data sequence is fed into Excel’s FFT func-
tion and the output is graphed, the image shown Fig 8.97
results.

This looks much more like the type of signal image we would
expect to see on a SDR bandscope. The vertical axis of the
‘bandscope’ has been modified so 10log of the signal is taken
so the bandscope can be display the signal level in dB. In addi-
tion, the horizontal axis of the bandscope has been scaled in fre-
quency – let us see how the latter has been achieved.

The 4,096 input signals (I and Q) have been sampled at
48kHz, so we also have 4,096 samples in our FFT output signal.
Hence the distance between each spectrum line on the band-
scope will be:

48,000/4,096 = 11.7Hz

Each of these samples is referred to as an FFT ‘bin’ and in this
case each bin is 11.7Hz wide. Armed with this information, we
can scale the x axis of the graph accordingly.

The Radio Communication Handbook 8.49

8: SOFTWARE DEFINED RADIO

Window Magnitude Frequency
Function Resolution Resolution
Rectangle Very Low Very High
Hanning High Low
Hamming Normal Normal
Blackman High Low
Blackman-Harris Very High Very Low
Bartlett Low High

Table 8.7: Characteristics
of several windowing func-
tions

Fig 8.94: Analogue ‘key-
click’ filtering

Fig 8.95: Hanning window function

Fig 8.96: Application of Hanning window to I and Q samples

Fig 8.97: The resulting bandscope display

© R
SGB 20

11

The Radio Communication Handbook8.50

Conclusion

This section of the chapter introducing digital signal processing
has been presented by VK6APH as a talk/demonstration at the
Dayton Hamvention in May 2007, to an audience of around 350
radio amateurs. Video of this talk is available as a digital file on
the disk that accompanies this handbook.

By using a spreadsheet - ExcelTM in this instance (although the
open source ‘Open Office’ equivalent could also have been used
instead) - the basic principles of Digital Signal Processing have
been illustrated. These include:

• Signal sampling (ie analogue to digital conversion);
• Conversion of a series of digital samples back to an analogue

signal (ie digital to analogue conversion);
• The concept and generation of I & Q signals;
• Digital techniques for the modulation and demodulation of AM

and FM signals;
• An introduction to the Fast Fourier Transform and Spectrum

Analysis;
• The process that produces a bandscope; and
• The use of windowing functions.

Although spreadsheets are used here to introduce the SDR
beginner to DSP, their use is an excellent simple and low cost
means of simulating - and designing - complex DSP algorithms
and is also recommended to the advanced experimenter.

Further reading

• A Simple Approach to Digital Signal Processing, Craig Marven
and Gillian Ewers, published by Wiley-Interscience.

• The Scientists and Engineer’s Guide to Digital Signal
Processing, Steven W Smith. Hardcopy or free download from:
http://www.dspguide.com

A BUDGET SDR TRANSCEIVER KIT
Since the SoftRock series of Software Defined Radio kits were
introduced in late 2005, several thousands of these kits have
been marketed by Tony Parks, KB9YIG, and built by radio enthu-
siasts across the globe [2]. These simple SDR receivers, with
either single or dual amateur band coverage, have been sold in
the United States for between US$10 and US$20 and have per-
formance comparable with analogue products costing several
hundreds of dollars.

As more and more of these receivers were sold, Tony and an
informal pool of radio designers – including VK6APH - who sup-
port the SoftRock philosophy of showing the capabilities of SDR
through the sale of cheap kits to radio enthusiasts across the
globe began to discuss the development of a companion trans-
mitter or SDR transceiver for the SoftRock range.

This pool of designers includes Jan Verduyn, G0BBL, Alan
Rowe, M0PUB and John Law, G8BTR. In late 2006, the three
started work with KB9YIG on an SDR transmitter, which meta-
morphosed a few months later into the SoftRock RXTX.v6.1 SDR
transceiver.

Most of the original v6.1 RXTX transceiver kits covered the 80
and 40m amateur bands, although a number covered 160m (of
which VK6VZ has a prototype). The first 1,000 v6 RXTX kits sold
out in around three months and a production run of a further
1,000 kits (v6.2, which mainly cover 40m/30m) started in May
2007. The transceiver produces around one watt of RF, from a
pair of BS170 FETs in push-pull, and its receive section has a
performance similar to that of the SoftRock v6 receiver.

A block diagram of a typical SDR transceiver is shown in Fig
8.98. The circuit diagram and building instructions for the RXTX

transceiver can be downloaded from the Softrock 40 Internet
web site [13].

The 160m prototype RXTX v6.1 tested by VK6APH and VK6VZ
displayed a minimum detectable signal (MDS) of -115dBm and
a noise figure of 32dB, using an M-Audio D44 soundcard set to
-10dBm as the input signal level. On a 40m version of the RXTX
v6.1, DG8SAQ measured third order intermodulation distortion
on transmit at 38dB below PEP, with the harmonics greater than
50dB down – very acceptable figures [57].

If you are using a soundcard in your personal computer with a
48kHz sampling rate, the original RXTX v6.1 covers part of the
40m amateur band (in CW, digital or SSB mode) from 7.000
MHz to 7.075MHz. The coverage is extended up to 7.095kHz if
you use a 96kHz soundcard, such as the M-Audio Delta 44.

This coverage is provided by means of two crystals and a
jumper (or switch) is used to switch from one to another, moving
the transceiver from the CW/digital modes part of 40m to the
SSB portion. The kit also allows coverage of the 80m band from
3.500MHz to about 3.545MHz, but an external low-pass filter
with a cut-off frequency of 4 MHz needs to be added on the RF
output of the transceiver to make sure no harmonics are trans-
mitted on the 40m band. As a result of needing this extra filter-
ing, most of the builders of the RXTX v6.1 so far have used their
transceivers exclusively on 40m.

According to G0BBL, building the RXTX transceiver kit should
take from seven to eight hours upwards and be within the capa-
bility of radio amateurs who have had some previous kit building
experience. There are around 25 0.1μF capacitors and seven
integrated circuits in the RXTX v6.1 which are surface mounted
devices (‘SMDs’) and require a fine tipped soldering iron, anti-
static precautions, good eyesight and a steady hand.

For those who are entering the world of SoftRock construction
for the first time, VK6VZ would highly recommend building a
SoftRock receiver, such as the v6 lite version, before trying their
hand at the RXTX v6.1 – the v6 lite receiver has less than 50 per
cent of the components of the latter and is a great way to get
started with the various types of SDR software that can be used
with SoftRock, such as Rocky, KGKSDR and PowerSDRTM.

VK6VZ believes the degree of difficulty with building the RXTX
v6.1 transceiver and getting it going is at least double that of
doing the same with a SoftRock v6 receiver. Getting familiar with
the SDR software is all-important and learning about the receive
side of SDR without having to worry about transmitting is a great
way to go.

Computing Power
G0BBL also makes the important point that whilst Softrock
receivers can be used on a modest 500 to 700MHz Pentium
personal computer running VE3NEA’s popular Rocky software,
as a minimum the RXTX transceiver needs a Pentium PC running
at a speed of 1GHz to 2GHz, in order to be able to transmit.

8: SOFTWARE DEFINED RADIO

Fig 8.98: Block diagram of a typical SDR transceiver

© R
SGB 20

11

So that the RXTX transceiver is able to transmit and receive,
the soundcard of the personal computer that is doing the ana-
logue-to-digital (and digital-to-analogue) conversion needs to
have ‘Line In’ and ‘Line Out’ capabilities, as well as a micro-
phone input socket.

Currently, there are three software packages that support the
RXTX transmit capabilities. One is a special version of
PowerSDRTM – the software which is used on the Flex-Radio
SDR-1000 - which has been adapted by Bill Tracy KD5TFD for
this purpose. KGKSDR has been developed by Duncan Munroe
M0KGK, while Rocky 3 has been developed by Alex Shovkoplyas
VE3NEA – these are both transceive versions of software origi-
nally developed for the SoftRock series of receivers.

G0BBL created an excellent summary of the three SDR soft-
ware programs for a talk he gave at the Ozarcon QRP conference
in the USA, which is reproduced in Table 8.8, to help with choos-
ing the software that is most appropriate to your needs. VK6VZ
has tried them all and likes Rocky and KGKSDR the best – but
then he is a simple soul who likes ‘intermittent carrier’ opera-
tion. VK6APH who lives on the cutting edge, but uses SSB,
prefers PowerSDRTM.

A certain amount of computer knowledge will be required
when initially setting up the RXTX software program of your
choice and the services of an experienced PC user who has an
interest in SDR are bordering on essential. However, as G0BBL

notes, once the RXTX transceiver and its software has been
setup correctly, those radio amateurs with limited PC expertise
should be able to operate the RXTX SDR transceiver.

Like the SoftRock receivers, there is a need with the RXTX
transceiver to balance the phase and amplitude of the I and Q
signals that come from the RXTX into the personal computer
soundcard being used for analogue to digital conversion.

If you use the Rocky software, this balancing is automatically
done on receive by the software itself, using signals that are
received by the receiver outside of the bandwidth to which is
tuned. Now when the RXTX is transmitting, I and Q signals are
generated by the personal computer soundcard and the phase
and amplitude of these transmit signals need to be similarly bal-
anced.

For example, let us say the local oscillator crystal in the RXTX
is on 1.830MHz and we wish to transmit on 1.845MHz. In this
case, the I and Q signals from the soundcard will be at 15kHz,
since:

1.830MHz + 0.015 MHz = 1.845MHz

In addition to the wanted signal on 1.845MHz, an image sig-
nal will also be present at the transmitter output at:

1.830MHz – 0.015MHz = 1.815MHz

The Radio Communication Handbook 8.51

8: SOFTWARE DEFINED RADIO

Name of software and Points in favour of its use Points against its use
general description

M0KGK SDR
http://www.m0kgk.co.uk/sdr/index.php • Excellent support by M0KGK. • High CPU usage – Modern PC needed
• Fully Featured Package by • New functionality – bug fixes (3 GHz upwards).

Duncan Munroe M0KGK. implemented over weekend. • Filters are not optimum - CW signals
• RXTX transceiver supported since • Supports single soundcard can sound rough “off tune”.

December 2006. transceive operation.
• Current Version 1.59. • Easy setup of WINPSK setup
• CW, SSB and PSK31 modes. – VAC not required.
• Separate Yahoo KGK support group.

Rocky 3.1
http://www.dxatlas.com/rocky/ • Lowest CPU requirements • SSB mode not supported.
• By Alex Shovkoplyas VE3NEA. (1 - 1.4 GHz Pentium PC). • Single soundcard transmit operation
• RXTX transceiver supported • Excellent filters. not supported.

since February 2007. • Blocks transmission around carrier • Straight key not supported at this
• CW and PSK31 modes supported. and outside +/- 90 % bit rate. time.
• Built-in electronic paddle keyer. • Manual calibration of transmit
• Low latency. image rejection is easy and
• Simple program – few controls effective.

- easy to get started with. • PSK 31 has built-in error detection
and correction.

PowerSDRTM-ssr40
http://sourceforge.net/projects • Fully featured – even has • Starting with PowerSDRTM is bit of
/powersdr-sr40 subreceiver support! a learning curve.
• First RXTX version produced by • Excellent filters (try the 25Hz CW

Bill Tracy (October 2006). filter on a weak signal).
• CW and SSB modes supported. • Modest CPU requirements.
• Current version Soundforge 1.9.0. • Good documentation.
• Uses latest SDR1000 interface.
• Contributed by Guido ten Dolle, PE1NNZ.
• Extensive documentation.

Table 8.8: Comparison of SDR software. Note that this was written by G0BBL in early 2007 and should be considered as a general
guide only - versions may have changed since then

© R
SGB 20

11

The Radio Communication Handbook8.52

Now, the amplitude of this image signal at 1.815MHz will
depend on the accuracy to which the overall amplitude and
phase of the I and Q signals have been matched. For example,
if the amplitudes have been matched to 0.1dB and the phase to
1 degree, then the image will be 40dB below the wanted signal.

In practice, this means that if your signal - the wanted signal -
is R5 S9+40dB at the receiver of a local station, the image of
your signal will still be R5 S9 – a very strong signal.

Fortunately, as you can see by looking at Table 8.6, all the
currently available software for the RXTX includes provision to
reduce the unwanted image of the transmitted signal. One of
the best ways of getting rid of the image – and feeling confi-
dent that it is gone – is by connecting the RXTX up to a dummy
load antenna and listening for the unwanted image signal on
another receiver.

Please bear in mind that this unwanted image adjustment
needs to be done at a number of frequencies across the ama-
teur band the RXTX is operating on – say, at every 5kHz - since
the optimum settings will vary considerably across the band.
Ultimately, a compromise setting may be necessary, for transmit
I and Q phase and amplitude adjustment, that works across
most of the band covered by your RXTX .

Each type of the three types of SDR software requires slightly
different connections between the RXTX board and associated
personal computer. However, diagrams showing the necessary
connections for each piece of software are available on the
Internet [58]. A few additional readily available components may
be required.

On the Air
If you listen in the QRP CW and PSK sections of the 7MHz band,
there is a good chance you will hear someone using a SoftRock
RXTX transceiver. Routine CW contacts have been made over
distances up to several thousand miles using dipole antennas.
SSB contacts have also been reported and a number of opera-
tors are using the RXTX transceiver very successfully on PSK
data mode.

Special thanks must go to Jan, G0BBL, John, G8BTR, Alan
M0PUB, Tom, DG8SAQ and Bodo DJ9CS for their work in devel-
oping the RXTX, to Bill, KD5TFD, Guido, PE1NNZ, Duncan,
M0KGK and Alex, VE3NEA for making software available for the
RXTX, and to Tony, KB9YIG for his efforts in producing another
great SDR kit at a very modest price.

USING THE SI570 DIGITALLY CONTROL-
LABLE CRYSTAL OSCILLATOR IN SDRS
There is something affordable in the world of SDR for just about
everyone, rich or (relatively) poor. As explained in the previous
section, the main-stay at the budget end of the SDR market has
long been the terrific range of receiver (and more recently, low
power transceiver) kits marketed by Tony Parks, KB9YIG [2].

This range of radios allows you to tune plus/minus half the
sampling rate of your personal computer's soundcard from the
crystal frequency selected by the user from the SDR hardware.
In the case of the popular M-Audio D44 soundcard - used by
both VK6APH and VK6VZ - this is ±48kHz. For example, if the
crystal frequency is 7.040MHz, then using a 96kHz sampling
rate the user can tune 48kHz either side of the crystal frequen-
cy, using SDR programs such as PowerSDRTM [12], Rocky [1]
and KGKSDR [3].

The main limitation of the early variants of SoftRock receiver
lay in the relatively narrow bandwidth covered by the receiver,
due to its fixed crystal oscillator. Whilst this was great for VK6VZ
who only really uses the CW sections of bands, the majority

(like VK6APH) who were interested in the wider open spaces of
the SSB sections of the amateur bands and also liked to do a
bit of general listening around the HF spectrum found this limi-
tation rather frustrating.

As a result, the more experimentally-minded SoftRock users, in
particular those members of the SoftRock 40 Yahoo reflector
[13], started to search for a cheap and stable variable frequency
source for their SDR receivers. One of the first used was the DDS-
60 direct digital synthesizer kit [59] but although this is very rea-
sonable priced, some were not keen on buying it as it was more
expensive than the (very cheap) SoftRock receiver kits.

A very interesting alternative has appeared, as the result of
experimentation by people such as Cecil K5NWA, Dave
WB6DHW, Thomas DF7TV, and the QRP-2000 team (DG8SAQ,
G8BTR, M0PUB, PE1NNZ, G0XAR and G0BBL).

The crystal oscillator in a SoftRock receiver or transceiver is
replaced by a Silicon Labs Si570 programmable crystal oscilla-
tor integrated circuit (Fig 8.99). This clever chip can generate
almost any frequency from 3.5MHz to 960MHz and selected fre-
quencies up to 1,400MHz (although a minimum of 10MHz is
guaranteed by Silicon Labs) and is programmable via an I2C
serial interface in steps of less than 1Hz.

The Si570 can be controlled via any I2C device, either imple-
mented in hardware or 'bit-banged' in software. This means a
whole host of interfaces can be used - from PC printer and USB
ports through to popular microprocessors such as the PIC range
or even the tiny Atmel ATTiny45.

There are both CMOS (complimentary metal oxide semicon-
ductor) and LVDS (low voltage differential signaling) output ver-
sions of the Si570. The CMOS version has a bigger output (2.6V
peak-to peak) than the LVDS version (0.7V peak-to-peak), but
the latter offers better stability (±20ppm) than the former
±50ppm) and lower phase noise.

A block diagram of the Si570 is shown in Fig 8.100. It consists
of a PLL (phase-locked loop) whereby a microwave VCO (voltage

8: SOFTWARE DEFINED RADIO

Fig 8.99: Silicon
Labs Si570

Fig 8.100: Block diagram of the Si570 controllable oscillator

© R
SGB 20

11

controlled oscillator), covering the range 4.85 to 5.67 GHz, is
divided down and phase-locked to an internal 114.285MHz
(nominal) third overtone crystal reference.

Dividing the microwave VCO frequency results in a reduction
in oscillator phase noise and typical performance figures are
show in Table 8.9. Whilst the figures are not 'state of the art'
they are very respectable for such a simple device.

A significant advantage of the Si570 is that unlike direct digi-
tal synthesis-based local oscillators, there are no spurs con-
tained in the output spectrum. VK6APH has been testing a
Si570 running at 1.126GHz as a local oscillator for a simple
spectrum analyser with excellent results.

Whenever the frequency of the Si570 is changed, via an I2C
command, the output is disabled for some 250μS. This results
in 'blips' in the receive signal whenever the attached SDR is
tuned.

However, Silicon Labs have recently updated the datasheet for
the device, showing how frequency changes of up to ±3,500
ppm can be made without the need to disable the output.
Experimental work by Sid, W7QJQ has increased this range to
±2.5 per cent of the set frequency, resulting in 'VFO-like' tuning
of an SDR with a Si570 is attached to it.

Although the Si570 is stable enough for HF applications, Cecil,
K5NWA, has come up a very simple and clever oven for it,
attaching a PTC thermistor to the Si570's case in a similar man-
ner to that used by VHF and microwave oscillators to stabilize
conventional crystal oscillators. Details of this can be found on
the web [60].

With a 60-degree thermistor such as a GE RL3006-50-60-25-
PT0 operating at 5V, the stability has been reported as being "as
good as a ham transceiver with a temperature stabilized crystal
oscillator (TCXO) option".

The QRP2000 team has developed a USB controlled crystal
synthesizer using the Si570 for use with the SoftRock RXTX V6.1
and V6.2 transceivers, which is being sold by SDR-Kits.net [61].
Both CMOS and LVDS versions of this are available. The kit uses
either a special version of PowerSDR-SR40 that has been devel-
oped by Guido, PE1NNZ, Alan, M0PUB, and others or a new ver-
sion of VE3NEA's RockySDR (v3.5), which both provide USB sup-
port for the synthesizer. Tom DG8SAQ has written a companion
stand-alone application for the SDR-Kits kit to set the frequency
of the Si570.

Using the Si570 as the frequency source for SoftRock trans-
ceivers is a significant advantage over the original method
because it alleviates the need to accurately balance I and Q sig-
nal components over a wide bandwidth.

As a result of the growing use of the Si570 and the SDR-Kits
si-570 kit, Tony, KB9YIG developed a new multi-band SoftRock
receiver - the vf8.3. This receiver included four bandpass filter
modules for the band groups 3.5/7MHz, 10/14/18MHz,
21/24/28MHz, and 1.8MHz, but did include a Si570 module.
Just as the writing of this chapter was being completed, Tony
introduced a Softrock v9.0 Lite receiver kit with electronically-
switched bandpass filtering that covered 1.8 - 30MHz. Contact
Tony [2] for current details of SoftRock radios that can use the
Si570.

REFERENCES
[1] The latest version of VE3NEA's Rocky software can be

downloaded free from www.dxatlas.com/Rocky
[2] The SoftRock receivers and transceivers have (at the time

of writing) reached Version 6. E-mail Tony Parks, KB9YIG,
directly to check kit availability at: raparks@ctcisp.com.
You can order from him by post or over the Internet/e-mail
by using PayPal. Please note that Tony sells the kits for fun
and any profits go to fund the development of new
SoftRock kits.

[3] M0KGK's KGKSDR software can be downloaded free at:
www.m0kgk.co.uk/sdr/index.php

[4] www.flex-radio.com
[5] Perseus - www.microtelecom.it/perseus/
[6] SDR-IQ - www.rfspace.com/RFSPACE/SDR-IQ.html
[7] ADAT ADT-200a - www.adat.ch/index_e.html
[8] Details of the High Performance Software Defined Radio

Project (HPSDR) can be found at: http://openhpsdr.org
[9] QS1-R - www.philcovington.com/QuickSilver/
[10] The not-for-profit Tucson Amateur Packet Radio (TAPR)

organization, www.tapr.org
[11] www.sherweng.com/table.html
[12] PowerSDRTM software & source code can be downloaded free

at: http://flex-radio.com/Products.aspx?topic=PowerSDRv2
[13] You can join the SoftRock 40 reflector at:

http://groups.yahoo.com/group/SoftRock40/ but you will
need to become a Yahoo member first.

[14] You can join the Flex-Radio user reflector at:
http://mail.flex-radio.biz/mailman/listinfo/flexradio_flex-
radio.biz.

[15] Several I & Q .WAV files are supplied on the CD that comes
free with this Handbook. Note that these are uncom-
pressed I & Q files and are designed to be played using
SDR software (eg PowerSDRTM, Rocky, KGKSDR

[16] VK6APH used this technique in 'The Buccaneer - an experi-
mental high-performance binaural receiver design', pub-
lished in RadCom, July 2005.

[17] Flex-Radio sponsor regular Internet round-table discus-
sion on the SDR-1000 and related topics using a VoIP
(Voice over Internet Protocol) software package called
'Teamspeak' - for details see http://kc.flexradio.com/
KnowledgebaseArticle50228.aspx

[18] QS1R web page - www.philcovington.com/QuickSilver/
[19] ‘The Peter Hart Review: SoftRock v6’, RadCom. March

2007
[20] ‘SDR’ columns, RadCom, May 2007, September -

November 2007, January 2008
[21] Free software for SoftRock - see http://digilander.libero.it

/i2phd/sdradio/index.html
[22] SDR Console software: www.philcovington.com/SDR.html
[23] SmallTalk project - see http://myweb.tiscali.co.uk/g3ukb/
[24] I2PHD - see www.weaksignals.com
[25] DttSP is an open source project started by Dr. Frank

Brickle, AB2KT, and Dr Robert McGwier, N4HY, of the DTTS
Microwave Society to provide code to be used in various
DSP projects with an emphasis on Software Defined and
Cognitive Radio - see http://dttsp.sourceforge.net/.

[26] www.nitehawk.com/sm5bsz/linuxdsp/linrad.htm
[27] http://javaguifordttsp.blogspot.com/
[28] www.ubuntu.com/
[29] www.apple.com/macosx/
[30] http://ewpereira.info/sdr-shell
[31] http://py2wm.qsl.br/SDR/SDRZero-2.html
[32] http://people.wallawalla.edu/~Rob.Frohne/SDR/SDR-

Shell/

The Radio Communication Handbook 8.53

8: SOFTWARE DEFINED RADIO

Offset Frequency 120MHz (LVDS)
100Hz -112
1kHz -122
10kHz -132
100kHz -137
1MHz -144
10MHz -150

Table 8.9: Si570 Output
Phase Noise (dBc/Hz)

© R
SGB 20

11

The Radio Communication Handbook8.54

[33] www.nitehawk.com/w3sz/w3sz.htm
[34] www.nitehawk.com/w3sz/xlinrad-deb.htm
[35] http://jackaudio.org/
[36] http://groups.yahoo.com/group/dttsp-linux
[37] m i c r o e m b e d d e d . g o o g l e c o d e . c o m / f i l e s /

ATLAS_Docu_USLetterLowRes.pdf
[38] USRP boards - see www.ettus.com
[39] Details of the Xylo board can be found at:

http://www.knjn.com/FPGA-FX2.html
[40] http://uwsdr.berlios.de/
[41] CDG2000 transceiver - see RadCom, June 2002 for part 1.
[42] There are several SoftRock application notes on using the

SoftRock v6 for processing IF signals from analog radios.
These can be found on the 'members only' part of the
SoftRock reflector web pages, in the SoftRock v6 docs/v6

[43] Generally attributed to Gerald Youngblood, K5SDR, the
original developer of the Flex Radio SDR-1000 (although
used by others over many years).

[44] www.flex-radio.com
[45] Presentation by Kirk Weedman, KD7IRS, on Verilog pro-

gramming: http://verilog.openhpsdr.org/
[46] Ozy circuit diagram - see at www.hamsdr.com/
[47] www.hamsdr.com/personaldirectory.aspx?id=485
[48] www.analog.com/library/analogDialogue/archives/30-3/

single_chip.html
[49] 'Receiver Sensitivity, noise figure and dynamic range',

James Fisk, W1DTY, Ham Radio Magazine, October 1975.
[50] 'IC7800 Test Drive', QST Magazine, August 2004, ARRL

[51] www.xs4all.nl/~martein/pa3ake/
[52] Open Office is an open source multi-platform, multi-lingual

suite of office applications - see www.openoffice.org
[53] ScopeFIR: see www.iowegian.com/scopefir.htm
[54] An excellent explanation of the Fourier series can be found

at: http://complextoreal.com
[55] FFTW - see www.fftw.org/
[56] Ooura FFT algorithm, see - www.kurims.kyoto-u.ac.jp

/~ooura/
[57] www.mydarc.de/dg8saq/PAJan/index.shtml. IF applica-

tions folder. Analysis of RXTX 1W PA by Tom Baier,
DG8SAQ

[58] A paddle and PTT connection diagram for Rocky 3 can be
downloaded from the webpage at: http://www.dxatlas.com
/Rocky/. A diagram showing the connections for KGKSDR
and the RXTX can be downloaded from the RXTXv6.1 fold-
er (see [2] above) - it is called Softrock RXTX connec-
tions.jpg. An excellent guide on how to setup PowerSDRTM

-sr40 with the RXTX by Guido PE1NNZ can be found at:
http://sourceforge.net/projects/powersdr-sr40/files/
powersdr-sr40/

[59] www.amqrp.org/kits/dds60/
[60] http://groups.yahoo.com/group/softrock40/files/

Si570%20frequency%20stabilization/
[61] www.sdr-kits.net/

© Phil Harman, VK6APH and Steve Ireland, VK6VZ, 11 April
2009

8: SOFTWARE DEFINED RADIO

About the Authors
Phil Harman, VK6APH, has a BSc (Hons1) in Electrical and Electronic Engineering from the University of Bath (UK). He was first
licensed as G3WXO at the age of 16 and became VK6APH in 1980 upon migrating to Australia. First trained as an RF Engineer,

Phil has also held a number of IT management positions. For the past 10 years he has been developing advanced video pro-
cessing technologies for stereoscopic imaging and the conversion of 2D images to 3D, and holds 23 patents relating to digital

image processing. His main interests are receiver development, software defined radios, HEO satellites and HF DXing.

Steve Ireland, VK6VZ, has been a scientific journalist for over 25 years and is a former editor of the UK's Ham Radio Today
magazine. He was first licensed as G3ZZD at the age of 16 and migrated to Australia in 1989, where he became VK6VZ. He
has a BA (Hons2) degree in English from the University of North London and also holds an Ordinary National Certificate in

Engineering. His main interests are CW, low-band DXing (over 220 countries confirmed on 160 metres), antenna experimenta-
tion, software defined radio and writing technical articles about amateur radio.

Audio, video and ExcelTM files to complement this chapter can be found in the accompanying free CD

© R
SGB 20

11

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

